
E�cient, Portable, and Robust Extension of

Operating System Functionality

Amin Vahdat, Douglas Ghormley, and Thomas Anderson

Computer Science Division

UC Berkeley

December 5, 1994

Abstract

Currently, operating systems are not chosen for underlying system features, but rather for the performance of the

underlying hardware, available application programs, and system stability. Consequently, operating system vendors

are reluctant to incorporate new operating system functionality since they risk both increased development time and

decreased system stability. Previous e�orts to make it easier for operating systems to incorporate new features have

enjoyed only limited success because of performance bottlenecks or limited support for existing applications. This

paper outlines a portable, e�cient, and robust method for extending operating system functionality. Speci�cally,

we propose building operating systems entirely as a library linked with every application using software-based fault

isolation for protection. In order to demonstrate the validity of this technique, we are building an operating system

which will provide global resource allocation in a network of workstations.

1 Introduction

Over the past several decades, a vast body of valuable operating system research has been conducted.
Unfortunately, only a small percentage of this innovation has found its way into commercial operating
systems. Even generally accepted ideas can take many years to appear in production systems. To combat
this, operating system researchers spend a great deal of time focusing on research methodology: new ways of
building operating systems to allow for faster assimilation of innovation into mainstream systems. To date,
microkernel, application-speci�c, user-level, and portable operating systems have met with only limited
success. However, we believe that the development of e�cient software-based fault isolation will allow
circumvention of many of the performance bottlenecks that has hampered the adoption of these previous
e�orts. We thus propose building an operating system as a layer on top of commercial systems to allow
e�cient, portable, and robust exploration and extension of operating system functionality.

Examples abound of operating system innovations which have gone largely ignored by commercial sys-
tems. A very limited sample of recent topics include: load sharing [Zhou et al. 1992], process migra-
tion [Theimer et al. 1985, Douglis & Ousterhout 1991], shared �le system/virtual memory cache [Nelson
et al. 1988], shared virtual memory [Li & Hudak 1989], multi-threading, fast user-level communication
primitives [Bershad et al. 1990, von Eicken et al. 1992], upcalls [Clark 1985], network paging [Iftode et al.
1993], and parallel program support [Anderson et al. 1994]. Researchers have spent years speculating about
why these ideas go largely ignored by industry. One possible explanation is that the ideas are not useful in
the �rst place, so no one wants the features in their operating system.

Another, more plausible, explanation involves the motivation behind purchasing an operating system.
Users typically do not purchase an operating system for the functionality or features of the system. Rather,
an operating system is evaluated largely by the supported application programs, cost/performance of the
hardware/OS combination, and system robustness. For example, the Apollo operating system implemented
features which today remain state of the art, yet the system failed as a product for two reasons. First, the
system was not UNIX-compatible so it did not support a large body of application programs, and second
the hardware performance became uncompetitive. At the other extreme, DOS enjoys widespread popularity
despite limited functionality; its popularity stems from a huge application base and inexpensive hardware.

1



Even when purchasing decisions are based on the operating system, the relevant issue is usually software
reliability1 rather than underlying features of competing systems. The lack of weight placed upon operating
system functionality relative to system reliability only further discourages innovation since operating systems
are notoriously brittle. As an example, most hard disk drives contain hardware to cache disk blocks and
to schedule sector accesses. This functionality is provided in hardware despite the fact that Unix systems
have more e�ciently provided these services in software for years. The primary reason for this is that it is
less di�cult and more cost e�ective to implement this in hardware than to modify DOS to support such
functionality.

Given that underlying operating system features are not very signi�cant in purchasing decisions, vendors
are reluctant to incorporate new technology. Unless an innovation provides signi�cantly better application
performance, enables the creation of application programs which were not previously feasible, or makes
the system more robust, it is likely to be ignored. Even a fairly simple, e�ective idea such as the split
virtual memory/�le cache [Nelson et al. 1988] has only recently been added to commercial systems. New
functionality can compromise both operating system functionality and robustness, and vendors are well
aware that a delay in the introduction of an operating system can cost millions in lost hardware sales.

As a result of the di�culty associated with transferring research innovations to commercial systems,
many research e�orts focus upon new ways of building operating systems to facilitate technology transfer.
In this position paper, we �rst discuss possible explanations for the limited success of previous e�orts. Next,
we propose a new approach to building operating systems that layers on top of commercial systems. Using
this method, we believe that many new system features can be implemented quickly and portably while still
maintaining good performance. As an initial prototype validating our methodology, we present GLUnix, a
global layer operating system for a network of workstations.

2 Alternative Approaches

For years, researchers have striven for a design methodology that allows for easy extension of operating
system functionality. Some of the earliest e�orts were microkernel designs [Wulf et al. 1974, Accetta et al.
1986, Cheriton 1988, Mullender et al. 1990] which allow for user-level emulation of di�erent operating
systems. Despite e�orts to make microkernel systems portable to di�erent hardware platforms [Young et al.
1987], the required e�ort is still non-trivial. More importantly, the performance of such systems is limited
by the costs of context switching, crossing protection boundaries, and inter-process communication. The
emulation of standard operating systems such as UNIX or DOS through user-level servers further limits the
performance of microkernel systems. Vendors are unlikely to accept design methodologies that signi�cantly
limit the available performance of the underlying hardware.

To achieve more rapid development time and greater portability, a number of operating systems have been
built as user-level servers or libraries on top of commercial operating systems. Unfortunately, systems such as
Eden [Lazowska et al. 1981], Condor [Mutka & Livny 1991], and PVM [Sunderam 1990] only provide partial
solutions. Though some allow the execution of standard UNIX applications, they cannot do general purpose
resource allocation without su�ering the same ine�ciencies found in microkernel systems. The resource
allocator's code and data must be protected as a separate server requiring inter-process communication and
context switches.

More recently, research e�orts have focused on application-speci�c operating systems [Anderson 1992,
Yokote 1992, Bershad et al. 1994, Engler et al. 1994]. While this approach appears promising, it is not
intended as a framework for providing new system functionality, but rather as a way to allow applications
to a�ect system policy. Unless signi�cant speedup can be demonstrated for a wide variety of applications,
vendors are unlikely to discard existing systems to reimplement their operating system from scratch. Even
then, a methodology for extending operating system features and functionality is lacking.

Finally, a number of recent operating systems, such as Solaris and BSD 4.4, focus on portability. One of
the goals of such systems is decoupling the choice of operating system from a particular hardware platform.
Unfortunately, the time to port such systems to new hardware platforms remains signi�cant. For example,
the release of the DEC Alpha was released almost one year after the hardware was initially available because
the port of OSF/1 to the Alpha proved more di�cult than anticipated.

1As an example, reliability was a major selling point of SunOS versus initial versions of AIX.

2



3 A New Methodology

3.1 Full User-Level Functionality

We propose to bypass the limitations of the approaches outlined above by linking a protected operating
system library with all application programs. The key enabling technology for such a system organization is
software-based fault isolation (SFI) [Wahbe et al. 1993]. Traditional hardware protection can be e�ciently
implemented in software in a language-independent fashion by modifying the object code to insert checks
before each store and indirect branch operation to catch addressing errors. Aggressive compiler optimization
techniques reduce the overhead of these software checks to 3-7% on several contemporary RISC processors.
Unrecompiled binary �les can also be fault isolated, though the overhead is currently 20-25% [Lucco 1994].
In summary, SFI allows privileged operating system resource allocation code to execute in the application's
address space with relatively low overhead.

Using SFI, we are able to build protected operating system functionality entirely at the user-level by
dynamically linking the operating system library to each application. All system calls are redirected to
procedure calls in the operating system library [Jones 1993]. Thus, a user-level virtual operating system layer
is built using the underlying commercial system as a building block. Novel operating system functionality can
be implemented more e�ciently than in traditional systems since no hardware protection boundaries need be
crossed|the new kernel code is invoked by a procedure call within the application's address space without
the need for a kernel trap or a context switch. Any shared state needed to coordinate multiple user-level
operating system libraries can be maintained using shared memory segments or interprocess communication
primitives. The operating system also becomes more robust since errors in the user-level OS can be diagnosed
using standard, widely-available debugging tools.

This approach faces two limitations. First, an arbitrary piece of kernel functionality cannot necessarily
be implemented since the system is limited by the semantics and performance of the abstractions available
at the user-level. However, as described below, a relatively rich set of features can be implemented at the
user-level. The second potential pitfall is the overhead imposed by SFI. We believe that speedups gained from
not having to cross protection boundaries and reduced system development time2 will o�set this slowdown.

3.2 GLUnix

To demonstrate the ideas outlined in this paper, we are building an operating system to perform global
resource allocation in a network of workstations. Our system, GLUnix (Global Layer UNIX), glues together
individual UNIX operating systems to provide a single system image of the machines in a network. GLUnix
strives to make all resources in a network of workstations transparently available to each user. Thus, all
of the idle processing power, memory, network capacity, and disk bandwidth in the network should be
made available in a fair manner for both sequential and parallel applications. To provide such functionality,
GLUnix must support coscheduling of parallel programs [Ousterhout 1982], idle resource detection [Mutka
& Livny 1991, Arpaci et al. 1994], process migration [Theimer et al. 1985, Douglis & Ousterhout 1991],
fast user-level communication [von Eicken et al. 1992, Martin 1994], remote paging [Iftode et al. 1993], and
fault-tolerance [Borg et al. 1989].

Many of the features in GLUnix are not particularly novel. However, they have never been success-
fully implemented together in a coherent, usable system. GLUnix will enable e�cient execution of parallel
programs and improve the performance of memory or I/O intensive applications without requiring kernel
modi�cations. With SFI as an enabling technology, we can thus build an e�cient, portable operating system
that does not rely on speci�c details of the native operating system. Currently, an initial version of GLUnix
implementing much of the described functionality runs on HP and Sun workstations. The system is not yet
fully distributed (decision making is centralized) and has not yet been integrated with SFI.

To ensure portability, GLUnix relies on a minimal set of standardized features of the underlying operating
system. GLUnix should be portable to any system which supports inter-process communication, process
signalling for scheduling and migration, and access to machine load statistics for idle resource detection.
This design methodology should make porting GLUnix to new hardware platforms signi�cantly easier than

2Since processors are improving in performance by 50% a year, faster system development time translates into faster total
system performance.

3



any of the alternative methods discussed above.

4 Conclusions

This paper outlines a methodology for extending operating system functionality which maintains both per-
formance and compatibility with existing applications. Speci�cally, the operating system can be built as a
user-level library using the native system services as a building block. Software-based fault isolation provides
protection of code and data within the address space and further redirects existing system calls (through
binary translation) into the user-level kernel library as necessary. Superior system performance is made pos-
sible because every kernel operation is no longer required to cross a hardware protection boundary. Using
this technique, a large class of operating system features can be explored and implemented more e�ciently,
portably, and robustly. We are building an operating system to do global resource allocation in a network
of workstations to demonstrate the validity of the techniques proposed in this paper.

References

[Accetta et al. 1986] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young,
M. Mach: A New Kernel Foundation For UNIX Development. In Proceedings of the 1986 USENIX

Summer Conference, pp. 93{112, June 1986.

[Anderson 1992] Anderson, T. The Case for Application-Speci�c Operating Systems. In Proceeding of the

Third Workshop on Workstation Operating Systems, pp. 92{94, April 1992.

[Anderson et al. 1994] Anderson, T. E., Culler, D. E., and Patterson, D. A. A Case for NOW (Networks of
Workstations). IEEE Micro, 1994. To appear in special issue.

[Arpaci et al. 1994] Arpaci, R., Dusseau, A., Vahdat, A., Liu, L., Anderson, T., and Patterson, D. The
Interaction of Parallel and Sequential Workload on a Network of Workstations. Technical Report
CSD-94-838, U.C. Berkeley, October 1994. Also submitted for publication.

[Bershad et al. 1990] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. Lightweight Remote Procedure
Calls. In ACM Transactions on Computer Systems, pp. 37{54, February 1990.

[Bershad et al. 1994] Bershad, B. N., Chambers, C., Eggers, S., Maeda, C., McNamee, D., Pardyak, P.,
Savage, S., and Sirer, E. G. SPIN|An Extensible Microkernel for Application-Speci�c Operating
System Services. Technical report, University of Washingtion, 1994.

[Borg et al. 1989] Borg, A., Blau, W., Graetsch, W., Heermann, F., and Oberle, W. Fault tolerance under
unix. ACM Transactions on Computer Systems, 7(1):1{23, February 1989.

[Cheriton 1988] Cheriton, D. R. The V Distributed System. In Communications of the ACM, pp. 314{333,
March 1988.

[Clark 1985] Clark, D. D. The Structuring of Systems Using Upcalls. In Proceedings of the 10th ACM

Symposium on Operating Systems Principles, pp. 171{180, December 1{4 1985.

[Douglis & Ousterhout 1991] Douglis, F. and Ousterhout, J. Transparent Process Migration: Design Alter-
natives and the Sprite Implementation. Software - Practice and Experience, 21(8):757{85, August
1991.

[Engler et al. 1994] Engler, D. R., Kaashoek, M. F., and O'Toole, J. W. The Operating System Kernel as a
Secure Programmable Machine. MIT Technical Report, 1994.

[Iftode et al. 1993] Iftode, L., Li, K., and Petersen, K. Memory Servers for Multicomputers. In COMPCON,
February 1993.

4



[Jones 1993] Jones, M. B. Interposition Agents: Transparently Interposng User Code at the System Interface.
In Proceedings of the 14th ACM Symposium on Operating Systems Principles, pp. 80{93, December
1993.

[Lazowska et al. 1981] Lazowska, E. D., Levy, H. M., Almes, G. T., Fischer, M., Fowler, R., and Vestal, S.
The Architecture of the Eden System. In Proceedings of the 8th ACM Symposium on Operating

Systems Principles, pp. 148|159, December 1981.

[Li & Hudak 1989] Li, K. and Hudak, P. Memory Coherence in Shared Virtual Memory Systems. ACM

Transactions on Computer Systems, 7(4):321{359, November 1989.

[Lucco 1994] Lucco, S. Personal communication, June 1994.

[Martin 1994] Martin, R. P. HPAM: An Active Message Layer for a Network of Workstations. In Proceedings

of the 2nd Hot Interconnects Conference, July 1994. Submitted for publication.

[Mullender et al. 1990] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and van
Staveren, H. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer Magazine,
23(5):44{54, May 1990.

[Mutka & Livny 1991] Mutka, M. M. and Livny, M. The Available Capacity of a Privately Owned Work-
station Environment. Performance Evaluation, 12(4):269{84, July 1991.

[Nelson et al. 1988] Nelson, M., Welch, B., and Ousterhout, J. Caching in the Sprite Network File System.
ACM Transactions on Computer Systems, 6(1):134{154, February 1988.

[Ousterhout 1982] Ousterhout, J. K. Scheduling Techniques for Concurrent Systems. In Third International

Conference on Distributed Computing Systems, pp. 22{30, May 1982.

[Sunderam 1990] Sunderam, V. PVM: A Framework for Parallel Distributed Computing. Concurrency:

Practice and Experience, 2(4):315{339, December 1990.

[Theimer et al. 1985] Theimer, M., Landtz, K., and Cheriton, D. Preemptable Remote Execution Facilities
for the V System. In Proceedings of the 10th ACM Symposium on Operating Systems Principles,
pp. 2{12, December 1985.

[von Eicken et al. 1992] von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. Active Messages:
a Mechanism for Integrated Communication and Computation. In Proc. of the 19th Int'l Sympo-

sium on Computer Architecture, Gold Coast, Australia, May 1992. (Also available as Technical
Report UCB/CSD 92/675, CS Div., University of California at Berkeley).

[Wahbe et al. 1993] Wahbe, R., Lucco, S., and Anderson, T. E�cent software-based fault isolation. In
Proceedings of the 14th ACM Symposium on Operating Systems Principles, pp. 203{216, December
1993.

[Wulf et al. 1974] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and Pollack, F. HY-
DRA: The Kernel of a Multiprocessor Operating System. Communications of the ACM, 17(6):337{
344, June 1974.

[Yokote 1992] Yokote, Y. The Apertos Re
ective Operating System: The Concept and Its Implementation.
In Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and

Applications, pp. 414{434. ACM, October 1992.

[Young et al. 1987] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W.,
Black, D., and Baron, R. The Duality of Memory and Communication in the Implementation of
a Multiprocessor Operating System. In Proceedings of the 11th ACM Symposium on Operating

Systems Principles, pp. 63{76, November 1987.

[Zhou et al. 1992] Zhou, S., Wang, J., Zheng, X., and Delisle, P. Utopia: A Load Sharing Facility for
Large, Heterogeneous Distributed Computing Systems. Technical Report CSRI-257, University
of Toronto, 1992.

5


