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Abstract

Let B be an m�n (m � n) complex matrix. It is known that there
is a unique polar decomposition B = QH, where Q�Q = I, the n � n

identity matrix, and H is positive de�nite, provided B has full column
rank. This paper addresses the following question: how much may Q
change if B is perturbed to eB = D�

1
BD2? Here D1 and D2 are two

nonsingular matrices and close to the identities of suitable dimensions.
Known perturbation bounds for complex matrices indicate that in

the worst case, the change in Q is proportional to the reciprocal of the
smallest singular value of B. In this paper, we will prove that for the
above mentioned perturbations to B, the change in Q is bounded only
by the distances from D1 and D2 to identities!

As an application, we will consider perturbations for one-side scal-
ing, i.e., the case when G = D�B is perturbed to eG = D� eB, where D
is usually a nonsingular diagonal scaling matrix but for our purpose
we do not have to assume this, and B and eB are nonsingular.
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under grant No. 20552402 and the University of Tennessee through the Advanced Re-

search Projects Agency under contract No. DAAL03-91-C-0047, by the National Science

Foundation under grant No. ASC-9005933, and by the National Science Infrastructure

grants No. CDA-8722788 and CDA-9401156.
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Let B be an m� n (m � n) complex matrix. It is known that there are
Q with orthonormal column vectors, i.e., Q�Q = I , and a unique positive
semide�nite H such that

B = QH: (1)

Hereafter I denotes an identity matrix with appropriate dimensions which
should be clear from the context or speci�ed. The decomposition (1) is
called the polar decomposition of B. If, in addition, B has full column rank
then Q is uniquely determined also. In fact,

H = (B�B)1=2; Q = B(B�B)�1=2; (2)

where superscript \�" denotes conjugate transpose. The decomposition (1)
can also be computed from the singular value decomposition (SVD) B =
U�V � by

H = V�1V
�; Q = U1V

�; (3)

where U = (U1; U2) and V are unitary, U1 is m � n, � =

 
�1

0

!
and

�1 = diag (�1; : : : ; �n) is nonnegative.
There are many published bounds upon how much the two factor matri-

ces Q and H may change if entries of B are perturbed in arbitrary manner
[1, 2, 3, 4, 6, 5, 7, 8, 9]. In these papers, no assumption was made on how
B was perturbed unlike what we are going to do here.

In this paper, we obtain some bounds for the perturbations of Q, assum-
ing B is complex and is perturbed to eB = D�

1
BD2, where D1 and D2 are

two nonsingular matrices and close to the identities of suitable dimensions.
Assume also B has full column rank and so do eB = D�

1
BD2. Let

B = QH; eB = eQ eH (4)

be the polar decompositions of B and eB respectively, and let

B = U�V �; eB = eU e�eV � (5)

be the SVDs of B and eB, respectively, where eU = ( eU1; eU2), eU1 is m�n, ande� =

 e�1

0

!
and e�1 = diag (e�1; : : : ; e�n). Assume as usual that

�1 � � � � � �n > 0; and e�1 � � � � � e�n > 0: (6)
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It follows from (2) and (5) that

Q = U1V
�; eQ = eU1

eV �:

In what follows, kXkF denotes the Frobenius norm which is the square
root of the trace of X�X . Then

eU�( eB �B)V = e�eV �V � eU�U�;eU�( eB �B)V = eU�(D�

1BD2 �D�

1B +D�

1B �B)V

= eU�

h eB(I �D�1

2
) + (D�

1
� I)B

i
V

= e�eV �(I �D�1

2
)V + eU�(D�

1 � I)U�;

and similarly

U�( eB �B) eV = U� eU e�� �V � eV ;
U�( eB �B) eV = U�(D�

1BD2 �BD2 + BD2 � B) eV
= U�

h
(I �D��

1
) eB +B(D2 � I)

i eV
= U�(I �D��

1
) eU e�+�V �(D2 � I) eV :

Therefore, we obtained two perturbation equations.

e� eV �V � eU�U� = e�eV �(I �D�1

2
)V + eU�(D�

1
� I)U�; (7)

U� eU e�� �V � eV = U�(I �D��

1
) eU e�+�V �(D2 � I) eV : (8)

The �rst n rows of the equation (7) yields

e�1
eV �V � eU�

1
U1�1 = e�1

eV �(I �D�1

2
)V + eU�

1
(D�

1
� I)U1�1: (9)

The �rst n rows of the equation (8) yields

U�

1
eU1
e�1 � �1V

� eV = U�

1
(I �D��

1
) eU1

e�1 +�1V
�(D2 � I) eV ;

on taking conjugate transpose of which, one has

e�1
eU�

1U1 � eV �V�1 = e�1
eU�

1 (I �D�1

1
)U1 + eV �(D�

2 � I)V�1: (10)

Now subtracting (10) from (9) leads to

e�1( eU�

1U1 � eV �V ) + ( eU�

1U1 � eV �V )�1 (11)

= e�1

h eU�

1 (I �D�1

1
)U1 � eV �(I �D�1

2
)V
i

+
heV �(D�

2 � I)V � eU�

1 (D
�

1 � I)U1

i
�1:
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Set

X = eU�

1U1 � eV �V = (xij); (12)

E = eU�

1 (I �D�1

1
)U1 � eV �(I �D�1

2
)V = (eij); (13)eE = eV �(D�

2 � I)V � eU�

1 (D
�

1 � I)U1 = (eeij): (14)

Then the equation (11) reads e�1X+X�1 = e�1E+ eE�1, or componentwisely,e�ixij + xij�j = e�ieij + eeij�j . Thus
j(e�i + �j)xij j �

qe�2i + �2j

q
jeij j2 + jeeij j2

) jxij j2 �
e�2i + �2j

(e�i + �j)2
(jeijj2 + jeeij j2) � jeij j2 + jeeij j2:

Summing on i and j for i; j = 1; 2; � � � ; n produces

kXk2F =
nX

i; j=1

jxij j2 � kEk2F + k eEk2F: (15)

Notice that

X = eU�

1U1 � eV �V = eV �( eV eU�

1U1V
� � I)V = eV �( eQ�Q� I)V;

) kXkF = k eQ�Q� IkF;
and

kEkF � kI �D�1

1
kF + kI �D�1

2
kF;

k eEkF � kD�

2 � IkF + kD�

1 � IkF:
Lemma 1

k eQ�Q� IkF
�

r�
kI �D�1

1
kF + kI �D�1

2
kF
�
2

+ (kD�

2
� IkF + kD�

1
� IkF)2:

When m = n, both Q and eQ are unitary. Thus k eQ�Q � IkF = kQ � eQkF,
and Lemma 1 yields

Theorem 1 Let B and eB = D�

1
BD2 be two n � n nonsingular complex

matrices whose polar decompositions are given by (4). Then

kQ� eQkF �
r�

kI �D�1

1
kF + kI �D�1

2
kF
�
2

+ (kD2 � IkF + kD1 � IkF)2

(16)

�
p
2
q
kI �D�1

1
k2F + kI �D�1

2
k2F + kD2 � Ik2F + kD1 � Ik2F:
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If, however, m > n, then it follows from the last m � n rows of the
equations (7) and (8) thateU�

2U1�1 = eU�

2 (D
�

1 � I)U1�1 and

U�

2
eU1
e� = U�

2
(I �D��

1
) eU1

e�1:

Since we assume that both B and eB have full column rank, both �1 and e�1

are nonsingular diagonal matrices. SoeU�

2
U1 = eU�

2
(D�

1
� I)U1 and U�

2
eU1 = U�

2
(I �D��

1
) eU1:

Therefore, we have

k eU�

2U1kF � kD�

1 � IkF and kU�

2
eU1kF = kI �D��

1
kF: (17)

Notice that (U1V
�; U2) = (Q;U2) and ( eU1

eV �; eU2) = ( eQ; eU2) are unitary.

Hence U�

2Q = 0 = eU�

2
eQ and

kQ� eQkF = k(Q;U2)
�(Q� eQ)kF =







 
I � Q� eQ
�U�

2
eQ
!






F

�
q
kI � Q� eQk2

F
+ k � U�

2
eU1
eV �k2

F

�
q
kI � Q� eQk2

F
+ kU�

2
eU1k2F

�

q�
kI �D�1

1
kF + kI �D�1

2
kF
�2

+ (kD�

2
� IkF + kD�

1
� IkF)

2 + kI �D��

1
k2
F
:

(18)

Similarly, we have

kQ� eQkF = k( eQ; eU2)
�(Q� eQ)kF =







 eQ�Q� IeU2Q

!





F

�

q�
kI �D�1

1
kF + kI �D�1

2
kF
�2

+ (kD�

2
� IkF + kD�

1
� IkF)

2 + kD�

1
� Ik2

F
:

(19)

Theorem 2 below follows from (18) and (19).

Theorem 2 Let A and eA be two m� n (m > n) complex matrices having
full column rank and with the polar decompositions (4). Then

kQ� eQkF � ��kI �D�1

1
kF + kI �D�1

2
kF
�
2

+ (kI �D2kF + kI �D1kF)2 + min
n
kI �D�1

1
k2F; kI �D1k2F

oi 1
2

�
p
3
q
kI �D2k2F + kI �D�1

2
k2F + kI �D1k2F + kI �D�1

1
k2F:
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Now we are in the position to apply Theorem 1 to perturbations for one-
side scaling (from the left). Here we consider two n�n nonsingular matrices
G = D�B and eG = D� eB, where D is a scaling matrix and usually diagonal
(but this is not necessary to the theorem that follows). B is nonsingular
and usually better conditioned than G itself. Set

�B
def
= eB �B:

eB is also nonsingular by the condition k�Bk2kB�1k2 < 1 which will be
assumed henceforth. Notice that

eG = D� eB = D�(B + �B) = D�B(I + B�1(�B)) = G(I + B�1(�B)):

So applying Theorem 1 with D1 = 0 and D2 = I + B�1(�B) leads to

Theorem 3 Let G = D�B and eG = D� eB be two n�n nonsingular matrices,
and let

G = QH and eG = eQ eH
be their polar decompositions. Set �B

def
= eB�B. If k�Bk2kB�1k2 < 1 then

kQ� eQkF �
r
kB�1(�B)k2F +




I � (I +B�1(�B))�1



2
F

�
s
1 +

1

(1� kB�1k2k�Bk2)2 kB
�1k2k�BkF:

One can deal with one-side scaling from the right in the similar way.
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