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Abstract

This work deals with the design of the low{level stages of any di�erential{
based optical 
ow algorithm. The problem is the accurate estimaton of
the spatio{temporal derivatives of the moving image, to be used in the
solution of the gradient constraint equation. We claim that the \tradi-
tional" techniques for the partial derivatives estimation can be improved
by i) exploiting all the information provided by both �elds within a frame
in the case of interlaced scanning systems, ii) adopting prolate spheroidal
�lters instead of gaussian �lters in order to get rid of noise and alias-
ing, and iii) using larger size di�erentiators, designed by a weighted least
squares technique.

1 Introduction

The measurement of the optical 
ow in an image sequence is a fundamental
task in many Computer Vision and Television applications. Several methods
for the optical 
ow estimation have been proposed. An updated and thorough
overview of some of the best known techniques can be found in [1].

The optical 
ow algorithms may be roughly divided into two classes, namely
those which are based on the estimation of the spatio{temporal derivatives of
the image sequence, and those which are not (e.g., energy{based velocity tech-
niques). In the present work, only the �rst class of algorithms are considered.

The e�ort of the researchers in the optical 
ow �eld has been aimed mostly
toward the development of methods for solving the aperture problem [2]. Rela-
tively less attention has been payed to the study of low{level techniques for the
reliable estimation of the spatio{temporal derivative of the moving image. On
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the other hand, the accuracy of such measurement determines the reliability of
the whole optical 
ow system.

This work presents an accurate analysis of the low{level processing stages of
any di�erential{based optical 
ow algorithm (consisting of low{pass �lters and
of di�erentiators), and devises techniques capable of improving the optical 
ow
estimation accuracy.

It is well known that the estimation of the derivative of a signal is an \ill
posed" problem [3]. One cannot expect to obtain accurate results if the signal
is noisy and undersampled. It is also true that the accuracy of an optical

ow system depends also on other factors (e.g., the aperture problem). On
the other side, the present work shows that it can be worth using schemes for
the computation of the spatio{temporal derivatives, more sophisticated than
the ones commonly adopted. The accuracy improvements attainable by such
algorithms (especially for \high" image velocities, where di�erential optical 
ow
algorithms typically fail to provide reliable results [1]) justi�es the increased
computational weight.

The computation of the spatio{temporal partial derivatives of an image se-
quence is subject to errors due to the noise, to the (spatio{temporal) discretiza-
tion of the signal, and to the quantization. This work addresses mainly the
problem of the discretization, and in particular considers the case (typically
encountered in the practice) of images taken by an interlaced scanning system.

The issues considered in this work are the following:

� In the case of interlaced scanning systems, multidimensional interpola-
tion techniques for the exploitation of the whole image information are
described (note that Computer Vision algorithms typically discard one
�eld over two in each interlaced frame, therefore loosing one half of the
available information). The accuracy improvement attained in the case
of images moving with \high" velocity, or characterized by a wide{band
spatial description, is remarkable.

� Regarding the initial low{pass stage (necessary in order to get rid of noise
and to reduce the discretization e�ects), it is shown that gaussian �ltering
(usually adopted in the Computer Vision practice) may not be the optimal
solution. Instead, we propose the use of prolate spheroidal �lters, which
prove to be more e�cient, due to their property of spectral concentration
optimality.

� The use of optimal (in a weighted least{squares sense) di�erentiators,
adapted to the initial low{pass stage, is proposed. The performances of
such di�erentiators (especially in the image sequence temporal derivative
estimation) is quite superior than those of the simple forward{backward
di�erentiator.

The computational complexity of the proposed �lters (interpolators, low{
pass and di�erentiators) has been explicitely taken into account in the work.
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In order to describe the improvement, in terms of optical 
ow estimation ac-
curacy, o�ered by such techniques, an exhaustive analysis of the discretization
e�ects on the computed optical 
ow, for both progressive and interlaced scan-
ning systems, is presented in Section 2. Some previous results can be found in
[4]. Our approach, though, is more general than the one in [4], and it considers
the problem from a multidimensional sampling theory standpoint.

Also in Section 2, we recall some important notions concerning optical 
ow
theory, in order to delineate the condition (namely, of \locally global transla-
tion") under which our analysis is consistent.

The techniques proposed for the accuracy improvement (vertico{temporal
interpolation for interlaced systems, prolate spheroidal low{pass �ltering and
adapted di�erentiators), are described in Section 3.

Experimental tests showing the e�cacy of the proposed schemes, in terms
of optical 
ow measurement accuracy, are presented in Section 4.

2 Estimating the optical 
ow from discretized

image sequences

In this section we deal with the problem of the optical 
ow computation starting
from the samples of a discretized image sequence. Some basic notions of optical

ow theory are �rst recalled in 2.1.

In Section 2.2 we address an important problem, namely the e�ect of the
image brightness �ltering on the computed optical 
ow. Such a non{linear
problem arises in the analysis of the performances of any optical 
ow system.
A simple case for which the solution is known (the �ltering being unin
uential)
is the \global translation" case. Any further analysis in this work assumes that
such a condition is met, at least locally (as it is tacitally assumed in the analysis
of most optical 
ow algorithms in the literature).

In Section 2.3 we consider the spectral aliasing produced by sampling a
continuous moving image on a spatio{temporal lattice (some elementary multi-
dimensional sampling theory notions are �rst recalled in 2.3.1). Useful bounds
for the translational velocity in the cases of progressive and interlaced scan-
ning systems (which allow for aliasing{free measurements) are found. They
are related in a simple fashion to the spatial spectral description of the im-
age. The e�ect of low{pass digital �ltering on such bounds is considered as
well. Such arguments generalize those found in [4], where the case of a mov-
ing one{dimensional sinusoid, using a progressive scanning system and 3{tap
di�erentiators, was considered.

The results of this section enable the comparison between an optical 
ow
system exploiting the information provided by both �elds within each frame in
an interlaced system, and one which discards one �eld per frame. It turns out
that the �rst case is highly pro�table in terms of robustness against motion{
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induced aliasing.

2.1 Basic optical 
ow theory

The main hypothesis at the basis of the optical 
ow idea (which will be as-
sumed to hold true throughout this paper) is that of brightness constancy. The
brightness constancy concept can be stated in terms of an elementary vector
�eld theory notion. Let S be the image space (unless otherwise speci�ed, it
will be assumed S = R2, therefore neglecting the e�ects of the �nite size of the
\physical" focal plane), and let l(x; y; t) be a di�erentiable function de�ned on
S � R. The physical meaning of l(x; y; t) is that of brightness intensity signal
as a function of the spatial coordinates x; y and of the temporal coordinate t.
We will say that the brightness constancy hypothesis is satis�ed if there exists a
(smooth) vector �eld v(x; y; t) 2 R2 such that l(x; y; t) is a time{dependent �rst

integral of the di�erential equation

�
_x(t)
_y(t)

�
= v(x; y; t) [5]. In such a case,

the gradient constraint equation [2], referred to each point (x0; y0; t0) of S �R,
is derived:

rljx0;y0;t0 �v(x0; y0; t0) +
@l

@t
jx0;y0;t0 = 0 (1)

where rl =
� @l

@x
@l
@y

�
is the spatial gradient of l(x; y; t) and symbol \�" represents

the scalar product.
In the following, the reference to point (x0; y0; t0) will be omitted whenever
unambiguous. Furthermore, the notations lx; ly; lt will be used denoting the
partial derivatives of l(x; y; t) with respect to x; y and t respectively.

The vector �eld v(x; y; t) described above will be called optical 
ow asso-
ciated to l(x; y; t). It is important to notice that in the considered 2-D case,
the optical 
ow associated to l(x; y; t) is not unique, as it can be easily veri�ed
from (1): a 1-D space of solutions for v may be found (unless rl = 0, in which
degenerate case any vector v is a solution of (1)). Such a fact is called aper-
ture problem [2]: only the component of the optical 
ow in the direction of the
brightness gradient at each point x0 of S (hereinafter called the normal optical

ow in x0) can be estimated under the above hypothesis, and it is equal to

v? =
v � rl
k rl k = � lt

k rl k (2)

(Note that in the 1{D case (S = R), the aperture problem does not arise, and
the optical 
ow associated to a given function l(x; t) is equal to v = �lt=lx
whenever lx 6= 0). The normal optical 
ow associated to a given function
l(x; y; t) characterizes the whole family Vl(x; y; t) of optical 
ows associated to
l(x; y; t), as the optical 
ow component orthogonal to the image gradient at each
point is arbitrary (given the smoothness condition for v(x; y; t) is satis�ed). As
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pointed out in [1], in the literature there is a growing interest in the use of the
normal optical 
ow.

In order to obtain a unique solution for the optical 
ow, it is necessary to reg-
ularize the problem. Such a task can be accomplished by imposing constraints
on the optical 
ow, which may be \global" (such as the smoothness constraint
of [2] or [6]) or \punctual" (such as the brightness gradient conservation con-
straint of [7]). Another interesting solution has been more recently proposed
in [8]: the chosen optical 
ow is the intersection of the families V~l1 and V~l2 of

optical 
ows associated to two di�erently �ltered versions ~l1 and ~l2 of l (when it
exists and it is unique). In [9] such a technique is extended considering a multi-
scale approach for increasing the estimation robustness. Note incidentally that
only the method of Verri et al. [7] chooses, for any input l(x; y; t), an optical

ow belonging to Vl, i.e., such that it is a solution of (1).

The purpose of the present work is to present e�cient solutions for the
robust and accurate solution of the gradient constraint equation (1), starting
from noisy observations of the brightness intensity signal. No regularization
methods are therefore taken into exam, save in the experimental part (Section
4), where a scheme following the lines of [8] is adopted. Indeed, the techniques
presented in this work regard only the low{level stages of the system, i.e., the
processing of the discrete input signal in order to obtain reliable measurements
of the spatio{temporal partial derivatives lx; ly and lt.

The accuracy of the partial derivative measurements determines the accuracy
of the whole system, as it is shown in the following. Let l̂x; l̂y and l̂t be the
estimated partial derivatives at a given point (x; y; t), a�ected by errors ex =

l̂x � lx; ey = l̂y � ly and et = l̂t � lt. In order to appreciate the e�ect of such

errors, consider for example the estimated normal optical 
ow v̂? = � l̂tp
l̂2x+l̂

2
y

.

The relation between errors ex; ey and et and the normal optical 
ow estimation
error ev = v̂? � v? is not linear, as it is seen from (2). In the case of small
errors ex; ey and et, the linearized form describing the error propagation from
the partial derivatives to the estimated normal optical 
ow is given by terms

@v?

@lx
= � 2 lx

k ri k2 v
? ;

@v?

@ly
= � 2 ly

k ri k2 v
? ;

@v?

@lt
= � 1

k ri k (3)

A few observations may be drawn from (3). First, note that even if v? = 0, the
estimated normal optical 
ow may be not null, due to errors in the estimation of
lt (i.e., if l̂t 6= 0). It is perhaps worth recalling that the set of points of the image
plane corresponding to null optical 
ow are of particular interest: consider for
example the recovery of motion from the positions of singular points [10].
When v? 6= 0, the errors occuring in the computation of the spatial derivatives
contribute to ev, too. In any case, the smallest the magnitude of the spatial
gradient of l(x; y; t), the higher the sensitivity to errors ex; ey and et.

Errors ex; ey and et are mainly due to i) the presence of noise added to the
\true" brightness intensity signal, ii) the fact that only the samples of l(x; y; t)
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on a discrete grid are given, and iii) the quantization of l(x; y; t). The analysis of
the discretization e�ects (in terms of spectral aliasing) is carried out in Section
2.3.

In order to reduce the e�ect of noise and discretization, a �rst low{pass
stage is required, and it is present in any optical 
ow system. Concerning the
errors due to the quantization, an analysis of the problem can be found in [11].
Although to the authors' knowledge no adequate technique for recovering such
errors has been developed, it is felt that low{pass �ltering the image (using

oating{point arithmetic) may be e�ective also for this case.

2.2 E�ects of image �ltering on the optical 
ow

As pointed out in Section 2.1, low{pass �ltering the input brightness intensity
l(x; y; t) is an e�ective way to improve the accuracy of the system, as it can
reduce the e�ects of the noise, of the aliasing (consequent to the sampling of
l(x; y; t)) and, hopefully, of the quantization. A linear �ltering stage before the
di�erentiation stage is adopted also in the schemes of [8] and [9], in order to
solve the aperture problem. A multiscale approach using �lter banks has been
considered in [4],[9] and [12].

In any case, it is important to consider the e�ect of the brightness linear
�ltering on the resulting optical 
ow. The problem may be stated this way:

Problem 1 Given a function l(x; t) and a �ltered version ~l(x; t) of l(x; t), how
are the optical 
ow families Vl(x; t) and V~l(x; t) (associated to l(x; t) and ~l(x; t)
respectively) related to each other?

As it can easily be seen from (1), the relationship between Vl(x; t) and V~l(x; t) is
not linear, in spite of the fact that the application from l(x; t) to ~l(x; t) is linear.
Such an observation follows from the inherent non{linearity of the relationship
between l(x; t) and Vl(x; t).

A special case is given by the global translation case, i.e., when it is possible
to write

l(x; t) = l0(x � vt) ; (x; t) 2 S � R (4)

for some function l0(x) = l(x; 0) and some vector v. Condition (4) implies that,
at each point (x; t), in the family Vl(x; t) of optical 
ows associated to l(x; t),
there exists a constant optical 
ow identically equal to v.

It can be easily shown that, in the hypothesis of global translation by vector
v, the smoothness constraint method [2] and the brightness gradient conserva-
tion method [7] give the same constant optical 
ow, which is identically equal
to v.

The following result concerning the global translation case holds:

Fact 1 Given a function l(x; t), satisfying the condition of global translation by
vector v, and any �lter h(x; t), the �ltered version ~l(x; t) = l � h(x; t) of l(x; t)
satis�es the condition of global translation by the same vector v.

6



(The writing l � h(x; t) stands for the convolutional integral, i.e.R1
�1

R1
�1 l(�x; �t)h(x� �x; t� �t) d�x d�t)

Proof An easy proof can be found reasoning in the frequency domain. Let

L(!!!x; !t) =

Z 1

�1

Z 1

�1
l(x; t)e�j(!!!x�x+!tt)dx dt (5)

be the Fourier transform of l(x; t). In the case of global translation by vector
v, it is [13]

L(!!!x; !t) = L0(!!!x) �(!t + v � !!!x)=2� (6)

where L0(!!!x) is the 2{D Fourier transform of l(x; 0) and �(�) is the Dirac impulse
function. Therefore the support of the Fourier transform of l(x; t) lies on the
plane of equation

!t + v � !!!x = 0 (7)

Let H (!!!x; !t) be the frequency response of �lter h(x; t), and let ~L(!!!x; !t) be
the Fourier transform of ~l(x; t). It is

~L(!!!x; !t) = L(!!!x; !t)H(!!!x; !t) = (8)

L0(!!!x)H(!!!x;�v � !!!x) �(!t + v � !!!x)=2�

Equation(8) shows that the support of ~L(!!!x; !t) and the support of L(!!!x; !t)
lye on the same plane. Hence the condition of global translation by vector v is
satis�ed also by ~l(x; t) 2

A corollary of Fact 1, is that, in the case of global translation by vector
v, the normal optical 
ow associated to any �ltered version ~l(x; t) of l(x; t) is,
in general, di�erent from the normal optical 
ow associated to l(x; t). Indeed,
at each point (x; t) of S � R, the normal optical 
ow is the component of any
optical 
ow vector associated to l(x; t) in the direction of the brightness gradient.
Since the constant optical 
ow identically equal to v belongs to both Vl(x; t)
and V~l(x; t), one has that the normal optical 
ows associated respectively to

l(x; t) and ~l(x; t) coincide only if the brightness gradients of l(x; t) and ~l(x; t)
at each point of S � R are parallel. But such a property does not hold true in
general, due to the image �ltering (unless, e.g., the spatial gradient of l(x; t) is
constant).

Another consequence of Fact 1 is that, in the case of global translation by
vector v, the optical 
ows given by the methods of [8] and [9] are identically
equal to v.

If the global translation hypothesis does not apply, no general solution to
Problem 1, to the authors' knowledge, has been studied (although it is intuitive
that the narrower the pass{band of the �lter, the larger the \di�erence" between
Vl and V~l). In our opinion, Problem 1 deserves special attention, as the knowl-
edge of the e�ects of image �ltering on the optical 
ow may give some insight
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into the behaviour of multiscale approaches [4], [9], [12], and it may provide
useful information for the design of the low{pass �ltering stage. Such a topic,
however, goes beyond the scope of the present work, and we will not deal with
it any further.

As to the purpose of the present work, the main indication of this subsection
is that, in the hypothesis of global translation, assuming the estimation of lx; ly
and lt is not a�ected by errors, the measured optical 
ow is independent of the
choice of the �rst stage �lter. Such a notion is instrumental for approaching the
problem of the low{pass and of the di�erentator �lters design presented in the
next sections, where the assumption of global translation will be assumed to be
(at least \locally") veri�ed. More speci�cally, our analysis assumes that, when
measuring the optical 
ow in a point (x; t), the global translation condition is
satis�ed within the region around (x; t) corresponding to the support of the
�lter kernel. Clearly, in regions corresponding to high optical 
ow gradient,
such a condition is not satis�ed, and our analysis fails to be accurate.

The computation of the partial derivatives is performed by three indepen-
dent di�erentiator �lters along the three axes x; y and t respectively. Usually,
the di�erentiators to be used in practical applications are designed so as to ex-
hibit a low{pass behaviour, in order to remove noise in the high{pass region.
In our case, it is seen that such a low{pass behaviour should not be present
independently in the three di�erentiators. In other words, the low{pass action
is to be performed entirely by the �rst{stage �lter, while the three di�erentia-
tors should be \as close as possible" to ideal di�erentiators. If it was not so,
one would obtain something di�erent from the partial derivatives of the low{
pass �ltered version of the input signal. The hypotheses of Fact 1 would not
be satis�ed, and the computed optical 
ow would be di�erent from the global
translation vector v.

2.3 Sampling lattices and the motion{induced aliasing

In this subsection, the guidelines for the description of the spectral aliasing
e�ects related to any sampling lattice are given, and two commonly adopted
sampling lattices are taken as study cases. For a better understanding of the
motion{induced aliasing phenomenon, the principal results concerning multidi-
mensional sampling theory are recalled in Section 2.3.1 (for a deeper treatment,
see [14] or [15]). In Section 2.3.2 a general model for the aliasing produced
by the sampling of a moving image is presented (some preliminary results had
already appeared in [16]). The results of this subsection are instrumental for
the design of interpolator �lters for signals sampled on non{orthogonal lattices
(described in Section 3).
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2.3.1 Sampling lattices

The brightness signal sampling structure (consequent to the scanning process)
can be well modelled by a 3{D lattice. As it is well known, a N{D lattice
� is the set of points of RN formed by all the linear combinations by integer
coe�cients of a set of N linearly independent vectors of RN . By lining up the
components of such vectors with respect to the canonical basis of RN into an
N �N matrix A (called basis of the lattice), the lattice � can be expressed as

� =
�
An;n 2 ZN

	
The scanning process by a progressive scanning system can be modelled by the
sampling of the brightness signal l(x; y; t) on an orthogonal (ORT [14]) lattice
(i.e., such that it admits a diagonal basis). The sampling structure is therefore

�ORT =
n
(k�x;m�y; nTF )

T
; k;m; n 2 Z

o
(9)

where �x is the distance between two adjacent pixels, �y is the distance between
two consecutive scanning lines and TF is the temporal interval between two
consecutive frames.

In the case of a 2:1 interlaced system (adopted by almost all commercial
videocameras1), the sampling is performed on lattice (ALI [14])

�ALI =
n
(k�x;m�y; nTf )

T ; k;m; n 2 Z ; either both even or both odd m;n
o

(10)
In this case, Tf is the temporal interval between the scanning of two subsequent
�elds, where by �eld it is meant the set of the odd{ or of the even{ordered lines
in a frame.

In the current practice, Computer Vision algorithms do not exploit the pos-
sibilities o�ered by the interlaced scanning systems; instead, the odd{ (or the
even{) ordered �eld of each frame is discarded. Hence, one half of the infor-
mation provided by the scanning process is lost. It is apparent that algorithms
which make use of both �elds within a frame may considerably improve the
dynamical parameters estimation accuracy.

The sampling of l(x; y; t) on a given lattice � induces the periodical repetition
of the Fourier transform of l(x; y; t) on the points of lattice 2��� in the frequency
domain, where �� is the dual lattice of �. More speci�cally, if L(!x; !y; !t) is
the Fourier transform of signal l(x; y; t) (as de�ned in (5)), then the Fourier
transform ~L(!x; !y; !t) of the sampled version of l(x; y; t) on � is [14] (putting

!!! = (!x; !y; !t)
T )

~L(!!!) =
X

�!22���
L(!!! + �!!!) (11)

1Some commercial thermocameras adopt 4:1 interlace ratio.
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If A is a basis of �, the dual lattice �� admits the basis
�
A�1�T . For the

progressive scanning case (9), the frequency repetition lattice is

2� � ��
ORT

= 2� �
(�

k

�x
;
m

�y
;
n

TF

�T
; k;m; n 2 Z

)
(12)

while for the 2:1 interlaced scanning case (10) it is

2����
ALI

= 2��
(�

k

�x
;
m

2�y
;
n

2Tf

�T
; k;m; n 2 Z ; either both even or both odd m;n

)

(13)
If the spectral support of l(x; y; t) is completely included in any elementary cell
P of 2��� (that is, any region such that its versions translated on the points
of 2��� form a non{overlapping tiling of RN ), the sampling of l(x; y; t) on �
produces no aliasing. In such a case, the information carried by l(x; y; t) is
(virtually) completely recoverable from its sampled version.

2.3.2 Motion{induced aliasing

As it will be clear in Section 3, in order to be able of estimating the three partial
derivatives that appear in (1), starting from the signal samples on a lattice, it
is necessary that an elementary cell of the frequency repetition lattice with
a \simple" shape exists, such that the spectral support of the signal prior to
sampling is entirely contained in it. In this subsection, we consider two simple
polyhedral cells, and determine, given the spatial spectral description of the
image, the range of global translation velocities for which such a condition is
satis�ed.

The case of the orthogonal sampling lattice �ORT is taken into exam �rst.
Consider the \rectangular" elementary cell of ��

ORT

PR

ORT
=

�
(!x; !y; !t)

T
; !x 2

�
� �

�x
;
�

�x

�
; !y 2

�
� �

�y
;
�

�y

�
; !t 2

�
� �

TF
;
�

TF

��
(14)

Assume the condition of global translation by vector v = (vx; vy)
T is satis�ed.

As shown by (6), the spectral support of l(x; y; t) lies on the plane of equation
vx!x + vy!y + !t = 0. The tilt of the plane is univocally determined by vector
v. Let I0 be the spectral support (on the !x � !y plane) of the 2{D signal
l(x; y; 0). The space spanned by the spectral supports of l(x; y; t) for v ranging
in R2 is the generalized cylinder of equation

�
(!x; !y; !t)T ; (!x; !y)T 2 I0

	
.

Suppose, for the time being, that I0 is contained in PR

ORT
. Such a spatial

bandlimitedness is a reasonable hypothesis in most cases, due to the low{pass
behaviour of the Modulation Transfer Function [14] (MTF) of the videocamera
(which can be regarded to as the transfer function of a spatial �lter applied
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before the sampling). It is easy to see that the spectral support of l(x; y; t) is
contained in PR

ORT
only for v belonging to set

V R

ORT
=

�
v = (vx; vy)

T ; jvx!x + vy!yj < �

TF
; (!x; !y)

T 2 I0
�

(15)

V R

ORT
indeed represents the set of velocities (henceforth called allowed velocities)

for which the supports of the spectral repetition centred on (!x = 0; !y =
0; !t = � 2�

TF
) do not intersect PR

ORT
, so that no aliasing occurs. Note that V R

ORT

depends only on I0 and on the temporal sampling period TF .
As an example, consider the case where region I0 is a disk in R2 with radius

equal to rs. Such a situation is typically met in the practice, as the camera
MTF can usually be considered circularly symmetric [14]. It is easy to see that
in such a case it is

V R

ORT
=

(
v = (vx; vy)

T ; v2x + v2y <

�
�

rsTF

�2)
(16)

i.e., V R

ORT
is a disk in R2 with radius equal to �

rsTF
.

The case of an image moving with v 62 V R

ORT
is exempli�ed by Fig. 1. The

traces, on the !y�!t plane, of the spectral supports of the still image and of the
same image in global translation are depicted by bold and thin line respectively.
The spectra are periodic on the points of lattice 2���

ORT
. The trace of PR

ORT
on

the !y � !t plane is depicted by dotted line. The aliasing corresponding to the
spectral repetitions centered in (!x = 0; !y = 0; !t = � 2�

TF
) is apparent.

A way to enlarge the set of allowed velocities is to suitably low{pass �lter the
input signal. Note that the �ltering can be performed only after the sampling
stage (since the \continuous" brightness signal is not available). Therefore, the
frequency response of the adopted digital �lter is periodic on the points of 2���,
and it can be speci�ed by its values within any elementar cell of 2���.

The purpose of the �lter is to get rid of the aliased spectral repetitions in
the rectangular cell PR

ORT
. In order to evaluate the e�ect of the �lter on the set

of allowed velocities, consider for example an ideal �lter whose transfer function
(within PR

ORT
) is vanishing for (!x; !y)

T 62 Bs and for j!tj � Bt, where Bs �h
� �
�x

; �
�x

i
�
h
� �

�y
; �
�y

i
and Bt <

�
TF

. The aliasing is avoided for velocities v

belonging to set

VH =

�
v = (vx; vy)

T ; jvx!x + vy!yj < 2�

TF
� Bt ; (!x; !y)

T 2 Bs
�

(17)

From (17) one can see that, for a �xed temporal bandwith Bt, the set VH can
be enlarged inde�nitely by suitably narrowing Bs. However, as pointed out
previously, a too narrow pass{band region may cause undesired \distortion" of
the estimated optical 
ow. Such an observation has suggested the multiscale
approach of [9] for the robust estimation of the optical 
ow.
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In the case I0 is not contained in PR

ORT
, i.e., if l(x; y; 0) is not correctly ban-

dlimited, then the spectral repetitions centred in (!x = � 2�
�x

; !y = � 2�
�y

; !t =

� 2�
TF

) contributes to the aliasing too. Also in this case, a suitable digital low{
pass �ltering may be capable of reducing the aliasing e�ects on the velocity
estimate.

Consider now the case of a 2:1 interlaced scanning system. The rectangular
cell of 2���

ALI
is2

PR

ALI
=

�
(!x; !y; !t) ; !x 2

�
� �

�x
;
�

�x

�
; !y 2

�
� �

2�y
;
�

2�y

�
; !t 2

�
� �

Tf
;
�

Tf

��
(18)

Assume that I0, the spectral support of l(x; y; 0), is contained in PR

ALI
. Then

no aliasing occurs as long as the image moves by global translaton vector v =
(vx; vy)

T belonging to set

V R

ALI
=

�
v = (vx; vy)

T ; jvx!x + vy!yj < �

Tf
; (!x; !y)

T 2 I0
�

(19)

Fig. 2 shows the traces on the !y � !t plane of a still image (bold line) and
of the same image in global translation by vector v 2 V R

ALI
, sampled on lattice

�ALI. The trace of the rectangular cell PR

ALI
is depicted by dotted line.

It is instructive to consider the case of an orthogonal sampling structure,
obtained by discarding one �eld per frame in an interlaced scanning system
(as usually performed by Computer Vision algorithms). Call �V R

ORT
the set of

allowed velocities in this case. In Fig. 2 the traces of the supports of the spectral
repetitions consequent to such a subsampling operation are depicted by dashed
line. Since TF = 2Tf in this case, from (15) and (19) it is seen that, for a

given spectral support I0 �
h
� �
�x

; �
�x

i
�
h
� �

2�y
; �
2�y

i
(note that the distance

between two scanning lines within a frame becomes 2�y after the subsampling),
the sets of allowed velocities �V R

ORT
and V R

ALI
are related as

V R

ALI
=
�
2 � v ; v 2 �V R

ORT

	
(20)

Relation (20) expresses quantitatively the intuitive notion that discarding one
�eld per frames induces the loss of up to one half of the available information.

However, the hypothesis I0 � PR

ALI
is not quite realistic. The spatial spectral

support of any real image typically contains frequencies with vertical component
beyond !y = �

2�y
. It is therefore convenient to consider the diamond{shaped

elementary cell

PD

ALI
=

�
(!x; !y; !t)

T ; !x 2
�
� �

�x
;
�

�x

�
; !y 2

�
� �

�y
;
�

�y

�
; (21)

2Note that one can consider also the rectangu-

lar cell P 0R

ALI
=

n
(!x; !y; !t)

T
; !x 2

�
� �
�x

;
�
�x

�
; !y 2

h
� �
�y

;
�
�y

i
; !t 2

h
� �
2Tf

;
�
2Tf

io
.

However, the choice of PR

ALI
turns out to be more suitable for the present analysis.
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!t 2
�
� �

Tf

�
1� j!yj �y

�

�
;
�

Tf

�
1� j!yj �y

�

���
(22)

The correspondent set of allowed velocities will be denoted by V D

ALI
. Fig. 3 shows

the traces on the !y � !t plane of the spatial support I0 of a still image with
I0 � PD

ALI
but I0 6� PR

ALI
(the trace of PR

ALI
is depicted by dotted line), and of the

same image in global translation by vector v 2 V D

ALI
. The trace of the diamond{

shaped cell PD

ALI
is depicted by dashed line. From Fig. 3 one can notice that

if the spatial spectral support of the image contains frequencies with vertical
component !y larger than �

2�y
, the set of allowed velocities corresponding to

PR

ALI
is empty, but not the one corresponding to PD

ALI
(as long as no vertical

component !y exceeds value �
�y

). However, if I0 � PR

ALI
, it is always V D

ALI
�

V R

ALI
.
In order to give a quantitative description of such arguments, recall the

former example, where I0 was a disk with radius rs. Assume I0 � PD

ALI
. One

can show that

V D

ALI
=

(
v = (vx; vy)

T ; v2x + v2y <

�
�

rsTf

�2

�
�
1� rs�y

�

�2
)

(23)

In this case, the set of allowed velocities is a disk with radius
�

�
rsTf

�
�
�
1� rs�y

�

�
=

�
rsTf

� �y

Tf
.

The results obtained in the examples are summarized in Fig. 4. The radius
rv of the disk of the allowed velocities is given as a function of the radius rs of
I0. It is assumed that �x = �y (such a term is denoted by pixel in the �gure),
so that the disk on !y�!t with radius rs = �

�y
is included in PD

ALI
. The variable

rs is given as cycles/pixel (\natural" frequencies, not angular! { we skip factor
2�), and rv is given as pixels=TF . The curve depicted by solid line represents
the radius of V D

ALI
(see (23)), while the one by dashed line represents the radius

of V R

ALI
(see (19)). The curve depicted by dotted line denotes the radius of

the set of allowed velocity �V R

ORT
for the case of the orthogonal lattice obtained

by discarding one �elds out of two (see Fig. 2). It should be clear that, for
rs � �=2�y(=0.25 cycles/pixel), sets V

R

ALI
and �V R

ORT
are empty (because aliasing

occurs).
The higher robustness with respect to motion{induced aliasing of a system

making use of both the �elds within a frame is apparent from Fig. 4. In par-
ticular, for images with \high" spatial frequencies (e.g., a spatial sinusoid with
period less than 4 pixels), the technique of discarding one �eld per frame nec-
essarily leads to measurements a�ected by aliasing errors.
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3 Techniques for the accuracy improvement

In the previous section we developed an analysis of the e�ects of the discretiza-
tion of moving images, and we found some necessary condition on the image
velocity for the correct recovering of the optical 
ow. Here we analyze in detail
the scheme for the computation of the partial derivatives that appear in (1),
starting from the image sequence samples, and we devise e�cient solutions that
ensure a high degree of estimation accuracy.

In Section 3.1 the case of an interlaced system is dealt with. Non{separable
design speci�cations for the di�erentiators, as well as an interpolation scheme,
are derived.

The design of e�cient low{pass �lters for the signal regularization before
the di�erentiation stage is considered in Section 3.2. It is shown that the use of
prolate spheroidal �lters (which are optimal in terms of spectral concentration)
may be more convenient than adopting gaussian �lters. Moreover, the �rst ones
o�er a higher degree of freedom to the designer.

Finally, in Section 3.3, we take into exam the \heart" of the system, that is,
the di�erentiator �lter. A weighted least squares criterion is described, which
accounts for the spectral shape of the signal after the �rst low{pass �lter stage.
Such a di�erentiator design is highly feasible for wide{band signals. Hence, it
is surely suitable for computing the derivative along the temporal axis, as the
spectrum of a moving image spreads over the temporal frequency axis. It is also
e�ective for the computation of the spatial partial derivatives, unless the image
has a very poor spectral description, in which case it is shown that a simple
forward{backward di�erence scheme is capable to yield good results.

Before introducing the single topics of this section, let us make one point
clear. When we talk about low{pass (or band{pass) �lters, here we mean digital
FIR (i.e., non{recursive) linear{phase �lters. The phase linearity is the most
natural choice for a low{pass FIR �lter (as long as no particular constraints are
put [17]). The impulse response h(x) of a multidimensional linear{phase �lter
(where x belongs to the de�nition lattice �) enjoies the symmetry property

h(x) = h(2x0 � x) (24)

where x0 is the center of the smallest parallelepiped Ph with edges parallel to
the cartesian axes, containing the support of h(x) [18] (note that not necessarily
x0 2 �). In particular, we consider zero{phase �lters (i.e., such that their
frequency response is purely real); in such a case, term x0 in (24) is null.

Assume the de�nition lattice � is orthogonal. It is straightforward that for
any zero{phase FIR �lter h(x), Ph contains in each edge an odd number of
samples of � (in the one{dimensional case, that simply means that the �lter
size of a zero{phase �lter is odd). Note that this fact holds true also for non{
separable �lters.

In the applications of interest, � is the spatio{temporal lattice of de�nition
of the signal. It is well{known that zero{phase �lters cannot be implemented
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in practice: the support of the impulse response must belong to the half{space
f(x; y; t)T 2 R3 ; t � 0g in order for the temporal causality to be satis�ed.
Therefore, it is necessary to introduce a delay of (n0 � 1)=2 temporal samples
(frames) before the zero{phase �lter, where n0 is the number of samples in any
edge of Ph along the temporal axis. In other words, the �lter, designed as zero{
phase, is implemented as a linear phase �lter with x0 = (0; 0; TF (n0� 1)=2)T in
(24).

Similar arguments hold for the case of di�erentiator �lters, where (in the
one{dimensional case), the antisymmetric property holds, and equation (24)
becomes h(x) = �h(�x).

3.1 Dealing with interlaced systems

In this subsection we deal with the estimation of the partial derivatives lx; ly and
lt of a signal l(x; y; t), starting from its samples on the non{orthogonal lattice
�ALI (see Section 2.3). Let's examine �rst the trivial case of a signal sampled on
the orthogonal lattice �ORT. We are interested in computing the derivatives at
the locations of the sampling points; without loss of generality, we can restrict
our attention to the estimation, for instance, of the temporal derivative on the
origin (lt(0; 0; 0)). Recalling that the frequency response of the ideal derivation
operator is Did(!) = �j!, from the theorem of the initial value it is

lt(0; 0; 0) = �
�

1

2�

�3 Z 1

�1

Z 1

�1

Z 1

�1
j!t L (!x; !y; !t) d!x d!y d!t (25)

where L (!x; !y; !t) is the Fourier transform of l(x; y; t). The estimation of lt
from the samples of the signal on lattice �ORT is performed by means of a digital
�lter, whose impulse response is de�ned on �ORT as well. Let D(!x; !y; !t) be
the frequency response of such a �lter. D(!x; !y; !t) is periodic on the points
of 2���

ORT
, and it is completely determined by its values in any elementary cell

of such lattice. The initial value theorem for sampled signals gives (putting

!!! = (!x; !y; !t)
T
)

l̂t(0; 0; 0) =

Z
P
~L(!!!)D(!!!) d!!!

where l̂t(0; 0; 0) is the estimated value for lt(0; 0; 0), ~L(!!!) is the periodicized
version of L(!!!) on the points of 2���

ORT
(see (11)), and P is any elementary cell

of 2���
ORT

. If the support of L(!!!) is entirely contained in P, and if

D(!x; !y; !t) = �j!t ; (!x; !y; !t)T 2 P (26)

then l̂t(0; 0; 0) = lt(0; 0; 0), i.e., no estimation error occurs.
In the general case, the �lter in (26) is not separable, in the sense that no

triplet (Dx(!x); Dy(!y); Dt(!t)) exists such thatD(!x; !y; !t) = Dx(!x)Dy(!y)Dt(!t).
In the particular case P coincides with the rectangular cell PR

ORT
(see Section
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2.3.2), D(!x; !y; !t) is separable, and its impulse response d(k�x;m�y; nTF )
is null for k 6= 0 or m 6= 0. (This fact explains why we put so much attention
on cell PR

ORT
in Section 2.3.2).

Similar reasonings hold for the case of an interlaced system, where the signal
is sampled on lattice �ALI. In section 2.3.2, two elementary cells of 2���

ALI
have

been considered. In order to design the di�erentiator, one should �rst choose
the elementary cell more suitable (in terms of robustness against aliasing) to
the spectral characteristics of the image sequence (as outlined in Section 2.3.2).
The frequency response of the di�erentiator �lter D(!x; !y; !t) (whose impulse
response is de�ned on �ALI) should approximate, within the chosen elementary
cell, the function Did(!x; !y; !t) = �j!t.

Two observations are necessary at this point. First, note that the �lter
D(!x; !y; !t) cannot be separable (a �lter can be separable only if its frequency
response is periodic on the points of an orthogonal lattice). Separability is
advantageous in terms of computational complexity; however, several design
techniques can be found in the literature (see [18],[17]) for non{separable �lters
with low overall complexity.

The second point regards the regularity of the ideal frequency response to
be approximated (the \target" function). The frequency response D(!x; !y; !t)
is periodic on the points of 2���

ALI
. One can easily see that, for any choice

of the elementary cell P of 2���
ALI

, the target function is discontinuous on the
boundary of P, except at most in some isolated points. (Also in the case of
lattice �ORT with the rectangular cell PR

ORT
, the target function is discontinuous

for !t = �n �
TF

. Such a fact is unavoidable, as it will be discussed in Section 3.3.)
The frequency response of any (stable) realizable �lter is continuous (actually,
it belongs to C1). Therefore, the �lter D(!x; !y; !t) must exhibit a \low{pass"
behaviour (more precisely, it will be D(!x; !y; !t) = 0 on the boundary of cell
P).

In conclusion, we have seen that the three partial derivative estimates l̂x; l̂y
and l̂t may be computed by three non{separable �lters. The �lters' sizes, in
order to obtain a good aproximation of the ideal di�erentiators, are likely to
be wide (as a consequence of the lack of regularity of the target function). Fig
5 (a) shows such a scheme.

Another possible solution is using an interpolation scheme. The idea is the
following: interpolate the signal de�ned on lattice �ALI to a signal de�ned on
�ORT (note that, putting TF = Tf , it is �ALI � �ORT, see (9) and (10)). The
derivative estimates are obtained from the interpolated signal by means of sim-
ple one{dimensional di�erentiators (like in the case of the orthogonal sampling
lattice). The interpolation is performed by stu�ng the original sequence by null
samples on the points of �ORT=�ALI = fx 2 �ORT ; x 62 �ALIg, and low{pass
�ltering the new sequence [14]. The impulse response of the interpolator �lter
is de�ned on lattice �ORT. Its frequency response, within an elementary cell
of 2���

ORT
, should approximate the indicator function of an elementary cell of
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2���
ALI

, in order to get correct interpolation. Several design techniques have
been studied in the television context [18],[19],[20]. The use of Nyquist �lters
is highly feasible, in terms of computational complexity, to the interpolation
[20]: in such a case, only the new samples (the ones on �ORT=�ALI) are to be
computed, the old ones being invariant. In the experimental tests of Section 4,
we have adopted a Nyquist �lter designed by means of the McClellan transform
technique [18], which approximates, within PR

ORT
, the indicator function of cell

PD

ALI
.
Choosing the interpolation scheme, the non{separable �ltering is performed

only once (in the interpolation stage), as it is represented by Fig. 5 (b). Hence,
a bene�t in terms of computational weight is gained. The price to pay is that
now twice as many samples are to be stored (after the interpolation).

3.2 Prolate spheroidal versus gaussian �lters

In this subsection we address the problem of the design of the �rst{stage low{
pass �lter H(!x; !y; !t). It will be assumed that the �lter is separable:

H(!x; !y; !t) = Hx(!x)Hy(!y)Ht(!t) (27)

The design problem is split into the independent design of the three 1{D �l-
ters Hx(!x);Hy(!y) and Ht(!t). Let H(!) be the transfer function of any of
such �lters, and assume, without loss of generality, that the sampling period is
unitary, so that H(!) is periodic with period equal to 2�.

The low{pass �lter H(!) can be characterized by its stopband frequency
!s. H(!) should be \as close as possible" to zero for !s < j!j � �. On the
other side, in the region 0 � j!j � !s, it is not necessary to put \pass{band"
constraints on H(!). In fact, assuming global image translation, once the noise
and the aliasing are removed, the presence of the �lter is unin
uential with
respect to the optical 
ow detection, as shown by Fact 1.

In light of such an observation, a suitable least{squares design criterion is
the minimization of the spectral concentration [21] of H(!), de�ned as

Es =

R �
!s
jH(!)j2 d!R �

0
jH(!)j2 d! (28)

For FIR �lters the solution to the minimization problem is known: the impulse
response of the unit energy FIR �lter of given size N whose transfer function

H(!) minimizes Es is the discrete prolate spheroidal sequence3
n
v
(0)
n (N; !s2� )

o
[21],[22] (we use here the terminology adopted in [21]).

In order to �nd the terms of the prolate spheroidal sequence, one can either
use the eigenvector approach described in [21] and [22] or, for reasonable large

3The prolate spheroidal functions have already been considered in the Computer Vision
context [3]
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N , use a closed form approximate solution based on the zero{th order Bessel
function [23] (usually called \Kaiser window").

It is instructive to compare the transfer function behaviour of the pro-
late spheroidal �lters with that of the commonly used gaussian �lters. Digi-
tal gaussian FIR �lters are typically designed by means of the window tech-
nique [24]. It is well known that, given a gaussian function g(t) = 2p

�
e�t

2=2�2

of variance �2, its Fourier transform G(!) is gaussian with variance 1=�2:

G(!) = e�!
2�2=2. If jG(!)j is negligible for j!j > �, then its periodicized

version �G(!) =
P1

n=�1G(!�2n�) is such that �G(!) ' G(!) for �� < ! < �.
Since G(!) < 10�2 for j!j > 3=�, we can assume that such an hypothesis holds
true for � � 1. In such a case, then, G(!) is approximable within interval
�� < ! < � by a trigonometric polynomial whose coe�cients are obtained by
sampling g(t). It is a common practice using a simple rectangular window on the
impulse response g(n), and truncating it for jnj > 3�. Note incidentally that the
quadratic approximation error obtained by such a design technique [24] can be
approximated by quantity Edes = 2 �R13� jg(t)j2 dt = 4� � erfc(3)=p� ' 5 �10�5�,
where erfc(�) is the complementary error function.

Given a gaussian �lter with variance �2, its spectral concentration (28),
related to a given stopband frequency !s, is given by Es = erf(!s�), where
erf(�) is the error function. Assuming, as described above, to adopt the design
constraint

N = 2 � d3�e + 1 (29)

where symbol dxe represents the least integer greater than or equal to x, andN is
the gaussian �lter size, it is possible to relate the spectral concentration, referred
to the stop{band frequency !s, to any given �lter size N . Note incidentally the
higher degree of freedom o�ered by the use of prolate spheroidal �lters, which are
parametrized by the �lter order and by the stopband frequency independentely.
In the case of gaussian �lter design by the window technique, the �lter order
determines the minimum variance �2 as by (29).

Fig. 5 (solid line) shows the spectral concentrations of some gaussian �lters
versus their size N , for !s = �=6. The same �gure represents by dotted lines the

spectral concentrations of the prolate spheroidal �lters
n
v
(0)
n (N; 1

12)
o
[21], for

the same set of �lter sizes N . It is apparent from Fig. 5 the better performance,
in terms of spectral concentration, of the prolate spheroidal �lters with respect
to the gaussian �lters, for the same �lter size.

In Fig. 7(a) the transfer function magnitudes of the order 13 gaussian �lter

with � = 2 (solid line) and of the order 13 prolate spheroidal �lter
n
v
(0)
n (13; 1

12)
o

(dotted line) are shown. Note that the �lter energy is the same in both cases.
The higher spectral concentration of the prolate spheroidal �lter with respect
to the gaussian �lter results apparent from Fig. 7(a). The impulse responses of
the two �lters are shown in Fig. 7(b).
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3.3 Adapted di�erentiators

The purpose of the di�erentiation stage is to give accurate estimates of the
partial derivatives of the brightness signal, starting from the samples of its low{
pass �ltered version. In the case of images taken by an interlaced system, it will
be assumed to adopt the interpolation scheme of Fig. 5(b).

The derivative of a signal is usually estimated from its samples by interpola-
tion techniques. The estimate is taken as the derivative of an interpolating func-
tion (typically a piecewise polynomial function), which �ts the given function in
two or more adjacent samples (a least{squares �tting is sometimes considered).
Smoothness constraints may be imposed on the resulting interpolation function.
Examples of interpolation techniques are the Lagrangian, the Hermitian, and
the splines interpolation [25].

It is possible to relate the resulting minimax estimation error with the
Chebichev norm of the higher order derivatives of the signal and with the sam-
pling interval [25]. Such relationships, however, are not much useful in practice.
The a priori knowledge of the upper bounds of the higher derivatives is usu-
ally not available, neither can such upper bounds be set by linear techniques.
The only hypothesis on the signal which can be assumed to hold true is that of
bandlimitedness (under the conditions described in Section 2.3). On the other
side, if the signal is correctly bandlimited, it is (virtually) possible to compute
its \exact" derivative starting from its samples, by means of a suitable digital
�lter (note that we are interested in the signal derivatives only at the sampling
points).

The frequency domain approach to the design of di�erentiators has been
intensively studied (see for instance [23],[26],[27],[28]). The frequency response
of the ideal digital full{band di�erentiator is

Did(!) = �j! ; �� � ! < � (30)

Several design techniques for �lters D(!) which approximate (30) minimizing
a given norm of E(!) = D(!) � Did(!) can be found in the Signal Processing
literature. Weighted least squares norms, as well as the minimax norm, have
been considered. An interesting error criterion has been proposed in [27], which
is particularly suitable for IIR di�erentiators However, in the present work only
FIR di�erentiators are considered, for which the error criterion of [27] reduces
to the least squares criterion.

It was early recognized [26] that, due to the discontinuity of the imaginary
part of Did(!) at ��, one cannot expect to obtain small approximation errors
designing wide{band di�erentiators. Such an observation is in agreement with
the results of [29]. A widely adopted solution to such a problem is to introduce
the delay of half a pixel in the �lter, in order to shift the phase discontinuity
of � rad to the origin, where there is a zero of the transfer function. By such
a \trick", the overall error lowers sensibly, as it can be seen in the examples
3.7 and 3.8 of [30]. Unfortunately, the half{sample delay is not admissible for
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the case of optical 
ow detectors. As a matter of fact, one has to relate the
three partial derivatives of the brightness at the same point, in order to solve
equation (1).

Another way for limiting the e�ects of the discontinuity of Did(!), is to
reduce the band of interest of the di�erentiator. Low{pass di�erentiators can
be designed [23],[28],[31],[32], in order to get a simultaneous signal smoothing,
which may reduce the e�ects of noise. However, as pointed out in Section 2.2,
in the case of optical 
ow detectors, the signal must be low{pass �ltered before
the partial derivatives estimation. Indeed, if a low{pass behaviour is exhibited
independentely by the single di�erentiators, the hypotheses of Fact 1 are not
satis�ed, and the global translation vector is not correctly recovered.

Nevertheless, the spectral shaping carried out by the low{pass �ltering stage
should be taken into account in the design of the di�erentiator. Let H(!) be
the transfer function of the low{pass �lter of (27) corresponding to the direction
along which the partial derivative is to be computed. The di�erentiator �lter
D(!) is designed so as to approximate the ideal transfer function Did(!) (30).
Clearly, it is convenient that the error E(!) = D(!) � Did(!) be smaller in
regions where the signal is expected to conserve more energy after the low{pass
�lter. It seems therefore appropriate to use a weighted least squares criterion,
i.e., to minimize the quadratic norm of H(!)E(!):

k H(!)E(!)) k2= 1

2�

Z �

��
jH(!) (D(!) + j!)) j2 d! (31)

If H(!) is the transfer function of an FIR �lter, it is possible to �nd a closed
form solution to the minimization problem, as shown in the Appendix.

By using such a design criterion in a multifrequency{multiscale approach
[4],[9], it is possible to design the di�erentiators \adapted" to each considered
(not necessarily low{pass) �lter. The size of the di�erentiators should be chosen
so as to get a small value of k H(!)E(!)) k2. In Tab. 1 the \quadratic weighted
errors" k H(!)E(!)) k2 of di�erentiator �lters of di�erent sizes, adapted to a
low{pass prolate spheroidal �lter H(!) of unitary energy with !s = �=3 and
size equal to 11, are shown. Choosing the 7{tap di�erentiator, the quadratic
weighted error is equal to 4:28 � 10�5.

It is instructive to compare such �lters with the 3{tap (forward{backward
di�erence) di�erentiator usually adopted in this context (see for instance [4]).
The impulse response of such a �lter is

d3(n) =

8<
:

1
2

; n = �1
0 ; n = 0

�1
2

; n = 1
(32)

and its frequency response is

D3(!) = �j sin! (33)
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The quadratic weighted error of the 3{tap di�erentiator (related to the same
�lterH(!)) is equal to 3:59�10�4, almost ten times higher than that of the 7{tap
adapted di�erentiator (whose impulse response is shown in Fig. 8(b)). Fig. 8(a)
shows the transfer function magnitude of the low{pass �lter H(!) (solid line),
of the 7{tap adapted di�erentiator (dashed line) and of the 3{tap di�erentiator
(dotted line). From Fig. 8(a) it can be seen that the transfer function of the
chosen di�erentiator approximates pretty well the ideal di�erentiator transfer
function (30) in the energy region of the low{pass �lter.

In order to appreciate the versatility of the adapted di�erentiator design
algorithm, consider also the case of a band{pass �lter with frequency response
H(!) (depicted in Fig. 9(a) by solid line) centered on !0 = �=2 (such a �lter
may be part of a �lter bank for the multifrequency analysis of the input signal
[9]). The quadratic weighted errors for adapted di�erentiators of di�erent size
are reported in Tab 2. The transfer function magnitude of the 9{tap adapted
di�erentiator and of the 3{tap di�erentiator are depicted in Fig. 9(a) by dashed
line and by dotted line respectively. In this case, the quadratic weighted error
is equal to 4:19 � 10�4 for the 9-tap adapted di�erentiator, and it is equal to
0.477 for the 3{tap di�erentiator. Note the dramatic performance improvement
attainable by the adapted di�erentiator design.

However, the �lters designed by minimizing form (31) may not be feasible in
all cases. Experimental tests show that, for images characterized by very poor
spectral content, the di�erentiation along the spatial axes by the simple 3{tap
di�erentiator may sometimes give better results than using adapted di�erentia-
tors of higher order. An explanation of such a phenomenon is outlined in the
following.

Let D(!) be the �lter which minimizes form (31) for a given �lter size ND,
and let d(n) be its impulse response. Assume, for semplicity's sake, the input is
one{dimensional. It is easy to see that, if the input f(x) to the system is white
noise, the �lter D(!) is optimal among the FIR �lters of size ND , in the sense
that it minimizes the power of the error

ed(n) = (f � h � d(n))� d

dx
(f � h(x)) jx=n (34)

where h(n) is the impulse response of �lter H(!). The writing f � h(x) stands
for

P1
n=�1 f(x � n)h(n) (note that f(x) is de�ned for x 2 R, while d(n) and

h(n) are de�ned for n 2 Z).
If the input signal is low{pass (i.e., its spectral density F (!) is negligible

for ! > !l; !l � �) , then, unless the stop{band frequency !s of H(!) is lower
than !l, it is seen that the power of ed(n) may not be minimized by the adapted
�lter D(!). If !l is small, the behaviour of the 3{tap di�erentiator can be better
than that of adapted �lters of higher size. Indeed, recalling (33), one has that,
for x! 0, D3(!)+ j! = O(!3), i.e., the 3{tap di�erentiator approximates very
well the ideal di�erentiator for signals with a narrow low-pass band.
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This fact becomes apparent by looking at the frequency response of the
\wide{band" least{squares optimal di�erentiator, which minimizes (31) forH(!) =
1 (i.e., no pre�ltering). Assume the size of the di�erentiator is ND (ND must
be odd, as stated in the Appendix). Its impulse response is

dwb(n) =

8<
:

�(�1)n=n ; �(ND � 1)=2 � n < 0
0 ; n = 0

(�1)n=n ; 0 < n � (ND � 1)=2
(35)

Sequence dwb(n) is shown in Fig. 10(b) for ND = 7, while Fig. 10(a) represents
the frequency response of dwb(n) (dashed line), of the 3{tap di�erentiator (dot-
ted line), and of the ideal di�erentiator (30) (solid line). It is apparent from
Fig. 10(a) the bad behaviour of �lter dwb(n) in the low{pass frequency region.

A more sophisticated design technique would consider the minimization of
(31), with term H(!) accounting also for the (supposed known) spectral dis-
tribution of the image (a complete treatment of this problem can be found in
[28]).

As to our purposes, the di�erentiation is performed along the three axes
x; y and t. If the spatial spectral behaviour of the input image is strictly low{
pass, then the spatial partial derivatives can be computed with a good degree
of accuracy by the 3{tap di�erentiators. On the other side, along the temporal
axis, depending on the velocity of the objects in the scene, the spectral support
of the signal is likely to be wide, as explained in Section 2.3. In this case, the
adapted di�erentiator can provide much more accurate measurements.

Finally, consider the case the optical 
ow algorithm relies also on the esti-
mation of the second{order derivative of the signal (as in the scheme of [7]).
The design of second{order digital di�erentiators has been studied, for exam-
ple, in [33] and in [31]. The frequency response of the ideal second{order digital
di�erentiator is

Did(!) = �!2 ; �� � ! < � (36)

Note that, in this case, the discontinuity of Did(!) for ! = �� is not present.
For a given second{order di�erentiator transfer function D2(!), the error is
de�ned as E2(!) = D2(!)�!2. An \adapted" design technique would consider
the minimization of

k E2(!)H(!) k2= 1

2�

Z �

��

��H(!)
�
D2(!) + !2

�� j2 d! (37)

In the Appendix it is shown how to design the FIR �lter D2(!) of given size
which minimizes form (37), if H(!) is the transfer function of an FIR �l-
ter. Fig. 11(a) shows the transfer function magnitude of the low{pass prolate
spheroidal �lter H(!) of unitary energy with !s = �=3 and size equal to 11
(solid line), and of the 7{tap adapted second{order di�erentiator (dashed line).
The impulse response of the latter is shown in Fig. 11(b).
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4 Experimental tests

In this section, the results of some experimental tests concerning the optical 
ow
measurement, using the techniques described in this work, are presented. They
con�rm the expectations o�ered by the theoretical arguments of the previous
sections.

Before introducing the experimental set{up, let us stress a point, which
derives from the observations of Section 2. In testing any system, one would
like to have a set of \basis" test functions, that enabled him to draw conclusions
on the general behaviour of the system from the knowledge of the system's
output to such test signals. In the present case, as pointed out previously, it
turns out that the optical 
ow associated to a brightness function l(x; y; t) is
not linearly related to l(x; y; t). For example, a system that gives an accurate
optical 
ow estimate for a certain input signal, may yield a large estimation
error for a (linearly) �ltered version of the same input signal. Therefore, the
analysis of the experimental results for optical 
ow systems is a delicate matter,
and devising an e�ective \basis" test brightness function set remains an open
issue.

Optical 
ow systems can be tested using either arti�cial images or \natural"
images, i.e., taken by a camera in a real{world environment. The second solu-
tion is appealing because it usually o�ers many di�erent situations (occlusions,
shading, noise, etc.). On the other side, the knowledge of the \real" optical 
ow
is sometimes problematic (especially for subpixel displacements between two
frames), therefore natural images are more suitable to a \qualitative" evaluation
of the system. Since the present work addresses the problem of the estimation
accuracy under the brightness constancy hypothesis (see Section 2.1), arti�cial
test images have been used for the experiments, as they are more appropriate
to such measures.

We have tested the systems with one{dimensional (l(x; t)) and two{dimensional
(l(x; y; t)) moving signals. Note that, for one{dimensional signals, the optical

ow errors depend only on the partial derivative estimates, as the aperture prob-
lem does not arise in this case. Hence, one{dimensional signals are particularly
suitable to test the methods described in this work. In both cases, only global
translation motion has been considered.

In order to evaluate the system performance, a bit of post{processing of
the system output is necessary. The measured optical 
ow typically exhibits
error \spikes", especially in region of small spatial gradient magnitude (see
(3)). In order to correctly analyze the results, it is necessary to get rid of such
error impulses. Some sort of thresholding may be set on the measures (unless
more sophisticated con�dence measures are available [1]). We sidestepped the
problem of the threshold choice by adopting a median �lter instead. Median
�lters are known to be e�ective for the reduction of \spike" noise. The output of
the �lter at a certain location x is the median of the values within a small window
centered on x. We chose a small window of 3 samples in the one{dimensional
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case, and a 3� 3 samples square in the two{dimensional case. No thresholding
was necessary after such an operation. The small window size allows for a good
rendition of the system even in regions of high optical 
ow gradient.

We have not considered any optical 
ow smoothing after the median �ltering,
being interested in testing the \local" system accuracy.

4.1 One{dimensional measurements

The input sequence in the one{dimensional case was l(k; n) = l0(x�vt)jx=k;t=n
, where

l0(x) = sin

�
x2

T

�
(38)

with constant T . Such a \chirp" signal is suitable for our tests, as its derivatives
and its instantaneous frequency (de�ned as the derivative of the argument of
(38)) can assume values in a large range.

The sequence we used is shown in Fig. 12. The ratio between the standard
error deviation and the actual velocity has been measured for di�erent image
velocities (such a ratio is called relative error in the �gures). The results of the
tests are presented in the following.

1) Prolate spheroidal �lters and 3{tap di�erentiators (Fig. 13)
The �rst low{pass stage is a prolate spheroidal �lter with length 9 and stop{

band frequency !s = �=3 in the x direction, and with length 7 and stop{band
frequency !s = �=2 in the t direction (see Section 2.3). The partial derivatives
are computed by a 3{tap di�erentiator.

Note that the relative error becomes small for values of the velocity v next
to value v0 = 1 pixel/frame. Actually, it is easy to see that, for v = v0, no error
occurs using any algorithm for the partial derivative estimation (as long as the
same di�eentiator is used along the x and the t directions).

2) Prolate spheroidal �lters and adapted di�erentiators (Fig. 14)
In this case, the low{pass stage of case 1 has been adopted, but the partial

derivatives are computed by length{7 di�erentiators, adapted to the low{pass
�lters (according to the method proposed in Section 3.3). The relative errors
are now 3 to 10 times smaller than in the case 1.

3) Prolate spheroidal �lters and wide{band di�erentiators (Fig. 15)
In order to show the e�ectiveness of the adapted di�erentiator design, the

scheme with the low{pass stage of case 2, but with lenght{7 wide{band least{
squares optimal di�erentiators (as described in Section 2.3), instead of adapted
di�erentiators, has been implemented. The relative errors in this case are ap-
proximately 4 times higher than in the case of case 1 (3{tap di�erentiator). This
shows the delicacy of the di�erentiators' design, and con�rms the expectations
drawn by the arguments of Section 3.3.

4) Gaussian �lters and adapted di�erentiators (Fig. 16)
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Here the low{pass stage has been implemented using gaussian �lters of the
same size as the low{pass �lters of the previous cases. According to the design
formula (29), the variance of the gaussian �lters result equal to 16/9 in the x
direction, and to 1 in the t direction. Length{7 di�erentiators adapted to such
�lters have been used. The relative errors are 1.5{3 times higher than those
of case 2. Hence, the higher spectral concentrations of the prolate spheroidal
�lters with respect to the gaussian �lters (of the same size) result in a higher
accuracy degree, as expected from the arguments of Section 3.2.

5) 6) 7) Noise added (Fig. 17, Fig. 18, Fig. 19)
In order to analyze the e�ect of noise on the system's performance, we have

tested the systems of case 1, 2 and 3 with the input signal of Fig. 12, corrupted
by additive white gaussian noise. The signal{to{noise ratio was set to 25 dB.
The following conclusions can be drawn from the test results: i) the system's
performances are better using adapted di�erentiators than using 3{tap di�er-
entiators also for noisy input (in spite of the fact that the 3{tap di�erentiator
exhibits a low{pass behaviour, which might be helpful against wide{band noise
{ but see Section 2.2); ii) the system with low{pass prolate spheroidal �lters
behaves better than the one with gaussian �lters also for noisy inputs; the dif-
ference, however, is small.

8) Interlaced scanning case (Fig. 22)
In the previous cases, the input signal was sampled as if taken by a pro-

gressive scanning system. Here we consider the case the input is sampled in a
one{dimensional interlaced fashion. In other words, the input sequence may be
seen as the output of a two{dimensional interlaced camera for a �xed value of
the coordinate x, assuming the image translates along the y direction. In order
to compare the results of both cases, assume the input in the previous cases
(progressive scanning) was obtained by discarding one �eld per frame from the
output of the interlaced scanning system. In the present case, all the �elds
are available. The velocity is still expressed as pixels/frame (note that here
TF = 2Tf ).

We have adopted the interpolation technique described in Section 3.1 (Fig. 5(b)).
The frequency response of the interpolator �lter approximates, within the el-
ementary cell PR

ORT
, the indicator function of cell PD

ALI
. The �lter has been

designed by the McClellan transform technique [18] starting from a half{band
(Nyquist) one{dimensional low{pass prototype. The resulting 2{D �lter (whose
impulse response is represented in Fig. 20) is still a Nyquist �lter. The frequency
response magnitude of such a �lter is shown by contour plot and perspective
plot in Fig. 21 (a) and (b) respectively.

The interpolated signal has been processed by the system of case 2. Com-
paring Fig. 22 and Fig. 14, it is seen that the relative error corresponding to a
given velocity v using the interpolation technique is very close to the relative
error corresponding to v=2 of case 2. This con�rms the expectations of Section
2.3.
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4.2 Two{dimensional measurements

The input signal used in this tests (shown in Fig. 23) is a two{dimensional
version of the one used in the one{dimensional case: l(k;m; n) = l0(x� vxt; y�
vyt)jx=k;y=m;t=n, where

l0(x; y) = sin

�
x2 + y2

T

�
(39)

with constant T . Such a function is frequently adopted as a test signal in the
television context, where it is called zone plate. Only the global translation case
(i.e., constant vx and vy) is considered.

In order to solve the aperture problem, we have adopted a scheme similar to
the one of Srinivasan [8]. The input signal is spatially �ltered by two di�erent
�lters, whose frequency response magnitudes are represented in Fig. 24 (a) and
(b) respectively (the two �lters are factorable). The measured optical 
ow at
each point is the intersection of the two optical 
ow families associated to the
two �ltered version of the input at the same point (see Section 2.1).

In the experiments, the velocity was set to (vx = �0:5 pixels/frame; vy =
2:6 pixels/frame). The optical 
ow �elds measured using 3{tap and adapted
di�erentiators are represented in Fig. 25 and Fig. 26 respectively. The low{pass
�lters are prolate spheroidal as in Section 4.1 { case 1. The better behaviour of
the system using adapted di�erentiators is apparent.

Fig. 27 represents the optical 
ow �eld measured from the sequence of the
interlaced �elds. The interpolator �lter (along the y and t directions) is the same
as in Section 4.1 { case 8. The accuracy of the measurement is comparable to
that of the case of Fig. 26. Note, however, that the velocity in this case is
equal to (vx = �1 pixels/frame; vy = 5:2 pixels/frame), twice as much as in the
previous case!
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A Appendix

In this Appendix it is shown how to design the FIR �lter of length ND whose
transfer function D(!) minimizes the weighted least{squares error normZ �

��
jH(!) (D(!) + j!)j2 d! (40)

where H(!) is the transfer function of a given zero{phase FIR �lter.
In the following, the word \�lter" will mean either the �lter impulse response

(denoted by small letter) or its frequency response (denoted by the correspon-
dent capital letter), as it will be clear from the context. By quadratic distance
between two �lters h1(n) and h2(n) it will be meant the value

1X
n=�1

jh1(n)� h2(n)j2 =

(by Parseval's theorem)

=
1

2�

Z �

��
jH1(!) �H2(!)j2 d!

The frequency response D(!) of the sought for �lter d(n) must be purely
imaginary (so that d(n) = �d(�n)). This can be proved as follows. Let D(!)
be the frequency response of a length{ND �lter which minimizes norm (40).
Since H(!) is real, it isZ �

��
jH(!) (D(!) + j!)j2 d! =

Z �

��

���H(!)
�
�D(!) + j!

����2 d!
where D(!) is the complex conjugate of D(!). Therefore �lter �D(!) (whose
impulse response is �d(�n)) minimizes (40). But there cannot exist two di�er-
ent length{ND �lters minimizing (40), because (as it is shown in the following)
the solution corresponds to the orthogonal projection of a vector in a Hilbert
space onto a subspace. Hence, D(!) = �D(!), i.e., D(!) is purely imaginary,
as claimed before. This means that d(n) = �d(�n). ND can be taken odd, and
we will write ND = 2 �ND + 1.

On the converse, since H(!) is zero{phase, it is h(n) = h(�n). Therefore
its order NH is odd as well, and we can write NH = 2 �NH + 1.

The integrand in expression (40) can be rewritten as

jH(!)D(!) + j!H(!)j2

Let H be the space of the length{(NH + ND � 1) FIR �lters and let H1 be
the subspace of �lters of H whose transfer function can be written in the form
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H(!)B(!), where B(!) is any length{ND FIR �lter (note that H(!)D(!) be-
longs to H1). It is clear that the dimension of H1 is NH . Writing Dtar(!) =P1

n=�1Did(! � 2n�), where

Did(!) =

� �j! ; �� � ! < �
0 ; otherwise

(41)

the problem of minimizing (40) can be restated this way:

Find the �lter of H1 which minimizes the quadratic distance to
Dtar(!)H(!)

Since H1 is a subspace of H, a two{step solution can be devised:

1. Find the �lter A(!) of H which minimizes the quadratic distance to
Dtar(!)H(!)

2. Find the �lter H(!)D(!) of H1 which minimizes the quadratic distance
to A(!)

Step 1. The length{(NH +ND �1) impulse response a(n) of A(!) is obtained
by truncating the impulse response of Dtar(!)H(!) [24]. Since H(!) is a zero{
phase �lter, one can write

H(!) =

�NHX
n=0

�h(n) cos !n ; �h(n) =

�
h(0) ; n = 0
2h(n) ; n 6= 0

where h(n) is the impulse response of H(!). The impulse response â(n) of �lter
Dtar(!)H(!) is

â(n) = (42)

=
1

2�

Z �

��
�j!H(!)ej!n d! (43)

=
1

2�

�NHX
m=0

�h(m)

Z �

��
! cos!m sin !n d! (44)

=

�NHX
m=0

�h(m) �
8<
:

(�1)m+n n
n2�m2 ; m 6= �n

� 1
4m ; m = �n 6= 0
0 ; m = n = 0

(45)

and the sought for impulse response a(n) is

a(n) =

�
â(n) ; � �NH � �ND < n < �NH + �ND

0 ; otherwise

Step 2. It is convenient here to use a vectorial notation for �lters: a generic im-
pulse response g(n) of lengthN will be represented as a vector g = (g1 g2 : : : gN )

T
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of RN (written g � g(n)). If g(n) is null for n < �(N � 1)=2; n > (N � 1)=2
(we are interested only in symmetric and antisymmetric impulse response), then
gn = g(n � (N + 1)=2) ; n = 1; 2; : : : ; N .

Consider the circulant (NH +ND � 1) � (NH + ND � 1) matrix

H =

0
BBBBBBBBBB@

h(0) 0 0 : : : h(2) h(1)
h(1) h(0) 0 : : : h(3) h(2)

...
h(NH ) h(NH � 1) : : : 0 0

0 h(NH ) : : : 0 0
...

0 0 : : : h(1) h(0)

1
CCCCCCCCCCA

H is diagunalizable by orthonormal Fourier matrices [17]. The eigenvalues ofH
are the samples of the length{(NH+ND�1) DFT HDFT(k) of the sequence h(n)
padded with (ND � 1) null samples. Assume H is full rank (i.e., HDFT(k) 6=
0 ; 8k); in such a case, H is a basis of H. If HDFT(k) = 0 for some k, it is
necessary to increase the dimension of the �lter h(n) (by padding it out with
null samples) to the smallest value NH such that HDFT(k) 6= 0 8k.

Note that, given �lter g(n) � g 2 RNH+ND�1, it is Hg � h��g(n), where
symbol �� represents the circular convolution operator [24]. It is easily seen that
the subspace H1 can be represented as

H1 =
�
g 2 RNH+ND�1 ; g = Hb ; b 2 RNH+ND�1 ; bn = 0 for i > NH

	
(46)

i.e., the �rst ND columns of H generate H1.
In order to �nd the �lter of H1 which minimizes the quadratic distance to

a(n) (i.e., the orthogonal projection of a(n) on H1), it is convenient to �nd a
basis matrix of H such that the �rst ND columns generate H1, while the other
(NH � 1) columns generate H?1 (the orthogonal subspace, H1 �H?1 = H). Re-
calling (46), it is seen that a columnwise Gram{Schmidt orthogonalization ofH
is suitable for this purpose (since the subspace spanned by the �rst NH columns
of H turns out to be invariant with respect to such an orthogonalization). Let
�H = HC, with upper triangular C, be the orthogonalized basis matrix, and
put b = �H�1a, where a � a(n) is the �lter described in the �rst step of the
algorithm. Then �H�b, with

�bn =

�
bn ; 1 � n � ND

0 ; otherwise

is the �lter of H1 which minimizes the quadratic distance to a(n). The sought
for �lter d � d(n) whose transfer function D(!) minimizes (40) is therefore

d =H�1 �H�b = C�b
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The algorithm is easily adaptable to the case the norm to be minimized isZ �

��

��H(!)
�
D(!) + !2

���2 d! (47)

where H(!) is the transfer function of a given FIR �lter. The only part of the
algorithm to be modi�ed concerns the determination of the impulse response
â(n) in Step 1 (see (42)). In the present case, one needs to �nd the impulse re-
sponse of the �lter Dtar(!)H(!), where Dtar(!) is de�ned as before substituting
in (41) term !2 to term �j!:

â(n) = (48)

=
1

2�

Z �

��
�!2H(!)ej!n d! (49)

=
1

2�

�NHX
m=0

�h(m)

Z �

��
�!2 cos !m cos !n d! (50)

=

�NHX
m=0

��h(m) �

8><
>:

2 � (�1)m+n m2+n2

(m2�n2)2 ; m 6= �n
1

4m2 +
�2

6 ; m = �n 6= 0
�2

3 ; m = n = 0

(51)

The remaining of the algorithm is completely similar to the former case.

30



References

[1] J.L. Barron, D.J. Fleet, and S.S Beauchemin. Performances of optical

ow techniques. Technical Report 299, Department of Computer Science,
University of Western Ontario, July 1992.

[2] B.K.P Horn and B.G. Schunk. Determining optical 
ow. Arti�cial Intelli-
gence, 17:185{204, 1981.

[3] V. Torre and T.A. Poggio. On edge detection. IEEE Trans. Pattern Anal.
Machine Intell., 8(2):147{163, March 1986.

[4] R. Battiti, E. Amaldi, and C. Koch. Computing optical 
ow across mul-
tiple scales: an adaptive coarse{to{�ne strategy. International Journal of
Computer Vision, 6(2):133{145, 1991.

[5] V.I. Arnold. Ordinary Di�erential Equations. The MIT Press, Cambridge,
Mass., 1990.

[6] H.H. Nagel and W. Enkelmann. An investigation of smoothness constraints
for the estimation of displacement vector �elds from image sequences. IEEE
Trans. Pattern Anal. Machine Intell., 8:565{593, 1986.

[7] S. Uras, F. Girosi, A. Verri, and V. Torre. A computational approach to
motion perception. Biological Cybernetics, 60:79{97, 1988.

[8] M.V. Srinivasan. Generalized gradient schemes for the measurement of
two{dimensional image motion. Biological Cybernetics, 63:421{431, 1990.

[9] J. Weber and J. Malik. Robust computation of optical 
ow in a multiscale
di�erential framework. In Proc. ICCV'93, Berlin, May 1993.

[10] A. Verri, F. Girosi, and V. Torre. Mathematical properties of the two{
dimensional motion �elds: from singular points to motion parameters.
Journal of the Optical Society of America A, 6(5):698{712, May 1989.

[11] B. Kamgar-Parsi and B. Kamgar-Parsi. Evaluation of quantization error in
computer vision. IEEE Trans. Pattern Anal. Machine Intell., 11(2):929{
939, September 1990.

[12] K.M. Uz, M. Vetterli, and D. LeGall. A multiresolution approach to motion
estimation and interpolation with application to coding of digital HDTV.
In Proc. IEEE ISCAS'90, volume 2, pages 1298{1301, New Orleans, 1990.

[13] E.H. Adelson and J.R. Bergen. Spatiotemporal energy models for the per-
ception of motion. Journal of the Optical Society of America A, 2:284{299,
1985.

31



[14] E. Dubois. The sampling and reconstruction of time-varying imagery with
applications in video systems. Proceedings of the IEEE, 73:502{522, April
1985.

[15] F. Kretz and J. Sabatier. Echantillonnage des images de t�el�evision: analyse
dans le domaine spatio{temporal et dans le domaine de Fourier. Ann.
T�el�ecommunications, 36:137{144, February 1984.

[16] G.M. Cortelazzo, R.Manduchi, and C. Monti. On the relationships between
motion and aliasing in typical video rasters. In Proc. IEEE ISCAS'92,
volume 4, San Diego, May 1992.

[17] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Halls,
Englewood Cli�s, NJ, 1993.

[18] D.E. Dudgeon and R.M. Mersereau. Multidimensional Digital Signal Pro-
cessing. Prentice{Hall, Englewood Cli�s, 1984.

[19] G. Tonge. Three-dimensional �lters for television sampling. Technical
Report 112, IBA, 1981.

[20] R. Manduchi, G.M. Cortelazzo, and G.A. Mian. Multistage sampling struc-
ture conversion of video signals. To appear on IEEE Transactions on Cir-
cuits and Systems for Video Technology, 1993.

[21] D. Slepian. Prolate spheroidal wave functions, Fourier analysis, and un-
certainty { V: the discrete case. The Bell System Technical Journal,
57(5):1371{1430, May{June 1978.

[22] A. Papoulis and M.S. Bertran. Digital �ltering and prolate functions. IEEE
Trans. Circuit Theory, 19(6):674{681, November 1972.

[23] F.F. Kuo and J.F. Kaiser. System Analysis by Digital Computer. John
Wiley and Sons, New York, 1966.

[24] A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice{
Hall, Englewood Cli�s, NJ, 1975.

[25] P.M. Prenter. Splines and Variational Methods. John Wiley and Sons, New
York, 1975.

[26] L.R. Rabiner and K. Steiglitz. The design of wide{band recursive and
nonrecursive digital di�erentiators. IEEE Trans. Audio Electroacoust.,
18(2):204{209, June 1970.

[27] J. Spriet and J. Bens. Optimal design and comparison of wide{band digital
on{line di�erentiators. IEEE Trans. Acoust., Speech, Signal Processing,
27(1):46{52, February 1979.

32



[28] B. Carlsson, A. Ahl�en, and M. Sternad. Optimal di�erentiation based on
stochastic signal models. IEEE Trans. Signal Processing, 39(2):341{353,
February 1991.

[29] S.D. Conte and C. de Boor. Elementary Numerical Analysis. McGraw{Hill,
New York, 1980.

[30] T.W. Parks and C.S. Burrus. Digital Filter Design. John Wiley and Sons,
New York, 1987.

[31] S. Usui and I. Amidror. Digital low{pass di�erentiation for biological signal
processing. IEEE Trans. Biomed. Eng., 29(10):686{693, October 1982.

[32] T. Vieville and O.D. Faugeras. Robust and fast computation of unbiased
intensity derivatives in images. In Proc. EECV'92, pages 203{211, Santa
Margherita Ligure, Italy, May 1992.

[33] Soo-Chang Pei and Jong-Jy Shyu. Eigen�lter design of higher{order digital
di�erentiators. IEEE Trans. Acoust., Speech, Signal Processing, 37(4):505{
511, April 1989.

33



α
ω

ω

t

y

y∆/ π2

 π / ∆ y

 π T T/ /F 2 π F

Fig. 1: Traces on the !y � !t plane of the spectral supports of a still image
(bold line) and of the same image in global translation by vector v = (vx; vy)

T

with cot vy = �� (solid line), after sampling on lattice �ORT. The trace of the
rectangular cell PR

ORT
is depicted by dotted line.
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Fig. 2: Traces on the !y�!t plane of the spectral supports of a still image (bold
solid line) and of the same image in global translation by vector v = (vx; vy)

T

with cot vy = �� (solid line), after sampling on lattice �ALI. The trace of the
rectangular cell PR

ALI
is depicted by dotted line. The traces of the supports of the

spectral repetitions introduced by discarding one �eld per frame are depicted
by dashed line.
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Tab. 1: Weighted error versus �lter size for di�erentiators adapted to the 11{tap
prolate spheroidal �lter with !s = �=3 (see Fig. 8)

Derivator size Weighted error

k H(!)E(!)) k2
3 2:0186 � 10�4
5 7:5971 � 10�5
7 4:2807 � 10�5
9 3:2217 � 10�5

Tab. 2: Weighted error versus �lter size for di�erentiators adapted to the
passband �lter of Fig. 9

Derivator size Weighted error

k H(!)E(!)) k2
3 0:1028
5 0:0109
7 0:0018
9 4:19 � 10�4
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Fig. 8:(a) Transfer function magnitude of the 11{tap prolate spheroidal �lter
with !s = �=3 (solid line), of the 7{tap adapted di�erentiator (dashed line)

and of the 3{tap di�erentiator (dotted line); (b) Impulse response of the 7{tap
adapted di�erentiator
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Fig. 9:(a) Transfer function magnitude of a passband �lter (solid line), of the
9{tap adapted di�erentiator (dashed line) and of the 3{tap di�erentiator
(dotted line); (b) Impulse response of the 9{tap adapted di�erentiator
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Fig. 10: (a) Transfer function magnitude of the ideal di�erentiator (solid line),
of the least{squares optimal wide{band di�erentiator (dashed line) and of the

3{tap di�erentiator (dotted line)
(b) Impulse response of the least{squares optimal wide{band di�erentiator
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Fig. 11:(a) Transfer function magnitude of the 11{tap prolate spheroidal �lter
with !s = �=3 (solid line) and of the 7{tap adapted second{order

di�erentiator (dashed line); (b) Impulse response of the 7{tap second{order
adapted di�erentiator
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Fig. 13: Relative error versus velocity for the system of Section 4.1 { case 1
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Fig. 14: Relative error versus velocity for the system of Section 4.1 { case 2
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Fig. 15: Relative error versus velocity for the system of Section 4.1 { case 3
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Fig. 16: Relative error versus velocity for the system of Section 4.1 { case 4
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Fig. 17: Relative error versus velocity for the system of Section 4.1 { case 5
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Fig. 18: Relative error versus velocity for the system of Section 4.1 { case 6
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Fig. 19: Relative error versus velocity for the system of Section 4.1 { case 7
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Fig. 21: Transfer function magnitude of the interpolator �lter:

(a) contour plot
(b) perspective plot
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Fig. 22: Relative error versus velocity for the system of Section 4.1 { case 8
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Fig. 23: Two{dimensional test sequence

50



-4
-2

0
2

4

-4

-2

0

2

4
0

0.5

1

1.5

2

Omega_xOmega_y

T
ra

ns
fe

r 
F

un
ct

io
n 

M
ag

ni
tu

de

(a)

-4
-2

0
2

4

-4

-2

0

2

4
0

0.5

1

1.5

2

2.5

Omega_xOmega_y

T
ra

ns
fe

r 
F

un
ct

io
n 

M
ag

ni
tu

de

(b)
Fig. 24 Transfer function magnitude of the two �lters used in the

two{dimensional test systems
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Fig. 25: Measured optical 
ow using 3{tap di�erentiators (vx=-0.5
pixel/frame, vy=2.6 pixel/frame)
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Fig. 26: Measured optical 
ow using adapted di�erentiators (vx=-0.5
pixel/frame, vy=2.6 pixel/frame)
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Fig. 27: Measured optical 
ow with interlaced input (vx=-1 pixel/frame,
vy=5.2 pixel/frame)
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