
Rational Krylov, a practical algorithm for large sparse

nonsymmetric matrix pencils

Axel Ruhe

Report No. UCB/CSD-95-871

April 1995

Computer Science Division (EECS)
University of California
Berkeley, California 94720

RATIONAL KRYLOV, A PRACTICAL ALGORITHM FOR LARGE

SPARSE NONSYMMETRIC MATRIX PENCILS

AXEL RUHE

1

Abstract. The Rational Krylov algorithm computes eigenvalues and eigenvectors of a regular
not necessarily symmetric matrix pencil. It is a generalization of the shifted and inverted Arnoldi
algorithm, where several factorizations with di�erent shifts are used in one run. It computes an
orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil approx-
imates the solution of the original pencil. Di�erent types of Ritz values and harmonic Ritz values
are described and compared. Periodical purging of uninteresting directions reduces the size of the
basis, and makes it possible to get many linearly independent eigenvectors and principal vectors to
pencils with multiple eigenvalues. Relations to iterative methods are established.

Results are reported for two large test examples. One is a symmetric pencil coming from a �nite
element approximation of a membrane, the other a nonsymmetric matrix modeling an idealized
aircraft stability problem.

Key words. matrix, eigenvalue, Krylov, Lanczos, Arnoldi, sparse, nonsymmetric

AMS subject classi�cations. 65F15

1. Introduction and review. Let us assume that you have an eigenvalue prob-

lem,

(A � �B)x = 0 ;(1)

and that you want to compute a few eigenvectors xi associated with eigenvalues �i in

a region of the complex plane that may be close to some critical vibration frequences,

interesting energy levels or a boundary of stability. The matrices are too large to

be treated by standard similarity transformations, as can be found in the Lapack

library [1], but we have a routine available for direct solution of linear systems with

shifted coe�cient matrices (A� �B), most often a sparse Gaussian LU-factorization.

Traditionally you would have two choices, either you apply inverse iteration with

Rayleigh quotient shift, this converges fast, but needs several factorizations for each

eigenvalue, or you factorize just once and run Lanczos or Arnoldi on the shifted and

inverted problem, see [5, 7, 9]. The Rational Krylov algorithm [15, 16, 17, 18] is an

attempt to combine the virtues of these two approaches, it iterates with several shifts
�j to build up one orthogonal basis from which approximations to several eigenvalues
may be computed.

You might remember that Krylov space methods, like Lanczos and Arnoldi, can

be interpreted in terms of polynomials of the matrix operating on the starting vector,

and that the rich theory of orthogonal polynomials can be used to explain their

convergence behaviour, see the exposition in [12]. In the Rational Krylov algorithm,

we will use rational functions,

r(�) =
pj(�)

(� � �1)(�� �2) : : : (� � �j)
= c0 +

c1

� � �1
+ : : :+

cj

�� �j
:(2)

The poles, �i, are the shifts, and the zeros of the numerator approximate the eigen-

values. A careful choice of shifts gives a much faster convergence to eigenvalues close

1 Department of Computing Science, Chalmers Institute of Technology and the University of
G�oteborg, S-41296 G�oteborg, Sweden (ruhe@cs.chalmers.se) Work done while visiting University
of California Berkeley.

1

2 AXEL RUHE

to the poles. The �rst form describes a sequential variant, where information gained

up to step j determines the next shift �j+1, this will be the primary object of this

exposition, but note that the second form indicates how a parallel variant, where all

the shifts �1 : : :�j are applied at the same time, can be implemented. Rational func-

tions are also natural in model reduction problems in Control theory, see the recent

report by Gallivan, Grimme and Van Dooren [6].

After formulating the algorithm in x2.1 and deriving its basic recursion in x2.2, we
will study di�erent ways to get approximate eigenvalues and -vectors in x2.3 and x2.4.
It appears that the theory of harmonic Ritz values, expounded by Paige, Parlett and

Van der Vorst [11], gives a good framework for understanding this. It also gives us a

good way to choose a continuation vector when a new shift �j has been calculated.

Then, in x2.5, we show that one variant of RKS, where a new shift is used in every step,

gives precisely the same subspaces as one variant of the Jacobi Davidson algorithm,

recently proposed by Van der Vorst et al [21], where the iterative linear system solver

in the inner iteration is run to convergence for every outer iteration. In x2.6, we show
how the size of the computed basis can be reduced by implicit restart, as described

by Sorensen [22] for the Arnoldi algorithm, we will use a technique closely related to

the locking and purging strategy studied by Lehoucq and Sorensen [10].

In x3, we discuss implementation details of a more heuristic nature, such as the

questions of when a refactorization or a purge of vectors may be pro�table.

In x4, we report on numerical tests. We use a symmetric pencil from a �nite

element approximation of a membrane eigenvalue problem to illustrate how double

eigenvalues are handled, and show how very few iterations may give remarkably accu-

rate eigenvector approximations. We will also compute long sequences of eigenvalues

of the notorious Tolosa matrix [3].

The tests bear out some of the expectations raised by the theory. The use of

several shifts �j leads to fewer iteration steps j, but the added factorizations take

time. The Rational Krylov approach comes to advantage, compared to shifted and

inverted Arnoldi, when many eigenvalues are requested, as well as when the eigenvalue

problem is nonsymmetric and ill conditioned. A new shift, closer to the eigenvalue

sought, then leads to much faster convergence.

Purging of vectors to decrease the basis size increases the number of steps, but the

orthogonalization gets faster when the basis is smaller. In symmetric and well behaved

cases, the convergence rate remains linear, and it clearly pays o� to do purging. In

ill conditioned cases, the larger basis size appeared to be needed, it looked like the

algorithm had to build up a su�ciently large subspace, in order not to loose track

of an evolving eigenvector approximation. For very large matrices, the extra cost of

keeping a large basis is small, compared to the matrix vector operations, a rule of

thumb may be to keep about the same number of vectors in the basis as there are

nonzero elements in each row of the sparse factored matrix.

The reader is urged to get the online companion report [19], all pictures are much

better in color!

A word about notation: We let Vj stand for a matrix with j columns, the �rst j

columns of V if nothing else is stated, Ajk is a j � k matrix, but we avoid subscripts

when all rows or columns are referred to. Column j of the matrix V is vj and row k

is, with a slight notational overkill, vTk . A superscript, like �(j), is used to distinguish

the value at step j of a quantity that changes from step to step. We denote by AH

the conjugate transpose of the matrix A. We will always use the Euclidean vector

norm, denoted by k k.

RATIONAL KRYLOV 3

2. The Rational Krylov iteration.

2.1. Algorithm. Starting with a vector v1, we build up an orthonormal basis

Vj , one column vector vj at a time, using the following:

Algorithm RKS

1. Start:

1. Choose shift �1.

2. Choose vector v1, where kv1k = 1 (random normal).
3. Set t1 = e1 .

2. For j = 1; 2; : : : until convergence
1. Set r = Vjtj, (continuation vector).
2. Operate r := (A � �jB)

�1Br

3. Orthogonalize r := r � Vjhj where hj = V H
j r, (Gram Schmidt).

4. Get new vector vj+1 = r=hj+1;j, where hj+1;j = krk, (normalize).

5. Compute approximate solutions, �
(j)

i and s
(j)

i , and test for convergence.

6. If j large enough, purge and retain j = j1 vectors.

7. If motivated, get new �j+1 newshift.
8. Get tj+1, (continuation combination).

3. Compute eigenvectors, xi = Vjsi.

End.

Let us follow this algorithm prove some important relations and discuss some

open issues.

The choice of new shifts during the run to build up one basis Vj , is what makes

Rational Krylov di�erent from the shifted and inverted Arnoldi algorithm [2, 20, 14].

We use all information gathered up to step j, to determine the shift for step j + 1

in step 2.7 , but for economic reasons we keep the shift �j constant for several steps,

since then we can use the same factorized matrix

A� �jB = LU(3)

in all of those. See the discussion in x3!
The use of the continuation combination Vjtj in step 2.1 is another change from

Arnoldi, where one always takes the last vector vj. It makes a di�erence when a new

shift is taken in step j, we will explain how to choose the vector tj in step 2.8 in x2.4.
The basic recursion (5), which shows how the original matrix pencil (A;B), (1),

the computed basis Vj , and Hessenberg pencil (K;H) hang together, will be derived

in x2.2.
The computation of eigenvalue and -vector approximations from the (K;H) pen-

cil in step 2.5 will be explained in x2.3, and in x2.4 some interesting choices for

approximations are compared.

The purge operation in step 2.6 is described in x2.6.
The choice of starting vector in step 1.2 is not very critical in algorithms that

use shifted and inverted matrices. We used a vector of normally distributed random

numbers.

We always made sure we had orthogonality to full accuracy in step 2.3. Classical

Gram Schmidt with one reorthogonalization was su�cient for that purpose.

4 AXEL RUHE

2.2. Basic recursion. Now let us follow what happens during a typical step j

of Algorithm RKS. Eliminate the intermediate vector r, used in steps 2.1 { 2.4,

and get

Vj+1hj = (A � �jB)
�1BVjtj ;

the vector hj now has length j + 1. Multiply from the left by (A � �jB),

(A� �jB)Vj+1hj = BVjtj :(4)

Separate terms with A to the left and B to the right,

AVj+1hj = BVj+1(hj�j + tj) ;

with a zero added to the bottom of the vector tj to give it length j + 1.

This is the relation for the j th step, now put the corresponding vectors from the

previous steps in front of this and get,

AVj+1Hj+1;j = BVj+1Kj+1;j ;(5)

with two (j + 1)� j Hessenberg matrices, Hj+1;j = [h1h2 : : :hj] containing the Gram

Schmidt orthogonalization coe�cients, and

Kj+1;j = Hj+1;jdiag(�i) + Tj+1;j(6)

with the triangular matrix Tj+1;j = [t1t2 : : : tj], built up from the continuation com-

binations used in step 2.1.

2.3. How to get approximate eigensolutions. We have considerable free-

dom to choose how to get approximate eigenvalues and eigenvectors in step 2.5 of

Algorithm RKS. We may take any j dimensional subspace of Vj+1 and use it as a

basis for a Ritz procedure. Let a basis of this subspace be Vj+1Qj+1;j, with Qj+1;j

the leading j columns of a (j + 1) � (j + 1) unitary matrix Qj+1. Look at the basic

recursion (5), and get

AVj+1Qj+1Q
H
j+1Hj+1;j = BVj+1Qj+1Q

H
j+1Kj+1;j :

The Ritz values will now be found by computing eigenvalues of the leading j�j block

of the transformed (K;H) pencil (QH
j+1Kj+1;j; Q

H
j+1Hj+1;j).

To be more speci�c, let us take Q from the QR factorization of any combination

of H and K, say K � �H. Note that we can subtract a multiple of BV H from the

basic recursion (5), and get

(A� �B)V H = BV (K � �H) ;

and then

(A � �B)V Qj+1Q
H
j+1H = BV Qj+1Rj+1;j :

The last row of Rj+1;j is zero, so we can multiply with the inverse of Rj;j from the

right and get,

(A� �B)Wj+1
~Hj+1;j = BWj ;(7)

where the new basis W is given by,

Wj+1 = Vj+1Qj+1 ;

RATIONAL KRYLOV 5

and the new matrix,
~Hj+1;j = QH

j+1Hj+1;jR
�1
j;j ;

represents the pencil (A;B) in this new basis. Note that this is the same recursion as

one gets from shifted and inverted Arnoldi with shift �,

(A� �B)�1BWj = Wj+1
~Hj+1;j ;(8)

with the, very important, di�erence that ~H is not a Hessenberg matrix and W is not

a Krylov sequence. It is not even built up one column at a time, since there is a new

Q matrix each step.

Let us, all the same, take the eigensolution of the square matrix ~Hj;j ,

~Hj;js = s� ;(9)

precisely as in Arnoldi, to get the approximate eigenvalues

�
(j)

i = � +
1

�i
; i = 1; : : : ; j ;

and vectors

y
(j)

i = Wjsi = Vj+1Qj+1;jsi ; i = 1; : : : ; j :(10)

We see that,
~Hj;j = WH

j (A� �B)�1BWj ;

so the approximations �i are Ritz values of the shifted and inverted pencil (A��B)�1B
over the subspace spanned by Wj , which is contained in the space spanned by the

computed basis Vj+1.

The transformed residual of the vector y
(j)

i (10) is,

(A � �B)�1By
(j)

i � y
(j)

i �i = (A � �B)�1BWjsi �Wjsi�i

= Wj+1

�
~Hj+1;j �

�
~Hj;j

0

��
si(11)

= wj+1
~h
T

j+1si

= wj+1!
(j)

i ;(12)

where the second equality (11) follows from the transformed basic recursion (8) and

of the small eigenvalue problem (9). Note that the residuals for all the approximate

eigenvalues are in the same direction wj+1, which is orthogonal to Wj , the basis of

the subspace from which the eigenvector approximations are computed. Our approx-

imations �(j) can be interpreted as Harmonic Ritz values of B�1(A��B), to use the

terminology introduced in [11].

The norms of the transformed residuals are j!(j)i j (12), and can be computed

directly from the small, j dimensional, eigenproblem (9). We can use the same tech-

nique as in Lanczos or Arnoldi, to check when eigenvalues are about to converge, and

do the time consuming computation of the long eigenvector approximations, y
(j)

i (10),

just once, when it has converged to su�cient accuracy.

2.4. Choice of approximations. Let us now consider some interesting choices

of the factor �:

6 AXEL RUHE

2.4.1. Current shift. First take � = �j , the current shift. We realize that

the last row of K � �H is zero, see the expression (6), and remember that H, the

matrix of orthogonalization coe�cients, is by its construction upper Hessenberg and

T , the matrix of starting combinations, must be upper triangular. This means that

we may take the unitary matrix Qj+1 as the unit matrix, and get the eigenvalue

approximations from the upper square part of the (K;H) pencil,

Kj;js = �Hj;js ;(13)

now giving the eigenvalue approximations �
(j)

i = �i. We let these be the standard

eigenvalue approximations, and use them as a default. Remember that they are

harmonic Ritz values of B�1(A��B). For symmetric pencils, they will move towards

the shift �j as long as the shift is kept constant, see [11]. We have observed a similar

behaviour in the general case.

2.4.2. In�nity. The second choice is � = 1, which corresponds to making a

QR factorization of Hj+1;j = Qj+1Rj+1;j. In an obvious fashion we get,

AVj+1Qj+1Rj+1;j = BVj+1Kj+1;j ;

AWj = BWj+1
~Kj+1;j ;(14)

withW = V Q and ~K = QHKR�1j;j . The eigenvalues
i of
~Kj;js = s
, are the standard

Ritz values of B�1A, with Ritz vectors,

ui = Wjsi :(15)

This property made this choice the favorite of the earlier contribution [16], but this

study and other recent works like [21] have indicated that harmonic Ritz values are

better, especially when it comes to choosing new shifts in the continuation of the

algorithm. At convergence the di�erence disappears.

2.4.3. Next shift. The third interesting choice of � is �j+1, the shift we are

going to use in the next step. In that step, we intend to multiply with the matrix (A�
�j+1B)

�1B, to add a new direction to the basis spanned by Vj+1 or equivalentlyWj+1.

Inserting � = �j+1 in the relation (8), we get Wj+1
~Hj+1;j = (A � �j+1B)

�1BWj so

any vector in the span of Wj will not add to the span of Wj+1. So let us choose the

remaining, last, vector in the modi�ed basis,

wj+1 = Vj+1qj+1 ;

as the vector to operate on in this next step.

Thus let step 2.8 in Algorithm RKS read,

tj+1 =

�
ej+1 if �j+1 = �j ;

qj+1 = Qj+1ej+1 otherwise
;(16)

where, in the second case, Qj+1 is obtained from the QR factorization,

(Kj+1;j � �j+1Hj+1;j) = Qj+1Rj+1;j :

It might be interesting to note that the last element of this vector is zero, if the

shift �j+1 is chosen as one of the eigenvalues �i of the small pencil (13). This is due

RATIONAL KRYLOV 7

to the fact that only the last element is nonzero in the last row of Kj+1;j ��iHj+1;j,

so the �rst j � 1 Householder re
ections in the QR factorization do not touch this

last row. After these re
ections, Pj�1Pj�2 : : :P1(Kj;j � �iHj;j) is upper triangular,

with a zero in the bottom right corner, provided that �i is an eigenvalue of the

pencil (Kj;j;Hj;j). The last re
ection is then simply a transposition of the two last

coordinates, and Qj+1 gets its bottom right element zero.

It is also evident from algebraic considerations, that we cannot simply continue

with vj+1 when we have chosen a new shift as a Ritz value from the span of Vj , since

then the next rational function (2) will have a common factor in the numerator and

denominator. See the earlier study [17]!

2.5. The Jacobi Davidson algorithm. We are now ready to show that one

speci�c choice of approximations and shifts in our Algorithm RKS gives the same

sequence of subspaces as one speci�c variant of the algorithm described by Van der

Vorst & Co [21]. InAlgorithm RKS, choose the second alternative in x2.4, standard
Ritz values
i of the original pencil, for eigenvalue approximations in every step j,

and use this as shift the next step j+1. In the Jacobi Davidson algorithm [21], choose

the standard Ritz variant and run the iterative linear system solver to completion in

each outer iteration j.

The proof is by induction, the reader may need to have a description of Jacobi

Davidson like [21] available, to follow the rest of this subsection.

First, assume that both algorithms are started with the same vector v1 = w1.

Then look at step j of both algorithms and let the basis Wj be given.

The algorithm in [21] takes a Ritz vector u from the span of Wj . It then adds

the direction t to the basis, where t is computed from the linear system,

(I � uuH)(A �
I)(I � uuH)t = �(A �
I)u ;(17)

(In [21], only the case B = I is treated, but the generalization is obvious). The new

direction t is chosen orthogonal to u, (I�uuH)t = t, so the last factor in the left hand

side has no e�ect. Expand the �rst projection and get (A �
I)t � uuH(A �
I)t =

�(A �
I)u, or

(A�
I)(t + u) = u� ; � = uH(A �
I)t ;

so the direction of (A�
I)�1u is added to the spaceWj in the next iteration, provided

that the system (17) is solved to full accuracy.

In Algorithm RKS, use the second choice of approximate eigenvalues,
i of the

previous subsection, and assume that B = I and Hj+1;j is factorized, so that (14)

reads,

AWj = Wj+1
~Kj+1;j;

(A�
I)Wj = Wj+1(~Kj+1;j �
I);

Wj = (A �
I)�1Wj+1Qj+1Rj+1;j ;

where the last QR factorization is the one used to determine continuation vector (16)

when
 is the next shift. The next step of Algorithm RKS will add r = (A �

I)�1Wj+1qj+1 to the basis. This makes sure that any vector in (A�
I)�1Wj, and

consequently also (A �
I)�1u for the Ritz vector u (15), is contained in the next

subspace.

8 AXEL RUHE

2.6. Purging and restart. When the size of the basis Vj grows too large for

comfort, we divide it into two parts, where the �rst one contains all converged eigen-

vectors, together with some that are about to converge to eigenvalues in the interesting

region of the complex plane. We then continue the iteration, keeping only the �rst

part in the basis. This can be done so that the basic recursion relation (5) holds all

the time in the following way.

We �rst transform (5) into a standard problem by multiplying with H�1
j;j from

the right,

AVj+1

�
I

hTj+1H
�1
j;j

�
= BVj+1

�
Kj;jH

�1
j;j

kTj+1H
�1
j;j

�
:

We then compute the Schur triangular formTj;j of this standard eigenproblemKj;jH
�1
j;j ,

and order it so that the j1 interesting eigenvalues are on top,

UHKj;jH
�1
j;j U =

�
Tj1;j1 Tj1;j�j1
0 Tj�j1;j�j1

�
:(18)

There are several ways of reordering T . We may run exact shift QR transforma-

tions, �rst shifting with those eigenvalues that are candidates for purging and placing

them in the bottom, but we prefer to do it from the top down, using RQ transforma-

tions, and �rst get the converged eigenvalues as leading diagonal elements. We run

this RQ iteration until no change is observed in the leading diagonal element, to make

sure that the block Tj�j1;j really is zero to working accuracy.

Some care has to be exercised, see the analysis in [13], to avoid disorder. There

it is shown that tiny small last elements in the eigenvectors cause disorder in the

QR iteration. Consequently, in the RQ iteration, we must not take eigenvalues with

a tiny �rst component in their eigenvectors, i. e. such that are not represented in

the starting vector. We can still get several linearly independent eigenvectors to a

multiple eigenvalue. The �rst time we use such a multiple eigenvalue as shift in the

RQ iteration, we get the Schur vector that is represented in the starting vector, the

second time we use the same shift, we get one more column in the Schur form, now

with a vector that is represented in the second basis vector, and so on. See the careful

discussion of this issue in [10]!

We nowmultiply the basis Vj from the right by the unitary matrixU = [Uj;j1 Uj;j�j1]

of the Schur decomposition, and discard those vectors that correspond to the second

block, Uj;j�j1. We are back at the basic recursion (5), now with a basis of lower

dimension j1 + 1,

A[VjUj;j1 vj+1]

�
Ij1

h
T
j+1H

�1
j;j Uj;j1

�
= B[VjUj;j1 vj+1]

�
Tj1;j1

k
T
j+1H

�1
j;j Uj;j1

�
;(19)

and can continue with the expressions in brackets as the new V , H and K. Note that

the last vector vj+1 is not changed during all these manipulations. When purging

occurs, it is natural to compute the continuation vector (16) after the purging step.

3. Implementation details. We have developed a program that attempts to

compute all eigenvalues in a rectangle in the complex plane with opposite corners given

by the two complex numbers lb and ub. We are also given a point goal, preferably
close to one end of the region, and a forward direction, pointing into the region. This

point is used as the �rst shift �1.

In each step j, we compute Ritz values using the pencil (13), and
ag them as

converged when the quantity !
(j)

i (12) is small enough, say !
(j)

i < 100macheps.

RATIONAL KRYLOV 9

We keep the same shift �j for several steps j, determined by how expensive a new

factorization (3) is, compared to continuation for a few more steps. We have simply

chosen to set a parameter cstep, which tells us to wait until cstep eigenvalues have

converged, before we choose a new shift. We also check that all eigenvalues behind the

current shift have converged, this makes sure the process runs in the chosen forward

direction, and that no new copies of multiple eigenvalues will be left behind. When we

decide on taking a new shift �j+1, we take it as the mean of the cstep closest current

forward Ritz values that have not yet converged. We also prescribe a maximum

number of steps to keep a shift, most often 20, as well as a minimum number, most

often 5.

We decide to purge and restart using the assumption that the Ritz values converge

linearly with j. We had some feeling that if we kept more vectors, the values should

converge in fewer steps, but our experiments have given remarkably linear convergence

curves after an initial stage when the algorithmgathers information. We have to weigh

the cost of computing a new basis, Wj1 = VjUj1 , see (19), which is n � j � j1
ops,

against the cost of keeping the j � j1 purgable vectors for another k steps, which is

4n(j� j1)k
ops, if one reorthogonalization is always done in step 2.3 of Algorithm

RKS. We can count how many Ritz values there are inside and outside the rectangle

of interest, and so get a value of j1, the number of kept vectors, before we actually

set about to do the purging. Remember that j always is so small that we can neglect

all operations that do not involve vectors of length n . If we purge, the number of

vectors will grow again, if nothing special happens until j is back at its original value,

i.e. we run for k = (j � j1) steps before we are back at the same decision situation.

Under these assumptions, it pays to purge when,

4(j � j1)
2 > j � j1 ;

that is when,

j > (
9 +

p
17

8
)j1 � 1:6j1 :(20)

We used this relation, and most often purged all but jkept of the unconverged values.

We continue this way, at each purge increasing the size of the converged block

in the Schur form (18), until no more unconverged Ritz values are to be found in

the rectangular region given by lb and ub, and then we
ag the whole algorithm as

converged.

4. Two numerical examples. We have tested the Rational Krylov algorithm

using Matlab4 on Sun Sparc, Hewlett Packard 700 series and IBM RS6000/590

workstations. The linear system computations in step 2.2 of Algorithm RKS were

done with the sparse matrix option in Matlab4. Reorthogonalization was done

in step 2.3 whenever necessary. We took advantage of the complex arithmetic in

Matlab, even when we had real matrices.

This setup is simple to program, but does not squeeze the maximumperformance

out of the machines. A .mex �le implementation of the simple but heavy Gram

Schmidt orthogonalization in step 2.3, which used the IBM ESSL [8] implementation

of the Blas routines, ran about 10 times faster than our Matlab code for that step.

We actually used it in the runs reported in the upper half of table 4, that is why it is

faster than the lower half, where a smaller matrix is treated.

Our �rst test example is a symmetric positive de�nite pencil, describing a �nite

element model of a membrane. We used the numgrid and delsq routines fromMat-

10 AXEL RUHE

Table 1

Summary of time and space needed for di�erent parameter settings. Asterisk indicates that a

stipulated maximum was hit.

Settings Resources needed

Problem jkept cstep Shifts Purges jstep jmax Time

L-membrane 1 1 3 157 85 112.28

[0; 500] 15 1 4 108 56 46.82

Arnoldi 10 1 6 104 40 33.69

(22 eigv) 5 1 33 202 31 49.73

RKS 1 2 7 0 72 65 77.52

10 2 9 1 72 53 65.39

5 2 10 12 100 33 62.80

[0; 1000], Arn 10 1 22 355 67 124.20

(49 eigv) RKS 10 2 11 3 124 93 167.01

Tolosa 1 1 4 131 50� 102.23

Arnoldi 15 1 6 174 50� 118.48

(23 eigv) 10 1 16 206 41 114.94

5 1 42 244 31 100.29

RKS 15 2 9 2 64 50� 49.72

10 2 11 5 97 42 55.71

5 2 11 14 103 32 40.52

Cluster, 28 eigv 10 2 4 12 150� 34 71.82

lab, slightly modi�ed to get the 9 point stencil given by bilinear �nite elements over

a quadrilateral mesh.

We tried several shapes of membranes, and noted that the simplest square mem-

brane gave the program some challenges, since it has many pairs of double eigenvalues.

Here we choose to report runs on the standard L shaped membrane. It has some dou-

ble eigenvalues; the �rst pair is at �8 = �9 � 197. If we take the element size h = 1=64,

we will get matrices of size n = 2945. We have varied the parameters discussed in

the previous sections. First we �xed the shift at goal = 0 all the time, this is shifted

and inverted Arnoldi. In the next run we did purge as soon as the size j satis�ed the

condition (20) for some chosen values of jkept. See the summary in table 4!

It must be stressed that ours was not a highly optimized code, we ran Arnoldi

simply by inhibiting purges and new shifts in our RKS code. Of the 112 seconds

used in the �rst line, we spent 87 to compute Ritz values etc, we actually solved the

small eigenproblem (13) in every step j. A simpler Arnoldi program, (See Matlab

PDE-tool [4]!), got the same results in just 25:93 seconds.

Under the line we show results for Rational Krylov proper. We see that fewer

steps jstep and vectors jmax are needed, but that the total timing is slightly worse

due to the time needed for factorizations. Repeated purging, triggered by a smaller

value of jkept, saves basis vectors for both methods, but we need more iteration steps

j to get all eigenvalues in the interval.

It might be instructive to follow how the eigenvalue approximations converge. In

�gure 1 they are plotted with the time going upwards. We let the color indicate the

size of the residual as estimated by !
(j)

i (12) and use the jet color map. The blue

(dark) points are far from convergence, the yellow (lighter) ones are on their way, and

RATIONAL KRYLOV 11

0 100 200 300 400 500 600−2000200

0

10

20

30

40

50

60

L membran 9p n=2945 eigenvalues until step jst=100

Real part Imaginary part

S
ec

on
ds

Fig. 1. Eigenvalues for all steps of RKS applied to the �nite element model of L-membrane

matrix. Accuracy indicated by color. Position of shifts marked by +.

when they get red (dark again) the !
(j)

i approaches the tolerance.

New shifts are marked with crosses (plus signs), and in this run we had cstep = 2,

which placed the shifts just between pairs of eigenvalues. The time needed for the

refactorizations shows up as empty space just below (before) the shift marks.

The reader has to take into account that the alignment is not perfect, the �rst

shift is at exact 0, and the pile of dots shown just to the right of 200 is actually the

eigenvalue at � � 197.

The pattern shown here is very typical, a new Ritz value comes in at each step,

but it takes only one or two steps for it to stabilize, and then it stays. Look at

the double eigenvalue at � � 197. The �rst copy converges after 23 seconds, and is

treated as converged in the purge at second 25. Then the second copy comes in from

the left, see the two dark dots to the left of � = 200 at second 24, and stays in the

computation until it converges and is set aside in the purge at the 33 rd second. All

its simple neighbors are then since long converged, but note that we have postponed

the new shift at � � 300 until everything to the left of the previous shift at 213 has

been
agged as converged. A similar event occurs at the second double eigenvalue

at � � 397, and after 58 seconds we have no more unconverged approximations to

the left of ub = 500. We then start again with a random orthogonal vector and the

projected matrix, and run until we are sure that no new Ritz values will be found in

the region. After 10 steps, at second 62, the smallest Ritz value stabilizes at � � 516,

and we expect no more to be found to the left of ub = 500.

We have plotted the sizes of the residual estimates in �gure 2. When a new shift

12 AXEL RUHE

0 10 20 30 40 50 60 70
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

seconds

re
s

no
rm

L membran 9p n=2945 follow convergence until step jst=100

Fig. 2. Residual estimates as function of time. Each step marked by dotted vertical line,

refactorization by dashdotted line. Tolerances horizontal lines.

0 5 10 15 20 25 30
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

seconds

re
s

no
rm

L membran 9p n=2945 follow convergence until step jst=102

Fig. 3. Residual estimates for Arnoldi with two big purges.

RATIONAL KRYLOV 13

−500 0 500
−500

0

500

1000

1500

2000

2500

−40 −20 0 20

0

50

100

150

Fig. 4. Tolosa matrix, overview and detail of spectrum. Matrix is real so only upper half plane

shown.

is introduced, those in the neighborhood start dropping much faster. There is some

confusion when the new copy of � � 197 comes in at second 24. The convergence

is essentially linear when the shift is kept constant. This is quite a bit more evident

in the Arnoldi run shown in �gure 3. This is for jkept = 15, where two big purges

are done at seconds 12 and 20. Our exact shift RQ algorithm for this needs many

operations, and it shows in the timing here. A more economical scheme, as developed

in [10], will be faster.

On the last 2 rows in the upper half of table 4, we show what happened when

we computed the 49 eigenvalues smaller that 1000. Now RKS needs just one third as

many steps as Arnoldi, that has quite a hard time of �nding both copies of the last

double eigenvalue at � � 997.

Let us also report some runs on the test matrix Tolosa taken from [3]. It is

typical for those matrices one obtains when calculating the stability of an aircraft

structure, and for n = 2000, the size we tested, its spectrum is plotted in �gure 4 . It

took us 16 minutes on our fastest IBM to compute these exact eigenvalues. We just

used the Matlab eig command,

In our tests we sought the eigenvalues in the upper left end of the spectrum by

choosing goal = �750 + 2390i. These eigenvalues are the worst conditioned and are

also critical for the actual design.

We report some tests on computing the 23 eigenvalues in the region bounded by

�750 < Re� < �650, 2200 < Im� < 2400. See the summary in the bottom half of

table 4! For the case with frequent purges, jkept = 5, we also show how the Ritz

14 AXEL RUHE

−750

−700

−650

2200

2250

2300

2350

2400
0

5

10

15

20

25

30

35

Tolosa n=2000 eigenvalues until step jst=89

Real partImaginary part

S
ec

on
ds

Fig. 5. Tolosa matrix, follow eigenvalue approximations, perspective.

−750 −740 −730 −720 −710 −700 −690 −680 −670 −660 −650
0

5

10

15

20

25

30

35

Tolosa n=2000 eigenvalues until step jst=89

Real part

ary part

S
ec

on
ds

Fig. 6. Tolosa matrix, follow eigenvalue approximations, view from imaginary direction.

RATIONAL KRYLOV 15

−12.25 −12.2 −12.15 −12.1 −12.05 −12 −11.95 −11.9 −11.85 −11.8 −11.75

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Real parts

Im
ag

in
ar

y
pa

rt
s

Fig. 7. Tolosa matrix, region around eigenvalue of high multiplicity. o : computed eigenvalue,

.: exact eigenvalue, +: shift.

values converge in �gures 5 and 6. The most notable di�erence from the previous,

symmetric, example is that we need to do quite a few steps before the �rst eigenvalue

converges, it happens at step j = 31 after 8 seconds. Then they will come in a few at

a time, the shifts will be rather close and the starting approximations before a new

shift is applied is rather good. This is the main reason for the superiority or RKS

over Arnoldi for this matrix.

When we compare di�erent frequences of purging, we get a similar e�ect as for

the L membrane, but less pronounced. The case jkept = 10 ran slower than the other

two, this is due to that it happened to need a full 9 steps after a restart with a random

vector to decide that all eigenvalues are already found. It might be noted that Tolosa

is a rather simpli�ed test matrix, any more realistic example is expected to have more

�lled elements.

In this region all eigenvalues were simple. We also tested eigenvalues close to

the origin which is a challenge since there is an eigenvalue with multiplicity 385 at

� � �12:098. Setting a region �15 < Re(�) < 1, �1 < Im(�) < 15 and letting RKS

go for 150 steps, we got 28 eigenvalues, one at � � �0:3323 + 14:1214i, and the rest

plotted in �gure 7. We plot our approximations as circles and the exact eigenvalues as

dots. We got 12 copies of the multiple eigenvalue, all with nearly orthogonal vectors.

After we had got all the distinct eigenvalues, we got one new copy every 5 to 7 steps,

the purging makes sure that we all the time get new linearly independent eigenvectors.

See the last line of table 4!

We also computed the spectrum up along the imaginary axis from goal = 0. In

the beginning, we had to purge copies of � � �12:098 that popped up, but later,

when the shifts were further up along the imaginary axis, they ceased to appear and

we could trot along as long as needed, all the time picking up a couple of eigenvalues

16 AXEL RUHE

for each shift. The essential one dimensionality of the spectrum, makes our heuristics

for �nding all eigenvalues work well for the Tolosa matrix.

Acknowledgement. This work got into shape while the author enjoyed the kind

hospitality of Beresford Parlett and the stimulating environment of the Lapack group

at University of California, Berkeley.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users'

Guide, Release 2.0, SIAM, Philadelphia, 1995. 324 pages.
[2] W. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue

problem, Quart. Appl. Math., 9 (1951), pp. 17{29.
[3] F. Chatelin and S. Godet-Thobie, Stability analysis in aeronautical industries, in Proceed-

ings of the 2nd Symposium on High-Performance Computing Montpellier, France,, M. Du-
rand and F. E. Dabaghi, eds., Elsevier/North-Holland, 1991, pp. 415{422.

[4] Computer Solutions Europe AB, The Partial Di�erential Toolbox, 1995. Beta-test version.
[5] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical so-

lution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980),
pp. 1251{1268.

[6] K. Gallivan, E. Grimme, and P. V. Dooren, A rational Lanczos algorithm for model reduc-

tion, to appear, (1995).
[7] R. G. Grimes, J. G. Lewis, and H. D. Simon, A shifted block Lanczos algorithm for solv-

ing sparse symmetric generalized eigenproblems, SIAM J. Matr. Anal. Appl., 15 (1994),
pp. 228{272.

[8] IBM, Engineering and Scienti�c Subroutine Library, version 2 release 2 ed., 1994.
[9] M. T. Jones and M. L. Patrick, LANZ: Software for solving the large sparse symmetric

generalized eigenproblem, Tech. Rep. MCS-P158-0690, Argonne National Lab, Argonne,
IL. Also available from netlib., 1990.

[10] R. Lehoucq and D. C. Sorensen, De
ation techniques for an implicitly restarted Arnoldi

iteration, Tech. Rep. TR94-13, Department of Computational and Applied Mathematics,
Rice University, Houston, Texas, 1995.

[11] C. Paige, B. N. Parlett, and H. V. der Vorst, Approximate solutions and eigenvalue

bounds from Krylov subspaces, Num. Lin. Alg. Appl., 2 (1995), pp. 115{133.

[12] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, 1980.
[13] B. N. Parlett and J. Le, Forward instability of tridiagonal QR, SIAM J. Matr. Anal. Appl.,

14 (1993), pp. 279{316.
[14] A. Ruhe, The two-sided Arnoldi algorithm for nonsymmetric eigenvalue problems, in Matrix

Pencils, LNM 973, B. K�agstr�om and A. Ruhe, eds., Springer-Verlag, Berlin Heidelberg New

York, 1983, pp. 104{120.
[15] , Rational Krylov sequence methods for eigenvalue computation, Lin. Alg. Appl., 58

(1984), pp. 391{405.
[16] , Rational Krylov algorithms for nonsymmetric eigenvalue problems, in Recent Advances

in Iterative Methods, IMA Volumes in Mathematics and its Applications 60, G. Golub,
A. Greenbaum, and M. Luskin, eds., Springer-Verlag, New York, 1994, pp. 149{164.

[17] , Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs,
Lin. Alg. Appl., 197/198 (1994), pp. 283{296.

[18] , The Rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex

shifts for real matrices, BIT, 34 (1994), pp. 165{176.
[19] , Showing the progress of the Rational Krylov algorithm, tech. rep., Dept Computer

Science, University of California Berkeley, 1995.
[20] Y. Saad, Variations of Arnoldi's method for computing eigenelements of large unsymmetric

matrices, Lin. Alg. Appl., 34 (1980), pp. 269{295.
[21] G. L. G. Sleijpen and H. A. Van der Vorst, A Jacobi-Davidson iteration method for linear

eigenvalue problems, Tech. Rep. 856, University of Utrecht, Department of Mathematics,
1994.

[22] D. C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method, SIAM

J. Matr. Anal. Appl., 13 (1992), pp. 357{385.

