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Abstract

RALPH-MEA: A Real-Time, Decision-Theoretic Agent Architecture
by
Gary Hayato Ogasawara
Doctor of Philosophy in Computer Science
University of California at Berkeley

Professor Stuart J. Russell, Chair

This dissertation describes the RALPH-MEA agent architecture which uses deci-
sion theory combined with real-time control for decision-making in complex domains.
In order to achieve the conflicting goals of an accurate representation and a fast
decision cycle, several novel techniques are introduced.

Multiple execution architectures are four implementations of the agent function,
a function that receives percepts from the environment as input and outputs an
action choice. The four execution architectures (EAs) are defined by the different
knowledge types that each uses. Depending on the domain and agent capabilities,
each EA has different advantages. For example, a reactive, “if (condition) then (ac-
tion)”, production rule system will generally allow fast reactions, while a deliberative,
decision-theoretic system will be slow but accurate and easily programmed with new
knowledge and goals. A metalevel algorithm to combine the results of multiple EAs
is given, and a decision-theoretic representation of the EAs as “extended influence

diagrams” is defined.



Knowledge compilation is used to convert knowledge of one type to another. For
example, the knowledge used by a decision-theoretic system (e.g., probabilities and
utilities of outcome states) can be converted into knowledge used by a condition-action
rule systems. A viable strategy is to acquire knowledge in one form and then to use
knowledge compilation to convert the knowledge into the most efficiently executable
form.

A view of decision-theoretic planning is also presented. Utilizing decision theory
for planning facilitates the handling of uncertainty and multiple objectives. However,
because of the high complexity of such planning, control of planning becomes a critical
issue. Metalevel control of planning computes the value of information of planning to

compare to the utility of executing the current default plan.
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Chapter 1

Introduction

1.1 Motivation

The popularized goals of artificial intelligence have usually included not only creat-
ing intelligence but also explaining intelligence. Of course, these are not independent
notions. If we can explain how intelligent behavior can come about, we can construct
such an agent. If we can provide an agent architecture that can act as a foundation
for intelligent behavior, we can create a general, intelligent agent.

This dissertation describes RALPH-MEA (Rational Agent with Limited Perfor-
mance Hardware— Multiple Execution Architectures), a control architecture to make
intelligent decisions in real time. Fundamental to this research program is the focus
on providing a theoretical foundation for real-world decision-making that is bounded
by limited resources of time and computing power. With such an architecture, control
systems and expert systems can be developed for a wide range of applications (e.g.,

autonomous vehicle control and sensor management).



Artificial Intelligence was founded in the belief that there is a distinction between
knowledge and the underlying physical layer that uses that knowledge. Then, it be-
comes reasonable to imagine that intelligence can be created as an organization of
the “knowledge level” and applied to different physical implementations. Turing’s
article “Computing Machinery and Intelligence” [97] and Shannon’s discussion of
computer chess [87], both of which appeared in 1950, presupposed such a world view.
McCarthy and Hayes [60] and Newell [64], among others, precisely targeted the orga-
nization/implementation distinction. For example, Newell discussed the “knowledge
level” which lies above the symbol and hardware levels and operates on knowledge,
e.g., beliefs and goals.

The organization of the knowledge level can be regarded as the agent architecture
that remains fixed for any particular domain, so that the same architecture can be
used whether reasoning about an underwater vehicle or a hockey player, and only the
domain knowledge is changed. The critical task is to specify the architecture because
its generality provides predictive and explanatory power that solutions to particular
domains or reasoning problems lack. The philosophy, design, and implementation
of such an agent architecture that supports intelligent decision-making in real-time,
complex domains are the subjects of this research.

The type of domains and problems that we are interested in are real-world prob-
lems such as controlling an autonomous underwater vehicle (AUV) that once launched,
must make autonomous decisions with respect to its objectives and environment. The

AUV example is typical of tasks that require intelligent decision-making in that it is

1. Real-time. When a decision is made by the system matters (e.g., deciding



whether to move or not when a spear is flying towards your head).

2. Complex. If a decision problem is simple, it is easy to find a special-purpose
method to make the decision. However, as the problem becomes more complex

in type and scope, a principled architecture becomes more useful.

3. High stakes. When the outcome of behavior has high reward or high penalty, it
is important to make correct decisions. Otherwise, there is no need for intelligent

discrimination among decision choices.

These domain characteristics lead to the two major requirements for the agent

architecture:

1. Representational accuracy.
The domain must be represented in a form that can be used by the architecture.
But as the domain becomes more complex, it becomes difficult to accurately
model the domain and maintain that model. For example, the underwater
terrain and currents impact the performance of the AUV, and how and at what
level of detail geographical and meteorological data is represented needs to be
carefully considered. This knowledge acquisition and modeling task is critical
in building effective agents. The “knowledge-acquisition bottleneck” is often

cited as the most crucial step in building expert systems (e.g., [46]).

2. Inferential tractability.
Because of the real-time nature of the world in which the agent is situated, infer-

ence used to make decisions must be tractable. The world does not freeze while



the agent decides what to do next, but is continually changing with time. The

agent is situated in this dynamic world and needs to make real-time decisions.

The above two requirements are dependent and counteracting. Achieving one re-
quirement is simple, but irrelevant. If the representation is made more accurate by
modelling every tiny detail, inferential tractability becomes much more difficult to
achieve. And likewise, inferential tractability can be achieved at the expense of an
inaccurate representation. In a broad sense, the general problem of Artificial Intel-
ligence (AI) can be construed as providing representational accuracy and inferential
tractability to artificial agents. Systems that work only for small, toy problems like
stacking computer-simulated toy blocks do not “solve” the Al problem because they

cannot be scaled to real-life problems.

1.2 Approach

Our approach with RALPH-MEA starts with a complex problem framework with
uncertainty about the world, multiple objectives, and resource-constrained computa-
tion. Though we scale up by first looking at simple problems in this framework, this
approach is significantly different from assuming perfect knowledge about the world,

black-and-white goals, and unlimited computation time.

1.2.1 Decision Theory

Decision theory provides a well-principled framework that explicitly considers

world uncertainty and multiple objectives to compute the optimal decision to exe-



cute [98, 82]. The fundamental Maximum Expected Utility (MEU) principle states
that the optimal decision choice d* is computed using the probability distribution on

the outcome states, s € S, and a utility function on outcome states, u(s):

d* = argmazaep Y, p(s|d)u(s) (1.1)

SES

The probability and utility functions are generally assessed from a subjective per-
spective, and so decision theory is also known as subjective Bayesian decision theory.

As an example, consider the decision of whether to select a fair coin or a biased
coin (D = {fair,—fair}) on a certain coin toss with outcomes S = {h,t}. Assume
we have utilities of u(h) = 1,u(t) = 0, and the probabilities of the toss outcome
depends on which coin is selected: p(h|fair) = p(t|fair) = 0.5, p(h|=fair) = 0.6,

p(t|=fair) = 0.4. The expected utility, E[u], of each d can then be computed:

Elu(d = fair)] = p(h|fair)u(h)+ p(t|fair)u(t) = 0.5 (1.2)

Elu(d = =fair)] = p(h|=fair)u(h)+ p(t|=fair)u(t) = 0.6 (1.3)

Therefore, d* = = faur.

If an agent can continuously apply the MEU principle to select “best” actions,
it can be considered to be generating optimal behavior with respect to its goals.
However, in even moderately complex domains, the MEU principle cannot be imple-
mented directly because of limited resource constraints (e.g., time) and uncertainty
about the outcome states. To help alleviate this Al scalability problem, multiple ex-

ecution architectures are employed as the key component strategy of RALPH-MEA.
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Figure 1.1: RALPH-MEA system architecture.
1.2.2 Multiple Execution Architectures

An agent can be considered as a function or “black box” that receives percept
sequences from its environment and selects actions to take. The agent’s sensors
classify the environment into percepts which can be viewed as propositions, and
percept sequences are the percepts received over a period of time. For example,
percepts could be specific pixel values of a sensor, and a percept sequence could
be those pixels sensed over a period of five seconds. The environment is external
to the agent, but note that this does not preclude simulated environments which
are independent of the agent. Actions include both external (or base-level) actions

that act directly on the environment (e.g., moving the right leg) and internal (or



computational) actions that change the agent’s internal state (e.g., run the planner
for ten more seconds). Instead of the traditional sense-decide-act loop where only the
final step is under control, the agent executes an act loop that controls each phase of
sensing, deciding, and external acting.

An execution architecture (EA) [75] is an implementation of the agent function
that maps sequences of percepts from the environment to “best” action choices: f :
P* — D!. A fixed number of EAs can be defined dependent on the type of knowledge
the EA uses to implement the agent function. Different types of knowledge include
goals, probabilities of states, outcomes of actions, and utility information. In parallel,
each EA computes the same function to determine a “best” action choice, but with
different types of knowledge. A metalevel control system monitors the computation
of the EAs and determines an overall “best” action (see Figure 1.1).

Because each EA operates on different knowledge types, each EA has different
profiles of cost of computation and quality of computed results. For example, one
EA that uses “if < condition >, then < action >” rules will probably have relatively
low computation costs, but the quality of its action recommendations also may be
low. In contrast, a decision-theoretic planning system may have very high relative
computation costs, but correspondingly very high quality results. Depending on the
domain (e.g., the time-pressure and reward/penalty for decisions), a combination of
the results of the FAs is the optimal strategy.

The motivation for having multiple EAs stems from the two requirements of an

agent architecture: representational accuracy and inferential tractability. The domain

!The agent mapping can also be represented as f : P x I — D where P is the set of current
percepts and I is the internal state of the robot.



will determine the effectiveness of a particular EA knowledge representation with
respect to the two requirements. For example, the decision policy for a simple video
game domain may be easily representable as “if-then” condition-action rules.

However, for more complex domains, specifying condition-action rules is infeasible
because of the combinatorial explosion of the number of possible conditions. Instead,
smaller pieces of knowledge such as utilities of states and effects of actions may be
specifiable. Inferential tractability also points to the need for multiple EAs. If there
is an unlimited amount of time available for computation, the single EA that has the
highest expected quality of computed results for any amount of computation time
would always be preferable. However, with time-pressure, the optimal decision must
be determined with respect to time (e.g., it is useless to figure out the best treatment
for a patient, after that patient has died.).

The use of multiple EAs requires development of a host of ancillary techniques.
Metareasoning, reasoning about reasoning, is required to arbitrate the results of the
EAs and determine a final decision choice. Knowledge compilation that transforms
one knowledge type into another knowledge type also needs to be defined. Planning
for decision-making can be specialized and analyzed for particular EAs. These topics

occupy the following chapters.

1.3 Thesis statement

The RALPH-MEA agent architecture’s general approach is to utilize multiple EAs

in a decision-theoretic framework. With this approach, we show the following thesis:



Thesis:
The use of a decision-theoretic knowledge representation system, multiple execution
architectures, and metalevel control of computation supports decision-making in com-
plex, real-time domains where standard systems falter. Specifically, new results in-

clude:

1. A knowledge representation that partitions the space of possible decision-making
systems or execution architectures (EAs) using an extension of standard influ-

ence diagrams. (Chapter 3).

2. A principled method to combine the results of heterogeneous, parallel decision-

making systems to choose an action to execute. (Chapter 4).

3. A knowledge compilation strategy that provides a method to convert knowledge

of one type into another type that is more compiled for run-time. (Chapter 5).

4. A decision-theoretic planning system that can handle uncertainty and multiple
objectives. Value-of-computation analysis ensures tractability and real-time

response. (Chapter 6).

5. Temporal reasoning capability for indefinite periods of time. The use of dynamic
influence diagrams that can adjust as time passes allows an agent to operate

and plan for indefinite periods of time. (Chapter 6).

We have made theoretical advances by showing the points of the above thesis
statement. A sound theoretical basis is critical in defining an agent architecture
because it can be analyzed, criticized, and built upon, providing the foundation for

further technological advances.
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In conjunction with the theoretical results, we also have made significant progress
on practical issues. The development of this agent architecture has advanced the ca-
pability of practical, decision-making systems. For example, we will be describing an
implementation of the execution architecture for an autonomous underwater vehicle
(AUV) that has been developed at Lockheed Missiles and Space Company. A video-
tape of the demonstration is available. Other applications that are in progress are a
decision-making system to control an automated automobile, a sensor management

system, and a control system for a Nomadic mobile robot.

1.4 Outline

Before delving into the technical details of the RALPH-MEA agent architecture,
Chapter 2 sets the background by discussing previous work and prerequisite topics.
Chapter 3 describes the multiple execution architectures approach that is fundamental
to the rest of the dissertation. Chapter 4 provides the algorithms used for the decision
making of the execution architectures. Chapter 5 discusses knowledge compilation:
how knowledge from one execution architecture can be converted to another execu-
tion architecture. Chapter 6 discusses planning in the context of decision-theoretic
control and multiple execution architectures, showing how planning can be viewed
as computational actions that can be subject to control. The concluding Chapter 7

relates other work, recaps the main points, and points to future directions.
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Chapter 2

Background

This chapter briefly discusses previous, related work and prerequisite topics, thereby
setting the background for the ensuing development of multiple execution architec-

tures and related topics.

2.1 Agent Architectures

In this section, three broad research programs that share the goal of providing
a general architecture for intelligence are discussed. The following three projects,
Soar, RALPH, and the subsumption architecture, have been the primary influences
of this work: Soar with its generality and its uniform representation and methodol-
ogy, RALPH with its limited rationality model and its decision-theoretic metalevel
theory, and the subsumption architecture with its behavioral decomposition and its

implementations in real robots.
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2.1.1 Soar

The Soar project’s goal is to provide “the underlying structure that would enable
a system to perform the full range of cognitive tasks, employ the full range of problem
solving methods and representations appropriate for the tasks, and learn about all
aspects of the tasks and its performance on them.” [54] In Soar, every task is repre-
sented as a goal to be achieved, and universal subgoaling, where a subgoal can be set
up for any decision, is used to decompose the problem into directly solvable pieces.
Problem-solving becomes a search through a problem space (a space with a set of op-
erators that apply to a current state to yield a new state). Metalevel problems, such
as the choice of a problem-solving method, are considered as tasks themselves and
solved through the same mechanism as a base-level problem. Long-term knowledge
about search control and task implementation is represented by rules in a production
system which provides input to the problem space search.

The ability to use the same method to solve any type of problem is advantageous
since it allows for solving a broad domain of problems with a single architectural
model. The uniform representation of tasks with problem spaces is also important.
Having a single representation facilitates the structuring of the entire problem-solving
situation as goal-achieving behavior. The problem space representation also allows
flexibility in the system’s state through changing the problem space or the production
rules.

Soar has extremely general capabilities, but it is making some not so obvious
assumptions. The problem space hypothesis is that problem spaces are the funda-

mental organizational unit of all goal-directed behavior, and the universal subgoaling
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hypothesis states that goal-oriented thinking can solve any problem. But having goals
as Soar’s basic unit raises problems with goal identification and goal arbitration.

The problem of goal identification is defining what a goal is and what its conditions
of satisfaction are. Because the real world is dynamic and uncertain, this becomes
a difficult problem. How does the search through the problem space proceed when
there is uncertainty associated with the states and operators? If I'm 95% certain that
I've achieved a particular goal, is that sufficient to say that I've achieved the goal?
Soar does not seem to be able to support this type of reasoning under uncertainty.

Arbitration between goals is a difficulty for Soar because values are not associated
with the states to express a preference among goals. A goal is simply a goal, and
when two or more goals conflict there is no defined way to arbitrate between them.
Soar relies on automatic subgoaling at impasses and control knowledge encoded as
production rules to do the arbitration, but this requires careful problem-dependent
coding of the production rule set. This goal arbitration problem is simply a reflection
of the inadequacy of the goal structure hypothesis.

The Soar project also considers chunking which is a form of explanation-based
learning to be the general learning mechanism [55]. Soar saves chunks which are
generalizations of problem solving episodes. When a similar situation is reached in
the future, a chunk can be used rather than re-solving the problem. Beyond the
problem of which chunks to form and keep around (e.g., [96]), there is the problem
of the adequacy of chunking. Chunks are generalizations, but they do not change the
deductive closure of the original domain theory. Inductive learning (e.g., enumerative

induction) which can modify the deductive closure of the domain theory is most likely
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necessary for an effective autonomous agent.

2.1.2 RALPH

Since this dissertation is part of the “RALPH” research program, previous work
of the RALPH project is naturally relevant. As explicated by Russell and Wefald,
the RALPH project’s goal is the design of “robust software architectures for goal-
driven, resource-limited intelligent systems” [78, 79]. Russell and Wefald’s approach
is to use a decision-theoretic metalevel architecture that explicitly reasons about
computational actions as well as base-level actions, addressing the limited resources
problem from the start rather than adapting an existing theory to try to fit the real
world:

“The construction of a system capable of rational metareasoning rests
on two basic principles: (1) Computations are to be treated as actions,
and are therefore to be selected among on the basis of their expected
utilities. (2) The utility of a computation is derived for its expected
effects, consisting of: (a) The passage of time (and associated changes
in the external environment). (b) The possible revision of the agent’s
intended actions in the real world.”

For their analysis, two assumptions are made. The meta-greedy assumption is
that only single computational steps as opposed to all possible complete sequences
of computation need to be considered when estimating the value of the computation;
then the single step that appears to have the greatest benefit is selected. The single-
step assumption is that a computation’s value can be evaluated by considering it to
be a complete computation (i.e., no further computations are done) rather than a

possibly partial computation. For example, in game playing, a search tree is often

generated where each node in the tree represents a particular state of the game and
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the arcs represent player moves. A individual node expansion of the game search tree
can be used as the single computational step. Then, the meta-greedy and single-step
assumption combine to say that each individual node expansion is considered to be
a complete computation which is followed by a player move.

The meta-greedy assumption is made to make the problem tractable, but it is
a significant assumption. In observed cases with game-playing trees, it has induced
a “meta-greedy barrier” beyond which examining only single computational steps is
not useful. The single-step assumption has been found to lead to underestimates of
computation values in some cases.

Other research in the RALPH project include proving properties about bounded
rationality [76], developing a language and algorithms for anytime algorithms [80,

105], and applications to various domains [20, 67, 69, 70]

2.1.3 Subsumption Architecture

Brooks’ subsumption architecture [7] demonstrated the advantages of a behavioral
rather than a functional decomposition of the mobile robot control problem. For
example, self-contained task-achieving behaviors such as avoid objects and wander
are used rather than functional modules such as perception followed by modeling.
The behavioral layers are each constructed of finite state machines, and they are
designed to run in parallel, as opposed to a sequential functional decomposition. Each
layer corresponds to a level of competence— adding a new layer moves the robot’s
behavior to the next higher level of overall competence, “subsuming” the previous

layers. The output of the highest layer always takes precedence over the other layers,
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but all layers run simultaneously, largely unaware of the other layers. The control
is distributed among layers rather than being centralized, and the notion of internal
representation or control is downplayed since one of Brooks’ aims is to get complex
behavior without a complex model.

One of the most notable advantages of the subsumption architecture is that it can
be incrementally developed and tested. Lower-level layers can be built and tested
independently, and then higher-level layers can be added on top of the lower layers.
The mobile robot group at MIT has used the subsumption architecture to control
many of the robots that they have built, successfully demonstrating the value of the
architecture [27].

The problem with the subsumption architecture is that it is too inflexible and
irrational.

Simon [91] distinguished between procedural rationality where the system com-
putes the rational thing to do and substantive rationality where the system simply
does the rational thing. Procedural rationality is dependent on the process that pro-
duces behavior while substantive rationality is not; it is dependent only on the actual
behavior exhibited. The subsumption architecture may possess substantive rational-
ity, but it is intrinsically unable to achieve procedural rationality. The primary reason
is that the central control is sparse and cannot control the action with a global per-
spective. Another limitation is that the architecture is opaque: the control strategies
are encoded in finite state machines, and beliefs, goals, utilities, etc. are not explic-
itly represented. It does not strive to do reasoning with utilities and probabilities in

any sense; on the contrary, most of the knowledge is represented procedurally, which
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makes it difficult to reason, explain, or learn.

Because the architecture is hard-wired by the initial design, any significant rea-
soning or taskability! where external goals can be provided is not possible. One
aspect of this inflexibility of the control system is that the final output must be one
of the outputs of a behavioral layer. Each layer of the architecture subsumes all of
its lower layers taking control through suppression or inhibition of another layer’s
signals. There are clear cases where the output of the control system should not be
the output of one of its layers. For example, if we have the layers Avoid Obstacles
and Get to Goal, they will generally output two different move commands. One layer
is trying to avoid obstacles while the other is trying to move towards the goal. The
best action might be neither of the moves suggested; it could be a function of the two
moves or something else entirely. The answer is not to hard-wire solutions into some
layer but to provide more intelligent arbitration between layers.

Another problem is the rigid architecture of the layers. A layer is composed of
modules which are finite state machines with specified inputs, outputs, and variables
which are used as local variables within the finite state machine. The modules are
interconnected with input lines and output lines, and the output of a module is a
function of the module’s inputs and instance variables. An example module is Avoid,
with inputs force and heading, output command, and an instance variable resultforce.

This layer structure makes it difficult to make modifications to the system. Sup-
pose we wanted to change the input of a module to some different value. We would

have to explicitly change the input of the module, the output function of the module,

IThe ability to assign different tasks to the agent.
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and the instance variable functions. Then we would have to propagate the changes to
the adjacent modules, changing them so they can interact with the new input/output
behavior of the changed module, eventually possibly modifying each module in the
layer and also all other layers since the layers are interconnected with wires that do
suppression and inhibition of signals.

The difficulty of changing the structure of the subsumption architecture leads to
a limited capability agent which may be able to perform some simple tasks in an
expected environment but is unable to achieve autonomy, be taskable, or reason in
any significant sense.

Maes and Brooks [58] have added a distributed learning algorithm where each be-
havior tries to learn when it should become active. The algorithm attempts to learn
a conjunction of preconditions for activating a behavior by using feedback from the
agent’s experiences. This learning procedure should improve the agent’s ability to
arbitrate between behaviors. However because of limited feedback (e.g., two binary
touch sensors), the learning procedure is insufficient to distinguish between many of
the behaviors. And if more detailed feedback is provided, the learning task becomes
hopelessly complex due to the exponential (in the number of feedback percepts) com-

plexity of the preconditions.

2.2 Decision theory

As mentioned earlier, decision theory is used throughout this research, and so here
a quick introduction is provided.

Decision theory [82, 98] explicitly considers world uncertainty and multiple ob-
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jectives to compute the optimal decision to execute. Decision theory’s Maximum
Expected Utility (MEU) principle states that the optimal decision choice d* is com-
puted using the probability distribution on the outcome states, s € 5, and a utility

function on outcome states, u(s):

d* = argmazaep Y, p(s|d)u(s) (2.1)

SES

Certain assumptions are required for the validity of the MEU principle, and these
assumptions can be divided into two classes relating to utility theory and subjec-

tive probability theory. The four assumptions about utility theory are the following

(modified from [66]):

1. Any two possible outcome states resulting from a decision can be compared,

expressing preference or indifference among the outcomes.

2. Preferences can be assigned in the same manner to “lotteries” as to outcomes
themselves, that is, preferences can be assigned to lotteries like lottery L =
[$1,p(81); -5 80, p(8n)] where with probability p(s;), outcome s; will occur. p(-)
is a probability distribution over outcomes S = {s1,..., s, } satisfying 3=, p(s;) =

1.

3. There is no intrinsic reward or loss in lotteries, that is, “no fun in gambling”.
The decision-maker is indifferent about the number of lotteries if the outcome

will be the same.

4. There is a continuity assumption on preferences such that there is some probabil-

ity p where the decision-maker is indifferent between a lottery L = [A, p; B, 1 —p]
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and an outcome C' which is preferred over A, but not over B.

The second part of the assumptions of decision theory is to accept the use of
subjective Bayesian probability theory. Cox [12] shows that the acceptance of seven
fundamental properties for continuous measures of belief in the truth of propositions
necessitates the axioms of probability theory. Cox’s seven properties have been sum-

marized (from [44] and [9]):

1. Clarity: Propositions should be well-defined such that the proposition’s value

can be specified by a clairvoyant.

2. Scalar continuity: A single real number is both necessary and sufficient for

representing a degree of belief.
3. Completeness: A degree of belief can be assigned to any proposition.

4. Context dependency: The belief assigned to a proposition can depend on the

belief in other propositions.

5. Hypothetical conditions: There exists some function that allows the belief in a
conjunction of propositions to be calculated from the belief in one proposition

and the belief in the other proposition given that the first proposition is true.

6. Complementarity: The belief in the negation of a proposition is a monotonically

decreasing function of the belief in the proposition itself.

7. Consistency: There will be equal belief in propositions that are logically equiv-

alent.
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Cox showed that these seven intuitive properties imply the axioms of probability

theory, viz., that there exists a continuous monotonic function ¢ such that:

0< d(Ale) <1 (2.2)

S(TRUEe) =1 (2.3)

d(Ale) + ¢(—Ale) =1 (2.4)

¢(A, Ble) = ¢(Ale)o(B|A, €) (2.5)

where A and B are propositions; e is background knowledge. Bayes’ theorem for

conditionalization follows directly from the last axiom above:

¢(A|B, ¢)o(Ble)

B = T

(2.6)

Accepting the assumptions of decision theory, we can use it and gain significant
advantages. Foremost, decision theory provides a principled theory of decision-
making. If an action has the maximum expected utility according to Eqn. 2.1, it is an
optimal action?. The problem then becomes shifted down a level to correct assessment
of the inputs to the MEU equation (D, S, p(s|d), and u(s)). The representation of the
problem in terms of utility functions on states and probability functions on states is
very general and specifically geared to handling world uncertainty through the use
of probability statements and handling multiple, interacting objectives through
the use of utility functions.

Research on decision theory can be interpreted as extending the applicability of

2There may be more than one optimal action with the same expected utility.



22

the MEU principle to different classes of decision-making scenarios. For example,
when the outcome state has multiple attributes (e.g., (dollars, health, world peace)),
to solve Eqn. 2.1, the probability and utility functions are now over multiple, rather
than single, attributes. This topic of multiple attribute wutility theory [50] is directly
relevant to real-life decision-making. Another important extension is the modeling of
time-dependent utility functions. These utility functions can be used to extend the
set of decisions D to include computational actions (e.g., compute for 2 seconds) as

well as base-level actions that directly affect the world (e.g., move 2 meters right).

2.3 Probabilistic Reasoning

Standard probability theory can be used to combine probabilities through appli-
cation of the basic axioms and Bayes Rule. The inferred probabilities can take into
account particular evidence (e.g., Today’s Weather = Sunny) or use the probability
distribution of a variable (e.g., p(Today’sWeather)). Graphical representations of
probabilistic dependencies have become important because they aid in modeling a

situation and allow for efficient inference algorithms.

2.3.1 Graphical representations

An influence diagram [47] explicitly accounts for the uncertainty of states and
provides inference algorithms to update beliefs given new evidence. An influence
diagram represents actions as decision nodes, outcome states (including goals) as
probabilistic state nodes, and preferences using value nodes. Depending on the node

types which they connect, the arcs in the influence diagram represent probabilistic,
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Figure 2.1: Sample influence diagram

Figure 2.2: Sample belief network

informational, or value dependence. Figure 2.1 shows a sample influence diagram.
Decision nodes are denoted by squares; probabilistic chance variables are ovals; and
value nodes are denoted with diamonds. Arcs into a chance node indicate probabilistic
dependence of variables. Arcs into a decision node indicate informational dependence
of the decision upon other variables. Arcs into a value node indicate value dependence
on the variables indicated.

A probabilistic belief network [72] is similar to an influence diagram but lacks

decision and value nodes (e.g., the graph of Figure 2.1 with only the chance nodes
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and arcs, A, B,C, F). Inference in belief networks is used to determine probability
distributions for a particular node or set of nodes given evidence about other nodes.
Inference in influence diagrams is similar but adds the ability to evaluate decisions.
For example in Figure 2.1, let B be “Tomorrow’s Weather” which is dependent on
A, “Today’s Weather”, and D, the decision of whether or not to seed the clouds.
Probability distributions of the type p(B = sunny|A = cloudy, D = seed) are given,
and quantities like p( B|A, D = seed) can be computed where probability distributions
over the values of A and B are used. The key aspect of the inference is that it can
be done through a sequence of local (using only the node’s neighbors) operations
(e.g., [56, 73, 84]). This is because all direct probabilistic dependencies are explicitly
represented as adjacencies in the graph. Though fairly efficient in practice, the general
inference problem has still been shown to be NP-hard in the worst case [11], and even
stochastic simulation to obtain e-error bounds on inferred quantities is NP-hard [14].

In the system described in this dissertation, dynamic influence diagrams are
used. A dynamic influence diagram or belief network can continue to model the do-
main over a period of time by dynamically constructing and updating new nodes and
arcs for new time slices. Most of these models assume some kind of Markov state
assumption where variables of time ¢ + 1 are directly dependent on nodes only from
time ¢. Kjaerulff [51] discusses an implementation of “model reduction” and “model
expansion” that moves a belief network forward in time, allowing a continuously ex-
isting agent to maintain an updated world model indefinitely. Hanks [32], Kanazawa
and Dean [49], and Nicholson [65] also discuss similar temporal projection methods.

To simplify the automatic projection, all of these methods (including the one pre-
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sented here) assume that the dependency structure remains fixed (i.e., there can be
no addition or removal of arcs or nodes). Changing the qualitative and quantitative
structure of the influence diagram is a current active research topic (e.g., [29, 5, 13]).
If the new structure of the influence diagram is known or can be learned, it can be

integrated into most temporal projection methods without difficulty.

2.4 Metareasoning

Metareasoning, reasoning about reasoning, is, explicitly or implicitly, implemented
in all control systems. However, most metareasoning strategies are fixed at design-
time and lack flexibility. For example, Mitchell et al.’s Theo architecture [62] uses a
fixed policy to always use cached knowledge if available, and otherwise to use a search
algorithm to find an action to take.

To provide more control at run-time, decision theory has been applied to dynami-
cally control the amount of reasoning based on utility of computation considerations.
Horvitz [42], Russell and Wefald [78, 77] and Dean et al. [17], as well as many others
(e.g., [21, 30, 39]), have developed the theory and applications of decision-theoretic
metareasoning.

There has also been extensive research to implement metareasoning using other
methods. Stefik [92] and Wilensky [103] discuss metareasoning in the context of
control of planning. Control of planning is a key topic of this dissertation that will

be addressed in Chapter 6.
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Knowledge compilation is the conversion of declarative knowledge to compiled
knowledge. Declarative knowledge (e.g., utilities u(w) and probabilities p(w|d)) is
generally easier to acquire and learn because the knowledge is available and repre-
sentable in modular pieces. However, inference with declarative knowledge is usually
expensive because it is not specially designed to be efficiently used for inference. In
constrast, compiled knowledge (e.g., IF w THEN d rules) is generally difficult to
acquire directly but is designed to be efficient in execution.

Knowledge compilation is a familiar topic in the field of machine learning where
“speedup learning” which improves the efficiency of a problem solver is concerned
with the same issue [88]. The two general techniques that have been examined in
speedup learning are (1) to learn new “macro-operators” by composing sequences of
original operators, and (2) to learn metalevel control knowledge that can be applied
to determine which operator to try next.

The use of generalized action plans or “macrops” by Fikes, et al. [23] in 1972 was
of seminal importance in showing the advantages of knowledge compilation to speed
up execution and the potential pitfalls such as the problem of maintaining too many
compiled pieces of knowledge. Mitchell, et al’s [63] “explanation-based generaliza-
tion” and Laird, et al.’s [55] “chunking in Soar” describe domain-independent methods
that generalize a problem-solving experience to help future problem solving. Other
work includes Anderson’s “knowledge compilation” that was used to learn production
rules that chained together other rules [4], and Subramanian and Woodfill’s use of

situation calculus to generate propositional terms to be used in “if-then” rules [94].
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Russell’s definitions of knowledge types and compilation to travel between the knowl-
edge types [75] is the multiple execution architectures approach discussed throughout
this dissertation, and it is adopted for the compilation framework discussed later in
this chapter.

A lot of recent work in the knowledge compilation research area has been to
identify and remedy the problems engendered by existing frameworks. One class of
problems can be called the “utility” problem where saving and using the compiled
knowledge may not be beneficial. For example, Minton [61], Tambe and Rosen-
bloom [96] and others (e.g., [93]) showed the potential high costs of using generalized
knowledge, most notably in the cost to find the applicable rule(s) to apply. Another
class of problems is due to the lack of uncertainty in the domain theory. Because
rule-based, logic-based systems generally lack the capability to handle uncertainty, if
the original domain theory is incorrect or incomplete, the compiled knowledge will
be incorrect or incomplete. Research allowing more robustness includes Tadepalli’s
explanation-based learning of approximate strategies [95] and Flann and Dietterich’s
use of uncertainty measures of theories updated by multiple examples [26].

A decision-theoretic approach to the compilation problem is interesting because
it restricts the issues to the representation of probabilities and utilities. The “util-
ity” and domain uncertainty problems seem to be tailor-made for decision theory.
Heckerman et al. [35] develop a restricted notion of compilation where the choice is
whether to pre-compute and save in a lookup table the effect of observing a subset
of the possible evidence variables. An expected utility comparison of the compilation

and non-compilation strategies can then be done. To make the problem tractable,
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assumptions are made about the model (e.g., single, two-value decision; single, two-
value hypothesis; two-value evidence variables). Heckerman et al. also propose a
“situation-action tree” where evidence items are examined sequentially until a de-
cision is reached. Evidence nodes represent inner nodes of the tree, and particular
decisions are the leaves. Lehner and Sadigh [57] also use situation-action trees and
describe procedures to generate them from influence diagrams. Situation-action trees
are limited because they do not admit uncertain variables, only observed evidence.
This is an important issue because we would like to do partial compilation using
probability distributions rather than only observations.

Herskovits and Cooper [40] discuss the automated design and construction of
belief networks, which is relevant to knowledge compilation because multiple topolo-
gies of a belief network can represent the same joint probability function, and the
“best” topology is the one that is “efficiently” representable and/or executable. They
use information-theoretic measures to evaluate networks and a chi-squared stopping
test to determine when to stop adding nodes to the network. D’Ambrosio and
Shachter [85, 15, 16] also address knowledge compilation in a belief network rep-
resentation by building intermediate representations that are efficiently executable
for certain queries.

To round off the related work section on knowledge compilation, “reactive sys-
tems” should be mentioned. In sharp contrast to previous deliberative Al work that
focused on knowledge representation, reactive systems were designed to react directly
to sensor input without the need for significant internal models or processing. Fx-

amples of this type of work are Agre and Chapman’s Pengi [1] which operated in
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a high-speed, dynamic video game environment and Brooks’ subsumption architec-
ture [7] for insect-like robots. Reactive systems demonstrated the benefit of having
fast-executing, compiled systems and highlighted the range of domains that exist,

including some that need deliberation and some that do not.
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Chapter 3

Multiple Execution Architectures

This chapter describes the multiple execution architectures (EAs) representation.
First, the components of the knowledge representation, the knowledge types, are in-
troduced. Then the different EAs that use the knowledge types are defined. The
multiple EAs representation partitions the space of possible decision-making systems
or execution architectures using an extension of standard influence diagrams. Exam-

ples are presented using the autonomous underwater vehicle (AUV) domain.

3.1 Introduction

If an agent can continuously apply decision theory’s maximum expected utility
(MEU) principle (Equation 1.1) to select “best” actions, it can be considered to be
generating optimal behavior with respect to its goals. However, in even moderately
complex domains, the MEU Principle cannot be implemented directly because of lim-

ited resource constraints and uncertainty about the utility of outcome states. This
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chapter discusses a general-purpose tool to alleviate this Al scalability problem: mul-
tiple execution architectures (multiple EAs). In later chapters, we will describe other
techniques to control planning and learning that work within the decision-theoretic
and multiple EAs framework.

Recall that an agent can be defined as a function f : P* — D where P* is the set
of percept sequences from the environment and D is the set of actions available to the
agent. As defined by Russell [75], an execution architecture (EA) is an implementation
of the agent function that operates on a specific combination of knowledge types (e.g.,
goals, probabilities of states, outcomes of actions, etc.). A fixed number of EAs can
be distinguished by the different knowledge types that each uses.

The knowledge types originate from the fundamental view of the rational agent as
operating in an environment by executing actions to achieve goals. With this view,

there are three basic knowledge types that the agent possesses:
1. Knowledge about the environment or state of the world.
2. Knowledge about the results of actions.
3. Knowledge about the agent’s preferences of world states.

As disussed in the next section, the three items can be further specialized to yield
six knowledge types. For example, knowledge about the agent’s preferences of world
states can be expressed as either a numeric utility or as a universal goal.

The different EAs, defined by the knowledge types that each operates upon, will
have different competences and costs in different situations — for example, reactive,

1f < condition >, then < action > rules are good for shooting down missiles and
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playing standard chess openings, but more deliberative, decision-theoretic planning
may be more useful for selecting missile targets and playing tactically sharp middle
games. Employing multiple EAs with the appropriate control to arbitrate the final
action choice should allow greater competence to be exhibited than is possible for a

single KA alone.

3.2 Extended Influence Diagrams

The original specification [75] of the knowledge types used a situation calculus
representation, but here, we introduce an extended influence diagram representation.
The extended influence diagram representation differs from an influence diagram by
defining the dependencies using the six knowledge types. These dependencies are
more specialized than the general probabilistic, informational, and value dependencies
used in an influence diagram. Specialized inference procedures can be used rather
than the standard influence diagram inference techniques, allowing more efficient,
specialized algorithms. What is being changed is the definition of the arcs in the
influence diagram. Instead of having only three types of dependence (probabilistic,
informational, and value), we define siz types of dependence.

This approach of achieving inferential tractability by extending the types of influ-
ence diagram dependence can be contrasted to the approach of stochastic simulation
(e.g., [37, 28, 86]) that maintains the full generality of the influence diagram rep-

resentation and then uses a stochastic approximation algorithm for inference!. The

'In general, stochastic simulation for approximation is an orthogonal issue that can be integrated
with the multiple EAs approach.
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Figure 3.1: From Shwe et al., this is a belief network used for the medical diagnosis
system, QMR-DT. The disease nodes are labeled dq, ..., d, and the finding or evidence
nodes are labeled fi, ..., f,..

stochastic simulation can be halted at intermediate points to give the current beliefs
of the desired inference quantity.

Another contrasting approach to achieve inferential tractability is to limit the
topological structure of the influence diagram. An example of this approach is divid-
ing the variables into classes of causes, the hypothesis, and evidence and assuming
various types of conditional independence among the classes. An assumption of this
type might be that particular pieces of evidence are conditionally independent of
other evidence given the hypothesis. This restriction guarantees no dependency arcs
between possible evidence variables (see Figure 3.1 [89]). With various topological
restrictions, special-purpose inference algorithms can be used (e.g., Quickscore [34],
S [89], and TopN [38]).

The extended influence digrams examined are also temporal, dynamically extend-
ing to represent new time periods. To describe the current world state, we use a set
of n state variable nodes, X.t = {X;.t,..., X,,.t}, a decision node D.t, and a utility

node U.t. The suffix .t is used to indicate time ¢. For the next time, 41, the nodes



Figure 3.2: A dynamic influence diagram represents k£ + 1 time slices.

are represented as X.t+1 = {X;.t+1,..., X,.t+1}, a decision node D.t+1, and a
utility node U.t+1 (Figure 3.2).
We assume a Markov property where the probability of the next state is indepen-

dent of all previous states given the current state®:

p(Xt+1|X.t, D.t) = p(Xt+1|Xt, Dt, X t—1,Dt—1,...)

The Markov property allows specification of the influences on X.t+1 using only X.¢

and D.t.

2The Markov assumption can be relaxed to higher-order Markov processes with longer-term
dependencies, but doing so complicates the notation.
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Figure 3.3: A Decision-Theoretic EA influence diagram with a 3-step planning win-
dow.

3.2.1 Planning windows

Dynamic influence diagrams of the type shown in Figure 3.2, can be used to
represent action sequences rather than only single actions. Assuming the Markov
property of the states, the same decision template can be reproduced repeatedly
using only local connections as the world state is projected forward in time. The
planning window is the multiple time-step influence diagram that is currently being
considered.

Figure 3.3 shows a 3-step planning window obtained by chaining together three
time slices of an Autonomous Underwater Vehicle (AUV) example. The AUV in this
example has three objectives: to let data accrue in a sensor array; to recover the

sensor data; and to minimize fuel usage. Each of these variables is dependent on the
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action taken by the AUV.

3.3 Knowledge Types

With these preliminaries, the extended influence diagram representation can be

described using the following definitions of the six knowledge types:

A: p(X;.tX.1)

Type A rules specify the likelihood of a state node given information about other
state nodes for the same time. Rules of this type can be used for the interpretation of
percepts. For example, the dependence of the variable FuelGauge.t given the percept

Battery Failure.t can be represented as a probability function: p( FuelGauge.t|Battery Failure.t

B: p(Xi.t+1|D.t,X.1)

Type B rules describe the effects of actions by specifying the influence of the action on
other nodes. In contrast to a type A rule, an action D.t and conditions X.7 at time ¢ in-
fluence the node X;.t+1 at time 1. The example p(Data Acerued.1|D.0, Data Accrued.0)
states that the node DataAccrued.l of time 1 is directly affected by Data Accrued.0

and D.0 of time 0.

C: vo(Ut+1|Xt+1) € [ubp upy)

Type C rules are utility functions on the state. In the extended influence diagram,
this is represented using a value function v on the node U.t+1 which is bounded by
the minimum and maximum possible utilities, u5z, u,7. The DT subscript indicates

that the utility function is for the Decision-Theoretic execution architecture. €' rules



37

are used only by the Decision-Theoretic EA, and each EA may have different utility

functions®.

D: wop(Ut+1]|D.t,X.t) € {up 4, ubs}

Type D rules are akin to standard condition-action rules used in production systems.
They state that if certain conditions hold (i.e., the X.t variables), then the specified
action is the best action. The utility U.t+1 is conditioned on X.t and D.t of time .
Type D rules express absolute certainty about the best decision(s). By the assignment
of the value of u/,, to the best decision(s), it guarantee represent the value of by using
the endpoints of the utility range as their only possible values. The (A subscript

indicates that the utility function is for the Condition-Action FA.

E: vg(Ut+1|D.t,X.t) € [uly, ]

Type E rules are “action-value” rules that specify the utility of condition-action pairs,
for example Watkins” Q-tables [100]. In the extended influence diagram representa-
tion, they represent the same influences as D rules but the utility value is generalized

to the range [u},u ;). The relevant utility values are for the Action-Utility EA.

F: vp(Ut+1|Xt+1) € {uég,ulp}

The type F rule, which is similar to a classical goal [64], expresses the utilities of
states in the future time period, ¢+1. The utility is restricted to ujg or ulp values.
The subscript G B refers to the Goal-Based FEA that uses type F rules. A goal state is

indicated when v(U.4+1]|X.t41) = ulp. A non-goal state is when v(Ut+1|Xt41) =

3The execution architectures will be defined precisely in the next section.
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A
Current State
X.t
B
Next State
Xt+1 ]| D.t
C E
Utility at t+1 D
F U.t+1
l MEU
Best Action
d*.t

Figure 3.4: Knowledge forms for multiple execution architectures.

ulg. Type F knowledge is a specialization of type C' knowledge which allowed the
utility can range between ugy and uf,;. € and F knowledge types in conjunction
with B type knowledge are used to do temporal projection and planning as will be
discussed in Chapter 6. €' and F' knowledge provides the utility of future states and
B knowledge provides information on the effects of actions. The amount of time that

the knowledge types are projected forward determines the “horizon” of the planning.

3.4 Multiple Execution Architectures

Four execution architectures (EAs) can be defined using the four different combi-

nations of knowledge types to make an action decision (see Figure 3.4). Each EA is
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computing to determine the optimal decision, d*.

3.5 Decision-Theoretic EA

DT: Decision-Theoretic EA: (path A B C MEU)

Knowledge of Types A, B, and C is combined to find the best action using the MEU
principle. Inference in the Decision-Theoretic EA uses the standard probabilistic
and decision-theoretic reasoning techniques of influence diagrams— the conditional
probabilities of each state node are revised by propagating the effect of evidence
through the network, the expected utility of each action is computed, and and the
action with the maximum expected utility is selected. By chaining Type B knowledge,
the Decision-Theoretic EA can project into the future indefinitely. This temporal
projection is used for the planning system discussed in Chapter 6.

The Decision-Theoretic EA, in comparison with the other EAs, uses the most
“uncompiled” forms of knowledge, including information about the current state,
next state, and utilities. Through use of the knowledge compilation transformations,
the knowledge used for the Decision-Theoretic EA can be converted to knowledge for
the other EAs. Chapter 5 will address this topic in more depth.

Knowledge of Type A (state information), Type B (effects of actions) and Type
C (utilities of states) are likely to be available from direct observations of the envi-
ronment. The agent can learn such knowledge by operating in the environment and

recording the results of its actions.
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3.6 Goal-Based EA

GB: (path A B F)

Knowledge of types A, B, and F suggests actions that achieve the desired goal
condition. And as in the Decision-Theoretic EA, temporal projection can be done
using type B knowledge.

A Decision-Theoretic EA can be converted to a Goal-Based EA using the com-
pilation ' + M EU — F. This compilation transforms utility of state knowledge
into a fixed policy of executing the best action(s). If the Type C knowledge of the
Decision-Theoretic EA remains valid, the compilation into Type F knowledge main-
tains behavioral equivalence of the Goal-Based and Decision-Theoretic EAs. For
execution purposes, having a fixed decision policy rather than comparing utilities via
MEU Principle is clearly preferable. However, dynamic changes in the preference

structure may require going back to Type C knowledge and re-compilation.

3.7 Action-Utility EA

AU: (path A F MEU)

Knowledge of type E for various actions is combined with the MEU principle to
select the most valuable one. As in the Decision-Theoretic EA, standard decision-
theoretic reasoning needs to be used in the Decision-Theoretic EA because of the lack
of restrictions on the possible utility values. Because there is no explicit temporal
projection in the knowledge types of the Action-Utility EA, the performance of this

EA depends strongly on the quality of the type E knowledge (i.e., the utilities of the
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state-action pairs).
The knowledge types for the Action-Utility EA can also be generated through
compilation of the knowledge types used for the Decision-Theoretic EA. In this case,

the B + (' — E compilation is used to generate Type E knowledge.

3.8 Condition-Action EA

CA: (path A D)

Knowledge of type D provides best action choices directly. The Condition-Action
EA is very similar to standard rule-based production systems that use ¢f — then
rules. The antecedent of the rules are part of the current state and the consequents
are either other state information or an action choice, corresponding to Type A and
Type D knowledge, respectively.

The knowledge necessary for the Condition-Action EA can be generated through
two compilation paths. Knowledge for a Goal-Based EA can be converted to Type D

(B+ F — D) or knowledge for an Action-Utility EA can be used (E + MEU — D).

3.9 Why multiple EAs?

In order to succeed in complex environments, an agent will need all four execution
architectures, which will come into play at different times. If we consider chess, for
example, it seems obvious that action-utility rules have restricted usefulness (perhaps
just for describing the value of exchanges, knight forks etc.); condition-action rules

constitute the “opening book”, some endgame knowledge and perhaps plausible move
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generators; goal-based reasoning occurs when identifiable goals (such as checkmate,
trapping a queen, queening a pawn etc.) become achievable with reasonable likeli-
hood; and the remaining situations are covered by decision-theoretic planning using
a utility function on states (material, center control etc.). It would be absurd to
try to build a chess program based entirely on condition-action rules or action-utility
rules, because such a program would be unimaginably vast. Compact representa-
tions of good decision procedures require a variety of knowledge types. It would also
take a long time to learn a complete set of condition-action rules for chess, whereas
it takes only an hour or two for a human to learn type B rules describing how the
pieces move. This provides another motivation for multiple execution architectures:
learning is more effective for the explicit knowledge types (A,B,C) but execution is
more efficient for the compiled types (D,E.F); thus we learn for one architecture and

compile, where reasonable, for another.

3.10 Example

Figure 3.5 shows an influence diagram representation of each of the four EAs for a
single decision. The example is a simplified version of the autonomous underwater ve-
hicle (AUV) domain, in which the AUV does various information-gathering activities.
The utility of its mission, node U.t+1, is defined in terms of whether it recovers survey
data (nodes: DataAcerued and DataRecovered) and the amount of fuel used (node:
FuelGauge). The decision node D.t has three possible actions to choose from: wait,
wait for data to accrue at the sensor; return, return to the surface to be recovered;

and pickup, go to the sensor to pick up the data. The decision node of the previous
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time, D.t—1, becomes evidence for the next decision, D.1.

3.11 Representation of Decision Policies

In both the Condition-Action EA and the Goal-Based EA, the decision choice
is made by using the decision policy according to Type D or Type F knowledge.
There is no direct comparison of utility values using the MEU principle as in the
Action-Utility or Decision-Theoretic EA. However, in the extended influence diagram
representation, it is necessary to express all types of knowledge as either probabilities
or utilities.

When the conditions X.¢ are all evidence variables that are observed, there is no
problem since there is no uncertainty about observed values. For example, there may
be an evidence variable BatteryHealth.t with values good, bad, and at every cycle it
is monitored and a value either good or bad is entered as evidence for the variable.
As will be shown in Chapter 5, we can often compile out all probabilistic variables
and leave only observable evidence variables.

In many production systems, uncertainty regarding the preconditions of a rule is
not considered. A precondition is either true or false, and the action of any rule whose
preconditions are matched is executed. This type of system can be implemented by
the Condition-Action FA or Goal-Based EA by allowing no uncertainty about the
conditions (p(X;.t|X.t) € {0,1}). The EA then would output the first action, d;, it
considers such that v(U.t+1|D.t = d;,Y.t) = u' where for the rule’s preconditions,
Y. 1, \V/Xi.tEY.tQX.t p(Xi.t|X.t) =1.

One heuristic method is to remove the uncertainty from a condition by assigning
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it its most probable value. If, in combination with the other EAs, probabilities
are known for the various values of a condition, the condition value with the highest
probability can be selected as the “value” of the variable. For example, if the condition
variable FuelGauge.l has possible values 0, low, high and the respective probabilities
of those three values is 0.4, 0.5, 0.1, the value of FuelGauge.l is assumed to be low.

An alternative method that does not discard information allows uncertainty about
the preconditions (p(X;.t|X.t) € [0,1]). However in this case, the expected utilities of
each action must be computed and compared to select the best action. Computational
savings can still be achieved by taking advantage of the restriction of utility values
to the two values: {ut,u"}. For example, if u* = 0, many propagations of values in

the influence diagram can be immediately pruned.
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Figure 3.5: Influence diagram representations for the four execution architectures in
the AUV domain. Decision nodes are squares, value nodes are diamonds, and state
nodes are ovals. The conditional probability functions or utility functions at the nodes
are labeled by their type of knowledge (A, B,C, D, E, F, M EU) they represent. The

suffix t or ¢t + 1 denotes the node’s time.
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Chapter 4

Metareasoning

This chapter discusses how the four FAs are collectively used by employing metar-
easoning to combine the computation of them. A decision-theoretic approach is taken
to combine the results of the multiple EAs. This algorithm provides a general, prin-
cipled method to combine the results of heterogeneous, parallel decision-making sys-

tems.

4.1 The Decision Cycle

Given the multiple execution architecture representation, there is still the issue of
how to use the four execution architectures together to make decisions. In our current
implementation our strategy is the following: corresponding to each of the four EAs,
there is a separate influence diagram that is executed in parallel to determine an action
recommendation for that EA, and a separate “Metalevel” which receives updates from

the four EAs and makes the final decision on the action choice by checking the values
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Figure 4.1: RALPH-MEA System Architecture

of a “best action” node. The metalevel has information about the quality of results
from an EA given a particular amount of computation time. Using this information
and asynchronous updates from the four EAs, the metalevel decides when it is best
to execute the current best action rather than to wait for more computation to be
done by the EAs.

At this stage of the research, the design method of separating the four EAs has the
advantage of modularizing the EAs to allow the design and performance of individual
EAs to be isolated!. The Metalevel is also separated from the implementation of the
EAs and can be developed independently. Figure 4.1 shows the high-level system
architecture view of RALPH-MFEA.

The decision making algorithm follows a cycle in which the following computation

!Later versions will combine the separate Extended Influence Diagrams in order to share nodes.
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occurs:

1. The model is updated by advancing the influence diagram one time step and

entering new evidence.
2. Each EA computes its action choice.
3. The Metalevel computes the final action choice.

The following sections examines each of these steps in turn.

4.1.1 Updating the model

As the agent makes decisions, the planning window is updated by modifying the
current influence diagram. After D.7 is executed, its value is instantiated as evidence.
For a k-step planning window, a new time slice is added by connecting nodes of time
t + k to the new nodes of time t + k£ 4+ 1. Nodes of time ¢, X.t, D.t,U.t, are then
removed from the network by integrating their values into the rest of the network.
In general this is done by converting the conditional probabilities p(X;.t41|X.t) into

marginal probabilities:
p(Xit+1) = /X P(Xi b+ 1[X.1)p(X.)
t

The time variable ¢ is then incremented so that the next decision to execute is
again D.t. Evidence for the new X.t nodes in each EA influence diagram is entered
at this point. For example, if we detect a battery failure, the corresponding node

Battery Failure.t is set to True. Finally, propagation is done to transmit the effects
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1. Instantiate last executed action node, D.%, as evidence.
2. Add new time slice ¢ + £ + 1.

3. Integrate out nodes of time ¢t (X.t, D.1, U.t).

4. Sett =1+ 1.

5. Enter new evidence for X.7 nodes.

6. Propagate evidence through network.

Figure 4.2: The Updating the Model step.

of the new influence diagram and new evidence to all the nodes. Figure 4.2 summarizes
this Updating the Model step.
As discussed previously, similar techniques have become common recently in the

uncertainty community [51, 32, 49, 65].

4.1.2 EA Computation

As each FA computes using its separate influence diagram, it modifies its assess-
ment of the utilities of the possible actions. These action utilities are periodically
read by the Metalevel to update its assessment of the action utilities and to deter-
mine when to stop computing and output the current best action. The EA’s run
in parallel and if the Metalevel decides to start executing the decision cycle’s action
before some EA has finished its computation, the EA is interrupted to start the next
decision cycle.

There are two types of EA computation: (1) the Action-Utility and Condition-

Action EAs select a best action based on the current state; (2) the Decision-Theoretic
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1. Read monitor data and enter evidence for each condition variable.

2. Use table lookup to find which rule corresponds to the current condition vector, and
select the corresponding action.

Figure 4.3: The EA Computation step for the Action-Utility and Condition-Action
EAs.

and Goal-Based EAs use a temporally-projected model and use planning controlled

by value-of-planning considerations.

Action-Utility and Condition-Action EAs

The computation of the Action-Utility and Condition-Action EAs is fairly straight-
forward. Our design decision is to use condition values that are certain by assuming
that only evidence variables remain in the model to act as condition variables. Then,
the rule whose antecedent matches the current condition vector is selected, and its
consequent, an action, is selected. This step is done by table lookup where the table
is indexed by the condition vector.

For example, suppose there are two condition variables that we receive evidence
for: DataRecovered = {T, F'} and FuelGauge = {0, low, high}. For both the Action-
Utility and Condition-Action EAs there will be a utility table of size | Data Recovered|x
| FuelGauge| with an entry for each possible condition vector. The table entry that

matches the current condition vector is output available to the Metalevel.
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Decision-Theoretic and Goal-Based EAs

The basic approach to using decision theory for sequential decisions is to do com-
pute the expected utility of every sequence of decisions (i.e., plan) and execute the
first decision of the plan with highest utility. This approach is intractable for all
but the simplest domains and shortest length plans because the number of decision
sequences is exponential in the length of the plan and each plan must be evaluated
by the influence diagram. Goal-based planners have much of the same intractability
because a single change in a plan may require much of the rest of the plan to be
re-examined (e.g., see [8]).

Because of the intractability of classical approaches to planning, a metalevel con-
trol strategy is used that reasons about the cost of computation. With the Decision-
Theoretic and Goal-Based EAs in the EA Computation step, the best action is de-
termined using a real-time planner that considers replanning actions to change the
choice of base-level actions. The general idea is that the value of executing the next
step of the current default plan is compared directly to the value of replanning the de-
fault plan. The action with the highest estimated value (either the next default plan
step or a replanning action) is executed. Chapter 6 gives a more extensive treatment
of the replanning control and algorithms.

If the estimated value of replanning, V](replan(X)), is positive, the replanning
action with the highest value is executed, and the EA computation step is repeated
with the new plan by comparing executing the next plan step and executing a planning
action. When the value of replanning is non-positive, the EA computation step

finishes with the next default plan step as its action choice.
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1. R=Ut+k

2. Compute VI(replan(X)) for each subtree X of R and insert X in ordered-by-VI
open list.

3. X,.4» = first element of open list

4. if (VI(replan(X,4r)) < 0)
then d*.t = next plan step; exit.
else if (X4 is a decision node) then change its action value; goto 1.
else R = X,,,,; goto 2.

Figure 4.4: The EA Computation step for the Decision-Theoretic and Goal-Based
EAs.

Figures 4.3 and 4.4 summarize the two types of EA computation step.

4.1.3 Metalevel computation

The metalevel problem is to take the computed results (in this case, the action
utilities) of the four EAs and to output a final action choice. At any time with its
current information, the Metalevel has a current best action d*.t. As the results
from the EAs arrive asynchronously, the Metalevel must decide whether to execute
the current best action d*.t or to wait At for possible updates from the EAs. This
is similar to the basic metalevel computation algorithm described in Horvitz [41],
Horvitz, et al. [43], and Russell and Wefald [78]. Breese and Fehling [6] also discuss a
metalevel control architecture that uses multiple reasoning methods, but in their case,
a particular method is chosen and then only that method is executed. Zilberstein [104]

does decision-theoretic analysis of the optimal combination of program modules with
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1. Do propagation for the current values to compute FU(d*.1).
2. Do propagation to compute FU(d*.t').

3. EVCO(At) = FU(d*.t") — EU(d*.t) — TC(At)

4. If (EVC(At)<0)

then execute d*.t; exit.
else goto 1.

Figure 4.5: The Metalevel Computation step.

different characteristics.

The Metalevel is first used to compute the expected utility of the optimal action,
EU(d*.t), by using the current running time of the decision cycle to instantiate the
Time node, propagating the current evidence from the EAs through the network, and
determining the optimal action Dy, = d*.t and its expected utility Uy, = EU(d*.1).

Then, in the same way, the expected utility of the optimal action after waiting
At, EU(d*.t"), is computed by setting the node Time to the sum of the running time
of this decision cycle and an increment At. At can be conveniently selected to be the
time required to do the metalevel computation. The expected utility of the optimal
decision may change from time ¢ to time ¢’ due to different results being available
from the EAs. A function of the time cost of delaying At, TC(At) is also required.
We assume that TC'(At) = ¢ At where ¢ is an adjustable parameter to measure the

time-criticality of the current situation?.

?More complex T'C' functions can also be used (e.g., functions that use knowledge of the type of
decision being made).
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The expected value of waiting At is
EVC(At)= EU(d*.1") — EU(d*.t) — TC(At) (4.1)

If EVC(At) < 0, then there is no benefit in waiting and the current best action,
d*.t, is executed. However, if EVC(At) > 0 then we should wait by repeating the
metalevel computation step. Figure 4.5 summarizes the Metalevel Computation step.

Once the Metalevel decides to exit with the final action choice, this action is

executed, and the decision cycle repeats going back to the Update Model step.

Computing EU(d)

To find the optimal value d*.t for DM the metalevel decision, after a certain
amount of computation time 7., we can compute the expected utility for every d; €
DML Ly instantiating the decision to d;, inserting the evidence from the EAs, and

then selecting as d* the d; that yields the highest utility:
d* = argmazgcpur u(dMFt.) (4.2)

where the utility of a decision is defined as the expected utility of the outcome states

w € Q given that decision:
u(d™ 1) = Blu(w)] = Y u(w)p(w|d"™, te) (4.3)
Q

We then define an outcome state w to be a vector of the decisions recommended
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by each execution architecture and a context variable ¢:

w € Q= (DO, DA, DS pPT ¢) (1.4)

Using the decisions of the individual EAs as the outcome state attributes at the
metalevel is equivalent to saying that the attributes at the EA level are distilled
respectively into the single attributes of the decision recommendations of the EAs.
This is the viewpoint that we want to emphasize. The EA computations are a “black
box” to the metalevel; as shown in Figure 4.1, the EAs forward computed results to
the metalevel which the metalevel can use to make its decisions. In this case, the
computed results of the EAs are the decision recommendations.

Substituting for w, the decision utility is as in the equation below. (For nota-
tional convenience, the remainder of this section will use only the decisions from the
Condition-Action (CA) and Action-Utility (AU) EAs. This can be generalized in the

obvious way to include the other two EAs.)

u(dot) = Y uldit dy” Op(di 4y gld ) (4.5)

5k
From the right-hand side of Equation 4.5, we have multi-attribute utility and
probability functions which we need to specify. Given particular (in)dependence
properties of the multi-attribute utility and probability functions, different functional

forms can be defined.
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Utilities First, we consider the multi-attribute utility function. Keeney and Raiffa’s
text [50] is an excellent source for this topic. The first step is to convert the multiat-
tribute expected utility function into simpler single or multiattribute functions. The
intuition is that the uncertainty about the utility is moved from the entire utility to
the component attributes that are used to calculate the utility. The transformation

can be done if the attributes are either
1. mutually utility independent and probabilistically independent, or
2. additive independent.

Mutwal utility independence is the condition when all pairs of attributes are utility
independent of each other. We say that attribute Y is utility independent of attribute
7 when conditional preferences for lotteries on Y given a particular attribute value
z do not depend on the particular level of z. In other words, the relative valuation of
y1 and y, 1s the same regardless of the value of z. For example, let Y be the set of
times when a show is playing and Z be the set of seat sections in the theatre. If an
8:00 pm show is twice as preferable as a 2:00 pm show when I have orchestra seats,
it should also be twice as preferable with balcony seats if the show times are utility
independent of the seat sections.

Probabilistic independence means that the probability of attributes are condition-
ally independent of one another given a particular context. Therefore, for two at-
tributes Y and 7 and context &, p(Y, Z|¢) = p(Y|{)p(Z|€). For example, the prob-
ability of rain is conditionally independent of the day of the week: given that it is

Sunday rather than Monday does not change the probability of rain.
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Figure 4.6: If lotteries I, and Ly and equivalent for all amounts of attributes of y
and z and fixed values of y' and 2/, additive independence holds.

Additive independence is a stronger condition than mutual utility independence,
and it holds between Y and 7 if and only if the lotteries Ly = (0.5 : (y,2),0.5 :
(y',2) and Ly = (0.5 : (y',2),0.5 : (y,2)) are indifferent for all amounts of y, 2
given a specific y', 2’ (figure 4.6). An alternative definition is that Y and 7 are
additive independent if the preferences over lotteries on Y and 7 depend only on
their marginal probability distributions for these attributes and not on their joint
probability distribution. As an example, let Y, Z be as in the theatre example and 3’
be the 8:00 pm show and z' be orchestra seats. Now, any choice of ¥, z should make
lotteries Ly and Ly equivalent in value. For example, there should be no preference
between L1 = (0.5 : (2:00pm, balcony),0.5 : (8:00pm, orchestra)) and Ly = (0.5 :
(8:00pm, balcony), 0.5 : (2:00pm, orchestra)).

Once the expected utility function has been converted into an equivalent utility
function, the utility function with multiple attributes still must be solved. The two
functions that we will examine are the additive utility function and the multilinear

utility function that correspond to the additive independence and mutual utility in-
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dependence cases, respectively. The equations will be stated for three attributes,
X,Y, Z, but they can be extended to n attributes. Let 2° and z* be the values of X
that give the minimum and maximum utilities respectively. 3%, y*, 2, 2* are defined
analogously.

The additive utility function has the form

(s, ) = hytn(2) + gy () + bt (2) (16)

where
u(2,9%,2°) =0 u,(2°) =0 uy,(y°) =0 u.(z°) =0 (4.7)
w@™y" 2" =1 uz(z®) =1 w(y*)=1 u.(z)=1 (4.8)

Then, for consistency,

ky+ky+k, =1 (4.9)

The single variable utility functions can be computed independently, and the &
parameters are scaling constants that are generated from certainty and probabilistic
considerations. The basic idea for assessing the scaling constants is to obtain a set
of three (or n for n attributes) independent equations with three (or n) unknowns,
which can then be solved to obtain the £’s, and then normalizing them to sum to 1.
With additive independence, we are can derive such equations:

ki = u(x?, z?) (4.10)

79
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Ski=1 (4.11)

where 79 is the vector of all attributes except x; at their values that yield minimum
utility.

The additive utility function is valid if and only if the additive independence
condition holds.

There are a number of different multilinear utility functions dependent on the
various utility independence assumptions made. For example, if each of X, Y, and 7

are mutually utility independent, then the utility function is

wz,y,z) = kous(2) + kyuy(y) + kou.(z)
thpy ke kyug(2)uy(y) + kpokekoug(2)u.(2)

Fhyoky by (Y)us(2) + keys ko ky ko (2)u, (y)u.(2) (4.12)

In our case, where the attributes are the decision recommendations of the EAs,
we use the additive independence form. The appropriateness of this additive inde-
pendence assumption is dependent on the degree to which the preferences over the
multiple attributes are captured by single attribute rather than joint utility functions.
For the decisions of the EAs, this is a reasonable assumption because the particu-
lar decision of one EA does not markedly affect the preferences over the decisions
of other EAs in normal circumstances. Returning to our example for two EAs, the

utility function would be

u(di A", €) = ki (d7) + kaua(di”) + ksus(€) (4.13)
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ks and usz(¢) do not have to be computed because that term is the same for any j
and k.

The univariate utility functions on the right-hand side of Equation 4.13 are com-
puted by the individual EAs. For instance, ul(deA) is the utility calculated by the
Condition-Action EA for d;. We set the scaling constants, k;’s, to all be equal because
of the lack of distinction between the decisions of each EA. In other words, from our

example,

kl — u(dCA*7dAUO7£> — u(dAU*7dCAO7£> — kQ (414>

Probabilities The second component from Equation 4.5 needed to compute the
utility of a decision at the metalevel is the probability p(deA,de,ﬂdeL,tc). This
probability represents the degree of belief that the EAs will recommend certain de-
cisions given computation time ¢, and a particular decision of the metalevel. With
four EA decisions, the metalevel decision, and ¢, this is a probability function in a 7-
dimensional space. Like the multi-attribute utility function, we would like to simplify
this function also by taking advantage of any independence properties.

For instance, if we assume conditional independence of the EA decisions given
the metalevel decision and t., we can simplify the function to single EA probability

functions:

p(d§ A diY EdM ) = p(d§ AN ) p(diT Y ) p(éldt Tt t) o (4.15)

The probabilities of the right-hand side of Eqn. 4.15 are conditional probabilities
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that the optimal decision choice D,,, is the same as the output of the metalevel or
an EA given computation time ct. To simplify the probabilities, we assume that
there are only two cases: the optimal decision is the same as the EA or ML decision
or the optimal decision is not the same as the EA or ML decision. This allows
the representation of the conditional probability using a two-dimensional graph as
shown in Figure 4.7 giving the probability that the optimal decision is the same as
the EA or ML decision (e.g., for p(deA|deL,tc), the 7 = j case. For the alternative

case (e.g., the i # j case), the probability is normalized for a single decision value:

|D|1_1(1 — p(d§*{dM" 1.)) where |D| is the number of decision values.

Currently the probabilities are fixed, but a learning procedure to update the proba-
bilities can be implemented because each decision of the metalevel with the associated
decisions of the FAs can be used as a sample instance to the learning procedure.

In some sense, the probabilities of p(d5**~ |dMT 1) can be viewed as “performance
profiles” [18, 80] that give “quality” as a function of computation time. In this case,
the “quality” of an EA is the probability that the decision recommendation of a par-
ticular execution architecture concurs with the optimal decision of the Metalevel. An
example of the differences of performance profiles for EAs can be seen by compar-
ing the Condition-Action and Decision-Theoretic EAs. Because of the restriction to
{0,1} values, the Condition-Action EA should be able to use special-purpose, fast
inference methods that yield an action recommendation faster than the Decision-
Theoretic EA. However, the quality of the results of the Condition-Action EA may be

less than the results of the Decision-Theoretic EA because of the same restriction—

the Condition-Action EA loses information by not allowing uncertainty regarding
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Figure 4.7: Example performance profiles for the four EAs for the AUV example.

condition variables.

Instead of assuming conditional independence of the EA decisions given the met-
alevel decision, we can consider other methods to compute the 7-dimensional prob-
ability function, p(deA,de,d?B,dgT,ﬂdeL,tc). For example, we can slightly relax
the conditional independence requirement and compute using joint probability dis-
tributions (e.g., p(deA,de, |dMTt.)). Alternatively, we can dismiss altogether the
approach of specifying the probability function, and train a neural network to out-
put the probability value given inputs of the decisions. Or another approach is to
use non-linear regression to find an appropriate functional form using samples of the
decisions. However, as the system implemented, we use the conditional independence

assumption and proceed as discussed above.

Examples To further understanding of how the results from the EAs are combined
to make a final decision at the metalevel, we will examine two examples. The first

example goes over the degenerate case when only one EA is available; the second
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uy(d7) | ua(dy”)
dyq 1 0.2
dy 0 0.8

Table 4.1: Utility estimates of the decisions as computed by the EAs

example will treat a two-EA situation using numerical data.
Suppose only one EA existed. Then Equation 4.5 would be as follows (using the

Condition-Action EA as an example):
u(dtt) = Y u(diH E)p(df ¢l ) (4.16)
J

The utility function u(deA,f) would be obtained directly using ul(deA) computed
by the Condition-Action EA. The relative ranking of each decision would be the
same for v and uy. This is appropriate since there is no other information usable by
the metalevel. The probability function p(deA,ﬂdeL,tc) is directly obtained from
p(d?ﬂdfw L t.), the information we have about the performance of that EA. Given
the relationship of the utility functions, this probability will be 1 when j = 7 and 0
otherwise. Therefore, when there is only one EA, the metalevel correctly mirrors the
decision recommendations of the single EA.

As the second example, consider a numerical example to compute d* using the
Condition-Action and Action-Utility EAs where there are two possible decisions, dy
and dy and a given computation time ¢.. Let the utilities computed by the EAs be

as in Table 4.1.
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VK] 1] 2
1 0609
2 10104

Table 4.2: Multiattribute utilities of the outcome states

Equalizing and normalizing the scaling constants gives

The term ksus(€) is set to 0. With this information, the outcome state utility function
can be generated using
u(di ™ AT, €) = ki (di) 4 kaua(di”) + ksus(€) (4.18)
and the entries of Table 4.2 can be determined.
For the probability functions, we assume the following values from ¢, = 1 to 4 as
shown in Figure 4.8.
The value of p(¢é|dM¥ . 1,) is the same over all M’ and so it is not relevant to

the probability computation. The multiattribute probability values can be generated

using

p(d§ A dY g dM ) = p(d§H Y ) p(dT Y ) péld L) (4.19)

The graph in Figure 4.9 displays the probabilities for dM~.
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Figure 4.8: Performance probabilities for the two EAs
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Figure 4.9: Graph of multiattribute probabilities for d}.

The values for both d/* and d}* are displayed in Table 4.3.
Finally, combining the multiattribute utilities of Table 4.2 and the probabilities

of Table 4.3, we can compute the utilities of the decisions:

W(d1) = Su(d Y ai ) (120)

5k
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b !
d‘2 7d‘2 |d2 7t

0.25 1 0.3 ] 0.24 | 0.12
0.25 1 0.3 ]0.36 | 0.48

p
p

1. 1 [ 21 3 | 4
p(dC* 0T 1) [0.25 | 0.3 | 0.36 | 0.48
p(dS4, d2U|dME 1) | 0.25 | 0.3 | 0.24 | 0.12
p(dSA, dAUdME 1) | 0.25 | 0.2 | 0.24 | 0.32
p(dSA, dAV M 1) | 0.25 | 0.2 | 0.16 | 0.08
p(dS* dU T 1) [0.25 | 0.2 ] 0.16 | 0.08
p(dSA, dAV AN 1) | 0.25 | 0.2 | 0.24 | 0.32

( o)

( o)

Table 4.3: Multiattribute probabilities for numerical examples.
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Figure 4.10: Utilities of decisions of the metalevel

From the results of Figure 4.10, we can see that at ¢{. = 1 there is no preference
between the two decisions because the performance probabilities of the two EAs at
that time are as likely to be wrong as right. At times #. = 2 or 3, d}” has the higher
utility. d; was the decision that had the highest utility in the Condition-Action EA.
At time ¢, = 4, however, d}* has the higher utility as the high probability that
the Action-Utility EA gives the correct decision recommendation overwhelms the

recommendation of the Condition-Action EA.
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4.2 AUV Implementation

We have implemented examples (300-400 nodes) of multiple EAs and planning
windows for the AUV domain and have been encouraged by the results. For the
implementation, we use the HUGIN commercial software package [3] which operates
only on probabilistic belief networks [73]. Therefore, the extended influence diagram is
converted to a corresponding belief network as in [10] by converting decision and value
nodes into probabilistic state nodes. On top of the HUGIN software, we have written
C code to implement the multiple execution architectures framework and metalevel
control of planning.

Since each EA has a different “performance profile” (decision quality as a function
of computation time), in the multiple EAs implementation an interesting interaction
that occurs between EAs as computation time varies can be observed. In our imple-
mentation, the Condition-Action performance profile quickly rises to a medium level
of decision quality, while in contrast, the Decision-Theoretic performance profile has
a higher decision quality but only after a longer period of computation. Therefore,
as computation time increases, the results of the Condition-Action EA are weighted
less, and the results of the Decision-Theoretic EA are more heavily weighted. For
a given situation, the Metalevel’s best decision may change several times as the EA
computation time increases. Complex decision-making behavior is thus generated by
specifying simple probability and utility functions and exploiting the modularity of
the EAs.

Implementation of the AUV example has been done by writing C code that can

access the HUGIN belief network inference functions. The four EAs and the metalevel
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are implemented as separate parallel processes that communicate via message passing.
One of the experiments that we have run is to change the weight of the time cost at
the metalevel. As time cost rises, the metalevel makes quicker decisions and strongly
weights the “fast” EAs.

Figure 4.11 shows a screen display of the AUV simulator. The simulator main-
tains a 3-dimensional terrain model. In addition to the simulator and the control
system that will be discussed in Chapter 6, other processes that are running include
a low-level path planner that generates the actual navigation commands, and a plan
interpreter that converts high-level commands from the control system into “way-
points”, 3-D absolute location coordinates.

We have also implemented the value of replanning mechanism and have seen it
successfully replan when various dynamic events occur and successfully not replan
when there is no or little benefit to be gained. In one example, after the execution of
the first step of the nominal plan, a battery failure occurs. This event causes the value
of replanning the FuelGauge subtree to be positive, and after recursively computing
values of replanning in the network, a decision is changed from waiting two cycles for
data to accrue to waiting zero cycles, thereby reducing the use of fuel for the mission.
This example will be presented in more depth in Chapter 6.

We are currently building a more complex model of the AUV domain to use for
decision-making. As the model becomes more complex, the need for multiple EAs
and decision-theoretic planning become more important, so we expect to get more

impressive results from metalevel control.
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Figure 4.11: Screen view of the AUV simulator with multiple processes running in
the various windows. The display is on a Silicon Graphics Iris workstation.

4.3 Discussion

One of the benefits of modelling uncertainty through the use of decision theory is
that the assumptions required to implement the domain model become explicit. The
probabilistic and utility independence assumptions can be explicitly stated. Then,
we can consider the effectiveness of different independence assumptions for a given
domain and use the corresponding probability and utility functions.

Another benefit of a decision-theoretic approach is that knowledge necessary to
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modify the control system’s behavior is in the form of probabilities and utilities (e.g.,
the time cost of a domain). Learning can occur by updating the probabilities and

utilities, and standard Bayesian updating methods can be used.
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Chapter 5

Knowledge Compilation

Knowledge compilation is the conversion of declarative knowledge to compiled
knowledge. Declarative knowledge (e.g., utilities u(w) and probabilities p(w|d) where
w is an outcome state and d is a decision value) is generally easier to acquire and learn
because the knowledge is available and representable in modular pieces. However,
inference with declarative knowledge is usually expensive because it is not specially
designed to be efficiently used for inference. In contrast, compiled knowledge (e.g.,
IF w THEN d rules) is generally difficult to acquire directly but is designed to be
efficient in execution.

An agent can be programmed or learn with greater facility using declarative knowl-
edge, but, for a real-time agent that knowledge needs to be compiled into more efficient
forms. This scenario motivates our study of knowledge compilation.

This chapter investigates knowledge compilation, providing a definition of it within
the Multiple EAs framework, showing how it is useful and how compilation is used

and controlled.
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Figure 5.1: Sample influence diagram

5.1 The Advantages of Compilation

The standard goal of compilation is to obtain more efficient execution while main-
taining behavioral equivalence to the uncompiled system. Generally, “efficient” in
this case, means faster without using too much memory space. In the following,
we will be more precise about the concepts of “efficient execution” and “behavioral

equivalence”.

5.1.1 Efficient execution

Clearly, the speed of the execution is dependent on what queries are presented and
the particular algorithms used for inference. In a decision-theoretic representation,
which arguably can subsume any other declarative representation, “execution” is
inference to compute different probability distributions and utilities.

For example, given the influence diagram of Figure 5.1, we may want to compute
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w(A = ay, D =ds)' or p(C, E|A = ay) or anumber of other quantities. If we are often
computing quantities where particular evidence (i.e., a subset of variables are known
to have particular values, for example, A = a1, D = d5.) is common, it might be
useful to save intermediate quantities. For example, suppose we are often computing
u(A, D) for different values of D. The full expression of this computation with the

given influence diagram is

ZZC:%:ZB:U )p(C|B)p(E|B)p(B|A, D) (5-1)

An alternative way to compute the same quantity that would require fewer computa-
tions is to “compile” and save quantities such as u(B) by first averaging over variables

C and F:

= S u(C EY(CIB)(ELB) (52)
c E
and then using the intermediate quantity directly:

=S w(B)p(B|A, D) (5.3)

The interesting/difficult aspect of the problem is that there are too many inter-
mediate quantities to consider saving them all because of memory and management
considerations. For every variable, we can consider particular instantiations (e.g.,

A = ay, B = bs,...) and since there are an exponential number (in the number of vari-

!The utility u is computed at the value node V.
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able values) of instantiations of the variable vector, there are at least that number
of possible intermediate quantities to save. Because of the intractably large number,
the choice of which compilations to do must be done intelligently.

Another aspect of the “execution” issue is the algorithms used to do inference.
The above equations used multiplications and summations over probability and utility
tables. These operations are the usual ones required to do inference in an influence
diagram, but they can take different forms. For example, the use of parallel pro-
cessors might be able to cut the complexity of the multiplications and summation.
Another well-known alternative implementation is Lauritzen and Spiegelhalter’s use
of junction trees that allow local computations [56]. Dependent on the inference al-
gorithm, compilation may be to different forms and have different values, but in a
decision-theoretic representation, all compilation is to different probability or utility

quantities.

5.1.2 Behavioral equivalence

If two systems are behaviorally equivalent, they each will select the same decisions
given the same percept history. It is desirable to maintain behavioral equivalence as
knowledge compilation is done. However, knowledge compilation will still be useful if
the system can execute much faster and result in differences in only a small fraction of
decisions. Depending on the utility model of the domain, the approximate, compiled
model may be preferable. For example, if there is a high degree of time pressure, the
compiled model may be able to compensate in speed of execution for any decision

errors due to approximate compilation. The obvious question is whether an optimal
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Figure 5.2: Knowledge forms for multiple execution architectures.

tradeoff point between the “accuracy” of the compilation and the time benefit of
using the compilation can be determined. For example, we can make approximations
so that all probabilities e-close to 0 or 1 are set to 0 or 1, respectively, and save the
compiled probabilities in a compressed form.

We will mostly ignore the issue of approximation and work in the framework of

behaviorally equivalent compilations in this chapter.

5.2 Defining Knowledge Compilation

Knowledge compilation can be defined precisely using the multiple execution ar-

chitectures framework. Recall that the agent function f : P* — D receives percepts
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A+A —>A
A+B —>B
A+D->D B+F—-—>D E+ MEU —>D
A+E->E B+C->E C+MEU—>F

Table 5.1: Enumeration of all compilation routes. The left column shows the four
types of homogeneous compilation. The middle column shows heterogeneous com-
pilations involving projection. The right column shows heterogeneous compilations
involving utility computation.

P as input from the environment and outputs a decision d* € D. There are multiple
inference paths from P to d* that are different implementations of f (Figure 5.2).

The various compilation routes can be identified by enumerating all possible com-
binations of arcs in Figure 5.2 that are adjacent, head to tail. Table 5.1 shows the
eight possible compilation routes where two pieces of some type of knowledge can be
converted into a single piece of knowledge. For example, B + F' — D denotes the
combination of a piece of type B knowledge and a piece of type F knowledge can be
combined to yield a piece of type D knowledge.

Russell [75] discussed the various compilation routes in general terms, independent
of a particular knowledge representation. For example, Russell distinguishes between
homogeneous compilation where the combined knowledge types are the same and
heterogeneous compilation where the combined knowledge types are different.

With our choice of the decision-theoretic representation, there are two main op-

erations to implement compilation:
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1. Integrating out a chance variable.

A+ A—-A A+ B—- B, A+D — D,

A+ FEF—-FE. B+C—>FE, B+ F—D

For example, the compilation A+ A — A is done by averaging out a probabilistic

variable, in this case, F.

p(A|B,C) = Y p(A|E,C)p(E|B) (5.4)

A, B,C, E are all probabilistic variables in this example. The result is a re-
duced model with the probability distribution of £ incorporated into the new

distribution p(A|B, C).

2. Pre-computing expected utilities to fix policy.

C' +MEU — F, E+MEU — D

For example, C' + MEU — F In this case, the value function of type (', v, is
converted into a value function of type F', vp by using the Maximum Expected

Utility principle.

ve(UA1[X A1) + MEU — op(U.H[X.41)

This is done by assigning ulp to the outcome state configuration(s) of X.t1

that maximize vo. ugg is assigned to all other state configurations.
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5.2.1 The eight compilation types

Each of the eight compilation types are defined in decision-theoretic terms as
below. The figures for these compilations are shown for the affected fragments of the
influence diagram. In general, the network may first require arc reversal and node
elimination manipulations that will be discussed in Section 5.4.

LA+ A A

Knowledge of the current state, p(X;.t|X.t) can be combined to get different pieces
of knowledge of the current state, p(X;.t|X.t). In the case below, the variable
DataAcerued.1 is compiled out by averaging (or integrating) over its values. From
the initial probability distributions of Type A, p(DataAccrued.1|SensorCap.1) and
p(DataReceived.1|SensorState.l, Data Acerued.1), the compilation produces another

probability distribution of Type A, p(DataReceived.1|SensorState.1, SensorCap.1).

|

W& (=

(o
)

Figure 5.3: Example of A4+ A — A compilation.
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The combination of Type A knowledge and Type B knowledge, p( X;.t+1|D.t, X.t), can

be combined to get new Type B knowledge. In the example, p(Data Acerued.2|SensorCap.1, D.1°

is generated by integrating out DataAccrued.l.

\

D.1

—_—
—_—

D.1

B B
Sensor A Data \ Data Sensor\\ Data
Cap.1 Accrued.1 Accrued.2 Cap.1 Accrued.2

Figure 5.4: Example of A + B — B compilation

3.A+D— D

In this type of compilation, Type A knowledge is compiled out to get a more com-

pact /efficient influence diagram using Type D knowledge, v(U.t+1|D.1,X.t) € {ud 4, ul 4}

D.1

Sensor Data
Cap.1 Accrued 1

D.1

Senso
Cap.1

@

Figure 5.5: Example of A4+ D — D compilation
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4. A+ F = F
This type of compilation is similar to A + D — D compilation, except in this case
the value function can be an arbitrary value in the utility range, indicating Type E

knowledge, v(U.1+1|D.t,X.t) € [uky, u )]

D.1 D.1

Sensor Data Senso
Cap.1 Accrued 1 Cap 1

Figure 5.6: Example of A+ E — E compilation

5 B+(C — FE
The combination of Type B and Type C knowledge, v(U.t+1|X.14+1) € [ufy, uiy],

can be converted to Type E knowledge by eliminating a hidden variable at the time

t+1.

D.1 D.1

—_—
—
C E
Data Data
Accrued.1 Accrued.1

Figure 5.7: Example of B+ ' — FE compilation
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6. B+ F—D
This is the analogue to the B + C' — E compilation where the utility values are re-

stricted to two possible values by the Type F knowledge, v(U.t+H1|X.H1) € {ud 4, ul4}-

D.1 D.1

Data Data Data
Accrued.1 Accrued.2 Accrued 1

Figure 5.8: Example of B + F' — D compilation
7. C+MEU — F

In the next two compilation types, the Maximum Expected Utility principle is used

to compile decision policies. In this case, there is no decision variable.

C F
Data — > Data
Accrued.2 e Accrued.2
MEU

Figure 5.9: Example of C'+ M EU — F compilation




82

8. F+ MFU — D
In this example, Type E knowledge of utilities is compared using the MEU principle

to generate fixed decision policies using Type D knowledge.

D.1 D1

D ———
—
Data E Data \D
Accrued.1 Accrued.1
MEU

Figure 5.10: Example of £ + M EU — D compilation

5.3 Compilation of Execution Architectures

The eight types of knowledge compilation can be used to convert an execution
architecture from one type to another (Condition-Action, Goal-Based, Action-Utility,
or Decision-Theoretic). Figure 5.11 shows the use of B 4+ C — FE compilation to
convert a Decision-Theoretic EA to an Action-Utility EA, and then the use of F +
MFEU — D compilation to yield a Condition-Action EA.

The most “uncompiled” EA is the Decision-Theoretic EA which can be converted
via compilation transformations to any of the other three EAs. The Condition-Action
EA is the “most compiled” EA since no compilation transformation can convert it to
another EA. Figure 5.12 shows the class of compilations that convert EAs.

The compilation ordering is not unique. A Decision-Theoretic EA could also be

converted to a Goal-Based EA using C'+ M EU — F, and then to a Condition-Action
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b‘
‘\
C
EU

Decision-Theoretic EA

Action-Utility EA Condition-Action EA

B+C—E E + MEU—D

Figure 5.11: Compilation of Decision-Theoretic EA to a Action-Utility EA to a
Condition-Action EA

EA using B4+ F — D.

5.4 A Compilation Algorithm

This section describes a general knowledge compilation example. From an original,
Decision-Theoretic EA, a compiled, Condition-Action EA is generated that retains
behavioral equivalence and allows faster decision-making.

The strategy is to implement the following three steps.

1. Represent the prior probabilities as variables.
By using variables for the probabilities (e.g., for a two-valued variable, p and 1—p
can be used), the compiled network can be re-used many times by instantiating

the prior probability variables.

2. Propagate the variables through influence diagram reductions.

By applying Bayes Rule and marginalization, nodes of the influence diagram
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Decision-
Theoretic EA
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Action- Goal-
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E + MEU »\ B+F—sD
Condition-
Action EA
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Figure 5.12: Compilations to convert execution architectures.

can be removed by integrating their influences into the rest of the network.

3. Generate parameterized, if-then, condition-action rules.

If condition, then action rules can be generated from the Type D knowledge of

the Condition-Action EA.

The algorithm to convert a Decision-Theoretic EA to a Condition-Action EA uses

the following four steps:

1. Remove unneeded barren nodes.

Barren nodes are nodes that do not have any children. Barren nodes can be
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removed from an influence diagram without affecting the distributions of any
of the other nodes, and therefore no changes to existing probability and utility
functions need to be made. The barren node removal can be done recursively
so that if a node’s only children are barren, it, too, can be removed. The nodes
that might be used for evidence or the value node cannot be removed because

these nodes might need to be examined.

2. Remove nodes of each time slice in order.
The nodes of each time slice are removed, starting with Time Slice 0 and pro-
gressing to Time Slice k. The node removals are done by applying Bayes Rule

and probability variable marginalization.

3. Convert utilities to fixed decision policy.
Once all chance variables except the possible evidence variables are removed,
then the utilities (which are now Type E knowledge) can be converted to a fixed

decision policy using the £ + MEU — D compilation.

4. Convert policy to if-then rules.
The fixed policy can be converted to If-Then rules where the condition of the If
statement is one of the possible evidence/percept vectors and a function of the

prior probability variables, and the consequent is a decision recommendation.

5.4.1 Example

An example of the general compilation strategy is given in this section. The

domain of this example is an AUV in a mine mapping mission.
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L ocation.1

BandFound.1

Figure 5.13: The original influence diagram is shown. Nodes that are highlighted will
be removed by Barren node removal.

Barren Node Removal

Figure 5.13 shows the initial structure of the first two time slices of an extended in-
fluence diagram. The highlighted nodes will be removed by Barren node removal. Ev-
idence from the sensors is available at the M — NewMine.0 and M —SubNear.0 nodes,
that indicate whether a previously undetected mine has been found and whether a

nearby sub has been detected.
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L ocation.1

BandFound.1
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BandSear ched.1
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MapErrorNeg.1
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MapErrorPos.1

SubNear.1

\

\ " Energy.1

Covertness.1

RecoverVeh.1 0
MEU

Figure 5.14: Highlighted nodes of Time Slice 0 will be removed.

Covertness.0

Probabilistic Node Removal

Probabilistic node removal is done by application of Bayes Rule to reverse arcs
and create barren nodes. The barren nodes can then be removed. Figure 5.14 shows
the nodes of Time Slice 0 that will be removed. Figure 5.15 shows the nodes of Time
Slice 1 that will be removed.

For this network, the nodes Location.0, SubNear.0, and Energy.0 have no parents

and are therefore represented using prior probabilities. The priors for these binary-
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valued nodes can be represented using three variables: p;, ps, pe, that will be carried
through the algebraic computations of knowledge compilation.
As an example of a node removal, the SubNear.0 node of Figure 5.14 requires the

reversal of three arcs using Bayes Rule:

1. Reverse arc to M SubNear.0.

_ p(M|SN)p(SN)
PISNIM) = = VTSN ) p(5 ™)

2. Reverse arc to Covertness.(.

_ p(C|SN, M)p(SN|M)
PISNIC. M) = SN p(SN M)

3. Reverse arc to SubNear.1.

The node SubNear.0 now has no children and can be removed.

Action-Utility EA compilation

Figure 5.16 shows the most reduced Decision-Theoretic EA. Note that the knowl-
edge types used are of Types A B, and C. And the Maximum Expected Utility (MEU)
principle needs to be applied to the utilities of Type C.

Figure 5.17 shows the Action-Utility EA generated from the previous influence

diagram using the B + C' — F compilation.
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Figure 5.15: Highlighted nodes of Time Slice 1 will be removed.
Condition-Action EA compilation

Finally, the Type E utilities are converted to best decision choices directly using
the £ + MEU — D compilation. The Condition-Action EA influence diagram is
shown in Figure 5.18.

Type E knowledge gives utilities of state-action pairs as shown in Table 5.2. In

this case, the state corresponds to the evidence vector M — NewMine.0 and M —

SubNear.0, and the possible decisions are NOOP, WS, BS,GO. The utilities are
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D.0

Figure 5.16: The reduced Decision-Theoretic EA.

represented as functions f;(pi, ps, pe) of the prior probabilities.

NM SN | NOOP WS BS GO
fl f2 f3 f4
f5 f6 f7 fg
f9 flO fll f1‘2
f13 f14 f15 f16

NN
NN

Table 5.2: Type E knowledge: fi(pi, ps, pe)

From the Type E utility functions, If-Then rules can be generated in terms of the
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D.0

MEU

Figure 5.17: Action-Utility EA after B4+ (' — E compilation.

prior probability variables. For example, a rile set might include the following rules:
Tf(MNM = F)(MSN = F)(p > 1.4p.))

(D =WSEARCH)
Tf(MNM = F)(MSN = F)(p, < 1.4p.))

(D = BSEARCH)

The actual implementation of how the If-Then rules will be used is unstated. For

example, they might be used by a logic-based theorem prover, or by a decision tree
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D.0

M-SubNear.0

Figure 5.18: Condition-Action EA.

which branches on the condition values and whose leaves are the decision recommen-

dations.

5.5 Discussion

5.5.1 Controlling compilation

Since in our framework the knowledge compilation is maintaining behavioral

equivalence, there is no cost with respect to loss of model accuracy. However, two
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types of costs that do apply are (1) the computational resources required to carry
out the compilation and (2) the cost of maintaining multiple compiled models (i.e.,
compiled and uncompiled versions of the same domain).

The first cost of compilation can be ignored if the knowledge compilation is done
off-line before the models are used for decision-making. If compilation is done on-
line, it can be put under metalevel control in much the same way that the marginal
utility of replanning is analyzed in Chapter 6. The efficacy of such metalevel control is
directly related to the speed of the metalevel analysis and the availability of knowledge
about the time-parameterized effects of on-line compilation, specifically, probability
distributions on the relevant variables used for decision-making.

There is a cost of maintaining multiple compiled models when new evidence (in
the form of assertions that a variable has been observed to take on a specific value)
occurs for a node that has been “compiled out”. If the original uncompiled network
is saved as well as different levels of compiled networks, then the cost is only the
memory cost of maintaining multiple models. In general, some representation of the
original uncompiled network must be maintained if any variable can be instantiated
with evidence in the future. However, the types of compilation that do not remove
nodes but precompute decision policy can always be done. Also, any non-evidence

nodes can always be safely compiled out of the influence diagram.

5.5.2 Other issues

There are several important issues that remain for now future work.
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Approximate compilation There are many ways to relax the behavioral equiva-
lence condition and use approximate compilation. For example, as in D’ Ambrosio [16]
for probability computation, only a subset of the probability values of a distribution

can be used to generate the new distribution.

Structural changes of model The knowledge compilation discussed assumes that

the original influence diagram is correct and complete. When the model requires

changes, the unaffected portions of the compiled network should remain constant.
The next chapter will continue the story of knowledge compilation by showing

how it relates to the key concept of multiple execution architectures.

5.6 Review

This is a natural stopping point to review what has been discussed heretofore in
this dissertation.

The multiple EAs framework was defined as a decision-theoretic extension to stan-
dard influence diagrams where six knowledge types are used. Knowledge compilation
transformations were defined to convert knowledge types to a more efficient form.
Certain combinations of these knowledge types determine four execution architec-
tures which partition the space of possible ways to choose a best decision, d*. The
four execution architectures can be run in parallel, each computing on the same de-
cision, and a Metalevel uses decision-theoretic principles to combine the information
from four different implementations of the agent function to output a final action

choice.
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The next chapter will discuss decision-making and planning in the multiple EAs

framework.
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Chapter 6

Planning and MEA

In Chapter 3, we introduced the use of planning and planning windows within
the EA computation step. This chapter discusses the planning representation and
algorithm in depth. The main result is a metalevel control algorithm for planning
that focuses on the most promising areas to replan and considers the time cost of
replanning. In addition, a view of decision-theoretic planning is proposed that applies
the power of decision theory (most notably, the ability to deal with uncertainty and
multiple objectives) to the planning problem. Within this framework, we show how
a hierarchical abstraction model of the domain model can be exploited rationally.

We show that dynamic replanning using the combination of decision-theoretic
metareasoning and abstraction is formally sound and enables successful, real-time

performance in a complex domain.
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6.1 Introduction

Planning is the method of projecting the current state into the future to predict
possible outcomes. If the domain is simple enough, there is no need for planning
since the Maximum Expected Utility principle can be applied with exact probability
and utility functions for the action outcomes. However, as the domain becomes more
complex, subsequent action sequences need to considered in order to calculate the
utility of the outcomes of immediate actions. For example, the value of the action of
buying a baseball game ticket now is dependent on future actions (e.g., whether I go
to the game or not).

Many tasks are sufficiently recurrent and well-defined so that pre-existing plans
can be used. There may be no need to plan an entire mission, but there is always
a need to respond to events that occur during plan execution. We propose the use
of replanning which repairs or modifies an existing plan rather than starting from
scratch. Replanning is really a generalization of planning if we allow the “existing”
plan to be empty or random. Two of the approaches to the replanning problem are to
have a “reactive” subsystem that can default to a safe behavior [7, 25] or to provide a
universal plan [83] or conditional plan [99, 74] before execution to deal with expected
dynamic events. However, both approaches lack the ability to reason during execution
to repair the plan. Dynamic reasoning (i.e., replanning) is preferable because it
obviates the need to predict all events prior to execution and also because knowledge
gained during execution can be used. Most of the work to date on replanning has
been in “transformational” planning where faulty plans are projected into a library

of domain-independent faults and an appropriate repair strategy is invoked [90, 31].
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This approach is limited by its fixed number of pre-identified faults and strategies.

Our approach to replanning is to use decision-theoretic metareasoning: replanning
is invoked if and only if the utility of replanning is greater than the utility of executing
the plan, and the plan is repaired by fixing the part that would yield the highest utility.
The essence of the strategy is simple— Do the action with the highest expected
utility. This approach gives great flexibility in the type of replanning. But the
inclusion of computational planning actions along with base-level actions (i.e., actions
that directly affect the world) further complicates the design and implementation
of decision-theoretic control systems and requires design choices on the method of
metareasoning?.

By viewing planning as a computational action, it can be integrated into the
same decision cycle as base-level actions (i.e., actions that directly affect the external
world). On each cycle, a best action is selected, and it may be a base-level or compu-
tational action. The approach presented here calculates a “value of information” [45]
of doing various planning actions, selecting the planning or base-level action that has
the highest utility.

The key question is what the “various planning actions” are. As examples, the
planning action may be one node expansion in a search of the plan space tree, or it
may be one CPU second of computation of a given planning algorithm. The issue of
selection of the type of planning action is largely independent of the decision-theoretic
metacontrol method since any computational action can be characterized in decision-

theoretic terms. However, the selection of the planning actions deeply affects the

IFor some other decision-theoretic approaches see [42, 78, 77, 17, 21, 30, 39].
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performance of the planning algorithm. The planning steps of the algorithm presented
here are various evaluations and modifications of the plan window influence diagram
to repair or modify the existing plan.

One of the problems in applying decision theory as well as other declarative ap-
proaches is that the complexity of the state space is prohibitively large. And one of
the ways to combat high complexity has been to use a hierarchy of abstraction spaces
which has been most prominently used in traditional planning (e.g., [81, 53]), and to
a lesser extent with a decision-theoretic world view (e.g., [33, 102]). We, too, use a
hierarchical model to restrict the size of the state space that needs to be evaluated.
As a result of the decision-theoretic control of planning, the hierarchical model is
exploited in a rational manner, examining different levels of detail depending on the
estimated utility of doing so.

The replanning architecture has three main components— plan impact analysis:
analysis of the impact on the current plan of monitor data; plan modification focusing:
a value of computation focus mechanism to restrict the search area that needs replan-
ning; and plan modification: the replanning algorithm itself which makes changes to
the plan. We demonstrate the architecture with a simplified example of an underwater

vehicle whose battery has failed.

6.2 Autonomous underwater vehicle domain

A typical mission for an autonomous underwater vehicle (AUV) involves launching
from a surface ship, surveying a region, laying a sensor array, waiting for the sensor

data to accrue, picking up sensor data, and returning to a recovery point (Figure 6.1).
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1. Launch AUV. 1 6

2. Survey region to find suitable
location for sensor array.

3. Lay sensor array.

4, Wait for datato accruein
SENSor array.

5. Upload data from array.

6. Recover AUV.

Figure 6.1: A typical AUV mission

In such a domain, the components of the plans are re-used many times, and canned
strategies for different survey and other techniques are available. A nominal mission
plan can be developed by a human mission planner for the current environment with-
out too much difficulty. The void in capability is not in generating the nominal plan,
but in providing autonomy to enable the AUV to operate effectively once launched.

This is why there is a need for on-board replanning capability.

6.3 Representation

The planning window is the influence diagram currently being considered that can
encompass an action sequence rather than just a single action. Assuming the Markov
property of the states, we can repeatedly reproduce the same a single decision tem-

plate that shows the relationship between two time slices? Using this automatic up-

2As was described in Chapter 3.
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Figure 6.2: A Decision-Theoretic EA influence diagram with a 3-step planning win-
dow.

dating, the world state is projected forward in time using only local connections. For
k-step planning, the influence diagram is extended by chaining k decision templates
together.

Figure 6.2 shows a 3-step planning window obtained by chaining together three
decision templates of the Decision-Theoretic EA in the AUV example. Figure 6.3
shows two time slices of a network used for the AUV example.

Planning windows apply only to the Goal-Based EA and Decision-Theoretic FA.
The Condition-Action EA and the Action-Utility EA do not contain knowledge de-
scribing the effects of actions (Type B knowledge), therefore, there is no way to chain
together single decision templates. For the FAs that do have temporal projection, as
time passes and actions are executed, the planning window is “rolled” forward in time
so that a k-step lookahead horizon is always extant. We have developed software to

dynamically update a network and interface to the HUGIN software functions. The
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| Battery.0 Battery.1

ArrayLayed.0 ArrayLayed.1

DataAccrued.0 DataAccrued.1
Energy.0 Energy.1

DataReceived.0 DataReceived.1

Location.0 Location.1

| u.o | | Ul |

Figure 6.3: A single time slice of a network used for the AUV example. This figure was
generated by the HUGIN belief network software which draws all nodes as rectangles.

dynamic network software is similar to Kjaerulff’s dHUGIN (Dynamic HUGIN) soft-
ware package [52] that also provides functionality to advance a HUGIN belief network
forward in time. However, whereas dHUGIN provides more generality in the way a
network can be moved forward or backward in time, our system is only able to move
one time step forward at a time but is able to do this operation very quickly.

Planning in a decision-theoretic framework is somewhat different from the tra-
ditional notion of planning for goal satisfaction (e.g., [2]). The utility model of the
influence diagram specifies preferences on outcome states, and the aim of planning
is no longer to achieve goals but to maximize expected utility. As has been of-
ten pointed out, the generality of maximizing expected utility rather than achieving
goals is necessary to deal with multiple objectives and goal achievement uncertainty
(e.g., [22, 101]).

Another important difference from some work in classical planning is that the
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decision-theoretic approach is selecting decisions/actions that are perfectly controllable®
and take no time to execute, in contrast to actions that cannot be perfectly control-
lable in general and may have duration. The decision can be viewed as a switch or
dial which can always be set as desired. Of course, the effects of such a decision are
not controllable. T can make the decision to lift 225 pounds, but the effect may be
that I am unsuccessful. In contrast, the original STRIPS representation has action de-
scriptions like “pickup” which cannot be executed without the requisite preconditions
holding [24].

The objective in the decision-theoretic framework is to select the decision/action
sequence that has the highest expected utility, and then to execute the first action
of that sequence. The obvious method to select the optimal action sequence is to
compute the expected utility of each action sequence and select the one with maximum
expected utility. However, evaluating action sequences rather than single actions is
more expensive by a factor at least exponential in the number of actions. This
complexity makes decision-theoretic analysis even more susceptible to computational
intractability, thereby emphasizing the necessity for metalevel control to intelligently

direct the planning computation.

6.3.1 Abstraction

The abstract decision, D.A0-2, of Figure 6.2 shows one type of abstraction em-
ployed. An abstract decision D.Ai-j is composed of lower-level decisions executed

from time 2 to time j. The values of an abstract decision node are pre-specified set-

3Tn other words, once a decision is selected, there is no uncertainty that it will be executed.
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tings that control the decision nodes of its lower-level actions. An abstract decision
value may be to omit all lower-level actions or to executed the lower-level actions in a
pre-specified way. For example, an abstract decision node could have explicit values
for different types of surveys (e.g., ladder-survey, spiral-survey, z-survey) spec-
ifying the move commands of lower-level actions. Using fixed instantiations provides
the efficiency gains of reasoning at an abstract level while allowing some degree of
flexibility at a more specific level. In some cases, reasoning at the abstract level will be
too restrictive and a more specific level of action description is necessary. The choice
of which level of abstraction to replan at is made using decision-theoretic principles

that estimates the utilities of replanning at different levels of abstraction.

6.4 Architecture

The architecture of the replanning system is shown in Figure 6.4. The replanning
system is interfaced to a low-level executor/monitor that executes steps of the plan
and provides monitor data from the environment. The first module is Plan Impact
Analysis which monitors the current situation data to detect when replanning has
positive value. If replanning is suggested, a message is passed to the second module,
Plan Modification Focusing, which focuses the search area for the replanner, passing
an ordered list of candidate areas in which to replan. If the value of replanning is
negative, a message is sent to the Executor to execute the next plan step. The third
module, Plan Modification, does the actual plan modification and can request further

narrowing of the replan area from the Focusing module.
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Figure 6.4: Architecture of the replanning and low-level executor/monitor systems.

6.4.1 Plan impact analysis

The Plan Impact Analysis module updates the belief network using evidence from
the Monitor process. In the belief network, there is a node for every monitor datum
of interest. In the AUV example, the monitor data is information from the sensors
about the underwater environment and the AUV status. For example, the three cells
of the battery are monitored to detect failure. The monitor data are entered directly
into the influence diagram by instantiating a node to the observed value. A decision
node is also instantiated to a value as that action is taken. The new evidence is
propagated to other nodes using HUGIN’s inference algorithm.

The top-level utility if the current plan is followed is approximately the current
utility of the U node since the nominal plan steps are set in the decision nodes of the
influence diagram. The difference between this utility and the state resulting after
doing replanning is the value of replanning. If the value of replanning is non-positive,

the next step of the nominal plan should be executed. If the value of replanning is
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positive, some type of replanning computation should occur.

6.4.2 Plan modification focusing

Overview The Focusing module is used to direct the replanning to promising sub-
regions of the planning window. The planning window is initialized with a nominal
plan that specifies a default decision for each D.1 in the planning window. The ex-
pected utility if the next plan step were executed is the current utility of the U.t+k
node. This is because the nominal plan steps are “programmed” in by initializing
the prior probabilities of the corresponding decision nodes to near 1 for the nominal
plan’s actions. The utility of executing the next plan step is compared to the utility
of executing a planning action. The value of planning may be positive, for example,
if there is new evidence since the plan was constructed or if the plan can be easily
improved.

As our possible planning actions, replanning decisions affecting different portions
of the utility model in the influence diagram are considered. For example, in figure 6.2,
the direct influences on the utility node U.3 are the Data Acerued.3, Data Recovered.3,
and FuelGauge.3nodes. The Focusing algorithm seeks to work on repairs to the plan
by focusing on the attribute nodes that will yield the maximum net utility gain, that
is, the nodes with the maximum value of replanning.

Each node is the root of a subtree of other nodes that influence it. In general, the
nodes of an influence diagram can form an acyclic graph rather than just a subtree.
There are various methods to convert an acyclic graph network into a tree network

(e.g., cutset conditioning [73]) In the following analysis, we assume a tree structure,



107

and later in this section we discuss relaxing this assumption.

Suppose we determine that replanning the FuelGauge.3 subtree in the influence
diagram has the highest estimated value of replanning. Recursively, the value of
replanning the subtrees of FuelGauge.3 are computed, and continuing in this manner
the influence diagram is examined until (1) a decision node is reached and modified to
the action value that maximizes utility or (2) all examined subtrees have a negative

estimated value of replanning.

Value of replanning To show how the value of replanning a subtree is determined,
let X be the subtree being considered where “X” is the name of the subtree’s root.
Assuming that we can separate the time-dependent utility, 7C(X), from the “intrin-
sic” utility, FU(X), the estimated value of information (V) gained from replanning

subtree X is

A

VI(replan(X)) = EAUI(replan(X)) — TAC(replan(X))

where replan(X') denotes the action of replanning subtree X and * indicates an esti-
mated quantity.

Subtrees like X are evaluated and the corresponding parent nodes are inserted
into a list of nodes ordered by the value of replanning the subtree rooted at that
node. The value of replanning is a type of “value of information” [45, 78, 59, 36]
used in decision-theoretic metareasoning. The ordered list is sent to the Modification
module. That module may replan at an abstract level, or it may recursively call the

Focusing module to again expand a node, and order its parents to further narrow the
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area subject to replanning. Using the ordered list allows “best-first” search where the

best subgraph to examine can jump around in the belief net.

Time cost When T'C' is greater than the expected benefit, KFU;, the value of re-
planning is negative, and it should not be done. By varying the T'C' function, we
get different degrees of the time-criticality of the mission. Currently, we define T'C'
to be proportional to the number of cpu seconds used by the replanner: TC' = 7 % 3
where 7 is a time-criticality parameter and § is the estimated number of cpu seconds
required to replan the subtree. To estimate s, we use Bayesian prediction which can
incorporate prior knowledge and incrementally update the distribution of s.

There are several ways to estimate s. We could do a maximum likelihood estimate
by maintaining a running average of the time cost over replanning episodes. But we
also have some prior knowledge that should bias our interpretation of new evidence
about s. For example, we have prior knowledge of the number of nodes in the subtree,
the number of states of the nodes, the replanning algorithm used, etc. Therefore, the

most general solution is to use Bayesian prediction:

p(sle) = ———— (6.1)

where prior knowledge about the value of s is captured in p(s), and evidence is
represented as e.

From DeGroot [19], if we use squared error for the Bayes estimator and we assume
that s is normally distributed with variance o2, and our prediction is also a normal

distribution with mean g and variance v2, then after n observations of x;, the posterior
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distribution of s is a normal distribution with mean p; and variance v} as follows:

02,u + an;Y;n

= £ " 6.2

fa 02 4 nov? (6.2)
ov?

= — 6.3

1 o2 + no? (6.3)

These two formulas provide a fast, incremental way to update the s for a particular
subtree. After each replanning episode, each subtree that was replanned has its s

updated.

Utility of replanning a subtree EAUI(replan(X)), of Equation 6.1, is the esti-
mated expected utility of the state resulting from replanning node X independent of
time. It is computed by taking the utility difference between the subtree after replan-
ning, X', and the current subtree, X. To compute the utility for X’, we must know
the probability that different X’s will occur as a result of replanning. For a decision
node, because it is completely controllable, the probability is 1 that any particular
value can be achieved and simply the decision value that maximizes utility is selected.
But for chance nodes, we estimate the probability and update it based on replanning
experiences.

As an example, suppose X is the subtree rooted at FuelGauge.3. The utility of
the current probability distribution of FuelGauge.3 node can be computed directly.
But to compute the utility of the same node FuelGauge.3" after replanning decisions
that might change its probability distribution, we must estimate how likely it is
that the replanning will alter actions in the plan to achieve a new distribution for

FuelGauge.3'. In the example, if the initial probability distribution for FuelGauge.3
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has a high probability for the value empty, the utility of that subtree will be relatively
low according to our utility model. But if we know that there is a high probability
that replanning (perhaps by omitting actions to lower fuel consumption) will change
the probability distribution to more heavily weight half or full, the utility of the
FuelGauge.3' subtree will be higher. Thus EAUI(replan(X)) would be positive.

To make EAUI(replan(X)) explicit, let ¢ be the probability distribution of the root
of the subtree X (i.e., ¢ = p(X)), and let ¢’ be the probability distribution of X after
replanning (i.e., ¢ = p(X”’)). Then, the expected utility of replan(X) is the average

utility over all possible values of ¢’ (i.e., all probability distributions of the node):

EU(replan(X)) = /p(qﬁ')u(replan(X))dqﬁ' (6.4)

where the wutility of replanning a node is the difference between the new state resulting

from replanning and the old state:

u(replan(X)) = u(¢') — u(d) (6.5)
BU(replan(X)) = [ p(¢")(u(¢)) = u(6))do (6.6)

To analyze a network to find where to replan, we start at the Unode and work back-
wards through the network to the base-level actions. For example in figure 6.2, U.3
is the child of its three parents, DataAccrued.3, DataRecovered.3, FuelGauge.3.
Informally, the replanner wants to set a parent node’s value so that its children have
a value with maximum expected utility. For example, the replanner wants to set

FuelGauge.3 to the value such that U.3 is at its optimal value, 1. Once the opti-
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Figure 6.5: Example influence diagram. With the tree structure, each node has at
most one child.

mal distribution for FuelGauge.3 is determined, recursively, the same procedure is
invoked so that the propagation of evidence continues to the parents of FuelGauge. 3.

More formally, let Y be the child node of node X. With the assumption that
the network is a tree, each node has at most one child (e.g., Figure 6.5). The utility
of a particular distribution, u(¢) for X, is the expected utility of the probability
distribution of X’s child, ¢y = p(Y), given ¢ and the rest of the belief network ¢.

Letting ¢ be implicit yields Equation 6.8:

u(6,6) = [ p(év|o u(oy)doy (6.7)
u(6) = [ plovloju(oy)doy (6.8)

Since ¢ is the current probability distribution for X, it can be read directly from
the current network with no need for computation. As the base case of the recursive
inference, the top-level node U’s utilities are defined as u(U.z = 1) = 1 and u(U.i =
0) = 0. The other utilities of ¢ are determined from previous inferences as the belief

net is examined recursively.
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Specifying u(¢’) is more difficult because every possible probability distribution of
X must be considered. Here is where we estimate EUr(replan(X)) of Equation 6.6,

by ranging only over the possible states of X:

EAUI(replan(X)) = Zp(X =2;)(uw(X = z;) — u(9)) (6.9)

where substituting into Equation 6.8

WX =2) = LpY = plX = au(Y = ) (6.10)
J

The probability that the probability distribution X = x; will result from replan-
ning, p(X = z;), must also be provided. This probability can be viewed as a measure
of the controllability of the node or whether Howard’s “wizard” is successful [47]. For
decision nodes which are perfectly controllable, the probability for the value x* that
maximizes utility can be set to 1: p(X = 2*) = 1. For other nodes, we must estimate
p(X = z;). In our implementation, we start with a uniform prior distribution and

use Bayesian updating based on replanning episodes as in the s updating.
We can show that if the algorithm considers all subtrees with no approximations,
the use of the paths from the utility node to the decision node by the above procedure

leads to the determination of the optimal policy.

Theorem 1

The optimal value for a decision node D is obtained by propagating the evidence back
from the U node (u(U.i=1)=1 u(U.a=0)=0) through nodes on all paths between

U and D: X17X~27. . .7Xn.
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Proof

By definition, the utility of u(D = d;) is the expected utility of the utility node U
(Equation 6.11). From the belief network construction of the U chance node, the
expected utility is the conditional probability that /' = 1 (Equation 6.12). Using the
independence relations represented by the belief network, the conditional probability
can be computed by expanding it to the conditional probabilities along all paths
between U and D (Equation 6.13) where X1, X5, ..., X, represent the nodes on any

path between U and D.

w(D=d;) = E[U.iD=d) (6.11)
— p(Ui=1|D =d) (6.12)

- /X / p(U=1] X1 X )p(X o X )p( X X |D=d;)  (6.13)
The optimal decision d* is then obtained by
d* = argmazxgepu(D = d;) (6.14)

Example Using the influence diagram of Figure 6.2, we can compute V](-replan(FuelGaugeB))
Looking up the § for the FuelGauge.3 subtree, suppose we find 0.15 and use 7 = 1,

so T'C = 0.15. Computing the EU, we start with the given utility w(U3 =1) =1

and u(U.3 = 0) = 0. Therefore,

u(FuelGauge.3) = wu(U.3 = 1)p(U.3=1|FuelGauge.3,Datadccrued.3,DataRecovered.3) +
w(U.3 = 0)p(U.3=0|FuelGauge.3,Datahccrued.3,DataRecovered. 3)

= 1% p(U.3=1|FuelGauge.3,DataAccrued. 3,DataRecovered.3) +
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0 # p(U.3=0|FuelGauge.3,Datahccrued.3,DataRecovered. 3)
= p(U.3=1|FuelGauge.3,Datahccrued.3,DataRecovered.3)

= 0.29

Setting FuelGauge.3 to each of its states and propagating the change to its child
U. 3, we get new values for p(U.3=1|FuelGauge .3’ ,DataAccrued,DataRecovered) and

the utility of specific fuel gauge values:

u(FuelGauge.3 = zero) = 0.01
u(FuelGauge.3 =low) = 0.75
u(FuelGauge.3 = high) = 0.78

Assuming that we have not replanned this subtree before, the probabilities are at

their default uniform values:

p(FuelGauge.3 = zero) = 1/3
p(FuelGauge.3=1low) = 1/3

p(FuelGauge.3 = high) = 1/3.

Putting everything together,

1 1 1
EU(replan(FuelGauge.3)) = 3(0.01 -0.29) + 5(0.75 —0.29) + 5(0.78 —0.29)
= 0.22

VI(replan(FuelGauge.3)) = 0.22—-0.15
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= 0.07

The estimated value of replanning the FuelGauge. 3 subtree is 0.07. This value is
compared to replanning other subtrees (viz., DataRecovered.3 and DataAccrued.3)
and since it is positive, the best subtree is replanned. If the root of the subtree is a
decision node, it is set to its optimal value. Otherwise, recursively, the lower levels
of the best subtree are examined until the controllable decision nodes to replan are
found. Then, the § and p(X = x;) numbers are updated using the new data from the

replanning episode.

Complexity The time complexity of the VI calculation is low since only one level
of evidence propagation in the belief network from the node of interest to its children
is ever done. The u(¢), 8, and p(X = z;) values are obtained using constant time table
lookups. The calculation of the u(X = z;) terms involves the single-level propagation.
If there are at most n states each for X and its child Y, the total time for a single VI
calculation is O(n?). At each time step, each parent of the child must be evaluated
to find the maximum V], therefore the total time for one time step is O(kn*) where
k is the indegree of the node.

The space requirements are constant in the number of nodes. For § and p(X = x;),

the sufficient statistics are the mean and variance which are stored with each node.

Acyclic graphs Currently, though we deal with acyclic graphs rather than trees

in our domain models, we treat the graph as a tree, essentially assuming that the
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children subgraphs of a node are independent of each other. We can extend the
replanning algorithm so it considers acyclic graphs rather than subtrees as candidates
for replanning. One method is to convert the acyclic graph to a tree structure, for
example, by using cutset conditioning [73]. For example, instead of only considering
modifying the FuelGauge.3 subtree, we can also consider simultaneously modifying
the DataRecovered.3 subtree. In general, all subsets of parents are evaluated and
the subset that has the maximum VT is replanned. For the EU calculation, instead
of evaluating a node set to a particular state (e.g., U(X = z;)), the cross-product of
the subset states are used (e.g., U(X = 2;,Y = y;)). Evaluating multiple nodes does
cause the complexity to grow exponentially. For example, instead of evaluating three
parents individually, the algorithm must evaluate the powerset: all 2° — 1 subsets of
subtrees. To counteract this exponential blowup, we should consider heuristics that

favor promising subsets and examine only those subsets.

6.4.3 Plan modification

The Modification module changes the plan and outputs a modified plan. From
the Focusing module, we have an ordered list of nodes. If the first node of the list is
a decision node, then we set the node to its computed optimal value and exit. The
decision node may be at any level of abstraction. For example using figure 6.2 and
starting at the top level (the U.3 node), the parents are evaluated and an ordered list
of FuelGauge.3, DataAccrued.3, and DataRecovered.3 is returned. At this point,
if the abstract decision node D.A0-2 is at the head of the ordered subtrees list, it is

replanned, otherwise the Focusing module is recursively called to expand the head of
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the list. The utility of setting an abstract action is compared directly to the estimated
utility of replanning other subtrees. If setting the abstract action to its best value
has a higher utility than replanning, then the abstract action is set by selecting one
of its values. A value of the abstract action may either omit or set a pre-specified
instantiation for a sequence of lower-level actions.

This procedure provides a rational basis to do hierarchical replanning based on
decision-theoretic considerations. It may not always be optimal to start hierarchical
replanning at the most abstract level, and by considering the utility of replanning at
different levels of abstractions, we have gained a rational way to control hierarchical
planning.

Continuing with the battery failure example, suppose that the Focusing module
has traveled down the FuelGauge. 3 subtree and has passed a list of subtrees with the
D.1 decision as its first element, and its optimal state setting in the node. The node is
reset to its optimal setting and the new evidence is propagated through the network.
In this case, D.1 is changed from WAIT2 to WAIT1 reducing the wait time from 2 loops
to 1. But in general, changing one action may not be sufficient or may affect other
actions. We can also modify multiple controllable nodes as discussed earlier, but still
preclude reordering or introducing plan steps. By restricting replanning in this way,
we are able to provide baseline functionality, and we can investigate the necessity of
more complex planning strategies.

Once the replanning algorithm makes its changes, control is passed back to the
Plan Impact Analysis module. Tt is possible that replanning is again necessary rather

than executing the plan.
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Figure 6.6: A box architecture overview of the AUV control system.

6.5 Example: Gathering Sensor Data

In this section, replanning examples will looked at by examining the behavior of
the implemented control system for the AUV. The replanning system is built on top
of a multi-process architecture developed at Lockheed. There are 5 parallel-executing
processes that pass messages to each other through the event distributor (Figure 6.6).

The main, four processes can be run on various computers. In most experiments,
we have used a Sun SPARCstation 10 for the main processes and a Silicon Graphics
Iris 4D/310GTX workstation for the graphics simulator process.

Three examples of replanning are shown in Figure 6.7. In the first scenario (the

leftmost column), when a Battery Failure occurs, the AUV decides to omit the Loi-
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Figure 6.7: Three examples of the autonomous capability. When the event of the top

row occurs, the corresponding replanning of the bottom row occurs.

ter step to conserve fuel. This scenario demonstrates several points. First, there is

flexibility in when the fault occurs. The Battery Failure evidence can be entered

at an arbitrary time in the mission and an appropriate replan will occur. Second,

this scenario demonstrates an “intermediate” response in changing the Loiter action,

rather than just aborting mission. This functionality is available due to the multiat-

tribute utility model that combines preferences for vehicle safety, data recovery, and

fuel usage.




120

In the second scenario (the middle column of Figure 6.7), a navigation sonar failure
occurs. In this case, the increased danger to the vehicle causes the replanner to alter
the remaining plan to return immediately for pickup.

The third scenario (the rightmost column of Figure 6.7) shows how the AUV reacts
when it encounters an unexpected obstacle. The low-level path planner plots a new
course and sends the new course to the replanner which recomputes the energy usage
and sensor data accrual projections. In this case, there is no need for extra loitering
for data to accrue do to the detour caused by the obstacle. In all three scenarios, the
same belief network is used that models the AUV and the domain and can thereby

handle multiple faults.

6.5.1 SGI Simulation

The following figures are screendumps of the SGI simulation, showing the opera-

tion of the replanning system.

6.6 Example: Mine Mapping Mission

As a second example domain, we have been experimenting with the “Mine Map-
ping Mission”. As shown in Figure 6.13, the mine mapping mission requires the AUV
to map a possible path through a mine field. An expeditionary force will then use
the map to find a passage to the shore.

The interesting replanning behavior exhibited in the Mine Mapping Mission was
the indefinite length of replanning. As shown on the left side of Figure 6.14, the AUV

continued to re-examine the possible clear path through the minefield when it learned
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Figure 6.8: A closeup view of the AUV navigating in the SGI simulation.

that it had made a map error. This type of open-ended, indefinite length planning is

possible because the dynamic influence diagram can extend in time indefinitely.

6.7 Conclusion

This chapter described replanning using decision-theoretic metareasoning and a
hierarchical plan structure in a real-time, decision-making architecture. We have

shown how our replanning strategy can yield an optimal policy, and how use of value
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Figure 6.9: SGI simulation shot showing the initial, default plan.

of replanning considerations to control that replanning strategy can provide real-time
decision-making and replanning on opportunity as well as crisis. For example, if time
cost is very low, there is a high value to replanning extensively to get a good plan
even when everything is going as expected. In contrast, when time cost is very high
or if the probability that replanning will succeed is low, even when there is a problem
like a battery failure, replanning may still have negative value. We have also shown
how the use of abstract actions can be naturally integrated into the decision-theoretic

framework to increase the efficiency of deliberation by controlling when and how to
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Figure 6.10: SGI simulation after Battery Failure has occurred. The new plan in
white omits the Loiter loop step.

use abstraction. The benefits of using an abstraction hierarchy have been widely
discussed, but abstraction also has negative aspects because of loss of detail and
needs to be subject to decision-theoretic control.

Several areas need further work. Computing the value of replanning currently
requires a few estimates, and we would like to improve their accuracy and efficiency.
The full use of abstraction hierarchies have yet to be implemented. Finally, building

large, complex domain models is a crucial requirement to obtain the inputs to test
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Figure 6.11: SGI simulation after Battery Failure has occurred, but before Sonar
Failure evidence has been entered.

the replanner more extensively.
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Figure 6.12: SGI simulation after Sonar Failure has occured. The new plan is to

immediately return for pickup.
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Figure 6.13: The mine mapping domain.
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Figure 6.14: Two cases of replanning for the mine mapping domain.
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Chapter 7

Conclusion

To conclude, this chapter reviews the contributions and points to the limitations

and further work of this research program.

7.1 Contributions

The research of this dissertation has joined and built upon a long history of results
in problem-solving, planning, and probabilistic and decision-theoretic reasoning. The
fundamental problem of decision making has been a topic of interest for thousands of
years and approached from many different fields, e.g., philosophy, psychology, math-
ematics. To classify the goals of this research project in the category of “artificial
intelligence” is rather limiting, since the idea of a normative theory of decision making
is interdisciplinary and general. However, the assumption of computational resources
and the acceptance of basic axioms of decision theory are distinctive to this approach.

The main thesis of this dissertation is that the use of a decision-theoretic knowl-
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edge representation system, multiple execution architectures, and metalevel control of
computation supports decision-making in complex, real-time domains where standard
systems falter.

Specific areas of contribution are

e A new knowledge representation framework. The need for the multiple
execution architectures framework has been motivated by the requirement of
flexibility when operating in complex domains. By partitioning the space of
knowledge relevant to a decision problem, we have identified an intuitive and
useful modularization of the possible types of knowledge. The multiple EAs
framework also resolves the “reactive” vs. “deliberative” debate that has oc-
cupied a lot of attention in research on agent architectures. This was done by
showing how reactive and deliberative systems are merely points on a spectrum

of possible EAs whose performance can be compared and traded-off.

e A decision-theoretic representation system. To represent multiple EAs,
extended influence diagrams were defined. The “flexibility” advantage of hav-
ing multiple EAs can then be precisely defined as expected utilities of decisions
given a particular amount of computation time. Using extended influence dia-
grams is one method to deal with the problem of simultaneously maintaining

representational accuracy and inferential tractability.

e A knowledge compilation strategy. By providing a method to convert
knowledge of one type into another type that is more compiled, we have facil-

itated the general strategy of acquiring knowledge in whichever type is most
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apt and then converting it via knowledge compilation into an efficient, run-time
system. This contribution is important because it allows for backward compati-
bility with existing expert systems that use “if-then” condition-action rules and
also forward compatibility to new, more complex domains that should still be

efficiently executable.

¢ Planning to handle uncertainty and multiple objectives. A view of
decision-theoretic planning was presented. Decision theory is specifically de-
signed to handle world uncertainty and multiple objectives. However, because
of the complexity of acquiring the necessary probabilities and utilities and the
intractability of solving the required equations, decision theory has generally
been used only for one-shot, single decision situations (e.g., medical treatment
decisions). By providing metalevel control of planning, we have made decision-
theoretic planning tractable by trading off the utility of replanning and addi-

tional time computing.

e Temporally extensible reasoning. Exploring the use of dynamic influence
diagramsthat can adjust as time passes, we have implemented a planning system
that can operate for indefinite periods of time as it expands and contracts the
current planning window. This capability has allowed replanning behavior like
the increased number of mine sweeps of the underwater vehicle in the mine

mapping mission.

e Implemented autonomous systems. The autonomous underwater vehicle

(AUV) control systems that have been developed at Lockheed Missiles and
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Space Company [71] satisfy real needs and requirements of the US Navy cus-
tomer. The control systems are not refined enough to be fielded on at-sea

vehicles, but that is the intent for 1995-6.

7.2 Limitations and Further Work

The goal of real-time decision-making is clear, and the research described in this
dissertation towards that end has also clarified what needs to be accomplished to
attain better performance. These limitations are the subject of further work, or at

the very least, further serious consideration.

e More complex planning issues. Classical Al planning techniques have iden-
tified several useful concepts that are not exploited in the planning system de-
scribed here. For example, subgoals play an integral role in focusing on what a
planner should work. Our ideas on integrating subgoals are not yet presentable.
The benefits of abstraction have been used to some extent here, but a more
complete theory of generalization in the decision-theoretic framework is neces-
sary. Temporal projection was accomplished by using a planning window with a
fixed lookahead. Any such approach can be plagued by the “horizon” problem
where a significant outcome state is just beyond the current window. Methods

to use variable-amount and focused temporal projection need to be developed.

e Learning. The relative advantages of learning of the respective knowledge
types given different domain types is a well-contained research topic that needs

to be addressed. For example, given a utility function for time cost and a par-
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ticular type of feedback available from the environment, how does the learning
of utilities of outcome states compare to the learning of g-values (utilities of
state-action pairs). Of course, learning systems that can be integrated with

this agent architecture would also be useful.

Knowledge acquisition bottleneck. Learning systems would be useful to al-
leviate the difficulty in acquiring the requisite knowledge for the agent. Learning

from large databases and observations is necessary to achieve greater autonomy.

Approximate decision models. We have only looked at knowledge compila-
tion in the behaviorally equivalent sense. The problem should also be examined
in the case where the compilation is approximate, and there is a real trade-
off between the quality of results and computational properties of execution

architectures.

Additional applications. The unsubstantiated claim is that the multiple EAs
and metalevel control technology will work for any domain. But to date, we
have only implemented two significant applications, both for an AUV. Other
applications that are in progress are a decision-making system to control a
automated automobile [48], and an integrated sensor and control management

system for a Nomadic mobile robot [68].

Additional analysis. Comparative analyses of several of the algorithms needs
to done to completely justify their benefits. The metalevel control of planning
needs to be compared to systems with different types of metalevel control. The

difficulty is that there is no “gold-standard” planning system or domain with
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which to compare. The benefits of knowledge compilation also need to be ana-
lyzed. In this case, the method of comparison is clearer, but it still depends on
major assumptions about the utility structure of the domain. Analysis of the
appropriateness of the Markov state assumption where the next state is inde-
pendent of the past given the current state needs to be done. It may be the case
that the Markov assumption is appropriate for the automated underwater vehi-
cle domain, but not appropriate for a human planning his health care choices,
for example. Methods to relax the Markov assumption will directly impact
the updating algorithm for the dynamic influence diagrams and will probably

impact any planning algorithm.

I expect real progress on real applications to be incremental. Each real problem
teaches different lessons on what theory/hacking/bureaucratic problem needs to be
solved next. But the fundamental theory remains sound, the useful problems are

there to be solved, and the hope of Al persists.
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