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Abstract

Let n� n Hermitian matrix A have eigenvalues �1; �2; � � � ; �n, and
let k � k Hermitian matrix H have eigenvalues �1 � �2 � � � � � �k,
and let Q be an n� k matrix having full column rank, so 1 � k � n.
It is proved that there exist k eigenvalues �i1 � �i2 � � � � � �ik of A
such that

max
1�j�k

j�j � �ij j �
c

�min(Q)
kAQ�QHk2;
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always holds with c = 1, where �min(Q) is the smallest singular value
of Q and k � k2 denotes the biggest singular value of a matrix. The in-
equality was proved for c � p

2 in 1967 by Kahan who also conjectured
that it should be true for c = 1.

The Rayleigh-Ritz approximation to some k eigenvalues of an n � n
Hermitian matrix A begins with k orthonormal column vectors whose span
is intended to approximate an invariant subspace of A. These columns are
assembled into a rectangular orthogonal matrix Q, so Q�Q = Ik, the k � k
identity matrix. Here \�" takes the conjugate transpose. Then the Rayleigh
Quotient

H = Q�AQ = H�

is computed; its k eigenvalues approximate some eigenvalues of A to within
�kAQ � QHk2, where the norm k � k2 denotes the biggest singular value.
But until 1967 we could not be sure that as many as k eigenvalues of A were
approximated that well; for all we knew then, the k eigenvalues of H might
approximate fewer than k eigenvalues of A, some more than once.

Moreover, the exigencies of approximate computation could produce
columns in Q that were at best nearly orthonormal, and H at best nearly
a Rayleigh Quotient, and then the existing body of theory left too many
questions unanswered.

In 1967, Kahan [6] answered several of those questions with the following
theorem whose proof was �rst published in 1980 in Parlett [9, pp. 229{233]
and which was extended later in 1982 to compact self-adjoint operators by
Davis, Kahan and Weinberger [4].

Theorem 1 (Kahan) Let n � n Hermitian matrix A have eigenvalues

�1; �2; � � � ; �n, and let k � k Hermitian matrix H have eigenvalues

�1 � �2 � � � � � �k, and let Q be an n � k matrix having full column

rank, so 1 � k � n. Then there exist k eigenvalues �i1 � �i2 � � � � � �ik of

A such that

max
1�j�k

j�j � �ij j �
c

�min(Q)
kAQ� QHk2; (1)

where �min(Q) is the smallest singular value of Q, i.e.,

�min(Q)
def
=
p
the smallest eigenvalue of Q�Q;

and the constant c � p2. Here eigenvalues are counted according to multi-

plicity.
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In some special cases, as when k = 1 or k = n, or when Q�Q = Ik , or when
all eigenvalues of H are su�ciently well separated, Kahan also showed that
c = 1. He conjectured that c = 1 always. In this short paper, we are going
to show that this is indeed true. We will prove the following theorem:

Theorem 2 c = 1 always in Theorem 1.

By taking k = n and Q = In, one can see that this theorem is actually a
generalization of the Weyl-Lidskii theorem [9, p. 191].

When the theory is properly stated it takes multiple eigenvalues and mul-
tiple approximations in its stride. When we say that there are k eigenvalues
of A being approximated by the k �j 's in Theorem 1 there is no requirement
that either �ij 's or �j 's be distinct. In the language of Computer Science
these quantities are variables, not values. In the argument of this paper care
has been taken not to assume that the values of any of these variables are
distinct.

The proof of Theorem 2 needs the following two lemmas.

Lemma 3 Partition a matrix X as

X =

 
X1

X2

!
:

If the rank of X exceeds the number of rows of X1, then kX2k2 � �min(X).

Proof: The rank of the matrix 
X1

X2

!
�
 

0
X2

!
=

 
X1

0

!

is no bigger than the number of rows of X1, which is less than the rank of

X . This means that the perturbation

 
0
X2

!
lowers the rank of X by at

least 1; therefore [5, Theorem 2.5.2, p.73]

kX2k2 =






 

0
X2

!





2

� �min(X);

as required.
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Lemma 4 (Davis-Kahan) LetM andW be two Hermitian matrices. Sup-

pose there are two disjoint intervals, each of width at least � > 0 and con-

taining no eigenvalues of either matrix, between which intervals lie all the

eigenvalues of one matrix and none of the other. Let S be a complex matrix

with suitable dimensions. Then there is a unique solution X to the matrix

equation MX �XW = S, and moreover �kXk2 � kSk2.

The proof of this lemma can be found in [3, Theorem 5.1], and [10, Lemma
3.5, p.251] as well.

Proof of Theorem 2: For any unitary U and V , the substitutions

A U�AU; H  V �HV; and Q U�QV (2)

leave the theorem unchanged, so we may assume without loss of generality
that

A = diag(�1; �2; � � � ; �n) and H = diag(�1; �2; � � � ; �k);
and �1 � �2 � � � � � �k . (For reasons that will be clear soon, we do not put
the �j's in increasing order.) In what follows we will prove the theorem for
diagonal A and H by induction. When k = 1, kQk2 = �min(Q) and

kAQ� QHk2 = k(A� �1I)Qk2 � min
1�j�n

j�j � �1j kQk2;

as was to be shown.
Next assume c = 1 holds for k � m < n. We have to show that it also

holds for k = m+1. We use a MATLAB-like notation Xi:j for the submatrix
of X consisting of its ith to the jth column. Set R = AQ � QH ; then it is
easy to see that

R1:m = AQ1:m �Q1:m diag(�1; � � � ; �m);
R2:m+1 = AQ2:m+1 �Q2:m+1 diag(�2; � � � ; �m+1):

Notice that �min(Q) � �min(Q1:m) and �min(Q) � �min(Q2:m+1) because

Q�Q =

 
Q�
1:mQ1:m �
� �

!
=

 
� �
� Q�

2:m+1Q2:m+1

!
:

So the induction hypothesis implies that there are m eigenvalues

�1 � �2 � � � � � �m
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of A such that

max
1�j�m

j�j � �j j � kR1:mk2
�min(Q1:m)

� kRk2
�min(Q)

; (3)

and there are also m eigenvalues

�1 � �2 � � � � � �m (4)

of A such that

max
1�j�m

j�j+1 � �j j � kR2:m+1k2
�min(Q2:m+1)

� kRk2
�min(Q)

: (5)

At this point there are two possible lines of argument. One line shows that
there is no loss of generality in assuming that �i � �i, i = 1; 2; � � � ; m, as
intuition suggests, and then considers the cardinality of f�igmi=1 [ f�igmi=1.
However, the following second argument seems shorter.

This argument breaks into two cases. In the �rst case, there exists an
integer L (1 � L � m) such that �L < �L. In this case, we pair �i with �i
for i = 1; 2; � � � ; L, and pair �j�1 with �j for j = L+ 1; L+ 2; � � �m+ 1. By
(3) and (5) the desired bound holds for all m+ 1 pairs.

On the other hand, in the second case �j � �j for all j = 1; 2; � � � ; m.
In this case, the set f�igmi=1 can be replaced by f�igmi=1 without violating
any of the conditions (4) and (5). To con�rm this, apply the Weyl-Lidskii
theorem to the two 2� 2 matrices 

�j+1
�j

!
and

 
�j

�j

!

whose di�erence is bounded in norm k � k2 by kRk2=�min(Q), according to
(3) and (5), so their ordered eigenvalues di�er by no more than that; in
particular,

j�j+1 � �j j � kRk2
�min(Q)

: (6)

Thus, in the second case we have found m ordered eigenvalues �j of A that
are all approximated within �kRk2=�min(Q) by either the �rstm or the last
m of the m+ 1 ordered �j 's. What remains is to �nd one more eigenvalue

 of A approximated at least as well by at least one of the �j 's.

Without loss of generality, we may suppose that �1; �2; � � � ; �m occupy
the �rst m positions on the diagonal of A, which may then be written

A = diag(�1; �2; � � � ; �m)� eA
5



to de�ne eA. The 
 we seek will be an eigenvalue of eA. Now the proof breaks
into two subcases (I) and (II) according to whether 
 lies between �1 and
�m+1 or not.

Subcase (I): eA has at least one eigenvalue 
 of A between �1 and �m+1

inclusive. We shall �nd a place to insert 
 among the �j 's. For this purpose
we assign �0 = �1 and �m+1 = +1 so that an index J must exist satisfying

�J � 
 � �J+1: (7)

Whether either or neither or both of the last inequalities is strict does not
matter; recall what was said about multiple eigenvalues just after the state-
ment of Theorem 2. From (7) and (3)j=J+1 and (6)j=J we infer that

j�J+1 � 
j � kRk2
�min(Q)

:

Consequently, the two diagonal matrices

diag(�1; �2; � � � ; �J) � 
 � diag(�J+1; �J+2; � � � ; �m)
and diag(�1; �2; � � � ; �J) � �J+1 � diag(�J+2; �J+3; � � � ; �m+1)

have their elements in order, and corresponding elements di�erent by at
most kRk2=�min(Q), as claimed.

Subcase (II): eA has no eigenvalue between �1 and �m+1 inclusive, so
there must be some � > 0 such that eA has an eigenvalue at one of (�1 � �)
or (�m+1 + �), or at both, but not between them. This � will play a role in
our proof analogous to its role in Lemma 4.

Just as eA is obtained by deleting the leading m rows and columns of
A, obtain eQ from Q and eR from R by deleting m leading rows. Then the
equation R = AQ�QH implies eR = eA eQ� eQH . Since the spectra of eA and
H are now separated by �, Lemma 4 implies that

�k eQk2 � k eRk2 ;
� kRk2

because eR is a submatrix of R. Moreover, Lemma 3 implies k eQk2 � �min(Q)
because Q has rank m+ 1, which exceeds the number m of rows deleted to
produce eQ. Therefore

� � k
eRk2
k eQk2 � kRk2

�min(Q)
:
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Now if 
 = �1 � � is an eigenvalue of eA, and hence of A, pair 
 with
�1 and �i with �i+1 for i = 1; 2; � � � ; m. Otherwise 
 = �m+1 + � is an
eigenvalues of eA, and hence of A, which we pair with �m+1, and �i with �i
for i = 1; 2; � � � ; m. Either way, we have found m+ 1 ordered eigenvalues of
A that di�er from their counterparts of H no more than claimed.

This completes the induction step from k = m to k = m + 1, and thus
con�rms Theorem 2 for every k � n.

Let us conclude this paper with a few remarks on possible improvements of
Theorem 2 and on recent developments related to Rayleigh Quotients.

Remark 1. An improvement of Theorem 2 of immediate practical value
would be a reduction in the right-hand side of (1). In the absence of infor-
mation about the provenance of H , no such reduction is possible, as can be
seen from simple examples with k = 1. On the other hand, if Q�Q � I and
H � Q�AQ closely enough, and if all but k of A's eigenvalues di�er from
every one of H 's by at least � > kAQ� QHk2, then (1) can be reduced to
something of the order of

kAQ�QHk22
�

:

To achieve so dramatic a reduction requires techniques like those used by
N. J. Lehmann as explained in [9, pp. 198{202] or techniques used by
Stewart and Sun in [10, pp. 254{257] and in [11]. In [11, Corollary 3.4] it is
proved that

if Q�Q = I and H = Q�AQ, and there is a number � > 0
such that either all but k of A's eigenvalues lie outside the
open interval (�1 � �; �k+ �) or all but k of A's eigenvalues
lie inside the closed interval [�L+ �; �L+1� �] for some 1 �
L � k � 1, and �

def
= kAQ�QHk2=� < 1,

(8)

then

max
1�j�k

j�j � �ij j �
kAQ� QHk22
�
p
1� �2

: (9)

Remark 2. Another improvement of some theoretical interest uses some
other functions in place of the word \max" in (1) with c = 1. For instance,
in [6], Kahan proved thatvuuut kX

j=1

(�k � �ij)2 �
kAQ�QHkF

�min(Q)
; (10)

7



where kZk2F def
= trace (Z�Z) is the sum of the squares of Z's singular values.

Moreover, for the same reason as described in Remark 1, (10) is improvable
provided su�cient information about H is available. In [11, Corollary 3.5]
it is proved that

if Q�Q = I and H = Q�AQ, and if all but k of A's eigen-
values di�er from every one of H 's by at least � > 0 and

�F
def
= kAQ� QHkF=� < 1,

(11)

then vuuut kX
j=1

(�k � �ij)2 �
kAQ�QHk2F
�
q
1� �2F

: (12)

We caution the reader to notice that conditions (11) allow eigenvalues to
interlace arbitrarily whereas (8) do not.

Remark 3. As to more general unitarily invariant norms, Theorem IV.4.14
in [10] provides one kind of generalization which says if Q�Q = I and H =
Q�AQ, then

jjjdiag(�1 � �i1 ; �2 � �i2 ; � � � ; �k � �ik)jjj � 2 jjjAQ� QH jjj ;

where jjj � jjj denotes any unitarily invariant norm. Under stronger conditions
(8), Sun [11, Corollary 3.4] shows

jjjdiag(�1 � �i1 ; �2 � �i2 ; � � � ; �k � �ik)jjj �
jjjAQ�QH jjj kAQ�QHk2

�
p
1� �2 :

(13)
In proving (13) Sun [11] relied on a sin � theorem from Davis and Kahan [3]
which is why conditions (8) come in. Along similar lines, if we use a sin �
theorem from Bhatia and Davis and McIntosh [2], we will get a bound a
little bit weaker than (13) but under weaker conditions like (11). One can
prove that

if Q�Q = I and H = Q�AQ, and if all but k of A's eigen-
values di�er from every one of H 's by at least � > 0 and

�
def
= kAQ�QHk2=� < 1,

(14)

then

jjjdiag(�1 � �i1 ; �2 � �i2 ; � � � ; �k � �ik)jjj � bc jjjAQ�QH jjj kAQ�QHk2
�
p
1� �2 ;
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where the constant bc � �
2

R �
0

sin �
�
d� < 2:91 [1]. This inequality appears to

be new and a proof can be obtained from the third author.

Remark 4. More generalizations of Theorem 2, which are of purely theo-
retical interest, are due to Liu and Xu [8], Sun [11] and Li [7], who assume
that bounds upon the angles between the subspace spanned by the column
vectors of Q and a k-dimensional invariant space of A are available.

Acknowledgment. The authors are indebted to Professor W. Kahan and
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