Compiler Transformations for High-Performance Computing

DAVID F. BACON, SUSAN L. GRAHAM, AND OLIVER J. SHARP

Computer Science Division, University of California, Berkeley, California 94720

In the last three decades a large number of compiler transformations for optimizing
programs have been implemented. Most optimizations for uniprocessors reduce the
number of instructions executed by the program, and analyze the properties of scalar
quantities using flow analysis techniques. In contrast, optimizations for high-performance
vector and parallel processors maximize parallelism and memory locality, mostly by
tracking the properties of arrays using loop dependence analysis.

In this survey we give an overview of the important high-level program restructuring
techniques for imperative languages such as C and Fortran, and to describe how and
when they should be applied on high-performance uniprocessors and on vector and
multiprocessor machines. The basic issues involved in optimization are discussed, and the
compiler analysis required for the transformations is described in some detail. A basic
familiarity with modern computer architecture and program compilation is assumed.

Categories and Subject Descriptors: D.3.4 [Programming Languages]:
Processors—compilers; optimization; D.1.3 [Programming Techniques]: Concurrent
Programming; 1.2.2 [Artificial Intelligence]: Automatic Programming—program
transformation

General Terms: Compilation, Optimization, Parallelism

Additional Key Words and Phrases: Vectorization, multiprocessors, superscalar
processors, dependence analysis

Technical Report No. UCB/CSD-93-781

This research has been sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) under contract DABT63-92-C-0026, by NSF grant CDA-8722788, by
an IBM Resident Study Program Fellowship to David Bacon, and by a Hertz Fellowship
to Oliver Sharp. The content of the paper does not necessarily reflect the position or the
policy of the Government or of IBM and no official endorsement should be inferred.



CONTENTS

INTRODUCTION

1 SOURCE LANGUAGE

2  TRANSFORMATION ISSUES
2.1  Correctness
2.2 Scope

3 TARGET ARCHITECTURES

4 COMPILER ORGANIZATION

5 DEPENDENCE ANALYSIS
5.1 Types of Dependences
5.2  Representing Dependences
5.3 Loop Dependence Analysis
5.4  Subscript Analysis

6 TRANSFORMATIONS

6.1 Loop Reordering Transformations

6.1.1  Loop Interchange
6.1.2  Loop Skewing
6.1.3 Loop Reversal
6.1.4  Loop Blocking
6.1.5  Cycle Shrinking

6.2 Other Loop Transformations

6.2.1  Strip Mining

6.2.2  Inverse Strip Mining

6.2.3  Strength Reduction of In-
duction Variable Expressions

6.2.4 Induction Variable Elimina-
tion

6.2.5  Loop-invariant Code Motion

6.2.6  Loop Unrolling

6.2.7  Software Pipelining

6.2.8 Loop Distribution

6.2.9 Loop Fusion

6.2.10 Array Statement Scalarization

6.2.11 Loop Coalescing

6.2.12 Loop Collapsing

6.2.13 Loop Unswitching

6.2.14 Loop Pushing

6.2.15 Loop Peeling

6.2.16 Loop Normalization

6.2.17 Reduction Recognition

6.2.18 Loop Idiom Recognition

6.2.19 Loop Spreading

6.2.20 Flattening

6.3 Memory Access Transformations

6.3.1 Memory Alignment

6.3.2  Array Padding

6.3.3 Code Co-location

6.3.4  Displacement Minimization
6.3.5  Scalar Expansion

6.3.6 Array Expansion

6.3.7 Array Contraction

8

6.4

6.5

6.6

6.7

6.3.8  Scalar Replacement
Partial Evaluation

6.4.1 Constant Propagation
6.4.2  Constant Folding

6.4.3 Copy Propagation

6.4.4  Statement Substitution
6.4.5  Reassociation

6.4.6  Algebraic Simplification
6.4.7  Function Cloning

6.4.8  1/O Format Compilation

Redundancy Elimination

6.5.1 Unreachable Code Elimination

6.5.2  Useless Code Elimination

6.5.3 Dead Variable Elimination

6.5.4 Common Subexpression
Elimination

6.5.5  Short-Circuiting

Procedure Call Transformations

6.6.1 A Calling Convention for S-DLX
6.6.2 Leaf Procedure Optimization
6.6.3  Cross-call Register Allocation
6.6.4  Parameter Promotion

6.6.5  Frame Collapsing

6.6.6  Procedure Inlining

6.6.7  Tail Recursion Elimination

6.6.8  Function Memoization

Other Transformations
6.7.1  Strength Reductions
6.7.2  Superoptimizing

PARALLEL SCHEDULING

7.1
7.2

7.3
7.4

7.5
7.6

Scheduling Issues
Static Scheduling

7.2.1  Serial Decomposition
7.2.2  Block Decomposition
7.2.3  Cyclic Decomposition
7.2.4  Block-Cyclic Decomposition

Dynamic Iteration Scheduling
General Dynamic Scheduling

7.4.1  Graph Partitioning
7.4.2  Multiple Call Parallelization
7.4.3  Split

Fine-Grained Scheduling

Explicitly Parallel Instruction Scheduling
7.6.1  Multi-Threaded Architectures
7.6.2 VLIW

TRANSFORMATION FRAMEWORKS

8.1
8.2

Unified Transformation
Searching the Transformation Space

COMPILER EVALUATION

9.1
9.2
9.3
9.4

Benchmarks

Code Characteristics

Compiler Effectiveness
Maximum Available Parallelism



A  MACHINE MODELS

A.1 Superscalar DLX

A.2 Vector DLX

A.3 Multiprocessors

A.4 Shared-Memory DLX Multiprocessor

A.5 Distributed-Memory DLX Multiprocessor

B PROGRAM REPRESENTATION
C PROGRAM ANALYSIS
C.1 Dataflow Analysis
C.2  Other Analysis Techniques
C.2.1 Value Numbering
C.2.2 Memory Usage Summarization
C.2.3  Feedback From Profiling
C.2.4 Alias Analysis
ACKNOWLEDGMENTS
REFERENCES

INTRODUCTION

Optimizing compilers have become an essential
component of modern high-performance com-
puter systems. In addition to translating the
input program into machine language, they an-
alyze it and apply various transformations to it
to reduce its running time or its size.

As optimizing compilers become more effec-
tive, programmers can become less concerned
about the details of the underlying machine ar-
chitecture and can employ higher-level, more
succinct, and more intuitive programming con-
structs and program organizations. Simultane-
ously, hardware designers are able to employ de-
signs that yield greatly improved performance
because they need only concern themselves with
the suitability of the design as a compiler target,
not with its suitability as a direct programmer
interface.

One of the approaches used by computer ar-
chitects to achieve high performance is to use
parallelism at various levels of granularity to
overlap computation. In this survey we describe
transformations that optimize programs writ-
ten in imperative languages such as Fortran and
C for high-performance architectures, including
superscalar, vector, and various classes of mul-
tiprocessor machines. Almost all of these trans-
formations are applicable to the languages in the

Algol family; many are applicable to functional,
logic, distributed, and object-oriented languages
as well.

These other languages raise additional opti-
mization issues which space does not permit
us to cover in this survey. The references in-
clude some starting points for investigation of
optimizations for LISP and functional languages
[Kranz et al. 1986; Appel 1992; Clark and
Peyton-Jones 1985], object-oriented languages
[Chambers and Ungar 1989], logic programming
languages [Ait-Kaci 1991], and the set-based
language SETL [Freudenberger et al. 1983].

We discussion to
higher-level transformations which require some

have also restricted the

program analysis. Thus we exclude peephole op-
timizations and, as much as possible, machine
level optimizations, although some discussion
of instruction scheduling and register allocation
is included. We use the term optimization as
shorthand for optimizing transformation.

Finally, because of the richness of the topic,
we have not given a detailed description of in-
termediate program representations and analy-
sis techniques.

A number of appendices have been included
with material that presents additional details
and background information.

We make use of a number of different machine
models all based on a hypothetical superscalar
processor called S-DLX. Appendix A details the
machine models, presenting a simplified archi-
tecture and instruction set that we use when
we need to discuss machine code. While all as-
sembly language examples are commented, the
reader will need to refer to the appendix to un-
derstand some details of the examples (such as
cycle counts).

We assume a basic familiarity with program
compilation issues. Appendix B discusses pro-
gram representations used internally by compil-
ers. Readers unfamiliar with program flow anal-
ysis may consult Appendix C, which describes
some forms of analysis that are used to iden-
tify the usefulness and correctness of applying a
transformation, or Aho et al. [1986], which pro-
vides a more lengthy treatment.



1 SOURCE LANGUAGE

All of the high-level examples in this survey are
written in Fortran-90, primarily in the Fortran-
77 subset. In some cases it is necessary to use
assembly language to demonstrate the effects of
the optimizations; this is described in Section 3.

We have chosen to use Fortran because it is
the de facto standard of the high-performance
engineering and scientific computing commu-
nity. Fortran has also been the input language
for a number of research projects studying par-
allelization [Allen et al. 1988a; Balasundaram et
al. 1989; Polychronopoulos et al. 1989]. Tt was
chosen by these projects not only because of its
ubiquity among the user community, but also
because its lack of pointers and its static mem-
ory model make it more amenable to analysis.

The optimizations we have presented are not
specific to Fortran — in fact, many commercial
compilers use the same intermediate language
and optimizer for both C and Fortran. The
presence of unrestricted pointers in C can re-
duce opportunities for optimization because it
is impossible to determine which variables may
be referenced by a pointer. The process of deter-
mining which references may refer to the same
storage locations is called alias analysis and is
described more fully in Appendix C.2.4.

Arrays in Fortran are laid out in memory in
column-major form: the first subscript varies
fastest. This is relevant for understanding the
transformations that improve memory locality.

The only changes to Fortran in our examples
are that array subscripting is denoted by square
brackets to distinguish it from function calls;
and we use do all loops to indicate textually
that all the iterations of a loop may be executed
concurrently.

To make the structure of the computation
more explicit, we will generally express loops as
iterations rather than in Fortran-90 array no-
tation. Programmers should generally use array
notation when it is available because it simplifies
the code and exposes parallelism to the compiler.

When describing compilation for vector ma-
chines, we sometimes use array notation when
the mapping to hardware registers is clear. For

instance, the loop

do all i = 1, 64
ali] = a[i] + ¢
end do all

could be implemented with a scalar-vector add
instruction. This would be written in Fortran-90
array notation as

al[1:64] = a[1:64] + ¢

or in vector machine assembly language as

LF F2, c(R30) ;load ¢ into reg F2

ADDI R8, R30,#a ;load addr. of a into R8
LV V1, RS ;load vector al[1:64] to V1
ADDSV V1, F2, V1 ;add scalar to vector

SV V1, RS ;store vector in al[1:64]

Array notation will not be used when loop
bounds are unknown, because there is no longer
an obvious correspondence between the source
code and the fixed-length vector operations that
perform the computation. To use vector oper-
ations, the compiler must perform the transfor-
mation called strip-mining, which is discussed in
Section 6.2.1.

2 TRANSFORMATION ISSUES

For a compiler to apply an optimization to a
program, it must do three things:

1. Decide upon a part of the program to op-
timize and a particular transformation to
apply to it;

2. Verify that the transformation either does
not change the meaning of the program or
changes it in a restricted way that is accept-
able to the user; and

3. Transform the program.

In this survey we concentrate on the last step,
transformation of the program. However, Sec-
tion 5 we will introduce dependence analysis
techniques which are used for deciding upon and
verifying transformations, and Appendices B
and C provide some further details.



Step 1is the most poorly understood and is an
active area of current research. Typically com-
pilers apply a verification test for an optimiza-
tion to an entire procedure, identifying every le-
gal opportunity to use it. A variety of heuris-
tics then determine whether the transformation
is applied. Optimizations that rely on similar
verification procedures are generally applied to-
gether to reduce the cost of program analysis,
which may dominate compilation time.

Such ad-hoc strategies work reasonably well
for uniprocessor targets, although even then it is
possible for a sequence of optimizations to slow
down a program. For example, an attempt to
reduce the number of instructions executed may
actually degrade performance by making less ef-
ficient use of the cache. While the sequence of
transformations that is best for each application
may be unique, compilers generally apply trans-
formations in a relatively fixed sequence.

But as processor architectures become more
complex, the number of dimensions in which
optimization is possible increases and the deci-
sion process is greatly complicated. Some recent
work has concentrated on systematizing the pro-
cess of transformation (described briefly in Sec-
tion 8); a great deal of further research is needed
in this area.

2.1 Correctness

When a program is transformed by the compiler,
the meaning of the program should remain un-
changed. The easiest way to achieve this is to
require that the transformed program perform
exactly the same operations as the original, in
exactly the order imposed by the semantics of
the language. However, such a strict interpreta-
tion leaves little room for improvement. A more
practical definition is

Definition 1 A transformation is legal if the
original and the transformed programs produce
exactly the same output for identical executions.

Definition 1.1 Two executions of a program are
identical executions if they are supplied with the
same input data and if every corresponding pair
of non-deterministic operations in the two exe-
cutions produces the same result.

Non-determinism can be introduced by lan-
guage constructs (such as Ada’s select state-
ment ), or by calls to system or library routines
that return information about the state exter-
nal to the program (such as Unix time() or
read()).

In some cases it is straightforward to cause
executions to be identical, for instance by enter-
ing the same inputs. In other cases there may
be support for determinism in the programming
environment; for instance, a compilation option
which forces select statements to evaluate their
guards in a deterministic order. As a last re-
sort, the programmer may have to temporarily
replace non-deterministic system calls with de-
terministic operations in order to compare two
versions.

To illustrate many of the common problems
encountered when trying to optimize a program
and yet maintain correctness, Figure 1 shows a
program (a) and a transformed version (b). The
transformed version may seem to have the same
semantics as the original, but it violates Defini-
tion 1 in the following ways:

o Overflow. Let R,,.: be the largest real
number representable by the machine. If
bk] = Rir — 1 and a[1] = —2, then
changing the order of the additions so that
C=b[k]+2 will cause an overflow to occur
in the transformed program that did not
occur in the original. Even if the original
program would have overflowed, the trans-
formation causes the exception to happen
at a different point. This situation compli-
cates debugging, since the transformation
is not visible to the programmer. Finally, if
there had been a print statement between
the assignment and use of C, the transfor-
mation would actually change the output of
the program.

¢ Different results. Even if no overflow oc-
curs, the resulting values of elements of a
may be slightly different because the order
of the additions has been changed. The rea-
son is that floating point numbers are ap-
proximations of real numbers, and the or-

der in which the approximations are applied



subroutine tricky(a,b,n,m,k)
integer n, m, k
real a[m], b[m]

doi=1,n

ali]l = bl[k] + a[i] + 2
end do
return

(a) original program

subroutine tricky(a,b,n,m,k)
integer n, m, k
real a[m], b[m]

C =nblk] +2

doi=mn, 1, -1
a[i] = ali] + C

end do

return

(b) transformed program

k = m+1
n=20
call tricky(a,b,n,m,k)

(c) possible call to tricky

equivalence (al[1], b[n])

k=n
call tricky(a,b,n,m,k)

(d) possible call to tricky

Figure 1: Incorrect Program Transformations

(rounding) can affect the result. However,
for a sequence of commutative and associa-
tive integer operations, if no order of evalu-
ation can cause an exception, then all eval-
uation orders are equivalent. We call oper-
ations which are algebraically but not com-
putationally commutative (or associative)
semi-commutative (or semi-associative) op-
erations. Boolean operations are fully com-
mutative, since they do not cause excep-
tions or compute approximate values.

o Memory fault. If k > m but n < 1, the refer-
ence to b[k] is illegal. The reference would
not be evaluated in the original program be-
cause the loop body is never executed, but
it would occur in the call shown in Figure 1

(¢).

e Different results. a and b may be com-
pletely or partially aliased to one another,
changing the values assigned to a in the
transformed program. Figure 1 (d) shows
how this might occur: if the call is to the
original subroutine, b[k] is changed when
i = 1, since k = n and b[n] is aliased to
a[1]. In the transformed version, the old
value of b[k] is used for all i, since it is
read before the loop. Even if the reference
to b[k] were moved back inside the loop,
the transformed version would still give dif-
ferent results because the loop traversal or-
der has been reversed.

As a result of these problems, slightly different
definitions are used in practice. When bit-wise
identical results are desired, the following defi-
nition is used:

Definition 2 A transformation is legal if, for
all semantically correct program executions, the
original and the transformed programs produce
exactly the same output for identical executions.

Languages typically have many rules that are
stated but not enforced; for instance in For-
tran, array subscripts must remain within the
declared bounds, but this rule is not enforced
at compile- or run-time. A program execution
is correct if it does not violate the rules of the



language. Note that correctness is a property of
a program execution, not of the program itself,
since the same program may execute correctly
under some inputs and incorrectly under others.

Because exceptions are considered semanti-
cally incorrect, the legally transformed program
can produce different results when an exception
occurs. For languages which define a specific se-
mantics for exceptions, this definition may need
to be extended.

However, demanding bit-wise identical results
can substantially constrain opportunities for op-
timization, and is often not necessary. As a re-
sult, the most commonly applied correctness cri-
terion is

Definition 3 A transformation is legal if, for
all semantically correct executions of the orig-
inal program, the original and the transformed
programs perform equivalent operations for iden-
tical executions.  All permutations of semi-
commutative operations are considered equiva-
lent.

Since we can not predict the degree to which
transformations of semi-commutative operations
change the output, we must use an operational
rather than an observational definition of equiv-
alence. In practice, programmers generally ob-
serve whether the numeric results differ by more
than a certain tolerance, and if they do, force
the compiler to employ Definition 2.

2.2 Scope

Optimizations can be applied to a program at
different levels of granularity. Asthe scope of the
transformation is enlarged, the cost of analysis
generally increases. Some useful gradations of
complexity are:

e statement — arithmetic expressions are
the main source of potential optimization
within a statement.

¢ basic block (straight-line code) — this is the
focus of early optimization techniques. The
advantage for analysis is that there is only
one entry point, so control transfer need not
be considered in tracking the behavior of
the code.

¢ innermost loop — to effectively target high-
performance architectures, compilers need
to focus on loops. Most of the transfor-
mations discussed in this paper are based
on loop manipulation. Many of them have
only been studied or widely applied in the
context of the innermost loop.

e perfect loop nest — a loop nest is a set of
loops one inside the next. The nest is called
a perfect nestif the body of every loop other
than the innermost consists only of the next
loop in the nest. Because a perfect nest
is more easily summarized and reorganized,
several transformations only apply to per-
fect nests.

e general loop nest — any loop nesting, per-
fect or not.

e procedure — some optimizations, memory
access transformations in particular, yield
better improvements if they are applied to
an entire procedure at once. The compiler
must be able to manage the interactions
of all the basic blocks and control trans-
fers within the procedure. The standard
and rather confusing term for procedure-
level optimization in the literature is global
optimization.

e inter-procedural — considering several pro-
cedures together often exposes more op-
portunities for optimization; in particular,
procedure call overhead is often significant,
and can sometimes be reduced or elimi-
nated with inter-procedural analysis (see
Section 6.6). Relatively few compilers per-
form inter-procedural optimization.

We will generally confine our attention to op-
timizations beyond the basic block level.

3 TARGET ARCHITECTURES

In this paper we discuss compilation techniques
for high-performance architectures, which for
our purposes are superscalar, vector, SIMD,
shared-memory multiprocessor, and distributed-
memory multiprocessor machines. These archi-



tectures have in common that they all use par-
allelism in some form to improve performance.

The structure of an architecture dictates how
the compiler must optimize along a number of
different (and sometimes competing) axes. The
compiler must attempt to:

e maximize use of computational resources
(processors, functional units, vector units);

e minimize the number of operations per-
formed;

¢ minimize use of memory bandwidth (regis-
ter, cache, network); and

e minimize use of memory.

While optimization for scalar CPUs has con-
centrated on minimizing the dynamic instruc-
tion count (or more precisely, the number of ma-
chine cycles required), high-performance appli-
cations are often at least as dependent upon the
performance of the memory system as they are
on the performance of the functional units.

In particular, the distance in memory between
consecutively accessed elements of an array can
have a major performance impact. This distance
is called the stride. If a loop is accessing every
fourth element of an array, it is a stride-4 loop. If
every element is accessed in order, it is a stride-
1 loop. Stride-1 access is desirable because it
maximizes memory locality and therefore the ef-
ficiency of the cache, translation lookaside buffer
(TLB), and paging systems; it also eliminates
bank conflicts on vector machines.

Another key to achieving peak performance is
the paired use of multiply and add operations in
which the result from the multiplier can be fed
into the adder. For instance, the IBM RS/6000
has a multiply-add instruction which uses the
multiplier and adder in a pipelined fashion; one
multiply-add can be issued each cycle. The Cray
Y-MP C90 does not have a single instruction;
instead the hardware detects that the result of
a vector multiply is used by a vector add, and
uses a strategy called chaining in which the re-
sults from the multiplier’s pipeline are fed di-
rectly into the adder.

Applications that do not use such compound
operations may be only half as fast as those that
do. Tt is therefore very important to organize
the code so as to issue as many multiply-adds as
possible.

There are a number of variables which are
used to analyze the performance of the compiled
code quantitatively:

e 5 is the hardware speed in operations
per second. Typically, speed is measured
either in millions of instructions (MIPS)
or in millions of floating point operations
(megaflops).

e P is the number of processors.

e F'is the number of operations executed by
a program.

e T is the time in seconds to run a program.

o U = F/ST is the utilization of the ma-
chine by a program; a utilization of 1 is
ideal, but real programs typically have sig-
nificantly lower utilizations.

e () is the ratio of the number of uses of a
word in memory to the number of times it is
loaded into a register. The higher the value
of (), the more re-use is being achieved and
the less memory bandwidth is consumed.
Values of () below 1 indicate that redundant
loads are occurring.

e R, is the number of registers that are re-
quired by a program assuming that the tar-
get machine has an infinite register set (but
assuming that registers are re-used when
the value they contain is no longer needed).
R, is the number of registers actually avail-
able on the machine.

o I = R.,/R,, is a measure of the register
pressure of a program. II > 1 indicates that
extra loads and stores will have to be gener-
ated to save some registers’ values and free
them for other uses. This process is called
spilling the registers, and clearly reduces Q).



In Appendix A we present a series of model ar-
chitectures that we will use throughout this sur-
vey to demonstrate the effect of various compiler
transformations. The architectures include a su-
perscalar CPU (S-DLX), a vector CPU (DLX-
V), a shared memory multiprocessor (MX-s) and
a distributed memory multiprocessor (MX-d).
We assume that the reader is familiar with ba-
sic principles of modern computer architecture,
including RISC design, pipelining, caching, and
instruction-level parallelism. Qur generic archi-
tectures are based on DLX, an idealized RISC
architecture introduced by Hennessey and Pat-
terson [1990].

4 COMPILER ORGANIZATION

To demonstrate how transformation fits into
compiler design, we have presented a diagram
of the various parts of an optimizing compiler in
Figure 2. Every compiler is different, so we have
tried to present one reasonable organization that
has a place for all the techniques mentioned in
this survey.

The first two phases, lexing and parsing, con-
stitute the front-end of the compiler and will
not be discussed further. The front-end is re-
sponsible for converting the original source into
more convenient internal data structures and for
checking whether the static semantic constraints
of the language have been properly satisfied.
The parser generally produces an abstract syn-
tax tree and a symbol table.

The next stage of compilation is analysis,
which can take many forms. In our canonical
compiler, we assume that the first step is to
do control flow analysis in order to produce a
control-flow graph (CFG). The CFG, which con-
verts the different kinds of control transfer con-
structs in the program into a single form that
is easier for the compiler to manipulate, is dis-
cussed in more detail in Appendix B.

After control flow has been dealt with, the
compiler examines how data is being used with
dataflow analysis (described in Appendix C.1)
and dependence analysis (described in Sec-
tion 5). There are a variety of representations for
capturing flow information; we assume that our

compiler uses program dependence graphs and
static single-assignment form (described in Ap-
pendix B), and dependence vectors (described
in Section 5). Some compilers will only use one
or two of these intermediate forms, while others
will use entirely different ones.

After analyzing the code, the compiler can be-
gin to transform it. The compiler designer must
decide on an order in which to apply transforma-
tions; some transformations may enable others
which in turn enable the original transformation
to improve the code further. Although the pic-
ture implies that analysis is complete before the
transformations are applied, in practice it is of-
ten necessary to re-analyze code after it has been
modified.

Once the program has been fully transformed,
the last stage of compilation is to convert it
into assembly code. This translation is done by
the back-end and will not be discussed in de-
tail; our compiler uses the common approach
of converting the high-level representations used
during transformation into the low-level register-
transfer language (RTL) [Davidson and Fraser
1984]. RTL is used for register allocation, in-
struction selection, and instruction reordering to
exploit processor scheduling policies.

5 DEPENDENCE ANALYSIS

Among the various forms of analysis used by
optimizing compilers, the one we rely on most
heavily in this survey is dependence analysis
[Wolfe 1989b; Banerjee 1988b].
briefly introduces dependence analysis, its ter-
minology, and the underlying theory. Other
forms of program analysis are discussed in Ap-
pendix C.

A dependence is a relationship between two
computations that places constraints on their
execution order. Dependence analysis identifies
these constraints, which are then used to deter-
mine whether a particular transformation can be
applied without changing the semantics of the
computation.

This section

5.1 Types of Dependences

There are two kinds of dependences: control de-
pendence and data dependence. There is a con-



source code
|

v

Front-end Lexical Analysis

l tokens

Parsing

symbol table & AST

4

Control Flow Analysis

Anaysis
l CFG

Dataflow and
Dependence Analysis

SSA/PDG
Dependence Vectors, Use-Def Links, Flow Sets

Transformation Code Transformation

PDG/CFG

Conversionto RTL

Back-end

lRTL

Register Allocation
and Instruction Selection

|
l Object Code

Figure 2: Possible Organization of an Optimizing Compiler



trol dependence between statement 1 and state-
ment 2, written S;—55, when statement S; de-
termines whether S5 will be executed. For ex-
ample:

10

1
2

if (a
b
end if

3) then

Two statements have a data dependence if they
cannot be executed simultaneously due to con-
flicting uses of the same variable. There are
three types of data dependences: flow de-
pendence (also called true dependence), anti-
dependence, and output dependence. 54 has
a flow dependence on S5 (denoted by S3—54)
when S3 must be executed first because it writes
a value that is read by S4. For example:

3 a = cx*10
4 d = 2%xa + ¢
Se has an anti-dependence on S5 (denoted by

S5+9¢) when Sg writes a variable that is read

by S5:

5
6

e

g

fx4 + g
2%h

An anti-dependence does not constrain execu-
tion as tightly as a flow dependence. As before,
the code will execute correctly if Sg is delayed
until after S5 completes. An alternative solution
is to use two memory locations g5 and gg to hold
the values read in S5 and written in S¢, respec-
tively. If the write by Sg completes first, the old
value will still be available in gs.

An output dependence holds when both state-
ments write the same variable:

7
8

b*c
d+e

a

a

We denote this condition by writing S7-eS5%.
Again, as with an anti-dependence, storage
replication can allow the statements to execute
concurrently. In this short example there is no
intervening use of a and no control transfer be-
tween the two assignments, so the computation
in S7 is redundant and can actually be elimi-
nated.

10

We denote an unspecified type of dependence
by S1=55. Another common notation for de-
pendences uses $365, for S5—S4, S505¢ for
S5—+S56, and 576°59g for S7-e-Ss.

In the case of data dependences, when we
write X=Y we are being somewhat imprecise:
it is reads and writes to the same data items
that are dependent, not entire statements. In
the output dependence example above, b, c, d,
and e can all be read from memory in any order,
and the results of bxc and d+e can be executed
as soon as their operands have been read from
memory. S7-e9% actually means that the store
of the value b*c into a must precede the store of
the value d+e into a. When there is a potential
ambiguity, we will distinguish between different
variable references within statements.

5.2 Representing Dependences

To capture the dependency information for a
piece of code, the compiler creates a dependence
graph; each node in the graph typically repre-
sents one statement. An arc between two nodes
indicates that there is a dependence between the
computations they represent.

Because it is cumbersome to account for both
control and data dependence during analysis,
compilers often convert control dependences into
data dependences using a technique called if-
conversion [Allen et al. 1983]. If-conversion in-
troduces additional boolean variables that en-
code the conditional predicates; every statement
whose execution depends on the conditional is
then modified to test the boolean variable. In
the transformed code, data dependence sub-
sumes control dependence.

5.3 Loop Dependence Analysis

So far we have examined dependence in the con-
text of straightline code with conditionals — an-
alyzing loops is a more complicated problem. In
non-looping code, each statement is executed at
most once, so the dependence arcs described so
far capture all the possible dependence relation-
ships. In looping code, each statement may be
executed many times, and for many transforma-
tions it is necessary to describe dependences that



doi=2,n

1 ali] = a[i] + ¢
2 b[i]l = al[i-1] * b[i]
end do

(a)

doi=2,n

do j=1, n-1
ali,j] = ali,jl + ali-1,j+1]
end do
end do
(b)
doi=1,n

do j =2, n-1
aljl=(aljl + alj-1] + a[j+11)/3
end do
end do

(c)
Figure 3: Loop-carried Dependence

exist between iterations, called loop-carried de-
pendences.

Three loop nests with loop-carried depen-
dences are shown in Figure 3. Consider the
simple example (a): there is no dependence be-
tween 57 and S5 within any single iteration of
the loop, but there is one between two successive
iterations. S5 in iteration k reads the value of
alk — 1] written by 57 in iteration k — 1.

To compute dependence information for loops,
the key problem is understanding the use of ar-
rays; scalar variables are relatively easy to man-
age. To track array behavior, the compiler must
analyze the subscript expressions in each array
reference.

To discover whether there is a dependency
in the loop nest, it is sufficient to determine
whether one iteration can ever write a value that
is read or written in any other iteration.

Depending on the language, loop increments
may be arbitrary expressions. However, the
dependence analysis algorithms usually require

11

that the loops have only unit increments. When
the ranges in a program have a more complex
form, the compiler may be able to normalize
them to fit the requirements of the analysis, as
described in Section 6.2.16. For the remainder
of this section we will assume that all loops are
incremented by 1 for each iteration.

Figure 4 shows a generalized perfect nest of
d loops. The body of the loop nest reads and
writes elements of the m-dimensional array a.
The functions f; and g; map the current values
of the loop iteration variables to an integer which
indexes the i** dimension of a. The generalized
loop can give rise to any type of data depen-
dence: for instance, two different iterations may
write the same element of a, creating an output
dependence.

An iteration can be uniquely named by a vec-
tor of d elements I = (iy,...,i4), where each
index falls within the iteration range of its cor-
responding loop in the nesting (that is, [, < i, <
). The outermost loop corresponds to the left-
most index.

We wish to discover what loop-carried depen-
dences exist between the two references to a, and
to describe somehow those dependences that ex-
ist. Clearly, a reference in iteration J can only
depend upon another reference in iteration [
that was executed before it, not after it. We
formalize the notion of “before” with the < re-
lation:

I<Jiff Ip:i, <jyAVg<p:ii,= 7,

Note that this definition must be extended
slightly when the loop increment may be neg-
ative.

A reference in some iteration J depends upon
a reference in iteration [ if and only if at least
one reference is a write and

1< AYp: fo(1) = gy(]).

In other words, there is a dependence when the
values of the subscripts are the same in different
iterations. If no such I and J exist, the two
references are independent across all iterations
of the loop. In the case of an output dependence



do il = lhul
do iQ = 1-27u-2

do g = lg,ugq
a[fl(ih "77:d)7
.= afgi1(,
end do
end do
end do

coos Fnits e id)] = .

cees ), eens G0 oees )]

Figure 4: General Loop Nest

between the same write in different iterations,
the condition is simply Vp: f,(I) = f,(J)

For example, suppose that we are attempt-
ing to describe the behavior of the loop in Fig-
ure 3 (b). Each iteration of the inner loop writes
the element al[i,j]. There is a dependence if
any other iteration reads or writes that same
element. In this case, there are many pairs of
iterations that depend on each other. Consider
iterations I = (1,3) and J = (2,2). Iteration I
occurs first, and writes the value a[1,3]. This
value is read in iteration .J, so there is a flow
dependence from iteration I to iteration .J. Us-
ing the same notation for dependences, we write
I—J.

When X=Y, we define the dependence dis-
tance as Y — X = (Y1 — Xq,...,Y;— Xy4). In
Figure 3 (b), the dependence distance J — I =
(1,—1). When all the dependence distances for
a specific pair of references are the same, the po-
tentially unbounded set of dependences can be
represented by the dependence distance. When
a dependence distance is used to describe the de-
pendences for all iterations, it is called a distance
vector (introduced by Kuck [1978] and Muraoka
[1971)).

A legal distance vector V must be lexicograph-
ically positive, meaning that 0 < V' (the first
non-zero element of the distance vector must be
positive). A negative element in the distance
vector means that the dependence in the corre-
sponding loop is on a higher-numbered iteration.

12

If the first non-zero element were negative, this
would indicate a dependence upon a future iter-
ation, which is impossible.

There is often confusion of dependence be-
tween iterations with dependence between array
elements. The operations on array elements cre-
ate the dependences, but the dependence vectors
describe dependences between iterations. For
instance, the loop nest that updates the one-
dimensional array a in Figure 3 (c) has depen-
dences {(0,1),(1,0),(1,—1)}.

In some cases it is not possible to determine
the exact dependence distance at compile-time,
or the dependence distance may vary between
iterations, but there is be enough information
to partially characterize the dependence. A di-
rection vector (introduced by Wolfe [1989b]) is
commonly used to describe such dependences.

For a dependence I=-J, the direction vector

W = (wq,...,wg) where
< if I, < J,
wy=1{ = ifI,=J,
> if I, > J,

In Figure 3 the direction vector for loop (b)
is (<,>), and the direction vectors for loop (c)
are {(=,<),(<,=),(<,>)}

The dependence behavior of a loop is de-
scribed by the set of dependence vectors for each
pair of possibly conflicting references. These can
be summarized into a single loop direction vec-
tor, at the expense of some loss of information



(and potential for optimization). The depen-
dences of the loop in Figure 3 (c¢) can be sum-
marized as (<,*). The symbol # denotes both
a < and > direction, and * denotes <, >, and

5.4 Subscript Analysis

In discussing the analysis of loop-carried depen-
dence, we omitted an important detail: how the
compiler decides whether two array references
might refer to the same element in different it-
erations. In examining a loop nest, the com-
piler first tries to prove that different iterations
are independent by applying various tests to the
subscript expressions. These tests rely on the
fact that the expressions are almost always lin-
ear. If the subscript expressions are too complex
to analyze, or if a dependency is found, the com-
piler then tries to describe the dependence with
a direction or distance vector.

There are a large variety of tests, all of which
can prove independence in some cases. It is
infeasible to solve the problem directly, even
for linear subscript expressions, because finding
dependences is equivalent to the NP-complete
problem of finding integer solutions to systems
of linear Diophantine equations [Banerjee et al.
1979]. Two general and approximate tests are
the GCD [Towle 1976] and Banerjee’s inequali-
ties [Banerjee 1988a].

In addition, there are a large number of ezact
tests that exploit some subscript characteristics
to determine whether a particular type of de-
pendence exists. These include the Single-Index
Test [Banerjee 1979; Wolfe 1989b] and the Delta
Test [Goff et al. 1991]. Other approaches exam-
ine multiple subscripts simultaneously as in the
A-test [Li et al. 1990], multi-dimensional GCD
[Banerjee 1988a], and the power test [Wolfe and
Tseng 1992].

There have been several studies of the loop
subscript expressions that occur in practice, and
how well the various tests perform in analyz-
ing them [Banerjee 1988a; Shen et al. 1989; Lee
et al. 1985]. These studies have generally con-
cerned themselves with scientific code, finding
that the subscript expressions which appear are
almost always simple enough to respond well to

13

inexpensive dependence tests.

6 TRANSFORMATIONS

This section catalogs the program transforma-
tions themselves. Qur primary emphasis is on
loops, since that is where most of the execution
time is spent in programs. For each transfor-
mation we provide an example, discuss its bene-
fits and shortcomings, identify any variants, and
provide citations.

A standard reference on compilers in general
is the “Red Dragon” book, to which we refer for
some of the most common examples [Aho et al.
1986]. We also drew upon previous summaries
[Allen and Cocke 1971; Kuck 1977; Padua and
Wolfe 1986; Wolfe 1989b; Rau and Fisher 1993].

Because some transformations were already
familiar to programmers who applied them man-
ually, we often cite only the work of researchers
who have systematized and automated the im-
plementation of these transformations. Addi-
tionally, we omit citations to work that is re-
stricted to basic blocks when global optimiza-
tion techniques exist. Fven so, the origin of
some optimizations is murky. For instance, Er-
shov’s ALPHA compiler performed interproce-
dural constant propagation (albeit in a limited
form) in 1964 [Ershov 1966].

6.1 Loop Reordering Transformations

In this section we describe transformations
which change the order in which the iterations of
a perfect loop nest are executed. These transfor-
mations are used to expose parallelism and im-
prove memory locality. When loops are imper-
fectly nested, loop distribution can sometimes
be used to create perfect loop nests (see Sec-
tion 6.2.8).

A major goal of optimizing compilers for high-
performance architectures is to discover and ex-
ploit parallelism in loops. We will indicate when
a loop can be executed in parallel by using a do
all loop instead of a do loop. The iterations of
a do all loop can be executed in any order, or
all at once.

To determine whether a loop can be executed
in parallel, its loop-carried dependences must be



ali-1,j]1 + ali-1,j+1]

(b) Inner loop is parallelizable.

Figure 5: Dependence conditions for paralleliz-
ing loops.

examined. The obvious case is when all the de-
pendence distances for the loop are 0 (direction
=), meaning that there are no dependences car-
ried across iterations by the loop. This is the
case in Figure 5 (a): the distance vector for the
loop is (0, 1), so the outer loop is parallelizable.

More generally, the p'* loop in a loop nest
is parallelizable if for every distance vector I,
I, =0v3g <p:1I,>0. In Figure 5 (b), the
distance vectors are {(1,0),(1,—1)}, so the in-
ner loop is parallelizable. This is because both
references on the right-hand side of the expres-
sion read elements of a from row i-1, which was
written during the previous iteration of the outer
loop. Therefore the elements of row i may be
calculated and written in any order.

6.1.1 Loop Interchange

Loop interchange exchanges the position of two
loops in a loop nest, generally moving one of
the outer to loops to the innermost position
[Wolfe 1989b; Allen and Kennedy 1987; Allen
and Kennedy 1984]. Tt is one of the most pow-
erful transformations and can improve perfor-
mance in many ways. However, many compilers
do not perform this optimization.
Loop interchange may be performed to:

e enable vectorization by interchanging an in-

stride | Cache TLB % of
Misses | Misses | stride 1

1 64 2 100

2 128 4 83

4 256 8 63

8 512 16 40
12 768 24 28
16 1024 32 23
64 1024 128 19
256 1024 512 12
512 1024 1024 7.5

double precision a[*]

do i
ali]
end do

1024+*stride, stride

1,
= alil + ¢

Figure 6: Predicted effect of stride on perfor-
mance of an IBM RS/6000 for the above loop.
Array elements are double precision (8 bytes);
miss rates are per 1024 iterations. Beyond
stride-16, TLB misses dominate.

ner, dependent loop with an outer, indepen-
dent loop;

improve vectorization by moving the inde-
pendent loop with the largest range into the
innermost position;

improve parallel performance by moving an
independent loop outwards in a loop nest
to increase the granularity of each iteration
and reduce the number of barrier synchro-
nizations;

move more scalars into the inner loop to
increase data access locality and hence reg-
ister reuse;

reduce stride, ideally to stride-1; and

increase the number of loop-invariant ex-
pressions in the inner loop.

Care must be taken that these benefits do not
cancel each other out. For instance, an inter-
change that improves register re-use may change

14



doi=1,n
do j =1,n
totall[i] = totalli] + ali,j]
end do
end do
(a) original loop nest
do j=1,n
doi=1i,n
totall[i] = totalli] + ali,j]
end do
end do

(b) interchanged loop nest

Figure 7: T.oop Interchange

a stride-1 access pattern to a stride-n access pat-
tern with much lower overall performance due
to increased cache misses. Table 6 demonstrates
the dramatic effect of different strides on an IBM
RS/6000 [IBM 1992].

In Figure 7 (a), the inner loop accesses array
a with stride-n. By interchanging the loops, we
convert the inner loop to stride-1 access (b).

For a large array in which less than one col-
umn fits in the cache, this optimization reduces
the number of cache misses on a from n? to
n X elementsize/linesize, or n/16 with 4-byte el-
ements and 64-byte lines. However, the original
loop allows total[i] to be placed in a register,
eliminating the load/store operations in the in-
ner loop. So the optimized version increases the
number of load /store operations for total from
2n to 2n?. If a fits in the cache, the original loop
is better.

On a vector architecture without a reduc-
tion primitive, the transformed loop enables
vectorization by eliminating the dependence on
totall[i] in the inner loop.

Interchanging loops is legal when the altered
dependences are legal and the loop bounds can
be switched. If two loops p and ¢ in a perfect
loop nest of d loops are interchanged, each de-
pendence vector V. = (v1,...,0p, ..., Vg ..., 04)
in the original loop mnest becomes V'’

15

doi=2,n
do j =1, n-1
ali,j] = ali-1,j+1]
end do
end do
(a)
J J

1

(c}

Figure 8: Original loop (a), original traversal
order (b), traversal order after interchange (c)

(V1543 Vgy .oy Vp,...,vg) in the transformed
loop nest. TIf V' is lexicographically positive,
then the dependence relationships of the orig-
inal loop are satisfied.

A loop nest of just two loops can be inter-
changed unless a dependence vector of the form
(<,>) exists. This is shown in Figure 8: the
loop nest (a) has dependence (1,—1), which
gives rise to the loop-carried dependences shown
in (b). The order in which the iterations are exe-
cuted is shown by the dotted line. After reversal
(c) iterations are executed before iterations that
they depend upon, so the interchange is illegal.

Switching the loop bounds is straightforward
when the iteration space is rectangular, as in
the loop nest in Figure 7. In this case the loop
bounds are independent of one another,
can simply be exchanged. When the iteration
space is not rectangular, computing the bounds
is more complex. Triangular spaces are often
used by programmers and trapezoidal spaces are
introduced by loop skewing (discussed in the
next section). A further set of techniques are
necessary to manage imperfectly nested loops.
Some of the variations are discussed in detail by

Wolfe [1989b] and Wolf and Lam [1991].

and



6.1.2 Loop Skewing

Loop skewing is an enabling transformation
which is primarily useful in combination with
loop interchange [Wolfe 1989b]. Because it only
alters the loop bounds, it does not change the
computations being performed and is always le-
gal by itself.

Skewing was invented to handle wavefront
computations, so called because the updates to
the array propagate like a wave across the array
[Muraoka 1971; Lamport 1974]. In Figure 9 (a)
we show a typical wavefront computation. Each
element is computed by averaging its four near-
est neighbors. While neither of the loops is par-
allel in their original form, each array diagonal
(“wavefront”) can be computed in parallel. The
iteration space and dependences are shown in
(¢), with the dotted lines indicating the wave-
fronts.

Skewing is performed by simply adding the
outer loop index, multiplied by a skew factor f,
to the bounds of the inner iteration variable, and
then subtracting the same quantity from every
use of the inner iteration variable inside the loop.
The result when f =1 is shown in Figure 9 (b).
The transformed code is equivalent to the orig-
inal, but the effect on the iteration space is to
align the diagonal wavefronts of the original loop
nest so that for a given value of j, all iterations
in i can be executed in parallel (d).

The original loop nest can be interchanged
but neither loop can be parallelized. The
skewed loop nest can be interchanged. After
skew and interchange, the loop has dependences
{(1,0),(1,1)}. The first dependence allows the
inner loop to be parallelized because the corre-
sponding dependence distance is 0. The second
dependence allows the inner loop to be paral-
lelized because it is a dependence on previous
iterations of the outer loop.

Interchanging skewed loops is complicated by
the fact that their bounds depend on the it-
eration variables of the enclosing loops. For
two loops with bounds i=LI,UI and j=LJ,UJ,
where LJ and UJ are expressions independent of
i, the skewed inner loop has bounds j=f*i+LJ,
£xi+UJ.

16

do i=2, n-1
do j =2, m1
ali,jl = (ali-1,j] + ali,j-11 +
ali+1,j]1 + ali,j+11)/4
end do
end do

(a) original code: dependences {(1,0),(0,1)}

do i=2, n1
do j = i+2, i+m-1
ali,j-il = (ali-1,j-1i]1 + ali,j-i-11 +
ali+1,j-i]1 + ali,j-i+1]1)/4
end do
end do

(b) skewed code: dependences {(1,1),(0,1)}

T USSN
4 é——a»éé—*sé" \\\‘c;iihaiiiﬁa

(c) original space  (d) skewed space

do j = 4, m+tn-2
do i = max(2,j-m+1), min(n-1,j-2)
ali,j-il = (ali-1,j-1i]1 + ali,j-i-11 +
ali+1,j-i]1 + ali,j-i+1]1)/4
end do
end do

(e) skewed and interchanged code: dependences

{(1,0),(1, D}

Figure 9: Loop Skewing



ali-1, j+11 + 1

(a) Original loop nest: distance vector (1,—1).
Interchange is not possible.

doi=1,n
do j=mn, 1, -1
ali,jl = ali-1, j+11 + 1
end do
end do

(b) Inner loop reversed: direction vector (1,1).
Loops may be interchanged.

Figure 10: Loop Reversal

After interchange, the bounds are j=f*LI+LJ,
£*UI+UJ and i=max (LI, [(j-IJ)/£f]), min(UI,
[(G-LIY/E].

An alternative method for handling wavefront

computations is supernode partitioning [Irigoin
and Triolet 1988].

6.1.3 Loop Reversal

Reversal changes the direction in which the
loop traverses its iteration range [Wedel 1975].
It is often used in conjunction with other loop
iteration space reordering transformations be-
cause it changes the dependence vectors [Wolfe
1989b].

As an optimization in its own right, rever-
sal can reduce loop overhead by eliminating the
need for a compare instruction on architectures
without a compound compare and branch (such
as the Alpha [Sites 1992]). The loop is reversed
so the iteration variable runs down to zero, al-
lowing the loop to end with a branch if not equal
to zero instruction (BNEZ).

Reversal can also eliminate the need for tem-
porary arrays in implementing Fortran-90 array
statements; this is discussed in more detail in
section 6.2.10.

If loop p in a nest of d loops is reversed, then
for each dependence vector V, the entry v, is

17

do i=1, n
do j=1, n
ali,jl = blj,i]
end do
end do

(a) original loop

do TI=1, n, 64
do TJ=1, n, 64
do i=TI, min(TI+63, n)
do j=TJ, min(TJ+63, n)
ali,j] = blj,i]
end do
end do
end do
end do

(b) blocked loop

Figure 11: Loop Blocking

negated. The reversal is legal if each resulting
vector V' is lexicographically positive, that is
when v, =0 or 3¢ < p:v, > 0.

For instance, the inner loop of a loop nest with
dependences {(<,=),(<,>)} can be reversed,
because the resulting dependences are all still
lexicographically positive.

Figure 10 shows how reversal can enable loop
interchange. The original loop nest (a) has
the distance vector (1,—1) which prevents in-
terchange because the resulting distance vector
(—1,1) is not lexicographically positive; the re-
versed loop nest (b) can legally be interchanged.

6.1.4 Loop Blocking

Blocking (also called tiling) is used to improve
memory locality, primarily the cache [Abu-Sufah
et al. 1981; Gannon et al. 1988; Wolfe 1989a;
Lam et al. 1991]. However, it can also be used
to improve processor, register, TLB, or page lo-
cality.

The need for blocking is illustrated by the loop
in Figure 11 (a) which assigns a the transpose
of b. With the j loop innermost, access to b
is stride-1, while access to a is stride-n. Inter-
changing does not help, since it makes access to



doi=1,n

1 ali+k] = b[i]

2  bli+k] = a[i] + c[i]
end do

(a) Because of the write to a, 51 65: because
of the write to b, S-zﬂngl

do TI 1, n, k

do all i

al[i+k]

b[i+k]

end do all
end do

=TI, TI+k-1
b[i]
ali] + c[i]

(b) k iterations can be performed in parallel
because that is the minimum dependence

distance.
0 0 0 O

o

2

o

1 4

3 5 6

(c) Iteration space when n = 6 and k = 2.

Figure 12: Cycle Shrinking

b stride-n. By iterating over a sub-rectangle of
the iteration space, every cache line is fully used
(b).

The inner two loops of a matrix multiply have
this structure; blocking is critical for achieving
high performance in dense matrix multiplica-
tion.

A pair of adjacent loops can be blocked if they
can legally be interchanged. After blocking, the
outer pair of loops can be interchanged to im-
prove locality across blocks, and the inner loops
can be exchanged to exploit inner-loop paral-
lelism or register locality.

6.1.5 Cycle Shrinking

Cycle shrinking is a transformation which can
expose relatively fine-grained parallelism. When
a loop has dependences that prevent it from be-
ing executed in parallel (that is, converted to a

18

do all), it may still be possible to expose some
parallelism if the dependence distance is greater
than one. In this case cycle shrinking converts a
serial loop into an outer serial loop and an inner
parallel loop [Polychronopoulos 1987a).

For instance, in Figure 12 (a), a[i+k] is writ-
ten in iteration i and read in iteration i+k; the
dependence distance is k. Consequently the first
k iterations can be performed in parallel pro-
vided that none of the subsequent iterations is
allowed to begin until the first k are complete.
The same is then done for the next k iterations,
as shown in (b). The iteration space depen-
dences are shown in (c): each group of k iter-
ations is only dependent on the previous group.

The result is potentially a speedup by a factor
of k, but k is likely to be small (usually 2 or
3), so this optimization is normally only able to
expose parallelism that can be exploited at the
instruction level. Note that k must be constant
within the loop and must at least be known to
be positive at compile time.

6.2 Other Loop Transformations

6.2.1 Strip Mining

Strip mining is a method of adjusting the gran-
ularity of an operation, especially a paralleliz-
able operation [Loveman 1977; Abu-Sufah et al.
1981; Allen 1983]. Tt is most commonly used on
vector machines to convert a serial loop into a
series of vector operations, each vector compris-
ing a single “strip”.

An example is shown in Figure 13. The strip-
mined computation is expressed in array nota-
tion, and is equivalent to a do all loop. Cleanup
code is needed if the iteration length is not
evenly divisible by the strip length. Since it is
used to parallelize a loop, strip mining generally
requires that the inner loop be parallelizable.

If the inner loop contains more than one state-
ment, loop distribution can be applied to cre-
ate loops containing single statements (see Sec-
tion 6.2.8).

In general strip mining allows the compiler to
choose the number of independent computations
in the innermost loop; this loop is then converted
into a single operation, which is often paral-



do i=1, n
ali]

end do

ali] + ¢

(a) original loop

TN = (n/64)*64
do TI=1, TN, 64
al[TI:TI+63]

a[TI:TI+63] + ¢

end do
do i=TN+1, n

al[i] = ali]l + ¢
end do

(b) after strip mining

; R9 = address of al[TI]

LV Vi, R9 ; V1 <- a[TI:TI+63]
ADDSV V1, F8, VI ; V1 <- V1 + ¢ (F8=c)
SV Vi, R9 ; alTI:TI+63] <- Vi

(c) vector assembly code for the inner do all loop

Figure 13: Strip Mining

lel. Strip mining has been used for vectorization
(for instance by the Cray CF77 compiler [Cra
1988]), for SIMD compilation (CM-2 CMF com-
piler [Bromley et al. 1991]), for combining send
operations in a loop on distributed-memory mul-
tiprocessors [Hiranandani et al. 1992], and for
limiting the size of compiler-generated tempo-
rary arrays [Abu-Sufah 1979; Wolfe 1989b].

Loop interchange is often important for strip
mining, either to make the inner loop a do all,
or to maximize the length of the strip.

6.2.2 Inverse Strip Mining

Strip mining is used to create a larger unit of
work out of smaller ones. When it is necessary
to decrease the size of the unit of work, inverse
strip mining is used.

For instance, on a distributed memory mul-
tiprocessor, sending messages that exceed the
hardware buffer size may cause the processor
to block until the receiving processor acknowl-
edges receipt of the first buffer. In this case, it is
desirable to interleave computation between the

19

SEND(RIGHT, a,1,n)
RECEIVE(LEFT, a,1,n)
do i 1, n

ali] ali]l + ¢
end do

(a) original code

do TI = 1, n, 256
SEND(RIGHT, a,TI,TI+255)
RECEIVE(LEFT, a,TI,TI+255)
do i = TI, TI+255

ali] ali]l + ¢
end do

end do

(b) loop nest after transformation

Figure 14: Inverse Strip Mining

sending of the buffers, as is shown in Figure 14.
This use has been proposed for the Fortran-D
compiler [Hiranandani et al. 1991].

6.2.3 Strength Reduction of Induction Variable
Expressions

A variable whose value is determined only by the
number of iterations of an enlosing loop is called
an induction variable. The loop control variable
of a do statement is the most common kind of
induction variable, but other variables may also
be induction variables.

Strength reduction is a standard optimiza-
tion that replaces an expensive operation with a
cheaper one. The most common use of strength
reduction, often implemented as a special case,
is strength reduction of induction variable ex-
pressions [Allen 1969; Cocke and Schwartz 1970;
Allen et al. 1981; Aho et al. 1986]. General
strength reduction is covered in Section 6.7.1.

Strength reduction can be applied to prod-
ucts involving induction variables by converting
them to an equivalent running sum, as shown in
Figure 15. This is most important on architec-
tures in which integer multiply operations take
more cycles than integer additions (current ex-
amples include the SPARC [Sun Microsystems



1991] and the Alpha [Sites 1992]). Strength re-
duction may also make other optimizations pos-
sible, in particular the elimination of induction
variables, as is shown in the next section.

6.2.4 Induction Variable Elimination

Once strength reduction has been performed on
induction variable expressions, it is often possi-
ble to eliminate the original induction variable
entirely. This is done by expressing the loop
exit test in terms of one of the induction vari-
ables and is called linear function test replace-
ment [Allen 1969; Aho et al. 1986].

The replacement not only reduces the number
of operations in a loop, but it frees the register
used by the induction variable.

Figure 15 (d) shows the result of applying in-
duction variable elimination.

6.2.5 Loop-invariant Code Motion

Code motion is applied to a computation inside
a loop whose result does not change between it-
erations. In this case, the computation is moved
outside of the loop [Cocke and Schwartz 1970;
Aho et al. 1986].

Code motion can be applied at a high level
to expressions in the source code, or at a
low level to address computations. The lat-
ter is particularly relevant when indexing multi-
dimensional arrays or dereferencing pointers, as
when the inner loop contains an expression such
as a.b->c.d[i]. Most commercial compilers do
code motion.

Figure 16 (a) shows an example in which an
expensive transcendental function call is moved
outside of the inner loop. The test in the trans-
formed code (b) ensures that if the loop is never
executed, the moved code is not executed either,
lest it raise an exception.

The pre-computed value is generally assigned
to a register. If registers are scarce (Il > 1)
and the expression moved is inexpensive to com-
pute, code motion may actually de-optimize the
code, since register spills will be introduced in
the loop.

Although code motion is sometimes referred
to as code hoisting, hoisting is a more general
term which refers to any transformation that

do i=1,
ali] =
end do

n
alil + ¢

(a) original code

LF F4, c(R30) ;load ¢ into F4

LW R8, n(R30) ;load n into RS

LI RO, #1 ;set 1 (R9) to 1

ADDI R12,R30, #a ;R12=address(al1])
Loop:MULTI R10, RO, #4 ;R10=i*4

ADDI R10,R12,R10 ;R10=address(ali+1])

LF F5, -4(R10) ;load a[i] into F5

ADDF F5, F5, F4 ;alil:=alil+c

SF -4(R10), F5 ;store new al[il

SLT R11, R9, R8 ;R11 = i<n?

ADDI RO, RO, #1 ;i=i+i

BNEZ R11, Loop ;if i<n, goto Loop

(b) initial compiled loop

LF F4, c(R30) ;load ¢ into F4

LW R8, n(R30) ;load n into RS

LI RO, #1 ;set 1 (R9) to 1

ADDI R10,R30, #a ;R10=address(al1])
Loop:LF F5, (R10) ;load a[il] into F5

ADDF F5, F5, F4 ;alil:=alil+c

SF (R10), F5 ;store new alil

ADDI R9, RO, #1 ;i=i+1

ADDI R10, R10,#4 ;R10=address(ali+1])

SLT R1i1, R9, R8 ;Ri1 = i<n?

BNEZ R11, Loop ;if i<n, goto Loop
(c) after strength reduction — R10 is a running sum

instead of being recomputed from R9 and R12

LF F4, c(R30) ;load ¢ into F4

LW R8, n(R30) ;load n into RS

ADDI R10, R30,#a ;R10=address(al1])

MULTI RS, RS, #4 ;R8=n*4

ADDI R8, R10, R8 ;R8=address(aln+1])
Loop:LF F5, (R10) ;load al[il] into F5

ADDF F5, F5, F4 ;alil:=alil+c

SF (R10), F5 ;store new alil

ADDI R10, R10,#4 ;R10=address(ali+1])

SLT R11, R10,R8 ;R11= R10<R8?

BNEZ R11, Loop ;if R11, goto Loop

(d) after elimination of induction variable (R9)

Figure 15: Induction Variable Optimizations

20



do i
ali]

end do

i,n
ali] + sqrt(x)

(a) original loop

if (n > 0) C = sqrt(x)
do i 1,n

ali] a[i]l + C
end do

(b) after code motion

Figure 16: Loop-invariant code motion.

do i=2, n-1
ali] = ali] + ali-1] * a[i+1]
end do

(a) original loop

do i=2, n-2, 2
a[i] = ali] + ali-1] * a[i+1]
ali+1] ali+1] + al[i] * al[i+2]
end do

if (mod(n-2,2) = 1) then
aln-1] aln-1] + a[n-2] * al[n]
end if

(b) loop unrolled twice

Figure 17: Loop Unrolling

moves an expression to a point where it is ex-
ecuted earlier [Aho et al. 1986]. The most com-
mon use of hoisting is to move loop-invariant ex-
pressions, but it can also be particularly useful
in optimizing automatically generated programs
which tend to have many repeated expressions.

6.2.6 Loop Unrolling

Unrolling replicates the body of a loop some
number of times called the unrolling factor (u),
and then iterates by step u instead of step 1.
This transformation can improve the code by

¢ reducing loop overhead;

21

e increasing instruction parallelism; and

e improving register, data cache, or TLB lo-
cality.

The benefits of unrolling have been studied
on several different architectures [Dongarra and
Hind 1979]; it is a fundamental technique for
generating the long instruction sequences re-
quired by VLIW machines [Ellis 1986].

In Figure 17, we show all three of these im-
provements in an example. Loop overhead is cut
in half because two iterations are performed be-
fore the test and branch at the end of the loop.
Assuming that array elements are assigned to
registers, register locality is improved because
al[i] and a[i+1] are used twice in the loop
body, reducing the number of loads per iteration
from 3 to 2. Instruction parallelism is increased
because the second assignment can be performed
while the results of the first are being stored and
the loop variables are being updated.

If the target machine has double- or multi-
word loads, unrolling often allows several loads
to be combined into one.

Unrolling has the advantage that it can be
applied to any loop, and can be done profitably
both at the high and low levels. Some compil-
ers also perform loop re-rolling prior to unrolling
because programs often contain loops that were
unrolled for a different target architecture.

Unrolling can also be done for outer loops, and
then combined with fusion (described in Sec-
tion 6.2.9) of the u inner loops [Allen and Cocke
1971]. Loop quantization is another approach
which allows outer loops to be unrolled without
introducing u inner loops [Nicolau 1988].

Figure 18 shows the effects of unrolling in
more detail. The original loop (b) takes 6 cy-
cles per result on S-DLX. After unrolling 3 times
(c), it takes 8 cycles per iteration or 2% cycles
per result. The original loop stalls for one cycle
waiting for the load, and for two cycles waiting
for the ADDF to complete. In the unrolled loop
some of these cycles are filled.

Most compilers for high-performance ma-
chines will unroll at least the innermost loop of
a nesting.



do i=1, n

(a) the initial loop

ali] = a[i] + ¢

end do
Cycle
1 LW R8, n(R30) ADDI R10, R30,#a
2 LF F4, c(R30)
3 MULTI RS, RS, #4
5 ADDI RS, R10, RS
1 L:LF F5, (R10) ADDI R10, R10,#4
3 ADDF F5, F5, F4 SLT R11, R10,RS8
6 SF -4(R10), F5 BNEZ R11, L

W ~N O 0o WN =

~N oW N

B W N e

g W N

(b) the compiled loop body for S-DLX. This is

;load n into RS8
;load ¢ into F4

; R8=n*4
;R8=address(aln+1])

;R10=address(al1])

;load al[il] into F5
;alil=alil+c
;store new alil

;R10=address(al[i+1])
;R11= R10<R87?
;if R11, goto L

the loop from Fig 15 (d) after instruction scheduling.

;load a[il] into F5

;load al[i+1] into Fé

;load al[i+2] into F8 ;alil=alil+c
;R10=address(ali+3]) ;ali+1]l=ali+i]+c
:R11= R10<R8? sali+2]=ali+2]+c
;store new alil

;store new ali+1]

;store new ali+2] ;if R11, goto L

c) after unrolling 3 times (loop epilogue omitted
te] fe]

;load n into R8 ;R10=address(al1])

;load ¢ into F4 ;R8=n-2
;R8=(n-2)+*4

;R8=address(aln-1]) ;F5=ali]
;F6=al1]+c ;Fb=a[2]

;store new alil ;R10=address(ali+1])
;ali+1]l=ali+1]+c ;R11= R10<R87?
;load ali+2] into F5 ;if R11, goto L

(d) after software pipelining (loop epilogue omitted)

L:LF F5, (R10)
LF F6, 4(R10)
LF  F7, 8(R10) ADDF F5, F5, F4
ADDI R10,R10,#12 ADDF F6, F6, F4
SLT R11, R10,R8 ADDF F7, F7, F4
SF -12(R10),F5
SF -8(R10), F6
SF -4(R10), F7 BNEZ R11, L
LW  R8, n(R30) ADDI R10, R30,#a
LF  F4, c(R30) SUBI RS, RS, #2
MULTI R8, RS, #4
ADDI RS, R10, R8 LF  F5, (R10)
ADDF F6, F5, F4 LF  F5, 4(R10)

L:SF (R10), F6 ADDI R10, R10,#4
ADDF F6, F5, F4 SLT R1ii, R10,R8
LF F5, 4(R10) BNEZ R11, L
[stalll

L:SF (R10), F6  ADDF F6, F5, F4
SF 4(R10), F8 ADDF F8, F7, F4
LF F5, 16(R10) ADDI R10, R10,#8
LF F7, 12(R10) SLT R11, R10,R8
BNEZ R11, L

;ali+2]=ali+2]+c
;ali+3]=ali+3]+c
;R10=address(ali+2])
;R11= R10<R3?

;store new alil
;store new ali+1]
;load al[i+4] into F5
;load al[i+5] into F7
;if R11, goto L

(e) after unrolling 2 times and software pipelining (loop prologue and epilogue omitted)

Figure 18: Increasing instruction parallelism in loops.

22



Overlapped
Operations

1Vivivi

Time

(a) Loop Unrolling

Overlapped
Operations

Time

(b) Software Pipelining

Figure 19: Loop Unrolling vs. Software Pipelin-
ing

6.2.7 Software Pipelining

Another technique to improve instruction par-
allelism is software pipelining [Lam 1988]. In
hardware pipelining, instruction execution is
broken into stages, such as Fetch, Execute, and
Write-back. The first instruction is fetched in
the first clock cycle. In the next cycle, the sec-
ond instruction is fetched while the first is ex-
ecuted, and so on. Once the pipeline has been
filled, the machine will complete 1 instruction
per cycle.

In software pipelining, the operations of a sin-
gle loop iteration are broken into s stages, and
a single iteration performs stage 1 from itera-
tion i, stage 2 from iteration i-1, etc. Startup
code must be generated before the loop to ini-
tialize the pipeline for the first s — 1 iterations
and cleanup code must be generated after the
loop to drain the pipeline for the last s — 1 iter-
ations.

Figure 18 (d) shows how software pipelining
improves the performance of a simple loop. The
depth of the pipeline is s = 3. Figure 19 il-
lustrates the difference between unrolling and
software pipelining: unrolling reduces overhead,
while pipelining reduces the startup cost of each
iteration.

Finally, Figure 18 (e) shows the result of com-
bining software pipelining (s = 3) with unrolling
(u = 2). The loop takes 5 cycles per iteration,
or 2% cycles per result. Unrolling alone achieves
2% cycles per result. If software pipelining is
combined with unrolling by u = 3, the result-
ing loop would take 6 cycles per iteration or two
cycles per result, which is the best that can be

done because only one memory operation can be
initiated per cycle.

Perfect Pipelining combines unrolling by loop
quantization with software pipelining [Aiken and
Nicolau 1988a; Aiken and Nicolau 1988b]. A
special case of software pipelining is predictive
commoning, which is applied to memory oper-
ations. If an array element written in iteration
1 — 1 is read in iteration i, then the first ele-
ment is loaded outside of the loop and from then
on there is one load and one store per iteration.
This is done by the RS/6000 XI. C/Fortran com-
piler [O’Brien et al. 1990].

If there are no loop-carried dependences, the
length of the pipeline is the length of the de-
pendence chain. If there are multiple, indepen-
dent dependence chains they can be scheduled
together subject to resource availability, or loop
distribution can be applied to put each chain
into its own loop (see the following section). The
scheduling constraints in the presence of loop-
carried dependences and conditionals are more
complex; the details are discussed in [Aiken and
Nicolau 1988a; Lam 1988].

6.2.8 Loop Distribution

Distribution (also called loop fission or loop
splitting ) breaks a single loop into multiple loops
with the same iteration space but each enclos-
ing only a subset of the statements of the origi-
nal loop [Muraoka 1971; Kuck 1977; Kuck et al.
1981].

Distribution is used to

create perfect loop nests;
e create sub-loops with fewer dependences;

e improve instruction cache and instruction
TLB locality due to shorter loop bodies;

¢ reduce memory requirements by iterating
over fewer arrays; and

e increase register re-use by decreasing regis-
ter pressure;

Figure 20 is an example in which distribution
removes dependences and allows part of a loop
to be run in parallel.



do i=1, n

ali] = a[il+c
x[i+1] = x[i]1*7 + x[i+1] + a[il
end do

(a) original loop

do all i=1, n
ali] al[il+c

end do all

do i=1, n
x[i+1]

end do

x[11*7 + x[i+1] + a[i]

(b) after loop distribution

Figure 20: Loop Distribution

Distribution may be applied to any loop, but
all statements belonging to a dependence cycle
(called a 7-block [Kuck 1977]) must be placed
in the same loop, and if S7=95 in the origi-
nal loop, then the loop containing 57 must pre-
cede the loop that contains S5. If the loop
contains control flow, applying if-conversion
(see Section 5.2) can expose greater opportu-
nities for distribution.
use a control-dependence graph [Kennedy and
McKinley 1990].

A specialized version of this transformation is
distribution by name, originally called horizontal
distribution of name partition [Abu-Sufah et al.
1981]. Rather than performing full dependence
analysis on the loop, the statements are parti-
tioned into sets that reference mutually exclu-
sive variables. These statements are guaranteed
to be independent.

An alternative is to

When the arrays in question are large, fission
by name can increase cache locality. Note that
the above loop can not be distributed using fis-
sion by name, since both statements reference
a.

6.2.9 Loop Fusion
The inverse transformation of distribution is fu-

sion (also called jamming) [Ershov 1966]. It can
improve performance by

24

Figure 21: Two loops containing 57 and 53 can
not be fused when S5=-57 in the fused loop

¢ reducing loop overhead;
e increasing instruction parallelism;

e improving register, vector [Wolfe 1989b],
data cache, TLB, or page [Abu-Sufah 1979]
locality; and

e improving the load balance of parallel loops.

In the previous section distribution has en-
abled parallelization of part of the loop. How-
ever, fusing the two loops back together will
improve register and cache locality since al[i]
need only be loaded once; it will increase in-
struction parallelism by increasing the ratio of
floating point operations to integer operations
in the loop; and it will reduce loop overhead by
a factor of two. With large n, the distributed
loop will run fastest on a vector machine, and
the fused loop will run fastest on a superscalar
machine.

To fuse two loops, they must have the same
loop bounds; when the bounds are not identical,
it is sometimes possible to make them identical
by peeling (described in Section 6.2.15) or by in-
troducing conditional expressions into the body
of the loop. Two loops with the same bounds
may be fused if there does not exist statement
S1 in the first loop and S5 in the second such
that they have a dependence S-z(:%sl in the
fused loop. The reason this would be incorrect
is that before fusing, all instances of 57 execute
before any S5. After fusing, corresponding in-
stances are executed together. If any instance
of S7 has a dependence on (i.e. must be exe-
cuted after) any subsequent instance of 93, the
fusion illegally alters execution order, as shown
in Figure 21.



6.2.10 Array Statement Scalarization

When a loop is expressed in array notation, the
compiler can either convert it into vector opera-
tions or scalarize it into one or more serial loops
[Wolfe 1989b]. However, the conversion is not
completely straightforward because array nota-
tion implies that every operation is performed
concurrently.

The example in Figure 22 shows a computa-
tion in array notation (a), its obvious (and incor-
rect) conversion to serial form (b), and a correct
conversion (c¢). The reason that (b) is not cor-
rect is that in the original code, every element of
a is to be incremented by the value of the previ-
ous element. This is to happen simultaneously;
in the incorrect version (b), each element is in-
cremented by the updated value of the previous
element.

The general solution is to introduce a tempo-
rary array T and to have a separate loop that
writes the values back into a, as shown in (c).
The temporary array can then be eliminated if
the two loops can be legally fused, namely when

there is no anti-dependence SQ(—T—)>S 1 in the fused
loop, where 57 is the assignment to the tempo-
rary and S is the assignment to the original
array. Note that flow and output dependences
can not arise from array language statements.

In this case there is an anti-dependence, but
it can be removed by reversing the loops, en-
abling fusion and eliminating the temporary,
as shown in (d). However, the array language
statement in (e) requires a temporary since an
anti-dependence exists regardless of the direc-
tion of the loop.

6.2.11 Loop Coalescing

Coalescing combines a loop nest into a single
loop, with the original indices computed from
the resulting single induction variable [Poly-
chronopoulos 1987b; Polychronopoulos 1988].
This can improve the scheduling of the loop on
a parallel machine, and may also reduce loop
overhead.

For example, if n and m are slightly larger than

the number of processors P, then neither of the
loops schedules well as the outer parallel loop,

25

al[2:n-1] al2:n-1] + a[1:n-2]

(a) initial array language expression

do i
ali]

end do

2, n-1
ali] + a[i-1]

(b) incorrect scalarization

doi=2, n-1

1 T[i] = al[i] + a[i-1]
end do
doi=2, n-1

2 alil = T[i]
end do

(¢) correct scalarization

do i
ali]

end do

n-1, 2, -1

= al[i] + al[i-1]

(d) reversing both loops allows fusion and
eliminates need for temporary array t

al[2:n-1] al[2:n-1] + a[1:n-2] + a[3:n]

(e) array expression requiring a temporary

Figure 22: Array Statement Scalarization



do i=1, n
do j=1, m
ali,jl = ali,j] + ¢
end do
end do

(a) original loop

do all T=1, n*m
i ((T-1) / m)*m + 1
j MOD(T-1, m) + 1
ali,jl = ali,j] + ¢
end do all

(b) coalesced loop

real TA[n*m]
equivalence (TA,a)
do all T = 1, n*m
TA[T] = TA[T] + ¢
end do all
(¢) collapsed loop

Figure 23: Loop Coalescing versus Collapsing

since executing the last n— P iterations will take
the same time as the first P. Coalescing the two
loops ensures that we can execute P iterations
every time except during the last nm mod P it-
erations, as shown in Figure 23 (b).

Coalescing itself is always legal since it does
not change the iteration order of the loop. If the
iterations of the coalesced loop are parallelized,
all dependences for the original loops must be
=, or there be a positive dependence distance in
an enclosing loop.

The complex subscript calculations can often
be simplified to reduce the overhead that this
introduces [Polychronopoulos 1987b].

6.2.12 Loop Collapsing

Collapsing is a simpler, more efficient, but less
general version of coalescing in which the num-
ber of dimensions of the array is actually re-
duced. Collapsing eliminates the overhead of
multiple nested loops and multi-dimensional ar-

26

ray indexing.

Collapsing is used not only to increase the
number of parallelizable loop iterations, but
also to increase vector lengths and to eliminate
the overhead of a nested loop (also called the
Carry optimization [Allen and Cocke 1971; IBM
1991)).

The collapsed version of the loop discussed in
the previous section is shown in Figure 23 (c).

Collapsing is best suited to loop nests that it-
erate over memory with a constant stride. When
more complex indexing is involved, coalescing

may be a better approach.
6.2.13 Loop Unswitching

Loop unswitching is applied when a loop con-
tains a conditional with a loop-invariant test
condition. The loop is then replicated inside
each branch of the conditional, saving the over-
head of conditional branching inside the loop,
reducing the code size of the loop body, and pos-
sibly enabling the parallelization of a branch of
the conditional [Allen and Cocke 1971].

Conditionals that are candidates for unswitch-
ing can be detected during code motion, which
identifies loop-invariant values.

In Figure 24 the variable x is loop invariant,
allowing the loop to be unswitched and the true
branch to be executed in parallel, as shown in
Figure 24. Note that as with loop-invariant code
motion, if there is any chance that the condition
evaluation will cause an exception, it must be
guarded by a test that the loop will be executed.

In a loop nest where the inner loop has un-
known bounds, if code is generated straightfor-
wardly there will be a test before the body of
the inner loop to determine if it should be ex-
ecuted at all. The test for the inner loop will
be repeated every time the outer loop is exe-
cuted. If the intermediate representation of the
program is sufficiently detailed to reveal this,
then unswitching can be performed to move this
test outside of the outer loop. The RS/6000 XL
C/Fortran compiler implements unswitching for
this reason [O’Brien et al. 1990].



do i=2, n
al[i]l = ali] + ¢
if (x < 7) then
b[i] = al[i] * c[i]
else
b[i] = ali-1] * b[i-1]
end if
end do

(a) original loop

if (n > 0) then
if (x < 7) then

do all i=2, n
al[i] = ali]l + ¢
b[i] = al[i] * c[i]
end do all
else
do i=2, n
al[i] = ali]l + ¢
b[i] = ali-1] * b[i-1]
end do
end if
end if

(b) after unswitching

Figure 24: TLoop Unswitching

6.2.14 Loop Pushing

Pushing moves a loop nest from the caller to
a cloned version of the called procedure. Very
few commercial compilers perform vectorization
or parallelization across procedure calls directly;
this transformation is a way of achieving a sim-
ilar effect, although it is less general.

Pushing is done by the CMAX Fortran
preprocessor for the Thinking Machines CM-
5. CMAX converts Fortran-77 programs to
Fortran-90, attempting to discover data-parallel
operations in the process [Sabot and Wholey
1993].

Pushing not only allows the parallelization of
the loop in Figure 25, it also eliminates the over-
head of all but one of the procedure calls.

If there are other statements in the loop, dis-
tribution is a prerequisite to pushing. In this

27

do i=1, n
call f(x,n)
end do

subroutine f(a, j)
real a[x*]

aljl = al[j] + ¢
return

(a) original loop and procedure

call F_2(x)

subroutine F_2(a)

real a[x]

do all i=1, n
ali] ali]l + ¢

end do all

return

(b) after loop pushing

Figure 25: TL.oop Pushing

case, however, the dependence analysis for dis-
tribution must be inter-procedural. If there are
no other statements in the loop, the transforma-
tion is always legal.

Procedure inlining (see Section 6.6.6) is a dif-
ferent way of achieving a very similar effect, and
does not require interprocedural analysis.

6.2.15 Loop Peeling

Peeling has two uses: to remove dependences
created by the first or last few loop iterations,
thereby enabling parallelization, and to match
the iteration control of adjacent loops to enable
fusion.

The loop in Figure 26 (a) is not parallelizable
because of a flow dependence between iteration
i = 2 and iterations i = 3.. Peeling off
the first iteration allows the rest of the loop to
be parallelized and fused with the following loop
(b).

Since peeling simply breaks a loop into sec-
tions without changing the iteration order, it can
be applied to any loop.

.n.



do i
b[i]

end do

do all i =3, n
al[i]l = ali] + ¢

2, n
= b[i] + b[2]

end do all
(a) original loops

if (2 <= n) then

b[2] = b[2] + b[2]
end if
do all i=3, n

b[i] = b[i] + b[2]

a[i] = a[i] + ¢
end do all

(b) after peeling one iteration from first loop
and fusing the resulting loops

Figure 26: T.oop Peeling

6.2.16 Loop Normalization

Normalization converts all loops so that the
induction variable is initially 1 (or 0), and is
incremented by 1 on each iteration [Allen and
Kennedy 1987]. This transformation can expose
opportunities for fusion and simplify inter-loop
dependence analysis, as shown in Figure 27. Tt
can also help to reveal which loops are candi-
dates for peeling followed by fusion.

The most important use of normalization,
however, is to permit the compiler to apply sub-
script analysis tests, most of which work with
normalized iteration ranges.

6.2.17 Reduction Recognition

A reduction is an operation that computes a
scalar value from an array. Common reductions
include computing either the sum or the maxi-
mum value of the elements in an array. In Fig-
ure 28 (a), the sum of the elements of a are
accumulated in the scalar s. The dependence
vector for the loop is (1), or (<). While a loop
with direction vector (<) must normally be ex-
ecuted serially, reductions can be parallelized if
the operation performed is associative. Com-

28

doi=1,n

ali] = a[i] + ¢
end do
do i =2, n+l

b[i]l = al[i-1] * b[i]
end do

(a) original loops

doi=1,n

ali] = a[i] + ¢
end do
doi=1,n

b[i+1] = al[i] * b[i+1]
end do

(b) after normalization, the two loops can be

fused

Figure 27: T.oop Normalization

mutativity provides additional opportunities for
reordering.

When the compiler transforms code under the
assumption that addition is an associative and
commutative operation, the reordered program
will not necessarily yield exactly the same result.
Provided that bit-wise identical results are not
required, the partial sums can be computed in
parallel. In Figure 28 (b), the reduction has been
vectorized by using vector adds (the inner do all
loop) to compute TS; the final result is computed
from TS using a scalar loop.

For semi-commutative and semi-associative
operators like floating point multiplication, the
validity of the transformation depends upon the
language semantics and the programmer’s intent
(see Section 2.1).

The maximum parallelism can be achieved by
computing the reduction with a tree: pairs of el-
ements are summed, then pairs of these results
are summed, and so on. This reduces the num-
ber of serial steps from O(n) to O(logn).

Operations such as and, or, min, and max
are truly associative and their reduction can be
parallelized under all circumstances.



do
s

i=1, n

s + ali]

end do

(a) a sum reduction loop

real TS[64]
TS[1:64] = 0.0

do TI = 1, n, 64
TS[1:64] = TS[1:64] + a[TI:TI+63]

end do

do TI = 1, 64

s + TS[TI]

s
end do

(b) loop transformed for vectorization

Figure 28: Reduction Recognition

6.2.18 Loop Idiom Recognition

Parallel architectures often provide specialized
hardware that the compiler can take advantage
of. For example, SIMD machines frequently sup-
port reduction directly in the processor inter-
connection network. Some parallel machines,
such as the Connection Machine [Thi 1989], in-
clude hardware not only for reduction but for
parallel prefix operations, allowing a loop of the
form a[i] al[i-1] + a[i] to be parallelized.
The parallelization of a more general class of lin-
ear recurrences is described by Chen and Kuck
[1975], and discussed by Kuck [1977; 1978] and
Wolfe [1989b]. Blelloch [1989] describes compi-

lation strategies for recognizing and exploiting

parallel prefix operations.

Other idioms that are specially supported by
hardware or software can be recognized and
converted by the compiler. For instance, the
CMAX Fortran preprocessor converts loops im-
plementing vector and matrix operations into
calls to assembly-coded BLAS (Basic Linear Al-
gebra Subroutines) [Sabot and Wholey 1993],
and the VAX Fortran compiler converts string
copy loops into block transfer instructions [Har-
ris and Hobbs to appear].

29

do i =1, n/2
1 al[i+1] = a[i+1] + a[il

end do

doi=1, n-3
2 b[i+1] = b[i+1] + b[i] + a[i+3]

end do

(a) original loops
do i =1, n/2
COBEGIN
al[i+1] = a[i+1] + a[il

if (i > 3) then
b[i-2] = b[i-2]+b[i-3]+a[i]
end if
COEND
end do

do i = n/2-3,n-3
b[i+1] = b[i+1] + b[i] + a[i+3]
end do

(b) after spreading
Figure 29: Loop Spreading

6.2.19 Loop Spreading

Spreading takes two serial loops and moves some
of the computation from the second to the first
so that the bodies of both loops can be executed
in parallel [Girkar and Polychronopoulos 1988a].
While similar to loop fusion in combining the
bodies of two loops, in a fused loop there may
be dependences between the original loop bodies
within an iteration, which would prevent the two
loop bodies from being executed in parallel.

An example is shown in Figure 29: the two
loops in the original program (a) cannot be fused
because they have different bounds and there

would be a dependence S-z—(?—>51 in the fused
loop due to the write to a in 57 and the read
of ain 55. By executing the statement S5 three
iterations later within the new loop, it is pos-
sible to execute the two statements in paral-
lel, which we have indicated textually with the
COBEGIN/COEND compound statement (b).

The number of iterations by which the body of



the second loop must be delayed is the maximum
dependence distance between any statement in
the second loop and any statement in the first
loop, plus 1. Adding one ensures that there are
no dependences within an iteration. For this rea-
son, there must not be any scalar dependences
between the two loop bodies.

Unless the loop bodies are large, spreading
is primarily beneficial for exposing instruction-
level parallelism. Depending on the amount of
instruction parallelism achieved, the introduc-
tion of a conditional may negate the gain due to
spreading. The conditional can be removed by
peeling the first few (in this case 3) iterations
off the first loop, but this introduces more loop
overhead.

6.2.20 Flattening

Flattening is a load-balancing transformation
for SIMD machines. An array may be allocated
to the processors in such a way that each pro-
cessor has approximately the same number of
elements, but there is a significant variation in
the number of elements in each row (or whatever
dimension is stored entirely locally). Flattening
checks after each iteration whether the end of
the local row has been reached, and advances
the row index if necessary [von Hanxleden and
Kennedy 1992].

6.3 Memory Access Transformations

High-performance applications are as frequently
memory-limited as they are compute-limited. In
fact, for the last fifteen years CPU speeds have
doubled every three to five years, while DRAM
speeds have doubled in speed about once ev-
ery decade (DRAMs, or Dynamic Random Ac-
cess Memory chips, are the low-cost, low-power
memory chips used for main memory in most
computers).

As a result, optimization of the use of the
memory system has become steadily more im-
portant. Factors affecting memory performance
include:

e Re-use, denoted by @), the ratio of uses of an
item to the number of times it is loaded (see
Section 3). This may be applied to any el-

30

ement of the memory hierarchy: scalar reg-
isters, vector registers, cache lines, etc.;

Parallelism. Vector machines often divide
memory into banks, allowing vector regis-
ters to be loaded in a parallel or pipelined
fashion. Superscalar machines often sup-
port double- or quad-word load and store
instructions;

Working Set Size. If all of the memory ele-
ments accessed inside of a loop do not fit in
the data cache, then items that will be ac-
cessed in later iterations may be flushed, de-
creasing ). If more variables are simultane-
ously live than there are available registers
(that is, the register pressure II > 1), then
loads and stores will have to spill values into
memory, decreasing (). If more pages are
accessed in a loop than there are entries in
the TLB, then the TLB will thrash.

Page Locality. DRAMs often support
“page-mode” access: a consecutive memory
access to the same page allows much of the
address decode logic to be by-passed, lead-
ing to a 3 or 4 times faster access (currently,
20ns instead of 70ns).

Since the registers are the top of the mem-
ory hierarchy, efficient register usage is abso-
lutely crucial to high performance. Until the
late seventies, register allocation was considered
the single most important problem in compiler
optimization for which there was no adequate
solution. The introduction of techniques based
on graph-coloring [Chaitin et al. 1981; Chaitin
1982; Chow and Hennessy 1990] yielded very ef-
ficient global (within a procedure) register allo-
cation. Most compilers make use of some variant
of graph coloring in their register allocator.

Optimizations covered in other sections that
also can improve memory system performance
are loop interchange (6.1.1), loop blocking
(6.1.4), loop wunrolling (6.2.6), loop fusion
(6.2.9), and various optimizations which elimi-
nate register saves at procedure calls (6.6).



real a[8,512]

do i=1, 8
ali,1]
end do

= ali,1] + ¢

Figure 30: Memory Alignment. If a is aligned
on a cache-line boundary, the loop takes 64 cy-
cles to execute on S-DLX; if not, it takes 80 cy-
cles.

6.3.1 Memory Alignment

Aligning an array on cache line or page bound-
aries reduces the number of cache lines or TLB
entries used for the array. This both increases ()
and reduces the chance that the cache or TLB
will thrash.

For example, each column of array a in Fig-
ure 30 has 8 elements, consuming 64 bytes — ex-
actly one cache line. If the array is aligned on
a 64-byte boundary, the loop over the first col-
umn will incur one cache miss instead of two. If
the loop is compiled for S-DLX as in Figure 18
(b) on page 22, it will take 6 cycles per element,
or 48 cycles for the entire loop, plus the cache
miss costs. A cache miss costs 16 cycles, so if a
is aligned there is one cache miss and the loop
takes 64 cycles, but if it is not aligned there are
two cache misses and the loop takes 80 cycles,
or 25% more time.

6.3.2 Array Padding

It is often desirable to have every column of an
array be cache-aligned; in this case the compiler
can increase the size of the columns so that once
the array itself is aligned, every column begins
on a cache line boundary.

Padding is especially important for vector
machines with banked memory, such as the
Cray and our hypothetical DLX-V. If indexing
through an array dimension that is not laid out
contiguously in memory, memory may be ac-
cessed with a stride that is an exact multiple
of the number of banks. The bandwidth of the
memory system will be reduced by a factor of
8 because all memory accesses are to the same

31

real a[8,512]

do 1 =1, 512
al1,i] = al1,i] + ¢
end do

(a) original code

real al[9,512]

do i =1, 512
al1,i] = al1,i] + ¢
end do

(b) padding a eliminates memory bank
conflicts on DLX-V

Figure 31: Array Padding

bank.

In general, if an array will be accessed with
stride n, the array should be padded by the
smallest p such that ged(n+ p,banks) = 1. This
will ensure that banks successive stride n+ p ac-
cesses will all access different banks. An example
is shown in Figure 31: the original loop accesses
memory with stride 8, so all memory references
will be to the first bank (a). After padding suc-
cessive iterations access memory with stride 9,
so they go to successive banks (b).

A similar effect can occur in cache-based ma-
chines when the stride is a high power of two.
This can cause successively accessed elements to
map into the same cache line set because the low
bits of the address are identical. This would re-
duce the effective cache size of S-DLX to 4 lines
(since the cache is 4-way set-associative).

The disadvantages of padding are that it in-
creases memory consumption and makes the
subscript calculations for operations over the
whole array more complex, since the array has
“holes”. In particular, it reduces the benefits of
loop collapsing (see Section 6.2.12).

6.3.3 Code Co-location

Code co-location is an optimization which im-
proves instruction cache utilization by placing



the most frequent successor to a basic block (or
the most frequent callee of a procedure) immedi-
ately adjacent to it in instruction memory [Pet-
tis and Hansen 1990; Hwu and Chang 1989].

An estimate is made of the frequency with
which each arc in the control flow graph will be
traversed during program execution (using ei-
ther profiling information or static estimates).
Procedures are grouped together using a greedy
algorithm that always takes the pair of proce-
dures (or procedure groups) with the largest
number of calls between them.

Within a procedure, basic blocks can be
grouped in the same way (although the direc-
tion of the control flow must be taken into ac-
count), or a top-down algorithm can be used
which starts from the procedure entry node. Ba-
sic blocks with a frequency estimate of zero can
be moved to a separate page to further increase
locality. However, this may require long dis-
placement jumps to be introduced (see the next
subsection), creating the potential for perfor-
mance loss if the basic blocks in question are
actually executed.

Inlining can also affect code locality, and has
been studied both in conjunction with [Hwu and
Chang 1989] and independent of code position-
ing [McFarling 1991]. Inlining often improves
performance by reducing overhead and increas-
ing locality, but if a procedure is called more
than once in a loop inlining will increase the
number of cache misses because the procedure
body will be loaded more than once.

6.3.4 Displacement Minimization

The target of a branch or a jump is usually spec-
ified relative to the current value of the pro-
gram counter (PC). The largest offset that can
be specified varies among architectures; it can
be as little as 8 bits. If control is transferred
to a location outside of the range of the offset,
a multi-instruction sequence is required to syn-
thesize the jump. For instance, on S-DLX

BEQZ R4, error

if error is more than 2'° bytes away, the in-
struction must be replaced with:

32

BNEZ R4, cont

LI R8, error ;get low bits
LUI R8, error>>16 ;get hi bits
JR R8 ;jump to target

cont:

This sequence requires three extra instructions
but no memory reference. Given the cost of
long-displacement jumps, the code should be or-
ganized to keep related sections close together in
memory, in particular those sections referred to
by the code which is executed most frequently
[Szymanski 1978].

Displacement minimization can also be ap-
plied to data. For instance, a base register
may be allocated for a Fortran common block
or group of blocks:

common /foo/ q, r, al[20000], y, z

Common block foo is larger than the amount of
memory indexable by the offset field in the load
instruction (2'° bytes on S-DLX). To address y
and z, multiple instruction sequences must be
used in a manner analogous to the long jump
sequences above. This can be avoided by laying
out foo as

common /foo/ q, r, y, z, a[20000]

6.3.5 Scalar Expansion

Loops often contain variables that are used as
temporaries within the loop body. Such vari-

ables will create an anti-dependence SgﬁSl
from one iteration to the next, and will have
no other loop-carried dependencies. By allocat-
ing one temporary for each iteration, the de-
pendence is removed, making the loop a candi-
date for parallelization [Padua et al. 1980; Wolfe
1989b], as shown in Figure 32. If the final value
of c is used after the loop, ¢ must be assigned
the value of T[n].

Scalar expansion is a fundamental technique
for vectorizing compilers, and was performed by
the Burroughs Scientific Processor and the Cray-
1 compilers.

If the compiler vectorizes or parallelizes a
loop, scalar expansion must be performed for
any compiler-generated temporaries in a loop.



do i=1, n
c = b[i]
al[i]l = ali] + ¢
end do
(a) original loop
real T[n]

do all i=1, n

T[i] = b[i]
ali] = al[i] + T[i]
end do all

(b) after scalar expansion

Figure 32: Scalar Expansion

Some languages and dialects allow variables to
be declared whose scope is only the loop body,
thereby allowing the programmer to declare
variables for scalar expansion explicitly.

Scalar expansion can also increase instruction-
level parallelism by removing dependences.

6.3.6 Array Expansion

An extension of scalar expansion is array expan-
sion [Feautrier 1988]. The array is expanded by
adding an additional dimension to it.

6.3.7 Array Contraction

After transformation of a loop nest, it may be
possible to contract scalars or arrays that have
previously been expanded. It may also be possi-
ble to contract other arrays due to interchange
or the use of redundant storage allocation by the
programmer [Wolfe 1989b].

If the iteration variable of a loop p is being
used to index the k*" dimension of an array z,
then dimension k& may be removed from z if (1)
loop p is not parallel, (2) all dependences V' in-
volving 2 have V, = 0, and (3) 2 is not used
subsequently (that is, z is dead after the loop).
The latter two conditions are true for compiler-
expanded variables unless the loop structure of
the program was changed after expansion. In
particular, loop distribution can inhibit array

33

real T[n,n]

do i=1, n
do all j=1, n
T[i,3j] = ali,j1*3

bli,j] = T[i,j] + bli,j1/T[4i,]]
end do all

end do
(a) original code
real T[n]
do i=1, n
do all j=1, n
T[j1 = ali,jl1=3
bl[i,j]1 = T[] + v[i,j1/T[j]
end do all
end do

(b) after array contraction

Figure 33: Array Contraction

contraction by causing the second condition to
be violated.

Contraction reduces the amount of storage
consumed by compiler-generated temporaries,
as well as reducing the number of cache lines
referenced. Other methods for reducing stor-
age consumption by temporaries are strip min-
ing (see Section 6.2.1) and dynamic allocation
of temporaries, either from the heap or from a
static block of memory reserved for temporaries.

6.3.8 Scalar Replacement

Even when it is not possible to contract an ar-
ray into a scalar, a similar optimization can be
performed when a frequently referenced array el-
ement is invariant within the innermost loop or
loops. In this case, the array element can be
loaded into a scalar (and presumably therefore
a register) before the inner loop and, if it is mod-
ified, stored after the inner loop.

This multiplies @ for the scalar-replaced ar-
ray element by the number of iterations in the
inner loop(s). It can also eliminate unneces-



do i

do j ,n

totalli]
end do

i,n
=1

totall[i] + ali,j]

end do

(a) original loop nest

do 1i,n
T = totall[i]
do j =1,n
T=T+ ali,j]
end do
totall[i] = T
end do

i =

(b) after scalar replacement

Figure 34: Scalar Replacement

sary subscript calculations, although this is of-
ten done by loop-invariant code motion (see Sec-
tion 6.2.5). Loop interchange can be used to en-
able or improve scalar replacement, but other
effects must be taken into consideration.

An example of scalar replacement is shown
in Figure 34; for a discussion of its interactions
with loop interchange, see Section 6.1.1.

6.4 Partial Evaluation

Partial evaluation refers to the general tech-
nique of performing part of a computation at
compile time. Most of the classical dataflow
analysis-based optimizations are either forms of
partial evaluation or of redundancy elimination
(described in Section 6.5).

6.4.1 Constant Propagation

Constant propagation [Kildall 1973; Wegman
and Zadeck 1991; Callahan et al. 1986] is one
of the most important optimizations that a
compiler can perform and any optimizing com-
piler will do so aggressively. Programs typically
contain many constants; by propagating them
through the program, the compiler can do a sig-
nificant amount of pre-computation. More im-
portantly, the propagation reveals many oppor-

34

n = 64
c =3

do i
ali]

end do

i, n
= af[i] + ¢

(a) original code

1, 64
ali] + 3

do i
ali]

end do

(b) after constant propagation

Figure 35: Constant Propagation

tunities for other optimizations. In addition to
obvious possibilities like dead code elimination,
loop optimizations are much affected because
constants often appear in their induction ranges.
Knowing the range of the loop, the compiler can
much more accurately perform the loop opti-
mizations which more than anything else deter-
mine performance on high-speed architectures.

Figure 35 shows a simple example of propa-
gation. On DLX-V, the resulting loop can be
converted into a single vector operation because
the loop is the same length as the hardware
vector registers. The original loop would have
to be strip-mined before vectorization (see Sec-
tion 6.2.1), increasing the overhead of the loop.

6.4.2 Constant Folding

Constant folding is a companion to constant
propagation; when an expression contains a
computation on constants, that computation
is performed at compile time. For example,
X = 3.1*%*2 becomes x = 9.61. Typically con-
stants are propagated and folded simultaneously

[Aho et al. 1986].
6.4.3 Copy Propagation

Optimizations such as induction variable elimi-
nation (6.2.4) and common subexpression elim-
ination (6.5.4) may cause the same value to be
copied several times. Copy propagation propa-
gates the original name of the value and elimi-



i*x4

t

print *, a[s]
r t

alr]

t
S

alr] + ¢

(a) original code

t ix4
print *, a[t]

alt] alt] + ¢

(b) after copy propagation

Figure 36: Copy Propagation

nates redundant copies [Aho et al. 1986].
Copy propagation reduces register pressure
and eliminates redundant register-to-register

move instructions. An example is shown in Fig-
ure 36.

6.4.4 Statement Substitution

Statement substitution is a generalization of
copy propagation. The use of a variable is re-
placed by its defining expression which is live
at that point. This can change the dependence
relation between variables [Wolfe 1989b] or im-
prove the analysis of subscript expressions in
loops [Kuck et al. 1981; Allen and Kennedy
1987].

For instance, in Figure 37 (a) the loop cannot
be parallelized because an unknown element of
a is being written. After forward substitution
(b), the subscript expression is in terms of the
loop bound variable, and it is straightforward to
determine that the loop can be implemented as a
parallel reduction (described in Section 6.2.17).

The use of variables like npl is a common
Fortran idiom that was developed when com-
pilers did not routinely perform code motion.
This idiom is recommended as “good program-
ming style” in a number of Fortran programming
texts!

Statement substitution is generally performed
on array subscript expressions at the same time
as loop normalization (Section 6.2.16). For effi-

35

npl = n+1
doi=1,n

alnp1] = alnp1] + ali]
end do

(a) original code

doalli=1,n

a[n+1] = a[n+1] + ali]
end do all

(b) after forward substitution

Figure 37: Statement Substitution

cient subscript analysis techniques to work, the
array subscripts must be linear functions of the
induction variables.

6.4.5 Reassociation

Reassociation is a technique for increasing the
number of common subexpressions in a program
[Cocke and Markstein 1980; Markstein et al. to
appear]. It is generally applied to address calcu-
lations within loops when performing strength
reduction on induction variable expressions (see
Section 6.2.3). Address calculations generated
by array references consist of several multiplica-
tions and additions. Reassociation applies the
associative, commutative, and distributive laws
to rewrite these expressions in a canonical sum-
of-products form.

Statement substitution is usually performed
where possible in the address calculations to in-
crease the number of potential common subex-
pressions.

6.4.6 Algebraic Simplification

The compiler can simplify arithmetic expres-
sions by applying algebraic rules to them. A
particularly useful example is the set of alge-
braic identities. For instance, the statement
(y*140)/1 can be transformed into x = y.
Figure 38 illustrates some of the commonly ap-
plied rules.

X

While identity operations are generally guar-
anteed to leave their operands unchanged, other



zx0
0/
z X1
z+4+0
x/1

2 8 8 O© O

Figure 38: Some algebraic identities used in ex-
pression simplification

simplifications can change the results of the ex-
pression as discussed in Section 2.1.

6.4.7 Function Cloning

When some of the arguments to a function are
constants, the function can be cloned, with the
parameters replaced by their constant values.
Constant propagation can then be used to ex-
pose other optimizations, such as algebraic sim-
plification, dead code elimination (6.5.1), and
strength reduction (6.7.1).

In Figure 39 cloning procedure £ with p re-
placed by the constant 2 allows reduction in
strength. The real-valued exponentiation is re-
placed by a multiplication, which is usually at
least 10 times faster.

6.4.8 1/0 Format Compilation

Fortran provides complex format specification
for character output that is in effect a formatting
sublanguage. format statements are generally
“interpreted” at run-time, with a correspond-
ingly high cost for character 1/0.

The same issue arises with C’s printf and
scanf functions, although it is complicated by
the fact that they are library functions and may
be redefined by the programmer.

Formatted writes can be converted almost di-
rectly into calls to the run-time routines that
implement the various format styles. These calls
are then likely candidates for inline substitution.
Figure 40 shows two I/O statements and their
compiled equivalents. The conversion of the im-
plied do loop into an aggregate operation is ac-
tually a separate optimization which essentially
performs strip mining of input/output opera-

36

call f(a, n, 2)

procedure f(x, n, p)
real x[x]

integer n, p

1,

do i
x[1]

end do

n
x[i] **p

(a) original code

call F_2(a, n)

procedure F_2(x, n)
real x[*]
integer n
do i 1,
x[i] =

end do

n
x[il*x[i]
(b) after cloning

Figure 39: Function Cloning

tions.

Format compilation is done by the VAX For-
tran compiler [Harris and Hobbs to appear| and
by the Gnu C compiler [Fre 1992].

Note that in Fortran, a format statement is
essentially a procedure definition, which may be
invoked by any number of read or write state-
ments. The same trade-off as with procedure
inlining applies: the formatted I/O can be ex-
panded inline for higher efficiency, or encapsu-
lated as a procedure for code compactness.

6.5 Redundancy Elimination

There are a variety of optimizations which
improve performance by identifying redundant
computations and removing them [Morel and
Renvoise 1979]. We have already covered one
such transformation, loop-invariant code mo-
tion, in Section 6.2.5. There a computation was
being performed many times when it could be
done once.

Redundancy-eliminating transformations re-
move two kinds of computations: those that are



write(6,100) c[i]
read(7,100) (d(j),j=1,100)
100 format(Al)

(a) original code

call putchar(c[i], 6)
call fgets(d,100,7)

subcaption(b) after format compilation

Figure 40: Format Compilation

unreachable and those that are useless. A com-
putation is unreachable if it is never executed;
removing it from the program will have no effect
on the instructions executed. Unreachable code
is sometimes created by programmers (most fre-
quently with conditional debugging code), but
more often by previous transformations that left
“orphan” code behind.

A computation is useless if none of the outputs
of the program are dependent on it.

6.5.1 Unreachable Code Elimination

Most compilers perform unreachable code elim-
ination [Allen and Cocke 1971; Aho et al. 1986].
In structured programs, there are two primary
ways for code to become unreachable. If a con-
ditional predicate is known to be true or false,
one branch of the conditional is never taken and
its code can be eliminated. The other common
source of unreachable code is a loop that does
not perform any iterations.

In an unstructured program that relies on
goto statements to transfer control, unreachable
code is not obvious from the program structure
but can be found by traversing the control flow
graph of the program.

Both unreachable and useless code are of-
ten created by constant propagation, described
in Section 6.4.1. In Figure 41 (a), the vari-
able debug is a constant. When its value is
propagated, the conditional expression becomes
if (0 > 1); this expression is always false, so
the body of the conditional is never executed
and can be eliminated, as shown in (b). Simi-

37

larly, the body of the do loop is never executed
and is therefore removed.

Unreachable code elimination can in turn al-
low another iteration of constant propagation to
discover more constants; for this reason some
compilers perform constant propagation more
than once.

Unreachable code is also known as dead code
but that name is also applied to useless code, so
we have chosen to use the more specific term.

Sometimes considered as a separate step is re-
dundant control elimination, which removes con-
trol constructs like loops and conditionals when
they become redundant (usually as a result of
constant propagation). In Figure 41 (b), the
loop and conditional control expressions are not
used and we can remove them from the program,
as shown in (c).

6.5.2 Useless Code Elimination

Useless code is often created by other optimiza-
tions, like unreachable code elimination. When
the compiler discovers that the value being com-
puted by a statement is not necessary, it can
remove the code. This can be done for any non-
global variable that is not live immediately after
the defining statement. Live variable analysis is
a well-know dataflow problem [Aho et al. 1986].
In Figure 41 (c¢), the values computed by the as-
signment statements are no longer used. They
have been eliminated in (d).

6.5.3 Dead Variable Elimination

After a series of transformations, particularly
loop optimizations, there are often variables
whose value is never used. The unnecessary vari-
ables are called dead variables; eliminating them
is a common optimization [Aho et al. 1986].

In Figure 41 (d), the variables ¢, n, and debug
are no longer used and can be removed; (e)
shows the code after the variables are pruned.

6.5.4 Common Subexpression Elimination

In many cases, a set of computations will con-
tain identical sub-expressions. This is true both
of user code and of address computations gen-
erated by the compiler. The compiler can store
the value of the sub-expression rather than re-



integer c, n, debug

debug = 0O
n=20
a = b+7

if (debug > 1) then
c=a+b+d
print *, ’Warning -- total is ’, c
end if
call foo(a)
doi=1,n
al[i]l = ali] + ¢
end do

(a) original code

integer c, n, debug

debug = 0O

n=20

a = b+7

if (0 > 1) then
end if

call foo(a)
doi=1,0

end do

(b) after constant propagation and unreachable
code elimination

integer c, n, debug
debug = 0O

n=20

call foo(a)

(c) after redundant control elimination

integer c, n, debug
a = b+7
call foo(a)

(d) after useless code elimination

a = b+7
call foo(a)

(e) after dead variable elimination

Figure 41: Redundant Code and Variable Elim-

ination

38

computing it [Cocke 1970; Aho et al. 1977; Aho
et al. 1986]. Common sub-expression elimina-
tion is one of the most important transforma-
tions and is almost universally performed. While
it is generally a good idea to perform common
subexpression elimination wherever possible, the
compiler must consider the current register pres-
sure and the cost of recomputing. If storing
the temporary value(s) forces additional spills
to memory, the transformation can de-optimize.

6.5.5 Short-Circuiting

Short circuiting is an optimization that can be
performed on Boolean expressions. It is based
on the observation that the value of many binary
Boolean operations can be determined from the
value of the first operand [Arden et al. 1962].
For example, the expression

x = ((a=1) and (b=2))

is known to be false if a does not equal 1, re-
gardless of the value of b. Short-circuiting would
convert this expression to:

x = (a=1)
if (x) then x = (b=2)

Note that if any of the operands in the boolean
expression have side-effects, short circuiting can
change the results of the evaluation. The alter-
ation may or may not be legal, depending upon
the language semantics. The C language defini-
tion addressed this problem by requiring short
circuiting of Boolean expressions.

6.6 Procedure Call Transformations

The optimizations described in the next several
sections attempt to reduce the overhead of pro-
cedure calls in one of four ways:

e eliminating the call entirely

e eliminating execution of the called func-
tion’s body

e eliminating some of the entry/exit overhead

¢ avoiding some steps in making a procedure
call when the behavior of the called proce-
dure is known or can be altered



6.6.1 A Calling Convention for S-DLX

To demonstrate the procedure call optimiza-
tions, we will first define a calling convention
for S-DLX. Table 1 shows how the registers are
used.

In general, each called procedure is respon-
sible for ensuring that the values in registers
R16—R25 are preserved across the call. The stack
begins at the top of memory and grows down-
wards. There is no explicit frame pointer; in-
stead, the stack pointer is decremented by the
size s of the procedure’s frame at entry and left
unchanged during the call. The value R30+s
serves as a virtual frame pointer that points to
the base of the stack frame, avoiding the use
of a second dedicated register. For languages
that cannot predict the amount of stack space
used during execution of a procedure, an addi-
tional general purpose register would be used as
a frame pointer.

A similar convention is followed for floating
point registers, except that only four are re-
served for arguments.

On entering a procedure, the return address is
in R31. The first six words of the procedure ar-
guments appear in registers R2-R7, and the rest
of the argument data is on the stack. Figure 42
shows the layout of the stack frame for a proce-
dure invocation.

Execution of a procedure consists of six steps:

1. Space is allocated on the stack for the pro-

cedure invocation.

. The values of registers that will be modi-
fied during procedure execution (and which
must be preserved across the call) are saved
on the stack. If the procedure calls any oth-
ers, the saved registers should include the
return address, R31.

The procedure body is executed.

. The return value (if any) is stored in R1 and
the registers that were saved in step 2 are
restored.

. The frame is removed from the stack.

. Control is transferred to the return address.

39

Calling a procedure is a four step process:

1. The values of any of the registers R1-R15
that contain live values are saved. If the
values of any global variables that might be
used by the callee are in a register and have
been modified, the copy of those variables
in memory is updated.

. The arguments are stored in the designated
registers and, if necessary, on the stack.

. A linked jump is made to the target pro-
cedure; the CPU leaves the address of the
next instruction in R31.

. Upon return, the saved registers are re-
stored and the registers holding global vari-
ables are reloaded.

To demonstrate the structure of a procedure
and the calling convention, Figure 43 shows a
simple function and its compiled code. The
function (foo) and the function that it calls
(max) each take two integer arguments, so they
do not need to pass arguments on the stack. The
stack frame for foo is three words, which are
used to save the return address (R31) and regis-
ter R16 during the call to max, and to hold the
local variable d. R31 must be preserved because
it is overwritten by the jump and link (JAL) in-
struction; R16 must be preserved because it is
used to hold a across the call.

The procedure first allocates the 12 bytes for
the stack frame and saves R31 and R16. The
value of d is calculated in the temporary register
R9. Then the addresses of the arguments are
stored in the argument registers and a jump to
max is made. On return from max, the return
value has been computed into the return value
register (R1). After removing the stack frame
and restoring the saved registers, the procedure
jumps back to its caller through R31.

6.6.2 Leaf Procedure Optimization

A leaf procedure is one that does not call any
other procedures; the name comes from the
fact that these procedures are leaves in the call
graph. The simplest optimization for leaf pro-
cedures is that they do not need to save and



Number

‘ Usage

RO Always zero; writes are ignored

R1 Return value when returning from a procedure call

R2..R7 The first six words of the arguments to the procedure call
R8..R15 | 8 caller save registers. Used as temporary registers by callee
R16..R25 | 10 callee save registers. These registers must be preserved across a call
R26..R29 | Reserved for use by the operating system

R30 Stack pointer

R31 Return address during a procedure call

FO..F3 The first four floating point arguments to the procedure call
F4..F17 | 14 caller save floating point registers

F18..F31 | 14 callee save floating point registers

Table 1: S-DLX Registers and Their Usage

high addresses
caler's stack frame
agn
ard 1
frame locals and temporaries
offset
saved registers framesize
arguments for called
procedures
P —»
low addresses

stack grows down

Figure 42: Stack Frame Layout

40



SUBI
SW

integer function foo(a, b) foo:

integer a, b

integer d, e SW
d = a+b LW
LW
ADD
e = max(b,d) SW
MOV
ADDI
JAL
f = e+ta ADD
return LW
LW
ADDI
end JR

R30, #12 ;adjust SP
8(R30), R31 ;save retaddr
4(R30), R16 ;save R16
R16, (R2) ;R16=a

R8, (R3) ;R8=b

RO, R16, R8 ;R9=d=a+b
(R30), R9 ;save d

R2, R3 ;argl=addr(b)
R3, R30, #0 ;arg2=addr(d)
max ;call max; Ri=e
R1, R1, R16 ;Ril=e+a

R16, 4(R30)
R31, 8(R30)
R30, #12
R31

;restore R16
;restore retaddr
;restore SP
;return

Figure 43: Function foo and its Compiled Code

restore the return address (R31). In addition, if
the procedure does not have any local variables
allocated to memory, the compiler does not need
to create a stack frame.

Figure 44 (a) shows the max function (called
by the previous example function foo), its orig-
inal compiled code (b), and the code after leaf
procedure optimization (c). After eliminating
the save/restore of R31, there is no need to al-
locate a stack frame. Eliminating the code that
deallocates the frame also allows the function to
return directly if x < y.

6.6.3 Cross-call Register Allocation

Separate compilation reduces the amount of in-
formation available to the compiler about called
functions. However, when both callee and caller
are available, the compiler can take advantage of
the register usage of the callee to optimize the
call.

If the callee does not need (or can be restricted
not to use) all the temporary registers (R8-R15),
the caller can leave values in the unused registers
throughout execution of the callee. In addition,
move instructions for parameters can be elimi-
nated.

To perform this optimization, register allo-
cation must be performed in a depth-first pos-

torder traversal of the call graph, ensuring that
each caller will know its callees’ register usage

[Chow 1988].

For example, in Figure 44 (c) max uses only
R8-R10. Figure 45 (a) shows foo after cross-call
register allocation. R31 is saved in R11 instead
of on the stack, and the return is a jump to the
saved address in R11. In addition, R12 is used
instead of R16, allowing the save and restore of
R16 to be eliminated. Only d remains in the
stack frame.

6.6.4 Parameter Promotion

When a parameter is passed by reference, the
address calculation is done by the caller, but
the load of the parameter value is done by the
callee. This wastes an instruction, since most
address calculations can be handled with the
offset(Rn) format of load instructions.

More importantly, if the operand is already
in a register in the caller, it must be spilled to
memory and reloaded by the callee. If the callee
modifies the value, it must then be stored. Upon
return to the caller, if the compiler can not prove
that the callee did not modify the operand, it
must be loaded again. Thus, as many as two un-
necessary loads and two unnecessary stores can
be introduced.

41



integ
integ
if (x
max
else
max
end i
retur
end

max:

Else:
Ret:

max:

Else:

Figure 44: Leaf Procedure Optimization

er function max(x, y)
er x, y

> y) then

=x

=7y
f
n

(a) source code for function max
SUBI R30, #4 ;adjust SP
SW (R30), R3 1 ;save retaddr
LW R8, (R2) ;R8=x
LW R9, (R3) ;RO=y

SGT R10, R8, RO ;R10=x > y
BEQZ R10, Else ;X <=y

MOV R1, RS8 ;Mmax=x

J Ret

MOV R1, RO ;Max=y

LW R31, (R30) ;restore R31
ADDI R30, #4 ;restore SP
JR R31 ;return

(b) original compiled code of max

LW R8, (R2) ;R8=x

LW R9, (R3) ;R9=y

SGT R10, R8, R9 ;R10=x > y
BEQZ R10, Else ;x <=y

MOV R1, R8 ;Mmax=x
JR R31 ;return
MOV R1, RO ;Max=y
JR R31 ;return

(c) max after leaf optimization

foo: SUBI R30, #4 ;adjust SP
MOV Ri11, R31 ;save retaddr
LW R12, (R2) ;R12=a
LW R8, (R3) ;R8=b

ADD R9, R12, R8 ;R9=d
SW (R30), R9 ;save d

MOV R2, R3 ;argl=addr(b)
ADDI R3, R30, #0 ;arg2=addr(d)
JAL max ;call max
ADD R1, R1, R12 ;Rl=e+a

ADDI R30, #4 ;restore SP
JR R11 ;return

(a) foo after cross-call register allocation

max: SGT R10, R2, R3 ;R10=x > y
BEQZ R10, Else ;X <=y

MOV R1, RS8 ;Mmax=x

JR R31 ;return
Else:MOV R1, RO ;Max=y

JR R31 ;return

b) max after parameter promotion: x and y are
p P y
passed by value in R2 and R3.

foo: MOV R11, R31 ;save retaddr
LW R12, (R2) ;R12=a
LW R2, (R3) ;R2=Db
ADD R3, R12, R2 ;R3=d
JAL max ;call max
ADD R1, R1, R12 ;Rl=e+a
JR R11 ;return

(c) foo after parameter promotion on max and
frame collapsing.

Figure 45: Further procedure call optimizations

42



An unmodified reference parameter can be
passed by value, and a modified reference pa-
rameter can be passed by value-result. Figure 45
(b) shows max after this transformation has been
applied. Figure 45 (c) shows the corresponding
modified form of foo. Since d can now be held
in a register, there is no longer a need for a stack
frame.

Parameter promotion is particularly impor-
tant for languages like Fortran, in which all ar-
gument passing is by reference.

6.6.5 Frame Collapsing

When a leaf procedure has only one call site,
the compiler can expand the stack frame of the
caller to include enough space for both proce-
dures. Then the leaf procedure simply uses its
caller’s stack frame without doing any new allo-
cation of its own.

If the source language is separately compiled,
the compiler must be certain that the callee will
not be invoked from a different module by a pro-
cedure that does not have the proper stack lay-
out. Ome approach is to clone the procedure,
creating a local version with a collapsed frame
and an exported one without the optimization.

A special case of frame collapsing applies to
procedures without stack variables. Both foo
in Figure 43 and max in Figure 44 (a) are pro-
cedures that do not need a stack frame. Their
frames can be collapsed without allocating ex-
tra space in their caller’s stack frame, allowing
the optimization to be applied without requiring
inter-procedural analysis.

6.6.6 Procedure Inlining

Procedure inlining (also known as procedure in-
tegration) replaces a procedure call with a copy
of the body of the called procedure, replac-
ing each occurrence of a formal parameter with
its corresponding actual parameter [Allen and
Cocke 1971; Scheifler 1977; Ball 1979]. Inlining
can almost always be performed, except when
the procedure in question is recursive. For For-
tran programs, incompatible common block us-
ages between caller and callee can make inlining
more complex and in practice often prevent it.

When a call is inlined, all the overhead for the

43

invocation is eliminated. The stack frame for the
caller and callee are allocated together and the
transfer of control is eliminated. This is partic-
ularly important for the return (J R31), since
a jump through a register may incur a higher
pipeline penalty than a jump to a fixed address.

Another reason for inlining is to improve com-
piler analysis and optimization. In many compil-
ers, a loop containing a procedure call can not
be parallelized because its read-write behavior
is unknown. After the call is inlined, the com-
piler may be able to prove loop independence,
thereby allowing vectorization or parallelization.
Additionally, register usage may be improved,
constants propagated more accurately, and more
redundant operations eliminated.

An alternative to inlining is to perform inter-
procedural analysis. The advantage of interpro-
cedural analysis is that it can be applied uni-
formly, since it does not cause code expansion
the way inlining does. However, many compil-
ers perform little or no interprocedural analysis.

Inlining also affects the instruction cache be-
havior of the program [McFarling 1991]. The
change can be favorable, because locality is im-
proved by eliminating the transfer of control. On
the other hand, if a loop body is made much
larger, it may no longer fit in the cache and
cause additional memory accesses. Further, if
the loop contains multiple calls to the same pro-
cedure, multiple copies of the procedure will be
loaded into the cache.

The primary disadvantage of inlining is that
it increases code size, in the worst case exponen-
tially. However, in practice it is simple to control
the size increase by selective application of in-
lining (for example, to small leaf procedures, or
to procedures that are only called a few times).
The result can be a dramatic improvement in
execution speed. Figure 46 shows a source-level
example of inlining; Figure 47 shows the assem-
bler output after the procedure max is inlined in
foo.

Ignoring cache effects, if ¢, is the time to ex-
ecute the entire procedure and ¢ is the time to
execute just the body of the procedure, n is the
number of times it is called, and T is the total



do i=1, n
call f(x,n)
end do

subroutine f(a, j)
dimension a[*]
aljl = al[j] + ¢
return

(a) original code

do all i=1, n
x[i] = x[i] + ¢
end do all
(b) after inlining

Figure 46: Procedure Inlining.

foo: LW R12, (R2) ;R12=a

LW R2, (R3) ;R2=b
ADD R3, R12, R2 ;R3=d

max: SGT R10, R2, R3 ;R10=x > y

BEQZ R10, Else ;X <=y
MOV R1, R2 ;Mmax=x
J Ret

Else:MOV R1, R3 ;Max=y

Ret: ADD R1, R1, R12 ;Ri=e+a
;return

JR  R31

Figure 47: max inlined into foo.

;"return" to f

44

execution time of the program, then
ty=n(t, —13)

is the time saved by inlining and

==
T

is the fraction of the total run-time saved by
inlining.
6.6.7 Tail Recursion Elimination

Tail recursion is a particularly common form of
recursion. A function is recursive if it invokes
itself, directly or indirectly. It is tail recursive if
its last act is to call itself and return the value of
the recursive call without performing any further
processing.

When a function is tail recursive, it is unneces-
sary to invoke a separate instance with its own
stack frame. The recursion can be eliminated;
the current invocation will not be using its frame
any longer, so the call can be replaced by a jump
to the top of the procedure. Figure 48 shows an
example of a tail recursive function (a) and the
result after the recursion is eliminated (b). A
function which is not tail-recursive is shown in
(¢): it uses the result of the recursive call as an
operand to the addition, so there is computation
that must be performed after the recursive call
returns.

Some languages prevent tail recursion by re-
quiring clean-up code to be executed after a pro-
cedure is finished. The semantics of C++, for
example, demand that before a procedure re-
turns it must call a deconstructor on each stack-
allocated local object variable.

6.6.8 Function Memoization

Memoization is an optimization that is applied
to side-effect free procedures (that is, procedures
which do not change the state of the program,
also called referentially transparent). In such
cases it is possible to cache the results of recent
invocations, and when the procedure is called
again with the same arguments, the cached copy
is used instead of re-executing the procedure
[Michie 1968; Abelson and Sussman 1985].



recursive logical function inarray(a,x,i,n)
real x, aln]
integer i, n

if (i > n) then
inarray = .FALSE.
else if (al[i] = x) then
inarray = .TRUE.
else
inarray = inarray(a, x, i+1, n)
end if
return

(a) A tail-recursive procedure

logical function inarray(a, x, i, n)
real x, aln]
integer i, n

1 if (i > n) then
inarray = .FALSE.
else if (al[i] = x) then
inarray = .TRUE.
else
i= i+1
goto 1
end if
return

(b) after tail recursion elimination

recursive integer function sumarray(a,x,i,n)
real x, aln]
integer i, n

if (i = n) then
sumarray = al[i]
else
sumarray = ali]+sumarray(a, x, i+1, n)
end if
return

(¢) A procedure which is not tail-recursive

Figure 48: Tail Recursion Elimination

45

y = £(i)
(a) original function call

logical f_UNCACHED[n]

real f_CACHE[n]

if (£_UNCACHED[i]) then
f_CACHE[i] = £(i)
f_UNCACHED[i] = .false.

end if

y = £_CACHE[i]

(b) code augmented for memoization

Figure 49: Function Memoization.

Figure 49 shows a simple example of memo-
ization. If £ is often called with the same argu-
ments and f also takes a non-trivial amount of
time to run, then memoization will substantially
increase performance. If not, it will degrade per-
formance and consume memory.

This example assumes that f’s parameter is
confined to the range 1...n, and that n is not
extremely large. A more sophisticated memo-
ization scheme would hash the arguments and
use a cache size that makes a sensible trade-off
between re-use and memory consumption. For
functions that return dynamically allocated ob-
jects, storage management must be considered
as well.

For ¢ calls and a hit rate of h, the time to
execute the ¢ calls is

T = chtp + ¢(1 = h)t,

where t;, is the time to retrieve the memoized
result from the cache (a hit), and #,, is the time
to call £ plus the overhead of discovering that it
is not in the cache (a miss). With a high hit rate
and a large difference between ¢ and t,,, mem-
oization can significantly improve performance.

6.7 Other Transformations

In this section we describe transformations
which do not fit into any of the previous cat-
egories.



6.7.1 Strength Reductions

Reduction in strength replaces an expression
with one that is equivalent but uses a less ex-
pensive operator [Allen 1969; Allen et al. 1981].

By far the most common strength reduction
is conversion of multiplication to addition in in-
duction variable expressions, as described in Sec-
tion 6.2.3. However, there are numerous other
strength reductions that can be performed, and
that result in substantial speedups.

X2 = x4z

1 X 2° 1L ¢

i/2° = i>e¢

1

zfy = ;L‘X;

2?2 = zxz
265 2° X /T
(a,0)+ (b,0) = (a+b,0)
(=" T=-T

Generalizing the first two, multiplication by
any integer constant can be performed using
only shift and add instructions [Bernstein 1986].

Other strength reductions are possible. For
instance, strength reduction can be applied to
the Ada string concatenation operator to trans-
form length(a & b) to length(a)+length(b).
It is also possible to convert exponentiation to
multiplication in the evaluation of polynomials,
using the identity

n n—1
ARt + Ay +--t+az+a=

(@, 2" " @y 12" 4 )z + ag.

6.7.2 Superoptimizing
A superoptimizer [Massalin 1987] represents the
extreme of optimization, seeking to replace a se-
quence of instructions with the optimal alter-
native. It does an exhaustive search, beginning
with a single instruction. If all single instruc-
tion sequences fail, two instruction sequences are
searched, and so on.

A randomly generated instruction sequence is
checked by executing it with a small number of
test inputs that were run through the original

46

sequence. If it passes these tests, a thorough
verification procedure is applied.
Superoptimization is only practical for short
sequences (on the order of a dozen instructions).
Superoptimization is particularly useful for elim-
inating conditional branches in short instruction
sequences, where the pipeline stall penalty may
be larger than the cost of executing the opera-
tions themselves [Granlund and Kenner 1992].

7 PARALLEL SCHEDULING

Many of the transformations in the previous sec-
tion are used, directly or indirectly, to convert
serial do loop into a parallel do all loop. How-
ever, a do all loop merely exposes parallelism;
a more specific form of the loop is required to
map it onto the parallelism available in a partic-
ular machine. These mappings are the principal
focus of this section.

To execute a computation on multiple proces-
sors, both code and data must be distributed
appropriately. Although a shared-memory ma-
chine may seem to eliminate the need to decom-
pose data, in practice the programmer must pay
careful attention to the way data is accessed by
the different processors. Shared memory sys-
tems rely on various caching strategies to main-
tain consistency; if locality is ignored while de-
composing an application, the overall perfor-
mance will suffer badly. Shared memory ma-
chines do greatly simplify the coding task be-
cause the programmer need not specify inter-
processor communication explicitly.

7.1 Scheduling Issues

There are basically two ways to schedule a loop
on multiple processors: statically or dynami-
cally. A static schedule is determined at com-
pile time and typically uses a regular pattern for
assigning iterations to processors. A dynamic
strategy makes the decision at run time, allocat-
ing iterations or sets of iterations to processors
that are free. There are also hybrid strategies
which combine the two approaches.

Scheduling can be performed at various levels
of granularity; the usual metric is the number of
instructions executed per scheduling decision. If



one decision is sufficient to allocate several thou-
sand cycles of computation, the decision may
require many cycles of computation and expen-
sive message traffic. The trade-offs will be dif-
ferent when each decision leads to a few dozen
cycles. Generally very fine-grained scheduling
is only practical when it is automatically per-
formed by the hardware.

Regardless of the level of granularity, there
are three issues that determine the overall per-
formance of a schedule:

e Load Balance. If processors are idle, the
application is not taking full advantage of
the machine. Scheduling algorithms try to

spread the load on the machine evenly.

Communication. Scheduling decisions re-
sult in communication between processors,
which can force processors to wait. The
schedule should try to minimize the de-
lay by considering the communication pat-
tern of the application. If the architecture
of the machine supports simultaneous com-
munication and computation, the schedule
should try to take advantage of it.

Overhead. Dynamic strategies make deci-
sions at run time, based on the execution
behavior of the application. They need to
acquire information about the state of the
machine, determine the schedule, and in-
form processors of the decisions. These
tasks introduce overhead which can limit
performance.

7.2 Static Scheduling

Both static and dynamic schedulers face the
same problem: decomposing a loop onto a group
of processors. Particularly in scientific appli-
cations, computations are tightly bound to the
data they operate on. If loop bounds are known,
and the amount of time needed to perform each
iteration of the loop is roughly equal, the loop
can be well scheduled statically.

Static decomposition strategies [Cytron 1987;
Girkar and Polychronopoulos 1988b; Poly-
chronopoulos and Banerjee 1986] can choose to

47

allocate either data or computations to proces-
sors. The most common strategy, which is the
one that we will be discussing throughout this
section, is to decompose the data arrays, assign-
ing parts of them to each processor. When a
loop is executed, each processor computes the it-
erations that are using data owned locally. This
general principle is known as owner-computes
[Hiranandani et al. 1992]. The arrays being ma-
nipulated are allocated to processors by map-
ping each dimension to a set of processors in a
pattern. The four commonly used patterns are
discussed in the following sections.

7.2.1 Serial Decomposition

Serial decomposition is the degenerate case,
where an entire dimension is allocated to a single
processor. In Figure 50 (a), an array is allocated
to four processors. Each column is mapped se-
rially, meaning that all the data in that column
will be placed on a single processor.

7.2.2 Block Decomposition

A block decomposition divides the elements into
one group of adjacent elements per processor.
Using the example in Figure 50 (a) again, each
row of the array is divided between the four pro-
Part (b) shows the decomposition if
block scheduling is applied across both the hor-
izontal and vertical dimensions.

Cessors.

Figure 51 shows a simple one-dimensional ar-
ray computation and its block-scheduled imple-
mentation on MX-s. The loop simply adds a
constant value to each element of the array.
There are n processors, each of which executes
an equal fraction of the computation. Figure 52
shows the same decomposition strategy on MX-
d, where additional code is necessary to dis-
tribute the constant that is to be added. Note
that the example assumes the array a has al-
ready been distributed across the processors and
that processor 0 is controlling the computation.

The advantage of block decomposition is that
adjacent elements are usually on the same pro-
cessor. Because a loop that computes a value for
a given element often uses the values of neigh-
boring elements, the blocks have good locality
and reduce the amount of communication. On



1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
& N A i T
2l 2l 1 | o2
Sl I N . . " ST | S
‘11 2]3] 4 e —
5| 1 1 1 L 51 -
o) I R I °l 3 | a4
7 7 I
s 1 | |

(Block,Serial) (Block,Block)
(a) (b)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 i1 1T T
2001101 2l
H I I I O O O sl | | |
a1 L al | . B
[ 112]3[4]1]2|3[4 d1f2]11]2
6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 6 ,,,,,,, [ I PUNUDR ISR I, L
rd B I O O O O O 4 B Y
sl I 111111 sl | 1 |

(Cyclic,Serid) (Block—Cyclic,Serial)
(c) (d)

Figure 50: Data Organizations for Static Loop Scheduling. Numbers correspond to the processor
assigned to that region of the array.

48



the other hand, execution time per iteration can
also demonstrate locality. For a computation
like the one in Figure 53, blocked allocation
would work poorly because the most costly it-
erations to execute would be clustered together
and computed by a single processor.

7.2.3  Cyclic Decomposition

A cyclic decomposition assigns successive ele-
ments to successive processors. Figure 50 (c)
shows a cyclic allocation of columns to proces-
sors and Figure 51 (c) gives the code to imple-
ment such a mapping on MX-s.

Cyclic decomposition has the opposite effect
of blocking; it has poor locality for neighbor-
based communication, but spreads load more
evenly.

7.2.4 Block-Cyclic Decomposition

A block-cyclic decomposition combines the two
strategies; the elements are divided into many
adjacent groups, usually an integer multiple of
the number of processors available. Each group
of elements is assigned to a processor cyclically.
Figure 50 (d) shows an array whose columns
have been allocated to two processors in a block-
cyclic fashion and Figure 51 (c) gives the code
to implement the mapping on MX-s.

Block-cyclic is a compromise between locality
and load balancing.

7.3 Dynamic lteration Scheduling

The two advantages to static decompositions are
that they impose no dynamic scheduling over-
head and they work well when iterations have
roughly equal or easily predictable execution
times. This is often the case in scientific code,
which may perform some operation on each el-
ement in an array. When loop iterations vary
in cost, the variation may be simple to compute
from the induction expressions. Figure 53 shows
a pair of nested loops where the inner depends
on the outer’s induction variable. This yields a
triangularly shaped iteration space.

Static decomposition is less effective when ex-
ecution times are irregular, because the load bal-
ance degrades. Irregularity is typically intro-
duced by computed loop bounds and condition-

49

do all i=1, n
ali] ali] + ¢
end do all

(a) original loop

call fork(P)

do i = n/P*Pid+1, min(n/P*x(Pid+1), n)
alil = al[i] + ¢

end do

call join(Q)
(b) block-scheduled loop (block size n/P)

call fork(P)
Pid+1, n, P
ali] + ¢

do i

ali]
end do
call join()

(c) cyclic-scheduled loop

call fork(P)

do i = 8%Pid+1, min(8*(Pid+1), n)
ali] ali]l + ¢

end do

call join()
(d) block-cyclic-scheduled loop (block size 8)

Figure 51: Scheduling a Parallel Loop on MX-s.
P is the total number of processors, Pid is the
local processor number.

if (my_pid() = 0) then
broadcast(c,4)

else
receive(c,4)

endif

do i = 1,n/numprocs()
ali] = ali] + ¢

end do

Figure 52: Block-Scheduling a parallel loop on
MX-d.



doi=1,n
dOj =1, J
total =total + &i j]
end do
end do

elements of array read
by the loop

Figure 53: Triangular Iteration Space

als. A loop whose execution behavior cannot
easily be predicted is shown in Figure 54.

Dynamic iteration scheduling can handle
loops whose iterations have varying execution
times. These strategies track the behavior of the
loop; each scheduling decision allocates a group
of iterations to a processor. The different algo-
rithms differ in how they compute the number
of iterations to put in a given group.

Self-scheduling [Tang and Yew 1990] is the
simplest strategy and uses the first-available
rule; the iterations are treated as a collec-
tion of tasks to perform, and each processor
chooses a new task whenever it finishes its cur-
rent one. A task can be a single iteration, or
it can be a collection of them to reduce over-
head. Self-scheduling is an easily implemented
strategy, but it does not handle widely varied
execution times well. Guided self-scheduling
[Polychronopoulos and Kuck 1987] and factor-
ing [Hummel et al. 1992] vary the number of
iterations assigned based on the number left to
compute and the number of processors. TAPER
[Lucco 1992] uses a more sophisticated model
of machine and computation state, taking into
consideration the execution behavior of previous
iterations and the level of parallelism currently
available from all the computations being per-
formed in the machine.

7.4 General Dynamic Scheduling

The previous section covered the dynamic
scheduling of loop iterations; this section exam-
ines algorithms that seek to dynamically sched-

50

ule more general types of code.

One form of generality is a loop that does not
have predictable data usage. The following code
fragment is simple, but it can encode any possi-
ble data interconnection pattern among a group
of processors containing elements of the array:

doi=1,n
cl[i] =

end do

alb[il]

A different form of generality is to examine
and decompose general blocks of code, not nec-
essarily containing or contained by a loop, into
large chunks which are assigned to processors.
The task is either:

e to begin with a finely decomposed pro-
gram and bundle the small computations
together in an effort to reduce overhead or

¢ to begin with a monolithic block of sequen-
tial code, determine which parts are inde-
pendent, and break it into pieces that are
efficiently schedulable while also exposing
sufficient parallelism

We will not cover the subject of general dy-
namic scheduling in detail, but the next sections
briefly introduce transformations that address
various aspects of the problem.

7.4.1 Graph Partitioning

Dataflow languages [Ackerman 1982; McGraw
1985; Nikhil 1988] expose parallelism explicitly.
A program is converted into a graph that rep-
resents its basic computations as nodes and the
movement of data as arrows between nodes. Fig-
ure 55 shows a simple program and its represen-
tation as a dataflow graph.

One of the major difficulties with dataflow
graphs is that they expose parallelism at the
level of individual operations. As it is imprac-
tical to use software to schedule such a small
amount of work, early projects focused on devel-
oping architectures that embed dataflow execu-
tion policies into hardware [Dennis 1980; Arvind
et al. 1980; Arvind and Culler 1986]. Such ma-
chines have not proven to be successful com-
mercially, so researchers began to develop tech-



doi=1,n

if (mask[i] = 1) then
ai] = expensive_function(i)

endif

enddo
[ [
execution cost per iteration
Figure 54: Trregular Execution Behavior
f(x,y)

let a= sin(x)+cos(y)
b = sin(y)+cos(x)
c=a*b+pi/2
in c*(a*b)

return value

Figure 55: A Dataflow Language Fragment and its Dataflow Graph

51



niques for compiling dataflow languages on con-
ventional architectures. The most common ap-
proach is to interpret the dataflow graph dynam-
ically, executing a node representing a computa-
tion when all of its operands are available. To
reduce scheduling overhead, the dataflow graph
is generally transformed by gathering many sim-
ple computations into larger blocks that are ex-
ecuted atomically [Sarkar and Hennessey 1986a;
Sarkar and Hennessey 1986b; Sarkar 1989b; Hu-
dak and Goldberg 1985; Anderson and Hudak
1990; Mirchandaney et al. 1988].

7.4.2 Multiple Call Parallelization

Other work has been aimed at decomposing se-
quential programs to expose useful parallelism.
Triolet et al. [1986] developed an approach
that uses interprocedural dependence analysis
to identify when the multiple invocations of a
procedure in a loop can be executed in paral-
lel. This is done by building descriptors of the
regions of arrays accessed by the procedures.

7.4.3  Split

A more comprehensive approach to program de-
composition summarizes the data usage behav-
ior of a block of code in a symbolic descriptor
[Graham et al. 1993]. The descriptor is used
to identify independence between pieces of the
program and to transform code to reveal addi-
tional opportunities for parallel execution. The
process begins by dividing a sequential program
into pieces and computing a descriptor for each
piece. If the decomposition divided a procedure
into two pieces, A and B, the next step is to
determine whether they are independent. Even
if they are not fully independent, it is often true
that the compiler can expose partial parallelism
and opportunities for pipelining by sub-dividing
A further. The split transformation performs
the sub-division, identifying the computations
within A which are independent of B.

7.5 Fine-Grained Scheduling

Coarse-grained scheduling policies are usually
embedded directly into a program or are car-
ried out by a separate run-time system. Fine-
grained scheduling between multiple function

52

units within the chip is usually the responsibil-
ity of the hardware. However, by knowing the
chip’s scheduling policy, the compiler can target
the code it outputs to take advantage of that
policy.

In addition to applying the transformations
discussed in Section 6, the compiler tries to ex-
ploit the scheduling policy in the target pro-
cessor when it selects an instruction sequence.
A widely used algorithm is called list schedul-
ing [Adam et al. 1974]. Rau and Fisher [1993]
present an excellent survey on the evolution of
instruction-level parallelism in processors and
the efforts of compiler designers to exploit it.

7.6 Explicitly Parallel Instruction Scheduling

With traditional processors, there is a clear dis-
tinction between low-level scheduling done via
instruction selection and high-level scheduling
between processors. This distinction is blurred
in multi-threaded and Very Long Instruction
Word (VLIW) architectures.

Unlike superscalar machines, which use hard-
ware scheduling to discover and manage low
level parallelism, multi-threaded and VLIW ma-
chines rely on the compiler to expose the parallel
operations explicitly and sometimes to schedule
them at compile time. Thus the task of generat-
ing object code incorporates high-level resource
allocation and scheduling decisions that only oc-
cur between processors on a more conventional
architecture.

7.6.1 Multi-Threaded Architectures

In a traditional architecture, there is a single
thread of control executing at any moment, sym-
bolized by the existence of a single program
counter. On a multi-threaded architecture like
the HEP [Smith 1978], Tera [Alverson et al.
1990], Monsoon [Papadopoulos and Culler 1990],
and Fluent [Boothe and Ranade 1992], there are
conceptually many different program counters.
The processor allocates slices of execution time
to the independent threads, using a variety of
assignment policies. At the cost of extra proces-
sor state, multi-threaded machines can choose
among many possible computations to support
a large degree of instruction-level parallelism or



to compensate for long memory access latency.

Multi-threaded architectures are generally not
designed to support a traditional programming
model. Machines like Monsoon are intended to
be used for executing dataflow languages. The
idea behind Fluent is to use multi-threading to
support shared memory programming on many
processors, hiding the latency of memory access
by keeping more than one stream of control ac-
tive. The HEP and Tera have their own pro-
gramming models based on asynchronous vari-
ables and futures [Callahan and Smith 1990] re-
spectively.

Because these alternative programming mod-
els are so different, their compilation strategies
are not generally applicable to the optimization
of conventional languages for conventional archi-
tectures.

7.6.2 VLIW

A VLIW processor [Colwell et al. 1988; Fisher
et al. 1984; Rau et al. 1989; Flo 1979] exposes
its multiple functional units explicitly; each ma-
chine instruction is very large (on the order of
512 bits) and controls many independent func-
tional units. Typically the instruction is divided
into 32 bit pieces, each of which is routed to one
of the functional units.

Trace scheduling is the technique developed
for compilation to a VLIW machine [Ellis 1986;
Fisher et al. 1984; Fisher 1981]. When the
target machine can only exploit very limited
instruction-level parallelism, it is usually suffi-
cient to constrain compiler analysis to a basic
block. With a VLIW machine, basic block anal-
ysis will produce inefficient code because there
is not enough parallelism available. Moving out-
side the basic block introduces complexity, how-
ever, because of branching. The multiple paths
of control require the introduction of speculative
execution — computing some results that may
turn out to be unused.

The speculation can be handled dynamically
by the hardware [Sohi and Vajapayem 1990], but
that complicates the design significantly. An al-
ternative is to have the compiler do it, hoist-
ing code above branches based on the direction
that the compiler expects the branch to take.

53

Trace scheduling takes this approach; it identi-
fies paths through the flow graph of a program
that might be taken.

The compiler picks successive traces, assign-
ing them to functional units. The choice starts
with a seed block, the most frequently executed
basic block that has not yet been scheduled.
From the seed block, the compiler walks for-
wards and backwards in the flow graph to as-
semble a trace.

Superblock scheduling [Hwu et al. 1993] is an
extension of trace scheduling that relies on pro-
gram profile information to choose the traces.

8 TRANSFORMATION FRAMEWORKS

Given the many transformations that compiler
writers have available, they face a daunting task
in determining which ones to apply and in what
order. There is no single best order of applica-
tion; one transformation can permit or prevent
a second from being applied, or it can change
the effectiveness of subsequent changes. Cur-
rent compilers generally use a combination of
heuristics and a partially fixed order of applying
transformations.

There are two basic approaches to this prob-
lem: wunifying the transformations in a single
mechanism, and applying search techniques to
the transformation space. In fact there is often a
degree of overlap between these two approaches.

8.1 Unified Transformation

A promising strategy is to encode both the char-
acteristics of the code being transformed and the
effect of each transformation; then the compiler
can quickly search the space of possible sets of
transformations to find an efficient solution.

One framework that is being actively inves-
tigated is based on unimodular matrix theory
[Banerjee 1991; Wolf and Lam 1991]. Tt is appli-
cable to any loop nest whose dependences can be
described with a distance vector; a subset of the
loops which require a direction vector can also be
handled. The transformations that a unimodu-
lar matrix can describe are interchange, reversal,
and skew.

The basic principle is to encode each trans-
formation of the loop in a matrix, and apply it



do i =2, 10
do j =1, 10
ali,jl = ali-1,j]1 + ali,j]
end do
end do

Figure 56: Unimodular Transformation Exam-
ple

to the dependence vectors of the loop. The ef-
fect on the dependence pattern of applying the
transformation can be determined by multiply-
ing the matrix and the vector. The form of the
product vector reveals whether the transforma-
tion is legal. To model the effect of applying a
sequence of transformations, the corresponding
matrices are simply multiplied.

Figure 56 shows a loop nest that can be trans-
formed with unimodular matrices. The distance
vector that describes the loop is D = (1,0), rep-
resenting the dependence of iteration 2 on 7 — 1
in the outer loop.

Because of the dependence, it is not legal to
reverse the outer loop of the nest. The reversal

transformation is R = [ _(1) (1) ] The product
RD = P = _(1) This demonstrates that

the transformation is not legal, because P is
not lexicographically positive.

We can also test whether the two loops can
be interchanged; the interchange transformation

is I = [ (1) (1) ] Applying that to D yields
0 . .
P, = 1 In this case, the resulting vec-

tor is lexicographically positive showing that the
transformation is legal.

Any loop nest whose dependences are all rep-
resentable by a distance vector can be trans-
formed into a canonical form called a fully per-
mutable loop nest. In this form, any two loops
in the nest can be interchanged without chang-
ing the loop semantics. Once in this canonical
form, the compiler can decompose the loop into

54

the granularity that matches the target architec-
ture [Wolf and Lam 1991].

Sarkar and Thekkath [1992] describe a frame-
work for transforming perfect loop nests which
includes unimodular transformations, blocking,
coalescing, and parallel loop execution. The
transformations are encoded in an ordered se-
quence. Rules are provided for mapping the
dependence vectors and loop bounds, and the
transformation to the loop body is described by
a template.

Pugh [1991] describes a more ambitious (and
time-consuming) technique that can transform
imperfectly nested loops and can do most of
the transformations possible through a combi-
nation of statement reordering, interchange, fu-
sion, skewing, reversal, distribution, and paral-
lelization. It views the transformation problem
as that of finding the best schedule for a set of
operations in a loop nest. A method is given for
generating and testing candidate schedules.

8.2 Searching the Transformation Space
Wang [1991] and Wang and Gannon [1989] de-

scribe a parallelization system which uses heuris-
tic search techniques from artificial intelligence
to find a program transformation sequence. The
target machine is represented by a set of fea-
tures that describe the type, size, and speed
of the processors, memory, and interconnect.
The heuristics are organized hierarchically. The
main functions are description of parallelism in
the program and in the machine; matching of
program parallelism to machine parallelism; and
control of restructuring.

9 COMPILER EVALUATION

Researchers are still trying to find a good way to
evaluate the effectiveness of compilation. There
is no generally agreed upon way to determine
the best possible performance of a particular
program on a particular machine, so it is dif-
ficult to determine how well a compiler is do-
ing. Since some applications are better struc-
tured than others for a given architecture or a
given compiler, measurements for a particular
application or group of applications will not nec-
essarily predict how well another application will



fare.

Nevertheless, a wide variety of measurement
studies do exist that seek to evaluate how ap-
plications behave, how well they are being com-
piled, and how well they could be compiled. We
have divided these studies into several groups.

9.1 Benchmarks

Benchmarks have received by far the most atten-
tion since they measure delivered performance
and the results are used to market machines.
They were originally developed to measure ma-
chine speed, not compiler effectiveness. The
Livermore Loops [McMahon 1986] is one of the
early benchmark suites; it sought to compare the
performance of supercomputers. The suite con-
sists of a set of small loops based on the most
time-consuming inner loops of scientific codes.

The SPEC benchmark suite [Dixit 1992] in-
cludes both scientific and general purpose appli-
cations intended to be representative of an engi-
neering/scientific workload. The SPEC bench-
marks are widely used as indicators of machine
performance, but are essentially uniprocessor
benchmarks.

As architectures have become more complex it
has become obvious that the benchmarks mea-
sure the combined effectiveness of the compiler
and the target machine.
that target the same machine or two versions of
a compiler can be compared by using the SPEC
ratings of the generated code.

For parallel machines, the contribution of the
compiler is even more important, since the dif-
ference between naive and optimized code can be
many orders of magnitude. Parallel benchmarks
include SPLASH (Stanford Parallel Applica-
tions for Shared Memory) [Singh et al. 1992],
and the NASA Numerical Aerodynamic Simula-
tion (NAS) benchmarks [Bailey et al. 1991].

The Perfect Club [Berry et al. 1989] is a
benchmark suite of computationally intensive
programs that is intended to help evaluate se-
rial and parallel machines.

Thus two compilers

9.2 Code Characteristics

Other studies have focused on the applications
themselves, examining their source code for pro-

grammer idioms or profiling the behavior of the
compiled executable.

Shen et al. [1989] examined the subscript ex-
pressions that appeared in a set of Fortran appli-
cations and applied various types of dependency
tests to these expressions. The results demon-
strate how the various tests compare to one an-
other, showing that one of the biggest problems
was unknown variables. These variables were
caused by procedure calls and by the use of an
array element as an index value into another ar-
ray. Coupled subscripts also caused problems
for tests that examine a single array dimension
at a time.

Knuth [1971] was an early and influential
study of Fortran programs. He studied 440 pro-
grams comprising 250000 lines (punched cards).
The most important effect of this study was to
dramatize the fact that the majority of the ex-
ecution time of a program is usually spent in a
very small proportion of the code. Other inter-
esting statistics are that 95% of all the do loops
incremented their index variable by 1, and 40%
of all do loops contained only one statement.

9.3 Compiler Effectiveness

As we mentioned above, researchers find it dif-
ficult to evaluate how well a compiler is doing.
They have come up with four approaches to the
problem:

e examine the compiler output by hand to
evaluate its ability to transform code

e measure performance of one compiler

against another

e compare the performance of executables
compiled with full optimization against lit-
tle or no optimization

e compare an application compiled for paral-
lel execution against the sequential version
running on one processor.

Nobayashi and Foyang [1989] compare the
performance of supercomputer compilers from
Cray, Fujitsu, Alliant, Ardent, and NEC. The
compilers were applied to various loops from



the Livermore and Argonne test suites which re-
quired restructuring before they could be com-
puted with vector operations.

Relatively few studies have been performed to
test the effectiveness of real compilers in paral-
lelizing real programs. However, the results of
those that have are not encouraging.

One study of four Perfect benchmark pro-
grams compiled on the Alliant FX/8 produced
speedups between 0.9 (that is, a slowdown) and
2.36 out of a potential 32; when the applica-
tions were tuned by hand, the speedups ranged
from 5.1 to 13.2 [Eigenmann et al. 1991]. In an-
other study of 12 Perfect benchmarks compiled
with the KAP compiler for a simulated machine
with unlimited parallelism, 7 applications had
speedups of 1.4 or less, two applications had
speedups of 2-4, and the rest were sped up 10.3,
66, and 77; all but three of these applications
could have been sped up by a factor of 10 or
more [Petersen and Padua 1990].

Lee at al. [1985] study the ability of the
Parafrase compiler to parallelize a mixture of
small programs written in Fortran. Before com-
pilation, while loops were converted to do
loops, and code for handling error conditions
was removed. With 32 processors available, 4
out of 15 applications achieved 30% efficiency
and 2 achieved 10% efficiency; the other 9 out of
15 achieved less than 10% efficiency. Out of 89
loops, 59 were parallelized, most of them loops
that initialized array data structures. Some cod-
ing idioms that are amenable to improved anal-
ysis were identified.

9.4 Maximum Available Parallelism

In order to evaluate the potential gain from in-
struction level parallelism, researchers have en-
gaged in a number of studies to measure an
upper bound on how much parallelism is avail-
able assuming an unlimited number of functional
units. Some of these studies are discussed and
evaluated in detail in [Rau and Fisher 1993].
Early studies [Tjaden and Flynn 1970] were
pessimistic in their findings, measuring a maxi-
mum level of parallelism on the order of two or
three — a result that was called the Flynn bot-
tleneck. The main reason for the low numbers

56

was that these studies did not look beyond basic
blocks.

Parallelism can be exploited across basic block
boundaries, however, on machines that use spec-
ulative execution. Instead of waiting until the
outcome of a conditional branch is known, these
architectures begin executing the instructions at
either or both potential branch targets; when
the conditional is evaluated, any computations
that are rendered invalid must be discarded.

When the basic block restriction is relaxed,
there is much more parallelism available. [Rise-
man and Foster 1972] assumed replicated hard-
ware to support speculative execution, while
[Nicolau and Fisher 1984] sought to gain similar
benefits from code transformation. Other stud-
ies investigated the effects of branch prediction
[Butler et al. 1991] and other strategies for man-
aging control flow [Wall 1991; Lam and Wilson
1992]

Larus studies the loop-level parallelism in a
mixture of numeric and symbolic programs, and
presents detailed measurements of loop-carried
dependences [Larus 1993].

The updated studies may still understate the
level of available parallelism, because they be-
gin with an instruction trace from a compiled
program. A compiler that used code transfor-
mations more aggressively could improve the re-
sults.

APPENDICES

A MACHINE MODELS

A.1 Superscalar DLX

A superscalar processor has multiple functional
units and can issue more than one instruction
per clock cycle. Current examples of superscalar
machines are the DEC Alpha [Sites 1992], HP
PA-RISC [Hew 1992], IBM RS/6000 [Oehler and
Blasgen 1991], and Intel Pentium [Alpert and
Avnon 1993].

S-DLX is a simplified superscalar RISC ar-
chitecture. It has four independent functional
units for integer, load/store, branch, and float-
ing point operations. In every cycle, the next
two instructions are considered for execution.



32

64

Integer
Unit

A
64

32 Int Registers |

32 FP Registers < >

A
64

»| Floating
Point Unit

32 B[j\n.(t:h 64 64 KB Cache from RAM memory
n 3 32 entry
32 64 bytes/line T‘LB
“ 1024 lines ,
> Load/Store |— > 4-way set- 82 | Addr |30
64 Unit 64 associative Xlation [Prys
j— Addr

Figure 57: S-DLX Functional Diagram

Example Instr. |

Name

Meaning

Similar instructions

LW R1, 30(R2)

Load word

Ri+—Memory[30+R2]

Load float (LF)

SW 500(R4), R3

Store word

Memory [500+R4] <R3

Store float (SF)

LI R1, #666 Load immediate R1—666

LUI R1, #666 Load upper immediate | Rly4. 37 <666

MOV R1, R2 Move register R1+R2

ADD R1, R2, R3 | Add R1—R2+R3 Subtract (SUB)

MULT R1, R2, R3 | Multiply R1—R2xR3 Divide (DIV)

ADDI R1, R2, #3 | Add immediate R1+—R2+3 SUBI, MULTI, DIVI

SLL R1, R2, R3 | Shift left logical R1+R2<R3 Shift right logical (SRL)

SLLI R1, R2, #3 | Shift left immediate R1+—R2<K 3 SRLI

SLT R1, R2, R3 | Set less than if (R2<R3) R1—1 SEQ, SNE, SLE, SGE, SGT and

else R1—0 immediate forms

J label Jump PC—label

JR R3 Jump register PC—R3

JAL label Jump and link R31+PC+4; PC+1label

JALR R2 Jump and link register | R31+—PC+4; PC—R2

BEQZ R4, label | Branch if equal zero if (R4=0) PC—1label Branch if not equal zero (BNEZ)

BFPT label Branch if floating if (FPCR) PC—1abel Branch if floating point false
point true (BFPF)

ADDF F1, F2, F3 | Add float F1—F2+F3 Subtract float (SUBF)

MULTF F1,F2, F3 | Multiply float F1—F2xF3 Divide float (DIVF)

MAF F1,F2, F3

Multiply-Add float

F1+F1+(F2xF3)

EQF F1, F2

Test equal float

if (F1=F2) FPCR —1
else FPCR «—0

LTF, GTF, LEF, GEF, NEF

Table 2: The S-DLX instruction set.

57




If they are for different functional units, and
there are no dependences between the instruc-
tions, they are both initiated. Otherwise, the
second instruction is deferred until the next cy-
cle. S-DLX does not reorder the instructions.

Most operations complete in a single cycle.
When an operation takes more than one cy-
cle, subsequent instructions that use results from
multi-cycle instructions are stalled until the re-
sult is available.
tion reordering, when an instruction is stalled no
instructions are issued to any of the functional
units.

S-DLX has a 32-bit word, 32 general purpose
registers (GPRs, denoted by Rn), and 32 float-
ing point registers (FPRs, denoted by Fn). The
value of RO is always 0. The FPRs can be used
as double-precision (64-bit) register pairs. For
the sake of simplicity we have not included the
double-precision floating point instructions.

Memory is byte-addressable with a 32 bit vir-
tual address. All memory references are made
by load and store instructions between memory
and the registers. Data is cached in a 64 kilobyte
4-way set-associative write-back cache composed
of 1024 64-byte cache lines. Figure 57 is a block
diagram of the architecture and its primary dat-
apaths.

Table 2 describes the instruction set. All in-
structions are 32 bits and must be word-aligned.
The immediate operand field is 16 bits. The ad-
dress for the load and store instructions is com-

Because there is no instruc-

puted by adding the 16-bit immediate operand
to the register. To create a full 32-bit constant,
the low 16 bits must first be set with a load im-
mediate (LI) instruction which clears the high
16 bits; then the high 16 bits must be set with
a load upper immediate (LUI) instruction.

The program counter is the special register
PC. Jumps and branches are relative to PC+4;
jumps have a 26-bit signed offset and branches
have a 16-bit signed offset. Integer branches test
the GPRs for zero; floating-point branches test a
special floating point condition register (FPCR).

There is no branch delay slot.
number of instructions executed per cycle varies
on a superscalar machine, it does not make sense
to have a fixed number of delay slots. The num-

Because the

58

‘ Operation ‘ Start-Up Time

Vector Add 6
Vector Multiply 7
Vector Divide 20
Vector Load 12

Table 3: Start-up Times in Cycles on DLX-V.

ber of delay slots is also heavily dependent on
the pipeline depth, which may vary from one
chip generation to the next.

Instead, static branch prediction is used: for-
ward branches are always predicted as not taken,
and backward branches are predicted as taken.
If the prediction is wrong, there is a one cycle
delay.

Integer multiplication takes two cycles and all
floating point operations take four cycles, except
when the result is used by a store operation, in
which case they take three cycles. A load that
hits in the cache takes two cycles; if it misses in
the cache it takes 16 cycles. All other instruc-
tions take one cycle.

When a load or store is followed by an integer
instruction that modifies the address register,
the instructions may be issued in the same cycle.
If a floating point store is followed by an opera-
tion that modifies the register being stored, the
instructions may also be issued in the same cy-
cle.

A.2 Vector DLX

For vectorizing transformations, we will use
a vector version of DLX, extended to include
vector support. This new architecture, DLX-V,
has eight vector registers each of which holds a
vector consisting of up to 64 floating point num-
bers. The vector functional units perform all
their operations on data in the vector and scalar
registers.

We will only be discussing the functional units
that perform floating point addition, multiplica-
tion, and division, though vector machines typ-
ically have units to perform integer and logical
operations as well. DLX-V only issues one scalar
or one vector instruction per cycle, but non-



Example Instr. | Name

| Meaning

| Similar |

LV Vi, R1 Load vector register V1+—VLR words at M[R1]

LVWS V1, (R1,R2) | Load vector with stride Vi—every R2'” word for VLR words at M[R1]

SV Vi, R1 Store vector register M[R1]—VLR words from V1

SVWS V1, (R1,R2) | Store vector with stride M[R1] VLR words from V1 with stride R2

ADDV V1,V2,V3 Vector-vector addition Vi[1..VLR]<V2[1..VLR]+V3[1..VLR] MULTV
ADDSV V1,F1,V2 Vector-scalar addition Vi[1..VLR]<F1+4V2[1..VLR] MULTSV
SUBV V1,V2,V3 Vector-vector subtraction | Vi[1..VLR]«V2[1..VLR]-V3[1..VLR] DIVV
SUBVS V1,V2,F1 Vector-scalar subtraction | Vi[1..VLR]«—V2[1..VLR]-F1 DIVVS
SUBSV Vi,F1,V2 Scalar-vector subtraction | V1[1..VLR]+F1-V2[1..VLR] DIVSV
SVLR R1 | Set vector length register | VLR—R1 |

Table 4: The DLX-V vector instructions.

conflicting scalar and vector instructions can
overlap each other.

A special register, the vector length register
(VLR), controls the number of quantities that are
loaded, operated upon, or stored in any vector
instruction. The VLR is normally set to 64, ex-
cept when handling the last few iterations of a
loop.

The vector operations are described in Ta-
ble 4. They include arithmetic operations on
vector registers and load/store operations be-
tween vector registers and memory. Vector oper-
ations take place either between two vector reg-
isters or between a vector register and a scalar
register. In the latter case, the scalar value is
extended across the entire vector. All vector
computations have a vector register as the des-
tination.

The speed of a vector operation depends on
the depth of the pipeline in its implementation.
The first result appears after some number of cy-
cles (called the start-up time). After the pipeline
is full, one result is computed per clock cycle.
In the meantime, the processor can continue to
Table 3 gives the
startup times for the vector operations in DLX-
V. These times should not be compared directly
to the times in cycles for operations on S-DLX

execute other instructions.

because vector machines typically have higher
clock speeds than microprocessors, although this
gap is closing.

A large factor in the speed of vector archi-
tectures is their memory system. DLX-V has 8
memory banks. After the load latency data is

59

supplied at the rate of one word per clock cycle,
provided that the stride with which the data is
accessed does not cause bank conflicts (see Sec-
tion 6.3.2).

Current examples of vector machines are the
Cray C-90 [Oed 1992] and IBM ES 9000 Model
900 VF [Gibson and Rao 1992].

A.3 Multiprocessors

When multiple processors are employed to ex-
ecute a program, many additional issues arise.
The most obvious is how much of the under-
lying machine architecture to expose to the
programmer. At one extreme is explicit use
of hardware-supported operations by program-
ming with locks, fork/join primitives, barrier
synchronizations, and message send and receive.
These operations are typically provided as sys-
tem calls explicitly invoked by the programmer.
System call semantics are usually not defined by
the language, making it difficult for the compiler
to automatically optimize them. We therefore
do not discuss the transformation of such pro-
grams.

High-level languages for large-scale parallel
processing provide primitives for expressing par-
allelism in one of two ways: control parallel
or data parallel. Fortran-90 array section ex-
pressions are examples of explicitly data par-
allel operations. APL [Iverson 1962] also con-
tains a wide variety of data parallel array op-
erators. Examples of control parallel operations
are cobegin/coend blocks and doacross loops
[Cytron 1986].



‘ Operation ‘ Cycles ‘
fork(n) 450
join() 90
barrier() 70
SWAPW R1, 16(RS8) 42

Table 5: Minimum Time in Cycles for Parallel
Operations on MX-s.

A.4 Shared-Memory DLX Multiprocessor

MX-s is our prototypical shared-memory paral-
lel architecture. It consists of 16 processors and
8 banks of memory, each holding 64 megabytes.
The processors and memories are connected to-
gether by a bus, as shown in Figure 58. FEach
processor has an intelligent cache controller that
monitors the bus (a snoopy cache). The caches
are the same as on S-DLX, except that they con-
tain 256KB of data. The bandwidth of the bus
is 128 megabytes/second.

The processors share the memory units; a pro-
gram running on a Processor can access any
memory element and the system ensures that
the values are maintained consistently across the
machine. Without caching, consistency is easy
to maintain; every memory reference is handled
by the appropriate memory unit. However, per-
formance would be very poor because memory
latencies are already too high on sequential ma-
chines to run well without a cache; having many
processors share a common bus would make the
problem much worse by increasing memory ac-
cess latency and introducing bandwidth restric-
tions. The solution is to give each processor a
cache that is smart enough to resolve reference
conflicts.

A snoopy cache implements a sharing proto-
col that maintains consistency while still mini-
mizing bus traffic. A processor that modifies a
cache line invalidates all other copies and is said
to own that cache line. There are a variety of
cache coherency protocols [Stenstrom 1990; Eg-
gers and Katz 1989], but the details are not rel-
evant to this study. From the compiler writer’s
perspective, the key issue is the time it takes to
make a memory reference. Table 59 summarizes

60

the latency of each kind of memory reference in
MX-s.

Table 5 shows the additional operations pro-
vided on MX-s to support parallel operation.
fork(n) starts the current program running on
n processors; because it must copy the stack of
the forking processor to a private memory for
each of the n— 1 other processors, it is a very ex-
pensive operation. join() re-synchronizes with
the previous fork, and makes the processor
available for other fork operations (except for
the original forking processor, which proceeds
serially).

barrier() performs a barrier synchronization
— a barrier is a synchronization point in the pro-
gram where each processor waits until all pro-
cessors have arrived at that point. The SWAPW
instruction exchanges the register with the spec-
ified address in memory; it is used to implement
locks.

A.5 Distributed-Memory DLX
Multiprocessor

MX-d is our distributed memory model. The
machine consists of 64 S-DLX processors (in-
dexed 0 through 63) connected in an 8 x 8 mesh,
as shown in Figure 60. The network bandwidth
of each link in the mesh is 5 MBytes per sec-
ond. Each processor has an associated network
processor that manages communication; the net-
work processor has its own pool of memory and
can communicate without involving the CPU.
Having a separate processor manage the net-
work allows applications to send a message asyn-
chronously and continue executing while the
message is sent. Messages that pass through a
processor en route to some other destination in
the mesh are handled by the network processor
without interrupting the CPU.

The latency of a message transfer is ten mi-
croseconds plus 2 microseconds per mesh link
traversed plus 1 microsecond per 5 bytes of mes-
sage. Communication is supported by a message
library that provides the following calls:

e my_pid() — returns the current processor’s
index.



folalelelelele]

U

P Processor
C Cache
M Memory Unit

Figure 58: MX-s Shared Memory Architecture

‘ Cycles | Type of Memory Reference ‘
2 Read value available in local cache
16 Read value owned by other processor
20 Read value nobody owns
1 Write value owned locally
18 Write value owned by other processor
22 Write value nobody owns

Figure 59: Memory Reference Latency in MX-s

AN AN AN AN

ONIONIONIO

N

Q)

N

kO
oo
o

&

Network Processor CPU

& & &
& & &

Figure 60: MX-d Architecture

61



e num procs() — returns the number of pro-
cessors in the machine.

send(buffer,nbytes,target)

— send nbytes from buffer to the proces-
sor target. If the message fits in the net-
work processor’s memory, the call returns
after the copy (1 microsecond/5 bytes). If
not, the call blocks until the message is sent.
Note that this raises the potential for dead-
lock, but we will not concern ourselves with
that in this simplified model.

broadcast(buffer,nbytes) — send the
message to every other processor in the ma-
chine. The communication library uses a
fast broadcasting algorithm, so the maxi-
mum latency is roughly twice that of send-
ing a message to the furthest edge of the
mesh.

receive(buffer,nbytes) — wait for a mes-
sage to arrive; when it does, up to nbytes
of it will be put in the buffer. The call
returns the total number of bytes in the
incoming message; if that value is greater
than nbytes, receive guarantees that sub-
sequent calls will return the rest of that
message first.

B PROGRAM REPRESENTATION

There are a wide variety of representations that
have been developed by compiler writers to sim-
plify analysis. The most basic is the control
flow graph (CFG) [Allen and Cocke 1976]. The
CFG is a directed graph containing one node for
each basic block in the program, plus two dis-
tinguished nodes called Entry and Exit. Each
node has an edge to every node to which it can
transfer control. The Entry node has an edge to
every basic block that represents an entry point
of the code; there is an edge to Exit from any
basic block that can cause an exit. Figure 61
shows a procedure (a) and its control flow graph
(b).

A second representation which is often used
when managing transformations is the program
dependence graph (PDG) [Ferrante et al. 1987].

62

A number of studies have shown how it can han-
dle various optimizing transformations [Otten-
stein and Ottenstein 1984; Baxter and Bauer III
1989; Selke 1989; Allen et al. 1988b].

A PDG is a directed graph in which the
nodes represent statements and expressions and
the edges represent data values passed be-
tween nodes or control conditions that deter-
mine whether the node will be evaluated. The
root of a PDG is a distinguished node called
Entry. There are two different kinds of edges
to represent data and control dependences; if an
edge is describing a control dependency, it will
be labeled true or false. When there is a la-
beled edge from node A tonode B, B is executed
only if the evaluation of the predicate at node A
matches the value of the label.

The procedure for building a PDG is de-
scribed in detail by Ferrante et al. [1987]. In
order to analyze the control dependences in a
CFG, the compiler must determine the domi-
nance relationship between pairs of nodes. Node
X is said to dominate Y if X is always executed
before Y. More formally, every path from the
Entry node to Y passes through X. A simi-
lar notion is that of a post-dominator; B post-
dominates A if and only if every path in the CFG
from A to the Exit node goes through B.

Note that because it models data dependences
instead of control dependences, there is no Exit
node in the PDG.

Unlike control flow graphs, an edge between
two nodes does not necessarily indicate a direct
transfer of control between their corresponding
code fragments. An edge from C to D means
that D is control-dependent on C'; D will only
execute if C' does.

In addition, the PDG supports summarization
through the use of region nodes; if a set of nodes
have the same control and data conditions on
their execution, they can be grouped together
and represented by a single node.

A third representation that is under active
investigation is static-single assignment form
(SSA) [Cytron et al. 1991]. SSA takes its in-
spiration from functional languages, which bind
a value to a variable once and do not permit the
value to be changed. SSA transforms an impera-



procedure test(a,b)
integer c,d
c=atb
d=c*a
if (c>d) then
c=c+d
else
d=a
while (a<b)
a=a2
return

Figure 61: Procedure and Corresponding CFG

tive program by introducing new variables; each
variable is assigned a value once. When a partic-
ular name appears in two places, it refers to the
same value. In functional languages, this princi-
ple is known as referential transparency [Abelson
and Sussman 1985].

SSA is constructed by adding new variables
and merge nodes. A merge node (also called a
¢-function) is introduced when multiple control
flow paths come together, yielding many pos-
sible values for a given variable. For example,
Figure 62 shows a small fragment of code and
the SSA conversion for it. On entry to the func-
tion simple, a has the value ag. Fach iteration
of the loop changes the value of a, so at loop
entry there are two possible values for a; control
may be entering for the first time, or it may be
in the middle of iteration. We create a name for
the value of a at the top of the loop, calling it a;.
The assignment statement creates another ver-
sion, which we call ay. If the loop has completed
execution, control goes to the node representing
the last statement in the subroutine. It gener-
ates the final version of a, a4, using the value
as, because the loop will have been evaluated at
least once.

The advantage to SSA is that it gives an ex-
plicit name to every value that a variable takes
on. This makes comparison and value propaga-
tion much simpler; recasting optimizations tra-
ditionally done on flow graphs to use SSA is an

63

ongoing area of interest.

C PROGRAM ANALYSIS

Compilers perform a variety of other types of
analysis, aside from the dependence information
discussed in Section5. This appendix discusses
some of the other popular strategies for under-
standing the behavior of a program.

C.1 Dataflow Analysis

Dataflow analysis [Muchnick and Jones 1981]
was one of the first strategies for analyzing pro-
gram behavior. It is still widely used in mod-
ern compilers, although some of the information
it is traditionally used to compute is subsumed
by conversion into program representations like
SSA and the PDG.

Dataflow analysis is usually performed on a
control flow graph (CFQG); it attempts to track
the flow of data through the program’s variables
and to characterize the values of variables at var-
ious points of execution.

There are two primary strategies for perform-
ing dataflow analysis. The first is to develop a
set of equations that are applied to basic blocks,
yielding a list of variables that match some de-
sired criteria. For example, suppose we wish to
compute the set of values that are available at
the exit of a given basic block B. Convention-
ally, this set is named out.



subroutine simple(a,b)

go:ia;l,llo ‘do ig =1,10 F
a=a+b i
gn:dg?-l ‘aZ:D(al,aa)‘
return

|

‘ a, = a, + 1‘
P
= a

Figure 62: Simple Example of SSA

The equation to compute out(B) is
out(B) = gen(B) U (in(B) — kill(B))

where gen(B) is the set of values generated in-
side the block, in(B) is the set of values that
reach the block from some other block, and
Eill(B) is the set of values that were overwrit-
ten in the block (by an assignment statement,
for example).

The second major strategy for doing dataflow
analysis is based on chains. The idea is to iden-
tify where variables are assigned a value (called a
def ) and where the value is used (a ref ). By con-
necting a particular def with every correspond-
ing ref, the compiler can perform a wide variety
of analysis including copy propagation, identifi-
cation of loop invariance, and code motion. De-
pending on the analysis being performed, some-
times the compiler will connect uses to defs and
sometimes the reverse.

Dataflow analysis is often conservative, be-
cause the compiler may not know what will hap-
pen at run time — whether a given conditional
will be true or false, for example. Hence there
is a distinction between may and must informa-
tion. The set of variables modified by a proce-
dure, for example, may include every variable
that is the target of an assignment statement.
However, if the goal is to find the set of vari-
ables that must be modified, the compiler needs
to consider the effect of conditionals. In the pro-

64

procedure simple(a,b,c,d)

if (a < 3) then
a=a+1
b=Db+ a
else
d=5>D
b=c
c=a
endif

Figure 63: May vs. Must: simple may modify
a,b,c,d but it must only modify b.

cedure in Figure 63, the set of possibly modified
variables is {a,b,c,d}, but the set of variables
that must be modified is just {b}.

The may/must distinction can also be under-
stood in terms of flow; may (or flow-insensitive)
information occurs on at least one path through
the CFG. Must (flow-sensitive) information is
more expensive to compute, because the com-
piler must check to make sure that some con-
dition holds for every path to or from a given
node.

A straightforward approach to dataflow anal-
ysis is to apply the equations iteratively until
reaching a fixed point [Kildall 1973; Hecht 1977;
Ullman 1973; Aho et al. 1986]. This strategy
can become quite expensive to compute, both
in execution time and in memory required, so
compilers use a variety of other strategies.

An early form of summarization was used by
Allen and Cocke [1976]; it considered a loop in
isolation and then moved the analysis outwards,
collapsing the loop into a single node. For the
purposes of the analysis, a loop is considered to
be a strongly connected region.

Allen and Cocke then developed a simpler
strategy for summarization called interval anal-
ysis [Allen and Cocke 1976], which works on re-
ducible flow graphs. A graph is reducible if its
edges can be partitioned into two disjoint sets
forward and back, such that

e The forward edges make up an acyclic
graph, in which every node can be reached
from the Entry node.



subroutine irreduce(a,b)

if (a<b) goto 2
1: a=a+1
2. if (a<0)goto 1

return

Figure 64: Procedure With an Irreducible Flow Graph

e For every back edge from node A to node
B, B dominates A

Programs written in high level languages with
structured constructs only generate reducible
graphs unless the programmer uses goto state-
ments. Figure 64 shows a fragment of code
and its irreducible control flow graph. The code
builds a loop with goto statements and violates
structured programming style by having a jump
into the middle of the loop — one of the simplest
ways to generate an irreducible flow graph.

In practice, programs very rarely have irre-
ducible flow graphs [Knuth 1971]. When such
graphs do appear, they can always be converted
to reducible graphs via node splitting [Cocke and
Schwartz 1970]. Node splitting replicates nodes
in the irreducible graph as necessary to yield a
reducible one.

The idea behind interval analysis is to divide
the graph into sets of nodes, called intervals,
such that:

o the set is connected

e each set has a distinguished node h which
dominates the nodes in the set

e all cycles within the set contain h

Once the graph has been divided into inter-
vals, a data flow algorithm is performed in two
passes. The first considers each of the intervals
in isolation; the second computes the value for
the entire graph using the summary information
for each interval.

A variety of other optimizations have been
developed as well, including path compression

65

[Graham and Wegman 1976; Tarjan 1979; Ull-
man 1973].

C.2 Other Analysis Techniques

During analysis, most compilers also use a set of
more specific techniques. We discuss several of
these briefly.

C.2.1 Value Numbering

A compiler frequently needs to find identical
sub-trees in a DAG, perhaps to avoid redundant
computation by eliminating all but one of them.
Value numbering [Reif and Lewis 1986; Alpern
et al. 1988] is essentially a form of hashing which
assigns a unique number to each quantity known
at compile-time to be identical. Value num-
bering was originally developed by Cocke and
Schwartz [1970].

Suppose that the computation involves a tree
where each node has some value; assign a unique
Then
compute the value of a sub-tree by taking some
function of the value of each sub-tree and the
The function could be

addition, modulo some maximum value, or it

number to each value that can appear.

value of the root node.

might be sensitive to the ordering among the
children. Enter each sub-tree into a hash table,
using its value as the key. When two sub-trees
collide, use a detailed comparison to determine
whether they are truly identical.

C.2.2 Memory Usage Summarization

Dependency information is very useful for deter-
mining whether transformations are legal, but it
is a low-level strategy that does not work well for
summarizing the behavior of code. Summariza-
tion is often useful for high-level and interproce-



dural analysis; the usual goal is to describe the
memory that is read or written by a code frag-
ment. The key problem is to capture the behav-
ior of arrays in a form that is easily manipulable.
Researchers have proposed a variety of notations
for array summaries, including Regular Sections
[Callahan 1987], Data Access Descriptors [Bala-
sundaram 1990], and atoms [Li and Yew 1988].

A somewhat related set of techniques try to
describe the side-effects of a given piece of code
so it can be scheduled without causing conflicts.
Jade [Rinard et al. 1993] uses such a strategy
for parallelism and what Gifford and Lucassen
call fluent languages [Gifford and Lucassen 1986]
use it to mix functional and imperative program-
ming safely.

C.2.3 Feedback From Profiling

During optimization, a compiler is often forced
to estimate the cost of various computations. A
broad variety of models and heuristics are used
to predict program behavior.
the number of iterations a loop is likely to ex-
ecute is useful in determining scheduling gran-
ularity [Sarkar 1989a]. The direction a branch
is likely to go [Bandyopadhyay et al. 1990; Mec-
Farling and Hennessy 1986] allows optimization
of delayed branches. Global register allocation
[Wall 1986] also depends on execution frequency
information.

An estimate of

For high performance computing, these esti-
mates can be very important in optimizing code.
A number of studies have investigated the idea
of profiling the program and feeding that in-
formation back into the optimizer [Sarkar and
Hennessey 1986b; Hwu et al. 1993; Fisher and
Freudenberger 1992; Fisher et al. 1984].

C.2.4 Alias Analysis

A crucial part of dataflow optimizations is com-
puting the kill sets associated with each basic
block. To do this, it must be possible to de-
cide which variables (or parts of variables) can
be written by each assignment. As long as there
is a one-to-one correspondence bhetween names
and memory locations, this is relatively straight-
forward. Unfortunately, this is not the case for
many languages.

66

In Fortran, aliasing can be created by param-
eter passing, and equivalence and common
statements. In languages with pointers, there
may be no information about a write through
a pointer except the type of the object, and all
defs of that type will need to be killed. The
situation in C is even worse, since casting and
unions allow a write through a pointer to write
to any location in the address space. In the gen-
eral case, a write through a pointer in C must be
considered to kill all defs. This has a substantial
impact on optimization.

Alias analysis uses a dataflow algorithm to
propagate information about which variables
may be aliased to one another. The problem
of unrestricted pointers in C is often handled by
providing an option that instructs the compiler
to assume that the pointers are being used in a
type-safe manner.

ACKNOWLEDGMENTS

We thank James Demmel, James Larus, John
Hauser, and John Boyland for their valuable
comments.

REFERENCES

ABELSON, H. aAND Sussman, G. J. 1985. Struc-
ture and Interpretation of Computer Programs. MIT
Press, Cambridge, Massachusetts.

ABU-SuraH, W. 1979. Improving the Performance
of Virtual Memory Computers. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign. Technical Re-
port 78-945.

ABU-SuraH, W., Kuck, D. J., AND LAwWRIE, D.
1981. On the performance enhancement of paging
systems through program analysis and transforma-
tions. TEEE Trans. Comput., C-30, 5 (May), 341-
356.

AckerMAN, W. B. 1982.
Computer, 15, 2 (Feb.), 15-25.

Data flow languages.

Apam, T. L., CaHanDY, K. M., AND DICKSON,
J. R. 1974. A comparison of list schedules for parallel
processing systems. Commun. ACM, 17, 12 (Dec.),
685-690.

Ano, A. V., Jounson, S. C., anDp ULLMAN, J. D.
1977. Code generation for expressions with common

subexpressions. J. ACM, 24, 1 (Jan.), 146-160.



Ano, A. V., SeETHI, R., anD ULrLman, J. D.
1986. Compilers : Principles, Techniques, and Tools.
Addison-Wesley, Reading, Massachusetts.

AIT-Kact, H. 1991. Warren’s Abstract Machine: A
Tutorial Reconstruction. Logic Programming Series.
MIT Press, Cambridge, Massachusetts.

AIKEN, A. AND NicoLAU, A. 1988a. Optimal loop
parallelization. In Proceedings of the SIGPLAN Con-
ference on Programming Language Design and Im-
plementation, (Atlanta, Georgia, June). SIGPLAN
Notices, 23, 7, 308-317.

AIKEN, A. AND Nicorau, A. 1988b. Perfect
pipelining: A new loop parallelization technique. In
GANZINGER, H., ED., Proceedings of the Second Fu-
ropean Symposium on Programming, volume 300 of
Lecture Notes in Computer Science, (Nancy, France,
Mar.). Springer Verlag, Berlin, Germany, pp. 221-
235. Also available as Cornell University Technical
Report TR 87-873.

ALLEN, F. E. 1969. Program optimization. In
Annual Review in Automatic Programming 5, vol-
ume 13 of International Tracts in Computer Science
and Technology and Their Application, pp. 239-307.
Pergammon Press, Oxford, England.

AviLen, F. E., Burke, M., CHARLES, P.,
CyYTRON, R., AND FERRANTE, J. 1988a. An
overview of the PTRAN analysis system for multi-
processing. J. Parallel Distrib. Comput., 5,5 (Oct.),
617-640.

AvLen, F. E., Burke, M., CyTrON, R., FER-
RANTE, J., HSTEH, W., AND SARKAR, V. 1988b. A
framework for determining useful parallelism. In Pro-
ceedings of the ACM International Conference on Su-
percomputing, (St. Malo, France, July). ACM Press,
New York, pp. 207-215.

ALLEN, F. E. AND CoCKE, J. 1971. A catalogue of
optimizing transformations. In RusTIN, R., ED.,
Design and Optimization of Compilers, pp. 1-30.
Prentice-Hall, Englewood Cliffs, New Jersey.

Avrren, F. E. anD CockE, J. 1976. A program

data flow analysis procedure. Commun. ACM, 19, 3
(Mar.), 137-146.

ALLEN, F. E., CockEg, J., AND KENNEDY, K. 1981.
Reduction of operator strength. In MUCHNICK, S. S.
AND JonEs, N. D., Ebs., Program Flow Analy-
sts, chapter 3, pp. 79-101. Prentice-Hall, Englewood
Cliffs, New Jersey.

67

ALLEN, J. R. 1983. Dependence Analysis for Sub-
scripted Variables and its Application to Program
Transformations. PhD thesis, Dept. of Computer
Science, Rice University.

ALLEN, J. R. aAND KENNEDY, K. 1984. Automatic
loop interchange. In Proceedings of the SIGPLAN
Symposium on Compiler Construction, (Montreal,

Canada, June). STGPLAN Notices, 19, 6, 233-246.

ALLEN, J. R., KENNEDY, K., PORTERFIELD, C.,
AND WARREN, J. 1983. Conversion of control de-
pendence to data dependence. In Proceedings of
the Tenth Annual ACM Symposium on Principles
of Programming Languages, (Austin, Texas, Jan.).

ACM Press, New York, pp. 177-189.

ALLEN, R. anD KENNEDY, K. 1987. Automatic
translation of FORTRAN programs to vector form.
ACM Trans. Program. Lang. Syst., 9, 4 (Oct.), 491~
542.

ALPERN, B., WEGMAN, M. N., AND ZADECK, F.
1988. Detecting equality of values in programs. In
Proceedings of the Fifteenth Annual ACM Sympo-
stum on Principles of Programming Languages, (San
Diego, California, Jan.). ACM Press, New York, pp.
1-11.

ALPERT, D. AND AvNON, D. 1993. Architecture
of the Pentium microprocessor. IEEE Micro, 13, 3
(June), 11-21.

A1LvERSON, R., Carvranan, D., CumwmiINGs, D.,
KoBLENZ, B., PORTERFIELD, A., AND SMITH, B.
1990. The Tera computer system. In Proceedings
of the ACM International Conference on Supercom-
puting, (Amsterdam, The Netherlands, Sept.). Com-
puter Architecture News, 18, 3, 1-6.

ANDERSON, S. AND Hubpak, P. 1990. Compilation
of Haskell array comprehensions for scientific com-
puting. In Proceedings of the SIGPLAN Conference
on Programmang Language Design and Implementa-
tion, (White Plains, New York, June). SIGPLAN
Notices, 25, 6, 137-149.

APPEL, A. W. 1992. Compiling with Continuations.
Cambridge University Press, Cambridge, England.

ARrRDEN, B. W., GALLER, B. A., AND GRAHAM,
R. M. 1962. An algorithm for translating Boolean
expressions. J. ACM, 9, 2 (Apr.), 222-239.

ARVIND AND CULLER, D. E. 1986. Dataflow archi-
tectures. In TRAUB, J. F., GRosz, B. J., LAMPSON,
B. W., aAND NiLssoN, N. J., Eps., Annual Review



of Computer Science, volume 1, pp. 225-253. Annual
Reviews, Palo Alto, Califormia.

ARVIND, KATHAIL, V., AND PINGALI, K. 1980. A
dataflow architecture with tagged tokens. Technical
Report TM-174, MIT Laboratory for Computer Sci-

ence.

Bamey, D. H., Barszcz, E., BarTon, J. T,
BrownNING, D. S., CarTER, R. L., Dacum, L.,
FaTtooni, R. A., FREDERICKSON, P. O., LASIN-
skI, T. A., SCcHREIBER, R. S., SmmonN, H. D.,
VENKATAKRISHNAN, V., AND WEERATUNGA, S. K.
1991. The NAS parallel benchmarks. Int. J. Super-
comp. Appl, 5, 3 (Fall), 63-73.

BALASUNDARAM, V. 1990. A mechanism for keeping
useful internal information in parallel programming
tools: The data access descriptor. J. Parallel Distrib.
Comput., 9, 2 (June), 154-170.

BarasunparaM, V., KENNEDY, K., KREMER, U.,
McKINLEY, K., AND SUBHLOK, J. 1989. The
ParaScope editor: An interactive parallel program-
ming tool. In Proceedings of Supercomputing °89,
(Reno, Nevada, Nov.). ACM Press, New York, pp.
540-550.

Barr, J. E. 1979. Predicting the effects of optimiza-
tion on a procedure body. In Proceedings of the SIG-
PLAN Symposium on Compiler Construction, (Den-
ver, Colorado, Aug.). SIGPLAN Notices, 14, 8, 214-
220.

BANDYOPADHYAY, S., BEGWANI, V. S., AND MUR-
rAY, R. B. 1990. Compiling for the CRISP mi-
croprocessor. In Digest of Papers, Spring COMP-
CON 1987, Thirty-Second IEEE Computer Society
International Conference, (San Francisco, California,
Feb.). IEEE Computer Society Press, Washington,
D.C., pp. 96-100.

BANERIEE, U. 1979. Speedup of Ordinary Pro-
grams. PhD thesis, University of Illinois at Urbana-
Champaign, (Oct.). Technical Report 79-989.

BANERJIEE, U. 1988a. Dependence Analysis for Su-
percomputing. Kluwer Academic Publishers, Boston,
Massachusetts.

BANERJEE, U. 1988b. An introduction to a formal
theory of dependence analysis. J. Supercomp., 2, 2
(Oct.), 133-149.

BANERJEE, U. 1991. Unimodular transformations
of double loops. In NicoLau, A. ET AL., EDs., Ad-
vances in Languages and Compilers for Parallel Pro-

68

cessing, Research Monographs in Parallel and Dis-
tributed Computing, chapter 10. MIT Press, Cam-
bridge, Massachusetts.

BaANERJEE, U., CHEN, S. C., Kuck, D. J., AND
TowLE, R. A. 1979. Time and parallel processor
bounds for FORTRAN-like loops. TEEFE Trans. Com-
put., C-28, 9 (Sept.), 660-670.

BAXTER, W. AND Baugr I1I, H. R. 1989. The pro-
gram dependence graph and vectorization. In Pro-
ceedings of the Sizteenth Annual ACM Symposium
on Principles of Programming Languages, (Austin,
Texas, Jan.). ACM Press, New York, pp. 1-11.

BERNSTEIN, R. 1986. Multiplication by integer con-
stants. Software — Practice and Fzperience, 16, 7

(July), 641-652.

BERRY, M., CHEN, D., Koss, P., Kuck, D., Lo,
S., PaNG, Y., POINTER, L., ROLOFF, R., SAMEH,
A., CLEMENTI, E., CHIN, S., SCHNEIDER, D.,
Fox, G., MEssiNa, P., WALKER, D., Hsiung, C.,
SCHWARZMEIER, J., LUE, K., ORrszAaG, S., SEIDL,
F., Jounson, O., GoobrRUM, R., AND MARTIN, J.
1989. The Perfect Club benchmarks: Effective per-
formance evaluation of supercomputers. Int. J. Su-

percomp. Appl., 3, 3 (Fall), 5-40.

BreLrLocH, G. 1989. Scans as primitive parallel
operations. IEEE Trans. Comput., C-38, 11 (Nov.),
1526-1538.

BooTHE, B. AND RANADE, A. 1992. Improved Mul-
tithreading Techniques for Hiding Communication
Latency in Multiprocessors. In Proceedings of the
19th Annual International Symposium on Computer
Architecture, (Gold Coast, Australia, May). Com-
puter Architecture News, 20, 2, 214-223.

BroMLEY, M., HELLER, S., MCNERNEY, T., AND
STEELE JrR., G. L. 1991. FORTRAN at ten gi-
gaflops: The Connection Machine convolution com-
piler. In Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation,
(Toronto, Ontario, June). SIGPLAN Notices, 26, 6,
145-156.

BuTLER, M., YEH, T., PaTrT, Y., ALsupr, M.,
ScaLEs, H., AND SHEBANOW, M. 1991. Single in-
struction stream parallelism is greater than two. In
Proceedings of the 18th Annual International Sympo-
stum on Computer Architecture, (Toronto, Ontario,
May). Computer Architecture News, 19, 3, 276-286.



CALLAHAN, D. 1987. A Global Approach to De-
tection of Parallelism. PhD thesis, Rice University,
(Apr.). Technical Report 87-50.

CaLLAHAN, D., CooPER, K., KENNEDY, K., AND
TorczoN, L. 1986. Interprocedural constant prop-
agation. In Proceedings of the SIGPLAN Symposium
on Compiler Construction, (Palo Alto, California,

June). SIGPLAN Notices, 21, 7, 152-161.

CALLAHAN, D. anxD SwmiTH, B. 1990. A future-
based language for a general-purpose highly-parallel
computer. In GELERNTER, D., NIcoLAU, A., AND
Papua, D., EDS., Languages and Compilers for
Parallel Computing, pp. 95-113. MIT Press, Cam-
bridge, Massachusetts.

CHAITIN, G. J. 1982. Register allocation and
spilling via graph coloring. In Proceedings of the
SIGPLAN Symposium on Compiler Construction,
(Boston, Massachusetts, June). SIGPLAN Notices,
17, 6, 98-105.

CHAITIN, G. J., AUSLANDER, M. A., CHANDRA,
A. K., CockE, J., Hopkins, M. E., AND MARK-
STEIN, P. W. 1981. Register allocation via coloring.
Computer Languages, 6, 1 (Jan.), 47-57.

CHAMBERS, C. AND UNGAR, D. 1989. Customiza-
tion: Optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming
language. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, (Portland, Oregon, June). SIGPLAN No-
tices, 24, 7, 146-160.

CHEN, S. C. AND Kuck, D. J. 1975. Time and par-
allel processor bounds for linear recurrence systems.

IEEE Trans. Comput., C-24, 7 (July), 701-717.

CHow, F. C. 1988. Minimizing register usage
penalty at procedure calls. In Proceedings of the SIG-
PLAN Conference on Programming Language Design
and Implementation, (Atlanta, Georgia, June). SIG-
PLAN Notices, 23, 7, 85-94.

Cuow, F. C. aAND HENNEssy, J. L. 1990. The
priority-based coloring approach to register alloca-
tion. ACM Trans. Program. Lang. Syst., 12,4 (Oct.),
501-536.

Crark, C. D. aNnD PeEYTON-JONES, S. L. 1985.
Strictness analysis — a practical approach. In JOUAN-
NAUD, J.-P., ED., Proceedings of the Conference
on Functional Programming and Computer Architec-
ture, (Nancy, France, Sept.), pp. 35-49.

69

Cocke, J. 1970. Global common subexpression
elimination. In Proceedings of the ACM Symposium
on Compiler Optimization, (July). SIGPLAN No-
tices, 5, 7, 20-24.

COCKE, J. AND MARKSTEIN, P. 1980. Measurement,
of program improvement algorithms. In Proceedings
of the IFIP Congress, (Tokyo, Japan, Oct.). North-
Holland, Amsterdam, The Netherlands, pp. 221-228.
Also available as IBM Research Division technical

report RC 8111 (#35193), February 1980.

COCKE, J. AND ScHWARTZ, J. T. 1970. Program-
ming Languages and Their Compilers (Preliminary
Notes). Courant Institute of Mathematical Sciences,
New York University, New York, New York, second
revised edition.

CowweLL, R. P., Nix, R. P., O’DonNEL, J. J.,
PapworTH, D. B., AND Robpman, P. K. 1988. A
VLIW architecture for a trace scheduling compiler.

IEEE Trans. Comput., C-37, 8 (Aug.), 967-979.

CrAY RESEARCH, INc. 1988. CFT77 Reference
Manual, (Oct.). Publication SR-0018-C.

CYTRON, R. 1986. Doacross: Beyond vectorization
for multiprocessors. In HwanGg, K. ET AL., EDS.,
Proceedings of the International Conference on Par-
allel Processing, (St. Charles, Tllinois, Aug.). IEEE
Computer Society Press, Washington, D.C., pp. 836—
844.

CyTrON, R. 1987. Limited processor scheduling of
Doacross loops. In SAHNI, S. K., ED., Proceedings of
the International Conference on Parallel Processing,
(University Park, Pennsylvania, Aug.). Pennsylvania
State University Press, pp. 226-234.

CyTRrRON, R., FERRANTE, J., RosEN, B. K., WEG-
MAN, M. N., AND ZADECK, F. K. 1991. Efficiently
computing static single assignment form and the con-
trol dependence graph. ACM Trans. Program. Lang.
Syst., 13, 4 (Oct.), 451-490.

Davipson, J. W. aAND Fraser, C. W. 1984. Code
selection through object code optimization. ACM
Trans. Program. Lang. Syst., 6, 4 (Oct.), 505-526.

Dennis, J. B. 1980. Data flow supercomputers.
Computer, 13, 11 (Nov.), 48-56.

Dixit, K. M. 1992. New CPU benchmarks from
SPEC. 1In Digest of Papers, Spring COMPCON
1992, Thirty-Seventh IEEE Computer Society In-
ternational Conference, (San Francisco, California,
Feb.). IEEE Computer Society Press, Los Alamitos,
California, pp. 305-310.



DoNGARRA, J. AND HIND, A. R. 1979. Unrolling
loops in FORTRAN. Software — Practice and Fzperi-
ence, 9,3 (Mar.), 219-226.

EGcaERrs, S. J. anp Katz, R. H. 1989. Eval-
uating the performance of four snooping cache co-
herency protocols. In Proceedings of the 16th An-
nual International Symposium on Computer Archi-

tecture, (Jerusalem, Tsrael, May). Computer Archi-
tecture News, 17, 3, 2—15.

ErceEnmManN, R., HOEFLINGER, J., L1, 7Z., AND
Pabua, D. A. 1991. Experience in the auto-
matic parallelization of four Perfect-benchmark pro-
grams. In BANERJEE, U. ET AL., EDS., Proceedings
of the Fourth International Workshop on Languages
and Compilers for Parallel Computing, (Santa Clara,
California, Aug.). Springer Verlag, Berlin, Germany,
pp- 65-83. Also available as Center for Supercom-
puting Research and Development Technical Report
1193.

Eriis, J. R. 1986. Bulldog: A Compiler for VLIW
Architectures. ACM Doctoral Dissertation Award.
MIT Press, Cambridge, Massachusetts. Based on the
author’s Ph.D. thesis at Yale University, 1984.

Ersnov, A. P. 1966. ALPHA — an automatic pro-
gramming system of high efficiency. J. ACM, 13, 1
(Jan.), 17-24.

FEAUTRIER, P. 1988. Array expansion. In Proceed-
ings of the ACM International Conference on Su-
percomputing, (St. Malo, France, July). ACM Press,
New York, pp. 429-441.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN,
J. D. 1987. The program dependence graph and its
use 1n optimization. ACM Trans. Program. Lang.

Syst., 9, 3 (July), 319-349.

Fi1sHER, J. A. 1981. Trace scheduling: A technique
for global microcode compaction. IEEE Trans. Com-

put., C-30, 7 (July), 478-490.

FisHER, J. A., Eruis, J. R., RUTTENBERG, J. C.,
AND NicorAU, A. 1984. Parallel processing: A
smart compiler and a dumb machine. In Proceedings
of the SIGPLAN Symposium on Compiler Construc-
tion, (Montreal, Canada, June). SIGPLAN Notices,
19, 6, 37-47.

FIsHER, J. A. AND FREUDENBERGER, S. M. 1992.
Predicting conditional branch directions from previ-
ous runs of a program. In Proceedings of the Fifth
International Conference on Architectural Support

70

for Programming Languages and Operating Systems,
(Boston, Massachusetts, Oct.). SIGPLAN Notices,
27,9, 85-95.

FLOATING POINT SysTEMS, INc. 1979. FPS AP-
120B Processor Handbook. Beaverton, Oregon.

FREE SOFTWARE FOUNDATION. 1992. gce 2.z Ref-
erence Manual.

FREUDENBERGER, S. M., ScHWARTZ, J. T., AND
SHARIR, M. 1983. Experience with the SETL opti-
mizer. ACM Trans. Program. Lang. Syst., 5,1 (Jan.),
26-45.

GANNON, D., JALBY, W., AND GALLIVAN, K. 1988.
Strategies for cache and local memory management
by global program transformation. J. Parallel Dis-
trib. Comput., 5, 5 (Oct.), 587-616.

GiBsoN, D. H. aAND Rao, G. S. 1992. Design of the
IBM System /390 computer family for numerically in-
tensive applications: An overview for engineers and

scientists. IBM J. Res. Dev., 36, 4 (July), 695-711.

GIFFORD, D. K. AND Lucassen, J. M. 1986. Inte-
grating functional and imperative programming. In
Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, (Cambridge, Mas-
sachusetts, Aug.). ACM Press, New York, pp. 28-38.

GIRKAR, M. aAND PoLycHRONOPOULOS, C. D.
1988a. Compiling issues for supercomputers. In Pro-
ceedings of Supercomputing 88, (Orlando, Florida,
Nov.). IEEE Computer Society Press, Washington,
D.C., pp. 164-173.

GIRKAR, M. aAND PoLycHRONOPOULOS, C. D.
1988b. Partitioning programs for parallel execution.
In Proceedings of the ACM International Conference
on Supercomputing, (St. Malo, France, July). ACM
Press, New York, pp. 216-229.

Gorr, G., Kennepy, K., anD TseEnag, C.-W.
1991. Practical dependence testing. In Proceed-
ings of the SIGPLAN Conference on Programming
Language Design and Implementation, (Toronto, On-

tario, June). SIGPLAN Notices, 26, 6, 15-29.

GraHAM, S. L., Lucco, S., AND SHARP, O. J.
1993. Orchestrating interactions among parallel com-
putations. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, (Albuquerque, New Mexico, June). SIG-
PLAN Notices, 28, 6, 100-111.



GraHAM, S. L. AND WEGMAN, M. 1976. A fast
and usually linear algorithm for global flow analysis.

J. ACM, 23,1 (Jan.), 172-202.

GRANLUND, T. AND KENNER, R. 1992. Eliminat-
ing branches using a superoptimizer and the GNU C
compiler. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, (San Francisco, California, June). SIG-

PLAN Notices, 27, 7, 341-352.

Harris, K. AND HoBBs, S. to appear. VAX FOR-
TRAN. In ALLEN, F. E., CyTrRON, R., ROSEN,
B. K., anD Zapeck, K., Eps., Optimization in
Compilers, chapter 16. ACM Press, New York, New
York.

HecHT, M. S. 1977. Flow Analysis of Computer
Programs. North-Holland, New York, New York.

HENNESSY, J. L. AND PAaTTERSON, D. A. 1990.
Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo, Califor-
nia.

HEWLETT PACKARD. 1992. PA-RISC 1.1 Architec-
ture and Instruction Manual, 2nd ed., (Sept.). Part
Number 09740-90039.

HiraNANDANI, S., KENNEDY, K., AND TsENG, C.-
W. 1991. Compiler support for machine-independent
programming in FORTRAN D. In Sarz, J. AND
MEHROTRA, P., Ens., Compilers and Runtime Soft-
ware for Scalable Multiprocessors. American Elsevier
Publishing Company, New York, New York. Also
available as Rice University Technical Report COMP
TRY91-149.

HiranaANDANI, S., KENNEDY, K., AND TSENG,
C.-W. 1992. Compiling FORTRAN D for MIMD
distributed-memory machines. Commun. ACM, 35,

8 (Aug.), 66-80.

Hupaxk, P. AND GOLDBERG, B. 1985. Distributed
execution of functional programs using serial com-
binators. IEEE Trans. Comput., C-34, 10 (Oct.),
881-890.

HuMMEL, S., SCHONBERG, E., AND FLvNN, L.
1992. Factoring: A practical and robust method
for scheduling parallel loops. Commun. ACM, 35,
8 (Aug.), 90-101.

Hwu, W. W. aNnD CHANG, P. P. 1989. Achiev-
ing high instruction cache performance with an op-
timizing compiler. In Proceedings of the 16th An-
nual International Symposium on Computer Archi-

71

tecture, (Jerusalem, TIsrael, May). Computer Archi-
tecture News, 17, 3, 242-251.

Hwu, W. W., MaHLKE, S. A., CHEN, W. Y.,
CuaNG, P. P., WARTER, N. J., BRINGMANN,
R. A., OueLLETTE, R. G., HanK, R. E., Kiy-
oHARA, T., HaaB, G. E., HoLwMm, J. G., AND Lav-
ERY, D. M. 1993. The superblock: An effective tech-
nique for VLIW and superscalar compilation. J. Su-
percomp., 7, 1/2 (May), 229-248.

IBM. 1992. Optimization and Tuning Guide for
the XL FORTRAN and X1 C Compilers, first edition,
(Sept.). Publication SC09-1545-00.

IBM INTERNATIONAL TECHNICAL SUPPORT CEN-
TERS. 1991. IBM RISC System/6000 NIC Tun-
ing Guide for FORTRAN and C, (July). Publication
GG24-3611-01.

Ir1GOIN, F. AND TRIOLET, R. 1988. Supernode
partitioning. In Proceedings of the Fifteenth An-
nual ACM Symposium on Principles of Program-
ming Languages, (San Diego, California, Jan.). ACM
Press, New York, pp. 319-329.

IversoN, K. E. 1962. A Programming Language.
John Wiley and Sons, New York, New York.

KENNEDY, K. AND McKINLEY, K. S. 1990. Loop
distribution with arbitrary control flow. In Proceed-
ings of Supercomputing 90, (New York, New York,
Nov.). IEEE Computer Society Press, Los Alamitos,
California, pp. 407-416.

KiLpaALL, G. 1973. A unified approach to global pro-
gram optimization. In Proceedings of the ACM Sym-
postum on Principles of Programming Languages,
(Boston, Massachusetts, Oct.). ACM Press, New
York, pp. 194-206.

KnuTH, D. E. 1971. An empirical study of FORTRAN
programs. Software — Practice and Fzxperience, 1, 2

(April-June), 105-133.

Kranz, D., Keusey, R., REEs, J., Hupak, P.,
PHILBIN, J., AND ADpAMS, N. 1986. ORBIT: An
optimizing compiler for Scheme. In Proceedings of
the SIGPLAN Symposium on Compiler Construc-
tion, (Palo Alto, California, June). SIGPLAN No-
tices, 21, 7, 219-233.

Kuck, D. J. 1977. A survey of parallel machine
organization and programming. Computing Surveys,

9, 1 (Mar.), 29-59.



Kuck, D. J. 1978. The Structure of Computers and
Computations, volume 1. John Wiley and Sons, New
York, New York.

Kuck, D. J., Kunun, R. H., Papua, D., LEa-
SURE, B., aND Worrge, M. 1981. Dependence
graphs and compiler optimizations. In Proceedings
of the Eighth Annual ACM Symposium on Principles
of Programming Languages, (Williamsburg, Virginia,
Jan.). ACM Press, New York, pp. 207-218.

LaMm, M. S. 1988. Software pipelining: An effective
scheduling technique for VLIW machines. In Pro-
ceedings of the SIGPLAN Conference on Program-
ming Language Design and Implementation, (At-
lanta, Georgia, June). SIGPLAN Notices, 23,7, 318~
328.

Lam, M. S., ROTHBERG, E. E., AND WoLF, M. E.
1991. The cache performance and optimization of
blocked algorithms. In Proceedings of the Fourth
International Conference on Architectural Support
for Programming Languages and Operating Systems,
(Santa Clara, California, Apr.). SIGPLAN Notices,
26, 4, 63-74.

LaMm, M. S. anD WiLson, R. P. 1992. Limits of
control flow on parallelism. In Proceedings of the 19th
Annual International Symposium on Computer Ar-
chitecture, (Gold Coast, Australia, May). Computer
Architecture News, 20, 2, 46-57.

LamMprorT, L. 1974. The parallel execution of DO
loops. Commun. ACM, 17, 2 (Feb.), 83-93.

Larus, J. R. 1993. Loop-level parallelism in nu-
meric and symbolic programs. [EEE Trans. Parallel

Distrib. Syst., 4, 7 (July), 812-826.

LeE, G., Kruskarn, C. P., anD Kuck, D. J.
1985. An empirical study of automatic restructur-
ing of nonnumerical programs for parallel processors.

IEEE Trans. Comput., C-34, 10 (Oct.), 927-933.

L1, Z. AND YEW, P. 1988. Program parallelization
with interprocedural analysis. J. Supercomp., 2, 2

(Oct.), 225-244.

L1, Z., YEW, P., aND ZHU, C. 1990. Data depen-
dence analysis on multi-dimensional array references.
IEEE Trans. Parallel Distrib. Syst., 1, 1 (Jan.), 26—
34.

Loveman, D. B. 1977. Program improvement
by source-to-source transformation. J. ACM, 1, 24

(Jan.), 121-145.

72

Lucco, S. 1992. A dynamic scheduling method
for irregular parallel programs. In Proceedings of the
SIGPLAN Conference on Programming Language
Design and Implementation, (San Francisco, Califor-

nia, June). SIGPLAN Notices, 27, 7, 200-211.

MARKSTEIN, P., MARKSTEIN, V., AND ZADECK,
K. to appear. Strength reduction. In ALLEN, F. E.|
CyTrON, R., RosEN, B. K., AND ZADECK, K.,
EDs., Optimization in Compilers, chapter 9. ACM
Press, New York, New York.

MassaLIN, H. 1987. Superoptimizer: A look at
the smallest program. In Proceedings of the Sec-
ond International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, (Palo Alto, California, Oct.). SIGPLAN No-
tices, 22, 10, 122-126.

McFarLING, S. 1991. Procedure merging with in-
struction caches. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, (Toronto, Ontario, June). SIG-
PLAN Notices, 26, 6, 7T1-79.

McFARLING, S. AND HENNESSY, J. 1986. Reduc-
ing the cost of branches. In Proceedings of the 15th
Annual International Symposium on Computer Ar-
chitecture, (Tokyo, Japan, June). TEEE Computer
Society Press, Los Alamitos, California, pp. 396-403.

McGraw, J. R. 1985. SISAL: streams and itera-
tion in a single assignment language. Technical Re-
port M-146, Lawrence Livermore National Labora-
tory, (Mar.).

McManoN, F. M. 1986. The Livermore FORTRAN
kernels: A computer test of numerical performance
range. Technical Report UCRL-55745, Lawrence Liv-
ermore National Laboratory, (Dec.).

MicHIE, D. 1968. “Memo” functions and machine
learning. Nature, 218, 19-22.

MIRCHANDANEY, R., SarTz, J. H., SMITH, R. M.,
Nicor, D. M., aND CrROWLEY, K. 1988. Principles
of runtime support for parallel processors. In Pro-
ceedings of the ACM International Conference on Su-
percomputing, (St. Malo, France, July). ACM Press,
New York, pp. 140-152.

MoreL, E. aAND RENvoIse, C. 1979. Global op-
timization by suppression of partial redundancies.

Commun. ACM, 22, 2 (Feb.), 96-103.

MUCHNICK, S. S. AND JoNEs, N., Eps. 1981. Pro-
gram Flow Analysis. Prentice-Hall, Englewood Cliffs,
New Jersey.



MURAOKA, Y. 1971. Parallelism Ezposure and Ez-
ploitation in Programs. PhD thesis, University of
Tllinois at Urbana-Champaign, (Feb.). Technical Re-
port 71-424.

Nicorau, A. 1988. Loop quantization: A general-
ized loop unwinding technique. J. Parallel Distrib.
Comput., 5,5 (Oct.), 568-586.

Nicorau, A. AND FISHER, J. A. 1984. Measur-
ing the parallelism available for very long instruction
word architectures. IFEE Trans. Comput., C-33, 11
(Nov.), 968-976.

NikHIL, R. S. 1988. 1D reference manual, ver-
sion 88.0. Technical Report 284, MIT Laboratory
for Computer Science.

NoBavasHI, H. aND Eovanag, C. 1989. A com-
parison study of automatically vectorizing FORTRAN
compilers. In Proceedings of Supercomputing 89,
(Reno, Nevada, Nov.). ACM Press, New York, pp.
820-825.

O’BrieEN, K., Hay, B., MINISH, J., SCHAFFER,
H., ScHLOss, B., SHEPHERD, A., AND ZALESKI,
M. 1990. Advanced compiler technology for the
RISC System /6000 architecture. In IBM RISC' Sys-
tem/6000 Technology. IBM Corporation, Mechanics-
burg, Pennsylvania. Publication SA23-2619.

OeD, W. 1992. Cray Y-MP C90: System features
and early benchmark results. Parallel Computing,

18, 8 (Aug.), 947-954.

OEHLER, R. R. AND Brascen, M. W. 1991. IBM
RISC System/6000: Architecture and performance.
IEEE Micro, 11, 3 (June), 14-24.

OTTENSTEIN, K. J. AND OTTENSTEIN, L.. M. 1984.
The program dependence graph in a software devel-
opment environment. In HENDERSON, P., ED., Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software De-
velopment Environments, (Pittsburgh, Pennsylvania,

May). SIGPLAN Notices, 19, 5, 177-184.

Papua, D. aND WoLrE, M. J. 1986. Advanced
compiler optimizations for supercomputers. Com-

mun. ACM, 29, 12 (Dec.), 1184-1201.

Pabua, D. A., Kuck, D. J., aAND LAwrie, D.
1980. High-speed multiprocessors and compilation
techniques. TEEE Trans. Comput., C-29, 9 (Sept.),
763-776.

73

ParabporouLos, G. M. aNnD CULLER, D. E. 1990.
Monsoon: an explicit token-store architecture. In
Proceedings of the 17th Annual International Sym-
posium on Computer Architecture, (Seattle, Wash-
ington, May). Computer Architecture News, 18, 2,
82-91.

PETERSEN, P. M. anNnD Papua, D. A. 19907
Machine-independent evaluation of parallelizing
compilers. Technical Report 1173, Center for Super-
computing Research and Development, University of
Tllinois at Urbana-Champaign.

PeETTIS, K. AND HANsEN, R. C. 1990. Profile
guided code positioning. In Proceedings of the SIG-
PLAN Conference on Programming Language De-

sign and Implementation, (White Plains, New York,
June). SIGPLAN Notices, 25, 6, 16-27.

PorycHrRONOPOULOS, C. D. 1987a. Advanced loop
optimizations for parallel computers. In HousTIs,
E. N., PapaTHEODOROU, T. S., AND PoLy-
CHRONOPOULOS, C. D., EDS., Proceedings of the
First International Conference on Supercomputing,
(Athens, Greece, June). Springer Verlag, Berlin, Ger-
many, pp. 255-277.

PorycHrONOPOULOS, C. D. 1987b. Loop coalesc-
ing: A compiler transformation for parallel machines.
In Sauni, S. K., Ebp., Proceedings of the Interna-
tional Conference on Parallel Processing, (University
Park, Pennsylvania, Aug.). Pennsylvania State Uni-
versity Press, pp. 235-242.

PorvycHrRONOPOULOS, C. D. 1988. Parallel Pro-
gramming and Compilers. Kluwer Academic Pub-
lishers, Boston, Massachusetts.

PorLycHRONOPOULOS, C. D. AND BANERJEE, U.
1986. Speedup bounds and processor allocation for
parallel programs on a multiprocessor. In HWANG,
K. ET AL., EDS., Proceedings of the International
Conference on Parallel Processing, (St. Charles, Tlli-
nois, Aug.). TIEEE Computer Society Press, Wash-
ington, D.C., pp. 961-968.

PorvcHrRONOPOULOS, C. D., GIRKAR, M.,
HacuaiguaT, M. R., LEE, C. L., LEUNG, B., AND
SCHOUTEN, D. 1989. Parafrase-2: An environ-
ment for parallelizing, partitioning, synchronizing,
and scheduling programs on multiprocessors. In Pro-
ceedings of the International Conference on Parallel
Processing, volume TI, (University Park, Pennsylva-
nia, Aug.). Pennsylvania State University Press, pp.

39-48.



PorvcHroNoOPOULOS, C. D. anp Kuck, D. J.
1987. Guided self-scheduling: A practical schedul-
ing scheme for parallel supercomputers. IEEFE Trans.

Comput., C-36, 12 (Dec.), 1425-1439.

PucHa, W. 1991. Uniform techniques for loop opti-
mization. In Proceedings of the ACM International
Conference on Supercomputing, (Cologne, Germany,
June). ACM Press, New York.

Rau, B. AND FIsSHER, J. A. 1993. Instruction-level

parallel processing: History, overview, and perspec-
tive. J. Supercomp., 7, 1/2 (May), 9-50.

Ravu, B., YEN, D. W. L., YEN, W_, AND TOWLE,
R. A. 1989. The Cydra 5 departmental supercom-
puter: Design philosophies, decisions, and trade-offs.

Computer, 22, 1 (Jan.), 12-34.

RE1r, J. H. anD Lewis, H. R. 1986. Efficient
symbolic analysis of programs. J. Comput. Syst. Sci.,
32, 3 (June), 280-313.

RiNnarD, M. C., ScarLgs, D. J., aND Lam, M. S.
1993. Jade: A high-level machine-independent lan-
guage for parallel programming. Computer, 26, 6
(June), 28-38.

Riseman, E. M. anp FosTeEr, C. C. 1972.
The inhibition of potential parallelism by conditional
jumps. IEEE Trans. Comput., C-21,12 (Dec.), 1405—
1411.

SaBoT, G. AND WHOLEY, S. 1993. CMAX: A FOR-
TRAN translator for the Connection Machine system.
In Proceedings of the ACM International Conference
on Supercomputing.

SARKAR, V. 1989a. Determining average program
execution times and their variance. In Proceedings
of the SIGPLAN Conference on Programming Lan-
guage Design and Implementation, (Portland, Ore-
gon, June). SIGPLAN Notices, 24, 7, 298-312.

SARKAR, V. 1989b. Partitioning and Schedul-
ing Parallel Programs for Multiprocessors. Research
Monographs in Parallel and Distributed Computing.
MIT Press, Cambridge, Massachusetts.

SARKAR, V. AND HENNESSEY, J. 1986a. Compile-
time partitioning and scheduling of parallel pro-
grams. In Proceedings of the SIGPLAN Symposium
on Compiler Construction, (Palo Alto, California,

June). SIGPLAN Notices, 21, 7, 17-26.

SARKAR, V. AND HENNESSEY, J. 1986b. Parti-
tioning parallel programs for macro dataflow. In

74

Proceedings of the 1986 ACM Conference on LISP
and Functional Programming, (Cambridge, Mas-
sachusetts, Aug.). ACM Press, New York, pp. 202—
211.

SARKAR, V. AND THEKKATH, R. 1992. A gen-
eral framework for iteration-reordering transforma-
tions. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementa-
tion, (San Francisco, California, June). SIGPLAN
Notices, 27, 7, 175-187.

SCHEIFLER. 1977. An analysis of inline substitution
for a structured programming language. Commun.

ACM, 20, 9 (Sept.), 647-654.

SELKE, R. P. 1989. A rewriting semantics for
program dependence graphs. In Proceedings of the
Sizteenth Annual ACM Symposium on Principles
of Programming Languages, (Austin, Texas, Jan.).
ACM Press, New York, pp. 12-24.

SHEN, Z., L1, Z., AND YEW, P. 1989. An empirical
study on array subscripts and data dependences. In
Proceedings of the International Conference on Par-
allel Processing, volume TI; (University Park, Penn-

sylvania, Aug.). Pennsylvania State University Press,
pp. 145-152.

SiNnGgH, J. P., WEBER, W.-D., aAND GuprTaA, A.
1992. SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News, 20, 1
(Mar.), 5-44. Also available as Stanford University
technical report CSL-TR-92-526.

SiTES, R. L., ED. 1992. Alpha Architecture Refer-
ence Manual. Digital Press, Bedford, Massachusetts.

SMITH, B. 1978. A pipelined, shared resource MIMD
computer. In Proceedings of the International Con-
ference on Parallel Processing, (Bellaire, Michigan,
Aug.). TEEE, New York, NY, pp. 6-8.

SoHI, G. S. AND VaJAPAYEM, S. 1990. Instruc-
tion issue logic for high-performance, interruptable,
multiple functional unit, pipelined computers. IFEE

Trans. Comput., C-39, 3 (Mar.), 349-359.

STENSTROM, P. 1990. A survey of cache coherence
schemes for multiprocessors. Computer, 23, 6 (June),
12-24.

SUN MicrRosYSTEMS. 1991. SPARC Architecture
Manual, Version 8. Part No. 800-1399-08.

SzyMANSKI, T. G. 1978. Assembling code for ma-
chines with span-dependent instructions. Commun.

ACM, 21, 4 (Apr.), 300-308.



TanG, P. AND YEw, P. 1990. Dynamic proces-
sor self-scheduling for general parallel nested loops.

IEEE Trans. Comput., C-39, 7 (July), 919-929.

TArJAN, R. E. 1979. Applications of path com-
pression on balanced trees. J. ACM, 26, 4 (Oct.),
690-715.

THINKING MACHINES CORPORATION. 1989. Con-
nection Machine, Model CM-2 Technical Summary.

TJADEN, G. S. AND FLynNN, M. J. 1970. Detection
and parallel execution of parallel instructions. TEEFE

Trans. Comput., C-19, 10 (Oct.), 889-895.

TowLE, R. A. 1976. Control and Data Dependence
for Program Transformations. PhD thesis, Univer-
sity of Tllinois at Urbana-Champaign, (Mar.). Tech-
nical Report 76-788.

TrioLET, R., IR1IGOIN, F., AND FEAUTRIER, P.
1986. Direct parallelization of call statements. In
Proceedings of the SIGPLAN Symposium on Com-
piler Construction, (Palo Alto, California, June).
SIGPLAN Notices, 21, 7, 176-185.

UrrMman, J. D. 1973. Fast algorithms for the elimi-
nation of common sub-expressions. Acta Informatica,

2,3 (July), 191-213.

vON HANXLEDEN, R. AND KENNEDY, K. 1992.
Relaxing SIMD control flow constraints using loop
transformations. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, (San Francisco, California, June).

SIGPLAN Notices, 27, 7, 188—199.

WarrL, D. W. 1986. Global register allocation at
link time. In Proceedings of the SIGPLAN Sympo-
stum on Compiler Construction, (Palo Alto, Califor-

nia, June). SIGPLAN Notices, 21, T, 264-275.

WarL, D. W. 1991. Limits of instruction-level
parallelism. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, (Santa
Clara, California, Apr.). SIGPLAN Notices, 26, 4,
176-188.

Wanag, K. 1991. Intelligent Program Optimiza-
tion and Parallelization for Parallel Computers. PhD
thesis, Purdue University, (Apr.). Technical Report
CSD-TR-91-030.

Wanag, K. AND GanNoN, D. 1989. Applying Al
techniques to program optimization for parallel com-
puters. In Hwana, K. AND DEGroOT, D., EDS.,

75

Parallel Processing for Supercomputers and Artificial
Intelligence, chapter 12. McGraw Hill Book Com-
pany, New York, New York.

WEDEL, D. 1975. FORTRAN for the Texas Instru-
ments ASC system. In Programming Languages and
Compilers for Parallel and Vector Machines, (New
York, New York, Mar.). SIGPLAN Notices, 10, 3,
119-132.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Con-
stant propagation with conditional branches. ACM
Trans. Program. Lang. Syst., 13, 2 (Apr.), 181-210.

Worr, M. E. anD Lam, M. S. 1991. A loop trans-
formation theory and an algorithm to maximize par-
allelism. TEFEFE Trans. Parallel Distrib. Syst., 2, 4
(Oct.), 452-471.

WorLrE, M. J. 1989a. More iteration space tiling. In
Proceedings of Supercomputing 89, (Reno, Nevada,
Nov.). ACM Press, New York, pp. 655-664.

WoLFrE, M. J. 1989b. Optimizing Supercompilers for
Supercomputers. Research Monographs in Parallel
and Distributed Computing. MIT Press, Cambridge,
Massachusetts. Based on the author’s Ph.D. thesis
at the University of Illinois at Urbana-Champaign,
1982.

WoLrE, M. J. aAND TsENnG, C. 1992. The power test
for data dependence. TEFEE Trans. Parallel Distrib.
Syst., 3, 5 (Sept.), 591-601.



