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Abstract

Let B be an m xn (m > n) complex matrix. It is known that there
1s a unique polar decomposition B = QH, where Q*Q) = I, the n x n
identity matrix, and H 1s positive definite, provided B has full column
rank. This paper addresses the following question: how much may @
change if B is perturbed to B = DiBD27 Here Dy and Ds are two
nonsingular matrices and close to the identities of suitable dimensions.

Known perturbation bounds for complex matrices indicate that in
the worst case, the change in () 1s proportional to the reciprocal of the
smallest singular value of B. In this paper, we will prove that for the
above mentioned perturbations to B, the change in ) is bounded only
by the distances from D and D to identities!

As an application, we will consider perturbations for one-side scal-
ing, i.e., the case when G = D*B is perturbed to G = D* B, where D
is usually a nonsingular diagonal scaling matrix but for our purpose
we do not have to assume this, and B and B are nonsingular.

*This material is based in part upon work supported by Argonne National Laboratory
under grant No. 20552402 and the University of Tennessee through the Advanced Re-
search Projects Agency under contract No. DAAL03-91-C-0047, by the National Science
Foundation under grant No. ASC-9005933, and by the National Science Infrastructure
grants No. CDA-8722788 and CDA-9401156.



Let B be an m x n (m > n) complex matrix. It is known that there are

() with orthonormal column vectors, i.e., @*¢Q = I, and a unique positive
semidefinite H such that

B=QH. (1)

Hereafter I denotes an identity matrix with appropriate dimensions which
should be clear from the context or specified. The decomposition (1) is
called the polar decomposition of B. If, in addition, B has full column rank
then () is uniquely determined also. In fact,

H=(BB)? Q=BBB"2 (2)

where superscript “*” denotes conjugate transpose. The decomposition (1)
can also be computed from the singular value decomposition (SVD) B =
UXV* by

H=VXV", Q=UV" (3)

where U = (Uy,Uz) and V are unitary, Uy is m x n, ¥ = ( 2(3)1 ) and

¥, = diag (o1, ...,0,) is nonnegative.

There are many published bounds upon how much the two factor matri-
ces () and H may change if entries of B are perturbed in arbitrary manner
[1,2,3,4,6,5,7,8,9]. In these papers, no assumption was made on how
B was perturbed unlike what we are going to do here.

In this paper, we obtain some bounds for the perturbations of ), assum-
ing B is complex and is perturbed to B = DiBD,, where Dy and D, are
two nonsingular matrices and close to the identities of suitable dimensions.
Assume also B has full column rank and so do B = D7 BD,. Let

B=QH, B=QH (4)
be the polar decompositions of B and B respectively, and let
B=UXV*, B=UXV" (5)
be the S~VDS of B and B, respectively, where U = ([71, [72), Uy is m x n, and
Y= ( 2(3)1 ) and 3, = diag (G1,...,0,). Assume as usual that

or>-->0,>0, and & >--->77, > 0. (6)



It follows from (2) and (5) that
Q=UV", Q=0HV"

In what follows, || X||p denotes the Frobenius norm which is the square
root of the trace of X*X. Then

UB-B)V = SVV-UTUY,

U (B-B)V = U (DiBD;—DiB+ DB - B)V
= U [BU- D7)+ (D; - DB|V
= SVY(I—-D;HV 4+ UX(D; - U,
and similarly
UNB-BYV = UTUL-%VV,
U"(B-B)YV = UYDi{BDy;—BDy+ BD; — B)V
= U |[(I= D7) B+ B(Dy— DV
= U*(I - D7) US4+ 3V*(Dy — V.
Therefore, we obtained two perturbation equations.
SVV - UUY = SV - D;YWw+U*(D;-1NUS, (7)
UV -XV*V = U1 -D{HUL + XV (D, —1)V. (8)
The first n rows of the equation (7) yields
S\V*V = Ur U1 Sy = 5, VHI = DYV + U5 (D — DU S (9)
The first n rows of the equation (8) yields
Urlh Sy — Sy V*V = Uy (I — DY + SV (Dy — DV,
on taking conjugate transpose of which, one has
S\UFU, —V*VESy = 5,05 (I - DYYU, + V(D — VS, (10)
Now subtracting (10) from (9) leads to
SUTTU = VV) + (U = VYT (11)
= S [07(1 = DYYU = VA1 = D7V
+ [V5(D5 = )V = U5(D; = DU | 3y,
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Set

X = U;U - V*V = (x4), (12)
E = U;(I-DiYU, =V (I - D7YHYV = (e;), (13)
E = V¥D3— DV -U;(D; - DU, = (&;). (14)

Then the equation (11) reads SIX4XY = ilE—I—EEl, or componentwisely,
ﬁixij + 20 = 52'62']‘ + 52']‘0]‘. Thus
@it o)agl < 257+ o eyl + [
G2 + o2 ~ ~
mﬂ%lz +1851%) < legl® + &1
i j

Summing on 7 and j for ¢, 7 = 1,2,---,n produces

= ayl® <

IXI1E = > el < IEIR+ 1] (15)

i =1
Notice that
X = Uiy —V*V =V*(VUrU,v:— DV = V¥Q*Q — 1)V,
= | X|r=1Q°Q — Ilr,
and
£l
£

11 = D7 HlE + 11 = D3 |,
103 = I[r + 107 = 1l¥-

IAN A

Lemma 1
1Q*Q — I||p

< /(1= D7 e + 117 = D3| )2 Di—1 Di —1I||p)?
< e 2 lle) + D3 = g + |1 D7 = Illp)".

When m = n, both @ and Q are unitary. Thus H@*Q —Ilr =1Q - @HF,

and Lemma 1 yields

Theorem 1 Let B and B = DiBDy be two n X n nonsingular complex
matrices whose polar decompositions are given by (4). Then

~ _ _ 2
lQ-Qllr < mI—DJHHHI—D;uF) + (102 = 1l[p + |1 Dy — 1[p)”
(16)
VI = DT+ = D3R+ 112 — 11 + 1 D1 — 1]
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If, however, m > n, then it follows from the last m — n rows of the
equations (7) and (8) that

U;Uhsy = U(DF—1UY,  and
U;00% = U;(I- D705,
Since we assume that both B and B have full column rank, both ¥ and il
are nonsingular diagonal matrices. So

UzU, = U3(Ds — DU, and U3U, = U3 (I — D7),
Therefore, we have

1050y <IDF = Illp and  [[U30ullp = |1 = D"l (17)
Notice that (U1V*,Us) = (@, Uz) and (I V*,Us) = (Q,U,) are unitary.

Hence USQ) = 0 = U@ and
i~ _ * N _ I_Qié
1Q - Glle = 1@, 72 (@ QNFW( 4@Q)

< - QQI +11- Us T VI
< I - QQI + U
- - 2 * * -
< \/(HI— DM lE + 11 = D3 Yp)” + (105 = Illp + D5 = 2lp)” + 11 = DT (3
(18)
Similarly, we have
A e Fa-1
1Q —Qllr = [(Q,U2)"(Q - Q)llr = ~
U2Q) P
— — 2 * * *
< \/(HI— DM lp + 11 = D3 Yp)” + (105 = Illp + I1DF = 1lp)” + |07 = 11I%.
(19)

Theorem 2 below follows from (18) and (19).

Theorem 2 Let A and A be two m x n (m > n) complex matrices having
full column rank and with the polar decompositions (4). Then

19 = Glle < | (17 = Dl + 17 = D5 )

1
+ ([l = Dallp + |11 = Dallp)* + min {|[7 = DT[E, 11 = D[} }]?

< VBN = Dallf 4111 = DI+ 1= DullE +117 - DT




Now we are in the position to apply Theorem 1 to perturbations for one-
side scaling (from the left). Here we consider two n x n nonsingular matrices
G = D*B and G = D*B, where D is a scaling matrix and usually diagonal
(but this is not necessary to the theorem that follows). B is nonsingular
and usually better conditioned than G itself. Set

ABY B _ B,

B is also nonsingular by the condition ||AB|[2|[B~"|2 < 1 which will be
assumed henceforth. Notice that

G'=D*B=D*(B+AB)=D*B(I+ B '(AB))=G(I+ B~'(AB)).
So applying Theorem 1 with Dy = 0 and Dy = I + B71(AB) leads to

Theorem 3 Let G = D*B and G = D*B be two nxn nonsingular matrices,
and let o
G=QH and G=QH

be their polar decompositions. Set AB < B— B. If IAB||2]| B~ |2 < 1 then

- 2
1Q=Qlle < \IBHABE + |1 =+ B-1(am) [
1
S P — 1B LlIA Bl
¢ (=15 LIAB]L )

One can deal with one-side scaling from the right in the similar way.
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