snbnritted to ACM Computing Surveys

RAID: High-Performance, Reliable Secondary Storage

Peter M. Chen
Compuiter Sclence and Engineering Division
B epartment afﬂ'fcfn'ra.f Engineering and Computer Science
L3 Beal Avernie

Limtversity anichigml

Ann Arbor, MI48109-2122

Edward K. Lee
DEC Systems Research Center
13 Lytton Avenie
Pelo Alto, CA 24304 - 10484

Garth A. Gihson
School of Computer Science
Camegie Mellon University

S5kK) Forbes Averie
Plttsbuirgh, PA {5213-3881

Randy H. Katz
Computer Sclence Division
B epartment afﬂ'fcfn'ra.f Engineering and Computer Science
571 Evans Hail

Limiversity af-lf'uﬂfbnuiu

Berkeley, CA 34720

David A. Patterson
Computer Sclence Division
B epartment afﬂ'fcfn'ra.f Engineering and Computer Science
571 Evans Hail
Limiversity af-lf'uﬂfbnuiu
Berkeley, CA 34720

Abstract: Disk arravs were proposed in the 1980s as a way 1o use parallelism between
multiple digks to improve aggregate IO performance. Today they appear in the product
lines of most major computer manufacturers. This paper gives a comprehensive over-
view of disk arrays and provides a framework In which to organize current and
future work. The paper first introduces disk technology and reviews the driving forces
that have popularized disk arrays: performance and reliability. It then disensses the two
architectural techniques nsed in disk arraye: striping across multiple diske to inprove per-
formance and redundancy to improve reliability. Mext, the paper describes seven disk
array architectures, called RAID (Redundant Arrays of Inexpensive Disks) levels 0-6 and
compares their performance, cost, and reliability. It goes on to discuss advanced research
and implementation topics such as refining the basic RAID levels to improve perfornmnce
and designing algorithms to maintain data consistency Last, the paper desecribes five disk
array prototypes or products and discusses future opportunities for research. The paper
includes an annotated bibliography of disk array-related literatore.

Content indicators: disk array, RAID, parallel 170, storage, striping, redondancy

LTI L) TS 1

2 BA TR R I e 3
21 Dhisk Termmologry 3

2.2 Data Pathes .o - 5

23 Technolopy Trends...... B

3 DI AR RAY BARI S e B
31 Data Striping and Redvndancy - B

32 Bosic RAID Opanizations B

321 HNoo-Fedundont (FATD Level U0 i s s s i s s 10

o o B 1 T = T O 10

323 Memory-Style BOC (RATD Leve]l 2 e i e s s 12

324 Bit-Interierved Porty (RAID Lavel 3l s s e s e s 12

325 Block-Interdemed Pocty (BAID Level 4] v mmmmmmmm s mmmm e e 13

326 EBlock-Interlemved Distobuted-Panty (RAID Level 5o s 13

327 PHJ Redomdancy (RAID LEVE]D) o s sasese e eseies 14

3.3 Prerformmmet: micl Tt o BO0IS 1 v vxveverm s e e e ea e e e 5202 01000 0 15

331 Ground Bules ond OBSEDVIERNES e e e i i v e e s e e 15

3.3.T {DUTH[IMTISENIES 1 vr e e v e e e e 0 8 0 S 17

34 TR T IE TN 21t 0 0 £ 2 19

34 Bosic Relimtiliar e o e e o e s i i e e e e e e e 19

342 System Crashes and Paty Inconsistency ... S j|

343 Uncomectablk Bit-Boocs ... IO .

344 Correlsted Disk Friluoes

345 Relinbility Revisited. —

3486 Summary sod Conchesions.. S |

3.5 Implementatyon Conside ratons O

351 Avoldog Stk Dot .

352 BRepgeoersting Padty afier o System Crash

353 Operatog with o Faled Disk SO '+

3.54 Orthoponal RAID.....)

4 ADVANCED TOPITS e 32
4.1 Improving Small Wite Pedormance for BATD Leve] 5 SO .

41.] Bufferng and Caching w32

412 Flosting Pty SO

413 Pority Logging S =

42 Declustered Parity....... I T

4.3 Explodtmg On-Lave 5pore Disks vorsean 3B

4.4 Data Sriping in Disk Armys . . |

4.5 Pegormmee pnd Rehnbibity Modehng R

3 L e SR 44
A | Thinking Machines Corporation ScaleAmay . S -

5.2 Stormpe Tek Ioeberg 9200 Disk Amay Subsystem ... S

5.3 TickerTATF Dt olviesh —

54 The RATD-TT Stomgs Server.. R

5.5 IBM Higar Disk Army Controdler...... R 4

6 OFPORTUNITIES FORFUTURERESEARCH. ... 50
6.1 Experience with Disk Amays . . Y |

02 Interactyon among Mew Technologies . |
Ocinber 29, 1953 RAID; High-Petformaies, Relisble 3econdacy Stotape i

6.3 Scalabibity, Massively Porallel Compoters, ood Small DHSKS .o s s e b

OO LI EIONE s 33
ACEMNOWLEDGEMENTS .. 33
ANNOTATED BIBLIOGRAPHY . 53

Oecinber 29, 1993 RAID; High-Petformaies, Relisble 3econdacy Stotape il

1 INTRODUCTION

In tecent years, interest in RATD, Redundant Arrays of Inexpensive Disks', has grown explo-
sively. The driving force behind this phenomenon is the sustained exponential improvements in
the performance and density of semiconductor technology, Improvements in semiconductor tech-
nology make possible faster microprocessors and latger primary memoty systems which in tumn
require latger, higher-performance secondary storage sysiems. More specifically, these improve-
ments on secondary storage sysiems have both quantitative and qualitative consequences,

On the quantitative side, Amdahl’s Law [Amdahl6T] predicts that large improvements in
macroprocessors will result in ondy marginal improvements in overall sysiem performance unless
accompanied by corresponding improvements in secondary storage systems. Unfortunately, while
RISC mictoprocessor performance has been improving 30% or more per yeat [Patterson®d, pg.
27, disk access times, which depend on improvements of mechanical systems, have been improvy-
ing less than 10% per yeat. Disk transfer rates, wlich track improvements in both mechanical sys-
tems and magnetic media densities, have improved at the faster rate of approximately 20% per
year. Assuming that serniconductor and disk technologies continue their current trends, we must
conclude that the performance gap between microprocessots and magnetic disks will contine to
widen.

In addition to fhe quantitative effect, a second, perthaps mote imponant, qualitative effect is
driving the need for higher-performance secondary storage sysiems, As microprocessors become
faster, they make possible new applications and greatly expand the scope of existing apphcations.
In particular, applications such as video, hypenext and multi-media are becoming commaon. Even
in existing apphcation ateas such as compuier-aided design and scientific computing, faster micro-
processors make it possible to tackle new problems requiring larger datasets. This shift in applica-
tions along with & wend wward large, shared, high- performance, network-based storage systems is
causing us to reevaluate the way we design and use secondary siorage sysiems,

1. Becmese of the mestrictiveness of “Inexpensive”™, BAID & sometimes soid o stond for “Redondant Amoys
of Independent Disks™,

October 29, 1553 1

Drigk arrays, which otganize multiple independent disks into a latge, high-performance |ogical
disk, are a natural solution (o the problem. Disk arrays stripe data across multiple disks and access-
ing them in parallel to achieve both higher data oansfer rates on large data accesses and higher 110
rates on small data accesses. Data striping also results in uniform load balancing across all of the
disks, eliminating hot spots that otherwise saturate a small number of disks while the majority of
disks sit idle.

Latge disk arrays, however, are highly vulnerable to disk failures; a disk array with a hundred
disks is a hundred times more likely to fail than a single disk. An MTTF (mean-time-to-failure) of
200,000 hours, or approximately twenty-three years, for a single disk implies an MTTE of 2000
hours, of approximately three months, for a disk array with a hundred disks. The obvious solution
is to employ redundancy in the form of error-comecting codes to tolerate disk Failures. This allows
a redundant disk array to avoid losing data for much longer than an unprotected single disk,
Redundancy, however, has negalive consequences. Since all write operations must update the
redundant information, the performance of writes in redundant disk arrays can be sigmificantly
worse than the performance of writes in non-redundant disk arrays. Also, keeping the redundant
information consistent in the face of concumrent I operations and system crashes can be difficult.

A number of different data striping and redundancy schemes have been developed. The com-
binations and amrangements of these schemes lead (o a bewildering sef of oplions for users and
designers of disk arrays. Bach option presents subtle radeoffs between reliability, petformance
and cost that are difficult wo evaluate without understanding the aliernatives. To address this prob-
lemn, this paper presents a systematic wiorial and survey of disk amays. We describe seven basic
ity, performance and cost, We draw atention to the general principles goveming the design and
configuration of disk arrays as well as practical issues that must be addressed in the implementa-
tion of disk amrays. A later section of the paper describes optimizations and vatiations to the seven
basic disk-array organizations. Finally, we discuss existing research in the modeling of disk arrays
amd Frwitful avenues for future research. This paper should be of valee 1o anyone interested in disk
arrays, including smdents, researchers, designers and wsers of disk arrays.

October 29, 1553 Z

2 BACKGROUND

This section provides basic background matetial on disks, 170 datapaths, and disk technology

irends for readers who are unfamdliar with secondary slorage sysiems,

2.1 Disk Terminology

Figure 1 illustrates the basic components of a simplified magnetic disk dove, A disk princi-
pally consists of a sei of platters coated with a magnetic medium rotating at a constant angular
velocity and a set of disk arms with magnetic read wiite hegds which are moved radially across the
platters’ surfaces by an aciator, Onee e heads are correctly positioned, data is read and written
in small arcs caled sectors on the planers” surfaces as the plamers rotae relative to the heads.
Althowgh all heads are moved collectively, in almost every disk drive, only a single head can read
or write data at any given time. A complete circular swath of data is referred to as a rack and each
platter’s surface congists of concentric rings of tracks. A veriical collection of racks at the same
radial position is logically referred (o as a cvlinder. Sectors are numbered so that a sequential scan

of all sectors raverses the entire disk in the mindmal possible time,

Given the simplified disk described abowe, disk service tdmes can be broken into thiee ph-

Mary components: seek fime, rotational larercy, and Aot fransfer e, Seek time i3 the amount of
Inner Track Seitur Head

- Actnator

Figure 1: Disk Terminology, Heads reside on arms which are positioned by actuators, Tracks
are concentric rings on a plaiter, A sectior is the basic undt of reads and writes, A cylinder is a
stack of racks at one actuator position. An HDA (head-disk assemblv) is evervildng in the
figure plus the aittight casing. In some devices it is possible o wansfer data from muldple
surfaces simultanecusly, but this is both rare and expensive. The collection of heads that
participate in a single logical transfer that iz spread over multiple surfaces is called a head

groug.

October 29, 1553 3

time needed o move 4 head o the correct radial position and typically ranges from ome Lo thirty
milliseconds depending on the seek distance and the particular disk. Rotational larency is the
amount of time needed for the desired sector wo rotate under the disk head. A full rotation time for
disks currently vary from eight to twenty-eight milliseconds. The data transfer time is dependent
on the rate at which data can be transferred toffrom a plater’s surface and is a function of the plat-
ter’s rate of rotation, the density of the magnetic media, and the radial distance of the head from
the center of the plaer—some disks use a technique called zone-bit-recording 1o stote more data
on the longer outside tracks than the shorter inside tracks. Typical data wransfer rates range from
one to five megabyies per second. The seek time and rotational latency ate sometimes collectively
referred 1o as the head positioning tme. Table 1 tabulates the statistics for a typical high-end disk
available in 1993,

The slow head positioning time and fast data wransfer rate of disks lead 1o very different per-
formance for a sequence of accesses depending on the size and relative location of each access.
Suppose we need to ransfer 1 MB from the disk in Table 1, and the data is laid out in two ways:
seqquential within a single cylinder ot randomby placed in 8 KB blocks, In either case the time for

Form FectooThsk Diameter | 5,25 inch
Copacity 2.8 GB
Cylmders 2627
Tracks Per Cylinder 21
Sectors Per Trck =05
Bytes Por Sector 512
Full Rotation Time 11.1 ms
Misimom Sk (7
{single cylinder)
m[il ;Hlind:tn finder) 1.0 ms
; Seck 225 ms
ifull stroke seck)
Data Trensfer Rate = 4,6 MB/s

Table 1: Specifications for the Senpote STA301N Elite-3 SCS1 Disk Dirive, Aversge soek in this toble
B caloulated mssweming o unform distobution of pocesses. This 15 the standecd way moodacterers eport
pverige sock tmes. In reakity, messurements of prochection systems show tht spatinl locality significanthy
Jowers the effective pvemges sock distooce [Hennessy 30, pe. 5591,

October 29, 1553 4

the actual data transfer of 1 MB is about 200 ms. But the time for positioning the head goes from
about 16 ms in the sequential layout to about 2000 ms in the random layout. This sensitivity w the
workload is why applications are caegorized as iigh data rare, meaning minimal head positioning
via large, sequential accesses, of figh (AQ rate, meaning lots of head positioning via small, more
random accesses.

2.2 Data Paths

A hierarchy of industry standard interfaces has been defined for transferring data recorded on
A disk platter”s surface o or from a host computer. In this section we review the complete datapath,
from the disk 1o a wsers's application (Figure 21 We assume a read operation for the purposes of

On the disk platter’s surface, information is represented as reversals in the direction of stored
magnetic fields. These “flux reversals” are sensed, amplified, and digitized into pulses by the low-
est-level read electronics. The protocol ST306/412 is one standard that defines an interface to disk
systems at this lowest, most inflexible, and technology-dependent level. Above this level of the
read electronics path, pulses are decoded to separate data bits from tming-related flux reversals.
The bit-level ESDI and SMD standards define an interface at this more flexible, encoding-indepen-
dent level, Below the highet, mosi-flexible packet-lewel, these bits are aligned into byies, error cot-
tecting codes apphied, and the extracted data delivered to the host as data blocks over a peripheral
bus interface such as SCSI (Small Computer Standard Interface), or IP1-3 (the third level of the
Intelligent Penipheral Interface). These steps ate performed teday by intelligent on-disk control-
lers, which often include speed matching and caching “track buffers™. SCSI and IP1-3 also include
a lewel of data mapping: the computer specifies a logical block number and the controller embed-
ded on the disk maps that block number to a physical cylinder, wack, and sector. This mapping
allows the embedded disk controller to avoid bad areas of the disk by remapping those logical
blocks that are affected 1o new areas of the disk,

The wopology and devices on the data path between disk and host computer varies widely
depending on the size and type of I'O system. Mainframes have the tnchest IO systems, with many

October 29, 1553 5

devices and complex interconnection schemes (o access them. An IBM channel path, the st of
cables and associated elecironics that transfer data and control inform aion between an 100 device
and main memaory, consisis of a chanrel, a sfomage divector, and a head of sming. The collection of

dizsks that shate the same pathway o the head of siting i3 called a steing. In the workstationsfile

CPU

DIy

IP1-3, SCEI-1, SCE1-2, DEC CIMSCP

A0 Comteoller
of Host-Bus Adapiot
ot Channel Processor

IF1-2, SCSI-1, DEC 5D,
IEM Channel Path (data blocks)

Siring
Dnsk Controller! Dnsk Controller
Storage Director Storage Director
& Track Buffers & Track Buffers

Formatiet Formanet
I | Sy, ESDM (buts)

| Clocking | | Clocking |

STS06, ST412 (pulses)

MAZDELC magnetc
media media

Figure 2: Host-to-Device Pathways. Data that is read from a magnetic disk must pass through
many layers on its way to the requesting processor. Each dashed line marks a standard interface.
The lower interfaces, such as 5T506 deal more closely with the raw magnetic fields and are
lnghly technology dependent. Higher layers such as SC51 deal in packets or blocks of data and are
more technology independent. A string connects multiple disks to a single I'0 controller

October 29, 1553 &

server wotld, the channel processor is usually called an 100 controllers of host-bus adapior (HBA)
and the functionality of the storage director and head of string is contained in an embedded con-
troller on the disk drive. As in the mainframe world, the use of high-level peripheral interfaces
such as SCSI and TPI-3 allow multiple disks to share a single peripheral bus or string.

From the host-bus adapior, the data is transferred via direct memory access, over a sysiem
bus, such as VME, 5-Bus, MicroChannel, EISA, or PCL, to the host operating system’s buffers, In
most operating systems, the CPU then performs a memory 10 memoty copy over a high-speed
memaory bus from the operating system buffers to buffers in the application’s address space.

2.3 Technology Trends

Much of the motivation for disk amays comes from the current rends in disk technology. As
Table 2 shows, magnetic disk drves have been improving rapidly by some metrics and hardly at
all by other metrics. Smaller distances between the magnetic read/write head and the disk surface,
increased the recording density on the disks, This increased density has improved disks in two
wiays. First, it has allowed disk capacities to stay constant of increase, even while disk sizes have

1993 Historical Eaote
of Improvement
S0-150
Areal Densiy Mbitsfsa, inch Z7% per yeor
Linenr Densiy mml"i] 13% per yoor
Inter-Trock Density | 200 3990 10% per yeor
Capocity
3.5 fiorm factoch 100-2000 MB Z7% per yeor
Tronsfer Rate 3-4 MBS 22% per yoor
Seck Time 7-20 ms B% per yoar

Toble 2: Trends in Dhsk Techoolopy. Maognesic disks are smproving capsdly in density omd copacity, but
meore slowly 1n performionce. Arenl density is the recording density per squore inch of magnetc medin, In
1989, IBM demonstrated o 1 Ghitfsg. inch density in s laboratory eoviromment. Linear density 15 the
mumber of bits wotten aloog o track. Inter-track density refers o the pomber of concentnc fmcks oo a
single plotter.

October 29, 1553 T

decreased from 5.257 in 1983 to 3.5” in 1985 10 2.5 in 1991 1o 1.8” in 1992 1o 1.3" in 1993, Sec-
ond, the increased density, along with an increase in the rotational speed of the disk, has made pos-
sible a substantial increase in the wansfer rate of disk drives, Seek times, however, have improved
very linle, decreasing from approximately 20 ms in 1980 to 10 ms today. Rotational speeds have
increased o a similar rate from 3600 revolutions per minute in 1980 to 5400-7200 wday.

3 DISK ARRAY BASICS

This section examines basic issues in the design and implementation of disk arrays. In partic-
ulas, we examine e concepts of data striping and redundancy; basic RATD orpanizations; perfor-
mance and cost comparisons between the basic RATD organizations; the reliability of RAID-based
systems in the face of system crashes, uncotrectable bit-etrors and comelated disk failures; and
finally, issues in the implementations of block-interleaved, tedundant disk arrays.

3.1 Data Striping and Redundancy

Redundant disk amrays employ two onhoponal concepts: daia siriping for improved perfor-
mance and redundancy for improved reliability. Data striping wansparently distributes data over
multiple disks to make them appear as a single Fast, large disk. Striping improves aggregate 1/0
performance by allowing multiple 100s to be serviced in patallel. Thete are two aspects to this pat-
allelism. First, multiple, independent requests can be serviced in parallel by sepatate disks. This
decreases the queveing time seen by IO requests. Second, single, multiple-block requests can be
serviced by multiple disks acting in coordination. This increases the effective transfer rate seen by
a single request. The mote disks in the disk amay, the larger the potential performance benefits.
Unfortunately, a large number of disks lowers the overall reliability of the disk array, as mentioned
before. Assuming independent failures, 100 disks collectively have only 1/100th the reliability of a
single disk. Thus, redundancy i3 necessary (o toletate disk failures and allow continuous opetation
without data loss.

We will see that the majotity of redundant disk areay organizations can be distingwished based
on the pramularity of data intetleaving and e method and patetn in which the redundant informa-

October 29, 1553 B

tion is computed and distributed actoss the disk array. Data intetleaving can be characterized as
either fine-grained or coarse-grained. Fine-grained disk arrays concepiually interleave data at a rel-
atively small unit such that all I/O requests, regardless or their size, access all of the disks in the
dizk atray. This resulis in very high data wansfer rates for all TR requests but has the disadvantage
that ondy one logical M0 request can be in service at any given time and all disks must waste tme
positionding for every request. Coarse-grained disk arrays intetleave data at a relatively large unit
50 that small IO requests need access only a small number of disks but large requests Can acoess
all the disks in the disk array. This allows multiple small requests (o be serviced simulitaneously
but still allows large requests the benefits of using all the disks in the disk array.

The imcorporation of redundancy in disk arrays brings up two somewhat onhogonal prob-
lems. The first problem is selecting the method for computing the redundant information. Most
redundant disk arrays (oday use patify bui there are some that use Hamming codes or Reed-
Solomon codes. The second problem is that of selecting a method for distributing the redundant
information across the disk array. Although there are an unlimdted number of paems in which
redundant information can be distributed, we roughly classify these pattermns into two different dis-
mibutions schemes, those that concentrate redundant information on a small number of disks and
those that distributed redundant information uniformly across all of the disks. Schemes that uni-
formly distribute redundant information are generally more desirable because they avoid hot spois
and other load balancing problems suffered by schemes that do not uniformly distribute redundant
information, Altheugh the basic concepis of data siriping and redundancy are conceptually simple,
selecting between the many possible data striping and redundancy schemes involves complex
radenffs between reliability, performance and cost.

3.2 Basic RAID Organizations

This section describes the basic RAID, Redundant Amays of Inexpensive Disks, ofganiza-
tons which will be used as the basis for funher examinations of performance, cost and reliability
of disk arrays. In addition to presenting RATD levels 1 through 5 which first appeared in the land-
mark paper by Patterson, Gibson and Katz [Paterson88], we present two other EAID organiza-

October 29, 1553 K

tions, RATD levels 0 and 6, which have since become generally accepted’. For the benefit of those
unfamiliar with the original numerical classification of RAID, we will use English phrases in pref-
erence 1o the numetical classifications. It should come as no surprise o the reader that even the
original authors have sometimes been confused as wo the disk array otganization referred o by a
panicular RAID kevel! Figure 3 schematically illustrates the seven RAID organizations,

3.1 Non-Redundant (RAID Level 0)

The non-redundant disk amay, or BAILY level 0, has the lowest cost of any redundancy
scheme because it does nof employ redundancy at all. This scheme offers the best write perfor-
mance since it never needs to update redundant information. Surprisingly, it does not have the best
read performance, Redundancy schemes such & mirroring, which duplicate data, can perform bet-
ter on reads by selectively scheduling requests on the disk with the shonest expected seek and roda-
tional delays [Biton88]. Without redundancy, any single disk failure will resuli in data-loss. Non-
redundant disk amays are widely used in supercomputing environments whete performance and
capacity, rather than reliability, are the primary concerms.

3.2.2 Mirrored (RAID Level 1)

The waditional solution, called sifrroring of shadowikg, wses twice as many disks as a mon-
redundant disk array [Binon88]. Whenever data is written to a disk the same data is also written to
a redundant disk, so that there are always two copies of the information, When data is read, it can
be retrieved from the disk with the shorter queneing, seek and rotational delays [Chen®0a). If a
disk fails, the second copy is used to service requests. Mirtoring is frequently wsed in database
applications where avadlability and transaction rate are mote important than stotage efficiency
[Gray®0].

1. Strctly speaking, BATD Lavel 015 oot o type of redundant array of inexpensive disks since it stores po
Err-Correctng codes,

October 29, 1553 1

SEEE

Non-Redundant (RAID Level 0)

SEEEEEEE

Mirrored (RATD Leved 1)

S |

Memory-Style BOC (RATD Level 2)

o |

Bit-Interleaved Parity (RAID Level 3)

—EEEE

Block-Inetleaved Parity (EAID Level 4)

SEEEE

Block-Interbeaved Distributed-Pamty {(RATD Level 5)

SEEEEES

P4+ Redundancy (RAID Level 6)

i RRAID Levels 0 Through 6. All RAID levels ate 1llustrated at a user capacity of four

October 29, 1553 11

3213 Memory-Style ECC (RAID Level 2)

Memory systems have provided recovery from failed components with much less cost than
mirroring by using Hamming codes [Peterson72]. Hamming codes contain panty for distinct over-
lapping subsets of components, In one version of this scheme, four data disks require tree tedun-
dant disks, one less than mirroring. Since the number of redundant disks is proportional to the log
of the total number of disks in the system, storage efficiency increases as the number of data disks

ICTeASeS,

If a single component fails, several of the parity components will have inconsistent values,
and the failed component is the one held in common by each incomrect subset, The lost information
is recovered by reading the other components in & subset, inchuding e parity component, and seg-
ving the massing bit (o 0 or 1 to create twe proper panty value for that subsat. Thus, multiple redun-
dant disks are needed o identify the failed disk, but only one is needed 0 recower the lost
inf .

Readers unfamiliar with parity can think of the redundant disk as having the sum of all the
data in the other disks. When a disk fails, you can subtract all e data on the good disks from the
parity disk; the remaining information must be the missing information. Parity is simply this sum
moddulo two,

3.1.4 Bit-Interleaved Parity (RAID Level 3)

Dne can improve upon memoty-siyle ECC disk arrays by noting that, unlike memoty compo-
nent failures, disk controllers can easily identify which disk has failed. Thus, one can use a single
parity disk rather than a set of parity disks (o recover lost information.

In a bit-intetleaved, patty disk array, data is concepiually interleaved bit-wise over the data
disks, and a single party disk is added to tolerate any single disk failure, Each read request
accesses all data disks and each write request accesses all data disks and tee parity disk. Thus, only
one request can be serviced At a time, Because the parity disk contains only parity and no data, (e
parity disk cannot panicipate on reads, resuling in shightly lower read performance than for redun-

October 29, 1553 12

dancy schemes which distribute the parity and data over all disks. Bit-interleaved, parity disk
arrays are frequentdy used in apphications that require high bandwidth but pot high 100 rates. They
are also simple to implement.

3.12.5 Block-Interleaved Parity (RATD Level 4)

The block-intetleaved, parity disk array is similar 1o the bit-interleaved, parity disk array
except that data is interleaved across disks in blocks of arbitrary size rather than in bits. The size of
these blocks is called the siriping unit [Chen®0b]. Read requests smaller than the striping unit
access only a single data disk. Write requests must update the requested data blocks and must also
compute and update the parity block. Por large writes that towch blocks on all disks, panty is easily
computed by exclusive-or"ng the new data for each disk, For small write requests that update only
one data disk, parity is computed by noting how the new data differs from the old data and apply-
ing those differences (o the parity block. Small wiite requests thus require four disk IADs: one (o
write the new data, two o read e old data and old parity in order 10 compute the new parity, and
one to write the new parity. This is referred (o as a read-modify-write procedure. Because a block-
interleaved, parity disk array has only one parity disk, which must be updated on all write opera-
tions, the panty disk can easily become a bottlenack. Because of this limitation, the block-inter-
leaved distributed-parity disk array is universally preferred over the block-interleaved, party disk

ATTAY.

3.2.6 Block-Interleaved Distributed-Parity (RAID Level 5)

The block-interleaved distributed-parity disk amay eliminates the parity disk bottleneck
present in e block-interleaved, parity disk array by distributing the parity uniformly over all of
the disks. An additional, frequently overlooked, advantage to distributing the parity is that it also
distributes data over all of the disks rather than all but one. This allows all disks to participate in
servicing read operations in contrast to redundancy schemes with dedicated parity disks in which
the parity disk cannol participate in servicing read requests. Block-intetleaved distributed-parity
disk arrays have one of the best small read, large read and large write performance of any redun-
dant disk array. Small write requests ate somewhat inefficient compated with redundancy schemes

October 29, 1553 13

such as mirroring, howewer, due (o the need to perform read-modify-write operations (o update
parity, This is the major performance weakness of EAID level 5 disk arrays.

The exact method used to distribute parity in block-interleaved distributed-parity disk arrays
can have an impact on performance. Figure 4 illustrates the best patty distibution of those inves-
tigated by in [Lee91b], called the lefi-symmetric parity distribution. A useful propenty of the left-
symmetnic parity distribution is that whenever vou traverse the striping units sequentially, you will
access each disk once before accessing any disk twice, This property reduces disk conflicts when
servicing large requests.

3.2.7 P+() Redundancy (RAID Level &)

Parity is a redundancy code capable of comrecting any sfagle, self-identifving failute. As
latger disk atrays are considered, however, it is desirable (0 use stronger codes that can tolerate
multiple digk failures, Moreover, when a disk fadls in a parity protected disk array, recoveting the
contents of the failed disk requires successfully reading the contents of all non-failed disks, As we
will see in Section 3.4, the probability of encountering an uncomectable read error during recovery
eTror-cottecting codes,

Figure 4t RAID level 5 Parity Placements. Bach square comresponds 1o a stripe wnit, Bach
column of squares corresponds to A disk. PO computes the parity over stripe umits 0, 1, 2 and 3;
Pl computes parity over stripe units 4, 5, & and 7, eic. Lee [Lee91b] shows that the lefi-
symmettic parity distribution has the best performance, Only the mindmum repeating pattern is
shown.

October 29, 1553 14

One such scheme, called P+ redundancy, uses BEeed-Solomon codes 1o protect against up 1o
twao disk failures using the bare minimum of two redundant disks. The P+ redundant disk arrays
are structurally very similar 1o the block-interleaved distributed-parity disk arrays and operate in
much the same manner. In panicular, P+ redundant disk arrays also perform small write opera-
tons using a read-modify-write procedure, except that instead of four disk accesses per write
requests, P+0) redundant disk armrays require six disk accesses due (o the need o update both the
Prand "Q) information.

3.3 Performance and Cost Comparisons

The three primary metrics in the evaluation of disk arrays are reliability, performance and
cost. BAID levels 0 theough 6 cover a wide range of tradeoffs between these metrics. It is impor-
tant to consider all deee metnics to fully understand the value and cost of each disk array organiza-
ton, In this section, we compare BATD levels 0 through & based on performance and cost, The

3.3.1 Ground Rules and Ohservations

While there are only three primary metrics in the evaluation of disk atvays (reliability, perfor-
mange and cost), here are many different ways Lo measure each mettic and an even larger number
of ways of using them. Por example, should performance be measuted in 08 per second, bytes
per second, or response time? Would a hybtid metric such as I80s per second per dollar be more
appropriate? Onee a metric is agreed upon, should we compare systems at the same cost, the same
total user capacity, the same performance, of the same reliability? The method one uses depends
latgely on the purpose of the compatison and the intended use of the systerm. In time-sharing appli-
cations, the primary metric may be user capacity per dollar; in ransaction processing applications
the primary metric may be 1/0s per second per dollar; and in scientific apphcations, the primary
metric may be bytes per second per dollar. In cenain heterogeneous systems, such as file servers,
both IO per second and bytes per second may be impomant. In many cases, these metrics may all
be conditioned on meeting a reliability threshold,

October 29, 1553 15

Most lagge secondary storage systems, and disk arrays in pamicular, are throughput ofented.
That is, we are generally more concerned with the aggregate throughput of the system than, for
example, its response tme on individual requests (as long as fequests are satished within a speci-
fied time Hmit). Such a bias has a sound technical basis: as echikques such as asvnchronous 160,
mote impotiant relative to response tme., In other words, maximum theoughput, especially on tan-
dom 170 requests, is a "hard”™ performance mettic which is difficult to improve by using software
techniques,

In throughput-oriented systems, performance can polentially increase linearly as additional
components are added, if one disk provides thirty 1010s per second, two should provide sixty I/Os
per second, Thus, in comparing the performance of disk arrays, we will normalize the performance
of the system by its cost, In other words we will use performance mettics such as I/0s per second
pet dollar rather than the absolute number of TA0s per second,

Even after the meitics are agreed upon, one must decide whether o compare sysiems of
equivalent capacity, o8t or some olher metric, We chose o compare svstems of aguiaslens file
capaciiy where file capacitv is the amount of information the file system can store on the device
and excludes the storage used for redundancy., Comparing systems with the same file capacity
makes it easy o choose equivalent workloads for two different redundancy schemes, Were we 0
compare systems with different file capacities, we would be confronted with tough choices such as
how a wotkload on a system with user capacity X maps onto a system with siotage capacity 7K.

Finally, there is currently much confusion in comparing RAID levels 1 through 5. The confu-
sion atises because a BAID level sometimes specifies not a specific fmplenentaiion of a sysem
bt rather its configuration and use. For example, a BATD level § disk array (block-intetleaved dis-
tributed- parity) with a parity group size of two is equivalent to RATD level 1 {mirroring) with the
exception that in a mirrored disk armeay, cenain disk scheduling optimizations on reads are per-
formed that generally are not implemented for RAID level 5 disk arrays. Analogously, a RATD

lewel 5 disk artay can be configured 1o operate equivalently 1o a RAID level 3 dizsk array by choos-

October 29, 1553 I&

ing &umnit of data siriping such that the smallest unit of array access always accesses a full paricy
siripe of data In other words, EATD level 1 and BEATD level 3 disk arrays can be viewed as a sub-
class of RAID lewel 5 disk arrays. Since RAID level 2 and EATDY level 4 disk arrays are, practically
speaking, in all ways inferior to RATD bevel 5 disk arrays, the problem of selecting among RAID
lewels 1 through 5 is a subset of the more general problem of choosing an appropriate patity group
size and siriping unif size for RAID lewel 5 disk arrays. A parily group size close (o two may indi-
cates the use of EAID level 1 disk arrays while a small striping unit size relative 1o the size of an

average request may indicate the use of a RAID level 3 disk array.

3.3.2 Comparisons

Table 3 (abulates the maximum throughput per dollar relative (o RATTY level 0 for RATD Jev-
els O, 1, 3, 5 and 6. The cost of each sysiem is assumed (o be propottional to the toal number of
dizsks in the disk amay. Thus, the table illustrates that given equivalent cost EAID level 0 and
BEATY kevel 1 systems, the RATD level 1 system can sustain half tee number of small writes per
second that a BATD lewvel D system can sustain, Bouivalently, we can say that the cost of small
writes is (wice as expensive in a EAID level 1 system as in a BAID level O system, In addition (o
performance, the table shows the stotage efficiency of each disk array otganization. The storage

efficiency is approximately inverse the cost of each umit of user capacity relative to a EATD level D

Smnll Rend Small Write Larpe Rend Large Write Storage Efficiency
RAID levelD | 1 1 1 1 1
RAID Jevel 1 1 12 1 12 112
RAID level 3 | 1AG 155 (G-1¥G (G-1WG (G-1¥G
RAID level 5 | 1 matxl /G, 184 1 (G-1WG (G-1¥G
RAID levelfi | 1 max(1/G,148) 1 (G-2WG (G5-2¥G

Table 3: Throughpot Per Dollar Relative tor RAID Level 0. This table compares the theoughputs of
varions medundancy schemes for foor types of /0 requests. Small here refers o 'O requesis of obe
siniping uni, large refars to IR0 requoests of ooe foll swipe (one siripe ondt from each disk in an ervor-
cotrection grouph. G refers oo the member of disks in an error-correction group. In all casas, the higher the
pumber the better. The eniries in this able scoount for the major paformmance effects but pot some of the
second-order effects. For instance, soce RAID kevel | stores twos copées of the deia, a common
optimization i o dynamically rasd the disk whose positioning time 1o the data is smallar

October 29, 1553 17

system. Por the above disk array organizations, the storage efficiency is equal to the performance)-

cogl mettic for large wriles,

Figure 3 graphs the performance/cost mettics from Table 3 for RAID levels 1, 3, 5 and & over
A tange of parity group sizes. The performancefcost of RAID level 1 systems i3 equivalent (o the

performancefcost of BATDY level 5 systems when the patity group size is equal to two, The perfor-

Small Reads Small Writes
ll-" RAIDS & & 1|‘_"
= E g:&
= w
2 1 = RAID |
gﬂ &
%8 2y
ﬁ" -
“E 0.5 3 g 03| L Ram3s&s
hy 2=
=t £
EE EE RAID 5
£ [-E M RAID &
é -‘_'"‘—H_‘___‘_-_R-_ﬁ_ni
0.0 0.0
i 5 10 15 20 1] 5 10 15 20
Group Size Group Size
Large Reads Large Writes
ll-" BEAIDS &G 1'] RAID 3 &S
=] =
47 2%
ad A
u ™
Eg - %g RAID 1
] 5 = 05
] BEAIL S =
o, E" RAID &
= = =
EE e
- F e
0.0 00
i 5 10 15 20 0 5 10 15 20
Group Size Group Size

Figure 5 Throughput Per Dollar Relative 1o RAID Level 0. EAID level 1 performance is
approximately equal to EATD level 5 performance with a group size of two. Note that for small
wriles, the three disk arrays are equally cost effective al small group sizes, but as group size
increases, RAID levels 5 and 6 becomse better allematives.

October 29, 1553 15

manceeost of RATD lewel 3 systems is always less than ot equal to the performance/cost of BRAID
lewel 5 systems. This is expected given that a RAID level 3 system is a subclass of RATD level 5
systems detived by restricting the striping wnit size such that all requests access exactly a patity
stripe of data. Since the configuration of EAITDY level 5 systems is not subject to such a restriction,
the performance/cost of BAID level 5 systems can never be less than that of an equivalent BATD
lewel 3 system. It is important (o siress that these performance/cost observations apply only to the
abstract models of disk arrays for which we have formulated performance/cost metrics. In reality, a
specific implementation of a EATD level 3 system can have better performance/cost than a specific
implementation of a RATD level 5 system.

As previously menti oned, the question of which RATD level vo use is ofien better expressed as
mote genetal configuration questions concerning the size of the parity group and striping unit, If a
parity group size of two is indicated, then mirroring is desirable, If a very small striping unt is
indicated then a RAID level 3 systemn may be sufficient. To aid the reader in evaluating such deci-
sions, Figure 6 plots the four performancefcost metrics from Table 3 on the same graph for each of
the RAID levels 3, 5 and 6. This makes explicit the tradeoffs between the performance/cost in
choosing an Appropriate parity group size. Section 4.4 addresses how 1o choose the unit of striping.

3.4 Reliability

Reliability is as imponant 3 meiric (o many IO systems as perffommance and cost, and it is
pethaps the main reason for the populatity of digk arrays, This section stans by reviewing the basic
reliability provided by a block-interleaved, panty disk array them lists three factors that can undet-
mine the potential reliability of disk arrays.

3.4.1 Basic Reliability
Eedundancy in disk arrays is motivated by the need o overcome disk failures, When only
independent disk failures are considered, a simple patty scheme works admirably, Patterson, Gib-

son, and Katz detive the mean time between failures for an M disk BEATD level 5 with group size G

MTTF (disk)

o e AT R MTTR ("

where MTTEFdisk) is the mean-time-to-failure of a single disk,

October 29, 1553 15

MTTR(dizk) is the mean-time-to-repair of a single disk, M is the total number of disks in the disk
array, and G is the parity group size [PamersonB8]. Por illustration purposes, ket us assume we have
100 disks that each had a mean time 1o failure (WMTTE) of 200,000 hours and & mean time 0o repait
of one hout, If we orpanized these 100 disks into parity groups of average size 16, then the mean
time to failure of the system would be an astounding 3000 years! Mean times to failure of this

magnitude lower the chances of failure over any given period of time.

RAID Level 3 RAID Level 5
1.0 10 Semall & Larpe Reads
= k=
i T
o ?E Laspe Writex
]]
i3 i
E'E 0.5 E—g 0.5
i ED
E? E Small Writes
k| Sl Reads & Writes E
= ©
0.0 0.0
0 5 10 15 20 1] 5 10 15 20
Group Size Group Size
RAID Level 6
1o, Swmll& Lacge Reads
HG
= kg
,E’,E Large Writex
2 s
=8
B
=
=)
gﬁ Sumall Writes
&
0.0
0 5 10 15 20

Group Sine

Figure &: Throughput Per Dollar Relative to RAITY Level . The graphs illustrate the tradeoff
in performancefcost versus group size for each specified RATID I. Mote that in this
companson, mimonng (RAID level 1) 15 the same as BATD level 5 with a group size of two.

October 29, 1553 m

For a disk array with two redundant disk per parity group, such as P+ redundancy, e mean

MTTF { disk)) -
. Iking the same wvalues for our reliabilicy
Nx G- 1) % (G -2) x MTTR® { dizk)

parameters, Uds imphies an astronomically laree mean tirme o failure of 38 million years,

tim to failure is

This is an idealistic picture of course, but it # least gives us an idea of the potential reliability
afforded by disk arrays. The rest of this section takes a more realistic look at the reliability of
block-interleaved disk armays by considering factors such as sysiem crashes, uncorrectable bdif-
errors, and cotrelated disk failures which can deamatically affect the reliability of disk arrays.

3.42 System Crashes and Parity Inconsistency

In this section, the term sysfem crash refers o any event such as a power failure, operator
error, hardware breakdown or sofiware crash that can interrupd an 100 operation to a disk areay.
Such crashes can infermupl wrile operations, resulting in states where the data is updated and (e
parity is not updated, or visa versa. In either case, the parity is inconsistent and cannod be used in
the event of a disk failure, Techniques swch as redundant hardware and power supplies can be
applied to make such crashes less frequent [Menon93al, but no echnique can prevent systems
crashes 100% of the time,

Systemn crashes can cause parity inconsistencies in both bit-interleaved and block-interleaved
disk argays, but the problem is of practcal concem only in block-interleaved disk amrays, This is
because in bit-interleaved disk arrays, the inconsistent parity can only affect the data that is cur-
rently being written. If writes do not have to be atomic, applications cannot assume either that the
write completed or did not complete, and thus it is generally permissible for the bit-interleaved
disk array (o siore athitrary data on the updated sectors, In a block-interleaved disk armray, however,
an interrupted write operation can affect the parity of other data blocks in that stripe. Thus, for reli-
ability purposes, system crashes in block-interleaved disk arrays are similar to disk failures in that
they may result in the loss of the cortect parity comesponding 1o any write requests thal were intet-
rupted.

October 29, 1553 21

In actuality, system crashes can be much worse than disk failures for two reasons. First, they
may occur mote frequently than disk failures, Second, a system crash in disk arrays using P+
redundancy is analogous 1o a double disk failure because both the “P" and "Q)° information i3 made
inconsistent. To avoid the loss of parity on system crashes, information sufficient o recover the
parity must be logged to non-volatile storage before executing each and every write operation. The
information need only be saved until the comesponding write completes. Hardware implementa-
tions of RAID systemns can efficiently implement such logging wsing non-volatile RAM. In soft-
ware implementations that do not have access 10 fast non-volatile storage, it i3 generally not
possible o prodect against system crashes without signific antly sacrificing performance.

3.4.3 Uncorrectable Bit-Errors

abuse, they occasionally fail wo read or write small bits of data, Currently, most disks cile umcor-
rectable bit error rates of one ervor in 10™ bits read. Unfortinately, the exact interpretation of whiat
is meant by an uncorrectable bit error is unclear. For example, does the act of reading disks actu-
ally generate errors of do the errors ocour on wiites but are detected by reads?

Drisk manufaciures genetally agree that reading a disk is very unlikely (o cause permansnt
errors. Most uncorrectable errors are generated because data is incorrectly wrilten or gradually
damaged as the magnetic media ages. These ertors are detected only when we attempt to read the
data. Our interpretation of uncorrectable bit error rates is that they represent the rate & which
errors are detected during reads from the disk during the normal operation of the disk drive. It is

important (o siress that there is no generally agreed upon interpretation of bif error rates.

The primary ramification of an uncorrectable bit error is felt when a disk fails and the con-
tents of the failed disk must be reconstructed by reading data from the non-failed disks. For exam-
phe, the reconstrsction of a failed dizk ina 100 GB disk amay requires the successful reading of
approximately 200 million sectors of information. A bdt emvor rate of one in lﬂmhi]‘.'!-impliﬁﬂlﬂt
one 312 byte sector in 24 billion sectors cannot be correctly read, Thus, if we assume that the prob-
ability of reading sectors is independent of each other, the probability of reading all 200 million

October 29, 1553 2

sectors successfully is approximately (1- 124 X lﬂm]}"{lﬂ > 1[]“] =992, This means that on
average, 0LB% of disk failures would resull in data logs due 1o an uncorrectable bit error

The above example indicates that unrecoverable bil ertors can be a significant factor in
designing large, highly-reliable disk arvays. This conclusion is heavily dependent on our particular
interpretation of what is meant by an unrecoverable bit error and the guaranteed unrecoverable bit
error rates as supplied by the disk manufactures, actual error rates may be much better.

One approach that can be weed with of without redundancy is o oy (0 protect against bit
errors by predicting when a disk is sbout to fail. VAXsimPLUS, a product from Digital Bquipment
Corporation, monitors the warnings given by disks, and notifies an operator when it feels the disk
is about to fail, Such predictions can significanty lowes incident of data loss [Emlich89].

3.4.4 Correlated Disk Fallures

The simplest model of reliability of disk amays [Paterson8s] assumes that all disk failures are
independent when calculating mean time 1o data loss. This resulted in very high mean time to data
loss estimates, up to millions of years. In reality, common environmental and manufacturing fac-
tors will frequently cause correlated disk failures, Por example, an earthquake might sharply
increase the failure rate for all disks in a disk armay for a shon period of tme. More commonly,
power surges, power failures, and simply the act of powering disks on and off can place simulta-
necus stiress on e electrical components of all affected dizsks. Disks also share common suppon
hardware, when this handware fadils, it can lead to multiple, simultaneous disk failures.

Asgide from environmental factors, the disks themselves have certain comelated failure modes
built into them. Por example, disks are generally more likely to fail either very early or very late in
their Lifetimes. Easly failures are frequently caused by transient defects which may not have been
detected during the manufaciurer™s butn-in process; late failures occur when a disk wears out, A
systematic manufacturing defect can also prodece bad batches of disks which can fail close
together in time. Correlated disk failures greatly reduce the reliability of disk amays by making it

October 29, 1553 23

much more hikely that an indtial disk failure will be closely follewed by additional disk failures
before the fadled dizk can be reconstucted.

3.4.5 Hellabhility Revisited

The previous sections have described how sysiem crashes, uncorrectable bit errors and cofre-
lated disk failures can decrease the reliability of redundant disk arrays. In this section, we will cal-

culate mean-time-to-data-loss statistes by incorporating these factors.

The new failure modes imply that there are now thiee, relaively common ways 1o lose data

in & block-interleaved, patity-protected disk array;

= double disk failure,

= swvatem crash followed by a disk failure, and

gdisk failure followed by an uncorrectable bit error during reconsumeCtion.

Total Ther Capacity

100 disks (500 GB)

Drisk Siza 5GB
Sector Size 512 bytes
1 in 13*14 bdts

Eit Errow Foate {BER)

plchisk)
The probability of reading

1 in 24 10410 secions

all sectors on o disk. Y006%
(Derived foom disk siza,

sector dze, vl BER)

Parity Groop Size 16 disks
MTTFidisk) 200,000 koo
MTTF(disk2) 20,000 b
MTTFidisk3) 2,000 oo
MTTR dtisk) 1 hour
MTTF(sys} 1 Tty
MTTEsys) 1 bour

Table 4: Relinbility Porameters. This toble lists porsmeters used for rebiability caloulntions 1o this
secHon.

October 29, 1553 4

As mentioned above, a system ceash followed by a disk failure can be protected against in
most hardware digk array implementations with the help of non-volatile storage, but such protec-
tion is unlikely in software disk armrays. The above three failure modes are the hardest failure com-
binations, in that we ate currently unaware of any echniques to protect against them without
significantly degrading petformance, To constnect a simple model of correlated disk failures, we
will assume thai each successive disk failure is ten times more likely than the previous failure
(until the failed disk has been reconstructed). Table 4 tabulates values of the reliability parameters
we will use for caleulating numeric reliability estimates in (ds section, Mote that the reliability
estimates will be computed at a constant user capacity of 100 disks, consisting of independent, 16-

disk parity groups.

Table 5, which tabulates reliability mettics for RATD lewel 5 disk arrays, shows that the fire-
quency of the deee failure combinations are within an order of magnitude of each other This
means that none of the three failure modes can be ignored in determinding reliability, This makes it

difficult to improve the overall reliability of the system witheut improving the reliability of several

Probability of
MTTDL MTID. Data Lossover
10 Year Period
Doubile Disk Faihure MITF (disk) < MITF [diskZ) 285 yrs. 3A4%
Now (G — 1) £ MTTR ($igk)
Sys Crash + Disk Failure MITF (ays) % MITF (k) 5y 3%
N2 MITR (xys)
DHsk Failure + Bt Broow MTTF | disk) 26 yrs. 24.4%
N (1— (p(dink))® 4
Software RATD {hammomic surm of shovea) 26 yrs. 31 6%
{hasmomic sum excluding
Hardware BATD (NYREAN) sy crash-+dtisk failire) 32 yru. 26.8%

Table 5: Failore Characteristics for RAID Level 5 Digk Arrayse MTTDL is the mean tme to data
loss. The 10 year failure rate is the percent chance of data loss in a 10 year period. For numeric
caloulations, the parity group size, (G, is equal to 16 and the user data capacity is aqual to 100
data disks. Mote that the total mumber of disks in the systemn, N, is equal to the number of data
disks times G G-1).

October 29, 1553 5

components of the system;, a mote reliable disk will greatly reduce the frequency of double disk

failures but its protection against e other two Failure combinations is less pronounced. Prequen-

cies of both system crashes and bit error rates must also be reduced before significant improve-

ments in overall system reliability can be achieved. Mote also the deceptively reassuting MTTDL

numbers, Bven with a MTTDL of 285 vears, there is & 3.4% chance of losing data in the first ten

VEArs,

Table & tabulates the reliability metrics for PHO) redundant disk arrays. As can be seen, sysiem

crashes are the Achilles’s heel of P+0) redundancy schemes, Since system crashes invalidate both

the P and 0 information, their effect is similar o a double disk failure. Thus, unless the sysiem

provides protection against system crashes, as is assumed in the cakculation of the seliability for

hardware BAID systems, P+ redundancy does not provide a significant advantage over paricy-

Probability
of Data
MTTDIL- MTTIL Loss over
10 Year
Perimd
i i MITF(fixk MTTF | fisk2 MTTF| fisk3
1F‘:lp1ebjsk (dirk] = {LiskZ) = : (i 3] 331]52}15_ 0.036
Hee Nw (G-1) % (G—2) % MTTR [disk)
Sys Ceash + .
i MTITF (syr) 5 MTTF | disk) .
Drisk Failore TSR T 144 yrs. T 7%
Double MWTTF | dixk MWITF [diskd)
. J ErRp LS.]
Disk Failue — — 47607 yrs. 0029
+ Bit Ermow N (G-11={1—-{1—p(disk)} | X MTTE { dixk)
Sofoarare .
RAID {hammomic surm of shove) 143 yrs. H.8%
Hardwara
RAID {hamomic sum excludig sys combedisk faibore) 21166 yrs Q05%
(HVEAR)

Table &: Failure Characteristics for a P+ digk array. MTTDL is the mean time to data loss. The
10 year failure rate 15 the percent chance of data loss in a 10 year period. For numeric
caboulations, the panty group size, (5, is equal to 16 and the user data capacity is equal to 100
data disks. Note that the total number of disks in the system, N, is equal to the number of data
disks times GRIG-2)

October 29, 1553

Fi -]

protected disk areays. In general, P+0) redundancy is most useful for prolecting against Untecover-
able bit errors that occur during reconstruction and against multiple, correlated disk failures,

3.4.6 Summary and Concdusions

This section has examined the reliability of block-interleaved redundant disk arrays when fac-
tors other than independent disk failures are taken into account. We see that sysiem crashes and
unrecoverable bit emrors can significantly reduce the reliability of block-interleaved, parity-pro-
tected disk arrays. We have shown that P+0) redundant disk arrays are very effective in protecting
against both double disk failures and wnrecoverable bit errors but are suscepiible to sysiem
crashes. In order to reap the full advantages of P+0) redundant disk arrays, non-volatile siorage
must be used o protect against system crashes.

Mumeric reliability caleulations serve as useful guidelines and bounds for the actual reliahil-
ity of disk arrays. It is infeasible, however, to compare the reliability of real system based on such
numbers, Reliability calculations frequently ignore important implementation-specific factors that
are difficult to quantify susch as the reliahility of software components. What is wseful 10 know,
howewer, and what we have presented here, is the iypes of common fadlures that a disk array can
tolerate, how they limit the reliability of the systemn and, thus, hopefully, its approximate reliability
in comparison (o other disk array organizations of similar complexity,

3.5 Implementation Considerations

Although the operation of block-intetleaved redundant disk amays is conceptually simple, a
disk array implementer must address many practical considerations for the system (o function cor-
rectly and reliably at an acceptable lewel of performance. One problem is that the necessary state
information for a disk aray consists of more than just the data and parity stoted on the disks. Infor-
mation such as which disks are failed, how much of a failed disk has been reconstructed and which
sectors are currently being updated must be accurately maintained in the face of system crashes.
We will refer to such state information that is neither user data nor parity as meta stafe informa-

October 29, 1553 7

ton, Another problem, addressed in Section 3.5.4, is that multiple disks are usually connected o
e host compuier via 4 common bus ot sitng.

3.5.1 Avoiding Stale Data

The only piece of meta state information that must be maintained in redundant disk arrays is
the validity of each sector of data and parity in a disk array, The following testrictions must be
ohserved in maintining this information.

= When a disk fails, the logical sectors corresponding 1o the failed disk must be marked fevealid
before any request that would normally access o the failed disk can be serviced, This invalid
mark prevents users from reading cornupied data on the failed disk.

#= When an invalid logical sector is reconsttucted (o a spare disk, the logical sector must be
matked valid before any write request that would notmally write (o the failed disk can be ser-
wiced. This ensures that ensuing writes update the reconstructed data on the spare disk.

Both restrictions are needed o ensure that users do nod receive stale data from the disk array.
Without the first restriction, it would be possible for users (o read stale data from a disk that is con-
sidered to have failed but works intermittently, Without the second restriction, successive write
operations would fail to update the newly reconstructed sector, resulting in stale data, The valid/in-
valid state information can be maintained a8 a bit-vector either on a sepatate device or by reserving
A small amount of stotage on the disks currently configured into the disk array, If one keeps twrack
of which disks are failed/operational, one only needs w keep a bit-vectior for the failed disks. Tt is
genetally more convendent (o maintain the validfinvalid state information on a per striping it
rather than a per sector basis since most implementations will tend (o reconstruct an entireg siriping
unit of data at a time rather than a single sector. Because disk failures are relatively rare events and
large groups of striping units can be invalidated a a tme, updating the validfinvalid meta state
information to stable siotage does nod present a significant performance owerhead.

October 29, 1553 =

352 Regenerating Parity after a System Crash

System crashes can result in inconsistent parity by interrupting write operations. Thus, unless
it is known which parity sectors were being updated, all parity sectors must be regenerated when-
ever a disk array comes up from a system crash. This is an expensive opetation which requires
scanning the contents of the entire disk array. To avoedd this overhead, information concerning (e
consistent/inconsistent state of each parity sector must be logged 1o stable storage. The following

resirciion must be observed.

= Before servicing any write request, the comresponding parity sectors must be marked dncornsis-

Tend,

= When bringing & system up from a system crash, all inconsistent parity sectors must be regenet-

ated.

HMote that because repenerating a consistent parity sectot does no harm, it i8 not sheolmely
necessary (o matk a patity sector a8 consistent. To avoid having (o regenetate a large number of
parity sectors after each crash, howewer, it is clearly desirable to periodically mark parity sectors as

Consisient,

Unlike updating valid/invalid information, the updating of consistent/inconsistent state infor-
mation is a potential performance problem in software EATD systems which usually do not have
access to fast non-volatile storage, A simplistic implementation would requite a disk write 1o mark
A parity sector as inconsistent before each write operation and a corresponding disk write 1o mark
the parity sector as consistent after each write operation. A more palatable solution i3 to maintain a
most recently used pool that keeps irack of a fixed number of inconsistent panty sectors on stable
stotage. By keeping a copy of the pool in main memory, one can avoid accessing stable stotage 1o
mark parity sectors that are alteady marked as inconsistent, By varving the size of the pool, one
can tradeoff the hit-rate of the pool against the amount of parity information that needs 1o be regen-

etated when recovering from a system crash.

October 29, 1553 =

The sbove method should work efficiently for requests that exhibit good locality of refer-
ence, If the disk array must service a large numbet of random write requesis, a3 in Fansacion pro-
Cessing environments, we recommend incorpotating a group commit mechanizm so that a lagge
mumber of parity sectors can be matked inconsistent with a single access (o stable storage. This
solves the throughput problem but still results in higher latencies for random write requesis since
the parity sectors must be marked inconsistent before the writes can proceed.

353 Operating with a Falled Disk

A system crash in a block-interleaved redundant disk amay is similar to a disk failure in that it
can resulf in the loss of parity information, This means that a disk array operating with a failed disk
can potentially loge data in the event of a system crash. Becauise system crashes are significantly
mote common in most sysiems than disk failures, operating with a failed disk can be risky,

While operating with a failed disk, some form of logeing must be performed on every wiile
opetation o prevent the loss of information in the event of a system crash. We describe hete two
elegant methods to perform this logging. The first method, called demand reconstrection, is the
easiest and most efficient but requires of stand-by spare disks. With demand reconstruction,
ACCESSES [0 & panly stripe with an invalid sector immediately trigeer reconstruction of te appro-
priate data onto & spare disk. Write operations need never deal with invalid sectors created by disk
failures. A background process scans the entite disk array to ensure that all the contents of the
failed disk is eventually reconstnscted within an acceptable time period.

The second method, called parfiy sparing [Reddy®1], can be applied 1o systems without
stand-by spares but requires additional meta state information. Before servicing a wiile request
that would access a parity stripe with an invalid sector, the invalid sector is reconstructed and relo-
cated o overwrite its comresponding parity sectot The sector is then marked as relocated. Since the
corresponding parity stripe no longer has panty, it is not affected by system crashes, When the
failed disk is evenwally replaced, the relocated sector is copied to the spare disk, the party is
regenerated and the sector is no longer marked as relocated.

October 29, 1553 o

3.5.4 Orthogonal RATD

T this poing in the paper, we have ignored the issue of how to connect disks to the host com-
puter, In fact, how one does this can drastically affect performance and reliability. Most computers
conmect multiple disks via some smaller number of strings. A siring failure thus causes multiple,

simultaneous disk failures, If not properly designed, these multiple failures can cause loss of data

For example, consider the 16-disk arvay in Fipure 7 and two options of how o onganize mul-
tiple emor-comection groups. Option 1 combines each string of four disks info a single emror-cof-

rection group, Opiion 2 combines one disk on each string into a single error-correction group.

siring
String
Controller
Option 2
SITnE

String

Co
giting

String
Controller

String
Controller

Option 1

Figure 7: Orthogonal RAID. This fipure present two options of how 0 ofpanize error-
cotrection groupsin the presence of shared resources, such as a siring controller. Option 1 groups
four disks on the same string into an error-correction group; Option 2 groups one disk from each
siring into a group. Option 2 is preferred over Option 1 because the failure of a string controller
will ondy render one disk from each error inaccessible.

October 29, 1553 31

Unformunately for Option 1, if a string Fails, all four disks of an erof-cofrection group are inacces-
gible, Option 2, on the other hand, loges one disk from each of (e four error-cotrection groups and
sull allows access to all data. This technique of organizing error-comrection groups omhogonally to
common hardware (such as a string) is called orthogonal RAID [Schulze89], Onhogonal BEATD
has the added benefit of mindmizing string conflicts when multiple disks from a group transfer data

simultaneously,

4 ADVANCED TOPICS

This section discusses advanced topics in the design of redundant disk arrays. Many of the

techniques are independent of each other, allowing designers to mix-and-match technques.

4.1 Improving Small Write Performance for RAID Level 5

The major performance problem with RAID lewel 5 disk arrays is the high overhead for small
writes, As described in Section 3.2, each small write generates four separate disk I0s, two o read
the old data and old parity, and two 0 write the new data and new parity. This increases the
response time of writes by approximately a factor of two and decreases throughput by approxi-
mately a factor of four. In contrast, mirrored disk amays, which generate only two disk 1'0s per
small write, expetience very litthe increase in response time and only a factor of two dectease in
throughput, These performance penalties of RATD lewel 5 relative to non-redundant and mirrored
disk arrays ate prohibitive in applications such as transaction processing that generate many small

Wiiles,

This section describes three techniques for improving the performance of small writes in

EATD level 5 disk amays: buffering and caching, foating patity, and parity logging.

4.1.1 Buffering and Caching

Buffering and caching, two oplimdzations commondy used in IO systems, can be particularly
effective in disk arrays. This section describes how these opimizations can work (0 mindmize e

performance degradations of small writes in a BATD lewvel 5.

October 29, 1553 32

Write buffeting, also called asvwchronous weites, acknowledges a wser’s write before the
write goes (o disk. This technique reduces the response time seen by the user under low and mod-
erate load, Since the response tme no longer depends on the disk system, RATD level 5 can deliver
ihe same response tme as any other disk system. If systemn crashes are a significant problem, non-
volatile memory is necessary to prevent loss of data that are buffered but not vet committed, This
technique may also improve throughput by giving future updates the oppomunity o overwrite pre-
vious updates, thus eliminating the need o write the first update [Menon93a]. Barting these over-
writes, however, this technique does nothing to improve throughput. So under high load, the write
buffer space will fill more quickly than it empties and response time of a RATD level 5 will still be
four times worse than a RATD level 0.

An extension of write buffering is 1o group sequential writes together. This technique can
make writes to all types of disk systems faster, but it has a particular appeal to RAID level 5 disk
arrays. By writing larger units, small writes can be turned into full stripe writes, thus eliminating
aliogether the Achilles heel of RAID level 5 workloads [Menon%3a). Write buffering also allows
better disk scheduling by writing multiple blocks at one time,

Eead caching is normally used in disk systems 1o improve the response time and throughpat
when reading data, Tn a RATD lewel 5 disk array, however, it can serve a secondary purpose, If the
old data required for computing the new patity is in the cache, read caching reduces the number of
disk accesses required for small writes from four o teee, This is very likely, for example, in (rans-
action processing systems where records are fraquently updated by reading the old value, changing
it and writing back the new value to the same location.

By also caching recently written parity, the read of the old parity can sometimes be elimi-
nated, further reducing the number of disk accesses for small writes from three o two. Because
parity is computed owver many logically-consecutive disk sectors, the caclhing of parity explodts
both temporal and spatial locality, This is in contrast to the caching of data which, for the purposes
of reducing disk operations on small writes, relies on the assumption that recently read sectors are
likely 1o be written rather than on the principle of spatial locality.

October 29, 1553 13

4.1.2 Floating Parity

Menon and Kasson proposed a variation on the organization of party in RAID lewel 5 disk
array, called fearing pariry, that shortens the read-modify-wate of parity updated by small, ran-
dom writes 1o Little more than a single disk access tume on average [Menon®3b]. Floating pasity
clusters parity into cylinders, each containing a track of free blocks, Whenever a parity block
needs to be updated, the new parity block can be wiilten on the rotationally nearest, unallocated
block following the ald parity block. Menon and Kasson show that for disks with 16 tracks per cyl-
inder, the nearest unallocated block immediately follows the parity block being read 65% of the
time, and the average number of blocks that must be skipped to get to the nearest unallocated block
is small, between 0.7 and 0.8, Thus, the writing of te new parity block can usually occur imrmedi-
ately after the old parity block is read, making the entite read-modify-write access only about a
millisecond longer than a read access,

To efficiently implement floating parity, directories for the locations of unallocated blocks
and parity blocks must be stored in primary memory. These tables are about 1 MB in size for each
disk amay containing four to ten, S0 MB disks. To exploit unallocated blocks immediately fol-
lowing the parity data being read, the data must be modified and a disk head switched to the track
containing the unallocated block before the disk rotates though an inter-secior gap. Because of
ihese constraints, and because only a disk controller can have exact knowledge of it's geometry,
Aoating parity is most likely to be implemented in the disk controller.

Menon and Kasson also propose floating data as well & panity, This makes the overhead for
small writes in BATD level 5 disk arrays comparable to mirroring. The main disadvantage of foat-
ing data is that logically sequential data may end up discontiguous on disk. Floating data also
blocks than parity blocks.

4.1.3 Parity Logging

Stodolsky and Gibson propose an approach called parity logging w0 reduce the penaliy of
small writes in RATD level 5 disk arrays [Suodolsky?3, Bhide92]. Parity logging redwces the over-

October 29, 1553 H

head for small writes by delaying the read of the old patity and the write of the new parity, Instead
of immediately updating the parity, an ypvfate fmage, the difference between the old and new par-
ity, is tempotarily writien o a log, Delaying the update allows the parity to be grouped together in
latge contiguous blocks that can be updated more efficiently.

This delay takes place in two pans. First, the parity update image is stored wemporarily in
non-volatile memory, When this memory, which could be a few tens of KB, fills up, the panty
update image is written to the log. When the log fills up, the panity update image is read into merm-
ary along with all the ald parity and is applied 1o the old parity. The resulting new parnty is then
wiitten to disk, Although tlas scheme transfers more data o and from disk, the mansfers are in
miuch latget units and are hence mote efficient; large sequential disk accesses are an order of mag-
nitade more efficient than small random accesses (Section 2.1). Parity logging reduces the small
write overhead from four disk accesses (o a linle more than two disk accesses, the same overhead
incurred by mirrored disk arrays, The costs of parity logeing are the memory used for temporarily
stoting update images, the exira disk space used for the log of update images, and the additional
memaory used when apphing the parity update image to te old parity. Note that (s technkque can
be applied wo the second copy of the data in mirrored disk arrays to reduce the cost of writes in mir-
roted disk arrays from (w0 (o & little mote than one disk access [Orji93].

4.2 Declustered Parity

Many applications, notably database and tansaction processing, require both high throughpat
and high data availability from their storage systems. The most demanding of these applications
reduires continuous operation—ihe ability 1o satisfy requests for data in the presemce of disk fail-
ures while simultaneously reconstnecting the contents of failed disks onto replacement disks. Tt is
unaccepiable to fulfill this requirement with arbitranly degraded performance, especially in long-
liwed real-time applications such as video setvice, customers are unlikely (o woletate movies plaved
at & dlower speed or having their viewing tetminated prematurely,

Unformnately, disk failures cause laree performance degradations in standard BEAID level 5
dizsk arrays. In the worst case, a workload consisting entirely of small reads will double the effec-

October 29, 1553 i5

tive load ar mon-Failed disks due to extea disk accesses needed 1o feconsttuct data for teads 1o e
failed disk. The additional disk accesses needed (o completely reconstnict the failed disk increase
the load even funher.

In storage systems that sinpe data actoss several RATDs, the average increase in load is sig-
nificantly less than in RAIDs with one large parity group, but the RATD with the failed disk sill
expeniences a 100¢% increase in load in the worst case, The failed BATD creates a hot spod that
degrades the performance of the entire system. The basic problem in these latge systems is that
although inter-RAID striping distributes load uniformly when no disk is failed, it non-uniformly
distributes the increased load that resulis from a failed disk; e small set of disks in the same par-
ity group as the failed disk bear the entire weight of the increased load. The declustered parity
RATD organization solves this problem by uniformly distributing the increased load over all disks
[Muntz ¥, Merchant92, Holland92, Holland%3, Ng92].

Figure 8 illusirates examples of standard and declustered patity RAIDs for sysiems with an
array size of eight disks and & parity group size of fout, In tis case a multiple BEATD system is con-
stnected by stnping data over two EAIDs of four disks each with non-ovetlapping patily groups.
The declustered parity RAID is constructed by overlapping parity groups. If Disk 2 fails, each read
to Disk 2 in the standard, multiple EATD generates a single disk access to disks 0, 1 and 2 and no
disk access to disks 4, 5, 6 and 7. In the declustered panity RATD, a random read to Disk 2 gener-
ates an aceess to disks 4, 5, and 7 14 of the time; to disks 0, 1 and 3 172 of the time; and to disk &
3/4 of the time, Although the increased load is not uniform, it is more balanced than in the standard
RATD, Slightly more complex declustered parity RATDs exist that uniformly distribute the load
such that each read to dizk ? generates an average of 37 disk accesses 1o all non-failed disks,

The simplest way 1o create a declustered parity RAID which uniformly distributes load is to
create a set of panty groups including every possible mapping of parity group members to disks, In
our example, this would result in [:J = To distinet mappings of parity groups 1o disks. For nearly
all practical array and parity group sizes, declustered parity EAID otganizations are possible that
uniformly distribute reconstruction load with much fewer than the combinatorial number of parity

October 29, 1553 k-

groups, Such organizations can be devised using the theory of balanced incomplete Block designs
[HallZ6]. In practice, the load does not need 10 be absohuely balanced and a close approximation is

sufficient.

To summarize, a declustered parity BAID is often preferable to a standard, multiple EAID
because it uniformly distributes load during both the normal and failed modes of operation, This
allews a more graceful degradation in performance when a disk fails and allows the failed disk (o
be reconstructed more quickly since all disks in the disk array can pamicipate in its reconsiruciion,
In addition, unlike the example in Figure 8, the disk array size in a dechistered patty RAID does
nod hawe 1o be a multiple of the patity group size. Any combination of array and patty group sizes

such that the artay size is greater than the parity group size is feasible. Declustered patty EAID

g0 g0 g0 g0 gl gl gl gl
g2 g2 g2 g2 g3 g3 g3 g3
g4 g4 8 g4 g5 g5 g5 g5

g6 g6 g6 g6 g7 g7 g7 g7

Disk(Disk]1l Disk2 Disk3 Disk4 Disk5 Diské Disk7

Standard, Multiple RAID
g0 g0 g0 g0 gl gl gl gl
g2 g2 g3 g3 g2 g2 g3 g3
g4 g3 8 g3 g4 g3 g4 g3
g6 g7 g7 g6 g g7 g7 g6

Disk 0 Disk1l Disk2 Disk3 Disk4 Disk> Disk6é Disk7

Declustered Parity RAID

Figore 8: Standard Versus Declostered Parity RAID. This figure illusirates examples of
standard and declustered parity BATD with eight disks and a parity group size of four. Identically
labeled blocks belong to the same patity group, In the standard BAID organdzation, pacity groups
ate composed of disks from one of (wo non-overlapping subsets of disks, In the declustered
parity EAID, parity groups span many ovetlapping subsets of disks.

October 29, 1553 37

has two main disadvantages, First, it is somewhat less reliable than standard, multiple RATD; any
iwo disk Failures will result in data loss since each pait of disks has a parity group in common. In a
standard, multiple RAID, the parily groups are dizjoint, so it is possible 1o have more than one disk
failure without losing data as long as the each failure is in a different parity group. Second, the
mote complex parity groups could dismpt the sequential placement. of data across the disks, Large
requests are thus mote likely o encounter disk contention in declustered parity EATD than in stan-
dard multiple RATD, In practice, it is difficult to construct workloads where this effect is signifi-

CAnL.

4.3 Exploiting On-Line Spare Disks

On-line spare disks allow reconstruction of failed disks wo start immediately, reducing the
window of vulnerability during which an additional disk failure would result in data loss. Unfori-
nately, they are idle most of time and do not contribute to the notmal operation of e system. This
section describes two echniques, distribured sparing and pariy sparing, that exploit on-line spare
disks to enhance performance during the normal operation of the system.

As Figure 9 illustrates, distributed spatng distbutes the capacity of a spare disk across all
the disks in the disk array [Menon%1]. The distribution of spare capacity is similar 1o the distribu-
tion of panty in RATD level 5 disk arrays. Instead of N data and one spare disk, distributed sparing
uses M+l data disks that each hawve 1AMN+1)th spare capacity. When a disk fails, the blocks on the
failed disk are reconstructed onto the corresponding spare blocks, Distributed spating obwviates

1 2 3 4 PO S0
7 8 Pl sl 2 6
P2 s2 9 10 11 12

Figore % Distriboted Sparing. Distributed sparing distributes the capacity of the spare disk
throughput the array, This allows all disks, including the disk that would otherwise have been a
dedicated spate, 1o service requests. This fipure illustrates a BAID level 5 disk array with
distributed sparing. The "P's denote patity blocks and *5%s denote spare blocks,

October 29, 1553 L

dedicated spare disks, allowing all disks to participate in servicing requests, and thereby improving
performance during e normal operation of the disk array, Additionally, because each disk is par-
tially empty, each disk failure requires less work to reconstnect the contents of the failed disk. Dis-
tributed sparing has a few disadvantages. First, the reconstructed data must eventwally be copied
onto & permanent replacement for the failed disk. This creates extra work for the disk array bt
since the copying can be done leisurely, it does not significantly affect performance. Second,
because the reconstructed data is distributed actoss many disk whereas it was formerly on a single
disk, reconstruction disturhs the otiginal data placement, which can be a concem for some I
intensive applications. In disk arrays with dedicated spares, the data placement after reconstrection
is identical to the data placement before reconstruction.

Parity sparing is similar to distributed sparing except that it uses the spare capacity (o store
parity information [Reddy91, Chandy93]. As with distributed sparing, this eliminaes dedicated
spare disks, improving performance during notmal operation. The second set of patity blocks can
be used in a variety of ways. First, they can be used o logically partition the disk array into twa
separate disk arrays, resulting in higher reliability. In Figure 10, for example, P0a might compute
the parity over blocks 1 and 2 while POb computes the parity over blocks 3 and 4. Second, the
additional parity blocks can be used to augment the original parity groups. In Figure 10, if one
assumes that the panty of blocks 1, 2, 3, 4, P0a and PDb is always zero, write operations need
update only one of POa or POb. This has the benefit of improving small write performance by
allowing each small write to choose the parity block it will update based on information such as
the quene length and disk arm position at the two alternative disks. Third, the extra parity blocks

2 i T i R
1 2 3 4 POa POb
7 8 Pla Plb 3 &
P2a P2a 9 10 11 12
o A S R S S

Flgure 10: Parity Sparing. Parity sparing is similar (o distibuted spating except that the spare
space is wsed to stote a second set of parity information.

October 29, 1553 E

can be used o implement P+0) redundancy. When a disk fails, the disk areay convens (o simple
parity. By logical extension, a second disk failure would result in a EATD leve] 0 disk array.

Both distributed sparing and parity spating offer interesting ways (0 exploit on-line spares for
improved petformance. They are most effective for disk artavs with a small number of disks where
the fraction of spare disks o non-spare disks is likely to be large, As disk arrays become larger, a
smaller fraction of spare disks i3 needed to achieve the same level of reliability [Gibson®1].

4.4 Data Striping in Disk Arrays

Driztrbasting data across the disk array speeds up I'Os by allowing a single IND to transfer data
in parallel from muliple disks or by allowing multiple 1/Os to occur in parallel. The disk array
designer must keep in mind several radeoffs when deciding how to distribute data over the disks
in the disk amray. Since we ignore redundancy in this section, the main metric is performance, To
maximize performance, the designetr must balance two conflicting goals:

= Maximize the amount of useful data that each disk transfers with each logical IO, Typically, a
dizsk must spend some time seeking and rotating between each logical TR that it services, This
positioning time represents wasted work—no data is wansferred during this tume. It is hence
beneficial to maximize the amount of useful work done in between these positioning times.

= Thilize all disks. Tdle times are similas to positioning times in that during idle times, no useful
wotk being done, Idle times can atise in two different situations. First, hot spots can exist,
where certain disks (the hot disks) are more heavily used than other disks (the cold disks)
[Friedman®3, Wilmot89]). Second, it is possible that all disks could be used evenly when
viewed over a long period of time but not evenly at every instant. For example, if there is
always one request o the disk array outstanding and each request uses one disk, then only one
disk will be used at any given time—all other disks will remain idle.

These goals conflict because the schemes that puarantes use of all disks spread data among
mote disks and hence cause each disk to transfer less data per logical 100, On the other hand,
schemes that maximize the amount of data transferred per logical 100 may leave some disks idle.

October 29, 1553 40

Finding the right balance between these two goals is the main tradeoff in deciding how to distrib-
ute data among muliple disks,

Data simmping, or interleaving, is the most common way 1o distribute data among multiple
disks. In this scheme, logically contiguous pieces of data are stored on each disk in murmn. We refer
to the size of each piece of data as the striping unit. The main design parameter in data siriping is
the size of this striping unit, Smaller striping undts cause logical data to be spread over more disks;
latger striping umits cause logical data to be grouped, of clustered, together on fewer disks, Conge-
quently, the size of the striping unit determines how many disks each logical IO uses.

Because the interaction between workload and sthping umit can have a substantial effect on
ihe performance of a disk array with block-interleaved striping, Chen and Patterson developed
tules of thumb for selecting a striping unit [Chen®0b]. Their simulation-based model evaluated a
spindle-synchronized disk array of 16 disks. They used four, stochastic distributions describing the
size of each request. These distributions had mean sizes of 4 KB, 16 KB, 400 KB, and 1500 KB,
They also vatied the number of concurrent, independent requests from 1 wo 20. Their goal was
find the size of a striping unit that gives the largest throughput for an incompletely specified work-
load, They found that the most important workload parameter was concumency. When the comsur-
rency of the workload was known, they found a striping unit that provided 95% of the masimum
throughput possible for any pasticular request distribution. The size of this striping unit is

1 sector + 1M * average positioning time * data transfer rate * (concurrency-1)

where the average positioning time is an average seek time plus an average rotational delay. A
striping umit selected by tds expression is small when the concurtency is low so thal every access
can utilize all disks, and lameper when the concurrency is igh so that more different accesses can be
serviced in parallel. Intuitively, the product of average positioning time and data transfer rate bal-
ances the benefits and the costs of striping data, The benefit is the decreased transfer time of a sin-
ghe request, which saves approximately the transfer time of a stripe unit. The cost is the increased
disk utilization which arises from an additional disk positioning itself (o access the data. The con-

October 29, 1553 4]

stant, 1/4, is sengitive (o the number of disks in the array, more research needs o be done 1o inves-
tigate this relationship.

If nothing is known about a workload's concurtency, Chen and Patterson found that a good

compromise size for a striping umit is
23 * average positioning tme * data transfer rate

Again, regearch needs (o be done info the relationship between the number of disks in the array and
the constant, 273,

Lee and Katz [Lee9la) use an analytic modal of non-redundant disk arrays to detive an equa-
tion for the optimal size of data striping. The disk array system they model is similar o that used

by Chen and Patterson [Chen®0b] descrbed above, They show that the optimal size of data strip-

EX(L—-1yE
N

transfer rate, L is the concurrency, & is the request size, and M is the array size in disks, Their

ing is equal o where P is the average disk positioning tme, X is the average disk
regulis agree clogely with those of Chen and Paterson. In particular, note that their equation also
predicts that the optimal size of data striping is dependent only the relative rates al which a disk
positions and wansfers data, FX, rather than P or X individually,

Eesearchers are curtently investigating other ways to distribute data than a simple round-
tobin scheme, Some vatiations are choosing a different striping undt for each file and distributing
data by hashing or heat-balancing [Weikum92, Schevermann?], Copeland38].

4.5 Performance and Reliability Modeling

This section presents a brief summary of work that has been done in modeling the perfor-
mance and reliability of disk arrays. General performance models for block-interleaved disk arrays
are very difficult to formulate due to the presence of queueing and fork-join synchronization, That
is, a disk array request consists of multiple component disk requesis which much be queued and
serviced independently, then joined together (o satisfy the disk array request. Currently, exact solu-
tions exist for certain two server fork- join queues, however, the general & server fork-join queue is

October 29, 1553 42

an open tesearch problem. In addition, the bursty nature of most real 'O workloads is difficult o
model uging existing performance models which generally only deal with the steady state behavior
of the systemn. Thus, most performance models of block-interleaved disk arrays place heavy
resttctions on the configuration of the disk artay or the types of workloads that can be modeled.
30 far, a satisfactory performance model for BATT level 5 disk arrays that models both reads and
writes over a wide range of system and workload parameters has vet to be formulated.

Kim, in her 1986 paper [KimB6], detives response time aquations for synchronous byie-inter-
leawed disk amvays by treating the entite disk arfay as an MG queneing system. That is, the entite
dizsk amays i8 modeled a8 an open queusing system with an exponential interarrival distrbution,
general service time distribution, and a single server consisting of all the disks in the disk array.
The study compares the performance of an & disk synchronous byte-interleaved disk array with &
independent disk with uniform load and » independent disks with skewed load. She concludes that
biyte intetleaving results in reduced transfer time due o increased parallelism in sefvicing requests
and better load balancing but dramatically reduces the number of requests that can be serviced
concurrently,

Kim and Tantawi, in their 1991 paper [Kim%1], detive approximate service tme equations for
asynchronous (rotating independenthy of one another), byte-interleaved disk arrays. Disk seeks are
assumed to be distributed exponentially and rotational latencies are assumed to be distnbuted wuni-
formly. The results of the analytic equations are compared with the results of both synthetic and
irace-driven simulations, An imponant conclusion of the paper is that for a wide range of seek
time distributions, the sum of the seek and rotational latency can be approximated by a normal dis-
tribution.

Chen and Towsley [Chen%1] analytically model RAID level 1 and RATD level 5 disk arrays
for the purpose of comparing their performance under workloads consisting of very small and
latge requests, Bounds are used o approximately model the queueing and fork-join synchroniza-
tion in RAID level 1 disk arrays. Small write requests in RATD level 5 disk arrays are handled by
ignoring the fork-join synchronization overhead, resulting in a somewhat optimistic model. Large

October 29, 1553 43

requests are modeled by using a single quese for all tee disks in e disk array. The resulis of the
moddel are compared against simulation,

Lee and Katz [Lee93, Lee9la)] derive approximate throughput and response time equations
for block-interbeaved disk amays. Their model is the first analyiic performance model for general
block-interleaved disk arrays which takes into acoount both queveing and fork-join synchroniza-
tion, Previous models have ignored either the quewing ot fork- join synchrondizadion component of
the system. Lee and Karz[Lee%1a] also provide a simple application of the analytic model w deter-
mine an equation for the optimal unit of data siriping in disk arrays.

In addition to analytic models specifically for disk arrays, work dealing with the modeling of
fork-join queueing systems in general [Baccelli®5, Flano34, Heidelberger§?, Melson88] is useful
in modeling disk arrays. Most of these papers, however, model highly restrictive systems which
are nof easily apphbied o disk arrays.

The reliability of disk arays is most frequently modeled using continuous time Markow
chains, The failure and recovery of components in the sysiem cause wansitions from one stare (o
anciher. Generally, the most wseful information derived from such models is the average tme o
failures caused by each type of failure mode. A disadvantage of Markov reliability models is that
the number of siaes necessary 0 model even simple disk arrays increases exponentially as new
failure modes and system components are introduced, Forunately, because the repairreplacemment
rates for components of most disk arrayvs are much lagher than the failure rates, it 18 usually possi-
ble 1o greatly simply the Markov models by eliminating states which very rarely oocur To date,
Gibzon [Gibson?]] presents the most complete reliability study of disk arrays.

5 CASE STUDIES

Since the first publication of the RATD taxonomy in 1987, the disk drive industry has been
galvanized by the BEAID concept. Al least one market survey, prepared by Monigomery Securities
in 1991 [Mon21], {optimistically) predicted that the disk atray market would reach $7.8 billion by

October 29, 1553 “

1994, Compandes either shipping of having announced disk amray products include; Array Technol-
ogy Corporation (a subsidiary of Tandem), Ciprico, Compadq, Data General, Dell, EMC Corpora-
ton, Hewleti-Packard, TBM, MasPar, Maximum Strategies, Mictoechnologies Corpotation,
Micropolis, NCE, StorageTek, and Thinking Machines. RATD technology has found application in
all major computer system segments, including supercomputing, mainframes, minicompuiers,
workstation file servers, and PC file servers, We highlight some of these systems in the following

subsections.

5.1 Thinking Machines Corporation ScaleArray

The TMC ScaleArray is a RATD level 3 for the CM-3, which is a massively parallel processor
(MPP) from Thinking Machines Corporation (TMC). Announced in 1992, this disk array is
designed for scientific applications characterized by high-bandwidih for large files, Thinking
Machines also provides a file systems that can deliver data from & single file to multiple processors

from multiple disks [LoVersa%3].

The base wnit consists of eight IBM Model 0663E15 disks. These 3.5 inch disks contain 1.2
GE of data and can transfer up to ? MB/fecond for reads and 1.8 MBfsecond for wites, A pair of
disks is attached o each of four 3CEI-2 strings, and these four strings are atached 1o an & MB disk
buffer, Three of these base units are atached o the backplane, 5o the minimum configuration is 24
disks. TMC expects the 24 disks o be allocated as 22 data disks, 1 parity disk, and one spare, bt

these ratiog are adjustable.

Perhaps the most intetesting feature of the ScaleAmray is that these base umils are connected
directly to the data routing network of the Ch-5, Massively-parallel processors nommally reserve
that network to send messages between processors, but TMC decided to use the same network to
give them a scalable amount of disk 100 in addition o a scalable amount of processing. Each net-
work link offers 20 MB/second, and thete is a netwotk link for each base unit. As aconsaquence of
communicating with the data network and the small message size of the CM-5, the interleaving
factor is only 16 bytes. Panty is caboulated by an on-board processor and sent 1o the appropiate
disk.

October 29, 1553 45

Using the scalable MPP network to connect disks means there is almost no practical limit to
the number of disks that can be atached w the CM-5, since the machine was designed to be able to
scale to over 16,000 nodes, At the time of announcement, TMC had tested systems with 120 disks.
Using their file system and 120 disks (including a single parity disk), TMC was able to demon-
strate up to 185 MB/second for reads and up to 135 MB/second for writes for 240 MB files. In
another test, TMC demonstrated 1.5 to 1.6 MB/second per disk for reads and 1.0te 1.1 MB/second
pet disk for writes as the number of disks scaled from 20 w 120, For this test, TMC sent 2 MB to
each disk from a large file.

5.2 StorageTek Iceberg 9200 Disk Array Subsystem

StorageTek undenook the development of disk array-based mainframe storage products in the
late 1980, Their array, called feeberg, is based on collections of 5.257 disk drives yet must appear
to the mainframe (and its TBM-written operating system) as more traditional TBM 3380 and 3390
disk drives, Ieeberg implements an extended EAID level 5 disk array. An array consists of 13 daia
drives, P and O drives, and a hot spare. Data, parity, and Eeed-Solomon coding are siriped across
e 153 active drives within the amray. A single Joeberg conttoller can manage up to four such
arrays, tdally 130 GB of storage,

Iceberg incorporates a number of innovative capabilities within its amay controller, called
Fenpuin. The controller itself is organized as an 8 processor sysiem execuling its own real-time
operating system. The controller can simultaneously execute eight channel programs and can inde-
pendently wansfer on four additional channels.

The controller manages a large, battery-backed semiconductor cache (from 64 MEB up o 512
ME) in front of the disk array. This “exira level of indirection™ makes possible several array opii-
mizations, Pirst, the cache is used as a siaging area for compressing and decompressing data 1o and
to disk. This compression can double the effective storage capacity of the disk array. Second, when
written data is replaced in the cache, it is not written back to the same place on disk. In a manner
much like Berkeley’s Log Structured File System [Rosenblum91], data is written opporunistically
to disk in large track-sized wransfer units, reducing random access latencies and performing adap-

October 29, 1553 45

tive load balancing. And third, e cache makes it possible (o translate between the variable-length
seciors used by most IBM mainframe applications and the fixed-size sectors of commodity small
disk drawves. StorageTek calls this process dvmamic sapping. The controller keeps track of free
space within the amay and must reclaim space that is no longer being used. The free space data
strpctures and track tables mapping between logical IBM 3380 and 3390 disks and the actual phys-

ical blocks within the array is maintained in a separate 8 MEB non-volatile controller memory,

Cue to the complexity of the sofiware for a system as ambiticus as Iceberg, the product is

over a year behind schedule, though at the time of this writing it is in beta (est.

5.3 TickerTAIP/DataMesh

TickerTATPDatabesh is a research project at Hewleu-Packard Labs whose goal is o develop
an artay of "sman”™ disk nodes linked by a fast, reliable network [Cao93] (Figure 11). Each node
containg a disk, a CPU, and some local memory, Disk array controller operations such as panty
computation are distibuted among hese smart disk nodes, and the nodes communicate by mes-

sage-passing across the intemal interconmect,

The unique feature of the TickerTATP architecture is the close association of a CPLU to each
disk drive in the array (Figure 11}, This association allows each node o perform some of the pro-

cessing needed to perform a disk array operation. In addition, a subset of nodes are connected (o

Hostl conmneciion -ag— @ @

HosT con e o0 -eg— @ @

Host connection. s @ @
Host connect CPLT —@ @ @

Figure 11: The TickerTAIP/DataMesh Hardware Architechoe. The umque feamre of the
TickerTAIP architecture is the close association of a CPU to each disk drive in the amay. This
association allows cach node to perform some of the processing necded to perform a disk amay
operation.

October 29, 1553 47

the host computers that are requesting data. Because more than one node can talk to the host com-
puters, TickerTATP can survive a number of node failures, Many other disk arrays, in conirast,
have only one connection o host computers and can hence not survive the failure of their disk

array controller.

Currently, TicketTATP exists as a small, 7-node prototype. Each node consists of a TS
transputer, 4 MB of local RAM, and one HPF79560 SC31 disk drive. The TickerTATP project is
now developing software (o make the multiple, distibuted processing nodes appear as a single,
fast storage server, Early results show that, ab least for computing parity, TicketTATP achieves near
linear scaling [Cac®3].

H.I'E.ir{ Bllr?;ﬂ'i-dfh VLE
ransjers 4 Port Interleaved
-— Card | Memory (32 MB)

— e I
4-by8 by 32-bit | | LROR
ross bt

S VIE. | Contro
! |"-’ME|] "-"J'-]El |‘v']'-IE||"-’l-'[E| Bus
HIFFIT Bus

[VM]
VME
gk
Coniroller
@ @ | Four VME Dhsk Cootrodlers

SIS
88

Figore 121 RAID-TT Architecture. A high-bandwidih crosshar conmects together the network
interface (HIPPT), disk controllers, multiponed memory system, and panty computation engine
(ROR). An internal conirol bus provides access (o the crossbar poris, while external poini-to-
point VME links provide control paths wo the surrounding SC31 and HIPPT interface boards, Up 1o
wo VME disk controllers can be attached to each of the four VME interfaces,

October 29, 1553 43

5.4 The RAID-II Storage Server

FEAID-II (Figure 12) i8 a ldgh-bandwidih, network file server designed and implemented at
the University of California at Berkeley as pan of a project o study ldgh-performance, lamge-
capacity, highly-reliable storage systems [Chen®™, Katz93], EAID-TT interfaces a SCS1-based disk
array o0 a HIPFI network. One of BATD-TTs unique features is its ability to provide high-band-
width access from the network (o the disks without ransferring data theough the relatively slow
file server (a Sund/280 wotkstation) memory system. To do s, the EAID project designed & cus-
tom printed-civcuit boand called the XBLS card,

The XBUS card provides a high-bandwidth path between the majot sysiem components; the
HIPFI network, four VME busses that connect to VME disk controllers, and an imetleaved, multi-
potted semiconductor memory, The XBUS card also contains a panty computation engine that
genetates parity for writes and reconstrsction on the disk array, The data path between these sys-
tem components is a4 X § crogsbar switch that can sustain approximately 120 MEB/s. The entire
system is controlled by an external Sun 47280 file server thwough a memory-mapped control regis-

et interface, Figure 12 shows a block diagram for the controller.

To explore how the XBUS card enhances disk array performance, Chen, et al. [Chen®4] com-
pare the petformance of RATD-TT to BAID-T (Table 7)., RATD-T is basically BATD-TT witheut (he

Digk Array Read | Disk Array Write | Write Perfornmance
Performsance Performance Degradaiion
BAID-I 2AMBS 1.2 MB/s -51}%
RAID-II 209 MBis 182 MBS 1 3%
RAID-II speedup 8.7 152

Table 7: Performance Comparieon between RAID-TT and RAID-I. This table compares the
performance of RATD o that of RAID-L Becomss BAID-T s a special porpose parity engies, disk
arvay write performance & comparable to disk areny read padformancs. All writes in this a1 are foll-siripe
wiites [LeaQlh]. Por RAIT-I rends, data is vend fooen the disk amray oo XBUS memory then sent ovar the
HIFPFT mtwork back o XBTUS memwory. For RATD-T eeds, dars i9 eend from te disk ooy inbo Sond
ey, then copied again o Sond memory. This extra copy equalized the murnber of memory aocessas
per datn word. For RAID-I writes, doata stans in XBUS memory, is sent over HIFFT back into XBUS
IO, PArity is computed, and the data and parity are written 1o the disk subsystem. For RAID-T writes,
data siarts in Sund memory, geis copied to another locaion i Sond memory, hen is wrillen o disk
Meanwhile, parity is compoted oo he Sond. RAID T uses 832 KB airiping ool with B disks, RATD-TT osas
a b KB striping oandt with 24 disks.

October 29, 1553 45

XBUS card [Chervenak91]. They find that adding a custom interconnect board with a patity
engine improves performance by a factor of 8 10 15 over RAID-T, The maximum bandwidih of
RATD-I is between 20 and 300 MB/s, encugh to suppor the full disk bandwidith of approximately
20 disk drives.

5.5 1IBM Hagar Disk Array Coniroller

Hagar is a disk armay controller protoiype dewveloped at the TBM Almaden Research Center
[Menon%3a]. Hagar was designed for large capacity (up to 1 TE), high bandwidih {up to 100
MMBss), and high 15O rate (up to S000 4-EB 1'0°s per second). In addition, Hagar provides high
avadlability Ueough the uze of redundant hardware components, multiple power boundaries, and

on-hine reconstruction of data,

Two design features of Hagar are especially noteworthy, Pirst, Hagar uses battery-backed
memory Lo allow user writes o provide safe, asynchronous writes (as discussed in Section 4.1.1).
The designers of Hagar require each write (o be stored in (wo separaie memoty locations in two

different powet regions o funher inctease reliability.

Second, Hagar incorpotates a special-puipose parity computation engine inside the memory
of the controller, This is in contrast to the BEATD-IT architecture, which places the parity engine as a
pott on the contreller bus (Figure 12}, The Hagar memory system supporis a special store opera-
tion that performs an exclugive-of on the cutrent contents of a memory location with the new data,
then writes the regult to that location. Incorporating (e parity engine in the memory complicates

the memory system, but it Bghtens e data traffic on the controller™s internal data bas.

Hagar was never fully operational; however, TBM is working on future disk amray products

that use ideas from Hagar.

6 OPPORTUNITIES FOR FUTURE RESEARCH

Eedundant disk arrays have rejuvenated regearch into secondary storage systems over the past

five 1o seven vears. As this survey ighlights, much has been proposed and exarmdned, but much is

October 29, 1553 50

left o do. This section discusses the classes of research not adequately understood with particular
alention (o specific open problems.

6.1 Experience with Disk Arrays

As an over five year old research area that has sported products for at least six years, redun-
dant disk arrays have remarkably few published measurement results and experience. In addition
to validating models and techniques found in the literanire, such experience teporns can play an
important tole in technology wansfer [Buzen®6]). Furthermore, measutements frequently form the
basis for developing new optimizations.

6.2 Interaction among New Technologies

As thas survey describes, there are many new and different disk array technologies., Most of
these, including double failure comection, declustered parity, parity logging ot Aoating parity, dis-
uibuted sparing, log-stnictured file systems, and file-specific dara striping, have only been studied
in isolation. Unguestionably among teese there will be significant interactions, both serious new
problems and obvious simplifications ot optimizations.

As more is understood about the interactions among disk array technologies, designers and
managers of disk arrays will be faced with the task of configuring and ning arrays. As Section
4.5 discusses, redundant disk array performance and teliability modelling is largely incomplete
and unsophisticated. Work needs to be done in the application of fundamental modelling to the
problem of disk amrays as well as the development of that fundamental modelling, fork- join quene-
ing models in particular. A good goal for of this work is graphical, interactive analysis tools
exploiting low overhead monitoring data 1o guide configuration and wning,

Ope objection commendy lodged against redundant disk arrays, particularly some of the
newly proposed technologies, is their relatively high complexity, Storage systems are responsible
for more than just e availability of our data, they are responsible for its integrity. As the complex-
ity goes up, the oppomunity for disastrous latent bugs also rises. This is compounded by the desire
1o increase performance by continuing CoOmpITALon & so0n as stotage modifications are delivered

October 29, 1553 5]

Lo stotage server memory; that is, before these modifications are committed o disk. Inexpensive ot
highly reliable mechanisms are needed to control the valnerability o increased software complex-
ity of stotage sysiems.

6.3 Scalability, Massively Parallel Computers, and Small Disks

One of the key motivations for redundant disk arrays is the opporunity to increase data paral-
lelism in order to satisfy the data processing needs of future penerations of high-performance com-
puters, This means that arrays must scale up with the massively parallel computers that are being
built and the even more massively pasallel computers being planned. Massively parallel disk
control processing requirements to name a few, The most compelling approach to ever larger disk
arrays is to embed storage based on the new generations of small diameter disks into the fabnic of
massively parallel computers, use the computer’s interconnection network for data distribution and
redundancy maintenance, and distribute the storage control processing throughout the processors
of the parallel computer.

Though compelling, this approach has substantial problems to be overcome, PAmary among
these are the impact on the interconnection network of distributing the redundancy computations
[Cao%3], the impact on the processors of distnbuting storage control, and the viability of allocating
data on storage near e processors that will use it

6.4 Latency

Redundant disk arrays are fundamentally designed for throughput, either high transfer rates
for large, parallel transfers or large numbers of concurrent small accesses, They are only effective
for reducing access latency when this latency is hmited by throughput, For lower throughpat

Caching is the main mechanism for reducing access latency, but caching can be ineffective

either because data i8 oo large, o0 infrequently accessed, of (oo frequently migrated among
caches. Por these workloads, data prefetching is essential, Research into aggressive prefeiching

October 29, 1553 52

sysiems is beginning (o eXamine opporiunities 1o extract of predict fulure accesses and provide
mechanisms o efficiently utilize available resources in anticipation of these accesses [KomerH),

Kotz®], Gibson®?, Patterson®3, Tair%1]).

7 CONCLUSIONS

Disk arrays have moved from research ideas in the late 1950°% o commercial products today.
The advantages of using striping to improve performance and redundancy (o improve reliability
have proven so compelling that most major computer manufacturers are selling or intending (o sell
disk arrays. Much research and implementation has been accomplished, both in industry and wni-
versities, but many theoretical and practical issues remain unresolved. We look forward 1o the

many fruitful years of disk amay research.

8 ACKNOWLEDGEMENTS

We thank Bill Courtright, Mark Holland, Tai Menon, and Dandel Stodolskoy for reading an eat-

lier drafi of this paper and for their many helpful comments,

9 ANNOTATED BIBLIOGRAPHY

[AmdahleT] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities, In FProceedings AFIPS 1967 Spring Joimt Cowipeter
Conference, volume 30, pages 483485, Apnl 1967,

Thiee page paper that eloquently gives case for traditional computers by pointing out
that performance improvement is Emited by porion of the computation that is not
improved.

[BaccelliZ5] FPramncois Baccelli, Two Parallel Queues Created by Arrivals with Two Demands.
Technical Bepornt 426, INRIA-Rocquencourt France, 1985,

Denives an exact solution for the two-server, MG fork-join queuse.

[Bhide92] Anupam Bhide and Daniel Dias. Baid Architeciures for OLTPE, Technical Bepott RC
17879 (#78489), IBM, March 1992,

Increases theoughpaut for workloads emphasizing small, random wiile accesses in a
redundant disk amray by logging changes o patity for efficient application later.

October 29, 1553 53

[Bitton&3]

[Buzenst]

[Cacd3]

[Chandy93]

[Chen9ika]

[Chen0b]

Parity changes are logged onto a separate disk which must be extemally somed
before application 1o the disk artay’s patty.

Dina Bitton and Jim Gray. Disk Shadowing. In Very Large Database Conference
XV, pages 331338, 1988,

Describes disk mirroring and detives an analytical equation for read and write seek
distances & a function of the number of data copies,

leffrey P. Buzen and Annie W.C. Shum. 'O Architecture in MVS/3T0 and
MVEXA, CMG Transactions, 34:19-26, Fall 1986,

Orverview of the MVE3TD and MY SXA 17D archateciure. Describes channel paths,
reconnect,

Pei Cao, Swee Boon Lim, Slovakumar Venkataraman, and John Wilkes. The
TickerTAIP parallel RAID architecture. In Proceedings of the 1993 Interational
Symposinm on Compater Avchitectre, May 1993,

Describes the TickerTAIP architecture, sofiware implementation issues, and the
performance of different methods of distributing patty computaion among multiple
PEOCESS0ES.

John Chandy and A, L. Marasimha Eeddy. Failure Bvaluation of Disk Array
Organdzations. In Proceedings of the International Cownference on Disivibuted
Centriputing Systems, May 1993,

time in small {7 and 16 disks) redundant disk arrays: RAID 5 with a single spare disk,
BATD 5 with a single spare whose space is distributed across all disks, a special case
of Muntz and Lui’s parity clustering organization, and a method of dynamically
converning a redundant data disk to a spare disk by merging two redundancy groups
inwo one larger group. The second, distibuted spating, is generally preferred because
of i3 performance and simplicity, but the Munz scheme is bewter for minimal impact
of uzer performance during recovery.

Peter M. Chen, Garth Gibson, Randy H. Katz, and David A. Panerson. An
Evaluation of Bedundant Arrays of Disks Using an Amdahl 3890, In Proceedings of
the 1990 ACM SIGMETRICS Conference on Measuvement and Modeling of

Cenriputer Systems, May 1990,
The first experimental evaluation of RATD, Compares EAID kevels 0, 1, and 3.

Peter M. Chen and Dravid A. Paterson. Maximizing Performance in a Stiped Disk
Array, In FProceedings of the 1990 Imternational Symposium on Comipeuter

October 29, 1553

)

[Chend1]

[Chend4]

Architecture, pages 322-331, May 1990,
Dviscusses how 1o chooge the siriping unit for a BATD lewvel D disk array.,

shenze Chen and Don Towskey, A Queueing Analysis of RAID Arcldtectures.
Techmical Bepornt COOINS Tech. Repom 91-71, University of Massachusets,
Amberst, Department of Computer and Information Science, 1991.

Analyiically models EATD level 1 and RATD level 5 disk arrays to compare their
performance on small and latge requests, Bounds are used to model the queseing and
fork-join synchronization in RATD level 1 disk arrays. Small write requests in RAID
lewel 5 disk arrays are handled by ignoring the fork-join synchronization overhead.
Large requests are modeled by using a single queue for all the disks in the disk array.

Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Een Luz, EthanI. Miller,
Srinivasan Seshan, Ken Shimiff, David A. Paterson, and Randy H. Kaiz.
Performance and Design Bvaluation of the EAID-I1 Sworage Server. fmvited 1o the
Journal of Distvibuted and Farallel Databases, fo appear, 1994, also appeared in
The 1993 International Parallel Processing Symposium Workshop on 1O in Parallel
Compater Sysiems.

Summanzes major architecural feares of RAID-TI and evaluates how they impacts
performance,

[Chervenak®1] Ann L. Chervenak and Randy H. Katz, Performance of a Disk Array Prototype. In

Froceedings of the 199 ACM SIGMETRICE Conference on Measurement ard
Modeling of Computer Syefems, volome 19, pages 188197, May 1991
Performance Evaluation Eeview,

Evaluates the performance of RATD-T, a ULC, Berkeley disk array protoiype,

[CopelandB8] G, Copeland, W, Alexander, B. Boughter, and T, Keller, Data Placement in Bubba.

[Emlich89]

[Flattog4]

In Proceedings of the ACM SIGMOD International Conference on Management of
Drage, pages 99-108, 1988,

Dhizscusses data allocation in a large database,
Larry W, Bmlich and Herman I Polich. VAXsimPLUS, A Paulk Manager
Implementation, Dy¥gial Techuical Jowrnal, B, PFebruary 1989,

Describes Digital Equipment Corpotation’s tool for predicting an avoiding disk
Failures,

L. Flatio and 5, Haln, Two Parallel Queges Created by Arrivals with Two Demands
I}, SIAM Jowrmal of Compuiing, pages 1041-10533, Ccrober 1984,

Denives an exact solution for the two server, WY1, fork-join quese.

October 29, 1553

[FriedmanB3] Matk B, Priedman, DASD Access Patterns, In f4rh International Conference on

[Gibson21]

[Gibson%2]

[Gray 0]

[Fall36]

Management and Ferformance Evaluation of Computer Systems, pages 51-61,
1983, CMG XTIV,

Looks at how much disk accesses are skewed towards panicular disks in several
Lransaction processing sites.

Garth Alan Gibson, Redundant DNsk Arvavs: Reliable, Parallel Secondary Storage.
Phl} thegis, University of Californda at Betkeley, December 1991, also available
from MIT Press, 1992,

Award winming dissertation that describes EAIDs in detail, with emphasis on
reliability analysis of several aliernatives.

Garth &, Gibson, R, Hugo Patterson, and M. Satvanarayanan. Disk Beads with
DEAM Latency. Third Workshop on Workstation Operating Svstems, April 1992,
Propoges that applications give hints about their future file accesses so that (e buffer
cache can prefetch needed data and provide low-latency file access, The hints could
also be exploited to improve cache management and disk scheduling.

Jim Gray, Bob Horst, and Mark Walker. Parity Sttping of Disc Arrays: Low-Cost
Reliable Storage with Acceptable Throughput, In Froceedings of the Ioth Very
Large Database Conference, pages 145-160, 1990, VLDE XVI1.

Describes an data and parity layout for disk armrays called parity striping. Parity
siriping is essentially BEATD level 5 with an infinite strhiping unit and manual load
balancing.

M. Hall. Combanatorial Theory (2nd Edition), Wiley-Interscience, 1986

Textbook on combinatorial theory, The section on balanced, incomplete block
designs are most relevant for readers of this paper.

[Heidelberger82] Philip Heidelberger and Kishor 5. Trivedi. Queueing Network Models for Parallel

Processing with Asynchronous Tasks, FTEEE Transactions on Computers, C-
31(113:1099-1109, November 1982,

Defives approximate solutions for queseing systems with forks Bt no joins.

[Hennessy] John L. Hennessy and David A. Patterson, Computer Architecture; A Cuantitative

[Holland52]

Approach. Technical repott, Morgan Kaufmann Publishers, Inc.,, 199,

Likely the most popular genetal book in computer architecture today, the discussion
on technology trends, general 10 issues, and measurements of seek distances are
most relevant 1o readers of this paper.

Matk Holland and Ganh Gibson. Patty Declustering for Continuous Opetation in

October 29, 1553

56

[Holland93]

[Katz93]

[Kim86]

[Kim%1]

[Korner9]

Redundant Disk Arrays, In Proceedings of the Sth Infermational Conference on

Architectural Support for Frogromming Longnages and Operaling Svsltems
(ASFLOS-V), pages 23-35, October 1992,

Describes patity declustefing, a techmsque for improving the performance of a
redundant disk array in the presence of disk failure. Analyzes the proposed solution
using detailed simulation and finds significant improvermnents (20-30%) in both user
response tme and reconstruction ime. Also analyzes a set of previously-proposed
opimizations that can be applied to the reconstrection algotithm, concluding that
they can actualy slow the reconstniction process undet cettain conditions.

Matk Holland, Ganh Gibson, and Dandel Siewiorek. Fast, On-Line Bailure Recovery
in BEedundant Disk Arrays. In Froceedings of the 23rd Infernational Synposiim on
Fawlt Tolerant Computing, 1993, FTCC-23,

Compares and contrasis (wo data reconstrsction algotithms for disk arrays: " parallel
stripe-otented reconstruction” and “disk-otiented reconstruction”. Presemts an
implementation of the disk-oriented algotithm and analyzes reconstARCLON
performance of these algorithms, concluding that the disk oriented algorithm is
superior, Investigates the sensitivity of the reconstruction process to the size of the
reconsiruction unit and the amount of memory available for reconstnection.
Randy H. Katz, Peter M. Chen, Annl. Drapeau, Edward K. Lee, Ken Lutz,
Ethan L. Miller, Srinivasan Seshan, and David A. Patterson. EATID-II: Design and
Implementation of a Large Scale Disk Armay Controller, In f993 Swaposion om
Tnregrated Svzrems, 1993, University of Califormia at Betkeley UCBACSD 925705,

Describes the design decisions and implementation expetiences from EAID-TI.
Michelle ¥, Kim. Synchronized Disk Interleaving. TEEE Trausacfions om
Centipaters, C-331 11978988, Movember 1986,

Simulates the performance of independent disks versus synchronized disk striping.
Detives an equation for response time by treating the synchronized disk array as an
MG queleing systen.,

Michelle ¥, Kim and AsserM. Tantawi. Asynchronous Disk Interleaving:
Approximating Access Delays, TEEE Transactions on Compafers, 471:801-810,
July 1991,

Detives an approximate equation for access tme in unsynchronized disk arrays
when seeks times are exponentially distbuted and rotational latency is uniformly
isributed

E. Eomer, Intelligent Caching for Remote File Service. In Proceedings of the

October 29, 1553

57

[Kotz91]

[Lee9la]

[Leed1h]

[Leed3]

[LoVerso93]

[Menon%1]

ITntermational Conference on Distrbuted Computing Svetems, pages 220226, 199,

Uses traces o generate hints based on the program running and the directory and
name of files accessed. The file server uses the hints to pick a caching algorithm:
LEI, MEL, none, Simulation showed significant benefits from intelligent caching
but not from readahead which delaved demand requests since it was not
preempiable.

Davwid Kotz and Catla Schlatter Ellis. Practical Prefetching Techmiques for Parallel
File Svstems, In Proceedings of the Fivst International Conference on Farallel and
Lrigtvibuted Information Systems, pages 182-189, December 1991.

File access predictors use past accesses o prefetch data inidle nodes of a parallel file
system, Jimulation studies show that practical predictors can often significantly
reduce tofal execution time while the penalty for incorrect predictions is modest,
Edward K. Lee and Randy H. Katz, An Analvtic Perform ance Model of Disk Arrays
and it Applications. Techscal BEepon UCBEACSD 91660, University of Califormia
at Berkeley, 1991,

Defives an analytic model for non-redundant disk arrays and uses the model o
derive an equation for the optimal size of data striping,
Edward K. Lee and Randy H. Katz, Performance Consequences of Panty Placement
in Dvisk Arrays, In Proceadings of the 4rd International Conference on Avchitectural
Support for Frogramming Langnages and Operating Svstems (ASPLOS-IV), pages
190-199, April 1991,

Investigates the performance of different methods of distributing parity in EAID
lewel 5 disk arrays.

Edward K. Lee and Eandy H, Eaz, An Analytic Performance Model of Disk
Artavs, In Proceadings of the 1993 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 98-109, May 1993,
similar to eathier technical reporn with similar name except with better empitcal
Justifications and a mote detailed stdy of the model"s propetties.

Susan J. LoVerso, Marshall Isman, Andy Manopoulos, et al, sfs: A Parallel File
Svstem for the CM-5, In Proceedings USENTY Supmner Conference, June 1993,

A description of the 'O hardware and the file system of the massively parallel
processor from Thinking Machines. Their RATD-3 disk array has excellent
performance for latge file accesses.

Tai Menon, Dick Matison, and Spencer Mg. Distributed Sparing for Improved

October 29, 1553

[Menon®3a]

[Menon93n]

Performance of Disk Arrays. Technical Repornt BT 7943, TBM, January 1991,

Explores the use of an on-line spare disk in a redundant disk array analyvtically. Tt
examines muliple configurations, but fundamentally it distributes the spare’s space
over the whole array so that every disk is DNAMN+2) data, LAM+2) parity, and L(T+2)
spare. This gives an extra Li{N+2) performance, but, more significantly, it distributes
the recovery-write load (the reconstracted data) over all disks (o shorien recovery
time, The benefits, not surprisingly, are largest for small areays.

Jai Menon and Jim Conney, The Architecture of a Pauli-Tolerant Cached BAID
Controller. In Proceedings of the 20th Ifernatfomal Symposiin on Comipurer
Architecture, pages T6-86, May 1993,
Describes the architecture of Hagar and several algorithms for asynchronous writes
that reduce susceptibility (o data loss,

Jai Menon, James Roche, and Jim Kasson, Floating Parity and Data Disk Arrays.
Jowrnal of Pavallel and Distributed Computing, 17:129-139, 1993,

Introdwces floating data and floaing patity as an optimization for RAID lewel 5 disk
artays, Discusses performance and capacity ovetheads of methods.

[Merchant®2] A, Merchant and P. Yu, Design and Modeling of Clustered EAITY, In Froceedings

Mon91]

[(Muntz¥0]

of the International Swhposiun on Fault Tolerant Computing, pages 140-149, 1992,
FTCC.

Presents an implementation of parity declustering, which tee srthors call “clustered
RATD, based on random permutations. Tis advantage is that itis able to detive a data
mapping for any size disk amay with any size parity stripe, and the comesponding
disadvantage is that the computational requirements of the mapping algorithm are
high compared o the block-design based approaches. Analyzes response time and
feconsttuction time using this technique via an anabvtic model, and finds subatantial
benefits in both.

RATID: A Technology Poised for Explosive Growth, Technical Eeport DILA: 2902,
Mongomery Secutities, December 1991.

Industry projections of market growth for RATD systems from 1990 o 1995,

Richard B, Muniz and John C, 5, Lui, Perfformance Analysis of Disk Arrays under
Failure. In Proceadings of the 16th Conference on Very Large Data Bases, 199,
VLDE XVIL

Proposes and evaluates the “clustered RAID™ technsque for improving the failure-
recovery performance in redundant disk arrays. IU leaves open the problem of
implementation: no echndque for efficiently mapping data units to physical disks is

October 29, 1553

i

presented. Analyzes wia an analwviical model the techndque and two polential
“oplimizations” Lo e reconsiruction algotithm, and finds significant benefits (o all
three,

[Melson88] K. MNelson and AN, Tantawi. Approximate Analysis of BorkJoin Synchromzation
in Parallel Quewes, JEEE Transactions on Compaters, 3706):T39-T43, June 1988,
Approximates response time in fork-join queseing systems with k >= 2 servers
where each logical request always forks into k requests,

[Mg92] Spencer Mg and Dhick Matison, Maintaining Good Performance in Disk Arrays
During Failure wia Uniform Panty Group Distribution. In Froceadings of the First

Tnrermanional Swnposien on High Performance Dizivibuted Computivg, pages 260-
269, 1992,

Uses balanced, incomplete block designs (o distribute the extra load from a failed
disk equally among other disks in the array.

[Opjid] Cynrl UL Onji and Jon A, Solworth. Doubly Distoned Mirrors, In Froceedings of the
ACM SCGMOD Intermational Cornference on Managerent of Dara, 1993,
Describes a technique called distotted mirrors that partitions each of two mirrored
disks into two halves, one of which Lays out the data in & standard fashion, one of
which “distoris™ the data Layout, This accelerates writes 1o the distorted copy while
preserving the ability to sequentially read large files,

[PartersondB] David A. Paiterson, Ganh Gibson, and Eandy H. Kaiz. A Case for Eedundant

Artavs of Inexpensive Disks (RATDY. In fafermatfonal Conference or Manageniens
af Data (SFGMOD), pages 109-116, June 1958,

The first published Berkeley paper on RATIDS, it gives all the EAID nomenclature,

[Paiterson93] R. Hugo Paiterson, Ganh A. Gibson, and M. Saiyanarayvanan. A 3aus Eeport on
Regearch in Transparent Informed Prefetching, ACM Operaring Svetems Review,
FH221-34, April 1993,
Expands on using apphication hintg for file prefetching in [Gibson%2]. Hints should
disclose access pattemns, not advise caching/prefetching actions. Greatest poential
from convering serial accesses into concurrent accesses on a disk array. Presents
preliminary resulis of user-level prefetching tesis,

[Parterson®] David A. Pamerson and John L. Hennessy, Computer Organization and Design: The
Hardware/Sofiware Interface. Technical report, Morgan Faufmann Publishers,
1904,

A popular undergraduate book in computer architecture, the discussion on

October 29, 1553 &0

[Peterson7?]

technology rends are most relevant 1o readets of this papet.

W, Wegley Peterson and E. J. Weldon. Ervor-Correcting Codes, Second Edition.
MIT Press, 1972,

A general texthook on the mathematics of error-commecting codes.,

[Fosenblum@]1] Mendel Bosenblum and JTohn K. Ousterheout, The Diesign and Implementation of a

Log-Struciured Pile System. In Proceedings of the f3th ACM Svwposin on
Operating Systens Principles, October 1991,

Describes a Log-Struciured File Sysiem that makes all writes 1o disk sequential.
Dhiscusses efficient ways o clean the disk to prevent excessive fragmentation.

[Schevermann®]] Peter Schevermann, Gethard Weikum, and Peter Zabback. Automatic Tuning of

[Schulzes9]

Drata Placement and Load Balancing in Dhisk Armays, Database Systems for Next-
Generation Applications: Principles and Fractice, 1991, DBS-92.91,

Describes heuristics for allocating files to disks to minimize disk skew.
Martin Schulze, Garth Gibson, Eandy Katz, and David Patterson, How Eeliable is a

RATDT In Frocedures of the TEEE Compnfer Sociery International Cowference
(COMPCON], March 1989, Spring COMPCON 89,

Gives a reliability cabculation for the electronics as well as the disks for RATDs,

[Stodolsky93] Damel Stodolsky and Garth A, Gibson, Panty Logging: Owvercoming the Small

[Tait31]

[Weikum9?]

Write Problem in Redundant Disk Arrays. In Proceedings of the 1993 Intermational
Symposinm on Compater Avchitectre, May 1993,

Increases theoughpat for workloads emphasizing small, random wiile accesses ina
redundant disk amay by logging changes tothe patty in a segmented log for efficient

application later, Log segmentation allews log operations that are large enough (o be
efficient yvef small encugh to allow in-memory application of a log segment.

C. D, Tait and I, Duchamp, Detection and Exploitation of File Working Sets. In
Froceedings of the International Conference on Distributed Computing Svstems,
pages 2-9, May 1991,

Dynamécally builds and maintains program and data access trees (o predict future
file accesses. The current pattern is matched with previous trees (o prefeich data and
manage the local cache in a distributed file system. Trace-driven simulation shows
reduced cache miss rates over a simple LEL algorithm.

Gethard Weikum and Peter Zabback. Tuming of Striping Units in Disk- Array-Based
File Systems. In Froceadings af the 2nd fnrermationgl Workshop on Research Issies
on Craia Engineering: Tramsaction and Query Frocessing, pages B0-87, 1992,

October 29, 1553

5]

[Wilmot89]

Proposes file-specific striping units instead of a single, global one for all files,

Richard B, Wilmo. File Usage Patterns from SMF Data: Highly Skewed Usage. In
20tk Mmternational Cornference on Managgement amd Ferformance Evaluation of
Ceviputer Systems, pages 668677, 1989, CMG 1989,

Repons on how files are accessed on four large data centers and finds that & small
number of files account for most of all disk 10,

October 29, 1553

