Implementation Techniques for Continuous
Media Systems and Applications
by
Brian Christopher Smith

A.B. (University of California at Berkeley)1986
M.S. (University of California at Berkeley)1990

A Dissertation Submitted in Partial Satisfaction of the
Requirements for the Degree of
Doctor of Philosophy
in
Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at Berkeley

Committee in charge:
Professor Lawrence A. Rowe (chair)
Professor Carlo H. Sequin
Professor Alice Agogino

1994

Implementation Techniques for Continuous Media
Systems and Applications
Copyright © 1993
by

Brian Christopher Smith

Abstract

Implementation Techniques for Continuous Media
Systems and Applications

by
Brian Christopher Smith
Doctor of Philosophy in Computer Science
University of California at Berkeley
Professor Lawrence A. Rowe, Chair

In this thesis, | investigate issues in the development of continuous media
(CM) applications. CM applications process, transport, or store CM data such as

digital audio and video.

Introduction of video into applications will require support for sophisticated
video effects such as image processing, composition and digital filtering. Tradi-
tional image processing and composition algorithms operate on uncompressed
images, while video is typically stored and delivered in a compressed form. High
computational cost, along with the complexity of video decompression, makes tra-

ditional algorithms too slow for interactive use on video data.

This thesis describes and evaluates a new family of algorithms for computing
video effects that run one to two orders of magnitude faster than their traditional
counterparts. The performance increase is achieved by performing the operations
directly on the compressed data. Using these algorithms, | show that simple spe-

cial effects can be computed in real time on current generation workstations.

In addition to developing algorithms for special effects, | describe and evaluate
a toolkit for constructing distributed CM applications, called CMT, and a best effort

network protocol for delivering CM data, called cyclic-UDP.

CMT is an extension to the Tcl/Tk graphical user interface toolkit. It simplifies
the creation and coordination of the multiple processes in a distributed CM play-
back system that supports delivery and synchronized playback of multiple CM
- streams from one or more file servers. Besides making playback applications eas-
ier to construct, the toolkit also provides a foundation on which new delivery, dis-

play, and synchronization protocols can be built and tested.

CMT uses a best-effort network protocol called cyclic-UDP for delivering CM
data to applications. Cyclic-UDP differs from other CM transport protocols in two
ways. First, it works well in local, metropolitan, and wide area network environ-
ments, adapting itself dynamically to each new scenario. Second, it uses proper-
ties of the data being transported to reduce to effect of network congestion, both
chronic and acute, to lowered fidelity at the display. For example, network conges-
tion will cause the frame rate of a video stream to drop or decrease the effective
sampling rate of an audio stream. In other protocols, congestion causes bursty
frame loss where the video streams “stops” until congestion abates. Cyclic-UDP
achieves improved quality by supporting frame priority which gives high priority
frames a better chance of delivery than low priority frames. When used in combi-
nation with protocols specifically tuned to a particular media format, called media-
specific protocols, cyclic-UDP can amortize the degradation in output quality
caused by burst packet losses over a long period. In this thesis, | describe and
experimentally evaluate three media-specific protocols, one for MPEG video, one

for motion-JPEG video, and one for uncompressed audio.
Finally, using CMT and cyclic-UDP, | show that it is possible to play good qual-

ity video using existing network and operating system technology by building a

working playback application, called the CM Player.

To my parents

Table of Contents

Abstract 1
Table of Contents iv
List of Figures vi
- List of Tables viii
Acknowledgments iX
Chapter 1. Introduction 1
Chapter 2. Local Image Operations 6
2.1, JPEG COQING -.iovveiiieiiieceeeeee et 9

2.2. Algebraic Operationsc.cceeeeeiiiiieieee e, 14

2.3. APPLICALIONS ...oviiieiiiiiee e 22
Chapter 3. Linear Global Digital Video Effects 30
3.1. The Mathematics of LGDVEScoooeivooiieeeeeeeeeeeeeee 31

3.2. The Mathematics of JPEG Compression as a Tensor 33

3.3. Block Oriented LGDVEs on JPEG Datac..ocoecvecveevevnen. 35

3.4. Condensation Algorithms for LGDVESccccccovvvveenn.. 39

3.5. Thresholding Condensation.cccocooveviiieoieeeeeeeee, 46

3.6. Probabilistic Condensationc.cccovvvivieiiiiiiiiecec, 56

3.7. Previous Work, Future Work, and Conclusions 62
Chapter 4. CMT: A Continuous Media Toolkit 66
4.1, INtrodUCHION .ooiii e 66

4.2. Data Model e e e e e e e e e e e e 70

4.3. Implementationccccoooiiii e 77

4.4, Related WOrKoouiimiiiiiee e, 101
Chapter 5. Network protocols in CMT 105
S INtrodUCON .o 105

5.2. ProtoCol SUItEcovviuiiuiiiiiiece e 109

5.3. Media specific protocolsc.ccoeveuvioiiieeeeeeeeeeeeeeee 127

S.4. EXPEriMENtSocooviiiiiiiiieeieeee e 135

5.5, Previous WOorko.oooiiieo e 148

9.6. Conclusions and Future Workcccooveveioooeeieoe 152

Chapter 6. Conclusions

6.1. Compressed domain processingccoevveeeeeveeveeeeeerenenn..

B.2. M e,

6.3, CYClC-UDP ...,
References

Appendix A. Geometric Transforms as LGDVEs

154
154
156
157
189
169

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure
Figure

List of Figures

Number of instruction required for decompression
Number of instruction required for compression
Definition of y]i,j].

Zig Zag Scan Ordering

Compression of a Block

Initialization of the Combination Array
Implementation of the Convolve Function
Strategy for Manipulating Images

C Implementation of the Dissolve Operation

: C Code Implementation of Subtitlelnit Function
: C Code Implementation of Subtitle Function

JPEG Pixel Addressing

The JPEG compression process

The JPEG decompression process

Brute force application of LGDVE to JPEG data
Application of JPEG LGDVE to JPEG data
Support: the number of input blocks affecting an
output block.

Cumulative distributions of absolute values of coefficients
for the LGDVEs of blurring and shrinking.
Distribution of coefficients in input blocks for k=10
Distribution of coefficients in input blocks for AC
coefficients

. Part of a gray image filtered with blur without constant

bias

Bias adjustment

Gray image filtered with blur with constant bias
Thresholding Condensation

Sparse Matrix representation of T

: Main processing loop for input blocks.

: Complexity of blur vs. maxerr for various values of p

: SNR of blur vs. maxerr for various values of p

. Complexity of shrink-by-2 vs. maxerr for various values

of p

: SNR of shrink-by-2 vs. maxerr for various values of p
: SNR of blur vs. number of multiplies for various values

of p

: SNR of shrink-by-2 vs. number of multiplies for various

values of p
Probabilistic condensation algorithm
Complexity of blur vs. maxvar

11
13
13
21
22
24
25
28
28

33
34
35
36
37

38

40
41

42

44
45
46
48
49
50
51
52

52
53

53
54

58
59

vi

Vii

Figure 3-24: SNR of blur vs. maxvar 60
Figure 3-25: Complexity shrink-by-2 of vs. maxvar 60
Figure 3-26: SNR of shrink-by-2 vs. maxvar 61
Figure 3-27: Comparison of thresholding and probabilistic

condensation for blur 61
Figure 3-28: Comparison of thresholding and probabilistic

condensation shrink-by-2 62
Figure 4-1: CM Player user interface. 67
Figure 4-2: CM Player process architecture. 68
Figure 4-3: Sample Storyboard 70
Figure 4-4: CMT Data Model Elements 71
Figure 4-5: CMT Clipfile Format 73
Figure 4-6: Main Event Loop in Tcl/Tk 80
Figure 4-7: Distributed Object Updates in Tcl-DP 84
Figure 4-8: CMT Stream and Cliplist Objects 87
Figure 4-9: Media- and Packet- Sources, Dests, and Resources 87
Figure 4-10: Shared Objects at CM Player Start-up 97
Figure 4-11: Shared Objects after setting cliplist (see text) 98
Figure 4-12: Hypermedia web with storyboard nodes 101
Figure 5-1: MPEG inter-frame dependencies 106
Figure 5-2: Frame rate at source vs. receiver on a long haul network 110
Figure 5-3: UDP+resends adaptive flow control 115
Figure 5-4: Sending a burst of packets 120
Figure 5-5: Detecting missing packets in the CMX process 121
Figure 5-6: Source side resend processing 121
Figure 5-7: Cyclic-UDP example 123
Figure 5-8: Destination Measurements of connection 126
Figure 5-9: Adjusting the bandwidth based on feedback 128
Figure 5-10: Inter-frame dependencies in sample MPEG sequence 131
Figure 5-11: Initializing the ChainArray 133
Figure 5-12: Updating the ChainArray 135
Figure 5-13: Configuration for LAN experiment 138
Figure 5-14: Probability of video frame reception on a LAN 139
Figure 5-15: MAN environment: Probability of video frame reception 143
Figure 5-16: Probability of video frame reception on a WAN 147
Figure 5-17: Extending Cyclic-UDP to Conferencing 153

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table

Table
Table
Table
Table

Table
Table
Table
Table

BWWWENONN
S BRWN=2 N —

4-2:

List of Tables

Mapping of Operations

Performance Measurements of Dissolve Operation
Performance Measurements of Subtitle Operation
Speed of the blur operation

Speed of the shrink-by-2 operation

Breakdown of time in computing the blur operation
Breakdown of time in computing the shrink-by-2 operation
Breakdown of code in CMT

CMT Data Model Terms

media-dependent header information

Lines of code in Tcl-DP and the Tcl-DP DOMS
LTS Slots

LTS Methods

Stream object summary

MediaSource Slots

MediaSource Methods

Contents of UDP+resends packet header
Cyclic-UDP packet header

Measurements made by the CMX process

Jitter for various playback sequences

Playback patterns of PFL for sample MPEG sequence
The ChainArray data structure used for MPEG
prioritization.

Properties of the experimental video streams
Cyclic-UDP Parameters used in LAN tests

Fidelity of reconstructed audio streams in a LAN

. Fidelity of reconstructed video streams in a LAN
: Throughput of TCP connection (in KBytes/sec) during

LAN playback

. Cyclic-UDP parameter in the MAN environment

. Fidelity of reconstructed audio streams in a MAN

. Fidelity of reconstructed video streams in a MAN

: Throughput of TCP connection (in KBytes/sec) during

MAN playback

. Cyclic-UDP parameter in the WAN environment

. Fidelity of reconstructed audio streams in a WAN

. Fidelity of reconstructed video streams in a WAN

t Throughput of TCP connection (in bytes/sec) during

WAN playback

23
26
27
54
55
55
55
70
72
73
86
90
90
91
94
94
112
118
125
129
132

134
136
137
140
140

141
142

144

144

145
145
146
146

148

viii

Acknowledgments

Many people go into the production of a Ph.D. thesis. Adequately acknowledg-
ing these people is inherently futile, since in many cases their contribution far

exceeds my capacity for expression.

My peers, Joseph Konstan, Steve Seitz, Steve Yen, Beverly Sobleman, Robert
Wahbe, Steve Lucco, John Boreczky, Steve Smoot, and Ketan Patel have
patiently listened to my unending pontification, have given insight, and have pro-

vided encouragement and companionship.

My fellow martial artists and teachers, Kevin Stefanik, Dr. Min, Jimmy Kim,
Elbert Kim, Chuck Buhs, Victoria Wohl, Jason DD, and countless others have
helped tone, focus, and discipline my mind and my spirit. They have been faithful

companions through challenging times.

My fellow adventurers, Mike, Rob, Andy, and the UC Hang Gliding Club, have
balanced my life and have taught me to control my fear. They have given me a
multitude of hair-raising tales and memories that supported me while chained to

my desk.

My family, Carl, Barbara (Mom and Dad), Steve, Mark, Bruce, Mary, Noreen,
Jenelle, Michelle, Kristina, and Kevin, has always been there, supporting me,
financially and emotionally, through all these years and trials. Despite my lack of

contact at times, they were always there, and | knew it.

My research advisor, Larry Rowe, has spent innumerable hours discussing
ideas and refining my research skills. He has taught me what | think is the more
intangible idea in any scientist's career, the recognition of “interesting research.”
He has helped me to negotiate the maze of obstacles that is graduate school, he
has refined my research and presentation skills, and above all things, he is my

friend.

X
Finally, my “significant other,” Tracy, has changed me in ways not yet realized.

She has altered my view of the world and has taught me new ways of thinking. |
would not have made it though the last, most difficult years without her love and

confidence.

Chapter 1

Introduction

Technological developments of the last decade in networking, CPUs, and
compression standards, have enabled the creation of continuous media (CM)
applications. CM applications support the retrieval, manipulation and display of
CM data, which is data that changes continuously over time such as digital audio,
digital video and animation. Many CM applications have been cited in the litera-
ture [3,48,73], including:

1. Video teleconferencing systems that allow two or more users to
hold a conversation with each other.

2. Computer supported cooperative work (CSCW) systems that
allow two or more users to collaborate on the editing of a docu-
ment or group of documents.

3. Distributed lecture systems that broadcast lectures to an audi-
ence on a computer network.

4. Hypermedia systems that allow users to browse multimedia
information in a non-linear format.

5. Video on-demand services that provide movie delivery over
networks to the home.

6. Educational courseware that allow students on-line search and
retrieval of digitized lectures, simulations, homeworks, lecture
notes, and other course-related materials.

7. Audio/video editing that allow users to create CM documents.

This thesis discusses two issues in the development of CM applications: CM tool-

kits and video special effects.

Despite widespread interest, only a few working CM applications have been
built and studied. Research has been hindered by the difficulties encountered in

creating the applications. Although they share many common functions, the diver-

sity of user interfaces and underlying mechanisms, coupled with the real-time
constraints of CM applications and their propensity to push the performance of the
current technology to its limits, has made real CM applications difficult and costly
to produce. The situation is similar to that felt by the graphical user interface (GUI)
community in the mid 1980s when programmers wanted to write a variety of pro-
grams with GUIs, but found it required tens or hundred of thousands of lines of

code.

The solution to the problem in the GUI community came with the advent of GUI
toolkits. These toolkits provided a library of commonly used functions and a
framework for composing the functions. With the use of GUI toolkits, the number
of lines of code required for the user interface (Ul) portion of an application was

reduced typically by several orders of magnitude.

I used the same toolkit strategy to address the software engineering problem
posed by CM applications by extending an existing GUI toolkit, the Tcl/Tk toolkit
[55] to support abstractions for CM applications. The changes | made include
modifying the event processing mechanism to support soft real-time scheduling
and adding a distributed programming infrastructure, called Tcl-DP, that simplifies
the creation of distributed applications. Using the extended toolkit as infrastruc-
ture, | built a framework called the CM Toolkit (CMT) to allow a variety of distrib-
uted CM playback applications to be built.

In addition to simplifying the creation of CM playback applications, CMT pro-
vides a clean, modular structure that allows other researchers to experiment with
transport and scheduling mechanisms. Other researcher are currently using CMT
as a platform to test their ideas (e.g., a desktop video conferencing system [14]

and the Priority Encoded Transmission project [1]).

Aside from the software engineering difficulties, the data volume and band-

width required for CM applications raises a host of problems. Broadcast quality
video data uses a bandwidth of 27 MBytes/sec, so storage of a one hour program
requires over 92 GBytes of storage. The limitations of current networks and stor-
age devices require that the data be compressed which raises the issue of com-
pression standards. Fortunately, several compressions standards have emerged
to answer this need [57, 82, 44).

Although these standards are an essential part of a solution to the storage and
delivery problems of CM systems, most compression schemes are complex and
computationally intensive. Therefore, decompression must be done either by ded-

icated hardware or by carefully optimized software.

Even with compression hardware assistance, another, more fundamental
problem, arises. Users want to edit CM data just like they edit text and graphics.
Soon, they will want to perform special effects, image enhancement, and other
traditional image processing functions. The overhead of decompression, coupled
with the high throughput of the decompressed data, makes image processing too
time-consuming for interactive use on current workstations without special pur-

pose hardware to accelerate these functions.

For example, suppose you implemented some simple image processing algo-
rithms on a video sequence with the goal of making them operate in real-time.
Since the algorithm must read 27 Mbytes/sec, and write the same amount, the
memory bandwidth is about 54 MBytes/sec. Assuming the CPU performs a load,
save, and arithmetic instruction on each byte in the input stream, the CPU speed
would have to be at least 81 MIPS. This calculation ignores overhead associated
with address computation, decompression, and the fact that the image processing
operation is likely to be much more complex than a single arithmetic instruction.
With these added complexities, real-time image processing on video data

becomes impossible on today’s machines.

This problem can be solved if the image processing operation can be per-
formed directly on the compressed video data. Since the volume of data is typi-
cally one to two orders of magnitude less than the uncompressed image size, and
the computationally complex decompression is avoided until the image is dis-
played, image processing becomes feasible, provided a simple operation on the
compressed data can be found that matches the image processing operation on

the decompressed data.

I have developed an algebra that allows a variety of useful image processing
operations to be mapped to compressed data operations. The algebra is applica-
ble both to local operations and global operations. A local operation is one where
the value of a pixel in the output image is determined by the value of a single cor-
responding pixel in the input image(s), and a global operation is one where the
value of a pixel in the output image is determined by the value of two or more pix-
els in the input image. Examples of local operations are contrast enhancement,
dissolves, video composition (as in TV-news weather forecasts), and the like.
Examples of global operations are geometric operations such as scaling, rotation,

translation, and image processing operations such as edge detection and image

enhancement.

Experimentation with this technique shows that operations implemented on
the compressed representation are one to two orders of magnitude faster than
methods that decompress the image, compute the operation, and compress the
result. The compressed domain operations are suitable for interactive use on next
generation workstations and for home computers (e.g., set-top boxes and video

game machines).

The remainder of this dissertation is organized as follows. In chapters 2 and 3,
| describe the algebra for processing compressed images outlined above. In these

chapters, | also evaluate the technique’s performance on current generation

5
machines and discuss the data structures used in an efficient implementation.

Chapter 4 describes the architecture, data model, and implementation of CMT,
and chapter 5 describes experiments with the network transport protocol used in

CMT.

Chapter 2

Local Image Operations

In digital video effects (DVE) processing, one or more input images are com-
bined to create an output image. These images are typically the individual frames
of one or more video streams. This type of processing, used in robot vision [35],
digital signal processing [45], computer graphics [61,23], and video editing sys-

tems, consumes large amounts of computing resources.

For example, consider the resources needed to process a 640 pixel by 480
pixel, 24 bit video sequence at 30 frames per second (fps). Each pixel in the input
image must be read, used, and stored. Each image requires 900 KBytes of stor-
age, so this process involves reading 27 MBytes/sec and writing an equal
amount, for an aggregate bandwidth of 54 Mbytes/sec. Since the unit of data is
one byte in this example, each operation on a conventional RISC architecture will
require one instruction to load the byte, at least one to modify the byte, and one to
store the result, yielding a lower bound on the CPU requirements of 81 MIPS.
With the additional overhead of loop counters, address arithmetic, and operations
that require several instructions per pixel, it is clear that several hundred MIPS is

required for all but the most trivial processing.

Th f Decompression

To complicate matters even further, video sequences are almost always stored
in a compressed format such as MPEG [44] or motion JPEG [67,82]. To measure
the cost of decompression and compression, | instrumented a public domain
JPEG software decompression program [43] to count the number of instructions
executed during both compression and decompression. | used the pixie [60] profil-
ing software for the MIPS R3000 family of processors to instrument the code, and

ran an experiment on a DECstation 5000/125 workstation. In the experiment, 621

different images were compressed and decompressed, and the instructions
required for each operation were counted and classified into three groups: arith-
metic operations (arithmetic, shift, and logic instructions), memory operations
(load and store instructions), and miscellaneous instructions (including control
flow). Figures 2-1 and 2-2 show the number of operations in each class required
for compression and decompression. Analysis of this data shows that decompres-
sion requires an average of 283 (o = 17) instructions for each pixel in the input
image, and compression requires 314 (o = 10) instructions for each pixel in the
output image. This means that to decompress the 640 by 480 pixel video signal
for DVE processing, 640 x 480 x 30 x 283 = 2600 MIPS of RISC processing is
required to decompress the image. If the DVE is to be stored, or if it is computed
in an intermediate node in a computer network and then transmitted, the result of
the DVE must also be compressed, requiring an additional
640 x 480 x 30 x 314 =2800 MIPS. Algorithms that fully decompress an

image, apply a DVE, and compress the result are called brute force algorithms.

In this chapter and the next, | examine a software approach to computing
DVEs that operates directly on the compressed video data. | will show that this
approach uses much fewer computing resources, so that near real-time DVEs can

be performed in software.

This chapter examines a class of DVEs called local DVEs (LDVEs). LDVEs
are DVEs where the value of a pixel in the output image is determined by the
value of the corresponding pixel(s) in the input image(s). The next chapter looks
at more general DVEs. The rest of this chapter is organized as follows. In section
2.1, | review a typical transform-based compression technique for images, the
JPEG compression standard. In section 2.2 | define the basic algebraic opera-
tions needed to implement LDVEs, and show how to implement these operations

on compressed JPEG data, and in section 2.3 | report the results from an experi-

Instructions (in millions)
400

350 —
300 —
250 —
200 —
150 —
100 —
50 -
0

Misc.

Memory

-.— Arithmetic

, , , , , — Megapixels
0 02 04 06 08 10 12 14

Figure 2-1: Number of instruction required for decompression

Instructions (in millions)

450
400 —
350 —
300 —
250 —
200 —
150 —
100 —
50 —
0

Misc.

Memory

-4—— Arithmetic

' —+—» Megapixels
02 04 06 08 10 12 14 gap

Figure 2-2: Number of instruction required for compression

mental implementation of these techniques.

2.1 JPEG Coding

This section describes the compression model used in transform based cod-
ing, beginning with a general review of transform coders and then continuing with
a brief description of the CCITT Joint Photographic Expert Group (JPEG) pro-
posed standard for transform based image coding. A detailed description of the
JPEG algorithm is available elsewhere [57,82]. A detailed description of image
formats is presented by Foley and Van Dam [23]. Other transform coding tech-

niques are discussed in [45,37].

Iransform Based Coding

A common technique for image compression is transform based coding'. In a
typical transform coder, the pixels of the image are treated as a matrix of num-
bers. A linear transform, such as the discrete cosine transform (DCT [63]), is
applied to this matrix to create a new matrix of coefficients. To recover the original

image, the inverse linear transformation is applied.

The transformation has two effects. The first effect is to concentrate the energy
of the image so that a large number of the transformed coefficients are nearly
zero. The second effect is to spectrally decompose the image into high and low
frequencies. Since the human visual system is less receptive to some frequencies
than others, some coefficients can be more crudely approximated than others

without significant image degradation.

A common way to exploit the latter property is to quantize the coefficients. A

simple way to quantize coefficients is to truncate low order bits from an integer

1 All results in this section can be found in [45], and shall be stated without
proof.

(e.g., by right arithmetic shifting). A method that provides more control over data
loss than arithmetic shifting is to divide the value by a constant, the quantization
value, and round the result to the nearest integer. An approximation of the original
value can be recovered by multiplying the result by the quantization value. Larger

quantization values lead to cruder approximations, but fewer significant bits.

When the DCT transformed coefficients of typical images are quantized in this
way, most coefficients are typically zero. For example, measurements indicate
that about 90% of the coefficients in a typical image compressed using this tech-

nique can be set to zero without noticeable degradation.

The JPEG algorithm

One standard for transform coding of still images is the JPEG standard. The
remainder of this section briefly describes relevant features of JPEG and intro-

duces associated terminology.

Suppose the source image is a 24 bit image 640 pixels wide by 480 pixels
high, and it is composed of three components: one luminance (Y) and two chromi-
nance (I and Q). That is, a triplet of 8 bit values (Y,/,Q) is associated with each
pixel in the source image. Since each component is treated similarly, | will

describe the algorithm for only one component (e.g., the Y component).
The JPEG algorithm consists of six steps:

1) Normalization The Y component is broken up into contiguous squares 8
pixels wide by 8 pixels high called blocks. Each block is an 8 by 8 matrix of inte-
gers in the range 0...255. The first step of the algorithm, called the normalization
step, brings all values into the range -128...127 by subtracting 128 from each ele-
ment in the matrix (this step is skipped on the /and Q components since they are
already in the range -128...127). Let the resulting matrix be yli,jl, where

i,j€ 0...7. Figure 2-3 illustrates the relationship of yji,jj to the whole image.

10

11

/4

4—_ Qounl 0

ylij]

HEEEEEEEEEERERERER
Figure 2-3: Definition of yf[i,j].

2) DCT The second step in the algorithm applies the DCT to this 8 by 8 matrix,
producing a new 8 by 8 matrix. This step is called the DCT step. The DCT is simi-
lar to the fast fourier transform in that the values in the resulting 8 by 8 matrix are
related to frequency. That is, the lowest frequency components are in the upper
left corner of the output matrix, and the highest frequency components are in the

lower right. Let the new matrix be denoted Y [u, v] , with i, ve 0...7. By the defini-

tion of the DCT:

Yluv] = }12 Y.CGw) C G wyIi] EQ 2-1
1]
where
. _ (2i+1)un
C(i,u) = A(uw cos—-——16
..1_ foru = 0

Au) = {fz

1 foru#0

3) Quantization The third step in the algorithm quantizes each element of
Y [u,v] by a value dependent on the frequency, called q [u, v] . This quantization

step is defined by

YQ [u,v] = IntegerRound(%%}-) u,ve 0...7 EQ 2-2

The matrix of integer quantization values q[u, v] is called the quantization
table (QT). Different QTs are typically used for the luminance and chrominance
components. The choice of the QT determines both the amount of compression
and the quality of the decompressed image [82,26,58,83,40]. The JPEG standard
includes recommended luminance and chrominance QTs which are the results of
human factors studies. A common practice is to scale the values of these default
QTs to obtain different image qualities. Specifically, given two images with QTs

q, [u,v] and g, [u, v], then for all u,v and some constant gamma, it is often the

case that

94 [u, v] _
q2 [u,v] -

Y EQ 2-3

| will use this fact later.

4) Zig Zag Scan Step four of the algorithm converts the 8 by 8 matrix Yo lu,v]
from equation 2-2 into a 64 element vector Y,, [x] using the “zig zag” ordering

shown in Figure 2-4. This ordering is a heuristic to cluster low frequency compo-
nents near the beginning of the vector and high frequency components near the

end. The vector Y, is called the zig-zag vector, and this step is called the zigzag
scan step.
5) Run Length Encoding (RLE) In most images, the vector Y,, will contain a

large number of sequential zeros, so the next step in the algorithm, the run length

encoding step, encodes the vector into (skip, value) pairs. Skip indicates how

12

13

Yq
o
VS S) Y7z C
— h)

Figure 2-4: Zig Zag Scan Ordering

many indices in the Y, vector to skip to reach the next non-zero value, which is
stored in value. By convention, the pair (0,0) indicates that the remaining values in
Y,, are all zero. This block is called a run-length-encoded (RLE) block, and each
(Skip, value) pair is called an RLE value. The RLE block is denoted Yr £ X], with
YrLe[X]-skip and Yg, (x]. value denoting the skip and value of the xth element in
the array. The algorithms in this chapter operate on RLE blocks.

6) Entropy Coding In the final step, a conventional entropy coding method
such as arithmetic compression or Huffman coding compresses the RLE blocks.

Figure 2-5 graphically displays all the steps in the processing of one block.

The compression ratio is adjusted by altering the values in the QTs. Experi-

zig-zag vector RLE block

Image Compressed
WA Yl P Yoluy] [Y] B Vel e Tvage
DCT Quantization Zig Zag Run Length Entropy

Scan Encoding Coding
BRCKIERIZ STRial2[v + o [T TJ0]+ » [0
73p3{74} « « « {78 3{8}-1f« « = {0 011101 « « .« {0
pobalral « o+ s+ 73 Al1jae + o ojofof+ + + 0 0 3]
e o e UL . e [o[o] [+ =+ o] gg 100110101111010...
. S % . S 1515 . e
1709} » « o 00 =+ a2 {0 0j0j0f{ s « « [O

Figure 2-5: Compression of a Block

ence indicates that a compression ratio of about 24 to 1 (i.e., one bit/pixel) can be
achieved without serious loss of image quality. At a compression ratio of 12 to 1
(i.e., 2 bits per pixel), the decompressed image is usually indistinguishable from
the original [26].

Tracing figure 2-5 backwards (i.e., right to left) illustrates how to decompress
the data. The first step of decompression recovers an RLE block from the entropy
coded bit stream. By making a single pass through the RLE block Yg, £x], the zig-
zag vector Yzzx] can be recovered. From Yzx], Yglu,V] can be reconstructed by
inverting the zig-zag scan. Then each element of Ygu,v] is multiplied by g[u,V]

from the appropriate QT to recover an approximation of Y[u,Vl. In the final step,

the image block y{/,j] is obtained from Y[u,V] using the inverse DCT (IDCT):
vIij] = ‘-11; ;C(i, W) C G, v) Y [u, v] EQ 24

Note that equation 2-4 is very similar to equation 2-1, but the summation is over u

and vrather than iand j.

2.2 Algebraic Operations

This section shows how the four algebraic operations of scalar addition, scalar
multiplication, pixel-wise addition and pixel-wise multiplication of two images are

performed on RLE blocks.

In the calculations that follow, we will be deriving equations of the form

Hprp = 0 (Fgrp Gprg) EQ 2-5

where Fp, ;. and G, , are the RLE representations of the input images, H,, , is
the RLE representation of the output image, and ¢ is a real-valued function. In an
implementation, the values stored in the Hy, . data structure would be integers,

so the value returned by the function ¢ must be rounded to the nearest integer. To

14

15
simplify the notation in the calculations that follow, this rounding will be implicit.

To further simplify the notation, all calculations will be performed on the quan-
tized arrays Folu,v],G,lu v] and Hg[u,v]. Since an RLE block is a data struc-

ture that represents these arrays, the derived equations will be valid on RLE

blocks provided the appropriate index conversion is performed.
Other notational conventions are listed below:

1. Capital letters such as F, G and H indexed by u, v and w will
represent compressed images.

2. Lower case letters such as f, g, and h indexed by /, jand k will
represent uncompressed images.

3. Greek letters such as a and B will be used for scalars

4. QTs will be represented as arrays, with subscripts indicating
the image. For example, g, [u, v] will stand for the QT of the
compressed image H.

5. The letters x, y, and z will represent zig-zag ordered indices.

QTs will often be indexed by a single zig-zag index (such as x). In such cases the

conversion to indices such as [u,v] is implied and will be clear from context.
lar Multiplication
Consider the operation of scalar multiplication of pixel values. In this operation,

if the value of a pixel in the original image is f[i, j] , the value of the corresponding

pixel in the output image A [i,,] is given by

hli,j]1 = af[i,]] EQ 2-6

Using the linearity of the JPEG compression algorithm and equation 2-6, it can be
easily shown that the quantized coefficients of the output image, Hylu,v], are
just scaled copies of F,[u, v] . Specifically, it can be shown, using equations 2-1

through 2-4 and equation 2-6, that

oqp (u, v)

Holurl = g Gy

FQ [u, v] EQ 2-7

where g (u, v) and g, (u,v) are the QTs of the input and output images, respec-
tively, and with the final integer rounding of the right hand side being implicit. In
other words, to perform the operation of scalar multiplication on a compressed
image, it can be performed directly on the quantized coefficients, as long as the
QTs of the images are taken into account. Note that if the QTs of both images are

proportional as in equation 2-3, equation 2-7 simplifies to
HQ[u, v] = ocyFQ[u, v] EQ 2-8
The special case y=1 is where the quality of the input and output images are
the same. Note also that if a value in the input, Fqlu,v], is zero, the correspond-
ing value in the output, H, [u, v] , is also zero. Thus, this operation can be imple-

mented on an RLE block by simply scaling the values in the data structure - there
is no need to reconstruct the quantized array or even the zig-zag vector. When

implemented this way, useless multiplies where F o lu, v] is zero are avoided. For

these reasons, the operation is very fast.

Scalar Addition
Now consider the operation of scalar addition. In this operation, if the value of
a pixel in the original image is f[i, 1, the value of the corresponding pixel in the

output image h[i,j] is given by
hiijl = flLJ1 +B EQ 29

Now, adding a constant to each pixel changes the mean (i.e., the DC) value,
which the DCT stores at the [0,0] entry. Thus, only this coefficient should be
affected. This can be easily proven using equations 2-1 through 2-4, equation 2-9,

and the properties of the DCT [45,37]. The result of such a calculation is

16

RA. 8

EQ 2-10
Hylu,v] = "o)FQ[u,v]+qH(u’v)6(u)8(v) Q
5 _ 1 u=0
where (u) = {0 Lt0

It the QTs of both images are proportional as in equation 2-3, equation 2-10

assumes a particularly simple form expressed in the equations:

- 8p]
H,[0,0] = vF,[0,0] * I 0.0) EQ 2-11

HQ [u, v]

'yFQ [u, v] (u,v) = (0,0) EQ 2-12

Again we see that the operation of scalar addition can be performed directly on
the quantized coefficients. More importantly, in the common case where v=1(i.e.,
when the quality of the output image is the same as the quality of the input
image), this operation involves much less computation than the corresponding
operation on uncompressed images, since only the (0,0) coefficient of the quan-

tized matrix is affected.

Pixel Addition
The operation of pixel addition is described by the equation
hii,j1 = fLi,j1 +glij] EQ 2-13

As in the case of scalar multiplication, the operation we wish to perform is lin-
ear. Since the JPEG compression algorithm is also linear, the quantized coeffi-

cients of the output image, Hg, [u, v] are summed, scaled copies of Folu,v] and
G, [u, v] . Specifically, it can be shown, using equations 2-1 through 2-4, equation

2-13, that

_ qr (u,v) qg (u, v)
HQ[u,v] = ———TFQ[u’V] +m

X G, lu,v] EQ 2-14
H ’

17

Once again we see that if the QTs of the images are taken into account, the oper-
ation can be performed directly on the quantized coefficients, and that if the QTs
for all the images are proportional (with proportionality constants y, and Yo)

equation 2-14 can be simplified to:

HQ [u,v] = yFFQ[u, v] +yGGQ[u, v] EQ 2-15

Pixel Multiplication
Finally, the operation of pixel multiplication is expressed in the equation
hiijl = of[i,j1g1i] EQ 2-16
where a is a scalar value. The scalar a, although mathematically superfluous, is
convenient to scale pixel values as they are multiplied. This formulation is used,
for example, when the image g contains pixél values in the range [0..255] but
should be interpreted as the range [0..1), as is the case when g is a mask. This

operation is realized by setting o to 1/256.

Let F (v, v,), G (w,, w,) and H (u,,u,) be the quantized values of the com-

pressed images for f, g, and h, respectively. Then using equations 2-1, 2-2 and

2-16, the value of H (u,, u,) can be computed as follows:

18

19

1 : . -
HWP%)=EHZEJZ;CQ%KVJQMU) EQ 2-17
(04

_ o . :
= Tyl LR C)

(%Z ZC (i, v)) C (U, vy) gp [vy, v,] F (v, Vz))

Vi V2

(iz ZC (Lw)C(.w,y)) g5 v, w,]1 G (w,, w2))

Wy W,

F(v,v,)G (wy, w,) WQ (v, vy, Wy, Wo, Uy, Uy)

Vp VW Wy

where
WQ (Vl, v2, M.’l, W2, ul, u2) EQ 2-18
_ogp [vy, vl qg[wy, w,l
B 64‘]}1 [Ul, u2] W(ul’ vl’wl)W(u2, Vo, w2)
with
Wevw) = YCEWCECLw) EQ 2-19
l

This rather lengthy sum can be efficiently computed by noticing several facts:

1. for typical compressed images, G (w,,w,) and F (v, v,) are
zero for most values of (v;,v,) and (w,, w,).

2. Of the 256K elements in the function W, (v}, v,, wy, wy, 1), u,)
only about 4% of the terms are non-zero. In other words, the
matrix W, IS very sparse.
When this method is implemented, care must be taken to evaluate only those
terms that might contribute to the sum. Property (1) is used when this method is

implemented on RLE blocks, since the zeros are easily skipped. To take advan-

tage of (2), the data structure described in the following paragraphs is used. Since
the algorithm operates on RLE blocks, the zig-zag ordered indices are used to ref-
erence data elements. By convention, x, y and z will represent the zig-zag ordered
indices of the pairs (vy,vs), (Wy,ws) and (uy,uy), respectively; With this substitution,

equation 2-17 can be written as

H(z) = ZF X G W, (xy,2) EQ 2-20
Xy

with the summation over x and y running from 0 to 63.

The following data structure allows equation 2-20 to be compute efficiently. A
combination element is a pair of numbers z and W, where z is an integer and W is
a floating point value. A combination list is a list of combination elements. A com-
bination array, is a 64 by 64 array of combination lists. The C code shown in figure
2-6 initializes the combination array combix,y]. The array contains empty lists
when the code is entered. The function ZigZag(u1,u2) returns the zig zag index

associated with the element (uy,up). The function AddCombElt (z, W, combix,y])

inserts the combination element (z, W) in the combination list stored in the global
combination array combix,y] (the place of insertion is unimportant) and returns the
modified combination list. The array WI[8][8][8] is assumed to be initialized with the

values of the W function of equation 2-19.

Using the initialized combination array, the C code shown in figure 2-7 effi-
ciently implements equation 2-20 on two RLE blocks £ and g. This algorithm is
called the convolution algorithm. Notice that comb [] is a constant in the code:
once computed for the given QTs, it can be applied to an unlimited number of

images.

The code operates as follows: The array hzz, which represents a zig-zag
vector, is assumed to be all zero. For each pair of RLE values in the two input

images £ and g, the zig-zag indices x and y are computed, and the product of

20

ConvolveInit (alpha, £fQT, gQT, hQT)
float alpha, *fQT, *gQT, *hQT;

int ul, w2, vil, v2, wl, w2;
int %, y, z;
float t1, t2;

for (ul=0; ul<8; ul++)
for (v1=0; v1<8; vl++)
for (wl=0; wl<8; wl++)
if ((tl = Wlull[vl][wl]) !'= 0.0)
for (u2=0; u2<8; u2++)
for (v2=0; v2<8; v2++)
for (w2=0; w2<8; w2++)
if ((t2 = W[u2] [v2][w2]) != 0.0) {
ZigZag(ul, u2);
= ZigZag(vl, v2)
ZigZag(wl, w2);
= tl*t2%*alpha*fQT[x]*gQT[y]/hQT[z];
comb[x,y] = AddCombElt (z,W,comb([x,y]);

.

4

stN KX

Figure 2-6: Initialization of the Combination Array

their data values, which is stored in tmp. The z value of each combination ele-
ment in the combination list stored in comb [x, y] is used to determine which ele-
ments in the output array hzz are affected and accumulate the product w*tmp
into each element. In this way, only the multiplies that result in non-zero products
accumulate in hzz. When used in a program, a final pass is needed to run-length

encode the zeros, perform integer rounding, and construct the resulting RLE

block?.

mm f ration.

This section showed how pixel addition, pixel multiplication, scalar addition,

and scalar multiplication can be implemented on quantized matrices. As noted

2 Of course, using ‘integer arithmetic might provide an increase in perfor-
mance, but | chose to describe the floating point implementation for clarity.

21

Convolve (f, g, hzz)
RLE_Block *f, *g; /* The input images */
float *hzz; /* Array of 64 elements */

int x, vy, z;
float W, tmp;
RLE _BLOCK *gtmp;
COMB_LIST *cl;

for (x=0; £ != NULL; f = f->next) {
X += f->skip;
for (y=0, gtmp = g; gtmp != NULL; gtmp
y += gtmp->skip;
tmp = f->val*gtmp->val;
for (cl = comb(x,y]; cl != NULL; cl
z = cl->z;
W = cl->W;
hzz[z] += tmp*W;

gtmp->next) {

I

cl->next) {

Figure 2-7: Implementation of the Convolve Function

earlier, these transformations can operate directly on RLE blocks. Table 2-1 sum-
marizes the mapping of image operations into operations on RLE blocks. In the

table, the symbol Y,y (x) is defined as

qp[x] qplu,v]
ay X1 gy lu,v]

Vr g (X) = EQ 2-21

and the function Convolve (F, G, a, dr 45 9y) 1S defined in equation 2-20 and

implemented in figures 2-6 and 2-7.

2.3 Applications

Video data is typically transmitted as a sequence of compressed images.
While the entropy encoded data cannot be directly manipulated, section 2.2

showed how several operations can be performed on RLE blocks. Referring to fig-

22

. Image Space Definition .
Operation for [,] RLE Definition for H,, [x]
Scalar ..
F -
Muiltiplication af [i,J] Y,y (X) Fzz [1]
Scalar Addition fli.j1+B Yp () Fpy 2] + 8B (x)
: q,10]
Pixel Addition fli,j1 +g 15)] Yr,u (0 Fzz[xX] +v5 4 (x) G5, [x]
Pixel
L l C lve(F,G, o, qp 4
Multiplication fli.jlg i onvolve (O qp, 4 9y)

Table 2-1: Mapping of Operations

ure 2-5, most of the processing associated with decompressing and compressing
an image can be eliminated by entropy decoding the bitstream, performing the

operation on the RLE blocks, and entropy coding the result.

The primitive operations in Table 2-1 can be combined to form more powerful
operations such as dissolve (the simultaneous fade out and fade in of two
sequences of images) and subtitling. The implementation of these operations typ-
ically involves the computation of an output image that is an algebraic combina-
tion of one or more input images. Many examples of such operations are
discussed in [61]. One way to perform the combination on a pair of RLE blocks is
to use zig-zag vectors as the intermediate representation to compute the expres-
sion. For example, to multiply two RLE blocks and add a third, the Convolve
function of figure 2-7 would be called on the first two RLE blocks, the third RLE
block would be added to the zig-zag vector, and then run length encoding and
entropy coding steps would be performed on the result. Figure 2-8 graphically

depicts our strategy.

The remainder of this section presents two examples that illustrate this strat-
egy and compares the performance of these new algorithms with the brute force

algorithm.

23

Entropy Decoding
Run Length
C d Encoding
ompresse
Inrm)age 1 SIpielr]
w @ Dzz[x] | Dgpglx]
Compressed
> S2g1 glx Entropy
Image el Encoding
Compressed Compressed
Irrlx)age 1 S3regl] Image

Figure 2-8: Strategy for Manipulating Images

The Dissolve Qperation

The entropy encoding and decoding steps will be omitted to simplify the pre-
sentation. Suppose a sequence of images S1[t] is to be dissolved into a sequence
of images S2[t] in a time At (typically 0.25 seconds). In other words, at t=0 S1[0]
should be displayed, at t=At S2[At] should be displayed, and in between a linear

combination of the images should be displayed:
D[] = a()S1[f] + {1-a(2)}S2][1] EQ 2-22
where a (1) is a linear function that is 1 at t=0 and 0 at t=At.
Using table 2-1, this operation can be mapped into the corresponding opera-

tion on RLE blocks as follows. From the table, scalar multiplies can be performed

directly on the RLE blocks by changing the coefficient a. to a¥g; p(x) in the first
half of the expression and performing a similar substitution for the multiplication
by {1-a} . The table also shows that coefficients can be added together directly

to get the desired result, since the QTs of these two new RLE blocks are the

same, namely g, (x) . Thus, the expression in equation 2-22 can be implemented

24

as
Dy [x] = ayg p(x)S1,,[x] + {1-a}ys, 5 (x)S2,,[x] . EQ 2-23

This equation can be implemented efficiently by noticing that the RLE format of
the data will skip over zero terms. The C code to implement this operation on an
RLE block is shown in figure 2-9. The function zero zeros the array passed to it,
and the function RunLengthEncode performs the run length encoding of h. The

arrays gamma?l and gamma2 have the precomputed values defined by

gammal [x] = 0‘751,1)(7‘) EQ 2-24

gamma?2 [x] (1-a) Ys2.D (x) EQ 2-25

These values can be precomputed once for each image or sequence of images
with the same QTs, whereas the Dissolve function is called for each RLE block

in an image.

To test the performance of this implementation, | wrote programs that exe-

cuted both the brute force and the RLE algorithm on images resident in main

Dissolve (f, g, h, gammal, gamma2)
RLE Block *f, *g, *h;
float *gammal, *gamma2;

float hzz[64];
int x;

Zero (hzz);

for (x=0; f != NULL; f = f->next){
x += f->skip;
hzz [x] += gammal [x]*f->value;

}

for (x=0; g != NULL; g = g->next) {
X += g->skip;
hzz [x] += gamma2[x]*g->value;

}

RunLengthEncode (hzz, h);

Figure 2-9: C Implementation of the Dissolve Operation

25

memory and compared the performance. Both algorithms were executed on 25
separate pairs of images on a Sparcstation 1+ with 28 MBytes of memory. The
test images were 640 X 480, and 24 bits per pixel. The images were compressed
to approximately one bit per pixel (24 to 1 compression). Table 2-2 summarizes
| the results. As can be seen from the table, the speedup is more than 100 to 1 over

the brute force algorithm.

Algorithm Mean Time (sec) Std Dev (sec)
Brute Force 36.86 0.01
RLE. 0.34 0.00

Table 2-2: Performance Measurements of Dissolve Operation

Th it! ration

The second example operation is subtitle, which overlays a subtitle on a com-
pressed image f. Although a workstation could support this operation in many
ways (such as displaying the text of the subtitle in a separate window), | chose
this operation for two reasons. First, it is a common operation that most people
understand. And second, it serves as a specific example of the common operation
of image masking, which is used when a portion of one image is to be combined

with another image.

The subtitle is assumed to be a compressed image of white letters on a black
background denoted S, with white and black represented by pixel values 127 and
-128, respectively. The output image can be constructed by adding together S and
an image obtained by multiplying f by a mask that will blacken the areas on f

where the text should go. The output image with subtitling, h, is then given by:

hiijl = s[iJj] +25L5(127-s[i,j] VL,] EQ 2-26

26

Using table 2-1, the corresponding operation on an RLE block is

1
H = Ys, S+ Convolve(M, F, 755" dr s qH) EQ 2-27
with

10165 (x)

MIx] = -S[x] + 7, 10]

EQ 2-28

The C code in figures 2-11 and 2-11 implement this operation. The code is
divided into two phases, the SubtitleInit function, which is called once when
the QTs are defined for the image or sequence of images, and the Subtitle
function, which is called for each RLE block in the image. Like the dissolve opera-
tion, the subtitle function uses a zig-zag vector hzz to store the intermediate
results. As with the dissolve operation, the performance of programs that imple-
mented the brute force algorithm and the RLE algorithm on images stored in main
memory were compared. The test parameters were the same as with the dissolve
operation. Table 2-3 summarizes the results, showing a speedup of nearly 50 to 1

over the brute force algorithm.

Algorithm Mean Time (sec) Std Dev (sec)
Brute Force 33.84 0.64
RLE 0.68 0.13

Table 2-3: Performance Measurements of Subtitle Operation

27

28

static gammaSH[64];
SubtitleInit (£QT, sQT, hQT)
float *fQT, *sQT, *hQT;
int x;
ConvolveInit (1/255.0, £QT, sQT, hQT);

for (x=0; x<64; x++)
gammaSH[x] = sQT[x]/hQT[x];

Figure 2-10: C Code Implementation of SubtitleInit Function

Subtitle (s, f, h, £QT, sQT, hQT)
RLE Block *s, *f, *h;
float *fQT, *sQT, *hQT;

float hzz[64];
RLE Block *tmp;
int x;

Zero (hzz);
for (x=0, tmp=s; tmp != NULL; tmp = tmp->next) {
X += tmp->skip;

hzz[x] += gammaSH[x]*tmp->value; /* hzz = gamma*s */
tmp->value = —-tmp->value; /* set s = -g */

}

/* Convert S into mask... */

if (s—>skip){ /* No (0,0) value! */
s = NewRLE Block (s->next); /* Insert a 0 value */

s->skip = 0;
s->value = 0;
}
s—>value += Round(1016.0/sQT[0]); /* s is now the mask */
Convolve (f, s, hzz);
RunLengthEncode (hzz, h);

Figure 2-11: C Code Implementation of Subt it le Function

29
Conclusions

This chapter has examined algorithms for computing local DVEs on com-

pressed JPEG images. This work can be extended in two ways:

1. The ideas can be applied to other compression technologies,
such as MPEG, H.261, wavelet, and vector quantization
schemes.

2. The class of supported operations can be expanded. For
example, non-linear operations can be studied. The next chap-
ter examines one such extension, called linear global DVEs.

Chapter 3
Linear Global Digital Video Effects

In the previous chapter, | examined local DVEs, where the value of a pixel in
the output image was determined by the value(s) of the corresponding pixel(s) in
the input image(s). In this chapter, | study more general DVEs, called global
DVEs, where the value of a pixel in an output image is determined by several pix-
els in an input image. In particular, | examine a set of DVEs called linear global
DVEs (LGDVEs), where the value of a pixel in the output image is determined by
a linear combination of pixels in the input image. LGDVEs are able to represent
many image processing calculations, as well as geometric transformations used
in computer graphics, such as translation, scaling, rotation, shearing, and warp-
ing. In this chapter, | show how to perform these operation on JPEG data in near
real-time. For example, a 640 by 480 JPEG compressed image can be scaled at 7

frames per second on current generation workstations.

The rest of this chapter is organized as follows. Section 3.1 mathematically
defines LGDVEs and shows how many DVEs can be written as LGDVEs. In sec-
tion 3.2, | show how to formulate JPEG compression so that it can be combined
(in section 3.3) with the results of section 3.1. The result will be a specification of
LGDVEs that operate on compressed data, but is computationally expensive.
Section 3.4 develops an approximation technique called condensation that
exploits properties of the JPEG domain LGDVEs to obtain large performance
improvements. In sections 3.5 and 3.6, | describe two condensation algorithms
and evaluate their performance. Finally, section 3.7 concludes this work on DVEs
with a discussion of the results, a review of related work, and indications of direc-

tions for future research in this area.

30

3.1 The Mathematics of LGDVEs

LGDVE, Tensor.
The class of linear, global digital video effects (LGDVESs) are DVEs that can be
written in the form

ij
w =T ij EQ 3-1
where 'ch is a fourth rank tensor. This notation uses the Einstein summation con-
vention: when an index, such as i, is repeated in the upper and lower indices of
two terms, summation over all legal values of the index is implied. For compari-

son, equation 3-1 could be written in conventional notation as

h = ZIU ..
uv uv ij

L]

LGDVEs, as formulated in equation 3-1, can be used to represent a wide vari-
ety of DVEs. As an example, consider the DVE of smoothing an image. In the
operation, the value of an output pixel huv is @ weight sum of the nearby pixels in

the input image. For example, huv might be

1 1 1 1 1
h‘“’=ifuv+§fu-1,v+_u+1,v+§fu,v—l+§fu,v+1 EQ 3-2

Using the definition, equation 3-1, the transform tensor of the corresponding
LGDVE is

1/2 if i=u and j=v
ij 1/8 ifi=uxl and j=v
T
uy 1/8 ifi=uand j=v*1
0

otherwise

In fact, convolution of an image with any function g (x, y) can be written as a

31

LGDVE:
TZv=g(u—i,v-j) EQ 3-3
LGDVEs can also be used to represent geometric transformations to images.
For example, consider the operation of translating an image by an integer amount
Ax, Ay. The corresponding LGDVE is

i
'l:j
uv

=d(i-u+Ax,j-v+Ay)

where d (i, j) is the two dimensional Kronecker delta function:

o 1 ifi=0and j=0
d(i,j) = {

0 otherwise

The technique for converting a general geometric transform into a LGDVE is

discussed in Appendix A.

Although a wide variety of DVEs can be written as LGDVEs, there are many
exceptions. Since LGDVEs are inherently linear; no non-linear operations can be
formulated as LGDVEs. For example, rotoscoping, which uses severe color quan-

tization for artistic effect, can not be written as an LGDVE.

Block oriented LGDVEs

The LGDVE transformation tensor T, as specified in the previous section, is
specified in terms of the indices of individual pixels in both the input and output
images. JPEG encoding, however, is a block oriented technique. That is, to spec-
ify an individual pixel, both it's block address (x,y) and it's offset (i,j) within the

block are given, as shown in figure 3-1.

It will be convenient to rewrite equation 3-1 using this indexing. By convention,
(x,y) will be used for the block address in the input, and (i,j) for the offset within

that block. The corresponding symbols for the output address and offset are (w,z)

oS

Figure 3-1: JPEG Pixel Addressing

and (u,v), respectively. An LGDVE is then of the form

WZUv

hwzuv = txyij fxyij EQ 3-4
If the blocks are 8x8, (8x + i, 8y + j) gives the offsets of a pixel in the image.

The correspondence is then

wzuy 8w+u,8z+v
Leyij = 8x+i, 8y+)
Feyij=T8x+i 8y+) EQ 35

hwzuv = h8w +u,8z+v

3.2 The Mathematics of JPEG Compression as a Tensor

In the previous section, | showed how certain video effects, namely LGDVEs,
could be written as linear operators. In this section | show how several steps in
JPEG compression can be written as a linear operator. These two results will be
used to derive a method for computing LGDVEs directly on compressed image

data.

The JPEG algorithm presented in section 2.1 can be viewed as a four step
process. The first step is to apply a linear transformation JZ to each 8 x 8 pixel

block f.

T in the input image, where the subscript xy specifies the index of the

33

Input Image

Entropy
Coding

ij integer
vector

4«18

o]l =lolo

[

RLE
vector

Figure 3-2: The JPEG compression process

— (011011...

block in the input, as shown in figure 3-1. The output of this linear transform is a

64 element vector ny 2 The second step is to round each element of ny i o the

nearest integer, the third step is to produce a sparse vector representation of

F_
Ay

sparse vector. This process is show in figure 3-2.

r using run length encoding, and the final step is to entropy encode this

The linear transformation JZ has three steps: a discrete cosine transform

(DCT), zig-zag ordering, and division by a quantization value (see section 2.1).

These steps define the linear operators D, Z, and Q, respectively, yielding

with

_ 'Y .o
nyk - [ka'}o'tﬁDgﬁ]fxyij

5
Vo Yk
% g [k]

1 i [’]_
70 _ zigzag[oBl=y

Y 0 otherwise

2i+Dan

2+ 1) B

pY = iA(a)A(B) cos

af 16

otherwise

16

EQ 3-6

EQ 3-7

EQ 3-8

EQ 3-9

EQ 3-10

34

Entropy
Decoding

0
011011... ——=L°
0

y
Output Image
Figure 3-3: The JPEG decompression process

vector

The JPEG operator, J k , is defined as the term in parentheses in equation 3-6:
QNYZO‘ﬁD’Jl3 EQ 3-11

Decompression of a block is a three part process consisting of entropy decod-
ing, expanding RLE data, and the application of a linear transformation, as shown

in figure 3-3.

The linear transformation J is the inverse of J, and is defined as
l oy <!
Juv = Dy ZopQy EQ 3-12

where D is the IDCT, Q is the dequantizer, and Z is the inverse zig-zag operator.

l .
0y =38,4qll EQ 3-13
Y 1 zigzaglaBl=y
Z - = EQ 3-14
op {O otherwise Q
af 1 QRu+1)an (2v+1)ﬁn)
D, = 4A () A (B) cos T co T EQ 3-15

3.3 Block Oriented LGDVESs on JPEG Data

Having formulated LGDVEs, JPEG compression, and JPEG decompression
as linear operators, consider the process of applying an LGDVE on a JPEG com-
pressed image. The following steps need to be performed on the input stream and

are shown in figure 3-4:

35

36
1. Entropy decode the stream to recover the RLE block represen-
tation of nyk'

2. Expand the RLE block to get nyk‘

K
3. Apply]ij to nyk to get fxyl.j
Xyij

4. Apply all relevant LGDVE transformation tensors A (o
fxyl.j to get an output block hwzuv
uv
5. ApplyJ; to hwzuv to get sz]
6. Round off each value in szl
7. Run length encode szl’ and
8. Entropy coding the result.
Steps 3 through 5, can be written as
_ uv xyij -k]
szl - [Jl thuv]ij nyk EQ 3-16

Entropy Expand
Decoding RLE [=
011011... —

o| ~| o] e
of 4] -1 8

vector

Entropy
Coding

011011... -——

ol «|je]eo
ol u| -8

vector integer
vector

Figure 3-4: Brute force application of LGDVE to JPEG data

! This step is optional, since an implementation could apply J directly on the
RLE representation.

The term in parentheses is the JPEG representation of the LGDVE tensor t‘f;‘;’gv:

1] K
xyk uv xyij g
Twzl =Jl thuv]l]

EQ 3-17
T is a linear transform that takes a set of input vectors, F, and produces a set
of output vectors, H. It allows the process described in steps 1-8 above to be writ-

ten in a simpler way:

1. Entropy decode the stream to recover the RLE representation
of ny e
2. Expand the RLE block to get F xyk

3. Apply Ti?;’; to nyk getH
4. Round off each value in H_,
5. Run length encode szl’ and
6. Entropy coding the result.

This shortcut is illustrated in figure 3-5.

Step 3 is by far the most computationally intensive step in this procedure, and

must be implemented carefully. For example, suppose both the source and desti-

Entropy Expand

Decodingrs1w1 RLE g
011011... — =21
RE &
F k
vector k Apply Tﬁ,); l
Entropy RLE Roundoff
Coding 1= : -
011011... -—°} =
E

vector integer
vector

Figure 3-5: Application of JPEG LGDVE to JPEG data

37

;

i
%Q—\§x\ |
A

\

Figure 3-6: Support: the number of input blocks affecting an output block.

nation images are 640 by 480 pixels. The indices x and w can take on 80 different
values, y and z can take on 60 different values, and / and k can take on 64 differ-
ent values. The number of arithmetic operations needed to compute step 3 is then
(80 x 60 x 64) 2 = 9.4x10"°, which is quite large.

One way to reduce the number of operations is to use the fact that T is typi-
cally sparse. To see why T'is often sparse, consider the blurring operation defined
in equation 3-2. A pixel in the output is determined by the corresponding pixel in
the input and it's immediate neighbors. Thus, a block in the output is determined
by the corresponding block in the input and it's immediate neighbors, as shown in

figure 3-6.
This locality property means that most of T is zero. In the example above

yij
wzuy

= 0iflx-w|>1lor|ly-z>1
Thus, for this example, only about 1 in 1000 elements of T are non-zero. Note that
most LGDVEs of interest, including convolution filters and geometric transforms of

images, exhibit this locality.

In order to measure the sparseness of T, the support of a LGDVE tensor is
defined as the number of output blocks affected by each input block. For example,
the support of the blur filter in equation 3-2 is 5. For 640 by 480 input and output
images, the number of operations required to compute the LGDVE is

80x60x 642 x N = 1.9Nx107, where N is the support of the LGDVE tensor.

38

Although this is three orders of magnitude fewer operations, it is still far too
many to compute in real time on today’s workstations. The next section explores

two techniques that dramatically reduce the number of operations.

3.4 Condensation Algorithms for LGDVEs

This section describes algorithms to condition LGDVEs so that they can be
efficiently computed. The conditioning process, called condensation, exploits the
sparseness of the input blocks and the energy concentration properties of the
JPEG tensor (which lead to sparseness in T) to reduce the number of multiplies

by a factor of 100 or more without adversely affecting the output quality.

The purpose of condensation is to optimize the computation of a single
LGDVE tensor, expressed as a matrix multiply where the 64x64 matrix T multi-
plies the vector from the input image F to produce the vector from the output
image H, as illustrated in figure 3-5. Condensation modifies the tensor T to pro-
duce a new tensor T” such that, when 7" is applied to an input block F, the result-
ing block H” will be nearly identical to H. Several properties of the tensor and the

input blocks make condensation possible.

istical distribution of coefficients in T (Pri 1

Figure 3-7 shows the cumulative distribution of the absolute values of the coef-
ficients of T for the operations of blurring and shrinking. The X axis shows the
absolute value of a coefficient, and the Y axis shows the percentage of coeffi-
cients with values less than the corresponding X coordinate. Note that T has
some elements with very small absolute values for these transformations. For
example, the figure indicates that 90% of the coefficients in the shrink-by-2
LGDVE have an absolute value less than 0.05. This property is present in other

transforms | investigafed. I will discuss the implications of this property shortly.

39

Percentage of
Coefficients

100

blur s
80}]

70t
60 t
50t
40}
30¢
20¢
10+

0 g

le-07 le-06 le-05 le-04 0.001 0.01 0.1 1.0
Coefficient Value

Figure 3-7: Cumulative distributions of absolute values of coefficients for the LGDVEs
of blurring and shrinking.

Statistical distribution of input blocks (Property 2)
Figure 3-8 shows the probability distribution P X [n] of values of input blocks

F L for k = 10, a representative value. The data was gathered from 1940 images
from 14 categories stored on an FTP archive, compressed using the default quan-
tization tables presented in Annex K of the JPEG draft standard [57]. The X axis
indicates the coefficient value, and the Y axis shows the probability that the coeffi-
cient has that value. For example, the figure shows that F 10 has the value 0 most
of the time (67%), and a value of -1 only 11% of the time (i.e., P, [0] = 0.67 and
P, [-1] = 0.11). Remarkably, these results are nearly independent of the content

of the images. Hence, Pk [n] can be empirically computed once and used in any

condensation algorithm.

40

Percentage
100

80+

20+

0 N . R N
-10 -8 -6 -4 -2 0 2 4 6 8 10
Coefficient Value

Figure 3-8: Distribution of coefficients in input blocks for k=10

Figure 3-9 is the same as figure 3-8, except that it adds a third dimension of
coefficient index. Low values of k (corresponding to low frequencies) are near the
front of the graph, higher values are towards the rear. The distributions P X [n] for
the AC coefficients (k # 0) are peaked at n=0, and become more sharply peaked
as k increases. This graph shows that many of the AC coefficients in an input
block are zero (i.e., the block is sparse) and the non-zero values are integers
close to zero. For the DC coefficient (k = 0, not shown) the distribution is nearly
flat and highly variable from image to image. The peaking of the AC coefficients is
expected, since the DCT tends to concentrate the energy of the image into a few
low frequency (small k) coefficients, and the higher frequency components (large
k) are more aggressively quantized, leading to more zeros and smaller values in

these elements.

41

N=

Percentage

100,
90¢
80}
70¢
60}
50¢
404
30t
20¢
10¢

O

Figure 3-9: Distribution of coefficients in input blocks for AC coefficients

Condensation

Properties 1 and 2 allow an LGDVE tensor T to be conditioned so that it can
used more efficiently as follows. For simplicity, consider an LGDVE with a support
of one (I'll remove this restriction later). Since the values of F ¢ are typically small
integers (property 2), coefficients in Tf with small absolute values, called insignif-
icant coefficients, are unlikely to have any impact on the output, and could be set
to zero with the introduction of a small error. Such small errors are unlikely to have
any effect on a value of H It since the real valued sum of Tf F X will be rounded to
the nearest integer. So, if the insignificant coefficients are set to zero and T is
stored as a sparse matrix, the number of operations required to compute H can
be reduced. Since the majority of the coefficients of T are insignificant (property
1), this technique should save a large number of arithmetic operations. The pro-

cess of setting insignificant coefficients of T to zero is called condensation.

42

I will now formulate the concept of condensation precisely. The matrix T? IS

used to compute products of the form
H, = T)F, EQ 3-18
Now, condensation is the process of finding a set S] of values of k such that

Tf canbesettozeroforke€e S T The set §] is called the condensation set for T?)

When Tf in equation 3-18 is condensed, an error is introduced in the compu-
tation of H] and the average number of multiples required to compute H] is low-

ered. This error is given by

E = T?Fk—k;s T;Fk = Z Tka EQ 3-19
1

k€S,

and the expected number of multiplies is given by

M, = ; N, EQ 3-20
KES,

where N 1 Is the probability that an element F ¢ I8 non-zero:
Nksl—Pk[O] EQ 3-21

Unfortunately, each LGDVE tensor T can not be condensed independently
when the support is greater than 1. Recall from equation 3-16 that the value of an
output block sz] is computed by applying a group of LGDVE tensors to a group

of input blocks:

H =1"F EQ 3-22

wzl wzl xyk

Now, consider a filter with support 3 and where the values of the T (1)2 elements

in the group were 2, -1, and -1. The value of H12 is then

a b _c
H, = 2FO—FO—FO

43

where F a, F b and F* are the three relevant input blocks. If the DC coefficients in
these three blocks are the same, the terms cancel and the output value H 12 is
zero. Now, suppose a condensation algorithm sets the two -1 values to zero.
Then the new value for H,,is H, = 2Fg. Since much of the block’s energy in
concentrated in the DC component Fg, Fg is large and the output component
H 12 can be very large. This gives rise to highly visible artifacts in the output. For
example, figure 3-10 shows a gray image filtered with a blurring filter where each
LGDVE tensor in the filter was condensed independently using the thresholding
algorithm described below. Note the pattern of dots in the image. These artifacts

are the results of middle frequency coefficients being set to large values.

This situation is remedied by introducing the concept of bias in a LGDVE. The
bias of an LGDVE is defined as

.yk
b, (k1) = ZT" EQ 3-23

wzl
Xy

In the example above, bwz (0,12) is 2-1-1 = 0 before condensation,

Figure 3-10: Part of a gray image filtered with blur without constant bias

44

and bW, (0, 12) is 2 after condensation. The change in bias due to condensa-

tion caused the visual artifacts in figure 3-10.

These artifacts can be removed by adding the constant bias constraint to con-
densation: the bias of an LGDVE after condensation should be the same as the
bias before condensation. To implement the constant bias constraint, the bias of
the LGDVE is calculated and stored before applying a condensation algorithm,
the LGDVE is condensed, and the remaining non-zero coefficients are adjusted
so that the bias is kept constant. More precisely, the steps shown in figure 3-11

are performed.

This code adests the coefficients in the LGDVE tensors by distributing the
change in bwz (k, 1) equally among the non zero coefficients remaining in the
LGDVE after condensation. If no coefficients remain, a randomly selected tensor
absorbs the change in bias. Figure 3-12 shows a gray image filtered with a blur-

ring filter condensed using the thresholding algorithm, but with constant bias.

The next two sections examine two condensation algorithms (step 2 in figure

1 Compute b(k,l) for all (k,1) and all tensors in the support
of the LGDVE

2 Condense all tensors.

3 Compute b"(k,l) for all (k,1l) using the new tensors

4 foreach (k,1l) pair do

5 delta = b(k, 1) -b' (k1)

6 count := number of tensors with non-zero Tl[k, 1]
7 if (count == 0) then

8 T[k,1] := delta for a randomly selected T.
9 else

10 foreach tensor T with non-zero T[k,1l] do
11 T[k,1] := T[k,1l] + (delta/count);

12 done

13 fi

14 done

Figure 3-11: Bias adjustment

45

Figure 3-12: Gray image filtered with blur with constant bias

3-11), called thresholding condensation and probabilistic condensation, and eval-

uate their performance.

3.5 Thresholding Condensation.

In thresholding condensation, a group of matrices Tﬁ)yz l; is condensed by dis-
tributing a maximum allowable error equally across each term in equation 3-22.
For example, suppose an error of 0.5 in the value computed in equation 3-22 can
be tolerated. If the support of the filter is one, equation 3-22 has at most 64 terms,
Thus, any terms that have a magnitude less than 0.5/64 can be ignored without
affecting the result. If the absolute value of any element F r is never greater than
100, then all elements of T, ’; with a value less than 0.5/(64*100) can be set to

zero without introducing a cumulative error of more than 0.5 into the sum.

Of course, in the example above the maximum expected value for F i of 100
was arbitrarily chosen, as was the maximum tolerable error of 0.5. In addition, if

the support is N, there are 64N terms in equation 3-22. The statistical properties

46

of the input data (property 2 above) can be used to predict a maximum expected
value for F - If this value is denoted max, and the maximum tolerable error is
called maxerr, the condensation set for Tf is given by

maxerr
64 x N x max

S = {k, lTil < } EQ 3-24

k

Choosing max, can be done statistically. For example, if max, is chosen so
that no more than a fraction p of the values of F ¢ are greater than this value, then
max, can be computed directly from P & [n] . This leads directly to the algorithm

in figure 3-13, called thresholding condensation.

The external array P stores the statistical distribution of the coefficients
Pk [n] , determined off line by examining a large sample of images. In lines 16-
20, the maximum expected coefficient value, max,, is computed and stored in
maxK. Inlines 21 through 27, any coefficient in the condensation set, as specified

by equation 3-24, is set to zero.

Note that the condensation of T can be computed off-line, since it is based on
the statistical properties of input images, not on the properties of any individual
image. Once computed, the condensed LGDVE can be stored and used when

needed.

limplemented this technique to test its performance. The implementation uses
straightforward sparse matrix techniques. Given a JPEG stream, all blocks in the
stream are decoded and stored as RLE vectors. An RLE vector is a structure that
stores a sparse vector. It has an array of (index, value) pairs, and a field indicating
the size of the array. The sparse input vector F & is encoded as an array whose
elements are (k, F i) for all values where F i is not zero. Each LGDVE matrix
T - is stored as an array of RLE vectors indexed by k that contains the non-zero

wzl

({, Tf) pairs, as illustrated in figure 3-14.

47

48

1 extern float P[64][128];/* P[k][abs(n)] */

2

3 Threshold (T, rho, maxErr,N)

4 float ***Tptr; /* Array of N 64x64 matrices */
5 float rho; /* parameter p (see text) */

6 float maxErr; /* Maximum tolerable error */

7 int N; /* Number of matrices in T */

8 {

9 float sum;

10 float **T;
11 int i, n, k, 1, maxK;

12

13 for (i=0; i<N; i++) {

14 T = Tptrli];

15 for (k=0; k<63; k++) {

16 sum = 0.0;

17 for (n=128; n>=0 && sum+P[k] [n]<rho; n—--) {
18 sum = sum + P[k][n];

19 }

20 maxK = n;

21 threshold = maxErr/ (64*N*maxK) ;
22 for (1=0; 1<63; 1++) {

23 if (T[1l] [k] <= threshold) {
24 T[1]([k] = 0.0;

25 }

26 }

27 }

28 }

29 }

Figure 3-13: Thresholding Condensation

To compute an output block H, the relevant input blocks and corresponding
transformation matrices are found, and each is processed by the loop shown in
figure 3-15 and accumulated in the real valued output vector H. After all relevant
input blocks have been processed, the vector H is rounded to the nearest integer,

and then output as part of the JPEG stream.

Thresholding condensation has two parameters, p and maxerr, that affect the

T: k -
l cee l ee o l XX
' ' :
0(0.2 1/0.1 NIL
1104 2 |-0.5
313 ol 0
0f O

Figure 3-14: Sparse Matrix representation of T

distortion of the output image. I tried several metrics to quantitatively assess the
distortion of the output, but found that the state of the art in objective image distor-
tion metrics leaves much to be desired. General purpose metrics such as signal-
to-noise ratio (SNR) [37] or modulated SNR [53,65] do not correlate well with sub-
jective results [26]. For example, a gamma corrected image can have the same
SNR as an image with overlaid sinusoidal noise, but the gamma corrected image
is visually indistinguishable from the original, whereas the sinusoidal noise is very

annoying.

Other objective metrics such as those examined in [81 ,29,86] are designed to
detect specific artifacts introduced by compression, and do not detect other arti-
facts well. For example, the metric proposed in [81] looks for blurring of edges
resulting from compression. The errors shown in figure 3-12 go virtually undetec-

ted by such a filter.

To measure distortion, | used SNR, defined as

SNR = 10log [r——-—,;:i(sé(_))o)]

where rms() is the root mean squared over the image, C is the image calculated

using the condensed LGDVE, and O is the image using the original (uncon-

49

O 3 o0 O b W

9

50

typedef sruct ACelem {

int index, wvalue;

} ACelem;

typedef struct RLE {

int numAC;
ACelem ac[63];

} RLE;

10 ProcessBlock (F, T, H)

11
12
13
14 {
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 }

RLE *F; /* RLE input vector */
RLE *T[]; /* Array T[k] of RLE vectors */
float *H; /* Output array (indexed by 1) */

RLE *transform;
int i, 3, k, 1;
float v1, v2;

for (i=0; i<F->numAC; i++) {

k = F->ac[i] .index;

vl = F-acl[i].>value;

transform = T[k];

for (3=0; Jj < transform->numAC; J++) {
1l = transform->ac[j].index;
v2 = transform->ac[j].value;
H[1l] = H[1l] + v1*v2;

Figure 3-15: Main processing loop for input blocks.

densed) LGDVE.

| tested the implementation on two operators, the blur operator (a 7x7 gauss-

ian filter) and the shrink-by-2 operator, which shrinks an image by a factor of 2

along each dimension. Figure 3-16 shows a graph of the number of multiplies

(see eq 3-20) for the blur operation as a function of maxerr for several values of p,

and figure 3-17 shows a graph of the mean SNR for this operation. Figures 3-18

SOoo00
n
SRS =S

VOOV

Multiplies

1500 ¢

1 10 100 1,000 10,000 100,000
maxerr

Figure 3-16: Complexity of blur vs. maxerr for various values of p

and 3-19 are the corresponding graphs for the shrink-by-2 operation. The plots
were obtained by applying the thresholding condensation algorithm to the opera-
tor at 6 different values of p and 12 different values of maxerr. The resulting con-
densed operators were applied to 98 randomly selected grayscale images. The
graphs show th_e average result. With maxerr=1, between 40% and 100% of the
files (depending on the operator used and the value of p) had no error (i.e., SNR =

). These data points were left out of the graphs.

Subjective evaluation by the author indicates that at an SNR above about 25,
the output quality is quite good, and at an SNR above about 30, the output image

is essentially identical to the image computed using the uncondensed operator.

Figures 3-20 and 3-21 show the SNR as a function of the number of multiplies
for condensed operators at various values of p. These figures show that the SNR

is mostly a function of the number of multiplies in the condensed operator, and is

51

80

70

VOOV
niwnnn

OO0
LIN—OOD
SLOG=S

P

SNR

30t

20

10 - : , ,
1 10 100 1,000 10,000 100,000
maxerr

Figure 3-17: SNR of blur vs. maxerr for various values of p

1200

11

1000

4

hohohohohoko]
Nuuwnun
SOOO0O
NN~ OOO
OUNON=—=O

*
]

800 |

S

Multiplies

400 +

200

1 10 100 1,000 10,000 100,000

Figure 3-18: Complexity of shrink-by-2 vs. maxerr for various values of p

52

70

nNWNI—=OOO
L

heheaohohoho)
Nunwnwnn
SOOO00

10

1 10 100 1,000 10,000 100,000
maxerr

Figure 3-19: SNR of shrink-by-2 vs. maxerr for various values of p

SNR

80

70t

60 |

50¢

40 ¢

30t

20

10
0

500 1000 1500 2000 2500 3000 3500 4000 4500
mults
Figure 3-20: SNR of blur vs. number of multiplies for various values of p

53

70

60 t

50t

% 404

n
30¢
20 ¢
0 (
1
0 200 400 600 800 1000 1200
mults

Figure 3-21: SNR of shrink-by-2 vs. number of multiplies for various values of p

nearly independent of p.

Tables 3-1 and 3-2 compare the performance of the shrink-by-2 and blur oper-
ations using condensed operators at various levels of condensation and the brute
force method. The experiments were performed on the same suite of 98 images
used for my earlier experiments. The tests used a prototype implementation on a

DEC 3000/400 workstation with 64 MBytes of memory.

Test Conditions Time (seconds) Speedup
SNR =25 0.290 434
SNR =30 0.331 38.0

Not Condensed 4.45 2.83
Brute Force 12.6 1

- Table 3-1: Speed of the blur operation

54

Test Conditions Time (seconds) Speedup
SNR =25 0.141 5.36
SNR =30 0.202 3.74

Not Condensed 0.328 2.30
Brute Force 0.755 1

Table 3-2: Speed of the shrink-by-2 operation

Tables 3-3 and 3-4 show an analysis of where time is spent in the program for
the two test operators. The Huffman Decoding category includes all phases of
reading and decoding the JPEG file into RLE vectors. The Huffman Encoding
includes all time involved in encoding the output file, including quantization, run
length coding and bitstream generation. The Operator Application phase is the
time spent applying the condensed operator as shown in Figure 3-15, and the

Overhead category is the time spent in control flow.

Test Huffn!an Huffm.an Operator Overhead
Conditions Decoding Encoding | Application
SNR = 25 16% 21% 39% 24%
SNR = 30 13% 19% 45% 23%
Not Condensed 1% 2% 95% 2%

Table 3-3: Breakdown of time in computing the blur operation

Test Conditions g:ct:g:?‘; g:gg’::; A?)griiztt(i);n Overhead
SNR =25 47% 20% 23% 10%
SNR =30 42% 18% 31% 9%

Not Condensed 15% 7% 75% 3%

Table 3-4: Breakdown of time in computing the shrink-by-2 operation

55

In the blur transformation, less than half the time is spent in application of the
condensed operator. For shrink-by-2, only about a quarter of the time is spent in
operator application. The rest of the time is spent in overhead and in entropy cod-
ing operations. These results indicate that limited perforrhance gains, no more
than a factor of 2, are possible by further condensation. Put another way, it takes

about as long to entropy code the image as to apply the operator.

3.6 Probabilistic Condensation

Another method for condensation is probabilistic condensation. Probabilistic
condensation takes a more statistical approach to the problem than thresholding
condensation. The error of a condensed matrix, defined in equation 3-19, is a lin-
ear combination of the input blocks nyk . Property 2 (page 40) shows that each
F ; has a sharply peaked distributions. By the central limit theorem, the error E]
also has a sharply peaked distribution. In other words, most errors are close to

zero, and the chance of large errors is fairly small.

In probabilistic condensation, a condensation set S is constructed that mini-
mizes the expected number of multiplies M, given by equation 3-20, with the con-
straint that the probability of a significant error is small. Note that since some
coefficients F ¢ are zero more often than others, minimizing the number of multi-

plies is not the same as making the matrix Tf as sparse as possible.

This constraint on the error can be expressed by limiting the width of the distri-
bution of the error term E I Variance is a good choice for measuring the width of
the distributions F o since they are approximately Gaussian and since the central

limit theorem states that the distribution of the error term will approach a Gauss-

56

ian. The variance of E] is the weighted sum of the variances of F 0

2
var(E) = Z (T;() var (F)) EQ 3-25
KES,

A simple way to compute S] is to use a cost/benefit approach. The “cost” of
adding an element k to S, is to increase the variance of the error term E, by

-\2
(Tﬁ) var (Fk). The “benefit” of adding an element k to Sl is to reduce the
expected number of multiplies by N t (equation 3-21), the probability that a given

Fk is non-zero. If Bk is defined as

Ny

£ (7']()2 var (Fk)

/

B

EQ 3-26

S ; can be built in order of decreasing B ¢+ as long the variance in error defined in
equation 3-25 is limited to a maximum possible variance, maxvar. This strategy

leads to the algorithm in figure 3-22.

Lines 1 through 5 of the figure define a record that is used to keep track of the
cost/benefit of each of the matrix elements T; The variance of each Fk’ the
index k, and the benefit to cost ratio B i are stored in an array of 64 such struc-
tures, allocated at line 13. The procedure ProbCondense takes two parame-
ters: an LGDVE tensor T, and a limit on the variance in the error term, maxvar.
Each output element H ; is considered independently. Lines 17 through 25 initial-
ize an array of 64 cost benefit structures, one for each value of k. The array is
sorted on B e largest elements (i.e., elements that have the most benefit for the
least cost) first, at line 26. The elements are then considered in decreasing order
of B ¢+ @nd the corresponding matrix element Tf is set to zero if adding k to the
condensation set S] does not push the variance in error over the specified maxi-

mum variance maxvar. In the constant bias implementation (figure 3-11), all

57

O 1 o O b W N -

[N
(@]

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

typedef struct costBenefit { .
float b; /* Cost/Benefit (Eq 3-26) */
int k; /* k */
float wvariance; /* variance of Tffk */
} CostBenefit;
extern float fVar[64]; /* Expected variance in F} */
ProbCondense (T, maxvar)
float **T; /* 64x64 matrix */
float maxvar; /* Max error variance */
{
int k,1,1;

double sumvar;
CostBenefit cb[64];

for

(1=0; 1<64; 1++) {
for (k=0; k<64; k++) {
cb[k].k = k;
cblk].variance = fVar([k]*T[1] [k]*T[1][k];

if (cblk].variance != 0) {
cblk].b = N[k]/cb[k].variance;
} else {

cb[k].b = 0;

}

sort (cb) by b;

sumvar = 0.0;

for (i=0; 1i<64; i++) {

if (cb[i].variance + sumvar) < maxvar) {

k = cb[i].k;
T[1][k] = 0.0;
sumvar = sumvar + cb[i].variance;

Figure 3-22: Probabilistic condensation algorithm

58

1300

1250 ¢
1200 t

1150 ¢

Multiplies
g 8 8

10* 10* o001 01 1 10 100 10® 10* 105 10°
maxvar
Figure 3-23: Complexity of blur vs. maxvar

matrices in the support of the LGDVE are condensed at once, using a larger

CostBenefit structure.

In contrast to the thresholding algorithm presented in the previous section,
only a single parameter, namely maxvar, controls the condensation. Figure 3-23
shows a graph of the computational speedup (given by equation 3-20) for the blur
operation as a function of maxvar, and figure 3-24 shows the corresponding
graph of the SNR. Figures 3-25 and 3-26 graph the complexity and SNR of the
shrink-by-2 operation under probabilistic condensation. The plots were obtained

under the same experimental conditions used in the thresholding experiments.

Finally, figures 3-27 and 3-28 compare thresholding and probabilistic conden-
sation. From the figures it is clear that in all cases, thresholding condensation

gives better results than probabilistic condensation for a given complexity.

59

SNR

45

10*% 103 001 0.1 1 10 100 100 10* 10° 10°

maxvar

Figure 3-24: SNR of blur vs. maxvar

Multiplies

800
750

700 t
650 |

550
500
450
400 }
350 ¢
300}

250

10* 103 001 0.1 1 10 100 100 10* 10° 10°

maxvar
Figure 3-25: Complexity shrink-by-2 of vs. maxvar

60

SNR

34
32¢
30¢
28 ¢
26 |
24 L

21
201
18]
16 |
14|

12
10% 103 001 0.1 1 10 100 100 10* 10° 10°
maxvar
Figure 3-26: SNR of shrink-by-2 vs. maxvar

SNR

80

70 ¢t

thresholding (p = 0.0)
60

50t
40}

301/;

/

prob. condensation

20/

10
0 500 1000 1500 2000 2500 3000 3500 4000 4500
mults
Figure 3-27: Comparison of thresholding and probabilistic condensation for blur

61

60

55¢
50¢

454)
thresholding (p = 0.0)

N

40 |
35¢

SNR

30t
251
201 prob. condensation
15¢
10 :
0 200 400 600 800 1000 1200
mults

Figure 3-28: Comparison of thresholding and probabilistic condensation shrink-by-2

3.7 Previous Work, Future Work, and Conclusions

This chapter has examined techniques for computing LGDVEs on JPEG data.
The techniques can be used to perform a large set of video effects on motion
JPEG video data in near real-time on off-the-shelf hardware. For example, the
shrink-by-2 operation can be performed at about 7 frames/second on 640 by 480
input images in the test implementation. Tests show the algorithms scale linearly
with the input data size, so the shrink-by-2 operation could be performed at about

28 frames/second on VHS quality video input (320 by 240 resolution).

The techniques in this chapter can be made faster by exploiting other proper-
ties of the transforms, such as symmetry. For example, when input blocks play a
symmetric role in the value of an output block during the application of the LGDVE

operator (e.g., in shrink-by-2, the four input blocks have such a role), the coeffi-

62

cients T;}V 7’; will have the same absolute value for a fixed k, I. For example, in the
shrink-by-2 operations, four input blocks determine the value of a single output
block. The DC value of the output block is the average of the DC values of the four
input blocks:
1
HO =3 [FlO +F20 +F3O +F40]
This operation could be computed more efficiently by factoring the equation. That
is, sum the D.C. coefficients and then multiply by 0.25. Similarly, factoring is pos-

sible in the calculation of the first AC coefficient:
H1 = 0.33 [Fl0 —F20 +F30 —F4O] + 0.1 [Fl0 + F20 +F30 + F40]

In fact, factoring is possible with nearly all the coefficients in shrink-by-2, which is
a direct consequence of the symmetry in the input blocks. Similar factoring is pos-

sible with the LGDVE implementation of most FIR filters.

Another way to speed up the process is to develop better condensation algo-
rithms. Thresholding condensation uses a very simple technique to bound the
error. A better method would exploit the same properties of human vision that are
used in JPEG compression. For example, more error can be tolerated in the high
frequency coefficients than in the low frequency coefficients. Exploiting masking

effects may also be possible.

A third line of future work is to explore the idea of progressive algorithms. In
many applications, the time to complete the computation of an LGDVE is fixed
(e.g., 33 milliseconds in 30 frames per second video). In such situations, the goal
is to compute the best possible output in limited time -- should more compute
cycles become available, the output should improve. A progressive implementa-
tion of the ideas presented in this chapter would compute the visually important

information first and produce progressively higher quality output given more time.

63

An interesting research question is to explore how the ideas in this chapter can
be extended to other compression techniques. A related question is whether a
compression standard can be developed that facilitates the application of video
effects. Since about 50% of the time spent in computing an LGDVE on JPEG data
goes into entropy coding, perhaps techniques that have faster implementations

(e.g., Lempel-Ziv encoding [87]) should be used for the entropy coding step.

Finally, system work is important to make these techniques practical. Storage,
retrieval, indexing, and data structures dramatically effect the performance of an

implementation.

Little work has been done in the area of computing video effects on com-
pressed image data. Chang, et. al. [16] has developed a technique for block align-
ment of compressed video data, so that local DVEs such as compositing can be
applied. In the context of this chapter, this operation is an LGDVE that translates
an image. In later work [17], he extends his block alignment techniques to MPEG

data.

Duff and Porter [61] describe an algebra for image composition based on the
introduction of an a channel. In their method, the source image and a real valued
image, the o channel, are pixel-wise multiplied before being composited. The
results of sections 2.2 and 2.3 of the previous chapter show how two compressed

images can be pixel-wise multiplied and composited, which provides a basis for

using a channel techniques on compressed images.

In the area of DCT domain image processing, Chitprasert and Rao [18] pre-
sented a convolution algorithm for the DCT, and showed how it could be used for
image processing in certain special cases. Their technique is applicable to high
and low pass filtering, but does not adapt well to the block by block encoding

nature of most compression technologies.

64

65
Lastly, Arman [4] has developed a technique for detecting scene breaks in
motion JPEG video data that operates on the compressed representation. His '
technique compares two images using the dot product of two vectors formed from
the DCT coefficients of a selected subset of corresponding block in the test

images. If the dot product exceeds a threshold value, a scene break is declared.

Chapter 4
CMT: A Continuous Media Toolkit

4.1 Introduction

This chapter describes the concepts, data structures, and operations in the
Berkeley CM Toolkit (CMT). CMT was used to build a video playback application,
called the CM Player, that plays audio and video data stored on a magnetic disk.
The audio and video data can be stored locally (i.e., on the same machine) or

remotely (i.e., connected to the user’s machine by a network).

Figure 4-1 shows the user interface to the CM Player. The window on the left
lists the available movies; double-clicking on a movie selects it for playback. Video
appears in the upper portion of the right hand window, also known as the main
window. Buttons at the bottom of the main window provide familiar VCR controls:
play forward and reverse, stop, fast forward and backward, and single frame step
forward and backward. Finally, the slider below these buttons allows direct access

to any position in the video.

Advanced controls are provided in the extra controls panel, shown below the
main window in figure 4-1. The slider at the top of the panel allows the user to set
the volume of the audio output, and the radio buttons to the left direct the output to
the internal speaker or an external audio device such as a headset or speaker.
The lower slider in the extras panel provides a jog/shuttle facility that allows the
user to play the movie forward or backward at an arbitrary speed from one-tenth
to fifty times normal speed, and the slider buttons allow the user to play the movie
at one of several predefined speeds. The user may use any control, in any combi-

nation, at any time during playback.

Behind this user interface is a distributed application consisting of three coop-

erating processes that manage a producer/consumer model for CM data. The CM

66

[@] File Selection [®] cmplayer ;

Figure 4-1: CM Player user interface.

Source (CMS) process is a producer process that reads audio and video data from
a local disk and sends it to a consumer process, called CMX, which is an abbrevi-
ation for CM Server for X-Windows. A third process, called the Application, controls
communication between CMS and CMX in response to user input. Figure 4-2
shows the process architecture for the CM Player application. Since inter-process
communication in CMT is network transparent, the Application and CMS process-

es can be located anywhere on the network.

Each process in the CM Player serves a specific function. The Application pro-
cess creates the user interface and handles user input. CMX synchronizes the
playback of audio and video packets sent by CMS. And, CMS is essentially a file
server; it transmits one or more requested streams of CM data to CMX for display.

It differs from conventional file servers in that data is read and sent to CMX based

67

Client Workstation

File Server Playback
Application

cM .tS'C?urce * *
BN =

TCP [T
. CM Source L UDP — @)
(video) - 7cP —
[K]
X Server \)))

Workstation Shared
Memory

Figure 4-2: CM Player process architecture.

on a schedule, not in response to specific application requests. Data is sent to CMX
a short time (typically 0.5 seconds) before it is needed and buffered to reduce the

effect of network delays.

CMT allows a movie to be composed from files striped across different CMSs.

Striping has several advantages:

1. It allows large video sequences to be split into many small
chunks for easier management.

2. It gives greater flexibility when CMSs are used as caches for
data stored on a tertiary archive [21, 47).

3. It allows segments to be reused and shared, saving valuable
disk storage.

CMT is highly portable, since it is built using generic Unix operating system fa-
cilities, conventional networks (i.e., any network supporting TCP/IP and UDP/IP
protocols), and off-the-shelf hardware. CMT shows that high quality video playback
applications can be built using generic components, which contradicts the view that
new network protocols, operating systems, and special purpose hardware are

needed for high quality playback. The current system has been ported to DEC, HP,

68

PC, SGI, and Sun platforms.

CMT plays synchronized audio and video. Synchronization is maintained even
on unreliable networks with significant network contention. The system uses two
custom designed connection protocols: 1) a control connection based on TCP/IP
and 2) a data transmission connection based on UDP/IP [75]. The protocol dynam-
ically adjusts the video frames per second (fps) sent by CMS to achieve the highest
perceived quality of playback given the available network and computing resourc-

es.

Experiments show that the system performs well on both local area networks
(LANSs) and wide area networks (WANSs). In LAN experiments, a 2.8 Mbit/sec video
sequence with 320 by 240 full color, JPEG compressed images was played at 40
fps when sent across a conventional 10 Mbit ethernet. WAN performance is also
impressive. A 352 by 240 MPEG video sequence sent across an eighteen hop In-
ternet route from UC Berkeley to Cornell University was played at over 17 fps.

These experiments are described in more detail in the next chapter.

CMT currently includes support for software decoding of MPEG compressed
video streams [44], Sun audio files, and hardware decoding of motion JPEG video
streams [57,82] using the Parallax XVideo hardware [56]. The code is written in the
C programming language [39] and an extended version of the Tcl/Tk language
[54,55], which is described below. CMT is composed of approximately 3100 lines
in Tcl and 130,000 lines of code in C, 90,000 of which implemented the Tcl/Tk lan-

guage. Table 4-1 shows the number of lines of C code in each part of the system.

The rest of this chapter describes the architecture of CMT and the CM Player
application. Section 4.2 describes the data model used to store CM data. Section
4.3 describes the implementation of the CM Player application using a distributed

object system. Finally, section 4.4 compares the system with previous work.

69

Component Lines
CMS 6000
CMX 9600

MPEG Decoder 17200
Tcl 22300

Tk 66700

Other 7800

Table 4-1: Breakdown of code in CMT

4.2 Data Model

CMT uses a storyboard model to represent the playback schedule of stored CM
data. In a storyboard, streams of CM data are specified along a timeline. For ex-
ample, figure 4-2 shows a storyboard with two streams: a video stream and an au-
dio stream. The horizontal axis of the storyboard’s coordinate system is called the
logical time system (LTS). The origin of the LTS (time=0) coincides with the begin-
ning of the storyboard. The LTS provides a convenient mechanism for specifying
synchronization among multiple media streams and for random access within a

storyboard by using logical time as an address.

Each stream is composed of a sequence of clips, called a cliplist. For example,

the video stream in figure 4-2 is composed of three clips, labeled A, B and C. A clip

E Clip

Audio
Stream
Video
Stream A I B I C 1
: I | —» LTS
0 secs 10 secs 20 secs 30 secs

Figure 4-3: Sample Storyboard

70

Audio

Stream

Video

Stream A B C

| ! { » LTS
0 secs 10 secs, 20 secs 30 secs
Frame

® N
3 B ST
sULHT =L
O S
© CTS o >

Figure 4-4: CMT Data Model Elements

is a segment of a clipfile, which is a file that stores a sequence of frames (a play-
able unit of data). For example, a video clipfile stores a sequence of images, and
an audio clipfile stores a sequence of audio samples. Each clip is represented as
a tuple of the form <host, filename, start, end>, where host is the host name of the
file server where the clipfile is stored, filename is the full path name of the clipfile
on that host, and startand end are the start time and end time, respectively, of the
segment of interest. The start and end times are specified relative to the Clipfile
Time System (CTS) which is the coordinate system for specifying time within a clip-

file. The origin of the CTS (time=0) is the first frame in the clipfile.

Table 4-2 and figure 4-2 summarize these terms.

Clipfile Format

All CM data is stored in clipfiles. Clipfiles are designed to simplify random ac-
cess, support efficient reading, and enable reuse of clips in storyboards. A sample

clipfile is shown in figure 4-21. It has five parts: a media-independent header, a me-

! The byte addresses shown in the figure are exemplary; the actual byte
addresses vary among clipfiles.

71

Term Definition

sample The smallest atomic unit of data (e.g., a single 8 bit audio sample).

frame The smallest playable unit (e.g., a group of audio samples or a
video frame)

clipfile A sequence of frames stored contiguously.

clip A subsequence in a clipfile.

stream A sequence of clips of the same media type.

cts The clipfile time system, for specifying offsets into a clipfile, where
t=0 is the beginning of the clip.

Its The logical time system -- the horizontal axis in a storyboard.

storyboard A series of streams synchronized along an Its.

Table 4-2: CMT Data Model Terms

dia-dependent header, raw data, the frame offset table (FOT), and the frame time
table (FTT).

The media-independent header stores information common to all clipfiles. This
information includes a magic number identifying the file as a clipfile, the type of me-
dia (e.g., video or audio), the format (e.g., video formats such as motion JPEG or
MPEG, or audio formats such as Sun Audio files of MPEG audio), the number of
frames in the clipfile, the clipfile version number, the address of the FOT and FTT
in the file, and the number of frames within the clipfile. The media-dependent head-
er contains media specific information such as image dimensions for video and
sampling rate for audio. The format of this section and its content depends on the
type of media stored in the clipfile. Table 4-3 lists examples of information stored in

the media-dependent header for a few data types.

Raw data follows the header information. This section contains a contiguous
sequence of binary data formatted in a media-dependent way. For example, the
raw data in an MPEG clipfile contains a valid MPEG bitstream. The raw data sec-

tion is partitioned into frames for efficient retrieval and transmission, since, in some

72

Byte Address

Media-Independent Header ~ 0
Magic Number: “CMT Clipfile”
Media Type: VIDEO 128
Format: JPEG
Version: 1.0 256
NumFrames: 80
FOT Address: 1024722
FTT Address: 1031890 _J
Media-Dependent Header -
Width: 320
Height: 240
Q-factor: 75
Max Frame Size: 18624
-,
Raw Data }4__
FOT -
FOT(O0]: 256
FOTI[1]: 12756
FOT[79]: 1007122
FOT[80]: 1024722
-/
FTT =
FTT[O]: 0.0 1024722
FTTI[1]: 0.0416
FTTI[2]: 0.0833
see s 1031890
FTT[79]: 3.2916
FTT[80]: 3.3333 ~
Figure 4-5: CMT Clipfile Format
Media Data
Sun Audio Sample rate, bits/sample, channels, optimal gain
Motion JPEG Image width/height, quantization information, maximum
frame size (bytes)
MPEG * Image width/height, encoding pattern,

* Sequence header table (bytes offset and size of all sequence
headers)

* Group of pictures table (bytes offset and size of all GOP
headers)

* Frame information table (type and reference frames for
each MPEG frame)

Table 4-3: media-dependent header information

formats, a single sample is too small a unit for efficient transmission (e.g., 1-2 byte
samples for audio). In such cases, larger groups of samples may be used as
frames. The size of a frame is chosen to be large enough that transmission over-

head is negligible.

The final section of the clipfile contains the FOT and FTT tables, which are in-
dices used for random access into a clipfile. The FOT is a sequence of N+1 inte-
gers, where N is the number of frames in the clipfile, that specify the address of the
corresponding frame. The difference between two consecutive FOT entries gives
the size of a frame. Thus, the last entry in the FOT is the byte offset of the FOT
itself. For example, to read frame m, you would seek to FOT[m] and read
(FOT[m+1]-FOT[m]) bytes.

The FTT is an array of N+1 time values, where N is the number of frames in the
clipfile. FTT[m] is the start time of frame m, and FTT[m+1]-FTT[m] is the duration
of frame m. The time values are relative to the CTS, so FTT[0] is always 0. Time
values are stored as two 32 bit integers representing seconds and nanoseconds.
This representation allows time values up to 2*32-1 seconds (about 136 years) to
be represented to nanosecond accuracy. Together, the FOT and FTT provide indi-

ces to efficiently retrieve the frame bound to a given time from the clipfile.

Note that the FTT can be computed for CM data with constant audio and video
display rates. In the case of animation data, however, the display rate is not con-
stant, since some frames may be displayed many times longer than others. CM
data captured by imperfect systems or from imperfect sources (e.g., data recorded
from a bursty video conference) also requires an FTT, since the frame rate may be
irregular. | therefore chose to put the FTT in all clipfiles to provide a uniform file for-

mat.

74

Comparison with other formats

The clipfile data structure encapsulates a contiguous sequence of frames of a
single media type. Once a clipfile is created, it may be used in storyboards. The

clipfile/storyboard structure has the following advantages over other data formats:
1. It facilitates editing.

2. It can save storage space.
3. It can save network bandwidth.

Editing operations fall into three categories: assembly, synchronization, and
special effects. Assembly editing is the process of inserting or deleting a clip into a
stream. Synchronization editing is the process of adjusting the relative timing of
two streams. Special effects editing is the process of generating or modifying CM
data, such as in scene transitions (e.g., fading a sequence), composition (e.g.,

chroma-keying), or simulation (e.g., ray tracing).

The clipfile/storyboard representation facilitates assembly and synchronization
editing because the information needed to perform these edits is kept separate
from the CM data. In other formats such as AVI from Microsoft [80,59], MPEG [44],
and the JMovie structure from Parallax [56], synchronization and assembly infor-
mation is maintained by interleaving data within a single file. To perform assembly
or synchronization editing, a new file must be produced for each edit, which can be
a time consuming process owing to the large size of video data. In contrast, assem-
bly or synchronization editing using the storyboard/clipfile structure requires the

production of a new storyboard, which is a straightforward task.

The storyboard representation makes assembly and synchronization of media
recorded at different or irregular frame rates possible, because video segments are

specified using precise time values, not frame numbers as in other systems (e.g.,

SMPTE). This feature allows fractional frames to be retrieved, and media recorded
at different or irregular frame rates to be combined. Irregular frame rates can occur
in video digitized by a non real-time capture system (e.g., desktop video capture
systems or real-time video generation systems such as [27]) or in media such as
animation or slide show that may have no regular period for frame update. Other
formats specify a single frame rate for the entire video sequence, which forces re-
sampling of video recorded at different or irregular rates. Depending on the encod-

ing, resampling can be a expensive proposition.

The storyboard scheme can save storage space. In interleaved schemes, stock
footage that appears in several videos (e.g., a studio logo) is stored multiple times,
once for each video, which may consume large amounts of disk space. Different
versions (e.g., different edits) of the same film are also stored multiple times. For
example, consider an educational video archive with 1000 hours of 1 hour lectures.
Suppose each lecture has 1 minute of stock footage at the beginning of each tape
identifying the educational institution. Over the entire collection, this repeated foot-
age amounts to a collective 1000 minutes of replicated information. Since one hour
of MPEG compressed video typically requires about 1 GByte of storage, the repli-
cated data consumes about 1000/60 = 17 GBytes. With storyboards and clipfiles,

the stock footage can be stored once and shared among the lectures.

The storyboard scheme can save network bandwidth in some cases. For exam-
ple, a multilingual video can be stored as multiple storyboards, one storyboard for
each language with shared video clipfiles. When a user requests playback of the
video in a particular language, only the audio and video data appropriate to the se-
lected language is sent. Since storyboards take up little space (one hour of au-
dio/video material broken into one minute clips typically uses less than 4 KBytes),
storing multiple storyboards is practical. In interleaved formats, the multilingual

problem is often solved by storing multiple copies for each language (an expensive

76

alternative) or by storing multiple audio tracks in the file, one for each language,

77

and playing a single audio track. Removing the extraneous audio tracks involves ’

parsing the interleaved file, so most file servers send the full bitstream, including
the unused audio tracks, to the client. Since the audio data in the unused tracks is

dropped, network bandwidth is wasted.

But the most compelling reason for a representation similar to the storyboard
representation is this: CM toolkits should be flexible in the file formats they support,
because many media encodings are currently available, each offering a different
trade-off of quality versus bitrate, and users will want to combine media with differ-
ent encodings. A good CM toolkit should insulate the application programmer from
the details of media encoding. If the toolkit does not provide the functionality to
combine media types explicitly, application developers will develop their own, most

likely incompatible, methods for providing this function.

The advantages of the storyboard representation comes at a cost. Storyboard
representations are subject to referential integrity problems because a storyboard
may be left with dangling pointer if one of the clipfiles it references is deleted. Fur-
thermore, replicating a presentation may require copying many data files (the copy
problem). The referential integrity problem can be solved by using a database
manager to guarantee that referential integrity within a storyboard is maintained
when the storyboard or its clipfiles are modified, moved, or deleted. The copy prob-
lem can be circumvented by a utility that assembles a new clipfile from the relevant
portions of the component clipfiles specified by the script. The assembled clipfile

can then be copied to the target system.

4.3 Implementation

This section describes the implementation of CMT and the CM Player. | first de-

scribe the changes made to the graphical user interface (GUI) toolkit on which CMT

is based. Next, | describe the user visible and internal objects CMT provides to sup-
port the storyboard model, and then show how these objects are mapped to the
three processes described in the introduction, namely the Application, CMX, and
CMS, and how they interact with one another. Finally, | show how these compo-

nents can be used to build a wide variety of playback-oriented applications.

Infrastructure

CMT is an extension to the Tcl/Tk graphical user interface (GUI) toolkit. Tcl (a
“tool command language,” pronounced “tickle”) provides an embedded interpreter
for programs written in the C programming language]. Tk (pronounced “tee kay”)
is Tcl's GUI toolkit for the X window system [36]. Together, Tcl and Tk provide a flex-
ible environment for building GUIs. Common user interface components, such as
buttons, menu bars, and the like, are provided by Tk as commands in the Tcl lan-
guage. This section describes the extensions | made to the Tcl/Tk event processing

model, the new event types | introduced, and the inter-process communication

mechanism | developed for CMT.

Event Loop Modifications

Like many GUI toolkits, Tk is an event driven system, which means a callback
routine can be called in response to events from the X server, file-events (i.e., when
a socket or file becomes readable), timer-events (i.e., when the system clock
reaches a specified time), and idle-events. Idle-events are not external events, but
rather code to be evaluated when the system has no other useful work to do. The
main loop of the program, called the event loop, waits for an event to be received,
looks up a callback routine in a table using the event as a key, and invokes the call-

back routine. In Tcl/Tk, the callback is often a Tcl command to be evaluated.

Figure 4-2 shows a pseudo-code version of Tcl/Tk’s event loop. The loop pro-

78

cesses all file-events first, using a global variable named fileSet to keep track of the
set of files that have input pending. When the input on a file is processed, the file
is deleted from the fileSet. File-events include window system events (i.e., X-

events) and other network events2.

After processing all active files, the callback associated with any expired timer-
event is invoked. When the file and timer-events are exhausted, idle-events are
processed. The call to ReadyFiles polls the system for any pending file-events that
may have arrived during timer-event processing. Only those idle-events currently
in the queue are processed in this pass through the loop. In other words, the pro-
cessing of any new idle-events enqueued during idle-event processing is delayed
until the next pass through the loop. When all available idle-, X-, file- or timer-
events have been processed, the event loop issues a select system call to wait for

an event. The time-out for the call is based on the next timer-event.

Although the event loop works well for most GUI applications, several changes
were needed to adapt the loop to CM applications. The first change made to Tk in-
volved the introduction of a new type of timer-event, called an at-event. At-events
are used for a variety of soft real time scheduling tasks, most notably to call the ap-
propriate function to play a frame of CM data. At-events differ from timer-events in
several ways. First, at-events specify that a callback should be invoked when the
system clock reaches a particular time, whereas timer-events specify that a call-
back should be invoked after a specified delay period. Two side effects of this sub-
tle difference are that creating an at-event is more efficient than creating a timer-
event, and an at-event is more accurate in timing of the callback. Creating an at-
eventis more efficient than creating a timer-event because timer-event creation re-

quires two more system calls to read the system clock than at-event creation (an

2 X-events are treated as file-events because they arrive on a socket

79

while (TRUE) {
doFiles:
while (fileSet not empty) {
file = GetElement (fileSet);
fileSet = fileSet - {file};
InvokeCallback (file);
}

while (timerQueue not empty AND
timerQueue.eventTime <= ReadSystemClock) {
InvokeTimerCallback (Dequeue (timerQueue));

}

if (idleQueue not empty) {
if (ReadyFiles() != NULL) {
fileSet = ReadyFiles();
goto doFiles;
}
lastIdleCallback = idleQueue.tail;
repeat {
callback = Dequeue (idleQueue);
InvokeIdleCallback (callback);
} until (callback == lastIdleCallback);
}

if (timerQueue != NULL) {

timeOut = timerQueue.eventTime - ReadSystemClock () ;
} else |

timeOut = INFINITY;

}
select (fileSet, timeOut);

Figure 4-6: Main Event Loop in Tcl/Tk

important consideration if many at-events are created). At-events allow more ac-
curate timing of the callback because timer-events must calculate the time of call-
back by reading the system clock and adding the specified delay to this value. The
timer-event will fire late by an amount equal to the delay between the time the user
issues the call to create the timer-event and when the system clock is read. This
delay can be significant owing to context switches or page faults. Such unpredict-

able behavior will have an adverse affect on media synchronization.

A second difference between timer-events and at-events is that at-events spec-

ify a window of time within which the callback must be invoked and an optional call-

80

back if the system misses the window. The event window allows the system to shed
load when scheduled events cannot be processed. The missed at-event callback
allows the system to track missed events or take corrective action. Finally, at-
events are run at a higher priority than other event types, improving synchroniza-

tion.

One problem encountered in using the system was that all file-events were pro-
cessed at a lower priority than at-events. This predetermined prioritization present-
ed a dilemma of which events should be processed at higher priority: file-events or
at-events? One argument says that at-events are higher priority than file-events,
since at-events are timed constrained by nature and file-events are not. Further-
more, since the most common use for at-events is for synchronization, and the
most common use for file-events is receiving the high bandwidth CM data from the
file server, synchronization might suffer if the system is overloaded with data. But
some file-events are higher priority than at-events, because contro! information
sent from another process (such as the user pressing the Stop button or network

flow control data) is received as file-events.

The solution to this dilemma was to introduce named priority groups. A list of
priority groups, called the priority list, is maintained by the toolkit. Applications can
create new priority groups and set the order in the priority list. When a callback for

an event is registered, it is put into a specified priority group.

In the event loop, callbacks are invoked in priority list order. Within a given pri-
ority group, events are processed in the original Tk order: at-events first, then file-
events, timer-events and finally idle-events. All pending events within a priority
group are processed before the next group in the priority list is examined. Any call-
backs created while executing a callback are placed in the priority group of the ex-

ecuting callback.

81

Priority groups solve the problem of which events to process first by giving the
programmer more flexibility. In the CMT, a high priority group is created for sockets
associated with control information and a lower priority group is created for at-
events associated with media playback and reception of CM data sent from the file
server. Since control information is infrequently sent, and usually quickly pro-

cessed, processing it at high priority has little effect on media synchronization.

Icl-DP

The second change made to Tcl/Tk was the introduction of Tcl-DP. Tcl-DP is a
distributed programming extension to the Tcl/Tk toolkit. Tcl-DP provides a Tcl inter-
face to the Unix socket abstraction, an easy-to-use model for creating client/server
applications, a remote procedure call (RPC) facility, a form of concurrent program-
ming (RDO), and a simple distributed object system. Tcl-DP is the glue that links

together the various processes within CMT.

RPCs in Tcl-DP take the form of Tcl commands that are evaluated by a remote
interpreter. The return value (or error code) from the remote evaluation is returned
to the caller. The communication protocol is based on TCP/IP and is therefore re-
liable. Tcl-DP supports time-outs on RPCs. If requested, a user specified callback
routine is invoked should the RPC not return after a specified period of time. Since
Tcl is an interpreted language, RPCs are implemented by passing string data be-
tween processes, which allows rapid prototyping and experimentation without the

stub compilers needed in other RPC packages.

Tcl-DP provides a non-blocking form of RPC, called RDO (for “Remote DO”),
that allows for concurrency in distributed processes. The semantics of RDO are the
same as RPC, except no value is returned and the calling process does not wait
for a reply. RDO invokes a co-routine on the remote machine. RDO can also be

used to invoke a function on the server that returns a value. The client continues

82

processing while the return value is being computed, and the return value is

passed to a callback routine, which is a continuation for the co-routine.

The performance of the RPC implementation is competitive with other RPC im-
plementations. Current measurements on a Sun Sparcstation show that typical
RPC calls add about 4 milliseconds to the overhead of a procedure call. RDOs, in
contrast, require about 500 microseconds to complete. RDOs are faster than RPCs

because they are non-blocking.

Distributed CM applications are composed of one or more communicating pro-
cesses. Although the Tcl-DP RPC mechanism provides a communication method
for these processes, | found it more convenient to hide much of the communication
details by using a distributed object management system (DOMS) built using Tcl-
DP. The Tcl-DP DOMS provides a mechanism to update object slots and to attach

triggers to the slot updates.

The Tcl-DP DOMS takes a minimalist approach. It does not provide inheritance,
persistence, automatic migration, name lookup, or automatic replication in the
event of crashes; it includes only those features needed to support the CMT. Al-
though not particularly interesting as a DOMS in its own right, the Tcl-DP DOMS is
interesting because it shows how much can be done with a simple DOMS and what

DOMS features are needed to implement CMT.

Inthe Tcl-DP DOMS, an object is a named collection of slots that follows a sim-
ple slot access protocol. Objects are instantiated using a command that creates an
object with a specified name. The name of the object becomes a new command
within the interpreter. Slots are read using the getf command followed by the name
of the object and the slot of interest, and written using the setf command, which

takes an object name, a slot name, and the slot's new value as parameters.

Once created, an object can be replicated in other processes connected by Tcl-

83

»— Master

Upsetf calls\~ ° Process

Downsetf calls

Figure 4-7: Distributed Object Updates in Tcl-DP

DP. Slot updates are serialized through a master process, which is the process that
originally created the object. Each process in which the object exists uses a global
table, indexed by object name, to associate a single owner process and zero or
more client processes with each object. The owner process is the process from
which the object was distributed, and the client processes are the processes to

which the object was distributed.

Figure 4-2 shows the communication during an update of an object distributed
to four processes. In this figure, A is the master process. If a slot is updated by pro-
cess C, the update request, called an upsetf, is passed up the distribution tree to
each owner process, without being executed, until the master process (A) is
reached. When A receives the upsetf request, it sends a downsetfto the client pro-
cesses B and D, and the update is executed. Each of these processes passes the
downsetf down the tree to their clients. In this example, B passes the update re-
questto C, and C executes the update. Although object copies may be inconsistent
for a short period during an update, the final state of each object is guaranteed to

be consistent using this protocol.

Alist of triggers can be associated with a slot of an object. Each trigger specifies

84

when the trigger should fire (i.e., before or after the slot update), the name of the

object, the slot of interest, and Tcl code to evaluate when the slot is updated.

One problem that came up while using distributed objects is name conflicts. For
example, consider an object named mybox created in process A. Suppose A dis-
tributes mybox to process C. Now suppose another process, say B, creates anoth-
er object named mybox and tries to distribute it to process C, resulting in two

objects in C named mybox. This situation is called a name conflict.

The solution to this problem is to provide a method that allows the application
to generate unique names for objects it wants to distribute. Each name has the
form <string><pid>.<id>@<host>, where <string> is a human readable string,
<host> is the internet address of the machine on which the object is created, <pid>
is the process identifier of the process in which the object is created, and <id> is
an incremental counter variable within that process. For example, the name of the
object mybox created by process 2436 on toe.cs.berkeley.edu might be my-
box2436.2@128.32.149.117. This pid/hostname mechanism is a simple, portable

way of generating unique names for objects in distributed processes.

The Tcl-DP DOMS was used to implement CMT. Because it was built in re-
sponse to the needs of CMT, it is lean; it contains few features not needed by the
toolkit. Furthermore, because features were only added to the Tcl-DP DOMS when
they were needed by CMT, the Tcl-DP DOMS represents the minimal DOMS fea-
tures required to build a CM toolkit with an architecture similar to CMT. Tcl-DP is
surprisingly small compared to other, full-featured DOMS systems. Table 4-4 lists
the lines of C and Tcl code used in the current implementation of the Tcl-DP DOMS

(version 3.1).

85

Module Language | Lines

Basic Communication C 3000
Library Tcl 500

RPC Library C 1700

Tel 300

Object System C 0
Tcl 500

Total C 4700

| Tl 1300

Table 4-4: Lines of code in Tcl-DP and the Tcl-DP DOMS

CMT Objects

CMT applications are composed of communicating objects that support the sto-
ryboard abstraction described in section 4.2. The objects include an object to rep-
resent the LTS of a storyboard, objects to represent the streams in a storyboard,
and objects to implement the producer/consumer model for CM data used in CMT.

This section describes the properties of each class of objects in turn.

CMT implements the storyboard abstraction using two objects: the logical time
system (LTS) object and one or more stream objects. Each stream object has a cli-
plist and a pointer to an associated LTS object, as shown in figure 4-8. The cliplist
is a list of clips, each of which specifies the location and portion of a clipfile. Both
types of objects are distributed objects shared by the Application, CMX and CMS

process.

An LTS has two slots: speed and offset. These slots specify a linear mapping
from time on the system clock (system time, or ST) to time on the storyboard (log-
ical time, or LT). The result of this mapping is called the value of the LTS, and rep-

resents the current po‘sition in logical time on the storyboard.

86

CMT uses the value of the to LTS locate the clipfile which corresponds to the
current value of the LTS, called the active clipfile, and to decide what frames of the
active clipfile should be displayed. CMT also uses the LTS to schedule the delivery
and playback of the audio and video data, which is implemented by five objects as-
sociated with each stream: the MediaSource, the PacketSource, the PacketDest,
the MediaDest, and the MediaResource. MediaSource and PacketSource objects
are located in CMS, and PacketDest, MediaDest, and MediaResource objects are
located in CMX, as shown in figure 4-8. The gray lines in the figure indicate the flow

of CM data between these objects.

Stream

Cliplist: {{128.32.149.59 /vid2/clipl.clip 0 60}
{128.32.149.53 /vid2/clipd.clip 20 30}
{128.32.149.59 /vid2/clipl.clip 60 120}}

LTS . *_ﬁ

L» LTS

Speed: 1.0
Offset: 757889086.840947

Figure 4-8: CMT Stream and Cliplist Objects

Media
Source
Packet \ | Media
Source /T Resource

—CMS — —CMX

Figure 4-9: Media- and Packet- Sources, Dests, and Resources

Each of these objects serve a specific function in the playback of a frame of CM
data. The MediaSource reads CM data from a local disk and passes the resulting
frames to the PacketSource. Disk reads are scheduled using the LTS and dynamic
~network performance measurements. The PacketSource fragments frames and
delivers them to the PacketDest using a custom protocol described in the next
chapter. The PacketDest reassembles the fragmented frames and passes the re-
assembled frames to the MediaDest, which schedules decoding and playback us-
ing an at-event. This at-event calls a function in the MediaResource to output the

frame.

This section is composed of three subsections. The first subsection describes
the LTS object, the second subsection describes the stream object, and the third
subsection describes the MediaSource, PacketSource, PacketDest, MediaDest,

and MediaResource objects.

The Logical Time System

The logical time system (LTS) object represents the storyboard’s LTS. An LTS
has two slots: speed and offset. These slots specify a linear mapping from time on
the system clock (system time, or ST) to time on the storyboard (logical time, or

LT). The result of this mapping is called the value of the LTS, given by:
value = speed x ST + offset EQ 4-1

The value of an LTS is the current position on the storyboard in logical time.
Speed controls the rate at which logical time advances: 1) when speed equals ze-
ro, logical time is stopped, 2) when speed equals one, logical time advances at

real-time rate, and 3) when speed is negative, logical time runs backwards.

The user can set or read the speed and value slots. The latter slot is a virtual

slot: it requires no storage space, but can be read and written like a normal slot.

88

When the user reads the value slot, the result of equation 4-1 is returned. When

89

the user writes the value slot, the offset slot is adjusted so the result of equation ’

4-1 matches the specified value. From equation 4-1, this means that

offset = value - speed x ST EQ 4-2

When the speed of the LTS is changed, the continuity of logical time is pre-
served. That is, the value of LT after the change is the same as the value of LT be-
fore the change. For example, suppose the system is stopped at LT=5, and the
value of ST is 1,0008. If speed is set to 1, offset must be changed to -995 to pre-

serve the continuity of logical time. This constraint is expressed in the equation
speed’ X ST + offset’” = speed x ST + offset EQ 4-3

where speed’ is the new speed, speed is the old speed, and offset is the old off-
set. The new offset, offset’, which preserves the continuity of logical time, is given
by

offset” = ST x (speed - speed’) + offset EQ 4-4

This constraint is implemented as part of the assignment function for the speed

slot of the LTS object.

The LTS allows basic VCR controls to be easily implemented. Normal playback
corresponds to setting the speed slot to one. Fast forward, at various rates, corre-
sponds to LTS speeds greater than one, stop corresponds to an LTS speed of zero,
and reverse play, at various rates, corresponds to negative LTS speeds. Random
access is accomplished by setting the value of the LTS, and single stepping is im-
plemented by setting the LTS speed to zero, and incrementing or decrementing the

value of the LTS by the duration of a single frame (e.g., one-thirtieth of a second).

3 The value of ST in a Unix system is measured in microseconds since Jan 1,
1970.

90
The LTS also implements the inverse function of equation 4-1, which maps from

logical time to system time. This function is called the SystemTimeOf function.
When the speed of the LTS is non-zero, SystemTimeOf returns the value comput-

ed by the equation
(LT - offset) / (speed) EQ 4-5
Three special values are returned by SystemTimeOf when speed equals zero,

since this equation is not defined in this case. The three values are:

infinity LT < offset
-infinity LT > offset EQ 4-6
now LT = offset

Tables 4-5 and 4-6 summarize the slots and methods provided by the LTS

object.
Slot Description
Speed Controls advance of logical time relative to real time
Offset Internal slot used in linear mapping of LTS. Never directly set or
accessed by user.
Table 4-5: LTS Slots
Method Description
Value Virtual slot that returns the current value of logical time per equa-
tion 4-1. Setting this slots adjusts offset per equation 4-2
SystemTimeOf Returns the system time that corresponds to a give logical time.
LogicalTimeOf Return the logical time that corresponds to a given system time.

Table 4-6: LTS Methods

Streams

A storyboard contains two types of objects: LTS objects and stream objects.
Each stream object represents a CM data stream in the storyboard. A stream ob-
ject has two slots: LTS and cliplist. The LTS slot stores the name of the LTS object
that controls the stream. The cliplist slot contains a list of clips, each of which is
either a data clip or a blank clip. A blank clip has the form (blank, duration), where
blank is a keyword identifying the clip as a blank clip and duration specifies the
length of the blank clip, in logical time. Blank clips are used to specify a period in
the stream when no CM data is output. A data clip is specified as a tuple of the form
(host, filename, start, end). Host stores the internet address of the machine where
the clipfile is stored, filename stores the full path name of the clipfile, and start and

end specify the start and end times of the segment of the clipfile relative to the CTS.

Table 4-7 summarizes the slots provided by the stream object. The stream ob-
ject provide no methods because the main use of the stream object is specify the
cliplist to CMX. Stream objects in CMT are usually Tcl-DP distributed objects that
are shared between the Application and CMX. When the Application sets the cli-
plist slot of a shared stream object, triggers in CMX detect this change and take
appropriate action to display the selected data. This use of slots and triggers to pro-
vide communication between the two processes, in the case the Application and

CMX, is called implicit control and is discussed further below.

Slot Description
LTS Specifies the LTS to which the stream is synchronized
Cliplist Specifies a list of clips. Each clip specifies a segment of a clipfile.

Table 4-7: Stream object summary

91

Normally, one stream object is created for each stream in the storyboard. Al-
though the LTS slot of these stream objects usually point to a common LTS object,
this is not necessary. By using multiple LTSs, interesting applications can be imple-
mented. For example, suppose that you wanted to synchronize a video stream with
an audio stream, and to do so the video stream must play at a rate 10% faster than
normal. Although you could create a new clipfile with the video resampled for this
purpose, a less costly solution is to use two LTS objects, one associated with the
video stream (the video LTS), and one associated with the audio stream (the audio
LTS). The desired synchronization is then accomplished by setting the speed of the
video LTS to 1.1 times the speed of the audio LTS. Other uses of multiple stream

and LTS objects are discussed at the end of this section.

Medi rces/Dests/Resources and Pack rces/D

CMT uses a producer/consumer model for playing CM streams. CMS is the
producer; CMX is the consumer. The producer/consumer model is implemented in
CMT by five objects: the MediaSource, the MediaDest, the PacketSource, the

PacketDest, and the MediaResource.

The frame is read from secondary storage by a MediaSource object. The Me-
diaSource understands the clipfile format and the media’s properties. It uses this
knowledge to decide what frames to read, and what frames to skip should insuffi-

cient bandwidth exist between CMS and CMX.

The MediaSource has three slots, a cliplist slot that contains the list of clips that
the MediaSource will deliver to a client, an Its slot that stores the name of the LTS
object and associated with the cliplist, and various structures to represent the net-
work connection between CMS and CMX. The network structures are described in
the next chapter. The cliplist slot specifies the portion of the CM data stream that

is served by the CMS where the MediaSource is instantiated. It is computed from

92

a stream object shared between the Application and CMX by creating one cliplist
for each host specified in a stream’s cliplist and extracting the set of clips served

by that host. Blank clips are inserted where clips are served by other CMSs.

For example, suppose the cliplist of a stream object shared between the Appli-
cation and CMX is

{{linus.cs.berkeley.edu /video/clipl.clip 0 60}
{gumby.cs.berkeley.edu /video/clip4.clip 20 30}
{linus.cs.berkeley.edu /video/clipl.clip 60 120}}

Two hosts are specified in this cliplist, the linus.cs.berkeley.edu and gum-
by.cs.berkeley.edu®. The cliplist of the MediaSource object on linus.cs.berke-

ley.edu would be

{{linus.cs.berkeley.edu /video/clipl.clip 0 60}
{blank 10}
{linus.cs.berkeley.edu /video/clipl.clip 60 120}}

and the cliplist of the MediaSource object on gumby.cs.berkeley.edu would be

{{blank 60}
{gumby.cs.berkeley.edu /video/clipd.clip 20 30}}

The MediaSource has four methods: ItsChanged, create, destroy, and config-
ure. Create is used to instantiate a MediaSource; destroy deletes a previously cre-
ated instance. Configure is used to change the set or read the values of the
MediaSource’s slots. The ftsChanged method is called when the either the speed
or offset of the LTS object stored in the MediaSource is changed. These slots and

methods are summarized in tables 4-8 and 4-9.

The MediaSource reads frames from a local disk a short time (typically 0.5 sec-
onds) before they are needed for playback. Each frame is passed to the Packet-

Source, which fragments the frame and queues it for delivery. The PacketSource

4 The internet address for linus and gumby would normally be specified, but |
am using the host names for clarity.

93

Slots ~ Description
Lts Stores the name of the LTS that controls the stream
Cliplist The cliplist specifying the portion of a stream served by
this MediaSource. '
Network Various structures representing the connection between
CMS and CMX. Detailed in the next chapter.

Table 4-8: MediaSource Slots

Methods Description
LtsChanged Invoked when either the speed or offset of the control-
ling LTS are changed.
Create Creates a MediaSource
Destroy Destroys a MediaSource
Configure Reader/writer method for the slots

Table 4-9: MediaSource Methods

sends the fragments to the PacketDest via a computer network, and the Packet-
Dest reassembles the frames and requests lost packets. When the frame is com-
plete, itis passed to the MediaDest for playback. Frame fragmentation and delivery
are discussed in detail in the next chapter. For the purposes of this discussion, the
only relevant property of the protocol used by the PacketSource and PacketDest
is that it is unreliable. That is, it may not be possible to deliver a frame in time for

playback.

When the PacketDest passes a completely reassembled frame to the Media-
Dest, the MediaDest performs any time consuming preprocessing needed for play-
back and schedules the frame for playback. An example of such preprocessing is
software decompression, since waiting until playback time to decompress in soft-
ware may result in synchronization problems. Since such preprocessing is media

specific (i.e., it varies with the type and format of the CM data), a different Media-

94

Dest is required for each media type. The MediaDest can also intelligently resolve

95

scheduling conflicts should insufficient resources exist to play all the CM data that

arrives, and send feedback to CMS indicating that it should send less data (i.e., it
decreases the bandwidth estimate between CMS and CMX). Details of this type of

processing are presented elsewhere [67)].

Scheduling of frames for playback is performed by converting the logical start
and end times of the frame to system time using the LTS associated with the

frame’s stream, and a high priority at-event is created to play the frame.

When the time for frame playback arrives, the at-event scheduled by the Medi-
aDest calls the MediaResource p/ay method to play the frame. Play correctly resets
the state of any decompression hardware to the corresponding MediaDest and
plays the frame. The MediaResource thus multiplexes the underlying hardware, in-
cluding the CPU for software decompression, between several MediaDests. Its in-
ternal state is highly media dependent. For example, the JPEG MediaDest
contains software decompression tables. The play method should be engineered
to implement frame display as promptly as possible. For example, in the JPEG Me-
diaDest, this function simply calls the underlying hardware to decompress and dis-
play the frame, using shared memory with the X server to transmit the data. It then
forces a context switch by waiting for an event indicating that the display operation

is complete.

The architecture allows for a single stream to be served by several CMSs, since
the MediaDest is blind as to where the frame given by the PacketDest originated.
Thus, video can be striped across several file servers, making parallel reading and

load balancing possible and simplifying cache management of video loaded from

tertiary storage.

The architecture also allows new media types to be easily incorporated by cre-

ating new types of MediaSource, MediaDest and MediaResource objects. Since
these objects are specialized to serve a specific type of media (i.e., they are media-
specific objects), they can use this knowledge to selectively drop frames should in-

sufficient bandwidth exist.

Finally, to port the system to different compression hardware, only the play
method in the MediaResource must be modified to access the new hardware. Of-

ten, such a port involves changing only a few lines of code.

Implicit Control Using Distri

Although the Application, CMX and CMS can communicate directly using Tcl-
DP, it is often more convenient to use an implicit communication mechanism that
uses Tcl-DP DOMS distributed objects. This section describes how distributed LTS

and stream objects are used to control CMS and CMX.

The clocks of all three processes are assumed to be synchronized. The current
implementation uses NTP [49] for synchronization, but any synchronization proto-
col that keeps the clocks synchronized to within about 100 milliseconds would suf-

fice.

After creating the necessary LTS and stream objects, the Application distributes
them to CMX using the Tcl-DP DOMS described above. The configuration of the
CM Player after object distribution is shown in figure 4-10. The objects are created
using the pid/hostname mechanism described in above to prevent name conflicts.
When CMX receives a stream object, it attaches a callback to the cliplist slot of the
stream object. When the Application modifies the cliplist slot of the stream, the
change is propagated to CMX, triggering the callback. The callback causes CMX
to tear down unnecessary connections with CMS processes and establish new
ones. CMX passes a modified cliplist to each CMS. The modified cliplist has blank

clips inserted at points where the stream is served by some other CMS. The LTS

96

97

Application — —CMX

Figure 4-10: Shared Objects at CM Player Start-up

associated with the cliplist is also distributed to each CMS.

For example, suppose the Application creates an LTS object named
lts2243.1@128.32.149.117 and a motion JPEG video stream object named ipeg-
Stream.2243.2@128.32.149.117. For brevity, we will use the names VideoStream
and Lts for these objects. VideoStream initially has an empty cliplist and the LTS

slot points to Lts. Both VideoStream and Lts are distributed to CMX.

Now, suppose the Application sets the cliplist slot of VideoStream to

{{linus.cs.berkeley.edu /video/clipl.clip 0 60}
{gumby.cs.berkeley.edu /video/clip4.clip 20 30}
{linus.cs.berkeley.edu /video/clipl.clip 60 120}}

This change is propagated by the Tcl-DP DOMS to CMX, which triggers a call-
back that establishes connections to the CMSs on linus and gumby. CMX passes

the modified cliplist

{{linus.cs.berkeley.edu /video/clipl.clip 0 60}
{blank 10}
{linus.cs.berkeley.edu /video/clipl.clip 60 120}}

to linus and

{{blank 60}
{gumby.cs.berkeley.edu /video/clip4.clip 20 30}}

to gumby. Ltsis also distributed to the CMS on linus and gumby. The configuration

after this exchange is shown in figure 4-11.

Notice the style of interaction between the Application and CMX. Inter-process

Application

!fCMS@Iinus MS@gumby

Figure 4-11: Shared Objects after setting cliplist (see text)

communication is done implicitly through the Tcl-DP DOMS, not explicitly via
RPCs. The Application makes no explicit request to CMX to connect to a CMS.
This style of interaction provides a powerful layer of insulation between the Appli-
cation and CMX. CMX can change its internal implementation (if this is desirable)
and no changes are needed in the Application. In essence, the distributed object
is the API. The same style of interaction is used throughout CMT, and it is an im-
portant idea in the system. For example, to change the volume of the audio output,
the Application sets the volume of the AudioStream. When this change is propa-
gated to CMX, it triggers a callback that calls the appropriate method in the audio

MediaResource to implement the user’s request.

Similarly, the system uses the LTS, in combination with synchronized clocks
(e.g., synchronized using NTP), to communicate user time control requests, sched-
ule delivery, and maintain inter-media synchronization. CMS attaches a callback to
the speed and offset slots of the LTS. When the Application changes these slots
(for example, by pressing the play button), the change is propagated to CMX and
from there to each CMS that has a copy of the LTS. A trigger calls the Media-
Source’s ltsChanged method which examines the LTS, calculates the time it should

read the first frame it should to the CMS, and creates an at-event to read the frame

98

at this time.

Returning to the example depicted in figure 4-11, when linus gets the message
set speed = 1, the MediaSource /tsChanged method examines the cliplist and no-
tices that it should begin sending data immediately, which it does. Meanwhile, the
callback in the MediaSource on gumby examines its cliplist and creates an at-event

to read the first frame in about 60 seconds.

The interaction of the Tcl-DP DOMS and the objects described above has prov-
en to be a powerful method for building playback-oriented applications. Even
though the only application we have currently implemented is the CM Player, the
CMT architecture can be used to implement other playback oriented applications,

as shown in the next section.

her Application

The Stream and LTS objects can be used to build other applications. For exam-
ple, consider a simple assembly editing application that presents the user with two
storyboards and allows sections of one to be pasted into the other. Here, the Ap-
plication would create two LTSs, one for each storyboard, two JpegStreams, and
two AudioStreams. The position within each storyboard can be set independently
using the two LTSs, and editing is implemented as cliplist manipulations. For ex-
ample, inserting a video clip from a source JPEG stream into a target JPEG stream
is a three step process. First, the cliplist representing the section of the source
stream you want to insert is constructed. Second, this cliplist is inserted into the ap-
propriate position in the target cliplist. Third, the cliplist of the target Stream objects
are set to their new values. The system takes care of the rest. Simple synchroni-

zation editing can be performed by modifying cliplists.

Another application that can be easily created using is a multilingual playback

application. This application can be implemented in 2 ways. In one implementation,

99

two LTSs are created: the zero LTS (it will always have speed equal zero) and the
playback LTS. A single JpegStream is created referencing the playback LTS, and
multiple AudioStream are created, with all inactive audio streams referencing the
zero LTS and the active audio stream referencing the playback LTS. Control is the
same as in the CM Player Application, but only the playback LTS is changed. To
switch languages, the LTS of the current AudioStream is set to the zero LTS, and
the LTS of the desired AudioStream is set to the playback LTS. This application can
also be implemented by using a single LTS and changing the cliplist of the AudioS-

tream.

A third application can perform synchronous playback of streams of different
durations. For example, suppose you wanted to play a certain video clip synchro-
nized with an audio clip, but the video clip is twice as long as the audio clip. Such
synchronization can be implemented by creating two streams, a VideoStream and
an AudioStream, each with a private LTS. Playback is performed by setting the
speed of the VideoStream’s LTS to twice that of the AudioStream’s LTS.

Using multiple storyboards, hypermedia systems can be implemented. Each
node in the hypermedia web would correspond to a storyboard. Visiting a node is
then similar to selecting a movie in the CM Player. By using multiple LTSs and sto-
ryboards, complex hypermedia applications with non-linear playback schedules
can be supported. For example, suppose you wanted to implement a schedule that
played video segment A, then displayed a dialog with two buttons, waited for user
input, and then played either storyboard B or C depending on which button the user
presses. Storyboards B and C have both audio and video streams, and the audio
segment in B must be played ten percent faster than the corresponding video seg-
ment. This schedule can be represented using the directed graph shown in figure
4-12. Switching storyboards in the dialog is analogous to visiting nodes in a hyper-

media web, and the method for synchronizing streams with different playback rates

100

using multiple LTSs was discussed in the previous paragraph. Such graphs are

generated by multimedia compilers such as FireFly [11,12].

4.4 Related Work

Other research groups have attempted to develop toolkits for distributed multi-
media applications. The literature is replete with requirements papers, language
definitions, object-oriented extensions, data flow models, and sketchy design doc-
uments for toolkits, but few designs have been implemented. Steinmetz reviews

some of the models [74].

For example, Bates and Bacon [6,7] have developed a language for describing
a distributed multimedia presentation in terms of named pipelines that specify the
connectivity of objects. The language also allows the binding of user-defined
events in the CM data stream (e.g., “frame 52 plays”) with actions. The runtime
environment, called IMP, interprets the specification, instantiating the objects of
the pipeline and creating additional entities that “watch” the CM data stream for
the user-defined events. The language can be used to create multimedia, hyper-

media, and computer supported cooperative work applications.

Other systems are closer in goals to CMT. The Amsterdan Multimedia Frame-

Stf-: [] | '—*@isplay Butto@

|
]
! ! —- ! ; -

Figure 4-12: Hypermedia web with storyboard nodes

101

work (AMF) is one such system [13, 65, 30]. AMF defines a data model that pro-
vides a method for collecting data objects into multimedia doquments called
CMIFs. The CMIF format provides two views of multimedia data, the hierarchical
view and the channel view. The channel view is analogous to the storyboard rep-
resentation, except that CM streams are synchronized explicitly using synchroni-
zation arcs. A synchronization arc specifies a timing relationship between points
in two multimedia streams. For example, a synchronization arc might specify that

a certain video frame should be played at the same time as a given audio sample.

AMF also contains a system to play CMIF documents. This system consists of
intelligent information objects (lIOs), local operating systems (LOSs), a global
operating system (GOS), and applications. 110s are producers, and applications
are consumers. 1lOs are containers for multiple representations of a single, logical
piece of information. They provide a standard interface that an application can
use to access a preferred representation. The GOS and LOSs allocate shared
resources such as network bandwidth and buffer space among competing appli-
cations and IlOs. The LOS is analogous to the CMX and CMS processes in CMT.
CMT has no analog of the GOS, since each application competes for the primary

shared resource, network bandwidth, on a best-effort basis.

The Interactive Multimedia Association’s (IMA) Multimedia System Services
(MSS) proposal [51], defines a standard way to create and to control complex
information flow graphs where nodes in the graph represent sources, sinks, and
processors of multimedia data and edges in the graph represent CM connections
between the nodes. The MSS is based on the Common Object Request Broker
Architecture (CORBA) [84,50]. It defines a standard way of locating, creating, con-
necting, and controlling distributed objects that represent a wide variety of live and
playback devices. The classes of objects include Virtual Devices, Virtual Connec-

tions, Virtual Clocks, Groups, Streams, Formats, Factories, and a Registration

102

and Retrieval (R&R) Service. Virtual Devices are analogous to Sinks and Sources
in CMT, but include support for live devices and multiple data formats within a sin-
gle virtual device. Virtual Connections are similar to PacketSource/Dest pairs in
CMT in that they connect data sources to sinks, but Virtual Connections provide
high-level flow control semantics like pause and resume. The actual transport
mechanism is unspecified, but a mechanism for communicating various quality of
service (QOS) parameters is provided. A Stream object provides an access point
for inquiry and control of a media stream. Its function is similar to CMT’s LTS
object. Virtual Clocks are used to synchronize media items in a stream, Group
objects are used to control a group of objects as a whole, and Format objects pro-
vide an interface to query the specific media format (e.g., an image’s width and
height) a Virtual Device is using. Finally, Factories and R&Rs are used to locate

and instantiate these objects.

The IMA's contribution is largely in standardization, since they ignore many
important systems integration issues. For example, the next chapter will show that
close coupling of file and transport services can lead to high quality playback.
Such close interaction is difficult to implement in the IMA proposal since the file
and transport objects are independent. The MSS has the potential to be an impor-
tant standard in future multimedia systems but implementations and products are

not being aggressively pursued by industry, despite the existence of prototypes.

The Heidelberg multimedia project at the IBM European Networking Center
[19,32,33] contains a toolkit as part of its suite of tools for constructing CM appli-
cations. The HeiProject software is not designed to be portable: it uses a modified
operating system to guarantee performance to applications. Like CMT, it is com-

posed of sets of communicating objects. Classes of objects provide the following

functions:

1. HeiSMS is their stream management system. It manages CM

103

data flow -- its function is similar to CMT’s MediaSource, Medi-
aDest, PacketSource, and PacketDest modules.

2. HeiBMS is their buffer management system. It handles most
memory management functions and contains functions to mini-
mize the copying of data. In CMT, individual objects manage
their own memory, passing pointers to avoid data copying. This
ad hoc solution presented problems, and a more recent ver-
sion of CMT contains an explicit buffer manager module.

3. HeiRMS is their resource management system. It allows
resource reservation and prevents over-booking resources.
MediaResources serve this function in CMT.

4. HeiOSS is their operating system shield. It is primarily a library
of common functions.

5. HeiTS and HeiTP is their transport system and transport proto-
col, based on ST-1l. A comparison of CMT’s transport layer with
HeiTS is given in section 5.5 of the next chapter.

6. HeiToolkit is their toolkit for constructing distributed applica-
tions. It is similar in function to Tcl-DP.

Overall, these architectures are similar to CMT: distributed objects are con-
nected in a pipeline along which CM data flows. The primary contributions of this
work are: 1) CMT is portable -- it runs on unmodified operating systems and net-
works, 2) CMT uses objects for distributed control in a novel way, 3) CMT shows
how to retrofit existing GUI toolkits for CM applications, and 4) CMT provides a

data model that simplifies the editing, reuse, and sharing of data.

104

105
Chapter 5

Network protocols in CMT

5.1 Introduction

This chapter describes the network protocol CMT uses to deliver continuous
media (CM) data in applications like the CM Player. The goal of the protocol is to
provide high quality playback over an unreliable network without modifying the
operating system or network router software. Protocols that provide this service

are called best effort protocols.

One might wonder why | developed a special protocol for CM data delivery.
Indeed, some research systems [31,20] use TCP/IP [75] for communication,
including early versions of CMT. Experience with this implementation revealed
that CM applications based on TCP are unstable with respect to the real-time
bandwidth required by a media stream. When the required bandwidth is well
below the available bandwidth, TCP connections perform well. When the required
bandwidth is above the available bandwidth, they perform miserably. And, when
the required bandwidth is about the same as the available bandwidth, perfor-
mance is extremely sensitive to transient network loads. The instability is caused
by the stream semantics of TCP which delays delivery of subsequent data if inter-
mediate data is lost. So when the network is overloaded by a CM application, CM

data is delayed to the point where frames arrive so late as to be useless.

Other researchers are developing real-time protocols to solve this problem
[22], but they require changes in OS kernels and network routers and gateways
that are not yet available. Hence, | developed a best-effort protocol for CMT that

utilizes the existing IP infrastructure.

The CMT protocol differs from other best effort protocols because it is

designed to support media-specific network protocols, which are protocols that

106
use properties of the media and its encoding to achieve higher quality playback by

compensating for the unreliable delivery channel. A simple example will illustrate

the advantages of media-specific network protocols.

The MPEG video standard [44] uses differential coding between frames to
achieve high compression ratios. MPEG defines three types of video frames: I-
frames, P- frames, and B-frames. |-frames can be decoded independently,
whereas P-frames require a previous |- or P-frame (called a reference frame) for
decoding, and B-frames require two reference frames for decoding, one from the

past and one from the future. These dependencies are illustrated in figure 5-1.

P-frame

-~ B-frameS}<

[-frame

reference frames

Figure 5-1: MPEG inter-frame dependencies

Now, consider the problem of transmitting an MPEG encoded video stream on
an unreliable network using a transmission protocol that performs no error correc-
tion for lost packets. If all packets are equally likely to be lost in transmission, the
number of packets required to send the frame determines the probability of a

frame being received at the destination. Consequently, small frames will be more

107
likely to get through, since they need fewer packets for transmission. Since refer-

ence frames are large, they are more likely to be dropped on an unreliable net- ’
work.! But if an I-frame is lost, the dependent P- and B-frames are undecodable.
Similarly, if a P-frame is lost, all subsequent B- and P-frames up to the next I-

frame are undecodable.

A media-independent protocol transmits all frame types with equal priority,
while a media-specific protocol can give higher priority to I- and P-frames, result-
ing in better playback at the destination. Prioritization can be achieved, for exam-

ple, by allowing retransmissions of reference frames.

The advantages of media-specific protocols become even more apparent
when the problem of reducing network congestion is considered. For example,
suppose the system detects a large increase in the percentage of packet losses
and attempts to compensate by reducing the number of packets sent. If the pack-
ets are not chosen Carefully, the results can be disastrous. For example, a media-
independent protocol might decide not to send an I-frame in an MPEG video
stream, making the sequence undecodable up to the next I-frame. A better solu-
tion is to drop frames in dependency order. For example, an MPEG-specific proto-
col reported in [67] drops B-frames first, then P-frames, and finally the I-frame.
More exotic MPEG-specific protocols could even transform P-frames to I-frames
in the file server, possibly using compressed domain processing techniques
based on the methods presented in chapter 3, if sufficient CPU resources are
available. Clearly, such transformations cannot be done in a media-independent

way.

! Typical frame sizes for a 352x240 MPEG compressed video are 12 KBytes
for I-frames, 8 KBytes for P-frames, and 1 KBytes for B-frames. Assuming 1.5
KByte packets, an I-frame takes about 8 packets to transmit, a P-frame takes
about 6 packets, and a B-frame takes about 1 packet.

108
Media-specific protocols can be built on a variety of underlying transmission or

network protocols. For example, the MPEG media-specific protocol described
above can be built on TCP/IP. The problem with using TCP/IP is fhat the imple-
mentation is difficult because TCP/IP provides the wrong features. For example, if
the network becomes briefly congested, the appropriate action is to dequeue
those frames that will arrive too late for playback. But most TCP/IP implementa-
tions will not allow data to be removed from a TCP/IP stream once the data is

queued for delivery.

Work-arounds can be used to solve these problems, but a better solution is to
use a protocol with the features needed to build media-specific protocols. A trans-
mission protocol that provides these features, called cyclic-UDP, is described in
section 5.2. Cyclic-UDP is designed to satisfy the needs of media-specific proto-
cols and to work well on current local and wide area networks. This latter point is
demonstrated by experimental results presented in section 5.4 that characterize
the properties of cyclic-UDP in both local and wide area network (LAN and WAN)
environments. These experiments show that high quality video playback is possi-
ble on the Internet today. For example, in one experiment, a 352x240 full-color,
MPEG video sequence and associated audio was sent from U.C. Berkeley to Cor-
nell University, across eighteen gateways and 2800 miles, at about 17 frames per
second. Of course, such performance is limited to a small number of simulta-

neous connections and by the bandwidth of the links on the Internet.

The basic idea of cyclic-UDP is to give high priority packets a better chance of
delivery by allowing more retransmissions of these packets if they are lost. A con-
sequence of this strategy is that it requires buffering about four seconds of data at
the receiver, a small amount of memory (typically under one MByte) on today’s

computers.

The rest of this chapter is organized as follows. Section 5.2 describes three

109
protocols | tested for inclusion in CMT. Section 5.3 develops media-specific proto-

cols for MPEG, motion JPEG, and audio data. Section 5.4 reports the results of
experiments designed to test the effectiveness of these media-specific protocols
in typical applications and environments and their effect on non real-time traffic.
And the last section compares the best-effort protocols developed in this chapter

with other CM protocols.

5.2 Protocol Suite

This section describes three protocols that | evaluated for use in CMT: 1) Sim-
ple-UDP, 2) UDP+resends, and 3) cyclic-UDP. These protocols are currently

implemented on UDP, the user datagram protocol.

Simple-UDP.

To discuss the characteristics of transmission protocols, it is useful to have a
straw man against which to compare them. Our straw man is a protocol called
simple-UDP. In simple-UDP, the CMS process sends timestamped frames of CM
data to the CMX process a short time (typically about 0.5 seconds) before they
are required for playback. By sending frames early and buffering them at the des-
tination, the effect of network jitter on playback is virtually eliminated; in modern
networks, any frame not delivered in 0.5 seconds is almost certainly lost. Each
frame is timestamped with two values, the logical start and end time, specifying
the earliest and latest possible logical playback time, respectively. When the
frame is received, it is queued for playback by calculating the system times corre-
sponding to the timestamp window and creating an at-event to call the playback

function in this time window as described in chapter 4.

The biggest problems with simple-UDP are 1) it has no flow control and 2) it

does not resend lost packets. When a network connection is overloaded, the

110
14

12¢

10}

Received Frame Rate

0 5 10 15 20 25 30
Frame Rate of Source

Figure 5-2: Frame rate at source vs. receiver on a long haul network

probability of packet loss increases dramatically due to buffer overflows on the
routers. Because frames are fragmented into several packets, the probability of a
frame being successfully reassembled at the destination is small. For example,
figure 5-2 shows the probability of receiving a video frame when a fixed frame rate
is used to deliver video on a typical long haul network. The average size of a
video frame in this experiment was about 12 KBytes and each frame was sent as
a single UDP datagram. The horizontal axis shows the frame rate of the sender in
frames/sec, and the vertical axis shows the frame rate of the receiver in
frames/sec. This particular connection (between Cornell University and UC Berke-
ley) overloaded at about 14 frames/sec, after which the probability of receiving a
frame plummets. The well-known solution to this problem is to use some form of
flow control on the channel: when losses get too high, the application should throt-

tle back on the load it is placing on the network.

111
The second thing to notice in simple-UDP is that it sends fairly large messages

(e.g., the size of one video frame). These large messages are usually fragmented
into several packets for transmission, and if one packet is lost, the whole frame is
discarded. A retransmission scheme that allows the lost packet to be resent will

improve throughput, as shown by the next protocol.

UDP+Resends
UDP+resends was the first CM protocol used in CMT [68]. UDP+resends pro-

vides fragmentation, limited retransmission, and flow control. A CM Connection
(CMC) is established between the CMS process and CMX process that consists
of two channels: a data channel and a control channel. The data channel carries
CM data and uses the UDP protocol. The control channel carries flow control and

retransmission information and uses the TCP protocol.

In addition to timestamping frames and sending them early as in simple-UDP,
UDP+resends also fragments the frame into one or more packets, each of which
contains at most 8 KBytes of frame data. A packet is constructed from a fragment
by prepending a packet header and storing the packet in a circular buffer known
as the packetQueue. The size of the packetQueue is chosen so that the buffer

containing the packet will be recycled no earlier than its playback time.

The packet header contains the fields listed in table 5-1. StartTime and end-
Time indicate the logical time window for frame playback, as in simple-UDP. Fra-
meNumber specifies the sequence number of this frame. When a CMS s started,
the frameNumber is set to zero and incremented for every frame queued for deliv-
ery. FrameSize stores the total size of the frame in bytes, and packetSize stores
the size of the fragment contained in this packet. PacketNumber indicates the
fragment number of this packet, numPackets indicates the total number of frag-

ments for this frame, a nd packetOffset is the byte offset of the fragment from the

112

Field Purpose
startTime Logical Start Time of Frame Playback Window
endTime Logical End Time of Frame Playback Window

frameNumber A monotonically increasing frame identifier

frameSize The frame size

packetNumber | The packet number within the frame

numPackets The number of packets in this frame

packetOffset The byte offset of the packet’s data from the beginning of the frame

packetSize The number of bytes in this packet

Table 5-1: Contents of UDP+resends packet header

beginning of the frame.

When the destination receives a packet, it copies the packet data into a circu-
lar buffer, detects lost or duplicate packets, and issues a Tcl-DP RPC request to
the CMS process to retransmit missing packets. When a frame is reassembled,

an at-event is created to play the frame as in simple-UDP.

Two modules, the PacketSource and the PacketDest, implement
UDP+resends in CMT. When the PacketSource is given a frame for transmission
(by the MediaSource, described in section 4.3), it fragments and queues the
frame. The fragments are sent to the CMS in a series of bursts. In éach burst, up
to burstSize bytes are sent consecutively to the destination, starting with the old-
est packet in the packetQueue that is marked as unsent. The first burst is sched-
uled as an idle-event. Subsequent bursts, if necessary, are scheduled as at-
events that fire after a delay of burstPeriod. BurstSize and burstPeriod are 35
KBytes and 10 milliseconds, respectively, in the current system, which allows a
maximum throughput of 26 Mbits/sec for each stream. These values represent an
empirically determined compromise between sending the data in large bursts,

which is easy on the application process since it reduces the number of system

113
calls and context switches, and sending the data in small bursts, which minimizes

the chance of transiently overloading the network by metering the injection of new ,

data.

Within the CMX process, the PacketReceived callback within the PacketDest
module is invoked when a packet arrives. PacketReceived copies the frame frag-
ment into the appropriate location in a circular buffer of frames. Duplicate packets
are dropped, and a list of missing packets is periodically sent to the CMS as part
of a Tcl-DP RDO call that marks the packets in the CMS packetQueue as unsent.
The time between these retransmission requests is called the complainTime, and
the RDO calls are scheduled using at-events. When the PacketDest has com-
pleted the reassembly of the frame, it is passed to the MediaDest (described in

section 4.3), which schedule playback.

UDP+resends uses a flow control mechanism that decreases the rate at which
data is transmitted under two conditions: 1) when the system detects that frames
are being dropped in the network (called network frame drops) and 2) when the
CMX cannot decode and display all transmitted data (called server frame drops).
Network frame drops typically occur during a congestion episode on the network.
Server frame drops typically occur during software decoding because the CPU is
not fast enough to play the stream at the full data rate or because the machine is
executing a CPU-intensive process [67]. In either case, the CMX sends a backoff

message to the CMS process telling it to reduce the rate of CM data transmission.

Like the missing packet resend request, the backoff message is sent as a Tcl-
DP RDO over the control channel. The backoff message contains a penalty factor
that is used for flow control as follows. Each stream has two parameters,

FPS and F PSmax, that specify the minimum acceptable frame rate mea-

min
sured in frames per second (fps) and the maximum usable fps. For video,

F PSmin is typically 15 and F PSmax is typically 30. The penalty factor is a value

114
between zero and one that is used to calculate the stream’s current FPSou "
FPS . specifies the number of frames that the source will send to the destina-
tion each second. FPS out is calculated from F PSmin and the current F PSou ;

using the following formula:
FPS,,, = (1-penalty) e FPS_ +penaltye FPS, .. EQ 5-1

Penalty is calculated as follows. When a frame is lost due to network problems,
penalty is increased by 0.1. A penalty of 0.1 is also assessed for each frame that
is received but misses its play window. An additional penalty of 0.1 is assessed for
each consecutive frame that misses its play window. For example, when three
frames in a row miss their play window, the penalty is 0.5: a penalty of 0.1 for each
frame that missed its window and an additional penalty of 0.1 for each consecu-
tive frame that missed its window. If the total penalty exceeds 1.0, no more penal-
ties are assessed. The total penalty, if non-zero, is transmitted every one-third of a

second to the CMS, and the counting of penalties begins anew.

When the backoff message is received, FPSou is adjusted as specified

t
above. In addition, F PSou ; is increased by one every rampTime seconds up to
F PSmax. Ramptime is typically one second. This linear increase in FPSou ;I8
scheduled as an at-event in the CMS process.

This flow control scheme decreases the rate at which data is transmitted from
source to the destination aggressively when congestion is detected, and slowly
increase it towards F' PSmax when the congestions abates. This scheme is simi-
lar to the way window control in TCP/IP works: the window size decreases expo-

nentially when losses are detected and increases linearly over time.

Figure 5-3 illustrates the behavior of the flow control scheme. The horizontal
axis is time, and the vertical axis is fps, with FPSml.n and F PSmax marked. The

two lines on the graph show FPSou ,and FPS the fps received by the

received’

115
CMX process. At the point marked A in the graph, several frames have been lost,

as can be seen by the dipin FPS and a backoff message with a penalty

received’
factor of 0.5 is sent to the CMS process. The backoff message causes the
F PSou , to dip after which it slowly climbs back towards F PSmax. At point B, a

backoff message with a smaller penalty factor is sent to the CMS.

Although UDP-+resends overcomes the worst shortcomings of simple-UDP, its
congestion control method is slow to respond and can lead to poor quality play-
back when the network is highly congested. Congestion control is slow to react to
backoff messages because the backoff messages change the rate at which data
is read from the disk, not the rate at which data is fed into the network. This leads
to a delay before responding to the backoff message. The delay is proportional to

the difference between a frame’s playback time and the time it is read from disk.

The second problem with UDP+resends is that the design makes it hard for
the CMS to deliver multiple streams because frames are read off the disk inde-
pendently by each MediaSource, causing the disk to thrash if each read incurs a

large seek. For example, suppose an average disk seek takes 10 milliseconds

Frame rate
(fps)

FPS received

FPS,,;,
5 —_
0 | l | | —> time
20 40 60 80 100

Figure 5-3: UDP+resends adaptive flow control

116
and the data transfer rate is 2 MByte/second. Then reading a 12 KByte frame (a

typical value) can take up to 16 milliseconds, so the system can only read 60
frames per second. Hence, a source can support only two streams per disk which

is much too inefficient. Reading larger blocks of data is the obvious solution.

The protocol discussed next, called cyclic-UDP, provides a solution to both

problems.

Cyclic-UDP

Cyclic-UDP is a transmission protocol that delivers a prioritized set of buffers
of CM data (containing, for example, a compressed video frame or a group of
audio samples) from the CMS process to the CMX process as quickly as possible.
Prioritization, in this context, means that buffers with higher priority are more likely
to be delivered than buffers with low priority, given sufficient time, all buffers will be
delivered. The advantage of prioritization is that it simplifies the implementation of

media specific protocols.

Prioritization is very important in cyclic-UDP. In fact, one of the primary contri-
butions of this work is showing how prioritized buffer delivery can be achieved on
unreliable networks using adaptive flow control techniques. | will show later in this
chapter that a high QOS can be maintained using this transport protocol along
with media specific prioritization.

In cyclic-UDP, a MediaSource reads a group of frames from a local disk, deter-
mines the priority order of the frames using media-specific protocols discussed
later in this chapter, and passes this prioritized list of frames to the PacketSource,
which fragments and sends them to a PacketDest. The PacketDest reassembles
the frames and passes them to a MediaDest, which queues the frame for play-
back.

Our concern is how a group of buffers is transmitted from a PacketSource to a

117
PacketDest. For the following discussion, assume the end-to-end bandwidth on a

connection, called the estimated bandwidth (estBW) is known. The determination

of estBW is discussed below.

In cyclic-UDP, a group of buffers are sent during a single cycle. A new cycle is
begun when the MediaSource sends a NewCycle message to the PacketSource
that includes a list of buffers (i.e., the frames from the MediaSource), highest pri-
ority first, as a parameter. The PacketSource constructs packets from the buffers
by fragmenting each buffer, attaching a packet header to each fragment, and
placing the resulting packets in a queue maintained by the PacketSource called
the packetQueue. Cyclic-UDP is designed so that packets near the front of pack-
etQueue have a higher probability for delivery than packets near the end of the

packetQueue.

The contents of the packet header are listed in Table 5-2. The fields can be
broken into four groups: fields identifying the packet and cycle, fields used for
fragmentation and reassembly, fields used for measuring connection properties,
and the EQOC field.

In the identification group, packetld is an integer specifying the position in the
packetQueue. Cycleld identifies the cycle to which this packet belongs. Cycleld is
incremented by one with each new cycle except in special cases discussed
below. PacketID and cyclelD serve as a unique identifier for this packet. Burstld is
an integer, set when the packet is transmitted, specifying the burst number. Lastly,
PPC (packets per cycle) and BPC (buffers per cycle) contain the number of
unique packets and buffers, respectively, that will (ideally) be delivered during this

cycle.

In the fragmentation group, bufferld identifies the buffer to which this packet

belongs (bufferld begins at zero at the beginning of each send cycle), bufferSize

118
is the size of the buffer from which the packet was constructed, and ppb is the

number of unique packets required to reassemble this buffer. PacketOffset is the

byte offset of the fragment within its buffer; it is included to simplify reassembly.

In the connection measurement group, sendTime is the value on the sending
machine’s system clock when the packet is queued for delivery (used by the
receiver to calculate network delay), and epochNumber, epochBytes, and epoch-

Duration are used to calculate the connection bandwidth and loss rate.

Finally, EOC is set if this packet is an end-of-cycle (EOC) marker. The use of

EOC packets is discussed later.

Field Contents
packetld Unique id for this packet
cycleld Cycle number this packet is part of
burstld Burst number when packet was sent
ppc Packets in this cycle (pkts/cycle)
bpc Buffers in this cycle (buffers/cycle)
ppb Packets in this buffer (pkts/buffer)
bufferSize Total size of buffer (in bytes)
bufferld unique ID for this buffer
packetOffset Offset of this packet’s data in its buffer
sendTime Time packet was sent
epochNumber Epoch number when packet was sent
epochBytes Number of bytes sent in the previous epoch
epochDuration Length of previous epoch (msecs)
EOC non zero means this packet marks the end

Table 5-2: Cyclic-UDP packet header

119
Packet transmission takes place in a series of bursts. During a burst, packet-

Queue is scanned in priority order, and packets marked as unsent (all packets are
initially marked as unsent) are prepared for transmission by setting burst/D in the
packet header to the current burst number. The current burst number is a small
integer that starts at zero at the beginning of each send cycle and increases by
one for each burst. The packet is then sent to the destination as a UDP datagram

and marked as sent.

The number of bytes queued for delivery in each burst is set so that the aver-
age bandwidth is estBW and no more than maxBurstSize bytes are sent in a sin-
gle chunk to prevent overfilling the destination buffer. If there are no unsent
packets in packetQueue before this many bytes are sent, an End-of-cycle (EOC)
packet is sent. In either case, a new call to sendBurst () is scheduled using an
at-event. The time of the at-event is calculated such that the next send burst is of
size burstSize (the ideal number of bytes to send in a burst) plus the unused
bandwidth from this burst. If every packet in packetQueue is marked as sent, the
delay is set to 100 milliseconds. Figure 5-4 shows the pseudo-code for this pro-

cess.

When a packet is received, the buffer fragment is copied into the correct poSi-
tion in memory. The implementation is careful to avoid data copies by using the
bufferld and packetOfs fields in the packet header to determine the correct buffer
and the position within the buffer. Lost packets are detected by examining the
packetld field in the header. If the current packet is not the next packet in

sequence, the missing packets are presumed lost?.

When a lost packet is detected a resend request is sent to the CMS process

2 | abandoned other, more complex schemes for loss detection after experi-
ments showed that out-of-order packets are rare, even on long-haul connec-
tions.

120

SendBurst ()
burstNumber = burstNumber + 1;
bytesSent = 0;
currTime = ReadSysClock();
p = 0;
bytesToSend = min (maxBurstSize, (currTime - lastSendTime) *estBW);
while (p<numPackets AND bytesSent < bytesToSend) {
if (!packetQueue(p].sent) {
packetQueue[p].sent = 1;
packetQueue[p] .burstId = burstNumber;
SendPacket (packetQueuelp]);
bytesSent += packetQueue[p] .packetSize;

p=p+1;
}
delay = (burstSize + bytesSent - bytesToSend)/estBW;
if (p == numPackets) {

SendEOC (cycleNumber, burstNumber, numPackets);
delay = 0.1;

}

lastSendTime = currTime;

after (delay, SendBurst);

Figure 5-4: Sending a burst of packets

requesting retransmission of all missing packets from the current cycle. The
resend request contains the cycleld of the missing packets and a list of {burstld,
packetld} pairs. Burstld is the burst identifier from the packet header received
when the lost packet was first detected, and the packetl/d identifies the lost packet.
Figure 5-5 shows the pseudo-code for detecting missing packets and constructing

a resend request.

Each resend request is sent to the CMS as a UDP datagram. When a resend
request is received by the CMS, the ProcessResend function shown in figure
5-6 is called. ProcessResend compares the burstld of the resend request with
the burstld of the packet in the packet queue. If the latter burstid is greater than
the burstld in the resend request, the request is stale because the packet has
been resent since the resend request was issued, and the request can be

ignored. Otherwise, the packet is marked as unsent and will be retransmitted dur-

121

DetectLoss (pkt) :
if (pkt.packetId > lastPkt+1) {
for p = lastPkt+l to pkt.packetId-1 {
missingBurstId[p] = pkt.burstld;
missing[p] = TRUE;
}
resendReqg.cycle = pkt.cycleld;
resendReqg.resendList = {};
for p = 0 to pkt.packetId-1 ¢{
if (missing([p]) {
element .packetId = p;
element.burstId = missingBurstId[p];
append element to resendReq.resendList;
}
Send (resendReq) ;

}
}

missing[pkt.packetId] = FALSE;
lastPkt = pkt.packetId;

Figure 5-5: Detecting missing packets in the CMX process

ing the next call to SendBurst.

For example, suppose the packetQueue contains five packets. Figure 5-7
shows the transmission sequence. The tables below the figure show the relevant
information in the packetQueue at the times indicated. Initially (time To), all pack-
ets are marked as unsent and the burstld of each packet is zero. In the first burst,
packets one and two are sent; accordingly, the burstld of each packet is set to

one, the packets are sent to the PacketDest in the CMX process, and the packets

ProcessResend (resendReq) :
if (resendReq.cycle == currCycle) {
foreach element in resendReq.resendList |

b = element.burstld;

p= element.packetId;

if (pktQueue[p] .burstId <= b AND pktQueue [p].sent) {

pktQueue[p].sent = FALSE;
}

Figure 5-6: Source side resend processing

122
are marked as sent (time T;). Now suppose packet one is lost and the CMX

receives packet two. CMX marks packet two as received, and sends a resend
request for packet one with the burstld equal to one (denoted <resend b1, p1>).
Meanwhile, the PacketSource sends packets three and four in the second burst
(time Ty), but packet three is lost. Shortly thereafter (time T3), the PacketSource
receives <resend b1, p1> and marks packet one as unsent. When the PacketDest
receives packet four, it issues a resend request for both packets one and three:
denoted <resend b2, p[1,3]>. During the next send burst (between T3 and Ty),
packet one and packet five are marked as sent and transmitted, with the burstld of
each set to three. The PacketSource then receives the second resend request,
but ignores the resend of packet one since the burstld of the request is two, but
packet one was resent during burst three.Only the request for packet three is
valid, so packet three is marked as unsent and is sent out in the next burst, along

with an end-of-cycle (EOC) packet.

The EOC packet is a special packet used to detect lost packets near the end
of the packetQueue. An EOC packet contains no frame data and has its EOC field
set to 1. It is sent when all packets in the packetQueue have been marked as
sent, and thereafter once every 100 milliseconds. On receiving an EOC, the

receiver issues a resend request for all missing packets in the current cycle.

To see the use of the EOC packet, consider the above example, and suppose
the last packet (packet five) is lost. When the CMX receives the EOC packet, it
can detect that packet five was lost by examining the EOC’s ppc field, which
equals five in this example. Even if the EOC packet is lost, an EOC will be sent
every send burst, and one will eventually make it through, triggering the resend

request for packet five.

When a new send cycle begins, the cycle number is incremented. The CMX

detects this change when a packet arrives whose cycleld is larger than what was

123

PacketSource PacketDest
| ,
To

<b1, p1>
\X

<b1, p2>

T,
<b2, p3> \\; <resend b1, p1>

<b2, p4> X
T,

T, <resend b2, p[1,3]>
<b3, p1>

<b3, p5>
Ty

Ts
<b4, p3>
<b4, EOC>

Ts

sent?burst sent?burst sent?burst sent?burst sent?burst sent?burst sent?burst
-

0 1 e | 1 1 — | 3 ~ T 3 i
0 e | 1 e | 1 e | 1 e | 1 =17 e |1
0 0 s 2| [+~] 2 — | 2 P — | 4
0 0 | 2 | 2 | 2 - | D v | 2
0 0 0 0 » 1 3 v | 3 » 1 3

To Ty T, T3 Ty Ts Te

Figure 5-7: Cyclic-UDP example

previously received. When the new cycle is detected, the packets that are part of
incomplete buffers are moved into a previous cycle buffer, the resend list is
cleared, and the packets that were in the previous cycle buffer are marked as free.
Any packets arriving late that are part of the previous cycle are correctly reassem-
bled as part of the previous cycle; should a buffer be completely reassembled, it is

scheduled for playback by the MediaDest.

124
Cyclelds can also be used to manage network buffers in the CMX. If the

cycleld is increased by two, the CMX assumes it lost all packets of the intérmedi-
ate cycle, and the buffer space associated with both the previous and current
cycles is marked as free. The cycleld jumps when a discontinuous change occurs
in the logical time system, such as when the user randomly seeks to a new posi-
tion in the video. In this case, the PacketDest flushes all previously received buff-

ers to avoid confusion.

Cyclic-UDP gives high priority packets near the front of the queue a better
chance of getting through because, in the event of packet loss, they will get more
retransmission requests and will be sent more times than packets later in the
queue. If the cycle length is several times the round trip time through the network,
a packet near the front of the queue will get many chances to get through the net-
work. During a period of high packet loss, low priority packets (near the end of the
packetQueue) may not be transmitted, since the high priority packets will get sev-
eral retransmissions, but given sufficient time, all buffers will eventually be deliv-

ered to the destination.

Flow Control

Cyclic-UDP uses an estimate of the end-to-end available network bandwidth
(estBW) for flow control. EstBW is adaptively computed by the protocol using
measurements made by the CMX process. The values measured are listed in
table 5-3.

The computation of meanDelay and delayDeviation are similar to what is used
in TCP [75]. The only difference is that TCP estimates round trip delay whereas
cyclic-UDP measures end-to-end delay. | use the following scheme to estimate
end-to-end delay. When each packet is transmitted, the sendTime field of the

packet is set using the value on the sender’s system clock. When the packet is

Field Contents
recvdBW The bandwidth at the receiver
loss Percent of packet loss
meanDelay Mean packet delay
delayDeviation Mean deviation of packet delay

Table 5-3: Measurements made by the CMX process

125

received, this value is subtracted from the value on the receiver’s system clock.

The minimum value of this difference in recent history is assumed to be the skew

on the system clock. The skew is subtracted from the difference to get the mea-

sured delay, M. MeanDelay and delayDeviation are computed from M using the

following formulas (taken directly from [75]):
err = M - meanDelay " EQ 5-2

meanDelay’ = meanDelay + err EQ 5-3

8

lerr| - delayDev
2

delayDev’ = delayDev + EQ 5-4

Loss and recvdBW are computed over a period known as an epoch which is

typically 100-200 milliseconds. During each epoch, the source tracks how many

bytes it transmits and the destination tracks how many bytes it receives (bytes-

Recvad). When the epoch ends, the sender sets the epochBytes and epochDura-

tion fields of each packet in the new epoch to the total number of bytes sent by the

source and the duration of the epoch (in milliseconds), respectively.

When the receiver detects a new epoch (by examining the epochNumber field

on a received packet), loss and recvdBW are computed using

bytesRecvd

l =1-
033 epochBytes

EQ 5-5

126

Measure (pkt) :

delay = ReadSysClock () -pkt.sendTime;

if (delay < skew) skew = delay;

delay -= skew;

err = delay - meanDelay;

meanDelay += (err >> 3);

delayDev += ((abs(err) - delayDev) >> 2);

o U W N

7 if (pkt.epochNumber > currEpoch) ({

8 if ((pkt.epochNumber == currEpoch+l) AND (pkt.epochBytes != 0))
9 bw = 1000*bytesRecvd/pkt.epochDuration;
10 loss = 100 - 100*bytesRecvd/pkt.epochBytes;
11 Feedback (bw, loss, meanDelay, delayDev, currEpoch);
}

12 currEpoch = pkt.epochNumber;
13 bytesRecvd = 0;

}
14 if (pkt.epochNumber == currEpoch) bytesRecvd += numBytes;

Figure 5-8: Destination Measurements of connection

bytesRecvd

recvdBw = .
epochDuration

EQ 5-6

After computing /oss and recvdBw, the destination transmits the current values
of meanDelay, delayDeviation, recvdBW, and loss to the source in a feedback unit
sent as a UDP datagram. The code in figure 5-8 summarizes the measurement
process. A few subtle points in the code are the detection of skipped epochs,
where every packet in the intervening epochs was lost (line 8) and the detection of

late arriving packets (line 14).

The PacketSource uses the feedback units sent by the destination to set the
estBW parameter used for flow control. The PacketSource uses two user parame-
ters, the expected loss rate (X') and the target delay (D ;), along with the data in
the feedback unit to calculate estBW and the long term estimate of the maximum
bandwidth available on the connection, ItBW. LtBW is updated using a long-lived

weighted average (with gain o, typically 1/64) of the bandwidth in the feedback

127
unit:

err = recvdBW - tBW EQ 5-7

ItBW = tBW+ao.eerr EQ 5-8

Since [tBW is an estimate of the maximum long term bandwidth on the con-
nection, this formula is only evaluated when either the loss is non-zero (which
means the connection is being pushed to its limit) or the bandwidth contained in
the feedback unit is greater than the current value of /tBW (which means the cur-

rent value of /tBW is low).

Once the [tBW has been updated, estBW is computed using the following
scheme. If the loss at the receiver is greater than the expected loss (L>X), estBW
is setto (1 -L) e ltBW/ (1 -X) , which scales estBW linearly with loss above
the expected loss. If the loss is low (L < X), but the delay at the receiver is greater
than the target delay (D > D)), estBWis setto (1 +X) e ltBW(Dt/D) , which
causes estBW to drop quickly as the delay increases. Otherwise, estBW is set to
(1 +X) e [tBW . The rationale in this case is that the bandwidth should be set to
the maximum channel bandwidth plus some extra bandwidth proportional to the
loss rate. Finally, if the result is outside the range [minBandwidth..maxBandwidth],
estBw is set to either minBandwidth or maxBandwidth to guarantee that the band-
width never rises above what is needed or sinks below a threshold. The code in

figure 5-9 implements these strategies.

5.3 Media specific protocols

This section shows how media specific protocols use prioritization. Three
media types are examined: motion JPEG video, MPEG video, and uncompressed
audio. When used in combination with a transport mechanism that provides prior-

itized delivery (e.g., cyclic-UDP), these protocols reduce the effect of transient

128

ProcessFeedback (feedback):
if ((feedback.loss != 0) OR (feedback.bandwidth > 1tBW)) {
err = feedback.bandwidth - 1tBW;
1tBW += err>>alpha;
}

estBW = (1+X) *pktSrc->1tBW;
if (feedback.loss > X) {
estBW = estBW* (1-feedback.loss);
} else if (feedback.delay > Dt) {
estBW = estBW*Dt/feedback.delay;
}
estBW
estBW

min (maxBandwidth, estBW);
max (minBandwidth, estBW);

Figure 5-9: Adjusting the bandwidth based on feedback

load to a decrease in fidelity to the end user. The strategies described here are

implemented in CMT in the MediaSource object.

Before discussing the packet delivery algorithms, it will be useful to define two
concepts: inverse binary ordering (IBO) and playback jitter. The IBO of a group of
N objects is obtained by reversing the bits in the binary representation of the
object number and sorting the result. Object numbers start at zero. For example,
the IBO of a group of four objects numbered {0, 1, 2, 3} is {0, 2, 1, 3}, and the IBO
of a group of 11 objects numbered {0..10} is {0, 8, 4, 2, 10, 6, 1, 9, 5, 3, 7}. The
advantage of IBO is that if the tail of a sequence in IBO is cut off, the lost objects
are evenly distributed in the original sequence. For example, if the last 5 objects in
the 11 element IBO above are lost, every other object in the original sequence is

lost. The IBO will be used in the media-specific protocols that follow.

Playback jitter is defined as the standard deviation of the delay between the
display time of sequential video frames. Playback jitter (measured in milliseconds)
provides a quality metric, since users are sensitive to erratic frame drops. In other
words, playing 15 fps may be better than playing 20 fps if the 15 frames are

played at an even stride (low playback jitter) while the 20 frames are played with

129
jerky intervals (high playback jitter). Playback jitter is calculated over a one sec-

ond period because users notice erratic effects in about that time scale.

To gain an intuition for the meaning of playback jitter, consider a playback
sequence where two frames are played and one is dropped, two more are played
and another is dropped, and so on. Such a playback sequence can be repre-
sented diagrammatically as XX-XX-XX-XX-XX-XX-..., where each X represents a
played frame and each - represents a missed frame. The diagram x-x-x-X-X,
therefore, represents a sequence where every other frame is played and the jitter

is zero. Table 5-4 lists the playback jitter for several frame sequences, assuming

Sequence FPS (g;let:) (‘Liltst::)
X=X-X-X-X-X-X-X-X-X-X-X- 15 67 0
XX =XX-XX-XX-XX-XX-XX~-XX— 20 50 17
XX—X-XX-X-XX-X-XX-X-XX-X- |23 44 17
X==—XXXX-X-XXX-—X—~XXX— 17 59 33
XXX——=XXX———XXX——=XXX——— 15 67 45
XXXXXK==———— XXXXXX———=—~ 15 67 75

Table 5-4: Jitter for various playback sequences

each sequence is to be played at 30 fps (33.3 milliseconds between frames). The
mean time between frames (delta) and the corresponding frame rate are also
listed. The first three sequences are fairly smooth, the next three are increasingly
bursty. A reasonable rule to summarize the concept of playback jitter is this: if the
playback jitter is less than half the interframe play time (i.e., delta), the sequence
will look fairly smooth. If the playback jitter is more than delta/2, the sequence will
appear bursty. A possible direction for future work is to conduct a human factors

study to formally test the relationship of playback jitter to perceived quality.

130
I will now describe media-specific protocols for three media encodings: motion

JPEG video, uncompressed audio, and MPEG video.

Motion JPEG

In motion JPEG video streams, each frame can be decoded independently of
other frames. To make motion JPEG streams robust against packet loss, groups
of frames in a read/send cycle are prioritized using IBO. For example, suppose
that a read/send cycle is 0.5 seconds long and the frame rate is 30 fps. The fifteen
frames are prioritized using IBO, which leads to the following prioritized frame list
(PFL), highest priority first: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7}. If the
frames are received in priority order, the playback jitter of the resulting sequence

is small.

ncompr Audi

Uncompressed audio streams are composed of a set of samples taken at reg-
ular intervals. The rate of sampling is called the sampling rate. Typical sampling
rates vary from 8 kHz for telephone quality audio to 44 kHz for CD quality audio.
Because the individual samples are small (typically one to two bytes), each net-

work packet contains between 20 and 500 milliseconds worth of samples.

To make audio streams robust against packet loss, the following media spe-
cific protocol is used. Each group of audio samples is subsampled into packets of
approximately 2000 bytes, and each packet is independently delivered to the des-
tination. For example, a 500 millisecond CD audio frame will contain 22000 sam-
ples. This frame is split into 11 packets of 4400 samples each. The first packet
contains samples numbered 11 (i is an element of [0..1999]), the second packet
contains samples numbered 11i+ 1, and so on up to the fourth packet. The

effect of this subsampling is to make each packet contain a low fidelity version of

131
the frame. The receiver reconstructs the frame by interpolating missing packets.

Packets are prioritized in IBO to make the interpolation as accurate as possible.

MPE

In MPEG video streams, some frames are encoded differentially (P-frames
and B-frames) and some independently (I-frames). A dependency graph can be
constructed for the frames that defines a partial ordering that is used to determine
the priority of a frame in a group of frames: a reference frame should always have
higher priority than its dependent frames. Although this condition must be satisfied
by any good media-specific MPEG ordering algorithm, it does not uniquely define

the order.

For example, consider the 16 frame MPEG sequence |IBBBPBBBPBBBPBBB.
This sequence, whose dependency graph is shown in figure 5-10, is denoted by
{lo, By, B2, B3, P4, Bs, Bg, By, Pg,...} where the frame number has been appended
to each frame. One possible prioritized frame list (PFL) for this group of frames is
{lo, P4, Pg, P12, l1g, Ba, Bg, Byo, By4, Byy, By, Bs, Bys, By, B3, By, B;}. Table 5-5
gives all the possible playback patterns generated by this PFL, assuming frames
are received in priority order. As the table shows, this PFL does well at minimizing

playback jitter.

To generate the PFL, the basic operation needed is to decide which frame not
already in the PFL to add next. The selected frame should clearly be eligible to be
sent. That is, all its reference frames should already be elements of the partial

PFL. Using the notation of table 5-5, the selected frame should break up runs of

Pge P12 lie
NSl Sl A S

By B, Bs BsBgB; BgBigByy ByzgBys Bys
Figure 5-10: Inter-frame dependencies in sample MPEG sequence

132

f(l:z:i?:; Pattern f{le?::i?:j Pattern

1 G 10 X=X-X-X-X-XXX-X-X
2 X———X—m—m—mm——— o 11 XXX-X-X-X-XXX-X-X
3 X———X———X———————— 12 XXX -XXX-X-XXX-X-X
4 X———X———X——=X—-——— 13 XXX -XXX-X-XXX-XXX
5 X=—==X-——X-—--X---X 14 XXX -XXX-XXXXX-XXX
6 X-X-X—-——X-—-X-—-X 15 XXXXXKX-XXXXX-XXX
7 X-X-X---X-X-X---X | 16 XXXXXXK-XXXKXXKKXK
8 X—X-X-—-X-X-X-X-X 17 XXX X XXX XX XXX KXXKXXX
9 X-X-X-X-X-X-X-X-X

Table 5-5: Playback patterns of PFL for sample MPEG sequence

dashes (white-chains) as much as possible, since doing so minimizes the jitter of
the playback subsequence. This requirement is formally expressed by minimizing

the expression

W2_12_R2 EQ 5-9

where W is the length of the white-chain to which the frame belongs before the
split, L is the length of the white-chain to the left of the frame after the split, and R
is the length of the white-chain to the right of the frame after the split.% Once all the
long white chains are eliminated (after step 9 in table 5-5), our goal is then to min-
imize the length of runs of X’s (black-chains) generated by adding the new frame.
For example, between steps 15 and 16 in the example, both frames are eligible,
but the right frame is preferred since the new black-chain it forms is shorter than

the black-chain formed when the left frame is added.

3 The length of a white-chain is the number of dashes in the chain plus one.

133
Having sketched the ideas of how to choose the next frame, | now turn to the

task of designing an efficient algorithm to compute the PFL. The input to the algo-
rithm is an array of frames. For each frame, the information listed in table 5-6 is
stored in an array of structures called the ChainArray. URight, uLeft, weRight, and
wcLetft store the edges of the white-chain and the black-chain to which the frame
belongs, dependents stores a list of other frames in the input that use this frame
as a reference frame, and refCount indicates the eligibility of the frame. RefCount
initially contains the number of frames in the input sequence that are reference
frames for this frame. Thus, all I-frames have a refCount of zero, most P-frames
have a refCount of one, and most B-frames have a refCount of two. The only
exceptions are when the P- or B-frames use a reference frame not in the input
array. The code in figure 5-11 initializes the dependents and refCount fields of the
chainArray. The other values are initialized as specified in table 5-6. After initial-
ization, a heap [71] that contains the eligible frames is built so that the item at the
top of the heap is the next frame to send. The heap is sorted using the following

criteria, in order of importance:

ref = -1;
(i=0; i<numberOfFramesInInput; i++)
if ((ref != -1) && (frame[i].type != ‘I’)) {
List_Append (frame[ref].dependents, 1i);
frame[i].refCount++;
}
if (frame[i].type != B) ref = i;
}
ref = -1;
for (i=numberOfFramesInlnput-1; i>= 0; i--) {
if (frame[i].type != ‘B’) ref := i;
else if (ref != -1) {
List_Append (frame[ref].dependents, 1i);
frame[i].refCount++;

Figure 5-11: Initializing the ChainArray

134

Name Description Initial Value
refCount | If zero, frame is eligible; if negative, frame | Number of frames in
has been sent. If positive, frame is ineligible. | input that are reference
: frames for this frame
uRight | Index of nearest unsent frame to the right of | (frame index) + 1
the frame.
uleft | Index of nearest unsent frame to the left of | (frame index) - 1
the frame.
wcRight | Index of right edge of the white-chain to (number of input
which this frame belongs. frames) - 1
wcLeft | Index of left edge of the white-chain to 0
which this frame belongs.
dependents | List of frames that use this frame as a refer- | List of dependent
ence frame. frames. See figure 5-11

Table 5-6: The ChainArray data structure used for MPEG prioritization.

1. Minimizing the black-chain length (given by uRight-ulLeft)

2. Maximizing the white-chain length (given by wcRight-wcLeft)

3. Minimizing the reduction in jitter (given by equation 5-9).

4. Minimize the frame size.

Criteria number 3 is evaluated using wcRight, wclLeft, and the index of the frame i

to compute W, R, and L in equation 5-9:

W=wcRight - wcLeft

R=wcRight - i

L=i - wcLeft

The algorithm removes the item at the top of the heap (the best node), adds it

to the PFL, and performs the steps in figure 5-12 to update the ChainArray. This

code updates uRight, uLeft, wcRight, and weleft and decrements the refCount of

each of the frames that use the selected frame as a reference frame. Since some

of these frames may be eligible, these steps may affect the heap ordering. The

FixHeap () function checks the refCount of the specified frame to see if it is eli-

gible and, if so, moves it up or down in the heap as required to restore heap order.

135

node [best] .refCount-—;

for (i=node[best].wcleft; i<best; i++) {
frame[i] .wcRight = best-i;
FixHeap(i);

}

for (i=best+1l; i <= node[best].wcRight; i++) {
node[i] .wcleft = best+l;
FixHeap (i) ;

node [best] .ulLeft;
node [best] .uRight;
if (r < numFrames) {
node[r] .uleft = 1;
FixHeap(r);

}
1
r

if (1 >= 0) {
ncde[1l] .uRight = r;
FixHeap(1l);
}
for each d in node[best].dependent
if (--node[d].refCount == 0)
HeapInsert (d);

Figure 5-12: Updating the ChainArray

5.4 Experiments

This section describes a set of experiments performed using an implementa-
tion of cyclic-UDP. The purpose of these experiments is to evaluate the perfor-

mance and behavior of cyclic-UDP in various scenarios. Important questions are:
1. Does cyclic-UDP deliver frames in priority order?
2. How well does it estimate and share the available bandwidth?
3. How does it scale to different networks (e.g., LAN and WAN)?
4. How does it impact other protocols, such as TCP?
5. What is the quality of the output for various media?

To answer these questions, three canonical movies were used in these tests: a
low bandwidth 352x240 MPEG video and 8 kHz associated audio with a total
bandwidth of about 1.2 Mbits/sec (“Ferris Wheel”), a 320x240, full color, medium

136
quality motion JPEG movie (“Andre and Wally B.”), and a 640x480, full color high

quality motion JPEG movie and associated CD quality stereo (“Tony De Peltrie”).

Table 5-7 lists properties of the video portion of these movies.

I-Frame Size P-Frame Size B-Frame Size

. Bitfate (KBytes) (KBytes) (KBytes)
Movie (Mbits)

min | avg | max | min | avg | max | min | avg | max

Ferris 125 53| 74166 47| 50| 77| 20| 44| 5.0

Andre 283 79| 115} 13.1| - - - - - .
Tony 586 | 13.1| 214|255 | - - - - - -

Table 5-7: Properties of the experimental video streams

Transmission was tested in three environments: a 10 Mbit/sec local area net-
work (LAN), a metropolitan area network (MAN) with three subnets connected by
two gateways, and a wide area network (WAN) with 18 gateways (an Internet con-
nection between UC Berkeley and Cornell University). In each environment, one
to four copies of each movie were sent simultaneously and the fidelity of the
reconstructed streams was measured. The fidelity of audio is the reconstructed
sampling frequency; the fidelity of video is the playback jitter and playback rate.
The throughput of a simultaneous FTP transfer was also measured to determine

the impact on non real-time traffic.

Local Area Network Experiment

Many parameters affect the performance of cyclic-UDP, including the duration
of the read/send cycle and the epochs, the packet size, the target delay, the
expected drop rate, and the minimum and maximum bandwidth for each stream. |
used the values of the parameters listed in table 5-8 after considerable experi-

mentation in the LAN environment. The audio stream is given priority over the

137

Parameter Audio Video
Cycle Length | 4 seconds 2 seconds
Epoch Length | 200 msec 200 msec
Packet Size | 8000 8000
Expected Drop Rate | 20% 2%
Target Delay | 100 msec 50 msec
Maximum Bandwidth | 48/264 KBytes/sec? 30 fps @ maxVidSize®
Minimum Bandwidth | 16/88 KBytes/sec 10 fps @ maxVidSize
Burst Size | 8 KBytes 8 KBytes

Maximum Burst Size | 24 KBytes 24 KBytes

Table 5-8: Cyclic-UDP Parameters used in LAN tests

a. These values are six times the bandwidth required by the audio stream.
b. Le., the bandwidth required to deliver the stream’s largest video frame at 30 fps

video stream by setting its minimum and maximum bandwidth higher than neces-
sary and by setting the expected drop rate of the audio higher than the expected
drop rate of the video, which allows the audio stream to experience a higher loss
rate before decreasing its output bandwidth. Note also that the length of the
read/send cycle is 2 seconds, a value that may seem quite long. | set it to this
length because experiments revealed that an ethernet can experience delays of

up to 400 milliseconds under heavy load, and long cycles lead to smoother play-
back.

In the first experiment, a particular movie was selected for transmission and
one to four copies of the movie were sent for sixty seconds between two to eight
machines connected to a single 10 Mbit/sec Ethernet while a TCP/IP bulk transfer
and ordinary departmental traffic proceeded in the background. The machines
used in the test were: one Sparc 1, four Sparc 1+, one Sparc 10, one HP 730, and
one HP 750. Separate machines were used for each source and destination pair

so that the interaction of the protocols could be measured, rather than how they

138
handled contention for machine resources at the source or the destination. Figure

5-13 shows the experimental configuration. The receiving processes were instru-
mented to log the frame number and cycle number of each frame when it was

received.

Both the audio and video streams in the MPEG sequence “Ferris” were per-
fectly reconstructed, independent of the number of streams. This result in not sur-
prising, since the aggregate bitrate required to deliver four simultaneous “Ferris”

streams is about half of the network capacity.

The upper graph in figure 5-14 shows the probability of a video frame being
received versus its priority* for the “Andre” video sequence. The different curves
represent one, two, three, or four concurrent transports of “Andre.” This graph
shows that the probability of frame reception is a decreasing function of priority, as
expected. With one or two video streams, almost all video frames in “Andre” came
through every cycle. Only a few of the lowest priority frames were lost. Since each
stream corresponds to about 29% of the Ethernet capacity and part of the capac-
ity was used by departmental traffic, some frame loss when three or more concur-
rent streams are sent is inevitable. The graph shows that frames are correctly

prioritized when loss does occur.

-«——— Sources

10 Mbit/sec Ethernet

-a— Destinations

Figure 5-13: Configuration for LAN experiment

4 Priorities are in the range 0-59, since the video cycle length is two seconds
and the stream rate is 30 fps. Lower priority numbers correspond to higher pri-
ority frames.

139

“Andre” Video Sequence

100,

80-

60- N
\\

1 CM Stream —
2 CM Streams ----
3 CM Streams ====
4 CM Streams s

N
o

Probability of frame being received
N
o

% 10 20 3 4 50 60
Frame Priority (0 corresponds to high priority)

“Tony” Video Sequence

100 g —
g ‘)
2 | R \ 1 CM Stream —
o 80- % K
8 2 CM Streams ----
o K 3 CM Streams ===
§ 60. 4 CM Streams s
S
S 40-
S
£ 20.
]
3
T 9% 1o o

Frame Priority

Figure 5-14: Probability of video frame reception on a LAN

The lower graph in figure 5-14 shows the corresponding graph for the “Tony”
video sequence. Prioritization in this sequence also behaved well, demonstrating

that the cyclic-UDP protocol behaves well even under fairly extreme conditions.

Table 5-9 shows the fidelity of the reconstructed audio streams in this experi-

140

ment. One row is listed for each test, and the minimum and average reconstructed

frequency (in kHz) are reported. As the table shows, audio was reconstructed per-

fectly in all but the most severe cases, and even then the average quality was

very high.
Number Ferris Andre Tony
of Movies | nin | Avg | Min | Avg | Min | Avg
1 8.0 8.0 8.0 8.0 1| 44.0| 44.0
2 8.0 8.0 8.0 80| 44.0| 440
3 8.0 8.0 8.0 8.0 | 33.0 | 43.8
4 8.0 8.0 8.0 8.0 | 33.0 | 43.0
Table 5-9: Fidelity of reconstructed audio streams in a LAN
Movie Ferris Andre Tony
FPS Jitter FPS Jitter FPS Jitter
Min | Avg | Max | Avg | Min | Avg | Max | Avg | Min | Avg | Max | Avg
1] 300 30.0 0.0 0.0 | 30.0 | 30.0 0.0 00} 260 | 29.8 | 123 1.0
2| 300 300 0.0 00| 250 | 296 | 13.6 1.7 201 177 '354“‘. 226
3] 300 | 30.0 0.0 0.0 93] 243 | 454 | 104 20| 106 4/01'r 413
4| 300 30.0 0.0 0.0 80 202 | 441 153 20 73 518 654

Table 5-10: Fidelity of reconstructed video streams in a LAN

Table 5-10 shows the fidelity of the reconstructed video streams. Fidelity is

measured as the frame rate (in fps) and playback jitter (in milliseconds). Since the

frame rate can vary significantly over the course of the video, frame rate is evalu-

ated over one second intervals, and the minimum and average values are

reported. As discussed in section 5.3, playback jitter is considered good when its

value is less than half the inter-frame arrival time. The only time when the worst

case jitter was not “good” was when more than one concurrent copy of the “Tony”

141
sequence was sent. The relevant entries in the table are highlighted.

A separate, but interesting question is: what happens to non real-time traffic
while these CM streams are being transmitted? Are they completely drowned out,
or do they still get some appreciable bandwidth? Table 5-11 shows the throughput

of a TCP connection that was run in the background while the experiment pro-

Movie Ferris Andre Tony

Through % of Through % of Through % of
put unloaded put unloaded put unloaded

1 218 89% 158 65% 127 52%
2 210 86% 133 55% 51.3 21%
3 172 70% 58.6 24% 41.6 17%
4 105 43% 31.6 13% 11.3 5%

Table 5-11: Throughput of TCP connection (in KBytes/sec) during LAN playback

ceeded. With no CM Streams running, the connection had an average throughput
of 323 KBytes/sec. In addition to listing the average throughput of the connection,
the table also lists the percentage of the unloaded throughput. As you can see,
the TCP connection was not adversely affected until several streams were play-

ing.

Metropolitan Area Networks

The second suite of experiments tested cyclic-UDP in a Metropolitan Area
Network (MAN) environment. The MAN used in these experiments connects UC
Berkeley to the International Computer Science Institute (ICSI) in downtown Ber-
keley via two gateways®. The parameter values listed in table 5-12 were used in
the MAN experiments. The parameters are the same as used in the LAN tests

except for the highlighted items. As in the LAN tests, the audio stream is given pri-

142

Parameter Audio Video
Cycle Length | 4 seconds 2 seconds
Epoch Length | 200 msec 200 msec
Packet Size | 1100 T1100
Expected Drop Rate | 20% 10%

Target Delay | 100 msec 100 msec :
Maximum Bandwidth | 48/264 KBytes/sec 30 fps @ maxVidSize
Minimum Bandwidth | 5/26 KBytes/sec | 3 fps @ maxVidSize

Burst Size 4;(By:es 4 KBytcs
Maximum Burst Size | 12 KBytes 12 KBytes

Table 5-12: Cyclic-UDP parameter in the MAN environment

ority over the video stream using the bandwidth and expected drop rate parame-

ters.

Figure 5-15 shows the probability of a video frame being received versus its
priority for the various video sequences in the MAN environment. Again, cyclic-
UDP prioritizes frames as expected. The MPEG sequence “Ferris” played per-
fectly for one and two concurrent streams, and nearly perfectly in all cases.
“Andre” showed significant degradation when more than about two simultaneous
streams were transmitted, and the quality of the “Tony” sequence dropped off
sharply when more than one copy was sent. In all cases, however, the curves are

generally decreasing, indicating that cyclic-UDP is prioritizing frames correctly.

Tables 5-13 and 5-14show the fidelity of the reconstructed audio and video
streams. As in the LAN, audio fidelity was maintained even when video fidelity

was poor. These experiments show that the MAN environment tested is capable

5 The number of gateways along a route was determined using the tracer-
oute utility, which uses the IP “time to live” field and attempts to elicit an ICMP
TIME_EXCEEDED response from each gateway along the path.

143

“Ferris” Video Sequence

go!
.g 100 e —— _ S
ey

O

® g0.

2

m -

- ®0- 4 CM stream — (a)
g 40 2 CM Streams ----

& " 3 CM Streams ====

3 4 CM Streams

> 20-

;;

S % 1 20 3 4 5 6

Q Frame Priority

‘Andre” Video Sequence

—
o
o

(0]
o

(o2}
o

- 1 CM Stream —*
2 CM Streams ----
- 3 CM Streams ===-
4 CM Streams s

Frame Priority

Probability of frame being received
N S
o o

“Tony” Video Sequence

—h
o
o

1 CM Stream —
2 CM Streams ---- -
3 CM Streams ===-
4 CM Streams s -

(o2}
(@)

N
o

Probability of frame being received
S
o

Frame Priority

Figure 5-15: MAN environment: Probability of video frame reception

Number Ferris Andre Tony
of Movies Min | Avg | Min | Avg | Min | Avg
1 8.0 80| 8.0 8.0| 440 | 440
2 80| 80| 80| 80| 430439
3 80| 80| 80 8.0 | 37.0 | 43.0
4, 80| 80| 80 8.0| 155|355

Table 5-13: Fidelity of reconstructed audio streams in a MAN

144

Movie Ferris Andre Tony
FPS Jitter FPS Jitter FPS Jitter
Min | Avg | Max | Avg | Min | Avg | Max | Avg | Min | Avg | Max | Avg
1] 30.0 30.0 0.0 00| 207|255 170 | 115 110] 168 | 414 | 186
2| 300 300| 00| 00| 170|240 | 17.1| 134 | 20| 90| 589 | 485
3250 299 136 0.5 30| 165 279 230 2.0 53 660 : 92.5
4 6.0 | 286 112 42 20 121§ 518 370 20 40 660 137

Table 5-14: Fidelity of reconstructed video streams in a MAN

of supporting about 5 Mbits/sec of CM traffic and that cyclic-UDP uses this band-

width efficiently. Both “Andre” and “Tony” showed degradation when the total

bandwidth exceeded this capacity, but only when the attempted bandwidth was

four times the capacity was the average case jitter not “good.”

Finally, table 5-15 shows the throughput of a TCP connection that was run in

the background while the MAN experiment proceeded. With no CM Streams run-

ning, the connection had an average throughput of 73 KBytes/sec. As in the LAN

case, the TCP connection was not adversely affected until several streams were

playing. Note that cyclic-UDP obtains about ten times the throughput of TCP in

this environment.

Movie Ferris Andre Tony
Through % of Through % of Through % of
put unloaded put unloaded put unloaded
1 54 74% 36 49% | 36 49%
2 41 56% 29 40% 20 27%
3 36 49% 36 48% 14 19%
4 20 28% 11 15% 4.5 6%

Table 5-15: Throughput of TCP connection (in KBytes/sec) during MAN playback

145

Wide Ar

Network:

The last set of experiments were designed to test cyclic-UDP in a Wide Area

Network (WAN) environment. The WAN used was the Internet between UC Ber-

keley and Cornell University in upstate New York via eighteen gateways. The

parameter values listed in table 5-16 were used in the WAN experiments. The

Parameter Audio Video
Cycle Length | 4 seconds 2 seconds
Epoch Length | 200 msec 200 msec
Packet Size | 1100 1100
Expected Drop Rate | 40% 20%
Target Delay | 500 msec 100 msec
Maximum Bandwidth | 120 KBytes/sec 30 fps @ maxVidSize
Minimum Bandwidth | 12 KBytes/sec 1 1 KBytesfsec
Burst Size | 4 KBytes 4 KBytes
Maximum Burst Size | 12 KBytes 10 KBytes

Table 5-16: Cyclic-UDP parameter in the WAN environment

146

parameters are the same as used the previous tests except for the highlighted

items. As in the previous tests, the audio stream is given priority over the video

stream using the bandwidth and expected drop rate parameters.

Figure 5-16 shows the probability of a video frame being received versus its

priority for the various video sequences in the MAN environment. In this experi-

ment, we see some degradation in the MPEG sequence “Ferris”. Also note that no

attempt was made to send more than two concurrent copies of the “Tony”

sequence across the Internet since the bandwidth required far exceeds the

capacity of the channel and | did not want to affect other users too badly.

Tables 5-17 and 5-18 show the fidelity of the reconstructed audio and video

Number Ferris Andre Tony
of Movies Min | Avg | Min | Avg | Min | Avg
1 8.0 80| 80 8.0 2101 27.6
2 8.0 8.0 8.0 8.0 11.5| 26.3
3 8.0 8.0 8.0 80| - -
4, 170 80| 6.0 79| - -

Table 5-17: Fidelity of reconstructed audio streams in a WAN

Movie Ferris Andre Tony
FPS Jitter FPS Jitter FPS Jitter
Min | Avg | Max | Avg | Min | Avg | Max | Avg | Min | Avg | Max | Avg
1 40| 174 | 194 286 | 50| 90| 118 | 324 | 20| 32| 660| 153
2| 40| 162 194 306| 50| 84 122 | 352 20| 3.0, 660 | 162
3 20| 107 | 3565 1573 20| 60| 448 | 770 - - - -
4l 20| 77| 13| 16| 20| 44| 60| 121 - | - | - | -

Table 5-18: Fidelity of reconstructed video streams in a WAN

100 megpe——— . .
80- ’ \‘N\‘\
60-

‘.CD.... (a)

40 -

1 CM Stream —

0.2 CM Streams ----

3 CM Streams ====

4 CM Streams s

Oo 0 20 30 40 50 60
Frame Priority

Probability of frame being received

§ 100 ga

§ 80

&) 1 CM Stream —

S 60 2 CM Streams ----

Y) 3 CM Streams ==== ~
4 CM Streams s

Es 40 - . (o)

kS

D 20- TN

.g

s % ‘ "50

Q Frame Priority

“T i V'

E 100—. . Tony” ideo Spquencg

kS . 1 CM Stream —

© 80- | 2 CM Streams ----

Q) '

£

2 60-

)

g (c)

8 40-

kS

> 20-

E

g %

a Frame Priority

Figure 5-16: Probability of video frame reception on a WAN

147

148

Movie Ferris Andre Tony

Through % of Through % of Through % of
put unloaded put unloaded put unloaded

1 6500 51% 6060 48% 8430 67%
2 4300 34% 3000 24% 3680 30%
3 222 1.7% 1930 15% - -
4 1270 10% 3320 26% - -

Table 5-19: Throughput of TCP connection (in bytes/sec) during WAN playback

streams, and table 5-19 shows the throughput of a background TCP connection.
All streams showed degradation in this environment in the worst case, but aver-
age case performance was acceptable except when four concurrent streams
attempted to share this limited channel. The baseline connection throughput was
about 13 KBytes/second, which corresponds to a frame rate of about 1 frame/sec-
ond for the “Andre” sequence. Thus, cyclic-UDP achieves eight to eighteen times

the throughput of TCP in this environment.

5.5 Previous Work

Previous work in network protocols for CM data delivery has been focused on
solving three problems for applications: error and loss recovery, flow control, and
delay and jitter management. Protocols and systems differ in how they address
these problems. This section reviews the solutions to these problems that have

been reported in the literature.

Error Recovery

In the literature, four basic techniques have been reported for packet loss and
error recovery: 1) ignoring the error, 2) avoid the error, 3) retransmitting the cor-

rupt/lost packet, and 4) correcting the corrupt/lost packet.

149
Many systems use strategy (1). Rather than recovering from errors, these sys-

tems initiate flow control when error rates exceed a threshold value in an attempt
to reduce future errors. Jeffay and Stone [38] use this strategy in a system based
on UDP, and the Heidelberg Transport System [33] uses this strategy, but on top
of ST-II [77].

Nv [25], a video conferencing tool popular on the Internet, uses strategy (1) in
combination with a custom compression technique that is robust to packet loss. In
this technique, the source captures an image and breaks it into small blocks. Each
block is compared against the corresponding block in the previous image and, if
significantly different, is compressed and sent to the receiver(s). When the desti-
nation receives a block, it updates the portion of the screen that contains the
block. Nv also periodically resends background blocks, even if they have not

changed recently, just in case the original was lost in transmission.

The Tenet research group [22] has defined a protocol suite that provides sta-
tistical guarantees on network performance to implement strategy (2). Clients
reserve resources in advance at nodes along the route between source and desti-
nation using the Real-Time Channel Administration Protocol, RCAP [5], specifying
constraints on delay, jitter, and bandwidth. If the connection can be accommo-

dated, it is accepted and a channel is established.

Cyclic-UDP uses strategy (3) and with prioritization to retransmit the optimal
packets. Surprisingly few other systems use this paradigm, mostly due to fears
that the latency will be too large for use in conferencing applications. TCP/IP [75]
uses this paradigm; [31] reports efforts to extend TCP/IP to support multimedia
applications by prioritizing packets in the routers, but this work is still embryonic.
TCP/IP is the transport mechanism used in the Xphone system [20], a video con-

ferencing prototype being developed at Columbia.

150
The idea of strategy (4) is to send redundant information that allows lost data

to be reconstructed provided a subset of the original information is sent, a tech-
nique called forward error correction (FEC) [8,72]. Yavatkar and Manoj study two

FEC strategies (XOR and replication) in a mutlicasting simulation study [85].

The Priority Encoded Transmission (PET) project [2], implements FEC in a
particularly novel way. Each frame in a group of frames is assigned a numerical
priority in the range (0..1], with smaller values yielding higher priorities. The group
is then encoded into packets that are sent to the destination. The encoding has
the property that, if a fraction x of the packets are received, then any frame with a

numerical priority lower than x can be reconstructed.

Finally, the DEMON system supports strategies (1), (3), and (4), preprocessing
the multimedia document to determine which strategy is most applicable to each

data element in the document.

Flow Control

Virtually all best-effort systems provide some form of flow control in response
to network congestion. Four strategies have been reported in the literature: 1) no
flow control, 2) flow control based on measurements to estimate bandwidth, 3)
flow control based on feedback messages from the destination, and 4) window-

based flow control.

Systems that use no flow control typically use FEC or assume that flow control
is provided by the network layer. For example, the Starlight Network Server [77]
assumes that sufficient network bandwidth is available and the PET project [2]
treats the network as a fundamentally lossy transmission medium where flow con-
trol is not necessary. The Tenet protocol [22] suite falls into this class, allowing

applications to reserve bandwidth before they initiate transmission.

Cyclic-UDP falls into category (2), using measurements to estimate the avail-

151
able channel bandwidth. Jeffay and Stone allow multiple audio frames, but only a

single video frame, to be queued at the sender. This strategy reduces the flow of
video data in response to network congestion [38], dropping extra frames when

access to the network is delayed.

UDP+resends uses strategy (3) to reduce the rate at which frames are gener-
ated at the source. HeiTP [19] uses media specific protocols to compensate for
network congestion in response to feedback messages from the destination. And
in the simulation study by Yavatkar and Manoj [85], several strategies for flow

control based on destination feedback messages are investigated.

TCP/IP is the only system | know of that uses window-based flow control. The
Xphone system [20], which sends audio and motion-JPEG data using TCP/IP,
also uses window-based flow control by extension. But xphone provides an addi-
tional layer of flow control using strategy (2) and a media-specific protocol, mea-
suring the actual throughput every ten video frames and adjusting the

quantization tables used in the JPEG compression accordingly.

The simplest solution to delay and jitter management is to buffer sufficient data
at the destination to smooth out variations in network delay. The CMT system
uses this approach. Although buffering is suitable for most playback applications,
this solution is not viable for many interesting classes of applications. For exam-
ple, conferencing applications need low end-to-end latency and can only buffer a
maximum of about 800 milliseconds worth of data [64, 41, 10]. This implies that
the network delay can not exceed 800 milliseconds. Furthermore, in some play-
back applications the receiver may have extremely limited buffering capabilities

due to cost constraints. In both these situations, delay and jitter must be bounded.

The Tenet protocol suite allows applications to specify delay and jitter bounds

152
at connection setup. In Xphone [20] and vat, the Internet audio conferencing

tool, network jitter is absorbed at the application by dynamically adjusting the
amount of data buffered at the destination and adjusting the delay between cap-
ture and dispiay of data: if many samples are arriving after the playback point,
more data is buffered and the delay is increased. If most samples are arriving
early, buffering and delay are decreased. Both Xphone and vat reduce the bufi-

ering during periods of silence, so the change is almost invisible to the listener.

5.6 Conclusions and Future Work

In this chapter, | described an approach to the data delivery problem in multi-
media systems. | showed that media-specific protocols, in combination with priori-
tized delivery mechanisms, can significantly improve the quality of playback
systems. Cyclic-UDP is currently in use in CMT, and CMT has been delivered to

several research groups outside Berkeley.

Some interesting extensions to this work are possible. For example, cyclic-
UDP could be extended to conferencing applications. The biggest problem is that
the notion of long read/send cycles is at odds with the low latency requirements of
conferencing application. One approach to solve this conflict is to modify cyclic-
UDP to dynamically add newly acquired frames to an existing cycle and to dynam-
ically remove expired frames from a cycle. With these changes, the send buffer is
like a TGP window on the stream of frames, except the window moves forward
with time, not with ACKs as in TCP. This strategy introduces a new problem: how
should the frames in the window be prioritized? One possibility is to make the win-
dow size fixed and send frames in bursts as in cyclic-UDP, prioritizing frames

using IBO on the frame number.

For example, suppose the window size is four frames. Then the first frame is

placed in slot one of the window, the second frame in slot three, the third frame in

153

F1|F3 | F2 | F4 F5 | F3 | F2 | F4 F5 | F3 | F6 | F4
(@ (b) ©

Figure 5-17: Extending Cyclic-UDP to Conferencing

slot two, and the fourth frame in slot four, as shown in figure 5-17 (a). Sending
frames proceeds as in cyclic-UDP: at each burst, a fixed amount of unsent pack-
ets are sent, highest priority first. Retransmission requests mark packets as
unsent. When a new frame is ready for sending, it is placed in the queue at the
position determined by its frame number modulo the window size (four in this
example). For example, figures 5-17 (b) and 5-17 (c) show the state of the window

after frames five and six have been queued for delivery.

The interactive behavior of cyclic-UDP can also be improved. For example, if
two second read/send cycles are used, the delay is two seconds from when the
user presses play in a playback application and when video begins displaying on
the screen. Although such delays may not be bothersome for viewing long video
sequences, they are annoying if the user’s behavior is interactive, as in browsing.
Varying the cycle length in response to the user’s interaction is a possible solution
to this problem. The cycle length could be initially small and lengthened as the

user’s behavior becomes quiescent.

154
Chapter 6

Conclusions

This section enumerates the specific contributions of this thesis in the domain

of multimedia systems and indicates directions for extending this work.
6.1 Compressed domain processing

ntribution

Chapters 2 and 3 described a novel, high performance technique for process-
ing JPEG compressed images without decompressing them. The technique was
based on the observation that the JPEG compression algorithm can be decom-
posed into a linear transformation (e.g., DCT + zig-zag scan + constant division)
followed by a lossy, non-linear step (e.g., integer rounding) followed by an entropy
coding step (e.g., Huffman coding). By writing the calculation of a digital video
effect (DVE) as a linear transformation and composing it with the linear transfor-
mation of the JPEG algorithm, | showed how a large class of DVEs can be
mapped into operators in the JPEG domain. By exploiting the approximation intro-
duced by the lossy step in JPEG, | developed a technique called condensation
that reduces the complexity of the JPEG domain calculation by several orders of

magnitude. Two algorithms for condensation, thresholding and probabilistic, were

also described and evaluated.
Application
The DVE technology in chapters 2 and 3 has numerous applications, includ-
ing:
1. Transcoding. These techniques can be extended to support

real-time software video transcoding. For example, it might be
possible to convert a motion-JPEG data stream to an MPEG

bitstream or an H.261 bitstream on demand and in software, a
technology useful for database systems, video file servers, and
video conferencing systems that support heterogeneous cli-
ents.

Deinterlacing. NTSC video is transmitted as a sequence of
fields (designated odd and even) that contain every other line
on the screen. Some capture systems [69] grab and compress
video as a sequence of fields, whereas most applications, sys-
tems, and hardware store, process, and transport video as a
sequence of frames (the composite of two fields). Conse-
quently, the captured video fields must be converted to frames,
a slow, off-line process. The DVE technology can be used to
create deinterlacing software that quickly accomplishes this
task.

Editing. Many current-generation editing systems use special
purpose hardware to produce fades, wipes, dissolve, fly-ins,
composition, and a variety of other effects in real-time. The
DVE technology can be used to produce a software-only sys-
tem with similar functionality at considerable savings.

Source channel coding. The data compression community
has been exploring custom compression schemes that allow
the bandwidth of the bitstream to be dynamically adjusted to
provide network flow control. In these hybrid network/compres-
sion schemes, called source-channel coding, the frame rate,
resolution, image quality, color depth, and inter-frame data
dependencies are adjusted to modify the quality/bandwidth
trade-off of the compression. Using the DVE technology,
source-channel coding methods can be applied to standard
encoding schemes.

155

156
Future Work

Although many applications listed above require research and development to
be viable, extending this technology to new encodings is central to promoting
widespread use. The basic ideas and techniques of chapters 2 and 3, namely
mapping image processing operators into the compressed domain and condens-
ing the result, can be applied to other transform based encodings, such are

MPEG, H.261, sub-band, and wavelet encodings.

An intriguing path to explore is the application of these principles to other
media types, such as audio. For example, MPEG audio compression uses sub-
band coding along with a perceptual model to remove imperceptible data, so a
condensation algorithm for MPEG compressed audio must integrate this percep-

tual model, a challenging problem.
6.2 CMT

ntribution and Application

An orthogonal contribution of this thesis is a toolkit, called CMT, for construct-
ing distributed CM applications like the CM Player. CMT is based on a modified
version of the Tcl/Tk graphical user interface (GUI) toolkit and a distributed pro-
gramming toolkit called Tcl-DP. The GUI toolkit modifications are generic;

although | applied them to Tcl/Tk, the same ideas are applicable to almost any

event-driven GUI.

Tcl-DP has received widespread attention in the Tcl community, and today
hundreds of sites worldwide are using Tcl-DP to prototype client/server systems. It
has been ported to most Unix systems, VMS, Windows 3.1, Chicago, UNICOS
(the Cray operating system), and VxWorks. CMT has served as the basis for a

Video-on-Demand System [21] and a video conferencing system [66]. Many

157
researchers have expressed interest in using CMT for their own research, and

efforts are underway to distribute a new version of the toolkit.

Future Work

CMT has great promise, but poses many challenges. The distributed aspect of
the system makes it fragile; if a single process crashes, the system typically
hangs. Standard techniques such as reliable backup servers may provide a solu-
tion to this problem, but clients will stall while the handoff to backup servers takes
place. In future video file systems that support hundreds, or even thousands of

users, the storm of reconfiguration requests will further delay the handoff.

One proposed solution to this problem is an extended video file server for CMT
that stripes data at the frame level. For example, odd numbered frames might be
stored on one server, and even numbered frames on another. If one server goes
down, the frame rate is halved while backup servers are found. In other words, the

effect of a server crashing is to reduce the fidelity of the stream.

6.3 Cyclic-UDP

Contribution

The final contribution of this thesis was a novel best effort network protocol for
CM data delivery. This protocol differs from previous protocols in two ways. First,
cyclic-UDP is designed to support media specific protocols, which | experimen-
tally showed improve the quality of the reconstructed signal when the transport
medium is unreliable. Media specific protocols and associated algorithms for

MPEG, motion-JPEG, and uncompressed audio data were also presented.

The second way cyclic-UDP differs from previous work is that it works with a
variety of encoding schemes and has been tested in LAN, MAN, and WAN envi-

ronments. Other best effort protocols reported in the literature are either untested

158
proposals [31, 9], have been tested only in one environment [68, 20, 38, 19, 76],

have been simuiated, but not implemented [85, 31, 9], or use custom compres-

sion schemes [15].

Future Work

Cyclic-UDP can be extended in two ways. First, cyclic-UDP can be extended
to support the lower latency communication required by video conferencing appli-
cations. A method for implementing such an extension was proposed at the end of
chapter 5, and will not be repeated here. Second, cyclic-UDP can be adapted to a
high-speed cell network, such as ATM. | expect the protocol to behave well since
it is highly asynchronous, but the question remains open until the protocol is actu-

ally implemented.

[1]

[3]

[4]

[6]

[7]

[8]

159
References

A. Albanese, personal communication, 1994

A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, Priority Encoding
Transmission, Symposium on Foundations of Computer Science, October,
1994,

D. P. Anderson, George Homsy, A Continuous Media I/O Server and Its
Synchronization Mechanism, IEEE Computer, 1991 Oct, Vol. 24 Num. 10,
pp. 51-57.

F. Arman, A. Hsu, M. Y. Chiu, Image processing on compressed data for
large video databases. Proceedings of ACM Multimedia 93, (Anaheim, CA,
August 1-6, 1993). Association for Computing Machinery Press, New York,
1993 pp. 267-72.

A. Banerjea, B. Mah, The Real-Time Channel Administration Protocol, Net-
work and Operating System Support for Digital Audio and Video: Second
International Workshop, (Heidelberg, Germany, November, 1992),
Springer-Verlag, Berlin; New York. pp. 160-170

J. Bates, Presentation Support for Distributed Multimedia Applications, Ph.
D Thesis, Computer Laboratory, University of Cambridge, 1993.

J. Bates, J. Bacon, A development platform for multimedia applications in a
distributed, ATM network environment, Proceedings of IEEE International
Conference on Multimedia Computing and Systems, Boston, MA, USA,
May 15-19, 1994 IEEE Computer Society Press, Los Alamitos, CA, pp.
154-163.

E. Biersack, Performance Evaluation Of Forward Error Correction in an

ATM Environment, |IEEE Journal on Selected Areas in Communications,

160
May 1993, Vol.11, Num. 4, pp. 631-640.

9] J. Bolot, T. Turletti, Feedback Control of Video Codecs for a Packet
Switched Network, Network and Operating System Support for Digital
Audio and Video: Fourth International Workshop, Lancaster, UK, Novem-

ber, 1993. Springer-Verlag, Berlin; New York pp. 13-15

[10] P. Brady, Effects of Transmission Delay on Conversational Behavior on
Echo-Free Telephone Circuits, The Bell System Technical Journal, Vol. 50,
Num.1, January, 1971, pp. 115-134.

[11] M. C. Buchanan, P. T. Zellweger, Automatic temporal layout mechanisms,
Proceedings of ACM Multimedia 93, (Anaheim, CA, August 1-6, 1993).
Association for Computing Machinery Press, New York, 1993 pp. 341-350

[12] M. C. Buchanan, P. T. Zellweger, Scheduling multimedia documents using
tempora/ constraints, Network and Operating System Support for Digital
Audio and Video: Third International Workshop, (La Jolla, California, USA
November 12-13, 1992). Springer-Verlag, Berlin; New York pp. 237-249.

[13] D. Bulterman, Synchronization of Multi-Sourced Multi-media Data for Het-
erogeneous Target Systems, Network and Operating System Support for
Digital Audio and Video: Third International Workshop, (La Jolla, California,
USA November 12-13, 1992). Springer-Verlag, Berlin; New York pp. 110-
120

[14] Gordon Chaffee, personal communication, 1994

[15] S. Chakrabafti, R. Wang, Adaptive Control for Packet Video, Proceedings
of the 1994 International Conference on Multimedia Computing and Sys-

tems, Boston, Mass, May 1994, pp. 56-62

[16] S. F. Chang, W. L. Chen, D. G. Messerschmitt, Video Compositing in the

DCT Domain, IEEE Workshop on Visual Signal Processing and Communi-

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

161
cations, Rayleigh, North Carolina, Sept. 1992

S. F. Chang and D. G. Messerschmitt, A New Approach to Decoding and
Compositing Motion Compensated DCT-Based Images, IEEE International
Conference on Acoustics, Speech, and Signal Processing, Minneapolis,

Minnesota, pp. 421-424, April, 1993.

B. Chitprasert, K. R. Rao, Discrete Cosine Transform Filtering, Signal Pro-
cessing, Vol. 19, Num.3, pp. 233-245, March 1990

L. Delgrossi, C. Halstrick, et. al., Media Scaling for Audio Vidual Communi-
cation with the Heidelberg Transport System, Proceedings of ACM Multi-
media 93, (Anaheim, CA, August 1-6, 1993). Association for Computing
Machinery Press, New York, 1993 pp. 99-104

A. Eleftheridas, S. Pejhan, D. Anastassiou, Algorithms and Performance
Evaluation of the XPhone Multimedia Communication System, Proceed-
ings of ACM Multimedia 93, (Anaheim, CA, August 1-6, 1993). Association
for Computing Machinery Press, New York, 1993 pp. 311-320

C. Federighi, L. A. Rowe, A Distributed Hierarchical Storage Manager for a
Video-on-Demand System, IS&T/SPIE Symposium on Electronic Imaging:

Science & Technology, San Jose, California, February, 1994.

D. Ferrari, A. Banerjea, H. Zhang, Network Support for Multimedia - A dis-
cussion of the Tenet Approach, Tech Report TR-92-072, Internation Com-
puter Science Institute, Berkeley, CA, October, 1992; to appear in
Computer Networks and ISDN Systems, special issue on Multimedia Net-
working, 1994.

J. D. Foley, et. al., Computer Graphics: Principles and Practice, second

edition, Reading, Mass. Addison-Wesley, 1990.

J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics,

162
Second Edition, Addison-Wesley Publishing Company.

[25] R. Frederick, Experiences with Real-time Software Video Compression,
Proceedings of the Packet Video Workshop (Portland, Oregon, USA, Sep-
tember 26-27, 1994)

[26] D. R. Fuhrmann, et. al, Experimental Evaluation of Psychophysical Distor-
tion Metrics for JPEG-Encoded Image, Proceedings of the SPIE - The
International Society for Optical Engineering,1993, Vol.1913, pp. 179-190

[27] T. A. Funkhouser, C. H. Sequin, Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments, Proceed-
ing of SIGGRAPH 93, Anaheim, CA, USA, August 1-6, 1993, Association
for Computing Machinery, New York, NY, 1993. pp. 247-254.

[28] S. Gibbs, Application Construction and Component Design in an Object-
Oriented Multimedia Framework, Network and Operating System Support
for Digital Audio and Video: Third International Workshop, (La Jolla, Cali-
fornia, USA November 12-13, 1992). Springer-Verlag, Berlin; New York pp.
351-355

[29] T Grogan, Image Quality Evaluation With A Contour-based Perceptual
Model, Proceedings of the SPIE - The International Society for Optical
Engineering, 1992, Vol.1666, pp. 188-197

[30] L. Hardman, D. Bulterman, G. Van Rossum, The Amsterdam Hypermedia
Model: Extending Hypertext to Support Real Multimedia, Hypermedia,
1993, Vol.5, Num.1, pp. 47-69.

[31] B. Heinrichs, R. Karabek, TCP/IP Supporting Real-Time Applications: The
Predictive Delay Control Algorithm, Network and Operating System Sup-
port for Digital Audio and Video: Second International Workshop, (Heidel-
berg, U.K., November, 1992), Springer-Verlag, Berlin; New York. pp. 45-47

163
[32] R. Herrtwich, The HeiProjects: An Updated Survey, Technical Report, IBM

European Networking Center, Heidelberg, Germany October, 1992

[33] R. Herrtwich, L. Delgrossi, Beyond ST-II: Fulfilling the Requirements of
Multimedia Communication, Network and Operating System Support for
Digital Audio and Video: Third International Workshop, La Jolla, California,
USA November 12-13, 1992, Springer-Verlag, Berlin; New York pp. 23-29

[34] A. Hopper, Pandora - an experimental system for multimedia applications,
Olivetti Research Laboratory, Trumpington St., Cambridge, UK, CB21QA,
June, 1990.

[35] B. K. P.Horn, Robot Vision, MIT Press, Cambridge, Mass, 1986

[36] E. Israel, The X-Window system server: X version 11, release 5. Digital
Press, Bedford, MA, 1992.

[37] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Inc.

Englewood Cliffs, New Jersey, 1989

[38] K. Jeffay, D. L. Stone, T. Talley, and F. D. Smith, Adaptive, best-effort deliv-
ery of digital audio and video across packet switched networks, Network
and Operating System Support for Digital Audio and Video: Third Interna-
tional Workshop, (La Jolla, California, USA, November 12-13, 1992),
Springer-Verlag, Berlin; New York, pp. 1-12,

[39] B. W. Kernighan, D. M. Ritchie, The C Programming Language, Engle-
wood Cliffs, N.J., Prentice-Hall,1978.

[40] S. A.Klein, et. al. Relevance of Human Vlsion to JPEG-DCT Compression,
Proceedings of the SPIE - The International Society for Optical Engineer-
ing,1992, Vol.1666, pp. 200-215

[41] E. Klemmer, Subject Evaluation of Transmission Delay in Telephone Con-

versations, The Bell System Technical Journal, Vol. 46, July-August, 1967,

164
pp. 1141-1147.

[42] S. G. Kochan et. al, UNIX Networking, Hayden Books, Carmel, IN, 1989

[43] T. Lane, Independent JPEG Group Software Codec, Internet Software Dis-
tribution, URL ftp:/ftp.uu.net/graphics/jpeg/jpegsrc.vé.tar.Z

[44] D. Le Gall, MPEG: a video compression standard for multimedia applica-

tions, Communications of the ACM, April 1991, Vol. 34, Num.4, pp. 46-58.

[45] J. S. Lim, Two-dimensional signal and image processing, Prentice Hall,
Englewood Cliffs, N.J., 1990

[46] T. D. C. Little, A. Ghafoor, Synchronization and Storage Models for Multi-
media Objects, |IEEE Journal on Selected Areas in Communications, Vol.
8, Num.3, pp. 413-427, April 1990

[47] T D.C. Little, D. Venkatesh, “Probabilistic Assignment of Movie to Storage
Devices in a Video-On-Demand System,” Network and Operating System
Support for Digital Audio and Video: Fourth International Workshop, Lan-

caster, UK, November, 1993. Springer-Verlag, Berlin; New York pp. 213-
224

[48] W. Mackay, G. Davenport, Virtual Video Editing in Interactive Multimedia
Applications, Communications of the ACM, July 1989, Vol. 32 Num. 7, pp.
802-810

[49] D. Mills, Measured performance of the network time protocol in the internet

system, Network Working Group, RFC 1128 (October 1988).

[50] T. J. Mowbray, T. Brando, Interoperability and CORBA-based open sys-
tems, Object Magazine, Sept.-Oct. 1993, Vol. 3, Num.3, pp. 50-54.

[51] Multimedia System Services, Version 1.0, Hewlett-Packard, IBM Corp.,

SunSoft, Inc. Response to Interactive Multimedia Association Request for

165
Technology, IMA Compatibility Project, 1993

[52] C. Nicolaou, An Architecture for Real-Time Multimedia Communication
Systems, |EEE Journal on Selected Areas in Communications, Vol. 8,

Num.3, pp. 391-400, April 1990

[53] N. B. Nill, A Visual Model Weighted Cosine Transform for Image Compres-
sion and Quality Assessment, IEEE Transaction on Communication, Vo!.
33, Num.6, June 1985

[54] J. Ousterhout, Tel: An Embeddable Command Language, Proc. of the 1990
USENIX Winter Conference, January 1990, pp. 133-146

[55] J. Ousterhout, An X711 Toolkit Based on the Tcl Language, Proc. of the
1991 USENIX Winter Conference, January 1991.

[56] Parallax Video Software Developer’s Guide, Parallax Graphics, Inc. Santa
Clara, CA. 1993

[57] W. B. Pennebaker, JPEG still image data compression standard, Van Nos-
trand Reinhold, New York, 1992.

[58] H. A. Peterson, An Improved Model for DCT Coefficient Quantization, Pro-
ceedings of the SPIE - The International Society for Optical Engineer-
ing,1993, Vol.1913, pp. 191-201

[59] C. Petzold, Video for Windows brings interleaved audio and full-motion dig-
ital video to the PC, Microsoft Systems Journal Vol. 8, Num.1, Jan, 1993,
pp. 43-52.

[60] Pixie profiling software, Digital Equipment Corporation, 1991.

[61] T Porter and T. Duff, Compositing Digital Images, SIGGRAPH ‘84 Pro-
ceedings, Vol. 18, pp. 253-259, July 1984

[62] W. Pratt, Multimedia System Services, Version 1.0, Interactive Multimedia

166
Association Compatibility Project. Technical Contact: Dr. William Pratt,

SunSoft Inc., Mountain View, CA. william.pratt@sun.com

[63] K. R. Rao and P. Kip, Discrete Cosine Transform -- Algorithms, Advan-

tages, Applications, Academic Press, Inc. London, 1990

[64] R. Riesz, E. Klemmer, Subject Evaluation of Delay and Echo Suppressors
in Telephone Communications, The Bell System Technical Journal, Vol. 42,

November, 1963, pp. 2919-2941.

[65] G. Rossum, et. al., CMIFed: A Presentation Environment for Portable
Hypermedia Documents, Proceedings of ACM Multimedia 93, (Anaheim,
CA, August 1-6, 1993). Association for Computing Machinery Press, New
York, 1993 pp. 183-188

[66] L. A. Rowe, personal communication, 1994
[67] L. A. Rowe, K. Patel, B. C. Smith, MPEG video in software: representation,

transmission and playback, 1IS&T/SPIE Symposium on Electronic Imaging:

Science & Technology, San Jose, California, February, 1994.

[68] L.A.Rowe, B. C. Smith, A Continuous Media Player, Network and Operat-
ing System Support for Digital Audio and Video: Third International Work-
shop, (La Jolla, California, USA November 12-13, 1992). Springer-Verlag,
Berlin; New York pp. 334-344

[69] ATV Toolkit Software Guide, Version 2.2, Parallax Graphics, Inc. Santa
Clara, CA. 1993 |

[70] J. A. Saghri, et. al, Image Quality Measure Based on a Human Visual Sys-

tem Model, Optical Engineering, Vol. 28, Num.7, July 1989
[71] R. Sedgewick, Algorithms, 2nd ed., 1988, Addison-Wesley, Reading, Mass

[72] L. Shaw-Min, Forward Error Correction Codes for MPEG2 over ATM, IEEE

167
Transactions on Circuits and Systems for Video Technology, April 1994,

Vol. 4, Num.2, pp. 200-203

[73] E. E. Smith, J. D. Lehman, Interactive Video: Implications of the Literature
for Science Education, Journal of Computers in Mathematics and Science

Teaching, Vol. 8, Num. 1, Fall, 1988, pp. 25-32

[74] R. Steinmetz, J. C. Fritzche, Abstractions for Continuous Media Program-

ming, Computer Communications, Vol. 15, Num.6, July 1992, pp. 396-402
[75] W. Stevens, TCP/IP lllustrated, Addison-Wesley, New York, 1994.

[76] D. Stone, K. Jeffay, Queue Monitoring: A Delay Jitter Management Policy,
Network and Operating System Support for Digital Audio and Video: Fourth
International Workshop, Lancaster, UK November,1993. Springer-Verlag,
Berlin; New York pp. 151-162

[77] F. Tobagi, J. Pang, Starworks *TM -- A Video Applications Server, Proceed-
ings of IEEE Compcon ‘93 (San Francisco, California, USA, February,
1993).

[78] C. Topolic, Experimental Internet Stream Protocol, Version 2 (ST-1l); RFC-
1190, Internet Request for Comments, Num. 1190, Network Information
Center, October 1990

[79] D. Verma, H. Zhang, Design documents for RTIP/RMTP, unpublished
manuscript (1991).

[80] R. V. Volkman, The digital video interface for Windows multimedia, Win-
dows-DOS Developer’s Journal, Vol. 3, Num.9, Sept., 1992, pp. 5-14

[81] S. Voran, The Development of Objective Video Quality Measures that
Emulate Human Perception, Proceedings of IEEE Global Telecommunica-

tions Conference: GLOBECOM '91, Phoenix, AZ, December 1991

168
[82] G. K. Wallace, The JPEG Still Picture Compression Standard, Communi-

cations of the ACM, Vol. 34, Num. 4, pp. 30-44, April 1991.

[83] A.B. Watson, DCT Quantization Matrices Optimized for Individual Images,
Proceedings of the SPIE - The International Society for Optical Engineer-
ing,1993, Vol.1913, pp. 202-216

[84] A. Watson, OMG (Object Management Group) architecture and CORBA
(common object request broker architecture) specification, IEE Colloquium
on Distributed Object Management, Digest Num.1994/007, London, UK,
Jan. 1994, pp. 4/1.

[85] R. Yavatkar, L. Manoj, Optimistic Strategies for Large Scale Dissemination
of Multimedia Information, Proceedings of ACM Multimedia 93, (Anaheim,
CA, August 1-6, 1993). Association for Computing Machinery Press, New
York, 1993, pp. 13-20

[86] C. Zetzsche, Principal Features of Human Vision in the Context of Image
Quality Models, Third International Conference on Image Processing and

its Applications, Warwick, UK, July 1989.

[87] J. Ziv, A. Lempel, A universal algorithm for sequential data compression
IEEE Transactions on Information Theory, May 1977, Vol. IT-23, Num. 3,
pp. 337-343.

169
Appendix A

Geometric Transforms as LGDVEs
This appendix shows how to convert a geometric image transformation into a
linear, global digital video effect (LGDVE). Such transformations include scaling,

rotation, and shearing. We use the model of transformation plus filtering proposed
in [23].

In this model, we are given a matrix geometric transform

u=A(ry) x=A (4v)

-1 EQ A-1
v = B(x,y) y =B (u,v)

and filter function

g(xy)

as shown in the figure below. Our goal is to compute the DVE transformation

/(wy) (x,y)\

Al B! \V
—

A B
-—

tensor th from equation 3-1.
The value of an output pixel huv IS given by

o0 o0

h = }(I J‘g[A‘l (4, v) —x, B (u,v) —y]fxydxdy EQ A2

—00 00

170
where k is a normalization constant:

o0 ©0

K = I jg[A—l (u,v) - x, B! (u, v) —y]dxdy EQ A-3

—00 .00

From the definition of the transformation tensor of a LGDVE given in equation

3-1, equation A-2 reveals that ti{v is given by

11

T -1 . -1 .

o= ;Jjg[A (w,v) = (i+x),B" (u,v) - (j+y) |dxdyEQ A-4
00

which is the required tensor.

