A Boyer-Moore Approach for
Two-Dimensional Matching

Jorma Tarhio*

Computer Science Division
University of California

Berkeley, CA 94720

Abstract

An simple sublinear algorithm is presented for two-dimensional
string matching, where occurrences of a pattern of m x m characters
are searched for in a text of n X n characters in an alphabet of ¢ charac-
ters. The algorithm is based on the Boyer-Moore idea and it examines
a strip of 7 columns at a time, m/2 < r < m. The shift of the pattern
is based on a string of d characters, d = [log.(rm)|. The expected run-
ning time of the algorithm is shown to be O(n*[log, m?]/m?* + c¢m?)
for random texts and patterns. The algorithm is easy to implement,
and results of experiments are reported to show its practical efficiency.

*Work supported by the Academy of Finland and Finnish Cultural Foundation,
and in part by Department of Energy, Office of Energy Research Grant No. DE-
FGO03-90ER60999. Permanent address: Department of Computer Science, P.O. Box
26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland. FElectronic mail:
tarhio@CS.Berkeley. EDU or Jorma.Tarhio@Helsinki.FI.

1 Introduction

The task of two-dimensional string matching is to find all occurrences of a
two-dimensional pattern P (m x m characters) in a two-dimensional string
text T (n x n characters) in an alphabet of ¢ characters.

The trivial algorithm for two-dimensional string matching needs O(m?*n?)
time in the worst case. Baker [Bak78] and Bird [Bir77] independently gave
the first linear time algorithm working in O(n* + m?) time. Galil and
Park [GaP92] developed a linear time algorithm which is independent of
the alphabet. Recently Crochemore et al. [CGR93| presented a sampling
technique that works in linear time for almost all patterns.

In the following we will concentrate on the expected time complexity,
because the average case is more important in practice. Zhu and Takaoka
[Zh'T89] introduced an algorithm that scans a preprocessed text in sublinear
expected time. Baeza-Yates and Régnier [BaR90, BaR93] discovered the
first on-line sublinear algorithm which runs in O(n?/m+m?) expected time.
Kérkkainen and Ukkonen [K&U93] showed that O(Z—zlogc m?) is the lower
bound for expected running time and presented an optimal algorithm which
achieves this bound with additional O(m?) time for preprocessing. The
lower bound agrees with the one for one-dimensional case [Yao79]. These
analyses are valid for random texts and patterns.

The Boyer-Moore algorithm [BoM77] with its many variations is an ef-
ficient solution for one-dimensional string matching. It scans the pattern
from right to left and is able to skip portions of the text achieving sublinear
average behavior. We will present an algorithm for two-dimensional string
with a similar shift heuristics as in the Horspool version of the Boyer-Moore
algorithm [Hor80]. Our algorithm is simple but efficient. The algorithm
examines a strip of r columns at a time, r < m. Instead of inspecting a
single character for shift at each stop of the pattern, the algorithm examines
a d-gram, a string of d characters, at a time. A similar approach has been
used for one-dimensional string matching, e.g. by Baeza-Yates [Bae89]. Be-
cause a d-gram is a kind of a fingerprint of the pattern, our approach is in
a way a combination of the Boyer-Moore idea and the fingerprint method
presented by Karp and Rabin [KaR87]. We will show that the expected run-
ning time of our algorithm is O(Z—zﬂogc m?| + ecm?), when m/2 <r < m
and d = [log.(rm)|. The scanning time O(Z—zﬂogc m?|) matches with the

optimal bound of the Karkkainen-Ukkonen algorithm.

Recently a related but different method has been (independently) devel-
oped and analyzed by Kim and Shawe-Taylor [KiS93]. Their bound for the
expected running time is O((Z—z + m?)log, m?).

The Boyer-Moore approach is also applied in earlier algorithms for two-
dimensional matching. In the Zhu-Takaoka algorithm [ZhT89] the Boyer-
Moore principle is used along columns. The Baeza-Yates-Régnier algorithm
[BaR93] uses the Boyer-Moore technique in two ways: Every m'" row of the
text is inspected, and on each such row, the rows of the pattern are searched
for by using one-dimensional Boyer-Moore approach for multiple patterns.

The rest of the paper is organized as follows. The basic algorithm is
presented in Section 2 and analyzed in Section 3. A linear time version and
other modifications are presented in Section 4. The final section reviews
our experiments.

2 Algorithm

The characteristic feature of the Boyer-Moore algorithm [BoM77] for one-
dimensional string matching is the right-to-left scan over the pattern. At
each alignment of the pattern with the text, characters of the text below the
pattern are examined from right to left, starting by comparing the rightmost
character of the pattern with the character in the text currently below it.
Between alignments, the pattern is shifted from left to right along the text.
In the Horspool version [Hor80] the shift is based on character x in the text
below the rightmost character of the pattern. If # does not occur in the
pattern, the pattern is shifted beyond x, otherwise the pattern is shifted
to the right until = is below an occurrence of the same character in the
pattern. We call this method the Boyer-Moore-Horspool algorithm or the
BMH algorithm.

The BMH algorithm has a simple code and is in practice better than
the original Boyer-Moore algorithm. Based on the BMH algorithm, we will
derive a new algorithm for two-dimensional string matching. The text is
split in [(n —m)/r] + 1 strips of r columns, r < m. Each strip is examined
separately applying the BMH approach to filtrate potential matches, which
are then processed by the trivial algorithm, which checks positions of P in
order until a character mismatch is found or until a match of P is completed.
Both the filtration of potential matches and the shifting of the pattern are

d

B

Figure 1: A 3-gram is covered by rm =4 -6 alignments of the pattern.

based on d-grams, i.e. a string of d characters on a row, r +d < m + 1.

Let us consider a stop of the pattern. For simplicity, let us assume that
r4+d=m+ 1. According to the basic idea of Boyer and Moore [BoMT77],
the end of the pattern is probed first. So d-gram x, corresponding to the
lower right corner of the pattern (see Fig. 1), is read from the text and
compared with the last row of P. If x occurs on the last row of P, we have
a potential match, and the corresponding alignment will be further checked
by the trivial algorithm except those positions included in z. Because x
may occur in r positions of the last row of P, there can be up to r potential
matches at each stop.

For shifting we use a precomputed table D, which follows the shift heuris-
tic of the BMH algorithm. Entry D[z] tells the distance of the closest oc-
currence of d-gram z in Y = P[1 : m — 1,1 : m] from the last row of P.
(Here P[iy : 19,71 @ j2] denotes the rectangular region of P with (iy, j1) and
(12, J2) as the opposite corners.) If x does not occur in Y, D[] is m.

After a shift, the d-gram under the lower right corner of the pattern is
again inspected. Note that a d-gram probe is covered by rm alignments of
P (see Fig. 1), which means that rm alignments can be skipped, when the
probe does not occur in P.

Fig. 2 shows a situation where the pattern has been aligned at (2,4)
and and d-gram x = T'[5,6 : 7] = ab has been read. Because x occurs on
the last row of P, there is a potential match at (2,5), which turns out to
be an actual match. Because x appears also on the second row of P, the
length of shift will be m — 2 = 2 and the next d-gram to be probed will be
T[7,6 : 7). Above we assumed that r +d = m + 1. In a general case we
have r +d < m+ 1 and the probe corresponds to P[m,r : r +d — 1] which
is not necessarily in the lower right corner of P.

For the filtration of potential matches we use preprocessed table M.

|_]

p aaabacchb
acclbccl|bc
ccbc aaalacclab
ccab bablaaclbb
acbb cbalcbfalb]c
babc abababac
abcbcabb
ababacca

Figure 2: An example pattern and text.

The entry M[z] tells the starting column of an occurrence of d-gram z
in Z =Pm,l:r+d—1], r+d < m+ 1. If does not occur in 7,
M]lz] = 0. Another preprocessed table N of size m contains a linked list
of other occurrences of z in Z, as well as the corresponding linked lists for
other d-grams occurring in Z. So M(x) is the first occurrence of = and
N(M/(z)) is the second occurrence etc.

Algorithm 1: Preprocessing of P.

1. fors:=0 to ¢ do begin

2. D[i] :==m;

3. MTi] := 0 end;

4. for z:=1 to m do begin

5. x:= P[i,1];

6. for k:=2toddo x:=ua-c+ P[i,kl;

7. for j :=1 to r do begin

8. if © = m then begin

9. N[r—j 4 1] := M[z];

10. Mlz] :==r —j+ 1 end;

11. else if D[z] > m — ¢ then D[z] :=m —;
12. if 7 < r then

13. z:=(x — Pli,j] - ¢ 1) c+ P[i,j + d] end end;

Algorithm 1 describes the computation of tables D, M, and N. The

processing of D is based on definition
D(y)=min{k | k=mor (k> 0and y = Plm—Fk, h: h+d—1],1 < h <r)}.

We have now the following total method for two-dimensional string match-
ing.

Algorithm 2: Two-dimensional string matching.

1. compute D, M, and N with Algorithm 1;
2. gi=m

3. while y <n —m 4+ r do begin

4. 1=

3. while ¢« < n do begin

6 z:=1T[e,7];

7 fork:=j+1toj+d—1dox:=a- -c+T[,k;
8. k= M[z];

9. while £ > 0 do begin

10. Check(i —m + 1,5 —r + k);
11. k:= N(k) end;

12. i := 1+ D[z] end;

13. j:=j+rend

Subroutine Check(a, b) on line 10 checks the potential match at (a,b).

3 Analysis

Let us consider the average case complexity of Algorithm 2 without prepro-
cessing. We use the standard random string model, where each character
of the text and the pattern is selected uniformly and independently. The
time requirement is proportional to (', the number of text characters the
algorithm inspects.

Let us estimate C, the expected value of C'. We have

C'=P(d+ NE)
where P is the expected number of stops, N is the expected number of

alignments examined at a stop, and F is the expected number of character
comparisons for checking of an alignment.

6

The expected value of shift is S = ¢(1—(1—1/c)™) for the BMH algorithm
(see e.g. [Bae89b]). In our approach, we need to replace ¢ by 1/¢, where ¢
is the probability that a d-gram occurs in a (r + d — 1)-gram. We will use
estimates ¢; and ¢, for ¢, ¢1 < ¢ < g3, such that

1
— (1= =)
a1 (Cd)

is the probability that a d-gram occurs in r d-grams and

r+d—1)—d r

cd

TC(
92 = cT-|—d—1 -

is the probability that a d-gram without an overlap with itself occurs in a
(r4+d—1)-gram. Now we get

5 — 1-(1-q"
q
L (=g
L (= E)

Let us then consider the number of stops. Let P; be the expected number
of stops in one strip. By using similar reasoning as in [TaU93], we get

P < (n—m+ 1)/5 for large n — m + 1. Thus we get

_ n—m-+1[n—m n?
P < - 1) < —.
- S ([r -‘—I_)_TS

When estimating upwards, we can use r/c? for N, because r/c? is ex-
pected number of occurrences of a d-gram in r d-grams.

We have
c 1

1 —
c—l(cm2—d>

£ =

at the first stop of a strip or when the previous shift is m (see e.g. [Bae89b]).
In other cases at most d additional may be checked. Hence we have F <
2 4 d, because ¢ > 2.

Putting these together, we get
C = P(d+ NE)
n?r(d + NE)
A= (0 - ™)
w2(d+ 52+ d) "
A= (1 =2)m)

When d = [log.(rm)| we get

n*([log.(rm)](1 + 72) + 77)

Tm

rm(l — (1 — L)rm) ’

Tm

C <

because (1 — (1 — 1/2)"™) is an increasing function of x. Then because

(1-2)f<Llforallk>1,

n?*([log, (rm)1(1 + 7 +)

rm(l — é) ’

C <

which is clearly O(Z—z [log. m*]) when r > m/2.

The algorithm needs O(c?) = O(em?) space. The computation of D, M,
and N takes time O(m?* + cd) = O(cm?), where the initialization of D and
M takes O(em?) time and the rest of the preprocessing O(m?) time.

We have shown the following result.

Theorem 1 Algorithm 2 finds the occurrences of an m X m pattern P in
. . 2 .

ann xn text T in expected time O(25 [log. m*] +em?) and in space O(em?)

in an alphabet of ¢ characters.

4 Modifications

Linear time version. Because the trivial algorithm is used for checking,
Algorithm 2 needs O(m?n?) time in the worst case. There is a way to make
our approach work in linear time also in the worst case without changing
the average complexity.

Let us consider how to modify Algorithm 2. Let £ be a positive con-
stant. When kr text characters have been inspected at a stop of the pat-
tern at (¢,7), the processing of Algorithm 2 at that stop is ceased and

8

region T[i: 1+ 2m —1,7: 54+ r 4+ m—1] is processed by Bird’s algorithm
[Bir77] (or some other linear time algorithm), and after that Algorithm 2
is resumed with a shift of m. The preprocessing for Bird’s algorithm is
performed during the first call.

The modified algorithm clearly works in linear time, because the amor-
tized number of text positions the modified algorithm inspects for each r xm
region of T'is at most a constant times rm.

Asymptotically, Bird’s algorithm is applied very seldom, when & is large
enough, and therefore it is easy to show that the average complexity will
remain the same.

Rectangular shapes and higher dimensions. Algorithm 2 can easily
be modified to work with patterns and texts of arbitrary rectangular shape.
The square shape was only used to make the presentation clear.

The generalization to higher dimensions is also obvious.

Shifting. In our algorithms, multiplication is used to form the represen-
tation of a d-gram as an integer. Another alternative is to apply shifting.
Against common belief there is no difference in efficiency between multipli-
cation and shifting in many computing environments.

Hashing. A useful modification is to apply hashing to save space and
preprocessing time especially, when ¢ is large. However, hashing makes
Algorithm 2 a bit slower. One may fix the sizes of D and M and use some
hash function h when referencing to these tables. Note that the minimum
value should be stored in D and the link chains in M and N should be
united in the case of a collision.

If the actual size of the alphabet is unknown, m? may be used for c.
When ¢? is so large that is cannot represented as integer, the mod operation
should be applied to computation of the integer representations of d-grams

(see [KaR8T].

Bitmap pictures. In many microcomputers a bitmap picture is repre-
sented so that a byte corresponds to eight consecutive pixels on a row.
Our method is easy to adopt to take advantage of that. When d = 8k for
k=1,..., the algorithm works for m > 8+d—1and r =8-[(m+1—d)/8].

As the only additional change, the first strip must be handled in a different
way: the initial value of 7 should be rq =r —d + 1.

Use of subpatterns. If the bottom row of the pattern contain d-grams
that occur frequently in the text, the checking phase is repeatedly started,
which is not desirable for our algorithm. To avoid this phenomenon a suit-
able subpattern could be selected for the filtration phase according to some
heuristic. For example, a subpattern with a bottom row without d-grams 0
and ¢ — 1 is usually advantageous for scanning of a bitmap picture. The
actual checking could be performed with the original pattern. Also the
scanning direction of the algorithm (left-to-right, top-down) can be made
optional.

5 Experiences

Our algorithm is efficient, conceptionally simple, and easy to implement.
Experimental results of the behavior our algorithm on random strings are
shown in Table 1, where we compare Algorithm 2 with the Baeza-Yates-
Régnier algorithm (BYR) [BaR93] and the trivial algorithm in the binary
alphabet for n = 1000 and for 2 < m < 64. For Algorithm 2, we selected
r=min{k | m+1—k > logy(km)} and d = [log,(rm)]. The figures in
Table 1 represent total execution times in seconds containing preprocessing
and checking but excluding loading of the pattern and the text. The values
are median times of ten repeats of the test with a new set of patterns. The
algorithms were coded in C and the experiments were carried out in a Sun4
workstation.

The trivial algorithm was the best for m < 5. Within the range 5 < m <
10 Algorithm 2 and the BYR algorithm were in practice equally good. For
values m > 10 our algorithm was unquestionably the best.

Algorithm 2 works also quite well with non-optimal values of r and d.
When d is fixed, the most advantageous value for r is not always m —d +1,
as one might expect, but depends on ¢. For example for d = 1 and m = 20,
the best value for r is 1 for ¢ < 13, grows with ¢ and reaches 20 when ¢ = 170
according to our estimate (1) of the Section 3. Our practical experiments
confirm this phenomenon.

In the same time we made experiments in one-dimensional string match-

10

Table 1: Erperimental results (in seconds) for ¢ = 2 and n = 1000.

Trivial BYR Alg. 2
3.03 9.58 7.50
2.83 6.18 5.45
270 3.83 2.94
2.65 2.56 2.24
2.63 1.81 1.58
2.60 1.30 1.35
2.58 1.06 1.01
257 0.78 0.70

12 255 0.63 0.50

14 255 0.58 0.37

16 255 0.55 0.28

20 252 0.55 0.20

24 2.50 0.60 0.13

28 248 0.68 0.10

32 245 0.78 0.08

40 242 1.11 0.07

48 2.38 1.52 0.07

56 235 2.03 0.07

64 230 2.60 0.07

—_
O W -1 Ot w3

11

ing using d-grams instead of single characters (like Baeza-Yates in [Bae89]).

The speed-up in the two-dimensional case looked much better, because the
adequate patterns are larger than in the one-dimensional case.

Acknowledgement. We thank Ricardo Baeza-Yates for providing the
code of his algorithm.

References

[Bae89]

[Bae89b]

[BaR90]

[BaR93]

[Bak78]

[Bir77]

[BoMT77]

[CGRY3]

R. Baeza-Yates: Improved string searching. Software Practice

& Fxperience 19 (1989), 257-271.

R. Baeza-Yates: String searching algorithms revisited. In: Pro-
ceedings of Workshop on Algorithms and Data Structures (ed.
F. Dehne et al.), Lecture Notes in Computer Science 382,
Springer-Verlag, Berlin, 1989, 75-96.

R. Baeza-Yates and M. Régnier: Fast algorithms for two di-
mensional and multiple pattern matching. In: Proceedings of
SWATI0, 2nd Scandinavian Workshop on Algorithm Theory
(ed. J. Gilbert and R. Karlson), Lecture Notes in Computer
Science 447, Springer-Verlag, Berlin, 1990, 332-347.

R. Baeza-Yates and M. Régnier: Fast two dimensional pattern
matching. Information Processing Letters 45 (1993), 51-57.

T. Baker: A technique for extending rapid exact-match string
matching to arrays more than one dimension. SIAM Journal on

Computing 7 (1978), 533-541.

R. Bird: Two dimensional pattern matching. Information Pro-

cessing Letters 6 (1977), 168-170.

R. Boyer and S. Moore: A fast string searching algorithm. Com-
munications of the ACM 20 (1977), 762-772.

M. Crochemore, L. Gasieniec, and W. Rytter: Two-dimensional
pattern matching by sampling. Information Processing Letters

46 (1993), 159-162.

12

[GaP92]

[Hor80]

[KaU93]

[KaR87]

[KiS93]

[TaU93]

[YaoT9]

[ZhT89]

Z. Galil and K. Park: Truly alphabet-independent two-dimen-
sional pattern matching. In: Proceedings of the 33st IEFE An-

nual Symposium on Foundations of Computer Science, IEEE,
1992, 247-256.

N. Horspool: Practical fast searching in strings. Software Prac-

tice & Experience 10 (1980), 501-506.

J. Karkkainen and E. Ukkonen: Two and higher dimensional
pattern matching in optimal expected time. To be presented in
the Fourth Symposium on Discrete Algorithms.

R. Karp and M. Rabin: Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development 31
(1987), 249-260.

J. Kim and J. Shawe-Taylor: Fast expected two dimensional
pattern matching. In: Proceedings of the First South Ameri-
can Workshop on String Processing (ed. R. Baeza-Yates and N.
Ziviani), Sept. 13-15, 1993, 77-92.

J. Tarhio and E. Ukkonen: Approximate Boyer-Moore string
matching. SIAM Journal on Computing 22 (1993), 243-260.

A. Yao: The complexity of pattern matching for a random

string. STAM Journal on Computing 8 (1979), 368-387.

R. Zhu and T. Takaoka: A technique for two-dimensional pat-
tern matching. Communications of the ACM 32 (1989), 1110-
1120.

13

