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This is a continuation of [3] addressing a problem posed by Prof. Kahan.
The problem is the following:

Given an n� n (complex) matrix A whose �eld of values F(A) does
not contain the origin, is it necessary to pivot when solving the linear
system Ax = b?

It is well known F(A) is a compact convex set on the complex plane. Let's
draw two projecting lines `1 and `2 starting at the origin and \tangent"1 to
the boundary of F(A) such that F(A) falls into the smaller section enclosed
by `1 and `2 as shown in Figure 1. Let � be the angle of the section. Clearly
0 � � < �. Set � = � � �. It is proved in [3] that if � is reasonably

�This material is based in part upon work supported by Argonne National Laboratory
under grant No. 20552402 and the University of Tennessee through the Advanced Re-
search Projects Agency under contract No. DAAL03-91-C-0047, by the National Science
Foundation under grant No. ASC-9005933, and by the National Science Infrastructure
grants No. CDA-8722788 and CDA-9401156.

1Here \tangent" may not be the right word since the boundary of F(A) could not be
smooth. So to be more rigous, we could say that `1 and `2 are two support lines passing
through the origin.
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Figure 1: A typical picture.

large, no smaller than 0:1� (say), there is no danger of instability in solving
Ax = b without pivoting. However, if � is rather small, � = � (say), there is

a potentiality that elements might grow by a factor O
�
1

�3

�
. Recently, Ming

Gu [2] improves this factor to O
�
1

�2

�
, which is optimal as far as only order

is concerned. This note adopts the idea developed in [1] where the case A
being real is studied. We will give a better bound which is asymptotically

attainable.
It is easy to verify that scalar multiplications do not a�ect element

growth in Gaussian elimination processes. Therefore, without loss of any
generality, by rotating the matrix A by an angle � as ei�A we can assume
that2 F(A) lies in the right half plane and the angles between the y-axis
and `1 and between the negative direction of the y-axis and `2 are equal to
�
2
. Set A = H + iS, where

H =
A+ A�

2
= H�; S =

A �A�

2i
= S�

are both Hermitian, and moreover H is positive de�nite.

2When A is real, F(A) is symmetric with respect to the x-axis, so either A itself or
�A has the desired property.
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Doing Gaussian elimination on A, we get a decomposition

A = H + iS = LDM�; (1)

where L and M are unit lower triangular matrices, D diagonal. Generally,
they are all complex. The existence of the decomposition (1) is guaranteed
by the assumption we made on the F(A) (ref. [3]).

Proposition 1 Write D = diag (d1; d2; � � � ; dn). Then

<dj > 0; j = 1; 2; � � � ; n;

where <(�) denotes the real part of a complex number.

Since H = H� is positive de�nite, it has a unique Cholesky decomposi-
tion H = GG�, where G is lower triangular. Now (1) gives

L�1(H + iS)L�� = DM�L�� ) L�1GG�L�� + iL�1SL�� = DM�L��;

which yields

(G�L��)�G�L�� + iL�1SL�� = DM�L��: (2)

Let ej be the jth column of the n � n identity matrix. Comparing the jth
diagonal entries of the two sides of (2) leads to

<dj = kG�L��ejk22 (3)

since M�L�� is unit upper triangular. Therefore3

kG�L��D�1=2k2F =
nX

j=1

kG�L��D�1=2ejk22

=
nX

j=1

kG�L��ejk22
jdj j

� n: (4)

On the other hand,

M�1(H + iS)M�� = M�1LD )M�1GG�M�� + iM�1SM�� = M�1LD;

3
D

1=2 is not single-valued. But for our purpose it is good enough to pick any one of

them and stick to it. D�1=2 def
= (D1=2)�1.
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which yields (G�M��)�G�M�� + iM�1SM�� = M�1LD, so

<dj = kG�M��ejk22
and

kG�M��D�1=2k2F � n: (5)

It follows from (1) that

LD1=2 = (GG� + iS)M��D�1=2

= (G+ iSG��)G�M��D�1=2;

D1=2M = D�1=2L�1(GG� + iS)

= D�1=2L�1G(G� + iG�1S):

Thus

kLD1=2kF � p
nkG+ iSG��k2; (6)

kD1=2MkF � p
nkG� + iG�1Sk2: (7)

Notice that

kG+ iSG��k22 = k(G+ iSG��)(G� � iG�1S)k2
= kGG� � iS + iS + SG��G�1Sk2
= kH + SH�1Sk2
� kHk2 + kSH�1Sk2;

kG� + iG�1Sk22 = k(G� iSG��)(G� + iG�1Sk2
= kGG� + iS � iS + SG��G�1Sk2
= kH + SH�1Sk2
� kHk2 + kSH�1Sk2:

Together with (6) and (7), we have4

k jLj jDj jM�j kF = k jLD1=2j jD1=2M j kF
� nkH + SH�1Sk2
� n(kHk2 + kSH�1Sk2): (8)

4By jXj, we mean its entrywise absolute value, i.e. jXj
def
= (jxijj).
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To relate this bound to the angle �, we observe

kSH�1Sk2 = kH1=2(H�1=2SH�1=2)(H�1=2SH�1=2)H1=2k2
� kH1=2k2kH�1=2SH�1=2k22kH1=2k2
= kHk2kH�1=2SH�1=2k22:

Lemma 1

kH�1=2SH�1=2k2 = max
x6=0

x�Sx
x�Hx

= tan
�

2
:

With those in mind, we get

Theorem 1

k jLj jDj jM�j kF � nkHk2
"
1 +

�
tan

�

2

�2#
: (9)

Roughly speaking, the bound in [2] is the one obtained by replacing the
number inside [�] of (9) with 1 + tan �

2
+ 3

2

�
tan �

2

�2.
In what follows, we are going to present an example to shown that this

inequality is at least asymptotically attainable in the sense that there are
examples for which the two sides of (9) are arbitrarily close. Consider (ref.
[3])

A =

 
1p
2

� 1p
2

1p
2

1p
2

! 
1 2r
0 1

! 
1p
2

1p
2

� 1p
2

1p
2

!
=

 
1� r r
�r 1 + r

!
;

where r is positive. It is known the �eld of values of F(A) is a disk with
center 1 and radius r, i.e.

F(A) = fz complex : jz � 1j � rg:

So 0 62 F(A) if r < 1 (which will be assumed hereafter). For this A, we have

A = LDM� =

 
1 0

� r
1�r 1

! 
1� r 0
0 1

1�r

! 
1 r

1�r
0 1

!
;

jLj jDj jM�j =

 
1 0
r

1�r 1

! 
1� r 0
0 1

1�r

! 
1 r

1�r
0 1

!
=

 
1� r r

r 1+r2

1�r

!
;

H =
A+A�

2
=

 
1� r 0
0 1 + r

!
;
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S =
A�A�

2i
=

 
0 �ri
ri 0

!
;

SH�1S =

 
r2

1�r 0

0 r2

1+r

!
;

tan
�

2
=

rp
1� r2

:

Hence

k jLj jDj jM�j k2F = (1� r)2 + 2r2 +

 
1 + r2

1� r

!2

=
(1� r)4 + 2r2(1� r)2 + (1 + r2)2

(1� r)2
;

2kHk2
"
1 +

�
tan

�

2

�2#
= 2(1 + r)

"
1 +

r2

1� r2

#
=

2

1� r
;

2(kHk2+ kSH�1Sk2) =
2

1� r
:

De�ne a function f(r) as follows:

f(r)
def
=

k jLj jDj jM�j kF
2kHk2

h
1 +

�
tan �

2

�2i
=

1

2

q
(1� r)4 + 2r2(1� r)2 + (1 + r2)2

= 1� (1� r) +
3

4
(1� r)2 � 1

4
(1� r)3 � 1

32
(1� r)4 + O((1� r)5):

It is easy to see f(0) = 1=
p
2 = 0:70710678118655, lim

r!1�
f(r) = 1 = f(1)

which shows that the inequalities (8) and (9) are asymptotically attainable!

And min
0�r�1

f(r) � 0:614966762630915 at

r =
1

2
�

3
p
2=3

3

q
�9 +p

177
+

3

q
�9 +p

177
3
p
122

� 0:273301174242:

To see how fast f(r) approaches 1 pictorially, we refer the reader to Figure 2,
where the picture on the left is the graph of f(r) and the one on the right
is that of 1� f(r).
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Figure 2: The functions f(r) and 1� f(r).
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