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Abstract

The extension of the idea of Interpolated FIR �lters to the two{dimensional case is presented. Such
systems allow for lower computational weight, in terms of number of elementary operations per
input sample. In the 1-D case, the justi�cation to such a performance advantage rests upon the
relationship between �lter order, transition bandwidth and minimax errors for equiripple linear{
phase �lters. Even though no similar relation is known for minimax optimal multidimensional
�lters, a qualitatively parallel behaviour is shared by a class of suboptimal �lters recently devel-
oped by Chen and Vaidyanathan. Such �lters are particularly suitable for the sampling structure
conversion of video signals. In particular, they belong to the class of Generalized Factorable �lters,
for wich an e�cient implementation exists.

We examine in detail the design procedure of Generalized Factorable �lters, and devise some
properties that have not been described before in the literature. Then, we apply such �lter in the
2-D IFIR scheme.

An interesting problem peculiar to the multidimensional case is the choice of the sublattice
which represents the de�nition support of the �rst{stage �lter. We present a strategy to choose
(given the spectral support of the desired frequency response) the optimal sublattice, and to design
the second{stage (interpolator) �lter in order to achieve low overall computational complexity.



Chapter 1

Introduction

Interpolated �nite impulse response (IFIR) �lters have been introduced by Neuvo, Dong and Mitra
[1]. In its simplest form, an IFIR structure is an FIR �lter whose transfer function can be written
as1

H(z) = �F
�
zL
�
G(z) (1.1)

where �F (�) and G(�) are polynomials and L is some integer. In other words, an IFIR �lter is the
cascade of two FIR �lters (f(n), the shaping �lter, and g(n), the interpolator �lter), with f(n) 6= 0
only if n is a multiple of L (then �f (n) = f(Ln)).

IFIR �lters are interesting because they can be implemented e�ciently. The number of elemen-
tary operations (multiplications or sums) per input sample (called OPS) required to implement an
FIR �lter is approximately equal to the number N of non-null coe�cients of its impulse response2.
Hence, if N �f is the length of �f (n), and Ng is the length of g(n), approximately NIFIR = N �f + Ng

OPS's are required to implement the IFIR structure (in spite of the fact that the length of f �g(n)
is (L� 1)N �f +Ng > NIFIR if L > 1). The minimum length Nh of an FIR �lter h(n) to meet some
prescribed speci�cs is, for certain classes of �lters (e.g., minimax low{pass with narrow pass-band
and transition band), larger than NIFIR relative to a suitable IFIR structure satisfying the same
speci�cations. Hence, IFIR �lters allow for computational savings in such cases. However, the
number of memory cells required for the implementation of the IFIR structure is Nf + Ng � 2,
which is typically slightly larger than Nh � 1 (the number of elementary cells required to realize
h(n)).

Expression (1.1) is reminiscent of the polyphase decomposition of an FIR �lter into its general-
ized form [2],[3]. As a matter of fact, an IFIR �lter is a special case of FIR �lter, which admits an
L-fold generalized polyphase decomposition constituted by a single branch [2]. Another interesting
aspect of IFIR �lters theory, is the connection with the multistage implementation of interpolators
and decimators [4],[5]. One can easily show (using an elementary property of multirate systems,
expressed by the \noble identities" [2]) that the interpolation or decimation using an IFIR �lter can
be implemented by the multistage (multirate) scheme of Crochiere and Rabiner (see Fig. 1.1). The
two structures are formally equivalent: the theory developed for the multistage sampling structure
conversion ([4],[5]) can be used to design IFIR �lters, and vice-versa.

The IFIR �lters that have been considered in the literature, were intended to approximate ideal
low{pass or band{pass frequency response in a minimax sense [1],[6],[7]. The impulse response of
an IFIR �lter can be regarded to as the interpolated version of a \decimated" one. Because the
impulse response of selective band optimal FIR �lters is typically highly correlated, it is intuitive
that a \simple" interpolator should be able to full�ll the purpose. A quantitative analysis of such

1We will always denote by a capital letter the transfer function or the frequency response of a system whose
impulse response is denoted by the corresponding small letter.

2Actually, in a direct form realization, the number of multiplications is N ((N + 1)=2 if zero{phase), while the
number of sums is N � 1.
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Figure 1.1: Proof of the equivalence of IFIR structure and multistage decimation.

a notion can be carried out by exploiting the (approximate) analytical relation which holds among
the parameters of a minimax �lter (�lter legth N , pass{band and stop{band frequencies fp and
fs, pass{band and stop{band ripples �p and �s) for small ripples �p and �s [8],[9]:

N /
20 log (�p�s)� 13

fs � fp
(1.2)

The important characteristic of relation (1.2) is that, for su�cientely large N , the transition
bandwidth (fs � fp) is approximately inversely proportional to N (for �xed product �p�s).

The previous observations suggested the original simple design technique (proposed, for multi-
stage interpolation{decimation schemes, in [4], and for IFIR �lters in [1]), where the shaping and
the interpolator �lters were designed independentely of each other. The amount of the pass{band
and of the stop{band ripples of the overall �lter depends on the relative positions of the oscillations
of the frequency responses of f(n) and g(n), which are unknown in general. Hence, only upper
bounds for the resulting �p and �s are predictable. If �fp and �fs are the pass{band and stop{band
ripples of the shaping �lter, and �gp and �gs those of the interpolator, from (1.1) one has:

�p � �fp + �gp + �fp �
g
p ' �fp + �gp (1.3)

�s � max
�
�fs ; �

g
s + �fp �

g
s

�
' max

�
�fs ; �

g
s

�
(1.4)

Such worst{case relations can be exploited for the choice of the speci�cs of the shaping �lter and of
the interpolator, to achieve desired maximum values �p and �s, as in [4]. If optimal minimax �lters
are used, the required �lter orders can be obtained using the relations presented in [8],[9],[10]. Note
that, although in their original work [1], Neuvo, Dong and Mitra suggested the use of a simple
�rst{order or second{order interpolator, higher order interpolators can be used pro�tably, as in
[6].

Since relations (1.3) and (1.4) represent upper bounds for the overall ripples, choosing pass-
band and stop{band ripples for f(n) and g(n) such that (1.3) and (1.4) are satis�ed as equalities
leads, in most cases, to overall ripples smaller than required . The designer can then try di�erent
choices for the shaping �lter and the interpolator, allowing the parameters �fp ; �

f
s ; �

g
p ; �

g
s to increase

(therefore decreasing the corresponding �lter lengths), until a satisfactory result is found. The
IFIR �lters designed by means of such a heuristic procedure are in general not optimal, and
a certain experience of the designer is required. On the other side, the method is simple and
straightforwardly extendible to the multidimensional case, as described in the present work.

Several improvements to the simple design procedure just described have been proposed.
Crochiere and Rabiner early realized that adopting multiple stop{band (instead of single stop{
band) interpolator �lters, can provide fairly signi�cant �lter order reduction [11]. Such an idea
was generalized by Saram�aki, Neuvo and Mitra [6] to obtain equiripple behaviour of the overall
IFIR �lter frequency response. They proposed a procedure to iteratively design �F (zL) and G(z)
using the Remez exchange algorithm. Their method allows to design optimal (in a minimax sense)
IFIR �lters; however, it is not clear how to �nd a multidimensional version of such a technique.

The theory of multidimensional (M-D) multistage sampling structure conversion has been �rst
proposed by Ansari and Lee [12] and by Chen and Vaidyanathan [13] �rst, and then developed
in some extent by Manduchi, Cortelazzo and Mian [14]. Also in the multidimensional case, the
theory of multistage sampling structure conversion and of IFIR �lters are equivalent, and we will
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deal only with IFIR �lter hereinafter. For the sake of simplicity, only 2-D domains will be studied
in this work. The results can be extended to higher dimensions without major di�culties.

The task here is to design a 2-D �lter, de�ned on a given lattice �, whose frequency response
approximates some desired function D(f ). The simplest IFIR scheme is composed by the cascade
of a shaping �lter, whose coe�cient are not null only on a sublattice � (L times less dense than
�), and of the interpolator �lter. While in [12] and in [13] the necessary conditions (in terms of
sampling lattices and spectral support determination) for a multistage scheme - IFIR structure
are stated, and in [14] a simple design example is given, no serious attempt to produce e�cient
2-D IFIR �lters de�ned on a given sampling lattice have been proposed in the literature. The
purpose of this work is to provide a framework for the design of such systems, for a certain class
of frequency response shapes widely used in video technology.

The principal novelties of 2-D IFIR �lters with respect to the 1-D case are:

1. M-D sampling lattices admit more than just one sublattice for a given decimation ratio
[15],[16];

2. The frequency response of M-D �lters cannot be easily characterized as in the 1-D case; in
other words, a pass{band or a stop{band region can exhibit any shape (while in the case of
low{pass 1-D, they are bound to be segments).

Observation 1 leads to the following problem: given a decimation index L, which sublattice of
de�nition of the coe�cients of the shaping �lter is more suitable for a given D(f )? The determi-
nation of all the sublattices for a given density ratio has been analyzed in [16], and an application
to multistage sampling structure conversion (via the idea of lattice chains, see also [17]) has been
described in [14]. In the present work, it will be shown that, given the desired frequency response
mask, certain sublattices allow for the easy interpolation of the samples of the shaping �lter, while
other ones make the interpolation extremely di�cult.

The spectral support of a 2-D �lter may assume any shape, and devising a general technique for
the IFIR system design seems an overwhelming task. Fortunately, for a large variety of applications,
only frequency responses belonging to particular classes are of interest. For example, frequency
responses with pass{band in the shape of a parallelogram (typically a diamond) are suitable for
the sampling structures conversion of video signals [15],[18],[14], as well as for a variety of other
applications. We will concentrate in this work on such a class of spectral masks.

In the procedure we propose, the design of the shaping �lter and of the interpolator are carried
out separately. As in the 1-D case, given the subsampling factor L, a worst case analysis provides
speci�cs for the two �lters to be used as a starting point. Then, one can move around the space of
�lter parameters for any of the two �lters (note that the �lter masks are easily parametrized, as
they are parallelograms). As mentioned above, a new parameter to take care of is the sublattice
of de�nition of the shaping �lter.

In order to apply such a procedure e�ciently, it is necessary that the �lter design technique be
fast and easy to use. It should give the designer the control of the frequency response parameters,
as well as of the impulse response size. The possibility of e�cient implementation, typical of certain
classes of 2-D �lters, is an important bonus to take into account.

Several design techniques for 2-D �lters have been proposed in the literature. Optimal minimax
2-D �lter can be designed via iterative procedures similar to the Remez exchange algorithm [19],[20]
or via linear programming [21],[22],[23]. In particular, linear programming allows to include linear
constraints on the �lter coe�cients (e.g., \antiringing" constraints on the step response [23]).
Filters designed via linear programming have been employed for the mutistage sampling conversion
scheme of [14]. However, such a design technique (besides being computationally very intensive)
does not o�er e�cient implementative schemes.

2-D FIR �lters designed by frequency transformation [24] have received a lot of attention,
because they derive from 1-D �lters (which are well understood), can be optimal (starting from
optimal 1-D �lters) in certain cases [25], and possess an e�cient implementation [26]. However,
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tuning the design parameters in order to obtain diamond-shaped frequency responses mask, how-
ever, is somewhat cumbersome [27]. In plus, little control on the impulse response (beside the side
of the square which represents its support) is achievable.

The �lter design technique we have chosen for our system, is the one recently proposed by Chen
and Vaidyanathan in [13],[28]. We will call the resulting �lters \generalized factorable" (GF) for
reasons that will be clear in Section 2. GF �lters are designed starting from two suitable 1-D �lters,
taking the tensor product of their impulse responses, subsampling it on a suitable sublattices of
Z2, and �nally reordering the samples on the desired de�nition lattice. The main advantages of
GF �lters are:

1. They \naturally" provide spectral supports in the shape of parallelograms;

2. The design procedure is very fast (the computational burden is due to the design of two 1-D
�lters) and simple, lending itself to use in automatic design systems (CAD);

3. They admit an e�cient \generalized factorable" implementation, which can reduce e�ectively
the computational weight;

4. It is possible to control the size and some characteristics of the impulse response.

A drawback of the GF �lter design technique is that, starting from 1-D optimal minimax �lters,
one does not get optimal minimax 2-D �lters. Nevertheless, they exhibit the interesting property
that approximate (worst case) relations can be found among the �lter parameters of interest (�lter
size, transition region, pass{band and stop{band ripples). Exploiting such relations it is possible to
predict lower bounds on the performance attainable by 2-D IFIR �lters, like in the 1-D case. It is
interesting to note that similar relations have been described in the literature also for other classes
of �lters (circularly symmetric �lters from 1-D prototypes [26] and diamond{shaped minimax �lters
[23]).

In our scheme, GF �lters are used both for the shaping �lter and the interpolator. A nice feature
provided by the algorithm, is that it gives a simple geometrical characterization of the �lters'
frequency response supports, which makes them easily tractable. Following our algorithm, all
feasible sublattices of de�nition of the coe�cients of the shaping �lter are tested. For each of them,
the \best" shapes for the interpolator �lters are chosen. This procedure can be implemented in a
completely automatic fashion. Then, it is up to the designer choosing the combination sublattice{
interpolator which best satis�es the design constraints.

In the experimental section, we have considered both the non{factorable and the generalized
factorable implementations for the �lters. In this way, we provide a reasonable estimate of the
system's performance when other �lters than GF are employed. The results show that, in the non{
factorable case, improvements in terms of computational weight, comparable to the 1-D case, are
achievable, depending on the shape and on the size of the pass{band and of the stop{band regions.
Interestingly enough, the situation is not as simple using the generalized factorable implementation.
It is shown that, depending on the geometry of the decimation lattices (which, in turn, depend on
the shape of the spectral support), an IFIR structure may or may not lead to the reduction of the
overall computational weight.

The paper is organized as follows. Section 2 reviews the theory of GF �lters. With respect
to the original work by Chen and Vaidyanathan [13], the formalism has been slightly changed,
the algorithm has been stated in a more comprehensive fashion, and some new results, regarding
symmmetries and frequency response and step response properties, have been added. Section 3
describes the proposed IFIR design procedure and shows the experimental examples. Section 4 has
the conclusions. In order to make the paper self{contained, some non{standard notions regarding
multidimensional sampling structures (some of which are original contribution of this work), as
well as the adopted nomenclature, are reported in Appendix A. In Appendix B, formal de�nitions
(both for the 1-D and the 2-D case) of certain useful �lter parameters are provided. Appendix C
contains the proof of a result used in Section 2.3.3, regarding some properties of the step response
of ideal �lters.
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Chapter 2

Generalized Factorable Filters

In this section, we review the algorithm proposed by Chen and Vaidyanathan [13],[28] to design
2-D �lters with pass{band in the shape of a parallelepiped. It will be seen in Section 2.2 that
the resulting �lters actually belong to the general classe of generalized factorable (GF) �lters. A
number of features that make such �lters appealing for use in an IFIR structure, have been listed
in the Introduction. In Section 2.1 we brie
y restate the algorithm, and in Section 2.2 we de�ne
the general class of generalized factorable �lters. In Subsection 2.3 we study certain properties of
GF �lters, that have not been described before in the literature. Throughout the whole section,
we make extensive use of the formalism and of the basic results of Appendices A and B.

2.1 Chen and Vaidyanathan's Design Technique for 2D

Filters

Consider a sampling lattice � = LAT (C). The procedure proposed by Chen and Vaidyanathan
[13],[28] enables to design an M-D FIR �lter de�ned on �, with pass{band region approximating
a parallelepiped centered in the origin, starting from M suitable 1{D low{pass �lters.

Let

Par(P) =

(
MX
i=1

�ipi ; �1 � �i � 1

)
(2.1)

be a parallelepiped (representing the desired pass{band region), characterized by matrix P =
(p1jp2j � � � jpM). We assume thatP has only rational entries. Consider the parallelepiped Par(Pt =
CTP) (matrix C can be any basis of �). Par(Pt) represents a \transformed" version of the pass{
band region Par(P). Let

�A = PT
t den (Pt) 2 ZM (2.2)

Now consider �lter �h(n) =
QM

i=1 q(ni), where q(n) is an ideal 1-D �lter such that

Q(f) =

�
1 ; jf j � fp
0 ; fp < jf j � 0:5

(2.3)

and fp = 1=den(Pt). Filter ĥ(n) = j det( �A)j�h( �An) is such that, within a suitable elementary cell,

�H(f ) =

�
1 ; f 2 Par(Pt)
0 ; otherwise

(2.4)

The just described algorithm su�ers from a \design overhead" [28], in the sense that j det( �A)j (the
\decimation ratio") is typically higher than necessary, and �lter Q(f) may have a very narrow
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transition band. It is important that j det(A)j be small for the control of the �lter characteristics,
as will be stressed later in Section 2.3.6. It is possible (in general) to lower such a value by allowing
for di�erent 1-D �lters along the axes. Let

�A = DA ; D = diag(d1; d2; � � � ; dM) (2.5)

where di is the largest integer that divides each entry of the i-th row of �A. Note that A 2 ZM .
Consider M 1-D ideal �lters qi(n), such that

Qi(f) =

�
1 ; jf j � fpi
0 ; fpi < jf j � 0:5

(2.6)

where fpi = di=den(Pt). Their tensor product

�h(n) =
MY
i=1

qi(ni) (2.7)

has spectral support in Par (diag (fp1 ; fp2 ; : : : ; fpM )), while ĥ(n) = j det(A)j � �h(An) has spectral
support in Par (Pt). Finally, the sought for �lter h(Cn) such that, within a suitable elementary
cell of ��, it is

H(f ) =

�
1 ; f 2 Par(P)
0 ; otherwise

(2.8)

is given by
h(Cn) = ĥ(n) = j det(A)j�h(An) (2.9)

Observations

1. In the original algorithm by Chen and Vaidyanathan [28], the authors used term j det(M)j
(where L�1M is any left coprime factorization of Pt) instead of term den (Pt) in (2.2). Such
a choice yields higher values of j det( �A)j than necessary, as j det(M)j can be larger than
den (Pt) (for a proof, see the Appendix of [14]). However, if we allow the 1-D �lters to di�er
from one another (like in the second part of the algorithm), any common factor in the entries
of �A will be \absorbed" by matrix D.

2. Note that, from (2.9), any di�erent choice �C = CU, unimodular U, of basis of �, induces a
di�erent sampling matrix �A = AU.

3. In practical cases, �lters hi(n) will be characterized by parameters (fpi ; fsi ; �pi ; �si ; Ni). As-
sume that the desired frequency response of �lter H(f ) is speci�ed by pass{band and stop{
band surfaces Par(Pp) and Par(Ps) in the shape of parallelepipeds having pairwise parallel
faces, i.e.,

Ps = PpT ; T = diag(t1; t2; � � � tn) ; ti > 1 (2.10)

The related decimation matrices Ap and As computed following the previous algorithm may
di�er from each other. One way to circumvent such a problem, is to compute matrix As and

stop{band frequencies ffsig following the previous algorithm, impose Ap = As
def
= A, and

set the pass{band frequencies ffp1 = fsi=tig.

4. It is readily seen that

H(f ) =
X

r2P (LAT (AT );Z2)

�H
�
A�T

�
CT f + r

��
(2.11)
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and that the support of the impulse response of h(Cn) is

Par

�
CA�1diag

��
Ni + 1

2

���
\ � (2.12)

where Ni is the length of the i-th 1-D �lter in (2.6). In the following of this work, we will

approximate the conventional length of h(Cn) with
�QM

i=1Ni

�
=j det(A)j.

5. Matrix D in decomposition (2.5) has the following geometrical interpretation: LAT (D) is
the least dense factorable lattice (L.D.F.L., see Appendix A) containing LAT ( �A). Then the
L.D.F.L. containing LAT (A) is Z2. This in turn implies that, if A is diagonal, then A = I.

6. Suppose one is given a GF �lter h(a) de�ned on � = LAT (C) with spectral support approx-
imating Par(P). Let �1 = LAT (CH) be a sublattice of �, and assume that the spectral
support of h(a) is contained within some elementary cell of ��1. In order to design a �lter
g(a) with the same spectral support of h(a), one can choose between two procedures. The
simpler one is derived immediately from equation (2.9), letting g(CHn) = j det(H)jh(CHn),
i.e. subsampling h(a) on �1. The conventional length Ng of g(a) will be approximately
equal to the conventional length Nh of h(a), divided by j det(H)j. If the L.D.F.L. containing
LAT (AH) is less dense than LAT (D) (see Observation 5 above), one can employ the second
part of the algorithm instead, and construct the new samplingmatrix and the new pass{band
and stop{band frequencies for the 1-D �lters. It is easily seen (making use of relation (1.2))
that, if the 1-D �lters are forced to exhibit the same pass{band and stop{band ripples as
in the design of h(a), the conventional length of g(a) will be again approximately equal to
Nh=j det(H)j.

2.1.1 Generalized factorable implementation

A �lter designed using the algorithm of Chen and Vaidyanathan is obtained by sampling an ap-
propriate factorable impulse response. Hence, it should not be surprising that techniques for its
e�cient implementation can be devised. Let N1 and N2 be the lengths of the 1-D �lters q1(n) and
q2(n) (for the sake of notation's simplicity, in this section we will refer only to the 2-D case). If the
�lter h(a) is implemented in direct form, approximately N1N2=j det(A)j OPS's are required. Chen
and Vaidyanathan cleverly proved in [28] that it is possible to implement the �lter performing only
approximately N1 +N2 OPS's. Their proof is based on a machinery of formal identities. We give
here a (hopefully) more intuitive proof, which will turn out to be useful when dealing with IFIR
structures. In the e�ort to be clear we will divide the proof in several steps.

Let C and A be bases of the signal de�nition lattice and of the decimation lattice respectively,
as in Section 2.1. Assume, without loss of generality, that A is in upper Hermite normal form.
Step 1. Consider a change of basis on the input signal x(Cn) and on �lter h(Cn):

�x(An) = x(Cn) ; �h(An) = h(Cn) (2.13)

Step 2. Filter �h(An) is not factorable (unless A is unimodular), but it is made up of factorable
polyphase components. To prove this, let AH = diag(S1; S2) be a basis of the densest factorable
sublattice (D.F.S.) of LAT (A). Then there are den (A1;2=A1;1) AH{polyphase components in
�h(An):

�hr(AHn)
def
= �h(AHn+ r) ; r 2 P (LAT (AH); LAT (A)) (2.14)

It is easy to see that each �hr(a); a 2 LAT (AH), is factorable. In fact, let a = (k1S1; k2S2)
T
and

r = (r1; r2)
T . Then

�hr(a) = qr11 (k1)q
r2
2 (k2) (2.15)
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where qsi is the s{th Si{polyphase component of �lter qi(n):

qsi (n)
def
= qi(nSi + s) ; 0 � s < Si (2.16)

Step 3. At this point, it should be clear that the �ltering of �x(a) with �h(a) can be done in a
factorable fashion. It just needs to write down the AH{polyphase decomposition of �h(a) to get

�X(f ) �H(f ) = �X(f )
X
r

e�j2�f
T
r �Hr(f ) =

X
r

�
�X(f )e�j2�f

T
r

�
�Hr(f ) (2.17)

Each term
�
�X(f )e�j2�f

T
r

�
�Hr(f ) represents the (factorable) �ltering by the r{th polyphase com-

ponent of �h(a) of a version of �x(a) displaced by r.
It is interesting deriving the number of OPS's required for the implementation. Let the length of

the two 1-D �lters q1(n) and q2(n) be N1 and N2 respectively. Then the lengths of their polyphase
components as in (2.16) are approximately N1=S1 and N2=S2. Now, from Appendix A one has
that the number of polyphase components is

den (A1;2=A1;1) = S1=R1 = S2=R2 (2.18)

where diag(R1; R2) is a basis of the L.D.F.L. containing LAT (A). But, according to Observation 5
of Section 2.1, R1 = R2 = 1, and therefore den (A1;2=A1;1) = S1 = S2. Hence, the number of OPS's
required is N1 +N2.

Consider now the case of a �lter de�ned on a sublattice �1 = LAT (AH), designed by subsam-
pling h(a) (as in the �rst procedure of Observation 6 above). Let diag(R0

1; R
0
2) be a basis of the

L.D.F.L. contaning LAT (AH), and let AH0 = diag(S01; S
0
2) be the D.F.S. of LAT (AH) (note that

S01 � S1; S
0
2 � S2). Then there are S01=R

0
1 = S02=R

0
2 polyphase components along the i{th axis, each

one of length Ni=S
0
i approximately. The number of OPS's required turns out to be approximately

NOPS = N1=R
0
1 +N2=R

0
2 (2.19)

We thus can draw the following important observation: the number of OPS's required for the gen-
eralized factorable implementation of a GF �lter de�ned on �, and of its version subsampled on a
sublattice � of �, may or may not di�er, according to (2.19). In particular, if the L.D.F.L. cantain-
ing � is also the L.D.F.L. containing �, the number of OPS's will be the same in both cases. Such
a result is in contrast with the case of non{factorable implementation (see Section 2.3.6), where
subsampling the impulse response reduces the number of OPS's by a factor approximately equal to
the subsampling ratio. Similar results are found adopting the second procedure of Observation 6.

The number of multiplications in the implementation of zero{phase 1-D �lters can be reduced
by exploiting the symmetry of the coe�cients. However, it is important to notice that in this case
only one polyphase component of h(a) (the one centered in the origin, h0(a)) will be zero{phase
(i.e., h0(a) = h0(�a)).

Step 4. We should now get back to the de�nition lattice LAT (C) via the inverse of transformation
(2.13). Each factorable coset LAT (AH) + r is mapped into LAT (CH) + CA�1r (note that
A�1r 2 Z2 as r 2 LAT (A)). In particular, points fkSig on the i{th axis are mapped into points
fkTig, where Ti is the i{th column of CH. Hence, the r{th factorable �ltering of Step 3 becomes
the cascade of two generalized 1-D �lterings (by the ri{th polyphase component of p1(n) and p2(n)
along the directions of T1 and T2 respectively) of signal x(a), displaced by vector CA�1r.

2.2 Generalized Factorable Filters

Let � = LAT (C) be a M{dimensional lattice. Consider the set of points of � aligned along a
given direction:

Lv = fnv ; n 2 Zg (2.20)
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where v = Cn with n1 and n2 coprime (so that Lv actually spans all the points of � along line
av; a 2 R). A �lter h(a) such that h(a) 6= 0 only for a 2 Lv will be called a generalized 1-D �lter

on v. Let N be the number of non{null elements of h(a) (assume for simplicity's sake that between
two non{null samples of h(a) there is always a non{null sample). N will be called the generalized
length of h(a). In general, N OPS's are required to implement h(a).

Suppose now � is factorable (without loss of generality, we can assume � = ZM ). Then h(n) is

said to be factorable [26] if it is the cascade of M 1-D �lters: h(n) =
QM

i=1 hi(ni). We can extend
such a notion exploiting the idea of generalized 1-D �lters: given a basis C of �, we will say that
h(a) is generalized factorable (GF)on C if h(a) =

QM
i=1 hi(a), where each �lter hi(a) is generalized

1-D on Ci. Note that such a de�nition applies to any lattice, and not only to factorable ones.
The idea of generalized factorability allows to classify �lters that, although not factorable, can

be transformed, via a change of basis of the de�nition lattice, into factorable �lters. Hence, they
can be implemented with a number of OPS's that grows linearly with the sum of the lengths of
their impulse response's edges (insted that with the product of such lengths, like in the direct
implementation). However, we have just seen that other �lters share such a property, although
they are not GF (as a matter of fact, a �lter designed using the algorithm of Section 2.1 is GF only
if the decimation matrix A is unimodular). We are thus led to de�ne the class of V-generalized
factorable �lters.

Let V be an integral matrix, and let � = LAT (CV) be a sublattice of �. A �lter h(a) de�ned
on � is V-generalized factorable (V-GF) if

h(s+ r) = hr(s) ; s 2 � ; r 2 P (�;�) ; hr(s) generalized factorable on CV (2.21)

i.e., if its V-polyphase components are GF on CV.
A V-GF �lter is also VD-GF for any integral diagonal matrixD. Moreover, for any FIR �lter

h(a) it is always possible to �nd a matrix V such that h(a) is V-GF. To prove this, one just needs
to choose a matrix V with su�ciently large j det(V)j, so that the support of h(a) is contained
within some elementary cell of � = LAT (CV). Hence, it makes sense to de�ne the factorability

basis of a �lter h(a) as the matrix V with the smallest value of j det(V)j, such that h(a) is V-GF.
It should be clear now that �lters designed using the algorithm of Chen and Vaidyanathan have

factorability basis CH (according to the notation of Section 2.1.1). In particular, the procedure
of Section 2.1 represents the only known algorithm to design V-GF �lters1.

2.3 Some properties of GF �lters

2.3.1 Preservation of the Nyquist property [28]

2.3.2 Frequency response constraints

If the �lter to be designed is part of a sampling structure converter, it is useful to impose some
constraints on its frequency response. For example, if the �lter is expected to cancel the undesired
spectral repetitions occurring when up{sampling from lattice �1 = LAT (CH) to lattice � =
LAT (C) (�1 � �), an important requirement is that H(f ) be vanishing for f 2 ��1=�

� [29],[14], so
that the aliasing due to 
at brightness areas is removed. It is shown in the following how such a
constraint on H(f ) can be converted into constraints on the two 1-D �lters q1(n) and q2(n).

From (2.11) one has that a su�cient condition for H(f ) to be null for some f = �f is

�H
�
A�T

�
CT�f + r

��
= 0 ; r 2 Z2 (2.22)

1We will adopt a certain sloppyness in the language, and call \generalized factorable" any \V-generalized fac-
torable" �lter. The \real" GF �lters are actuallyV-GF with unimodularV. And the \real" factorable �lter are GF
with unimodular C and V = C

�1. In plus, since the �lters of Section 2.1 are the only V-GF used in the practice,
we will generally address them as GF.
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In our case of interest, H(f ) should vanish for

f 2 ��1=�
� (2.23)

i.e., for
f 2

�
(CH)�Tn ; n 2 Z2=LAT (HT )

	
(2.24)

Substituting (2.24) for �f in (2.23), one gets the corresponding constraint on �H(f ):

�H
�
A�T

�
H�Tn+ r

��
; n 2 Z2=LAT (HT ) ; r 2 Z2 (2.25)

i.e., �H(f ) should vanish for f belonging to set�
LAT (AH)�T + LAT

�
A�T

��
=
�
LAT

�
A�T

�
+ LAT

�
A�T

��
(2.26)

= LAT
�
(AH)�T

�
=LAT

�
A�T

�
Since �H(f ) is periodic on Z2, condition (2.26) is equivalent to

�H(f ) = 0 ; f 2 Z
def
= P

�
Z2; LAT

�
(AH)�T

��
=LAT

�
A�T

�
(2.27)

To have �H(f ) vanishing in the (j det(A)j (j det(H)j � 1)) points of Z, one should set Q1(f1) = 0
and/or Q2(f2) = 0 for (f1; f2)T 2 Z. We will call such points the nulling frequencies for the 1-D
�lters. It is easily seen that, given set Z, there exist several combinations of nulling frequencies
for Q1(f) and Q2(f). For example, for each f i = (f i1; f

i
2)
T 2 Z, one could set

Qj(f
i
j ) = 0 if f ij > fpj ; j = 1; 2 (2.28)

Note that we do not want to set to zero H(f ) in \useful" frequencies, i.e., belonging to the pass{
band region, as would happen if we forgot the condition in (2.28). Nevertheless, following criterion
(2.28), H(f ) may be forced to zero also for some frequencies in LAT

�
A�T

�
, which is not required

by (2.27). As a matter of fact, Z1 and Z2 (the sets of nulling frequencies for Q1(f) and Q2(f))
obtained from (2.28) are not the ones with minimumcardinality, among those satisfying the nulling
constraint (2.27). Such a characteristic is important, because, as well known, adding constraints
to the frequency response of 1-D �lters typically increases the minimum �lter length required to
achieve desired speci�cs. We are thus led to seek for sets Z1 and Z2 with smaller cardinality. To this
purpose, one can exploit the following observation: if Z contains two or more points ff1; f2; : : :g

with the same component f1j = f2j = : : :
def
= �fj , then the nulling condition is satis�ed for all of

them simply by setting Qj( �fj) = 0.
The previous argument suggests the following procedure to �nd \good" sets Z1 and Z2 for a

given set Z .

1. For each point
�
f i1; f

i
2

�T
of Z such that f i1 < fp1 or f i2 < fp2 , set Q2(f

i
2) = 0 or Q1(f

i
1) = 0

respectively. Take these points out of Z, and call ~Z the set of the remaining points.

2. Determine all the clusters
�
Ci
1

	
and

�
Cl
2

	
of points of ~Z having common component f i1 or f

i
2

respectively. In order to �nd such cluster of points, one can look for the L.D.F.L. containing
LAT ((AH)�T ), determine (trivially) the points of it within a rectangular elementary cell of
LAT (A�T ), and for each row (or each column) of the resulting set determine which points
belong to LAT ((AH)�T ).

3. Find the \minimum cost" covering of ~Z by elements of
�
Ci
1

	
and

�
Cl
2

	
, i.e., the set Ci1

1 [

: : :[CiI
1 [Cl1

2 [ C lL
2 with minimum cardinality covering ~Z.

4. Set Q1(f) = 0 for f 2
�
f i11 ; f i21 ; : : : ; f

iI
1

	
and Q2(f) = 0 for f 2

n
f l12 ; f

l2
2 ; : : : ; f

lL
2

o
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Figure 2.1: Example of nulling constraints, relative to the up{sampling from lattice LAT (AH)
to lattice LAT (A) = Z2 (see text). The dots correspond to lattice LAT ((AH)�T ), the region
contoured by solid line to the elementary cell R(0:5; 0:5) of Z2, the region contoured by dashed
line to the pass{band region of H(f ), and the regions contoured by dotted lines to the clusters of
points corresponding to the nulling frequencies of the two 1-D �lters.

Note that, in general, there are more than one minimum cost covering of ~Z by clusters of
�
Ci
1

	
and

�
Cl
2

	
. In order to design 1-D �lters with frequency response constrained to zero in the chosen

frequencies, one can use, for example, a technique based on linear programming [30].

As an example, consider the following case: A�T = I, (AH)�T =

�
1=4 1=12
0 1=6

�
, fp1 =

1=24; fp2 = 1=8. In Fig. 2.1 it is represented lattice LAT ((AH)�T ), together with the elementary
cell R(1=2; 1=2) of LAT (A�T ) (continuous line) and the pass{band region of H(f ) (dashed line).
Set Z corresponds with the set of points of LAT ((AH)�T ) within R(1=2; 1=2), excluding the
origin. A minimum cost covering of Z is represented by the clusters of points within the regions
contoured by dotted lines. Filter Q1(f) (corresponding to the horizontal axis) is forced to zero for
f 2 f1=4; 1=2g, while �lter Q2(f) is forced to zero for f 2 f1=6; 1=3; 1=2g.

2.3.3 2-D step response

An important characteristic of �lters to be implemented in video applications, is the behaviour in
case of sharp brightness transitions. The \ringing" consequent to oscillatory response of the �lters
in such situations is visually quite noticeable [31].

In the case of 1-D �lters, the response to an unitary step characterizes the �lter behaviour in
such critical cases. For 2-D �lters, the responses of the �lter to 2-D unitary steps along two or
more directions, as well as to other \transition" functions, are usually considered. For example, in
[32] a technique to put linear constraints in the �lter design algorithm, in order to minimize the
maximum amount of ripples in the vertical, horizontal and diagonal step responses, as well as in
the \quadrantal step" response, is described.
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GF �lters are completely characterized by the two 1-D �lters q1(n) and q2(n) of (2.6), together
with the sampling matrix A. It seems therefore of interest to examine the relationships between
the step response characteristics of q1(n) and q2(n) and that of the resulting 2{D �lter.

We show in the following that for two suitable 2-D steps, the output of �lter h(a) is characterized
by the step responses of the decimated versions of q1(n) and q2(n). To this purpose, let C = (c1jc2)
be a basis of the �lter de�nition lattice, and consider function

Sc2(k) =
kX

n1=�1

1X
n2=�1

h (n1c1 + n2c2) (2.29)

Sc2(k) represents the response of the �lter to a 2-D step oriented along c2, \read" along c1. This
is the best characterization of the step response, because Sc2(k) actually \spans" all the values
of the output of the �lter relative to the 2-D step. In particular, we are interested in the position
of the ripples, and in the amount of the di�erence between each overshooting and its succeedings
undershooting. Such parameters, determined by Sc2(k), are expected to represent a good measure
of the \annoyance" of the ringing. We will show in the following how to choose orientations for
the 2-D step so that the Sc2(k) can be related to the step responses of two decimated version of
the two 1-D �lters.

We can get some insight into Sc2(k) by considering together (2.7), (2.9) and (2.29):

Sc2 (k) = j det(A)j
kX

n1=�1

1X
n2=�1

�h (n1a1 + n2a2) (2.30)

= j det(A)j
kX

n1=�1

1X
n2=�1

q1 (n1A1;1 + n2A1;2) q2 (n1A2;1 + n2A2;2)

where (a1ja2) = A. It is apparent that if

A1;2 = A2;1 = 0 (2.31)

then Sc2(k) coincides with the step response of �lter q1(nA1;1), times constant
�
j det(A)j

P1
n=�1 q2 (nA2;2)

�
.

One can show that, for ideal 2 low{pass q2(n), the last term is equal to j det(A)j=jA2;2j = jA1;1j
(as the stop{band frequency of q2(n), in this case, must be smaller than 0:5=A2;2).

Note that condition (2.31) implies that A be diagonal, i.e., that the decimation lattice be
factorable. In the general case, it is convenient considering a basis �A = A �U of the decimation
lattice, such that �A = (�a1j�a2) is in lower Hermite normal form (then �A1;2 = 0). Let �C = (�c1j�c2) =
C �U. Then

S�c2 (k) = j det(A)j
kX

n1=�1

 
q1
�
n1 �A1;1

� 1X
n2=�1

q2
�
n1 �A2;1 + n2 �A2;2

�!
(2.32)

Consider a poliphase decomposition of q2(n):

q2(n) = q
s(n)
2 (

�
n= �A2;2

�
) (2.33)

where
s(n) = n mod �A2;2 (2.34)

and
qs2(n) = q2

�
�A2;2n+ s

�
(2.35)

2Actually, it is not necessary that q2(n) be ideal. A milder condition is Q2(0) = 1 and Q2(l=(2A2;2)) = 0 for
1 < l < A2;2.
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Then, calling

Qr
2 =

1X
n=�1

qr2(n) (2.36)

and
r(n) =

�
n �A2;1

�
mod �A2;2 (2.37)

we can rewrite (2.32) as

S�c2(k) = j det(A)j
kX

n=�1

q1
�
n �A1;1

�
Q
r(n)
2 (2.38)

Equation (2.38) shows that the output of �lter h(a) to a 2-D step oriented along �c2, \read" along

points k�c1, coincides with the step response of the 1-D �lter with impulse response q1
�
n �A1;1

�
Q
r(n)
2 .

If function Qr
2 is constant with respect to r, we have that the 2-D step response coincides with the

step response of a decimated version of q1(n), times a multiplicative constant depending on q2(n).
The following equality holds:

�A2;2Q
r
2 = Q2(0) + 2

b( �A2;2�1)=2cX
k=1

Q2

�
k
�A2;2

�
cos

�
2�

kr
�A2;2

�
+

�
Q2(0:5) ; even �A2;2

0 ; odd �A2;2
(2.39)

hence, a su�cient condition to have constant Qr
2 is

Q2 (k=A2;2) = 0 for k > 0 (2.40)

If such a case is veri�ed, the considered 2-D step response is determined by q1(n) only. Note
that, as long as the stop{band frequency of Q1(f) is smaller than 0:5= �A1;1, it is reasonable to
assume that the step response behaviour of �lter q1 (n) does not di�er \too much" from the one
corresponding to its decimated version �A1;1q1

�
�A1;1n

�
. For example, in the case of an ideal �lter

hid(n) with pass{band frequency equal to 0:5=M for some even integer M , the di�erence �D(k)
between the k{th overshooting and its succeeding undershooting in the step response of hid(2n)
is between 79 and 84 per cent of D(k), the correspondent value for hid(n) (in Appendix C such a
result is proved, together with the dependance of �D(k)=D(k) on k and M ).

Completely similar considerations hold for the �lter response to a 2-D step oriented along ĉ1,
where (ĉ1jĉ2) = CÛ and Û is such that AÛ is in upper Hermite normal form.

2.3.4 Symmetries

Impulse responses of M-D FIR �lters de�ned on lattices often enjoy symmetries, which can be
exploited in order to reduce the computational weight (in terms of number of OPS's) [33]. The kind
of symmetry we will consider here is the one derived by a spatially complete congruent mapping
(i.e., � ! � biiective) [33]. In other words, given �lter h(Cn), we are looking for an integral
unimodular matrix Q such that

h(Cn) = h(CQn) ;n 2 Z2 (2.41)

It is useful, for the arguments of this section, de�ning the following integral unimodular matrices:

Q1 = I =

�
1 0
0 1

�
;Q2 =

�
0 1
1 0

�
;Q3(b) =

�
1 b
0 �1

�
;Q4(c) =

�
1 0
c �1

�
(2.42)

where b and c are integer. The matrices of (2.42) characterize the set Q of 2� 2 integral matrices
that coincide with their own inverse:

Q = f�Q1;�Q2;�Q3(b);�Q4(c) ; b; c 2 Zg (2.43)
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If the 1-D �lters q1(n) and q2(n) are zero{phase (as we have assumed so far), then �lter �h(n) as
in (2.7) enjoyes property

�h(n) = �h(Qn) ; Q 2 f�Q1;�Q3(0)g (2.44)

Its sampled version �h(An) (see (2.9)) enjoys property (from (2.44))

�h (An) = �h (QAn) ; Q 2 f�Q1;�Q3(0)g ; QAn 2 LAT (A) (2.45)

In order for the mapping speci�ed by Q to be complete, the last condition of (2.45) should hold
for each n 2 Z2. This is equivalent to (remember that Q is unimodular)

LAT (QA) = LAT (A) (2.46)

i.e., to
A�1QA 2 Z2 (2.47)

This condition is trivially satis�ed if A is unimodular. Assume now j det(A)j > 1. Note that, since
det
�
A�1QA

�
= �1, condition (2.47) is equivalent to

�
A�1QA

��1
= A�1Q�1A = A�1QA 2 Z2 (2.48)

and therefore A�1QA = Qj for some Qj 2 Q. We can rewrite this last identity as

QA = AQj (2.49)

Assume A is in upper Hermite normal form. If this was not the case, it is always possible to change
basis in � so that such an hypothesis is met. We should now determine when (2.47) is satis�ed for
Q 2 f�Q1;�Q3(0)g. Cases Q = �Q1 are trivial. In particular, �Q1A = �AQ1, i.e., employing
zero{phase 1-D �lters, the resulting 2-D �lter is zero{phase. This property was already noted in
[28].

It remains to check case Q = �Q3(0), which can be veri�ed by direct inspection. Condition
(2.47) is never satis�ed for Q = �Q3(0);Qj = Q2. Case Qj = Q3(0) = Q4(0) satis�es (2.47) only
if A is diagonal, but, according to Observation 5 of Section 2.1, this implies A = I, and we are
back to the case of unimodularA. The only other case for which condition (2.47) is satis�ed when
Q = �Q3(0), is for Qj = �Q3(1) if A1;1 = 2A1;2.

Let us summarize the results of this section. Assume the 1-D �lters q1(n) and q2(n) are zero{
phase. Then h(Cn) = h(�Cn). Moreover, if the decimation matrix A is unimodular, then

h(Cn) = h(�CQ3(0)n) (2.50)

Such a relation can be regarded to as a quandrantal{like simmetry.
If A is not unimodular, let �A be the upper Hermite normal form matrix associate to A. Then

relation (2.50) is veri�ed if (and only if) �A1;1 = 2 �A1;2.

2.3.5 Optimality in the least squares sense

A GF �lter designed by truncating the impulse responses of 1-D ideal �lters of (2.6) provides, as a
matter of fact, the optimal least squares approximation (among the FIR �lters with support equal
to (2.12)) to the ideal transfer function H(f ) in (2.8). This is immediately derived from [28], where
the explicit relations between ideal h(Cn) and ideal fqi(n)g are computed.
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2.3.6 Minimax parameters

It can be interesting looking for relations among overall (conventional) �lter length, pass{band and
stop{band ripples, and some measure of the \size" of the transition region, that hold in GF �lters
designed starting from optimal minimax 1-D �lters.

Adopting the notation of Section 2.1, from Observation 4 in the same section it is immediately
seen that

Fp
def
= diag(fp1 ; fp2) = A�TCTPp (2.51)

Fs
def
= diag(fs1 ; fs2) = A�TCTPs (2.52)

Noting that j det(Fs � Fp)j = j det
�
A�TCT (Ps � Pp)

�
j = 2Bt1Bt2 , where Bti = fsi � fpi , we

have that, for given pass{band and stop{band parallelograms specifying the support of H(f ), the
product of the transition bandwidths of �lters q1(n) and q2(n) (and therefore term 1=N1N2, for
given pass{band and stop{band ripples �pi and �si of the two 1{D �lters, see (1.2)) is propor-
tional to j det(C)j=j det(A)j. The conventional length Nc of �lter h(a) is approximately equal to
N1N2=j det(A)j; we thus maintain that, for given pass{band and stop{band ripples of Q1(f) and
Q2(f), Nc can be considered approximately inversely proportional to j det(C)j and independent
of A. Similarly, for given values of det(C)= det(A), the conventional length Nc is approximately
inversely proportional to det(Ps�Pp) (which represents the area A of the \corner region" depicted
in Fig. 2.2):

A �Nc ' constant (2.53)

It is apparent the resemblance between such a result and the relation between transition bandwidth,
ripples and length of minimax 1-D �lters (1.2). A more careful exam, though, shows that the
situation is actually quite tricky. As a matter of fact, relation (2.53) holds for �xed ripples �pi ; �si
of the two 1-D �lters. The relation between f�pi ; �sig and f�p; �sg (the ripples of the resulting 2-D
�lter), is obtained combining together inequalities (B.13),(B.14) and (B.16),(B.17):

�p � �p1 + �p2 + (j det(A) � 1j)maxf�s1 ; �s2g (2.54)

�s � j det(A)jmaxf�s1 ; �s2g (2.55)

We can obtain a simple worst{case relation between �p�s and Nc (for �xed area A) if �p1 = �p2 =

�s1 = �s2
def
= �. In such a case, it is

�p�s � j det(A)j (j det(A) + 1) �2 (2.56)

As a matter of fact, inequality (2.56) turns out not to be of much usefulness in practice. The derived
upper bound is very pessimistic, and experimental tests show that one can actually reach much
smaller values for �p�s. On the other side, the lack of a theoretical expression for the lower bound
for �p�s in the 2-D case (see Appendix B) makes it di�cult to predict the actual characteristics of
the resulting �lter.

As an operative rule of thumb, we will accept the following simple approximation for GF
�lters: term �p�s decreases as the product A �Nc increases. Due to the unpredictable e�ect of the
contributions of the frequency response oscillations of the two 1-D �lters, our statement may not
hold true in some instances. A general theory capable of predicting such a behaviour is beyond
the scope of the present work. Nonetheless, experimental tests show that these situations are not
frequent in practice, and we will keep to our assumption as a guideline criterion for the procedure
of Section 3. Clearly, our hypothesis is more likely to hold true for small values of j det(A)j. The
higher the number of overlapping spectral repetitions, the more unpredictable the behaviour of the
frequency response. This is one of the reasons why, in the GF �lter design algorithm, one seeks for
decimation matrices A with the smallest value of j det(A)j (another reason being that { as already
noted { large values of j det(A)j typically induce the pass{band and transition band of �lters qi(n)
to be narrow, with consequent increase of the design burden).

15



A

Figure 2.2: Example of \corner region" for a diamond{shaped spectral mask. Solid line: pass{band
curve. Dashed line: stop{band curve.

In closing this section, it is interesting to notice that, starting from 1-D optimal minimax
�lters, one does not obtain the best minimax approximation (in the class of GF �lters), to the
ideal frequency response of (2.8), as it is easily proved. The determination of the constraints to
put on the 1-D �lters in order to get the optimal minimax solution remains an open issue.
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Chapter 3

2-D IFIR Filters

IFIR �lters can be pro�table in the 2-D case as well as in the 1-D case. The computational
weight, in terms of number of OPS's, can be e�ectively reduced with respect to conventional
�lters, depending on the characteristics of the ideal frequency response to approximate and on
the de�nition lattice. Although precise relationships among �lter parameters are not available in
general for 2-D �lters, in the case of GF �lters one can exploit the indications of Section 2.3.6 to
characterize the �lter behaviour, and to devise e�cient schemes for IFIR structures.

In the evaluation of the achievable computational weight reduction, it is important to consider
how the �lters are implemented. In particular, the use of the generalized factorable implementation
determines dramatically the improvements attainable via an IFIR scheme. A simple example will
make such an argument clear.

Consider a factorable �lter d(n) de�ned on Z2: d(n) = d1(n1)d2(n2). Let N1 and N2 be the
lengths of d1(n1) and d2(n2) respectively, so that N = N1N2 is the length of d(n). Implementing
d(n) without taking into account the factorability requires N OPS's (exploiting symmetries in d(n)
can reduce the number of multiplications by some constant factor). If we adopt the factorable
implementation, only N1 + N2 OPS's are required (again, we neglect symmetries in the impulse
responses). Assume now to use a 1-D IFIR structure for both d1(n) and d2(n). For instance, we
may have

Di(z) = Hi

�
z2
�
Gi(z) ; i = 1; 2 (3.1)

Let Nhi and Ngi be the lengths of �lters hi(n) (without null samples interleaved!) and gi(n)
respectively, and suppose Nhi + Ngi = Ni=2 (for details about actual performances of 1-D IFIR
�lters, see [1],[6]). It is straightforward that, using the factorable implentation of the 2-D �lter,
now only (N1 + N2) =2 OPS's are required. On the other side, if the �lter is implemented in a non{
factorable fashion, one easily realizes (see Fig. 3.1) that the whole structure is equivalent to the
cascade of two 2-D �lters, the �rst of whom having non{null samples only on lattice LAT (2 I). The
number of OPS's required to implement the cascade of two �lters is the sum of their conventional
lengths (de�ned in Appendix B), i.e.

N IFIR = Nh1Nh2 +Ng1Ng2 (3.2)

IfNh1 = Nh2
def
= Nh and Ng1 = Ng2

def
= Ng , then N IFIR = N2=4� 2NhNg. Hence, with respect to

the \direct" �lter, using such an IFIR scheme with a non{factorable implementation requires less
than 25% of OPS's than in the direct case. In general, if IFIR structures of the form H

�
zM
�
G(z)

are used, the computational burden can be reduced approximately by a factor M in the factorable
case, and by a factor M2 in the non{factorable case.

The scheme described so far is actually the simplest IFIR structure for 2-D signals. In general,
a two{stages 2-D IFIR �lter de�ned on a lattice LAT (C) is composed by the cascade of two �lters,
h(a) and g(a), where h(a) has non{null coe�cients only on a sublattice LAT (CH). As it will
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Figure 3.1: The cascade of two 1-D IFIR �lters (on z1 and z2 respectively) is equivalent to a 2-D
IFIR �lter.

be shown in the following, the dependance of the overall computational weight reduction factor
on term j det(H)j is roughly linear in the case of non{factorable implementation. The situation is
less straightforward using the generalized factorable implementation, and it can be interpreted in
terms of the results of Section 2.1.1.

3.1 2-D IFIR Schemes with GF Filters

Let � = LAT (C) be the signal de�nition lattice, and consider a sequence L = (�0;�1; : : : ;�M�1)
of lattices such that

�0
def
= � � �1 = LAT (CH1) � : : : � �M�1 = LAT (CH1H2 : : :HM�1) (3.3)

We then de�ne an IFIR structure on L as the cascade ofM FIR �lters
�
h1(a); h2(a); : : : ; hM�1(a)

�
de�ned on �, such that hi(a) has non{null coe�cients only on �i. Note that Hi(f ) is periodic on
��i .

In this work, we will consider only caseM = 2, and de�neH = H1. Note that in any elementary
cell of � there are j det(H)j spectral repetitions of H1(f ).

Let Hid(f ) be the ideal frequency response to be approximated byH0(f )H1(f ). We will consider
here Hid(f ) of the form

Hd(f ) =

�
1 ; f 2 Par (v1jv2)
0 ; f 2 V=Par (�v1j�v2) ; � > 1

(3.4)

where V is a suitable elementary cell of �� such that Par (�v1j�v2) � V. Note that we allow for
a transition region Par (�v1j�v2) =Par (v1jv2). We also put the condition that Par (�v1j�v2) be
contained within an elementary cell of ��1 = LAT

�
(AH)�T

�
.

Our approach to the design of h0(a) and h1(a) is the following: we design H1(f ) (the \shaping"
�lter [6]) which approximates Hid(f ) within V. We then design H0(f ) (the \interpolator" �lter)
so as to cancel the j det(H)j � 1 undesired spectral repetitions of H1(f ) within V. Following such
a procedure, it is natural to choose for H1(f ) a GF �lter de�ned on �1, and then to up{sample it
on �. The interpolated �lter H0(f ), however, is not bound to exhibit any particular shape. As a
matter of fact, the requirements for the interpolator are:

PH0 � Par (v1jv2) ; SH0 � fPar (�v1j�v2) + s ; s 2 P (��;��1)g (3.5)

where PH0 and SH0 are the pass{band and stop{band regions ofH0(f ) (as de�ned in Appendix B).
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In our algorithm, we decided to design H0(f ) as a GF �lter, with pass{band's sides parallel
to those of Par (v1jv2). We do not claim that this is the \best" solution; but, as we are dealing
with parallelogram{shaped pass{band regions, it seems at least a reasonable choice. In plus, our
method has the advantage that it can be easily automatized. In the next section, we describe an
algorithm to �nd the shapes of the interpolator �lters that provide e�cient realizations, starting
from the the spectral mask Par (v1jv2), the de�nition lattice � and its sublattice �1.

3.2 Design of the Interpolator

As mentioned above, we design the interpolator �lter as a GF �lter, with pass{band's sides parallel
to those of P (v1jv2), satisfying. Note that (3.5) does not constrain the frequency response of
H0(f ) in points that belong neither to the repetitions of P (v1jv2) on �� nor to the repetitions of
P (�v1j�v2) on ��1=�

�. Hence,in�nite choices for H0(f ) are available, and we should pick up the
one we expect to be the \best" in terms of computational burden.

We showed in Section 2.3.6 that, in general, the minimum�lter length to achieve given minimax
�lter parameters decreases with the corner area of the transition region. Therefore, our rule to
choose the pass{band and stop{band region of the interpolator will be maximizing the corner area,
while satisfying (3.5).

Following such a criterion, it is straightforward that the pass{band region of H0(f ) should
coincide with P (v1jv2). On the other side, one can easily verify that several feasible candidates
for the stop{band region are available in general. They are like \local maxima" of a function (the
corner region area) of the stop{band region. We will show in the following how to �nd such local
maxima; once they have been determined, we will pick up the one that requires the minimum�lter
length to attain the desired minimax �lter parameters.

In order to describe our procedure, it is convenient looking at the \transformed" signals (see
(2.9))

�h0(An) = h0(Cn) ; �h1(An) = h1(Cn) (3.6)

Now all the pass{band and stop{band regions are rectangular with sides pairwise parallel to the
cartesian axes. The pass{band region P (v1jv2) is transformed into P

�
C�TAT (v1jv2)

�
= R (u),

the stop{band region P (�v1j�v2) is transformed into R (�u), the repetition lattice �� is trans-

formed into ��
def
= LAT

�
A�T

�
, and the periodicity lattice ��1 becomes ��1

def
= LAT

�
(AH)�T

�
.

Our purpose is to �nd the \largest" rectangles contained in some (rectangular) elementary cell of
��1, which do not overlap any repetition of R(�u) on the points of ��1. We will call such rectangles
the maximal rectangles. More precisely, a rectangle with sides parallel to the axes is maximal if
it cannot be expanded along any direction, withour bumping into some repetition of itself on the
points of ��, or into some repetition of R(�u) on the points of ��1. Maximal rectangles are the
candidates from which the support of the stop{band of H0(f ) will be chosen.

In the following, a simple algorithm to �nd all maximal rectangles, given ��,��1,u and �, is
described. Let A = R(q1; q2), where LAT (diag(q1; q2)) is the densest factorable sublattice of ��.
It is clear that the rectangular elementary cells of ��1 are contained in A. Let us observe since
now that, in case any side of a maximal rectangle R (a1; a2) is contained within a side of A (i.e.,
a1 = q1 (case 1) or a2 = q2 (case 2)), then the interpolator H0(f ) can be pro�tably reduced to a
generalized 1-D �lter: we can set �H0(f ) = �H2(f2) where �H2(f) is characterized by fp = u2; fs = a2
(case 1), or �H0(f ) = �H1(f1) with �H1(f) characterized by fp = u1; fs = a1 (case 2). Note in passing
that other generalized 1-D �lters, oriented along di�erent directions, can be found, satisfying (3.5).
The determination of such �lters, however, is beyond the scope of the present work.

The �rst step in the algorithm to �nd the maximal rectangles, is constructing an ordered set
Q1 from the points of ��1 contained within rectangle1

S = ff ; f 2 A ; f2 � 0g (3.7)

1A dual algorithm would interchange the role of f1 and f2.
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For each set of points faig of ��1 contained in S (except the origin), characterized by the same

component ai2, we add point
�
minfaj1g; a

i
2

�T
in Q1. Once Q1 has been built, we construct Q2

from Q1 by discarding all points
�
ai1; a

i
2

�T
such that some other point

�
aj1; a

j
2

�T
exists in Q1 with

aj1 � ai1 and aj2 � ai2. Note that our de�nition is consistent (i.e. it gives rise to just one set Q2

starting from Q1), and that one can order the elements of Q2 according to the ascending order of
components ai2.

It should be not too di�cult to convince oneself that the set of maximal rectangles is composed
by rectangles R(b1);R(b2); : : : ;R(bM�1), with

bi1 =

�
ai1=2 ; ai 2 ��

ai1 � �u1 ; ai 62 ��
(3.8)

and

bi2 =

�
ai+12 =2 ; ai+1 2 ��

ai+12 � �u2 ; ai+1 62 ��
(3.9)

A simple example should make our procedure clear. Consider the following design parameters:

C = I, H =

�
2 1
0 1

�
, v1 = (1=20; 1=40)T , v2 = (�1=20; 1=40)T , � = 3=2. Fig. 3.3(a) represents

the repetitions of Par((v1jv2)) on the points of ��1. The repetitions centered on the points of
��1=�

� are to be cancelled by H0(f ).

Using the algorithm of Section 2.1, one obtains the sampling matrix A =

�
2 1
�2 1

�
and the

pass{band frequencies of the 1-D �lters fp1u1 = fp2 = u2 = 1=40. Thus A�T =

�
1=4 1=2
�1=4 1=2

�

and (AH)�T =

�
�1=8 1=2
�3=8 1=2

�
. The densest factorable sublattice of �� = LAT (A�T ) is

LAT

�
1 0
0 1

�
= Z2, so that A = R (1; 1)). We can readily �nd the (ordered) set Q1 from

Fig. 3.2(a):

Q1 =

(
(1; 0)T ;

�
3

8
;
1

8

�T
;

�
1

4
;
1

4

�T
;

�
1

8
;
3

8

�T
;

�
1

2
;
1

2

�T
;

�
1

8
;
5

8

�T
;

�
1

4
;
3

4

�T
;

�
3

8
;
7

8

�T
; (0; 1)T

)

Note that one can write an automatic procedure to obtain the points of ��1 within A. For
example, one can determine the L.D.F.L. containing ��1, determine (trivially) the points of such
lattice within A, and identify those which actually belong to ��1. Next, set Q2 is derived by Q1:

Q2 =

(
(1; 0)T ;

�
3

8
;
1

8

�T
;

�
1

4
;
1

4

�T
;

�
1

8
;
3

8

�T
; (0; 1)T

)
(3.10)

From Q2 we build the set af maximal rectangles�
R1 = R

�
1

2
;
1

8
�

3

80

�
; R2 = R

�
3

8
�

3

80
;
1

8

�
(3.11)

R3 = R

�
1

8
;
3

8
�

3

80

�
; R4 = R

�
1

8
�

3

80
;
1

2

��
The maximal rectangles are depicted in Fig. 3.2(b). They correspond to the the candidates for
the stop{band curve of H0(f ), represented in Fig. 3.3(b). Note that, according to our previous
observation, rectangles R1 and R4 correspond to generalized 1-D �lters. Due to the symmetry of
the spectral mask of h1(f ) and of the repetition lattice, there are two symmetric couples of such
curves (namely, couple (1) and (4) and couple (2) and (3) in Fig. 3.3(b)).
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Figure 3.2: (a) Lattice LAT ((AH)�T ) (dots), lattice LAT (A�T ) (crosses), and spectral repetitions
of �H1(f ) (solid line=pass{band curve, dashed line=stop{band curve) (see text); (b) The four
maximal rectangles.
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Figure 3.3: (a) Lattice LAT ((CH)�T ) (dots), lattice LAT (C�T ) = Z2 (crosses), and spectral
repetitions of H1(f ) (solid line=pass{band curve, dashed line=stop{band curve) (see text); (b)
The stop{band curves corresponding to the maximal rectangles. Only those centred in the origin
are shown. Note that case (1) and (4) (corresponding to rectangles R1 and R4) collapse into
generalized 1-D �lters.

3.3 Some examples

In this section we show two examples of use of the algorithm algorithm proposed for the design
of 2-D IFIR �lters. For given �lter speci�cs (in terms of spectral mask and de�nition lattice
� = LAT (C)), we �rst design the shaping �lter H1(f ) on �. Then we consider a number of
sublattices f�i = LAT (CHi)g of �, and for each of them we design the related interpolators
(according to the indications of Section 3.2). The cascade of the shaping �lter, with its coe�cients
set to zero in �=�i, and of the di�erent interpolators, represent the set of feasible IFIR schemes.
Note that, according to Observation 6 in Section 2.1, in order to achieve the lowest possible value
for j det(A)j, it is possible in certain cases to design a new shaping �lter directly on �1, instead
that decimating a prototype de�ned on �. However, for the sake of simplicity we have adopted
the decimation procedure in our experiments.

The performances of the IFIR �lters have been evaluated in terms of pass{band and stop{
band ripples (�p; �s) and of number of OPS's required for the implementation. Although we have
used GF �lters for both the shaping and the interpolator stages, we have considered here both
the generalized factorable and the non{factorable implementation of the �lters. In this way, we
provide a reasonable guess of the performance attainable by IFIR schemes using �lters other than
GF.

In our examples, we have tested exhaustively the IFIR systems relative to all the sublattices
�i with index in � ranging from 2 to 5, correspondent to bases CHi with Hi in upper Hermite
normal form. Matrices fHig are enumerated in Tab. 3.1. For each sublattice �i, the stop{band
curves (corresponding to the maximal rectangles) are found. It will be seen that, depending on the
shape of the desired frequency response mask, some times more than one \maximal" stop{band
curves exist, while in other cases no one can be found. In this latter case, the IFIR structure
relative to such a sublattice is not feasible. In some instances (like in the case of Fig. 3.3), there

24



H2 =

�
2 0
0 1

�
H3 =

�
2 1
0 1

�
H4 =

�
1 0
0 2

�
H5 =

�
3 0
0 1

�

H6 =

�
3 1
0 1

�
H7 =

�
3 2
0 2

�
H8 =

�
1 0
0 3

�
H9 =

�
4 0
0 1

�

H10 =

�
4 1
0 1

�
H11 =

�
4 2
0 1

�
H12 =

�
4 3
0 1

�
H13 =

�
2 0
0 2

�

H14 =

�
2 1
0 2

�
H15 =

�
1 0
0 4

�
H16 =

�
5 0
0 1

�
H17 =

�
5 1
0 1

�

H18 =

�
5 2
0 1

�
H19 =

�
5 3
0 1

�
H20 =

�
5 4
0 1

�
H21 =

�
1 0
0 5

�

Table 3.1: Enumeration of the upper Hermite normal form matrices with determinant ranging
from 2 to 5

can be couples of symmetric stop{band curves. When the spectral mask itself enjoys quadrantal
symmetry (case (1)), we can consider just one interpolator �lters for each couple.

For our experiments, we have chosen minimax 1-D �lters with equal stop{band and pass{band
ripples. In order to provide some homogeneity in the results, the order of the 1-D �lters in the
design of the interpolator H0(f ) have been chosen so as to obtain the same ripples exhibited by
the 1-D �lters in the design of H1(f ).

The overall ripples are related to the ripples of H0(f ), and of the decimated version of H1(f ), in
a fashion similar to (1.3),(1.4). Note that, according to the arguments of Section 2.3.6, increasing
the index of �i in � typically leads to higher ripples relative to the decimated version of H1(f ).
This fact is in accordance with our experimental results, where higher decimation ratios correspond
(although in a non{linear fashion) to increased amount of the overall ripples.

Finally, note that all the �gures of this section represent pass{band curves (solid line) and stop{
band curves (dashed line) of real �lters (computed according to the de�nitions of Appendix B)
within the square R(0:5; 0:5).

Case 1.

The �rst example considers a diamond{shaped spectral mask. The pass{band curve is Par(v1jv2),

with v1 = (1=10; 1=20)T ;v2 = (�1=10; 1=20)T , while the stop{band curve is Par(�v1j�v2) with
� = 3=2. The de�nition lattice is � = Z2 (C = I). Following the algorithm of Section 2.1, one

�nds the decimation matrixA =

�
2 1
�2 1

�
. The frequency response of the shaping �lter (before

the decimation) H1(f ) is depicted in Fig. 3.4(right), while that of Ĥ1(f ) (see (2.9)) is depicted in
Fig. 3.4(left). Note that Ĥ1(f ) is periodic on LAT (A�T ).

The 1-D �lters in the design of H1(f ) were both of length 61; the pass{band and stop{band
ripples were �p = �s = 0:05. Using the non{factorable implementation, 465 multiplications and 929
sums per input samples are required for the implementation of H1(f ), while exploiting the general-
ized factorable, such values are reduced to 108 and 117 respectively. Note that the upper Hermite

normal form matrix associate to A is

�
4 1
0 1

�
, therefore the conditions for the quadrantal{like

simmetry of the �lter coe�cients, studied in Section 2.3.4 are not satis�ed. This fact is curious,
since the ideal frequency response of Fig. 3.4(right) is actually quadrantally simmetry.
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Figure 3.4: Frequency response of Ĥ1(f ) (left) and of H1(f ) (right) prior to decimation, relative
to Case 1.

The frequency responses of the considered �lters are shown in Fig. 3.5. Each row of Fig. 3.5 is
related to a sublattice �i = LAT (CHi), where Hi is indicated in the leftmost column, according
to the enumeration of Tab. 3.1. The second and the fourth columns show �lters Ĥ1(f ) and H1(f )
(after decimation on �i) respectively. The third column and the �fth column show Ĥ0(f ) and
H0(f ) respectively. The stop{band region of each �lter Ĥ0(f ) is a maximal rectangle. The sixth
column shows the overall frequency response of the IFIR structure.

As noted above, we have kept just one interpolator �lter for each couple of symmetrical ones.
In plus, due to the quadrantal simmetry of the spectral mask (Fig. 3.4(right)), the IFIR structures
relative to a number of couples of sublattices (namely, (H6;H7); (H10;H12); (H18;H19)) exhibit a
completely symmetrical behaviour, and we have showed only one instance for each such couple.

The quantitative results are summarized in Tab. 3.2. For each sublattice LAT (CHi), the
lengths N0

1 and N0
2 of the 1-D �lters used in the design of H0(f ) are reported, together with

the overall number of multiplications and of sums per input sample relative to the non{factorable
implementation (MNF,SNF) and to the generalized factorable implementation (MGF,SGF). The
two rightmost columns of Tab. 3.2 show the pass{band and stop{band ripples �p and �s of the
overall IFIR structure.

In order provide a better understanding of the results (in terms of reduction of MNF and SNF),
the upper Hermite normal form matrix associated to each AHi (called P in Tab. 3.2) has been
computed. Whenever either P1;1 = 2P1;2, or P is diagonal, the condition for the quadrantal{like
simmetry of the coe�cients of H1(f ) (decimated on LAT (CHi)) (see Section 2.3.4) is satis�ed,
and can be exploited for the reduction of the number of multiplications in the non{factorable
implementation. Such a pro�table contingency is veri�ed in the cases ofH4 andH14. In particular,
in the case ofH14, the MNF and the SNF are reduced approximately by a factor 5 and 3 respectively
by using the IFIR structure.

In Tab. 3.2 we have also reported matrixD, the basis of the L.D.F.L. containing LAT (AH). As
described in Section 2.1.1, decimating the impulse response of H1(f ) on LAT (CH) corresponds to
lower computational weight (using the generalized factorable implementation) only if the L.D.F.L.
containing LAT (CH) is less dense that the L.D.F.L. containing LAT (A) (in this case, Z2). In fact,
for the cases of H3;H8 and H10 such a condition is not veri�ed, and the MGF and the SGF are
higher than in the case of the one{stage implementation. Hence, in such cases, the IFIR scheme is
not pro�table. On the other side, when det(D) > 1, the IFIR scheme yields computational weight
reduction using generalized factorable implementation. For example, in the case of H14, the MGF
and the SGF are reduced approximately by a factor 2.4 and 2.2 respectively.
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Figure 3.5: Frequency responses of the considered �lters - Case 1. Each row of is related to a
sublattice �i = LAT (CHi). Second and fourth column: �lters Ĥ1(f ) and H1(f ) (after decimation
on �i). Third and �fth column: �lters Ĥ0(f ) and H0(f ). Sixth column: overall frequency response
of the IFIR structure.
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P D N0
1 N0

2 MNF SNF MGF SMF �p �s

H3

�
8 5
0 1

� �
1 0
0 1

�
21 7 250 499 142 136 0.07 0.04

H4

�
4 2
0 2

� �
2 0
0 2

�
21 5 129 489 70 78 0.06 0.02

H6

�
12 9
0 1

� �
3 0
0 1

�
9 15 171 341 94 95 0.08 0.07

H8

�
12 5
0 1

� �
1 0
0 1

�
39 7 189 376 160 150 0.09 0.02

H10

�
16 5
0 1

� �
1 0
0 1

�
25 9 144 286 150 134 0.13 0.06

H14

�
4 0
0 4

� �
4 0
0 4

�
15 15 86 256 44 53 0.07 0.02

H18

�
20 5
0 1

� �
5 0
0 1

�
21 15 132 262 98 99 0.11 0.05

Table 3.2: Parameters of the considered IFIR structures - Case 1. Matrices P,D: see text.
N0
1 ,N

0
2=lengths of the 1-D �lters used for H0(f ). MNF,SNF = overall number of multiplica-

tions and sums required for the non{factorable implementation. MGF,SGF = overall number of
multiplications and sums required for the generalized factorable implementation.

Case 2.

In this example, we have considered a narrow oriented spectral mask (see Fig. 3.6(right)). Such
�lters are employed, for instance, in motion detection algorithms, or for texture discrimination.
The pass{band curve is Par(v1jv2), with v1 = (7=40; 1=8)T ;v2 = (1=40;�1=40)T , while the stop{
band curve is Par(�v1j�v2) with � = 3=2. The de�nition lattice is � = Z2 (C = I). In this case,

the decimation matrix is A =

�
7 5
�1 1

�
. The upper Hermite normal form matrix associated

to A is

�
12 5
0 1

�
, therefore the condition for the quadrantal{like simmetry of the coe�cients of

H1(f ) is not satis�ed in this case either.
Choosing 1-D �lters with length equal to 85, the pass{band and stop{band ripples of H1(f )

are 0.07 and 0.04 respectively. Then, for the one{stage implementation, MNF=301, SNF=601,
MGF=164 and SGF=157.
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Figure 3.6: Frequency response of Ĥ1(f ) (left) and of H1(f ) (right) prior to decimation, relative
to Case 2.
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Fig. 3.7 shows the behaviour of the �lters for the di�erent sublattices with index in � = Z2 rang-
ing from2 to 5. Note that, corresponding to certain sublattices (namely,LAT (CH2),LAT (CH4),LAT (CH15)),
more than one interpolator is found with our algorithm.

The quantitative results are shown in Tab. 3.3. In this example, none of the lattices LAT (CHi)
satis�es the condition for the quadrantal{like simmetry. In plus, all matrices D are equal to I.
Hence, adopting the generalized factorable implementation, the IFIR scheme increases the number
of OPS's for all of the sublattices of this example. If the non{factorable implementation is used,
computational weight reduction is achieved with the IFIR scheme. For example, in the case ofH2,
little more than one half of MNF and SNF, with respect to the direct one{stage implementation, are
required. Higher reduction is gained using less dense sublattices (such as LAT (CH19)). However,
the ripples of the overall frequency response corresponding to LAT (CH19) are much higher than
in the one{stage case. To achieve smaller ripples we should increase the size of the interpolator.
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Figure 3.7: Frequency responses of the considered �lters - Case 2. Each row of is related to a
sublattice �i = LAT (CHi). Second and fourth column: �lters Ĥ1(f ) and H1(f ) (after decimation
on �i). Third and �fth column: �lters Ĥ0(f ) and H0(f ). Sixth column: overall frequency response
of the IFIR structure.
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P D N0
1 N0

2 MNF SNF MGF SMF �p �s

H2

�
24 5
0 1

� �
1 0
0 1

�
13 31 166 332 211 176 0.08 0.04

31 13 166 332 211 176 0.07 0.04

H4

�
24 17
0 1

� �
1 0
0 1

�
9 33 162 323 209 174 0.17 0.10

9 33 162 323 209 174 0.09 0.05

H5

�
36 5
0 1

� �
1 0
0 1

�
15 25 115 229 207 160 0.08 0.16

H8

�
36 29
0 1

� �
1 0
0 1

�
25 15 115 229 207 160 0.18 0.15

H9

�
48 5
0 1

� �
1 0
0 1

�
17 51 111 220 236 176 0.20 0.02

H11

�
48 29
0 1

� �
1 0
0 1

�
51 17 111 220 236 176 0.12 0.02

H15

�
48 41
0 1

� �
1 0
0 1

�
33 23 106 211 225 164 0.25 0.20

23 33 106 211 225 164 0.25 0.20

H19

�
60 17
0 1

� �
1 0
0 1

�
37 29 104 207 234 162 0.23 0.21

H21

�
60 53
0 1

� �
1 0
0 1

�
29 37 104 207 234 162 0.28 0.20

Table 3.3: Parameters of the considered IFIR structures - Case 1. Matrices P,D: see text.
N0
1 ,N

0
2=lengths of the 1-D �lters used for H0(f ). MNF,SNF = overall number of multiplica-

tions and sums required for the non{factorable implementation. MGF,SGF = overall number of
multiplications and sums required for the generalized factorable implementation.
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Chapter 4

Conclusions

In this work we have proposed an extension to the 2-D case of the idea of Interpolated FIR �lters.
Several issues that do not have a counterpart in the 1-D case , such as the choice of the subsampling
lattice and of the interpolator, have been dealt with. We have considered only spectral supports in
the shape of parallelograms, for which Generalized Factorable �lters stand as a pro�table choice.

The experiments have been done considering both the generalized factorable and the non{
factorable implementation of the �lters. The results show that with non{factorable �lters, good
gains (in terms of computational weight reduction) are achievable. Using the generalized factorable
implementation, depending on the spectral support shape, IFIR schemes can lead to the reduction
of the computational burden in certain cases.

Future work will be led toward a theory of IFIR �lters for a generic spectral support.
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Appendix A

Some lattice theory basics

In this Appendix we report some notions of lattice theory that are used extensively throughout the
work, together with the adopted nomenclature. Section A.1 contains facts already described in the
literature. For their proofs, as well as for more details, the reader is addressed to [34],[15],[16],[14].
Section A.2 reports some novel results.

A.1 Lattice theory: background

We will denote vectors by small boldface letters and matrices by capital boldface letters. Their
entries are named after the following example:

a
def
= (a1; a2)

T ; A
def
=

�
A1;1 A1;2

A2;1 A2;2

�
(A.1)

Given two sets A and B, we will denote their di�erence (i.e., the set of elements of A that do
not belong to B) as A=B.

We will always deal with square full{rank matrices in this work. Matrix I is the identity matrix.
For the purpose of this section, we assume that the size of the considered matrices is �xed to M .

Given a matrix V = (v1jv2j : : : jvM), we de�ne as Par(V) the parallelepiped
PM

i=1 �ivi, �1 �
�i � 1. Given a point u, we de�ne as R(u) the parallelepiped with edges parallel to the axes
fa : jaij � juijg.

Given a rational number a, den(a) denotes the least positive integer such that a�den(a) is integer.
Given a rational matrix A, den(A) will denote the least positive integer such that A � den(A) is
an integral matrix. In other words, den(A) is the least common multiple among fden(Ai;j)g.

Any integral matrixU such that U�1 is still integral (or, equivalently, such that j det(U)j = 1)
is called unimodular. Two integral matrices A1;A2 such that A�1

2 A1 is integral (or, equivalently,
such that A1 = A2U with unimodularU) are called right{equivalent or associated. For each class
of associates, there is just one Hermite normal form matrix, i.e. a matrix A such that

1. A is upper triangular

2. Ai;j � 0

3. Ai;j < Ai;i for 1 � i < j �M

4. Ai;j = 0 if Ai;i = 0

A lattice � that admits a basis A will be denoted as LAT (A). Matrices A1 and A2 are bases
of the same lattice if (and only if) A�1

2 A1 is unimodular. When dealing with sampling lattices,
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we will always assume that they are sublattices of ZM (i.e., they are integral lattices, so that they
admit only integral bases).

Let � = LAT (B) be a sublattice of � = LAT (A). Then H = A�1B is integral. Term j det(H)j
is called the index of � in �, and is the number of cosets in the quotient group � : �. Given an
elementary cell C of �, the set of points of � in C is a �{period of � [35]. We will denote any
generic �{period of � as P (�;�).

Let n be an integer. Then the distinct sublattices having index n in LAT (A) are fLAT (AHi)g,
where fHig are the Hermite normal forms matrices with determinant equal to n.

We use the following de�nition for the Fourier transform of a signal h(a) de�ned on a lattice
�:

H(f ) =
X
a2�

h(a)e�j2�f
T
a (A.2)

H(f ) is periodic on �� = LAT (A�T ), where A�T def
= (A�1)T .

Note that we use term \�lter" indicating both its impulse response (denoted by small letter)
and its frequency reponse (denoted by capital letter).

A.2 Some novel results

Consider lattice � = LAT (A) with integral A. As described in Section A.1, � admits a basis Au

in Hermite normal form. A geometric interpretation of such a fact in the 2-D case is the following

(see Fig. A.1, where Au =

�
5 3
0 1

�
): (Au

1;1; 0)
T is the point of � on the horizontal positive

half{axis closest to the origin, while (Au
1;2; A

u
2;2)

T is the point of � in the �rst quadrant at the left

of (Au
1;1; 0)

T , which has minimum distance to the horizontal axis (note that no other point of � is
closer to the horizontal axis). From this geometric standpoint, it is straightforward to argue that
the same argument should apply interchanging the role of the horizontal and of the vertical axes.

For example, from Fig. A.1 we can �nd a \dual" basis Al =

�
1 0
2 5

�
. Generalizing such an idea,

we can infer that any integral lattice admits a basis Al in lower Hermite normal form, i.e. such
that

1. Al is lower triangular

2. Al
i;j � 0

3. Al
i;j < Al

i;i for 1 � j < i �M

4. Al
i;j = 0 if Al

i;i = 0

The \standard" Hermite normal form matrices thus correspond to the upper Hermite normal form

matrices.
In what follows, we will deal only with two{dimensional lattices. From our previous geometric

arguments, one readily recognizes that, once the upper and the lower Hermite normal form bases
Au and Al of � are known, �nding a basis of the densest factorable sublattice (D.F.S.) � of � (see
Fig. A.1) is straightforward:

� = LAT (D0) ; D0 = diag
�
Au
1;1; A

l
2;2

�
(A.3)

Since � is a sublattice of �, it must be A�1D0 = H with integral H. One can see (after some
computations) that this condition is equivalent to

Al
2;2 = k1A

u
2;2 ; k1A

u
1;2=A

u
1;1 = k2 (A.4)
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Figure A.1: Lattice � (crosses), the L.D.F.L. containing � (dots), the D.F.S. of � (circles), and
the two rectangular elementary cells of � (dotted and dashed rectangles).

for some integer k1; k2. In particolar, in order for � to be the densest factorable sublattice, k1
should be the smallest integer for which (A.4) holds true, i.e. k1 = den

�
Au
1;2=A

u
1;1

�
. Hence it must

be Al
2;2 = Au

2;2den
�
Au
1;2=A

u
1;1

�
. Then, since det(Au) = det(Al), it is Au

1;1 = Al
1;1den

�
Au
1;2=A

u
1;1

�
.

This way, we are able to write D0 in terms of Au only: D0 = diag
�
Au
1;1; A

u
2;2den

�
Au
1;2=A

u
1;1

��
. In

particular, the index of � in � is den (A1;2=A1;1).
Another important notion is that of the less dense factorable lattice (L.D.F.L.) 	 that contains

�. Let D00 = diag(d1; d2) be a basis of 	. Then it must D00K = Au for some integral matrix K.
This is equivalent to

Au
1;1 = n1d1 ; A

u
1;2 = n2d1 ; A

u
2;2 = n3d2 (A.5)

for some n1; n2; n3. Since 	 is the less dense factorable sublattice among those containing �, it
must be d1 = Au

1;1=den(A1;2=A1;1) = Al
1;1 and d2 = Au

2;2. In particular, the index of � in 	 is
den (A1;2=A1;1).

Making use of the upper and lower Hermite normal form basesAu andAl, we can also determine
the rectangular elementary cells of � centered in the origin with sides pairwise parallel to the axes
(throughout this work, we will refer to them with the simple term of \rectangular"). It is easy to
prove, starting from our previous geometric observations, that a 2-D integral lattice can admit only
two rectangular elementary cells , namely R(Au

1;1=2; A
u
2;2=2) and R(A

l
1;1=2; A

l
2;2=2) (see Fig. A.1).

In particular, whenever den(A1;2=A1;1) = 1, the two rectangular elementary cells coincide.

36



Appendix B

Some �lter parameter de�nitions

and basic results

This Appendix contains some novel de�nitions and basic results that are extensively used through-
out the work. Only zero{phase �lters (i.e., having purely real frequency response) are considered
in the following. Unitary sampling period is assumed for the 1-D �lters.

The typical minimax parameters of an FIR low{pass �lter h(n) are the pass{band and stop{
band frequencies fp and fs > fp, the pass{band and stop{band ripples �p � 0 and �s � 0 , and
the �lter length N . We consider here only low{pass �lters approximating unitary steps. Note that
quantities fp and �p (as well as fs and �s) are related as

�p = maxfj1�H(f)j; 0 � f � fpg (B.1)

�s = maxfjH(f)j; fs � f � 0:5g (B.2)

where H(f) is the frequency response of h(n).
As a matter of fact, fp; fs and �p=�s (or other combinations of the parameters, see [36]) are

�xed as design parameters. On the other side, when analyzing a given low{pass frequency response
(not necessarily optimal), it can be useful to parametrize it in a similar fashion. To this purpose,
we introduce here the following de�nitions of the analysis parameters of a given �lter h(n):

�p = max

�
j1�H(fi)j ;

dH(fi)

df
= 0 ; jH(fi)j > 0:5

�
(B.3)

fp = min

�
fi : fi > 0 ; H(fi) = 1� �p ;

dH(fi)

df
6= 0

�
(B.4)

�s = max

�
jH(fi)j ;

dH(fi)

df
= 0 ; jH(fi)j < 0:5

�
(B.5)

fs = max

�
fi : fi < 0:5 ; H(fi) = �s ;

dH(fi)

df
6= 0

�
(B.6)

Such de�nitions, to the author's knoweldge, have not been described previously by other authors.
Note that the couples (fp; �p) and (fs; �s) identi�ed by (B.4),(B.3) and (B.6), (B.5) respectively,
satisfy relations (B.1) and (B.2), unless �p > 0:5 or �s > 0:5, in which case the �lter is unsuitable
to any practical purpose. We will assume hereinafter that �p < 0:5 and �s < 0:5.

The proposed de�nitions formalize the intuitive notion of parameters (fp; fs; �p; �s) for a given
frequency response, and suite our purposes when dealing with \well behaved" �lters. For example,
designing a low{pass minimax �lter, by imposing the stop{band and pass{band frequencies, such
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two quantities actually coincide with those obtained by applying (B.4) and (B.6) on the resulting
frequency response.

We now extend the previous notions to 2-D �lters. We start with the case of factorable �lters.
Given two low{pass FIR �lters h1(n) and h2(n) (with frequency response H1(f) and H2(f)),
characterized respectively by parameters (fpi ; fsi ; �pi ; �si ; Ni) ; i = 1; 2, consider the 2{D �lter

h (n1; n2) = h1(n1)h2(n2) (B.7)

The frequency response of such a �lter (periodic on Z2) is H(f ) = H1(f1)H2(f2). In the ideal case

�p1 = �p2 = �s1 = �s2 = 0 (B.8)

we have that H(f ) = 1 for f 2 R (fp1 ; fp2 ) and H(f ) = 0 for f 2 R(0:5; 0:5)=R (fs1 ; fs2). In such
a case, the transition region is \naturally" de�ned as R (fs1 ; fs2) =R (fp1 ; fp2 ).

In any practical situation, condition (B.8) is never met, and the intuitive notion of \transition
region" needs to be de�ned precisely. To this purpose, we can adopt a procedure which is remi-
niscent of the one{dimensional case. We de�ne as transition region of a 2{D �lter H(f ) the region
of the elementary cell R(0:5; 0:5) delimited by the pass{band curve P and the stop{band curve S
(when they are univocally determined), de�ned as follows:

P =
�
f : H(f ) = 1� �p ; krH(f )k2 6= 0

	
(B.9)

S =
�
f : H(f ) = �s ; krH(f )k2 6= 0

	
(B.10)

where r indicates the gradient operator and

�p = max
�
j1�H(f )j ; krH(f )k2 = 0 ; H(f ) > 0:5

	
(B.11)

�s = max
�
H(f ) ; krH(f )k2 = 0 ; H(f ) < 0:5

	
(B.12)

The region P contained within P is called the pass{band region of H(f ), while the region of
R(0:5; 0:5) outside S is called the stop{band region of H(f ). Note that the previous de�nitions
may be easily extended to the case of �lters de�ned on a non{orthogonal lattice. Instead of region
R(0:5; 0:5), any suitable elementary cell of the frequency repetition lattice centered on the origin
may be chosen.

It can be interesting checking the proposed de�nitions for the case of �lter h(n1; n2) = h1(n1)h2(n2),
where h1(n) and h2(n) are low{pass optimal in a minimax sense. Cases of interest for rH(f ) =�
dH1(f1)

df1
H2(f2);H1(f1)

dH2(f2)
df2

�T
to be null are points such that dH1(f1)

df1
= dH2(f2)

df2
= 0. Extremal

interesting points f thus belong either to region R (fp1 ; fp2) or to region R(0:5; 0:5)=R (fs1 ; fs2).
It is easily seen that

�p = �p1 + �p2 + �p1�p2 ' �p1 + �p2 (B.13)

while
�s = max f�s1 + �s1�p2 ; �s2 + �s2�p1g ' max f�s1 ; �s2g (B.14)

Consider now the pass{band curve P. It is easily seen that P is contained within regionR( �f1; �f2)=R(fp1 ; fp2),
where �f1 and �f2 are such thatH1( �f1) = (1��p1��p2 )=(1+�p2 ) andH2( �f2) = (1��p1��p2 )=(1+�p1 ).
Note that �f1 and �f2 belong to the transition bands of H1(f) and H2(f) respectively (as long as
1� �p1 � �p2 > �s1 and 1� �p1 � �p2 > �s2 ).

The bandwith ( �f1� fp1 ) basically depends on i) the pass{band ripple �p2 and ii) the behaviour
of H1(f) in its transition band. Approximating H1(f) in its transition band by a linear function,
one can show that, for small values of the ripples, ( �f1 � fp1 ) can be approximated with 2�p2Bt1 ,
where Bt1 = (fs1 � fp1 ). Similar considerations apply to bandwith ( �f2 � fp2 ). In what follows, we
will always assume that quantities 2�p2Bt1 and 2�p1Bt2 are small enough to allow us to approximate
P with R(fp1 ; fp2).
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The case of the stop{band curve S can be treated in a similar fashion. It can be seen that
(maintaining that the product �pi�sk is negligible), if �s1 > �s2 , then S = R(fs1 ;

~f2), where ~f2 is

such that H2( ~f2) = �s1 . Again, approximatingH2(f) in its transition band with a linear function,
we have that bandwidth (fs2 �

~f2) can be approximated by (�s1 � �s2)Bt2 . Also in this case,
we will assume that such term is small, allowing us to approximate S by R(fs1 ; fs2). Similar
considerations hold if �s1 < �s2 .

It is useful now de�ning the conventional �lter length of an FIR �lter as the number of non{
null samples of its impulse response. Such a de�nition turns out to be pro�table when dealing
with �lters de�ned on a non{factorable lattice. The conventional order of a �lter is approximately
proportional to the number of OPS's required in a \direct" implementation.

If N1 and N2 are the orders of �lters h1(n) and h2(n), the conventional order of �lter h(n1; n2) =
h1(n1)h2(n2) is equal to N1N2, as long as the two 1-D impulse responses do not contain null samples
(which turns out to be the case for Nyquist or M{th band �lters). In what follows, we will assume
that such a condition is met by the considered �lters; the results can be easily adapted to the case
of impulse responses containing null samples.

Consider now the case of a �lter obtained by subsampling an impulse response �h(n) on a given
lattice � = LAT (A), obtaining h(Cn). Such a �lter may be suitable for processing input signals
de�ned on �, or to obtain di�erent shapes of the pass{band and stop{band regions via a change
of basis (see Section 2.1). We de�ne the conventional length of a �lter de�ned on a lattice as the
number of non{nul samples of the �lter. Note that, if �Nc is the conventional length of �h(n), the
conventional length of h(n) is approximately equal to �Nc=j det(A)j. Assume curve S is contained
within some elementary cell of the frequency repetition lattice �� = LAT (A�T ). The frequency
response of the \sampled" �lter H(f ) is given by

H(f ) =
X

r2P (A)

�H(f + r) (B.15)

where P
�
Z2; �̂�

�
is any Z2{period of ��.

One could try to analyze krH(f )k in order to obtain parameters P ;S; �p and �s, according to
the previous de�nitions (B.9){(B.12). Unfortunately, no general result is to be found, because the
position of the zeroes of krH(f )k is unknown a priori. However, a simple argument [28] leads to
conclude that

�p � ��p + (j det(A)j � 1) ��s (B.16)

and
�s � j det(A)j��s (B.17)

where ��p and ��s are the pass{band and stop{band ripples of �H(f ) as in (B.11) and (B.12).
Combining inequalities (B.16) and (B.17), an upper bound for �p�s can be found. Note that

in the case of a 1-D �lter, one can �nd a lower bound for the product �p�s, too. Let M be the
decimation ratio (corresponding to j det(A)j). Then, recalling from (1.2) that the lower bound for
��p��s is a function of the product �N �Bt (where �N is the length of �h(n) and �Bt its transition band),
and observing that

NBt ' �N �Bt (B.18)

(where N ' �N=M and Bt ' �BtM are referred to h(n)), one mantains that

�p�s �
�
��p��s

�opt
(B.19)

where
�
��p��s

�opt
is the product of the pass{band and the stop{band of the optimal �lter with

length �N and transition band �Bt. The determination of similar lower bound relations for the
multidimensional case (where relation (1.2) does not apply) is object of current research.

The displacements of the pass{band and stop{band curves P and S (of H(f )) with respect to
�P and �S (of �H(f )) depend mainly on values �s and j det(A)j, and on the relative position of the
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ripples in the pass{band and in the stop{band regions of �H(f ). Intuitively, the smaller such values,
the \closer" the two curves P and S to �P and �S respectively. In our simpli�ed analysis, we will
approximate P and S with �P and �S respectively.
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Appendix C

Step response characteristics of

ideal �lters

In this Appendix we derive a relation relation between the peak{to{peak ripples of the step response
of an ideal low{pass �lter s(n) and its sampled version s(2n).

Let s(n) be the impulse response of an ideal low{pass �lter with stop{band frequency equal to
0:5=M for some even integer M :

s(n) =

(
sin( �nM )

�n ; n 6= 0
1=M ; n = 0

(C.1)

The output of such �lter to a unitary step in the origin is

S(n) =
i=nX

i=�1

s(n) (C.2)

Due to the symmetry of S(n), we will consider only its samples for n � 0. It is easily seen
that ripples of S(n) alternate every M samples, and that the peaks of the ripples are for n = 2kM
(undershootings) and n = (2k+1)M (overshootings). The di�erence between the k-th overshooting
and its succeeding undershooting, for k > 0 is given by

D(k) =
2kMX

n=(2k�1)M

sin
�
�n
M

�
�n

(C.3)

Exploiting identity:
MX
n=0

sin
��n
M

�
= cot

� �

2M

�

and inequalites

1

M

4k � 1

2k(2k � 1) + 1
4

<
1

(2k � 1)M + n
+

1

2kM � n
<

1

M

4k + 1

2k(2k � 1)

we obtain the following inequalities for k > 0:

1

M�

4k � 1

4k(2k � 1) + 1
8

cot
� �

2M

�
< D(k) <

1

M�

4k � 1

4k(2k � 1)
cot
� �

2M

�
(C.4)
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Consider now the sampled version of s(n):

�s(n)
def
= 2s(2n) =

sin
�
�2n
M

�
�n

(C.5)

Note in passing that �s(n) is the ideal low{pas �lter with stop{band equal to 0:5=M
2 . The di�erence

between the k-th overshooting and its succeeding undershooting relative to the step response �S(n)
of �s(n) is

�D(k) =
kMX

n=(2k�1)M=2

sin
�
�2n
M

�
�n

; k > 0 (C.6)

Clearly, it is

2

M�

4k � 1

4k(2k� 1) + 1
8

cot
� �

M

�
< �D(n) <

2

M�

4k � 1

4k(2k � 1)
cot
� �

M

�
(C.7)

From (C.4) and (C.7), the following equalities are derived:

2

�
1�

1

32k(2k � 1)

�
cot
�
�
M

�
cot
�

�
2M

� < �D(k)

D(k)
< 2

�
1 +

1

32k(2k � 1)

�
cot
�
�
M

�
cot
�

�
2M

� (C.8)

Note that, for M = 4 (which is the smallest useful even value for M ), it is cot
�
�
M

�
= cot

�
�
2M

�
=

0:41, and that such a term monotonically grows with M to its asynthot 1=2.
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