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Abstract

Let A be an m�n (m � n) complex matrix. It is known that there
is a unique polar decomposition A = QH, where Q�Q = I, the n � n
identity matrix, and H is positive de�nite, provided A has full column
rank. This note addresses the following question: how much may Q
change if A is perturbed? For the square case m = n our bound, which
is valid for any unitarily invariant norm, is sharper and simpler than
Mathias's (SIAM J. Matrix Anal. Appl., 14(1993), 588{597.). For
the non-square case, we also establish a bound for unitarily invariant
norm, which has not been done in literature.

Let A be an m� n (m � n) complex matrix. It is known that there are
Q with orthonormal column vectors, i.e., Q�Q = I , and a unique positive
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semide�nite H such that
A = QH: (1)

Hereafter I denotes an identity matrix with appropriate dimensions which
should be clear from the context or speci�ed. The decomposition (1) is
called the polar decomposition of A. If, in addition, A has full column rank
then Q is uniquely determined also. In fact,

H = (A�A)1=2; Q = A(A�A)�1=2; (2)

where superscript \�" denotes conjugate transpose. The decomposition (1)
can also be computed from the singular value decomposition (SVD) A =
U�V � by

H = V�1V
�; Q = U1V

�; (3)

where U = (U1; U2) and V are unitary, U1 is m � n, � =

 
�1

0

!
and

�1 = diag (�1; : : : ; �n) is nonnegative.
There are published bounds upon how much the two factor matrices Q

and H may change if entries of A are perturbed. Among papers [1, 2, 4,
6, 7, 8, 9, 10] written on this subject, the perturbation bounds for Q when
m = n proved by Mathias [9] covers every unitarily invariant norm, while
others are for the Frobenius norm only. Chen and Sun [2, 10] and Li [7]
also deal with the case m � n as we do here. A surprise is how heavily the
sensitivity of the Q factor depends upon whether the working number �eld
is real or complex [1, 6, 9].

In this paper, we obtain some bounds for the perturbations of Q, assum-
ing A is complex. Our bound for the case m = n is achievable and improves
Mathias' slightly for small perturbations and signi�cantly for big ones.

For the sake of convenience in our presentation, we use A and eA for
two matrices having full column rank, one of which is a perturbation of the
other. Let

A = QH; eA = eQ eH (4)

be the polar decompositions of A and eA respectively, and let

A = U�V �; eA = eU e�eV � (5)

be the SVDs of A and eA, respectively, where eU = ( eU1; eU2), eU1 is m�n, ande� =

 e�1

0

!
and e�1 = diag (e�1; : : : ; e�n). Assume as usual that

�1 � � � � � �n > 0; and e�1 � � � � � e�n > 0: (6)



New Perturbation Bounds for the Unitary Polar Factor 3

It follows from (2) and (5) that

Q = U1V
�; eQ = eU1 eV �:

In what follows, kXk2 denotes the spectral norm which is the biggest
singular value of X , and kXkF the Frobenius norm which is the square root
of the trace ofX�X . We shall use jjj � jjj to denote a general unitarily invariant
norm [5, 11]. Two particular ones are k � k2 and k � kF. Consider���������A� eA��������� =

���������U�(A� eA) eV ��������� = ����������V � eV � U� eU e���������� (7)

=
��������� eU�( eA�A)V

��������� = ���������e�eV �V � eU�U���������� : (8)

De�ne

E
def
= �V � eV � U� eU e�; and (9)eE def
= e� eV �V � eU�U� (10)

to infer from (7) and (8) that

jjjEjjj =
��������� eE��������� = ���������A � eA��������� : (11)

Notice that by (9) and (10)

(I; 0)E = �1V
� eV � U�1

eU1 e�1; and

(I; 0) eE = e�1
eV �V � eU�1U1�1;

where I is n� n. Adding the conjugate transpose of the second to the �rst
yields

�1(V
� eV � U�1

eU1) + (V � eV � U�1
eU1)e�1 = (I; 0)E+ eE� I

0

!
: (12)

This is our perturbation equation to derive our perturbation bounds for Q
because for any unitarily invariant norm jjj � jjj,���������V � eV � U�1

eU1��������� = ���������I � V U�1
eU1 eV ���������� = ���������I �Q� eQ��������� : (13)

We shall use following lemma, a special case of Davis and Kahan [3,
Theorem 5.2].
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Lemma 1 LetM and N be two Hermitian matrices, and let S be a complex
matrix with suitable dimensions. Suppose there are two disjoint intervals
separated by a gap of width at least �, one of which contains the spectrum of
M and the other contains that of N . If � > 0, then there is a unique solution
X to the matrix equation MX �XN = S, and moreover jjjX jjj � 1

� jjjSjjj for
every unitarily invariant norm jjj � jjj.

Applying this lemma to (11), (12) and (13) withM = �1, N = �e�1 and
X = V � eV � U�1

eU1 yields
Lemma 2 ���������I � Q� eQ��������� � 2

�n + e�n
���������A� eA��������� : (14)

When m = n, both Q and eQ are unitary. Thus
���������I �Q� eQ��������� = ���������Q� eQ���������,

and Lemma 2 yields

Theorem 1 Let A and eA be two n�n nonsingular complex matrices whose
polar decompositions are given by (4), and let �n and e�n be the smallest
singular values of A and eA respectively. Then���������Q� eQ��������� � 2

�n + e�n
���������A� eA��������� : (15)

If, however, m > n, then it follows from (9) and (10) that

(0; I)E = �U�2 eU1 e�1; and

(0; I) eE = � eU�2U1�1;

where I is (m� n)� (m� n). Therefore

���������U�2 eU1��������� � ����������U�2 eU1 e�1

��������� ke��11 k2 � jjj(0; I)Ejjje�n �
���������A � eA���������e�n :

Similarly, ��������� eU�2U1��������� �
���������(0; I) eE���������

�n
�
���������A� eA���������

�n
:
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Notice that (U1V �; U2) = (Q;U2) and ( eU1 eV �; eU2) = ( eQ; eU2) are unitary.
Hence U�2Q = 0 and

���������Q� eQ��������� = ���������(Q;U2)�(Q� eQ)��������� =

�����
�����
�����
 
I � Q� eQ
�U�2 eQ

!�����
�����
�����

�
���������I �Q� eQ���������+ ����������U�2 eU1 eV ����������

=
���������I �Q� eQ���������+ ���������U�2 eU1���������

�
�

2

�n + e�n +
1e�n
� ���������A� eA��������� : (16)

Similarly, we can prove���������Q� eQ��������� � � 2

�n + e�n +
1

�n

� ���������A� eA��������� : (17)

Therefore, generally, we have

Theorem 2 Let A and eA be two m� n (m > n) complex matrices having
full column rank and with the polar decompositions (4), and let �n and e�n
be the smallest singular values of A and eA respectively. Then���������Q� eQ��������� � � 2

�n + e�n +
1

maxf�n; e�ng
� ���������A� eA��������� : (18)

Estimates (16) and (17) can be sharpened a little bit when jjj � jjj = k � kF.
As a matter of fact, we shall have


Q � eQ




F
=

r


I �Q� eQ


2
F
+



U�2 eU1


2F

�
s�

2

�n + e�n
�2

+
1e�2n



A� eA




F
; and




Q � eQ



F

�
s�

2

�n + e�n
�2

+
1

�2n




A� eA



F
:

A consequence of these two inequalities is

Theorem 3 Under the conditions of Theorem 2,




Q� eQ



F
�
s�

2

�n + e�n
�2

+

�
1

maxf�n; e�ng
�2 


A� eA




F
: (19)
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We conclude this paper with a few remarks.

1. The bound in (15) is best possible, in the sense that the equality can
be achieved. Take the following case for an example: both A and eA
are n� n unitary matrices. Thus �n = e�n = 1, Q = A, eQ = eA, and���������Q� eQ��������� = 2

�n + e�n
���������A� eA��������� :

It is even achievable in the real number �eld by taking A and eA to be
two n � n orthogonal matrices though, as we know Q behaves quite
di�erently in the real number �eld (ref. 5 below).

All previously published bounds do not achieve this!

2. Bounds (15), (18) and (19) involve both �n and e�n. To obtain bounds
involving �n alone, one can weaken them by utilizing the following fact


A� eA




2
� j�n � e�nj:

For example, (15) yields���������Q � eQ��������� � 2

2�n �



A � eA




2

���������A � eA��������� ; (20)

provided



A� eA




2
< 2�n.

3. Mathias [9] proved that for m = n if



A� eA




2
< �n then

���������Q� eQ��������� � �
���������A� eA���������


A� eA




2

� ln

0@1�



A� eA




2

�n

1A : (21)

Although his bound uses slightly di�erent information than ours, it is
always a bigger bound than (15), and sometimes much bigger (since
the left hand-side of (21) could blow up). To see why, we claim that
even (20), the weakened form of (15), is still no weaker than Mathias'
because their ratio (his/ours) is

� ln(1� x)

x
�
�
1� x

2

�
= 1 +

1X
j=2

�
1

j + 1
� 1

2j

�
xj > 1

for 0 < x =



A � eA




2

.
�n < 1.
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4. Chen and Sun [2] studied the casem > n, also. But only the Frobenius
norm was considered. They proved


Q� eQ




F
� 2

�n




A� eA



F
: (22)

Without loss of generality, assume e�n � �n. Then it is easy to see our
bound (19) is sharper than (22) when

e�n � �n �
p
3

2�p
3
e�n � 6:5e�n;

Otherwise (22) is sharper by a little becauses�
2

�n + e�n
�2

+

�
1

�n

�2
�
p
5

�n
� 2:2

�n

always. More generally, Sun and Chen [10] and Li [7] treated the cases
when A and eA do not necessarily have full column rank. Applied to
our full column rank case here, the perturbation bound for the polar
factor in [10] reads exactly the same as (22), and that in [7] reads


Q� eQ




F
� 1

minf�n; e�ng



A� eA




F
;

which is clearly sharper than (19) and (22) when �n � e�n. However,
it may be very bad if one of �n and e�n is much smaller than the other.

5. Perturbation bounds for the Q factor in polar decomposition illustrate
that the change in Q is proportional to the reciprocal of the smallest
singular value of A when m = n and the working number �eld is
complex. However, it has been discovered by Barrlund [1], Kenney
and Laub [6] and Mathias [9] that for the real case the change in
Q is proportional to the reciprocal of the sum of the two smallest
singular values of A if m = n, which means Q is (much) less sensitive
to perturbations in A in the real case than in the complex case. Our
derivation above of the perturbation bound (15) for the complex case
is very elementary while giving the best among those that have been
published. But the author was unable to extend our derivation to do
a better job for the real case. It is worth saying (as pointed out by one
of the anonymous referees) that even in the real number �eld when
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m > n the change in Q is not proportional to 1

�n�1+�n
instead of 1

�n
.

The following example o�ered by the referee makes this point very
clear:

A =

0B@ 1 0
0 0:8� 10�6

0 0

1CA ; Q =

0B@ 1 0
0 1
0 0

1CA ;

eA =

0B@ 1 0
0 0:8� 10�6

0 0:6� 10�6

1CA ; eQ =

0B@ 1 0
0 0:8
0 0:6

1CA :
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