
xFS: A Wide Area Mass Storage File System

Randolph Y. Wang and Thomas E. Anderson
frywang,teag@cs.berkeley.edu

Computer Science Division
University of California

Berkeley, CA 94720

Abstract

The current generation of �le systems are inadequate
in facing the new technological challenges of wide area
networks and massive storage. xFS is a prototype �le
system we are developing to explore the issues brought
about by these technological advances. xFS adapts
many of the techniques used in the �eld of high per-
formance multiprocessor design. It organizes hosts into
a hierarchical structure so locality within clusters of
workstations can be better exploited. By using an
invalidation-based write back cache coherence protocol,
xFS minimizes network usage. It exploits the �le system
naming structure to reduce cache coherence state. xFS
also integrates di�erent storage technologies in a uni-
form manner. Due to its intelligent use of local hosts
and local storage, we expect xFS to achieve better per-
formance and availability than current generation net-
work �le systems run in the wide area.

1 Introduction

Recent advances in robot technology and tertiary me-
dia have resulted in the emergence of large capacity
and cost e�ective automated tertiary storage devices.
When placed on high performance wide area networks,
such devices have dramatically increased the amount
of digital information accessible to a large number of
geographically distributed users. The amount of near-
line storage and degree of cooperation made possible by
these hardware advances are unprecedented.
The presence of wide area networks and tertiary stor-

age, however, has brought new challenges to the design
of �le systems:
� Bandwidth and latency : At least in the short run,
bandwidth over aWAN is muchmore expensive than
over a LAN. Furthermore, latency over the wide
area, a parameter restricted by the speed of light,
will remain high.

This work was supported in part by the National Science
Foundation (CDA-8722788), the Digital Equipment Corporation
(the Systems Research Center and the External Research Pro-
gram), and the AT&T Foundation. Anderson was supported by
a National Science Foundation Young Investigator Award.

� Scalability : The central �le server model breaks
down when there can be:
� thousands of clients,
� terabytes of total client caches for the server(s)
to keep track of,

� billions of �les, and
� petabytes of total storage.

� Availability : As �le systems are made more scalable,
allowing larger groups of clients and servers to work
together, it becomes more likely at any given time
that some clients and servers will be unable to com-
municate.

Existing distributed �le systems were originally de-
signed for local area networks and disks as the bottom
layer of the storage hierarchy. They are inadequate in
facing the challenges of wide area networks and massive
storage. Many su�er the following shortcomings:

� Poor �le system protocol : Frequently used tech-
niques, such as broadcasts and write through pro-
tocols, while acceptable on a LAN, are no longer
appropriate on a WAN because of their ine�cient
use of bandwidth.

� Dependency on centralized servers: The availabil-
ity and performance of many existing �le systems
depend crucially on the health of a few centralized
servers.

� Data structures that do not scale: For example, if
a server has to keep cache coherence state for every
piece of data stored on the clients, then both the
amount of data and the number of clients in the
system will have to be quite limited.

� Lack of tertiary support : Existing �le systems do a
poor job at hiding multiple layers of storage hierar-
chy. Some use manual migration and/or whole �le
migration. This is neither convenient nor e�cient.
Some o�er ad hoc extensions to existing systems.
This usually increases code complexity.

While others have addressed some aspects of the
problem [2, 5, 9, 11, 13], there is yet no system that
handles both WANs and mass storage. While we do
not pretend that we have reached the perfect solution
of providing fast, cheap, and reliable wide area access
to massive amounts of storage, we present the xFS pro-
totype as a design point from which some of the issues



of mass storage in the wide area can be explored and
future measurements can be taken.
Our goal in xFS is to provide the performance and

availability of a local disk �le system when sharing is
minimum and storage requirement is small. We observe
that many of the problems we face have also been con-
sidered by researchers studying distributed shared mem-
ory multiprocessors and there are many well-tested so-
lutions that can be applied to our design. In particular,
xFS has the following features:
� xFS organizes hosts into a more sophisticated hi-
erarchical structure analogous to those found in
some high performance multiprocessors such as
DASH [10]. Requests are satis�ed by a local cluster
if possible to minimize remote communication.

� xFS uses an invalidation-based write back cache co-
herence protocol pioneered by research done on mul-
tiprocessor caches. Clients with local stable stor-
age can store private data inde�nitely, consuming
less wide area bandwidth with lower latency than if
all modi�cations were written through to the server.
For data cached locally, clients can operate on them
without server attention. The Coda [18] study il-
lustrates that this should o�er better availability in
case of server or network failure.

� xFS exploits the �le system naming structure to re-
duce the state needed to preserve cache coherence.
Ownership of a directory and its descendents can be
granted as a whole. By avoiding the maintenance
of cache coherence information on a strictly per-�le
or per-block basis, xFS reduces storage requirements
and improves performance.

� xFS integrates multiple levels of storage hierarchy.
xFS employs a uniform log-structured management
and fast lookup across all storage technologies.
xFS is currently in the middle of the implementa-

tion stage and we do not yet have performance num-
bers to report. The remainder of this position paper
is organized as follows. Section 2 presents the hierar-
chical client-server structure of xFS. Section 3 describes
the cache coherence protocol. Section 4 describes how
xFS reduces the amount of cache coherence information
maintained by hosts. Section 5 discusses the integra-
tion of multiple levels of storage. Section 6 discusses
some additional issues including crash recovery. Sec-
tion 7 concludes.

2 Hierarchical Client-server Or-
ganization

Andrew [6], NFS [17], and Sprite [20] all have a simple
one-layer client-server hierarchy. While it is conceivable
to port such a model onto a wide area network (�gure 1),
the result is likely to be unsatisfactory because it re-
quires large amount of communication over the WAN.
xFS uses clustering based on geographic proximity to
exploit distinction between local and remote communi-
cation, utilize locality of data usage within clusters, and

increase scalability of the system.

Server
UCB

Client 0
UCLA

Client 1
UCLA

Client 2
UCSB

Client 3
UCSB

Client 4
UCBUCSB UCB

WAN
LAN

Client 5 Client 6

Figure 1: Simple client-server relationship.

The model seen in �gure 1 has a number of prob-
lems. First of all, WANs have higher latency, lower
bandwidth, and higher cost. Although the situation is
expected to improve as the technology matures, we be-
lieve wide area communication is likely to remain more
costly and o�er less bandwidth than its LAN counter-
part for some time. Even if the bandwidth bottleneck
is solved, latency will continue to haunt a naive sys-
tem. Even under the best possible circumstances, the
round trip delay over 1000 km will be comparable to
a disk seek. A simple client-server model as seen in
�gure 1 fails to recognize the distinction between wide
area links and local links. The result is overuse of wide
area communication, which in turn leads to high cost
and poor performance.
Secondly, locality plays a more important role in a

wide area where clusters of hosts that are geographically
close to each other are likely to share information more
frequently and have an easier time talking to each other.
A �le system that treats all clients as equals mightmake
sense on a LAN where all clients are virtually peers that
exhibit little distinction. Such an organization becomes
less acceptable in a wide area where paying more atten-
tion to locality is likely to improve performance.
Thirdly, the organization of �gure 1 has problems

with scale. The server load and the amount of cache
coherence state on the server increases with the number
of clients. A straightforward deployment of many exist-
ing �le systems in the wide area can be neither \wide"
nor \massive".
In an attempt to solve these problems, xFS employs

a hierarchy similar to those found in scalable shared
memory multiprocessors (�gure 2)1. To understand the
motivation of such an organization, it is instructive to
study the analogy between DASH [10] and xFS. The
DASH system consists of a number of processor clus-
ters. Communication among the clusters is provided by
a mesh network. This is analogous to WAN links in xFS
where bandwidth is limited and latency is high. Each
DASH cluster consists of a small number of processors,
analogous to clients on a LAN. Intra-cluster communi-
cation is provided by a bus. This is analogous to the
LAN links in xFS where local communication is cheap
and fast.
The analogy, however, does not stop here. Firstly,

DASH recognizes the distinction between intra-cluster
communication (bus based) and inter-cluster communi-
cation (point to point) to optimize performance. Sim-

1In principle, it is possible to extend the hierarchy further to
form clusters of clusters.



Cluster
Home

LAN
UCBWAN

UCLA
UCSBCluster 0

Cluster 1

UCLA
Server 0

UCSB
Server 1

Client 0
UCLA

Client 1
UCLA

Client 2
UCSB

Client 3
UCSB

Client 4
UCSB

Server
UCB

Home

UCB
Client 5

UCB
Client 6

Consistency Consistency

Figure 2: xFS hierarchy.

ilarly, xFS clients may choose to write through and/or
broadcast more frequently on a LAN where communi-
cation is cheap and fast. When communicating across
slower and more expensive WAN links, however, xFS
hosts speak a write back protocol (section 3).
Secondly, the hierarchical organization does a bet-

ter job at taking advantage of potential locality within
clusters of workstations. When a DASH processor refer-
ences data cached in a local cluster, no remote commu-
nication is incurred. Similarly, one experiment [2] has
shown that roughly two thirds of the �les read by one
workstation are already cached by neighboring clients.
A study done by Dahlin [4] shows clients within a clus-
ter can e�ectively serve each others' cache misses. To
exploit such locality, when an xFS client references data
not present in its local cache, it �rst queries a consis-
tency server on the cluster to see if any peer clients can
supply the data. It is our hope that most of the local
tra�c can be contained within the cluster. Only oc-
casionally will a consistency server have to contact the
home cluster to handle cache misses.
The function of a consistency server is analogous to

that of the directory mechanism in DASH which is re-
sponsible for locating data and enforcing cache coher-
ence. Once the location of the desired data is discovered,
data 
ows directly between the sender and the receiver.
In a way, the separation of control messages2 and data
messages3 in xFS is analogous to the approach taken in
the Mass Storage Reference Model [3] where name ser-
vices, �le movement, and storage management all have
distinct information 
ow paths.
A number of recent studies have explored the idea

of hierarchical organizations [2, 5]. One experiment [5]
employed an intermediate data cache server and its hit
rate was found to be surprisingly low. In such a hier-
archy of data caches, the higher levels are made of the
same technology as the lower ones and the higher level
caches contain little more than their lower level counter-

2This refers to messages related to requesting, granting, and
revoking ownerships as discussed in section 3.

3This refers to messages that contain actual data.

parts do. In e�ect, intermediate servers become \delay
servers". An xFS consistency server, on the other hand,
by not participating in data caching, avoids unnecessary
delays.
Thirdly, the xFS hierarchy provides better scalabil-

ity. Consistency servers shield the home servers from
intra-cluster tra�c. Furthermore, in an organization as
shown in �gure 1, the server must keep long lists of
clients requiring consistency actions. In an xFS hierar-
chy, home servers will only have to track the consistency
servers who act as agents for their local clusters.
We believe xFS has a hierarchy better suited for a

wide area context. It recognizes the distinction of lo-
cal versus remote communication. It exploits locality
more aggressively. It distributes the burden of a cen-
tralized server to a number of consistency servers and
peer clients. It is thus expected to o�er better scalabil-
ity.

3 Cache Coherence Protocol

Existing �le systems use protocols that do not provide
strong enough consistency semantics and/or generate
excessive amount of network tra�c. xFS speaks an
invalidation-based write back protocol designed to min-
imize communication. A client with local stable stor-
age can store private data inde�nitely. The ability of
a client to operate more independently without server
intervention should also result in better availability.
NFS [17] writes through and o�ers little consistency

guarantee for concurrent read write sharing. Andrew [6]
provides a consistent view at �le open time and writes
back at close time. Sprite [14] enforces perfect con-
sistency by disabling caching for write-shared �les but
still writes all dirty data to the server every 30 seconds
for reliability reasons. Furthermore, none of these �le
systems does e�ective directory caching; consequently,
even after optimizingwrite back policies, there are still a
large number of name related operations left [19]. Such
unnecessary use of network tra�c might have posed lit-
tle problem on a LAN but will become a performance
bottleneck in a wide area.
We observe that the �eld of multiprocessor computer

architecture has extensive literature in maintaining the
consistency of cached replicas, while minimizing net-
work usage by limiting communication to those cases
when data is truly being shared. To reduce the number
of bytes transferred over the wide area network, xFS
uses a protocol based on multiprocessor style cache co-
herence [15]. An xFS host4 requests ownership of a
�le or a directory from a higher level server. A client
that possesses read ownership is allowed to cache data
locally for reads5. A client that possesses write owner-
ship is assured that it has the only valid copy of data.
Such a copy is considered private and the host can cache

4This refers to a client or a consistency server.
5Unix-like �le access times are not kept.



and modify the copy inde�nitely in its own stable stor-
age without contacting the server. Ownership of data,
once obtained by a consistency server, can be granted
to lower level clients. A server, in order to enforce cache
coherence, may refuse to grant ownership. It may also
choose to revoke the ownership of data it has previously
granted to other hosts. A client that has the write own-
ership is obliged to transfer its dirty data back only
upon receipt of such a revoking call.
In existing stateful �le systems [6, 14, 19], an open

involves requesting ownership; a close involves relin-
quishing ownership; and a callback is associated with
revoking ownership. Many systems do not distinguish
the notion of open and that of requesting ownership, or
the notion of close and that of relinquishing ownership.
Even in a system that aggressively exploits caching such
as Sprite [14], a client merely passes the user system
calls to the server (�gure 3a). If a user repeatedly opens
and writes the same �le (which is a likely event), a Sprite
client dutifully transmits each open request and writes
dirty data every 30 seconds.
xFS is di�erent in two respects (�gure 3b). Firstly,

xFS explicitly separates the notion of open from that
of requesting ownership. Ownership requests are sent
only when necessary. Secondly, xFS protocol does not
include anything that resembles a close system call.
Hosts never voluntarily relinquish ownership. They give
up ownership only in response to servers' revoking calls.
If a user repeatedly writes the same �le, only the ini-
tial open can result in a request for ownership and no
further communication is required until another client
requests the data. In this way, �le and directory data is
only transferred over the wide area network on a cache
miss, a cache 
ush, or because of true sharing between
multiple clients. In other words, xFS writes on demand
as opposed to traditional �le systems that write data
through to guard against the possibility that they might
be shared.

Client

Server

User

open close

callb
ack

close

op
en

Home
Server

request
ownership

revoke
ownership

request
ownership

Client

User

open close

(a) Sprite style protocol (b) xFS protocol

ownership
revoke

Server
Consis

Figure 3: Separating notions of open/close/callback from
those of requesting/relinquishing/revoking ownership.

Figure 4 shows the xFS �le state transition in more
detail. As an example, consider a �le that is in the read
sharing state. If a new host requests read ownership, it
is granted the ownership and the �le stays in the same

state. If a host requests write ownership, the server re-
vokes ownership from all the current readers. In the
reply messages, the readers specify whether or not they
still desire the read ownership. If none of the previous
readers want to retain read ownership, the �le goes into
write-1 state and the new writer is granted write own-
ership. If some readers are still actively reading the �le,
then the �le goes into write sharing state and all hosts
are denied ownership.

read sharing:
multiple hosts have

read ownership

write sharing:

ownership
nobody has

nobody has
ownership

not owned:

1 host has read
ownership

1 host has write
ownership

read-1:

write-1:

Figure 4: xFS �le state transition.

Due to its better use of the local cache and less de-
pendency on servers, xFS clients not only should ob-
serve lower latency and use less bandwidth, they should
also achieve better availability. Existing �le systems
rely heavily on the servers for write throughs and name
related operations. The demise of a single server or a
failed network link usually renders the clients helpless.
xFS hosts, on the other hand, after acquiring ownership
of the proper data, can operate more independently.
Furthermore, xFS hosts will have an easier time rein-
tegrating after disconnection. A Coda [18] client, for
example, is required to write the dirty data it has accu-
mulated during disconnection back to the server during
reintegration. In xFS, such writes are not necessary un-
less the dirty data is needed by others.
There are a number of problems with this cache co-

herence scheme. The �rst is the large amount of state
information each host needs to keep. This is addressed
in the next section. The second problem is the need for
local stable storage that will keep dirty data inde�nitely.
This is addressed in section 5. The third is the need for
policies to deal with network partitions and down hosts.
This is discussed in section 6.

4 Reducing Cache Coherence
State

Many existing stateful �le systems maintain cache con-
sistency in a way that is not designed to scale to handle
massive amount of client cache. xFS reduces the cache
coherence state by exploiting the hierarchical naming
structure of the �le system.



A Sprite or an Andrew server, for example, must keep
track of every �le cached by any client. The amount of
server state grows with the total size of client caches.
xFS lives on a wide area network and there are poten-
tially large number of clients and large amount of call-
back information associated with each client. A way to
deal with the explosion of state information needs to be
found.
The hierarchical nature of the system as discussed in

section 2 partially alleviates the problem. Home servers
only need to keep track of the top level consistency
servers. Bottom level consistency servers only need to
tally the leaf clients that they serve. This reduces the
length of client lists but does not reduce the number of
�les that might require consistency actions.
A second technique xFS uses to deal with state ex-

plosion is based on the observation that clusters of �les
tend to have the same ownership. There is little need to
keep state for individual �les when a representative for
a large cluster can be used instead. Figure 5 illustrates
the idea. Here we see user \foo" is working on machine
\X". \X" has acquired read ownership for cluster \A"
and write ownership for clusters \B" and \C". This has
happened as a result of modi�cation of her home di-
rectory and directory \baz" by user \foo". Similarly,
machine \Y" has acquired read ownership for cluster
\A" and write ownership for cluster \D". We see that
ownership only needs to be associated with clusters of
�les.

baz

foo

/

bar

A: read owned

B: write owned
by X

by X and Y

C: write owned
by X D: write owned

by Y

Figure 5: Hierarchical state information.

A third technique is based on the observation that a
large number of �les in the system are widely shared but
rarely modi�ed. For such �les (an entire subtree that is
exported for read only, for example), instead of remem-
bering exactly which hosts have acquired read owner-
ship, xFS merely remembers the fact that read owner-
ship has been granted to some hosts. In the rare event
that such �les do get modi�ed, xFS resorts to broadcasts
to locate the readers. Such broadcasts, however, do not
necessarily have to 
ood every single host due to the hi-
erarchical nature of xFS. A home server communicates

with all the consistency servers it serves and only the
consistency servers that have acquired read ownership
have to forward the revoking broadcast to their clients.
An xFS server maintains cache coherence state for

clusters of �les instead of individual �les. For each
cluster of �les, a server only keeps a list of consistency
servers instead of individual clients. And for �les that
are almost never modi�ed, even this list can be done
away with. By employing these techniques, we expect
to substantially reduce storage requirements for cache
coherence state.

5 Integration of Multi-level
Storage

xFS is designed to utilize a multi-level hierarchy of sta-
ble storage, capable of inde�nitely storing modi�ed �le
and directory data. xFS integrates all storage devices
in a simple and uniform manner:
� All storage devices are treated as caches.
� All storage devices are written in a log-structured
manner.

� Data blocks are located by looking up virtual-to-
physical translation tables maintained on fast de-
vices.
In addition to deciding on appropriate migration poli-

cies that move data around, we need to address two im-
mediate questions. The �rst of which is how to locate
data as blocks migrate among di�erent levels of stor-
age. The second is how to lay out data on media in an
e�cient manner.
To solve the problem of locating data in multiple lev-

els of storage, some existing systems extend the UFS
data structures to incorporate tertiary devices. For ex-
ample, a block address in Highlight [9] can belong to the
disk farm, some tertiary store, or the disk cache for ter-
tiary storage. Given an hinode number, offseti pair,
locating data involves locating the inode and indexing
the inode. If the block address is found to be on ter-
tiary, a fetch is done to bring the missing data into the
disk cache and the operation resumes. Such extensions
usually complicate the code and force the new storage
devices to inherit data structures that were originally
designed for disks.
A solution to the second problem, namely that of

laying out data on media e�ciently, is provided by
the log-structured �le system (LFS) [16]. LFS appends
newly written data to a segmented log and it is opti-
mized for write performance. As old data is deleted,
LFS reclaims disk space by recopying sparsely popu-
lated segments to the tail of the log and marks those
segments as clean. LFS provides superior performance
in environments where large main memory caches ab-
sorb most of the reads and consequently disk write speed
becomes the limiting factor. Since many tertiary de-
vices are append-only6 and tertiary archival storage are

6Most media deliver best performance when they are used as
append-only devices.



mostly write-only, log-structured layout is a natural way
of managing such devices. Highlight [9], a descendant
of LFS, bases its design on this observation. It em-
ploys a di�erent cleaner process to migrate selected data
blocks out to tertiary store, which is also written log-
structured.
When designing the xFS approach to locating data,

we draw analogies from solutions to memory manage-
ment problems. A virtually addressed memory word
can be anywhere from an on-chip cache to a secondary
backing store. To �nd out where it is, we �rst have to
translate a virtual address to a physical address. The
xFS equivalent of a virtual address is a block ID:

�le ID block #

Such a virtual address can have its physical incarnation
anywhere in a hierarchy of storage devices. Each de-
vice is treated as a cache. Each device employs a fast
translation table that translates a block ID to a physical
address on the device. A translation table entry is of
the following form:

block ID # of blocks device address

As data migrate among di�erent storage levels, we sim-
ply change the corresponding translation tables, a sim-
pler and cleaner approach than extending the existing
UFS data structures. This is similar to the approach
taken by [7] where logical disk addresses are mapped to
physical ones to allow a clean separation between �le
and disk management without sacri�cing performance.
The memory management analogy, unfortunately,

does not apply for data layout. Firstly, unlike processor
caches which are usually direct mapped, we would like
our xFS devices to be fully associative. Secondly, unlike
processor caches and main memory, few of the storage
technologies xFS manages are truly random access de-
vices. For these two reasons, xFS writes its caches in a
log-structured manner.
When an xFS device receives a read request, it queries

its translation table to �nd the corresponding physical
address. A successful search leads us directly to the de-
vice location where the data is found. If the search fails,
the device declares a cache miss. When an xFS device
receives a write request, it appends the data blocks to
the end of the log and updates its translation table to
re
ect the new mapping. Invalidation of data blocks
involves removing the corresponding mappings from its
translation table. When it is time to clean, whether
a block is live or not can be determined by comparing
its identity against the corresponding translation table
entry.
Ejecting from an xFS device is accomplished by a mi-

gration process. It chooses a number of victim blocks
according to some policy. If the blocks are dirty, the
migration agent retrieves the blocks from the source de-
vice and sends them to the destination device. Then it
simply invalidates the blocks in the source device and
the freed space will be reclaimed by the cleaner.

In principle, the translation table can always be
\paged" to a slower device. For simplicity, we have
opted to keep the translation table entirely on a faster
device. For example, the translation table for a disk
cache is kept entirely in memory7 and the translation
table for tertiary is kept entirely on disk. An obvi-
ous disadvantage of doing so is the storage requirement
needed for the translation tables. For example, tens of
megabytes of main memory might be needed to manage
less than ten gigabytes of disk storage. This problem
is partially alleviated by using a single translation ta-
ble entry to point to a number of consecutively written
blocks. Thus large sequentially written �les will need
little space in the translation table. We believe given
the fast decrease in memory cost, the memory used for
the translation table is money well spent in exchange for
the resulting simplicity. Similarly, studies of some work-
loads suggest the use of less than ten gigabytes of disk
space will su�ce for \translating" around ten terabytes
of tertiary storage and such an investment is probably
worthwhile.
We plan to implement two interfaces for each kind of

xFS device: a storage interface that allows the device to
be used as a caching store, and a translation interface
that allows the device to be used as a translation de-
vice. A disk, for example, has two interfaces that allow
it to be used either as a storage device or as a transla-
tion table for tertiary. An appropriately chosen pair of
slow and fast devices can be \glued" together to form a
storage bin. Migration agents running on each machine
chooses blocks to inject into or eject from the storage
bins it oversees. Pieces of the same �le can potentially
spread across multiple levels of storage hierarchy over a
wide area, re
ecting the widely distributed and tertiary
nature of xFS.

6 Other Issues

One question any distributed system has to answer is
how it handles machine crashes and network partitions.
An xFS client has to remember what ownerships it
has acquired from which servers. An xFS server needs
to remember what ownerships it has granted to which
clients. Even after applying the state compression tech-
niques described in section 4, the amount of information
would still be too large to keep entirely in memory as
Sprite [20] and Spritely NFS [19] do. Part of it needs
to be written to stable storage. On the other hand,
we cannot a�ord to log every ownership change to disk.
Consequently, we need to recover the memory resident
information lost in a crash.
The task is relatively simple for clients. Whenever

a client commits data to stable storage, it conveniently
logs the corresponding ownership. Any lost ownership
in a crash will not have dirty data associated with it. In
the worst case, the server might believe it has granted

7Upon reboot, the memory resident translation table is recon-
structed by examining the identities of data blocks on disk.



ownership to certain clients which the clients have lost
in crashes. Later when the server sends revoking calls to
which the clients simply reply that they do not have it
any more. A recovering server, however, has to recover
the exact state it had before the crash. It appears that
a server centric approach as done in [12] would work
well. Under such a scheme, a recovering server directs
its clients to help rebuild the lost server state. It has
also been noted that such frequently updated and small
amount of volatile state is a good candidate for inclusion
in a stable memory that can survive machine crashes
and the recovery cost can be kept to a minimum [1].

Another question we need to answer is how to deal
with machines that do not respond to ownership revokes
due to crashes or network partitions. There are three
alternatives. We fail the operation that resulted in the
revoke in the �rst place, hang the operation inde�nitely
until the revoke is answered, or let the operation pro-
ceed at the risk of allowing consistency con
icts which
will have to be resolved when the o�ending hosts rejoin.
We adopt the third approach taken by Coda [18] which
trades quality for availability. Fortunately, the Coda
study has shown that such con
icts are extremely rare
events and we do not expect ownership revokes to be
frequent in xFS.

xFS's approach of storing data locally and inde�-
nitely also raises other concerns. Security is one. An-
drew [6] treats servers as �rst class citizens and clients
are deemed less trustworthy. In xFS, however, the line
between clients and servers are blurred when clients are
allowed to serve each other (section 2). In such an or-
ganization, the clusters can be treated as security do-
mains where cluster members trust each other but for-
eign clusters that are not homes are deemed untrust-
worthy. A more paranoid approach would require the
writer to compute a checksum. Kaliski [8] has devised
an e�cient algorithm which makes it computationally
infeasible to �nd two messages with the same checksum
or a message with a prespeci�ed checksum. A reader,
upon receipt of the data and the checksum, can run the
same algorithm to verify that the data has not been
altered.

Another di�culty is backup. When the storage is con-
centrated on several gigabytes of disks on a few servers,
disaster recovery (as opposed to crash recovery) can be
accomplished by rolling the whole world back to a tape
dump. Such an approach fails to work when there are
massive amounts of storage and/or the storage is so
widely distributed that taking consistent snapshots is
virtually impossible. One possible way of providing dis-
aster recovery for xFS is to avoid a disaster in the �rst
place by insisting on having two copies of everything at
di�erent sites at all times. An e�ective way of providing
backup for mass storage in the wide area is a topic for
future research.

7 Conclusion

Existing disk based local area �le systems can no longer
meet the demands of mass storage over a wide area. xFS
uses a hierarchy that can better take advantage of the lo-
cality nature. It speaks a cache coherency protocol that
minimizes the use of wide area communication. Con-
sequently, it is expected to operate with lower latency
and consume less wide area bandwidth. xFS minimizes
cache coherence state information by exploiting the hi-
erarchical nature of �le system name space and hierar-
chical nature of the cluster based organization. xFS in-
tegrates multiple levels of storage in a uniform manner.
Its ability to take advantage of local storage should de-
liver better economy, superior performance, and higher
availability.

Acknowledgements

Discussions with Mike Dahlin and Dave Patterson have
helped improve the xFS design, particularly that of the
hierarchical client-server structure. We would also like
to thank Soumen Chakrabarti, Mike Dahlin, John Hart-
man, Arvind Krishnamurthy, and Cli�ord Mather for
their helpful comments.

References

[1] M. Baker and M. Sullivan. The Recovery Box:
Using Fast Recovery to Provide High Availabil-
ity in the Unix Environment. USENIX Association
Summer 1992 Conference Proceedings, pages 31-43,
June 1992.

[2] M. Blaze and R. Alonso. Toward Massive Dis-
tributed Systems. Proceedings of the 3rd Workshop
on Workstation Operating Systems, pages 48-51,
April 1992.

[3] S. Coleman and S. Miller. Mass Storage System
Reference Model: Version 4. IEEE Technical Com-
mittee on Mass Storage Systems and Technology,
May 1990.

[4] M. Dahlin. Private Communication. 1993.

[5] D. Muntz and P. Honeyman. Multi-Level Caching
in Distributed File System. USENIX Associa-
tion Winter 1992 Conference Proceedings, January
1992.

[6] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File Sys-
tem. ACM Transactions on Computer Systems,
6(1):51-82, February 1988.

[7] W. de Jonge, M. F. Kaashoek, and W. Hsieh. The
Logical Disk: A New Approach to Improving File



System Performance. Proceedings of the 14th Sym-
posium on Operating Systems Principles, Decem-
ber 1993. To appear.

[8] B. Kaliski, Jr. The MD4 Message Digest Algo-
rithm.Workshop on the Theory and Application of
Cryptographic Techniques Proceedings, May 1990.

[9] J. Kohl and C. Staelin. HighLight: Using A Log-
structured File System for Tertiary Storage Man-
agement. USENIX Association Winter 1993 Con-
ference Proceedings, January 1993.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta
and J. Hennessy. The Directory-Based Cache Co-
herence Protocol for the DASH Multiprocessor.
Proceedings of the 17th Annual International Sym-
posium on Computer Architecture, pages 148-159,
May 1990.

[11] F. McClain. DataTree and UniTree: Software for
File and Storage Management. Digest of Papers,
Proceedings of 10th IEEE Symposium on Mass
Storage Systems, pages 126-128, May 1990.

[12] J. Mogul. A Recovery Protocol for Spritely NFS.
Proceedings of the USENIX Workshop on File Sys-
tems, May 1992.

[13] J. Mott-Smith. The Jaquith Archive Server.
UCB/CSD Report 92-701, University of California,
Berkeley, September 1992.

[14] M. Nelson, B. Welch, and J. Ousterhout. Caching
in the Sprite Network File System. ACM Transac-
tions on Computer Systems, 6(1):134-154, Febru-
ary 1988.

[15] M. Papamarcos and J. Patel. A Low Overhead Co-
herence Solution for Multiprocessors with Private
Cache Memories. Proceedings of the 11th Annual
International Symposium on Computer Architec-
ture, pages 348-354, June 1984.

[16] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. Operating Systems Review, 25(5):1-15, Octo-
ber 1991.

[17] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and Implementation of the
Sun Network Filesystem. Proceedings of the 1985
Summer USENIX Conference, June 1985.

[18] M. Satyanarayanan, J. Kistler, P. Kumar,
M. Okasaki, E. Siegel, and D. Steere. Coda: A
Highly Available File System for a Distributed
Workstation Environment. ACM Transactions on
Computer Systems, 39(4):447-459, April 1990.

[19] V. Srinivasan and J. Mogul. Spritely NFS: Ex-
perience with Cache Consistency Protocols. Pro-
ceedings of 12th Symposium on Operating Systems
Principles, pages 45-57, December 1989.

[20] B. Welch. The Sprite Distributed File System. PhD
Thesis, Department of Electrical Engineering and
Computer Science, University of California, Berke-
ley, March 1990.


