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Abstract

Shape from texture is best analyzed in two stages, analogous to stereopsis and structure from
motion: (a) Computing the `texture distortion' from the image, and (b) Interpreting the `texture
distortion' to infer the orientation and shape of the surface in the scene. We model the texture
distortion for a given point and direction on the image plane as an a�ne transformation and
derive the relationship between the parameters of this transformation and the shape parameters.
We have developed a technique for estimating a�ne transforms between nearby image patches
which is based on solving a system of linear constraints derived from a di�erential analysis. One
need not explicitly identify texels or make restrictive assumptions about the nature of the texture
such as isotropy. We use non-linear minimization of a least squares error criterion to recover
the surface orientation (slant and tilt) and shape (principal curvatures and directions) based on
the estimated a�ne transforms in a number of di�erent directions. A simple linear algorithm
based on singular value decomposition of the linear parts of the a�ne transforms provides the
initial guess for the minimization procedure. Experimental results on both planar and curved
surfaces under perspective projection demonstrate good estimates for both orientation and shape.
A sensitivity analysis yields predictions for both computer vision algorithms and human perception
of shape from texture.
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1 Introduction

In its geometric essence, shape from texture is a cue to 3D shape very similar to binocular
stereopsis and structure from motion. All of these cues are based on the information available in
multiple perspective views of the same surface in the scene. In binocular stereopsis, the two eyes
get slightly di�erent views of the same surface; in structure from motion, the relative motion
of the observer and the surface generates the di�erent views. To put shape from texture in
this framework, consider two nearby patches on a surface in the scene with same (or su�ciently
similar) texture. The appearances of the two patches in a single monocular image will be slightly
di�erent because of the slightly di�erent geometrical relationships that they have with respect
to the observer's eye or camera. We thus get multiple views in a single image.

This naturally suggests a two stage framework (1) Computing the `texture distortion' from
the image, and (2) Interpreting the `texture distortion' to infer the orientation and shape of the
scene surface in 3D. The `texture distortion' is the counterpart in texture analysis of binocular
disparity in stereopsis or optical 
ow in structure from motion. We believe that the natural way
to model the texture distortion locally is as a 2-D a�ne transformation between neighboring
image patches. This a�ne transformation will depend on the direction and magnitude of the
vector displacement between the two patches in the image. We will call the map which associates
to each direction in the image plane an a�ne transformation, the texture distortion map. For
each point on a smoothly curved textured surface this map is well de�ned and can be related to
surface shape and orientation with respect to the viewer.

Traditionally, researchers have formalized the notion of texture distortion as that of �nding
the gradient of certain scalar-valued functions such as foreshortening, area, density, compression
(minor axis) or scaling (major axis). We critically examine these and other approaches to the
shape from texture problem in Section 2, where we will also explain our assumption of textural
homogeneity.

In Section 3 we derive the relationship between the texture distortion map and surface ori-
entation (slant and tilt) and shape (principal curvatures and directions) of the surface. Tilt is
the direction, in the image, of the gradient of the distance to the surface. We refer to tilt as an
angle from the positive x-axis. Slant is the angle between the surface normal at a point and the
vector from the focal point to the point on the surface. We will explain the remaining shape
parameters in Section 3. Our derivation of the relationship between the texture distortion and
the surface parameters makes use of previous results due to G�arding [10].

A major motivation for using the texture distortion map formalismbecomes evident in Section
4. It has proven di�cult to develop algorithms for estimating the individual texture gradients
which do not rely on either explicit texel identi�cation (which is di�cult for most natural tex-
tures) or on restrictive assumptions about the nature of the surface texture such as isotropy. On
the other hand, we are able to develop an accurate and robust algorithm for estimating a�ne
transformations between two nearby image patches which relies neither on texel identi�cation nor
on restrictive assumptions about the texture. The method uses least squares to solve a system
of linear constraints on the parameters of the a�ne transformation. We derive these constraints
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from an assumption of stationarity under translations for the scene texture. The method bears
strong resemblances to di�erential techniques for estimating optical 
ow [26].

In Section 5 of the paper, we develop a new algorithm for recovering surface orientation and
shape based on the estimated a�ne transforms in a number of di�erent directions. The method
uses nonlinear minimization of a least squares error criterion to estimate the shape parameters.
We use a simple linear algorithm based on singular value decomposition of the linear parts of
the a�ne transforms to �nd the initial conditions for the minimization procedure. In Section
6 we present results on a number of examples of planar and curved surfaces. We know of no
previous researchers who have demonstrated direct estimation of surface curvature parameters
using shape from texture.

Our shape estimation algorithm is arguably optimal in a maximum likelihood sense if the
measurement errors in the a�ne parameters can be assumed to be independent and normally
distributed. By studying the Hessian of the error function at the minimum point, one can
characterize the con�dence intervals of the shape estimates. This also gives us an ideal observer
which enables one to answer questions like: When the slant of a surface is increased, what
happens to the uncertainty in slant and tilt? What is the e�ect of curvature? Field of view? In
Section 7 we determine the con�dence intervals on the shape estimates in Section 6 and present
ideal observer predictions for shape from texture.

2 Relationship to previous work

Modern developments in shape from texture originate with the work of Gibson[12]. He coined
the term texture gradient to describe the phenomenon in which neighboring surface patches
which have identical, or su�ciently similar, texture in the scene project in the image plane to
patches with di�erent appearances because of the di�erences in distance, orientation, and shape
of the surface patches with respect to the viewer. Gibson used the term `gradient' to suggest a
di�erential process. If we can measure this `gradient,' we can use it to derive the local shape and
orientation of the surface in the scene.

Subsequent research on shape from texture has followed two main lines: (1) Measurement and
use of texture gradients (2) Statistical inference based on a probabilistic model of the texture.

Researchers have formalized the notion of texture gradient as that of �nding the gradient of
certain scalar-valued functions such as foreshortening, area, density, compression or scaling. The
mathematical relationship between these gradients and scene geometry has been developed both
for planar surfaces [24] and curved surfaces [10]. There are two di�culties in the use of these
gradients:

1. G�arding has shown that these simple distortion gradients do not contain enough information
for measurement of complete local surface curvature e.g. sign of Gaussian curvature.
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2. It is not clear how these gradients could be measured in the image. Explicit texel identi�ca-
tion as used by Blostein and Ahuja[5] is not feasible in many or most contexts. Lindeberg
and G�arding[18] present a technique applicable for measuring area gradient, but that is
inadequate by itself.

The other major family of approaches to shape from texture in the computer vision literature
is based on starting with a probabilistic model of the texture. The problem of determining surface
shape and orientation is treated as one of statistical inference{estimating the parameters of the
model given sample measurements in the image{and can be approached in either a Bayesian or
maximum likelihood framework. The model most often used is that of isotropy or weak isotropy
of the texture [27, 8, 6, 4, 11]. Under projection, the texture will not generally appear isotropic,
and thus they use the deviation from isotropy in the projection to infer 3D shape and orientation.
There are two major weaknesses of such an approach:

1. It cannot deal with directional textures such as grass, fabrics etc. Furthermore, we cannot
easily determine the appropriateness of the isotropy assumption (though see [4]).

2. It makes only partial use of available information, e.g. it does not exploit the change in
size of the projected texture.

The other assumption which has been used in the literature is that of �rst order homogeneity,
i.e. that the texture pattern has constant area or density[13, 1, 15, 25, 19]. This is a reasonable
assumption for natural textures, and our �rst criticism does not apply. However, this assumption
is too weak{it fails to exploit the systematic change in shape of the texture elements. For this
reason, the use of a maximum likelihood estimator does not guarantee that we are making the
best possible use of the data{the model has ignored an important and informative constraint in
the physical situation. In some work [13, 1] the shape from texture problem is treated as locally
underdetermined and a regularization assumption introduced to arrive at a shape estimate. We
regard the use of a regularization term as inappropriate until the well-founded physical constraints
have been fully exploited.

Our work is broadly in the texture gradient tradition initiated by Gibson. There are two
signi�cant points of departure:

1. Instead of measuring gradients of certain scalar functions, we model and measure the tex-
ture distortion locally as 2-D a�ne transformations between neighboring image patches.
In the Section 3 we will relate the parameters of such an a�ne transformation to the �ve
local shape and orientation parameters: slant, tilt, and three curvature parameters. In con-
trast, the traditional formulation using texture gradients lacks representational adequacy{
G�arding showed that only two of the three curvature parameters can be recovered from the
traditional texture gradients.

4



2. We introduce a new assumption about the surface texture, which is more powerful than
the traditional �rst order homogeneity assumption, and yet appears to have broad physical
validity (unlike isotropy). This assumption is basic to our being able to measure the a�ne
transformations mentioned above.

We want to model the fact that the texture is the \same" at di�erent points on the surface in
the scene{not just the areas but also the shapes of the texels are approximately constant. While
this implies periodicity for a deterministic pattern, for a texture which is best thought of as a
realization of a stochastic process we can formalize this as stationarity under translations. The
term homogeneity is used in the probability and statistics literature as equivalent to stationarity
under translations. We can assume that not only the �rst but also the second (and higher) order
statistics are translation-invariant. The notion of translation-invariance extends naturally from
planar surfaces to surfaces of constant Gaussian curvature. This is intuitively obvious{one can
slide around spherical triangles on a sphere without having to distort their shapes, just as one
can slide around planar triangles on a planar surface. Technical justi�cation may be found in
Appendix A. Our model for shape from texture is based on a local analysis, and we will assume
that over the scale of analysis, the Gaussian curvature of the surface does not change too much.
This will enable us to bypass technical di�culties in extending the notion of textural homogeneity
to surfaces of non-constant Gaussian curvature.

Previous use of homogeneity in the computer vision literature has made the weaker assump-
tion of translation invariance for only the �rst order statistics (e.g. the fraction of surface area
occupied by texels). We are able to exploit changes in the shape of the texture elements as well.

3 Relationship between the texture distortion map and

3D shape

We argued previously that instead of studying texture gradients, one should model texture
distortion in a particular direction on the image plane as an a�ne transformation between a pair
of image patches. This section will develop the relationship between the parameters of this a�ne
transformation and the surface shape and pose.

We use perspective projection to a spherical image surface instead of to a planar surface.
While there is a 1-1 mapping which relates the two kinds of perspective projection the relations
which follow turn out to be simpler in the spherical case [13, 10]. Appendix B explains how to
convert between the two forms of perspective projection.

This section has two parts. In the �rst part we review the formalismdeveloped by G�arding[10]{
essentially he de�nes an orthonormal frame �eld on the image sphere with one of the vectors
in the tilt direction. The backprojection map takes on a particularly simple form, and G�arding
obtains expressions for the di�erent texture gradients for the general situation of smooth curved
surfaces under perspective projection. In order to �nd an expression for the a�ne transformation
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Figure 1: Local surface geometry.

between a pair of image patches, we need an expression for the change in the tilt angle between
two neighboring points on the image sphere in terms of the shape parameters. We also need an
expression for the change in the vector on the surface formed by backprojecting the tilt vector.
We also derive these expressions in the �rst part of this section.

In the second part of the section the motivation for the work done in the �rst part will become
more clear, as we exploit the frame �eld de�ned by G�arding to derive an expression for the a�ne
transformation on the image sphere which relates two neighboring image patches.

3.1 The slant-tilt frame �eld

This section is based on G�arding [10], to which the reader is referred for proofs of the various
assertions. Relevant di�erential geometry concepts may be found in O'Neill [21] or Koenderink
[16].

The basic geometry is illustrated in Figure 1. A smooth surface S is mapped by central
projection to a unit sphere � centered at the focal point. The backprojection map F from � to
S is de�ned as F (p) = r(p) = r(p)p where p is a unit vector from the focal point to a point
on the image sphere, and r(p) is the distance along the visual ray from the focal point through
p to the corresponding point r = F (p) on the surface S. We consider this map for regions of
the surface where the map is not singular by excluding neighborhoods containing the occluding
contour. The di�erential of the backprojection map F� maps tangent vectors of � at p to tangent
vectors of S at F (p).

De�ne the tilt direction t in Tp(�), the tangent plane of the viewing sphere at p, to be a
unit vector in the direction of the gradient of the distance function r(p), and the auxiliary vector
b = p� t. Then (t;b) form an orthonormal basis for the tangent plane to the image sphere �
and together with p constitute an orthonormal frame �eld on �. Garding shows that t and b
backproject to orthogonal vectors F�(t) = r0p+rt and F�(b) = rb in the tangent space TF (p)(S).
Dividing these vectors by their lengths gives us an orthonormal basis (T;B) of the tangent space
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of the surface at F (p). The vectors T;B along with the unit normal to the surface N = T�B
constitute an orthonormal frame �eld on the surface. The slant angle � is de�ned to be the angle
between the surface normal N and the viewing direction p, so that cos� = N:p. F�(p) can be
expressed very conveniently in terms of the (t;b) and (T;B) bases as

F�(p) =

"
r= cos � 0

0 r

#
=

" 1
mp

0

0 1
Mp

#
(1)

where r is the distance to the object from the center of the viewing sphere, and � is the slant
angle. We see that mp = cos �=r is the scaling of the texture pattern in the \minor axis," i.e.
in the tilt direction, due to projection, and Mp = 1=r is the scaling in the \major axis," i.e. in
the orthogonal direction. The use of the terms \major axis" and \minor axis" is intended as
a mnemonic { a texture composed of circles on a planar surface would project to ellipses with
minor axes aligned with the tilt direction.

The shape of the surface is captured in the shape operator, which measures how the surface
normalN changes as one moves in various directions in the tangent space of the surface TF (p)(S).
One can represent the shape operator in the (T;B) basis as" �rTN

�rBN

#
(p) =

"
�t �
� �b

# "
T
B

#
(2)

where �t is the normal curvature in the T direction, �b the normal curvature in the B
direction and � is the geodesic torsion. The determinant of the operator gives the Gaussian
curvature K = �t�b � � 2, and half the trace is the mean curvature H = (�t + �b)=2.

G�arding goes on to obtain expressions for the derivatives of the (p; t;b) frame �eld on �
expressed in terms of the frame �eld itself. One can also de�ne the derivatives of the frame �eld
(N;T;B) on S with respect to (p; t;b) by �rst pulling back these �elds from the surface S to
�. We reproduce here the most relevant formulas:

rtN = �( r

cos�
)(�t sin �p+ �t cos�t+ �b) (3)

rbN = �r(� sin�p+ � cos�t+ �bb) (4)

rtt = �p+ r�

cos � sin�
b (5)

rbt = (
1

sin�
)(cos � + r�b)b (6)

rtb = � r�

cos� sin�
t (7)

rbb = �p� 1

sin�
(cos � + r�b)t (8)

Using the linearity of the derivative, we can compute rvt for an arbitrary vector v =
�tt+�bb in the tangent space.

rvt = ��tp+ r�

cos � sin�
�tb+ (

1

sin�
)(cos� + r�b)�bb (9)
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In the next section, we will also need the derivative of the T vector �eld. Since G�arding does
not derive any formula for this, we shall do so here.

Since T = B�N = b�N, we have

rvT = rv(b�N) = (rvb)�N+ b� (rvN) (10)

Letting v = t in the above expression and substituting from equations 7 and 3, we get

rtT = (rtb)�N+ b � (rtN)

= (� r�

cos� sin�
t)� (cos �p� sin �t)� b� (

r

cos�
)(�t sin�p+ �t cos �t+ �b)

= r�tp� r�t tan�t+
r�

sin�
b

=
r�t
cos�

(cos �p� sin�t) +
r�

sin�
b

=
r�t
cos�

N+
r�

sin�
B

Similarly, letting v = b in expression 10 and substituting from equations 8 and 4, we get

rbT = (rbb)�N+ b� (rbN)

= (�p� (cos� + r�b)

sin�
t)� (cos �p� sin�t)� b � r(� sin�p+ � cos�t+ �bb)

= r� cos �p� r� sin�t+ (sin � + cos � cot� + r�b cot �)b

= r� (cos �p� sin�t) + (sin� + cos � cot� + r�b cot�)b

= r�N+ (sin� + cos� cot� + r�b cot�)B

Using the linearity of the derivative, we can compute rvT for an arbitrary vector v =
�tt+�bb in the tangent space.

rvT = (
r�t
cos�

�t+ r��b)N+ (
r�

sin �
)�tB+ (sin � + cos � cot� + r�b cot �)�bB (11)

3.2 A�ne transformations on the image sphere

Figure 2 depicts the situation. We wish to �nd the matrix, A, which represents the a�ne
transformation between the spherically projected texture at point p1 and the projected texture
at a nearby point p2. This matrix will be a function of the local orientation and shape parameters.
The orientation parameters are �, the slant of the surface and t, the direction of tilt of the surface.
The shape parameters are r�t, r�b, and r� . The variable r is the distance from the center of the
viewing sphere to the given point on the surface. Note that the inseparability of the distance, r,
and the curvature parameters is inherent to the problem. The image of a surface S at distance
r is indistinguishable from that of a k scaled copy (for which the curvatures will be 1=k of S) at
a distance of kr.
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Figure 2: Determining the a�ne transformation, A, between the texture at point p1

and the texture at point p2. F�(�) is the backprojection map from the viewsphere to the
surface. The texture is constant over the image, so the map betweenP1 and P2, the corresponding
points on the surface, is just a rotation between the (T;B) bases at the two points. Rot(�t) rotates
between the (t;b) bases at the points p1 and p2. A = Rot(�t)F�1

�
(P2)Rot(��T )F�(p1).

Our analysis is a di�erential analysis. We will freely assume that p2 � p1 can be modelled
as a vector v = �t t + �bb in the tangent space at the point p1 and the expressions derived
will be true in the limit as �t;�b! 0.

To �nd the a�ne transformation, we �rst backproject from the point p1 on the viewsphere
to the corresponding point P1 on the surface, using the map F�(p1). Using the basis (t1;b1) on
the tangent plane of the image sphere �, and (T1;B1) on the tangent plane on the surface S,
this map can be represented as

F�(p) =

"
r= cos � 0

0 r

#
=

"
1
m1

0

0 1
M1

#
(12)

Recall that m1 is the scaling of the texture pattern in the \minor axis," i.e. in the tilt direction,
due to projection, and M1 is the scaling in the \major axis."

Our assumption of textural homogeneity enables us (see Appendix A) to model the transfor-
mation between the tangent spaces at points P1 and P2 as a rotation, by some angle �T , between
the two bases (T1;B1) and (T2;B2).

To �nd the rotation angle between the bases at points P1 and P2, we begin by noting that
T2 = T1 +rvT to �rst order, and hence from equation 11

T2 = T1 + (
r�t
cos �

�t+ r��b)N1 + (
r�

sin�
)�tB1 + (sin � + cos � cot� + r�b cot �)�bB1 (13)

In the right hand side of this equation, the term in the direction of the surface normal N1

represents a change of the plane of the frame as a whole, and the terms in the direction of B1

represent a rotation about the surface normal on S. Since T;B are unit vectors, we see that

�T = (
r�

sin�
)�t+ (sin� + cos � cot� + r�b cot�)�b (14)

as �t;�b! 0. Note that if the T;B basis vectors undergo counterclockwise rotation by �T , the
texture on the surface undergoes rotation by ��T .
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Next, we project back onto the viewing sphere, using the matrix F�1
�
(P2). This puts us back

on the viewing sphere, but in the (t2;b2) basis, not the original (t1;b1) basis. We must convert
between these bases by rotating by the angle between the tilt vectors, �t. As in the case of the T
vector �eld, to �nd this angle we begin by noting that t2 = t1 +rvt to �rst order. Hence from
equation 9 we get

t2 = t1 ��tp1 +
r�

cos� sin�
�tb1 + (

1

sin�
)(cos � + r�b)�bb1 (15)

As before, the term in the direction of p1 represents a change of the plane of the frame as a
whole, and the term in the direction of b1 represents a rotation of the frame about the normal.
We obtain

�t =
r�

cos � sin �
�t+ (

1

sin �
)(cos � + r�b)�b (16)

as �t;�b! 0. Thus we have

A = Rot(�t)F
�1
�
(P2)Rot(��T )F�(p1) (17)

= Rot(�t) �
"
cos �T

m2

m1

sin �T
m2

M1� sin �T
M2

m1

cos �T
M2

M1

#
(18)

G�arding showed that the normalized gradients of the minor and major axis scale factors, in
the (t;b) basis, are

rm
m

= � tan �

"
2 + r�t= cos �

r�

#
(19)

rM
M

= � tan �

"
1
0

#
(20)

We note that

m2 = m1 +rm � (�t �b)T

M2 = M1 +rM � (�t �b)T

to �rst order where p2 � p1 = (�t �b)T is the step between the points p1 and p2 in the image.
Using this equation and equations 18 and 1, we get

A = Rot(�t) �
"
km cos �T km sin �T cos�
�kM sin �T

cos� kM cos �T

#

where

km = 1 +
rm
m

�
"
�t
�b

#

kM = 1 +
rM
M

�
"
�t
�b

#
(21)
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The actual a�ne transformation we �nd between the two points will not, in general, be in
terms of the (t;b) basis. Instead, our matrix will be related by a change of basis: Â = UAU�1.
The change of basis matrix, U , rotates the standard basis on the image sphere to the (t;b) basis
and is given by

Rot(�t) =

"
cos �t � sin �t
sin �t cos �t

#

where �t is the tilt angle at point p1. The standard basis on the image sphere is given by the
E1; E2 frame �eld (see Appendix B).

The analysis above assumes that we have spherical projection. In reality, cameras use planar
projection. Appendix B converts between the two types of projection.

4 Estimating a�ne transforms

In order to estimate the shape and orientation of a textured surface, we must �rst estimate
the texture distortion in a number of directions in the image plane, modeled as a set of a�ne
transforms. In this section, we present a method for �nding the a�ne transform between a pair
of image patches.

Rather than estimating the transform in the space domain, we estimate it in the frequency
domain. We can do this because [20] if G is the Fourier transform of g, which we write as
G = F(g), then

F [g(Ax)] = 1

j A jG(A
�T!)

Thus if we can �nd the a�ne transformation in the frequency domain, we can �nd the a�ne
tranformation in the space domain. The advantage of working in the frequency domain for
texture analysis was �rst noted by Bajcsy and Leiberman [2]: If we keep only the magnitude
of the frequency response, our algorithm will be insensitive to small changes of position, since a
small change in position causes only a change in phase. Otherwise, we would have to make sure
that the patches were centered over `corresponding points', a notion which is not even properly
de�ned for stochastic textures. We will demonstrate this invariance to small changes in position
with an example in Section 6.

We create spectrograms of a pair of image patches in the following way:

1. Extract image patches: Extract a square patch from the image, centered at each of the
chosen points.

2. Preprocess the patches: First normalize each patch, and subtract its mean. This
makes the spectrograms largely invariant to shading and contrast di�erences, and invariant
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Figure 3: Finding the a�ne transformation in 1D: Suppose g(!) = f(a!). Then for small
a = 1 +�a, we can write g(!)� f(!) � df

d!
�a! and solve for the unknown, a.

to foreground/background reversals. Next window the patch using a Welch windowing
function[22]. Finally, remove the best �tting plane from the patch (known as detrending).
This reduces the e�ect of shading variations across the patch.

3. Fourier transform: Pad the patch with zeros, and take the Fourier Transform Magnitude
(FTM) of the patch. Padding with zeros interpolates between samples in the Fourier
transform.

4. Extract low frequency components: Extract a low frequency region from the FTM
and use it as the spectrogram. Most of the information tends to be in the low frequencies
in the FTM. It is important that, whatever criteria we use to window the frequencies in
the FTM, the spectrograms all look qualitatively the same, i.e. have the same number of
peaks. We may use any such reasonable criterion. For this paper, we chose a window size
such that all of the spectrograms have magnitude less than 50% of their maximum for all
points outside of the window.

5. Normalize the spectrograms.

We use a di�erential method to solve for the a�ne transformation between the spectrograms
of two patches. To illustrate the concept, we �rst consider the 1-D case, shown in Figure 3. In
1-D, the di�erential method works as follows. Suppose we have two curves, f and g, such that
they are related by an a�ne transformation. In 1-D, one curve is a scaled version of the other:

g(!) = f(a!)

Then suppose we write the scaling factor, a, as 1 + �a, where we assume that �a is small. We
know from calculus that

f(! +�!) � f(!) +
df

d!
(!) ��!

In this case, �! equals �a � !, so we write

f(a!) � f(!) +
df

d!
(!) ��a!
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Substituting g(!) = f(a!) , we get

g(!)� f(!) � df

d!
(!) ��a! (22)

If we are given f and g, we can solve for the a�ne transformation between the two curves by
directly solving for �a.

To extend the idea to two dimensions, we assume that one spectrogram di�ers from another
by only a 2 � 2 a�ne transformation A = I +�A. Then the 2-D analog of equation 22 is

F2(~!)� F1(~!) � ~rF1 ��A~!
where Fi is the spectrogram for the ith point, ~! is frequency, and ~rF1 is the gradient of the
spectrogram, at that frequency. The only unknown in this equation is �A, thus, for a 2 � 2
transformation matrix, this gives us one linear equation in four unknowns. If we write the
elements of �A as ai;j, we can write the equation as:

h
@F1
@!x

!x
@F1
@!x

!y
@F1
@!y

!x
@F1
@!y

!y
i
2
6664
a1;1
a1;2
a2;1
a2;2

3
7775

= F2(~!) � F1(~!)

where each of the partial derivatives is evaluated at ~!. Each frequency sample point in the
spectrogram gives us a new equation, resulting in the matrix equation: D~a = ~b. We can solve
this overdetermined system of linear equations to obtain the best (in the least-squares sense)
estimate for the elements of �A , (see e.g. [22]. Note that we are assuming that the texture
is `rich' enough so that we have enough independent constraints on the parameters of the a�ne
transformation. If we have four signi�cant Fourier components with di�erent orientations, this
will be true. Otherwise, we have the equivalent of the `aperture problem' in the motion domain
[26].

The di�erential method is in essence one step of the familiar Newton-Raphson iterative pro-
cedure for minimizing nonlinear functions, where each step is taken along the gradient of the
function. This suggests that we can re�ne our estimate of A by warping the �rst spectrogram
using the current estimate, and then �nding the new, (hopefully smaller) �A. We exploit this in
our implementation{the iterations are terminated as soon as the error between the transformed
�rst spectrogram and the second spectrogram stops decreasing. In our experiments, we �nd that
the number of iterations is small, typically 4 or 5. Usually, the result after the �rst iteration is
good enough{in a pinch, we could live with this non-iterative algorithm.

We used two heuristics for reducing the e�ect of noise and rejecting outliers in the spectro-
gram:

1. Reject points in the spectrogram with magnitude smaller than 10% of the maximum. These
points typically correspond to noise. The choice of this threshold should be based on the
signal-to-noise ratio.
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2. Reject outliers, using a reweighted least squares technique from robust statistics [23]. In
this method, we obtain an initial estimate, ~a0, for ~a, and calculate the resulting residual,
~r = D~a0�~b. We expect a higher residual at the peaks of the spectrogram than in the low
areas, so we weight the residual by 1

F1
. Then we reject as outliers any points with weighted

residual, r̂, greater than 2.5 times �̂ = 1:4826
q
median(r̂i

2).

Some previous researchers have also attempted to estimate a�ne transforms or shape parame-
ters in Fourier domain. Bajcsy and Lieberman [2] attempted to estimate the a�ne transformation
between f and g by �nding the peak in each function, and taking the ratio of the locations of
those peaks. Lindeberg and G�arding [18], and Super and Bovik [25] attempt to �nd the surface
parameters by �nding second moments in the Fourier domain, and then comparing those mo-
ments. By contrast, our method uses the entire spectrogram, rather than only the peaks or the
moments, to estimate the a�ne transformation and ultimately the shape parameters. Krumm
and Shafer [17] also �nd the a�ne transformation by using the entire spectrogram, but they �nd
it by testing every possible combination of slant and tilt in a discrete set, and choosing the one
which gives them the smallest error. By contrast, the di�erential method allows us to solve for
the a�ne transformation directly.

It may be noted that our a�ne transform estimation procedure can be applied to other
problems in vision, e.g. in the context of stereopsis; see Jones and Malik[14].

5 Shape Recovery Algorithms

To estimate the texture distortion map at a point p, we �nd the spectrograms for that point
and for neighboring points in a number of di�erent directions, ~vi = (�ti �bi)T , around p and
get estimates, �Ai , of the a�ne transforms, Âi , for each of these directions using the algorithm
developed in the previous section. In this section, we develop two algorithms for recovering
surface orientation (slant and tilt) and shape (principal curvatures and directions). In Section
6 we will present experimental results on a number of images of planar and curved surfaces.
In Section 7 we will examine the sensitivity analysis associated with our second algorithm, and
discuss predictions, based on this sensitivity analysis, for the performance of other shape from
texture methods, including human perception of shape from texture.

Recall (Section 3) that Âi = UAiU
�1, where U = Rot(�t) is the matrix for transforming

coordinates from the standard basis to (t;b), and

Ai = Rot(�it)

"
kim cos �iT kim sin �iT cos �

�kiM sin �iT
cos�

kiM cos �iT

#
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where

kim = 1 + rm

m
�
"
�ti
�bi

#
= 1 � tan �

"
2 + r�t= cos �

r�

#T "
�ti
�bi

#

kiM = 1 + rM

M
�
"
�ti
�bi

#
= 1� tan �

"
1
0

#T "
�ti
�bi

#

and

�iT = (
r�

sin �
)�ti + (sin � + cos � cot� + r�b cot �)�bi

�it =
r�

cos � sin�
�ti + (

1

sin�
)(cos� + r�b)�bi

There are �ve unknowns, the slant �, the tilt direction speci�ed by �t, and the three shape
parameters (r�t; r�b; r� ). Each estimation of an a�ne transform in an image direction ~vi =
(�ti �bi)T yields us four nonlinear equations. Simple equation counting tells us that one
direction is not enough, and generically two directions ought to be su�cient.

We present here two shape recovery algorithms. The �rst algorithm is a linear algorithm
based on singular value decomposition (SVD) of the �Ai matrices. It requires knowledge of the
a�ne transforms in a minimum of two directions, exploiting more when they are available, to
give us estimates of (�; �t; r�t; r� ) . The second algorithm is based on a least squares formulation
of an error criterion. It permits recovery of r�b as well. Since the error function is nonlinear
in the parameters, it has to be minimized by gradient descent or some variation thereof. The
�rst algorithm gives us a good initial guess. The second algorithm has an associated sensitivity
analysis, so we can provide con�dence intervals for the orientation and shape estimates.

5.1 Algorithm based on SVD of the A matrices

The three stages of the algorithm are

1. Estimate kim, k
i
M as the singular values of �Ai where si1, s

i
2 are the singular values of �Ai. To

justify this, we begin by noting that the singular values s1, s2 of matrix Âi are related to
the eigenvalues �1, �2 of the matrix ÂT

i Âi by the relationship �1 = s21 and �2 = s22. Let
us now compute expressions for trace(ÂT

i Âi) = trace(AT
i Ai) and det(ÂT

i Âi) = det(AT
i Ai).

Dropping the sub- and superscripts i to avoid unnecessary clutter,

s21 + s22 = trace(ATA) = k2m cos2 �T + k2M
sin2 �T
cos2 �

+ k2m sin2 �T cos
2 � + k2M cos2 �T (23)

and
s21s

2
2 = det(AT

i Ai) = k2mk
2
M (24)
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from which we see that

(s1 + s2)
2 = trace(ATA) + 2

q
det(ATA)

= k2m cos2 �T + k2M
sin2 �T
cos2 �

+ k2m sin2 �T cos
2 � + k2M cos2 �T + 2kmkM (cos2 �T + sin2 �T )

= (km + kM )2 � k2m sin2 �T (1 � cos2 �) + +k2M sin2 �T (
1

cos2 �
� 1)

= (km + kM )2 � (km sin �T sin�)
2 + (kM sin �T tan �)

2

As the step in the image plane �ti;�bi ! 0, km; kM ! 1 while sin �t � �t ! 0. This
suggests that from the above expression, we can approximate s1 + s2 � km + kM . In
conjunction with the expression s1s2 = kmkM , this implies that we can estimate km and
kM as the singular values of �A. We must decide which singular value corresponds to km
and which to kM . We initially make the heuristic assumption that kM is the singular value
closer to one. This amounts to assuming that the magnitude of change along the major
axis is smaller than the change along the minor axis, and that �T is small. This assumption
will be true for any planar surface, and for many curved surfaces with positive curvature
and torsion. More generally, we can try both cases and choose the one which gives us shape
parameters which best agree with our a�ne transformations.

2. Estimate the tilt direction and tan � from the major axis gradient. To do this, note from
Eqn 20 and Eqn 21 that kiM � 1 = � tan ��ti. We don't know �ti, because we do not yet
know the tilt direction. Let (tx ty)T be the normalized major axis gradient vector, rM

M
,

in the standard basis, (x; y). This vector is in the tilt direction, and has length j� tan �j.
Then 2

6664
�x1 �y1
�x2 �y2
: :

�xn �yn

3
7775 �

"
tx
ty

#
=

2
6664
k1M � 1
k2M � 1

:
knM � 1

3
7775

We can solve this overdetermined linear system for the least-squares estimate of (tx ty)T ,
giving us both the tilt direction and the slant �.

3. Estimate the surface curvature from the minor axis gradient. To do this, note from Eqn
19 and Eqn 21 that

kim � 1 = � tan �

"
2 + r�t= cos �

r�

#
�
"
�ti
�bi

#

Since the tilt direction has been previously estimated we now know the steps, (�ti �bi),
taken in the di�erent directions. So we have an overdetermined linear system which can
be solved to estimate r�t and r� .

Note that for the systems of linear equations in steps 2 and 3 to be solvable, two independent
directions are necessary and su�cient.
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Complete information about local surface shape requires knowledge of three parameters, and
here we have only found two: r�t and r� ; the third parameter, r�b, is left undetermined. This was
to be expected as this algorithm is essentially based on factorizing the a�ne transform matrices
to obtain the major and minor axis gradients{we know from G�arding that these underspecify
shape.

5.2 Algorithm based on least squares formulation

The second algorithm is based on �nding the orientation and shape parameters which minimize
the sum of squared errors between the predicted and empirically measured entries of the a�ne
transformation matrices, i.e., we wish to minimize the following error function:

�2(�; �t; r�t; r�b; r� ) =
nX
i=1

2X
k=1

2X
l=1

(Âi(k; l)� �Ai(k; l))
2

where Âi(k; l) the (k; l)th element of the theoretically predicted matrix Âi and is a function
of the shape parameters, and �Ai(k; l) is the (k; l)th element of the empirically measured a�ne
transform matrix �Ai. Ideally, each term in this error sum should be weighted by the inverse of the
standard deviation of the measurement error of that particular entry. A speci�c characterization
of the probability distribution of the measurement errors in the entries of the a�ne transform
matrices Ai is not yet available. We expect it to depend on the particular algorithm used for
the estimation of the a�ne transforms. In the absence of a particularly appropriate model, we
will proceed on the (convenient!) assumption that these errors are independent and normally
distributed with standard deviation �a.

For minimizing the error function, we just used the gradient descent routine in the Mathe-

matica package{there are any of a number of variants such as conjugate gradient that could have
been used equivalently. The starting point is provided by the orientation and shape estimates
returned by the �rst algorithm. Since the �rst algorithm does not estimate r�b, we arbitrarily
set r�b = r�t.

6 Experimental Results

In this section we show the results of our algorithms on a number of synthetic and real images.
Synthetic images are useful because, since we know the ground truth, they allow us to better
judge the accuracy of our methods. Table 1 shows the results of the �rst algorithm on nine
synthetic images. For each of these images, we found the a�ne transform in eight di�erent
directions around a given point of the image. Each of these images was created by mapping
Brodatz textures on various surfaces. The image marked \jitter" is the same image as that
marked \wire2", but we have jittered the positions of our \corresponding points," by an average
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True Estimated
Image � tilt r�t r� � tilt r�t r�

wire1 69 180 0 0 66 169 -.05 .12
wire2 64 -25 0 0 56 -36 .79 1.2
jitter 64 -25 0 0 55 -38 .86 1.4
noise 64 -25 0 0 57 -33 .76 .95
cane 69 -90 0 0 58 -91 .95 -.04
straw 64 -90 0 0 49 -106 -.14 1.7
cyl 28 180 6.5 0 42 171 .49 .03
sph1 39 180 6.6 0 80 166 -.26 .46
sph2 40 180 6.6 0 79 174 -.28 .43

Table 1: True and Estimated Surface Parameters: Method 1

Figure 4: Planar wire texture, slant=70�, tilt=180�, \wire1".
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Figure 5: Planar wire texture, slant=65�, tilt=�25�, \wire2".

of seven pixels. The image marked \noise" is the \wire2" image, with added noise of standard
deviation 30. The �rst six surfaces are planar, followed by a cylinder and two spheres.

For the planar cases, we get consistent underestimation of slant, but in general the results
are good. In particular, note that even when our selected points were an average of seven pixels
from \corresponding points," our results were still good. 1 The algorithm does quite well even
in the presence of noise. We get good results on the \straw" planar surface, even though this
texture does not satisfy the isotropy assumption commonly used by other researchers.

The tilt and some of the slant estimates for the curved surfaces were also reasonable, but
the curvature estimates were not accurate enough to be usable. If this algorithm were to be
used for shape estimation by itself, the recommended strategy would be to obtain slant and
tilt estimates at a large number of points and then �t a smooth surface consistent with these
estimates. Di�erentiating this �tted surface yields the desired shape parameters.

However a better approach is to use our second algorithm which gives much more accurate
orientation and shape estimates locally without any need for a surface �tting stage.

Table 2 shows the results of our second algorithm on a number of synthetic examples. We
get improved slant and tilt estimates, and also signi�cantly better estimates of the curvature

1We in no way mean to imply that seven pixels is the limit of our shift invariance. For this particular image,

a shift of much more than seven pixels simply puts one closer to a di�erent texel.
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Figure 6: Noisy wire texture, slant=65�, tilt=�25�, \noise".

Figure 7: Planar cane texture, slant=65�, tilt=�90�, \cane".
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Figure 8: Planar straw texture, slant=65�, tilt=�90�, \straw".

Figure 9: Wire texture on cylinder, \cyl".
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Figure 10: Wire texture on sphere, \sph1".

parameters.

In addition, Figures 12 and 13 show two natural images. Since we do not have ground truth
for the natural images, we indicate the computed surface orientation by a projected circle in the
image, and give the shape and orientation estimates in the captions. We get quite reasonable
orientation estimates and believable curvature estimates for both of the natural images.

7 Con�dence Intervals and an Ideal Observer

Our second algorithm allows us to easily determine con�dence intervals on the orientation and
shape estimates. For more details on the methodology that we follow, the reader is referred to
[22], Chapters 14.4 and 14.5. In the latter part of this section we will demonstrate how one may
use con�dence intervals to predict the performance of either a computer algorithm or a human
observer at the shape from texture task.
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Figure 11: Rotated wire texture on sphere, \sph2".

True Estimated
Image � tilt r�t r�b r� � tilt r�t r�b r� �2

min

cane 69 -90 0 0 0 71 -92 -.06 .00 -.03 .031
wire2 64 -25 0 0 0 63 -20 .22 .00 -.03 .027
noise 64 -25 0 0 0 61 -18 .32 -.01 -.10 .027
straw 64 -90 0 0 0 60 -73 -.13 .29 -.27 .010
cyl 28 180 6.5 0 0 26 180 3.2 -.13 -.15 .003
sph1 39 180 6.6 6.6 0 40 179 6.0 5.8 .67 .002
sph2 40 180 6.6 6.6 0 35 182 8.0 5.6 .95 .002

Table 2: True and Estimated Surface Parameters: Method 2
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� = 68, �t = �96, r�t = �0:08, r�b = 0:07, r� = �0:06
Figure 12: Campanile image, with empirical results shown.

Left pt: � = 19, �t = �8, r�t = 0:53,r�b = �0:12, r� = 0:00.
Right pt: � = 40, �t = �11, r�t = 2:9, r�b = �0:03, r� = 0:58

Figure 13: Lecture hall image, with empirical results shown for two points.
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7.1 Con�dence Intervals on the Shape Estimates

Let us abbreviate the �ve geometrical parameters (�; �t; r�t; r�b; r� ) as gi; i = 1; 2; : : : 5. The
gradient of the error function, �2, with respect to the parameters g will be zero at the �2

minimum. To obtain con�dence intervals on the parameters, one computes the so-called curvature
matrix [�] which is de�ned as half of the Hessian of the �2 function

�kl =
1

2�a2
@2�2

@gk@gl

Since we have �ve geometrical shape parameters gi, this is a 5 � 5 symmetric matrix. The
inverse of the curvature matrix is the covariance matrix, C, of the �t, on the assumption of
normally distributed errors. In that case the standard errors in the parameters are given byp
Cii. The con�dence interval for parameter gi, ��gi is �

p
Cii for 68 percent con�dence, �2

p
Cii

for 95 percent con�dence.

As mentioned above, if we assume that the errors in the entries of the a�ne transformation
matrices Ai are independent and identically normally distributed, and if we have an estimate
for the standard deviation of these errors, we can give con�dence intervals for the estimates
of the shape parameters. In Figures 14-18 we show the 68 percent con�dence intervals for the
parameters, assuming2 a measurement error �a of standard deviation 0:0323. Using this value
for the standard deviation, 66 percent of the estimated parameters fall within the 68 percent
con�dence intervals.

7.2 Ideal observer predictions

In addition to obtaining con�dence intervals for our empirical estimates of shape parameters, we
can use the theory outlined in the previous section to develop an ideal observer model for shape
from texture. Roughly speaking, an ideal observer gives us a prediction for the best performance
one expects out of any estimator, given the visual information and the measurement error. As
such it is of interest both for computer vision shape from texture algorithms and for predicting
the performance of the human visual system. In the context of shape from texture models based
on discrete texels using isotropy and �rst order homogeneity assumptions, such ideal observers
have been developed by Blake et al[3].

The uncertainty in the shape estimates depends upon the measurement errors in the earlier
stages of processing; here, in the estimation of the a�ne transforms. The errors in the a�ne
transforms will of course depend on the texture being viewed. For example, if the texture
is a realization of a Poisson process then we expect that for sparser textures it will be more
di�cult to estimate the a�ne transforms accurately. A second example would be that of a
sinewave grating texture{clearly we can expect to recover only some components of the a�ne

2We computed this value as the standard deviation of the errors in the a�ne transformation matrices for the

examples used in this paper. The errors are known because we know the ground truth in these synthetic examples.
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Figure 14: Slant estimates with con�dence intervals.
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Figure 15: Tilt estimates with con�dence intervals.
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Figure 16: r�t estimates with con�dence intervals.
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Figure 17: r�b estimates with con�dence intervals.
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Figure 18: r� estimates with con�dence intervals.

transforms. If we know the prior distribution of the texture on the surface (except perhaps for
a few unknown parameters), we can expect to analytically characterize the uncertainties in the
a�ne transform estimates. This would be in the spirit of the work of Blake et al. We however
favor a di�erent approach{one should try to estimate the uncertainty of the a�ne transform
estimates as a byproduct of the a�ne transform estimation process itself, and avoid making
strong assumptions about the texture distribution. This approach is similar to what would be
considered `natural' for stereopsis or optical 
ow.

Without prior knowledge of the distribution of the texture, what can we say about the
distribution of errors in the a�ne transforms? A simple choice would be to assume, as we did in
the last section, that the errors in the a�ne transform parameters are independent and identically
distributed normal random variables. While clearly this assumption would be incorrect for, e.g.,
highly anisotropic texture, it gave us very reasonable results for the range of textures in the
previous section. One may think of the situation as follows: we have a number of surfaces of
di�erent shapes and orientations, all with similar textures which satisfy the above assumption,
and we wish to know whether shape estimation is more di�cult for some of these shapes than
others. As above, we will �nd con�dence intervals for the shape parameters for a number of
these hypothetical shapes. The con�dence intervals give us a measure of the uncertainty in the
shape estimates.

We present here the results of several ideal observer \experiments." Since the con�dence
intervals will depend on the measurement error in the elements of the a�ne transformations, we
give the con�dence intervals in terms of relative units. To obtain the actual expected error one
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r�b 0 1 2 3 4 5 6
r�t 6 5 4 3 2 1 0

r� 0
p
5

p
8

p
9

p
8

p
5 0

Table 3: Relationships between the curvature parameters for the experiment in Figure
22.

would multiply these values by the standard deviation of the measurement error. 3

In the �rst experiment in Figure 19, we varied the slant of a planar surface, and plot the
con�dence intervals for slant and tilt estimates. We see that we expect improved tilt estimates,
and somewhat improved slant estimates, for higher slants. Blake, et al[3] report similar results
for their ideal observer based on compression gradient.

In the second experiment, in Figure 20, we varied the �eld of view (f.o.v.) for both a plane
and a sphere, and again present the con�dence intervals for slant and tilt estimates. We see in
these plots that one expects better slant and tilt estimates for larger f.o.v.

In Figure 21 we show the con�dence intervals for surfaces with varying r�t and r�b, for which
tilt is aligned along one of the principal directions, i.e. r� = 0. We see that slant estimates
are best for planar or near planar surfaces, whereas tilt estimates are worst for near planar
surfaces. There also appear to be some asymmetries: slant estimates are worse for positive r�t
than negative, and tilt estimates are worse for negative r�b than positive, at least for small r�t.

In the fourth experiment, presented in Figure 22, we rotate a cylindrical surface about its
surface normal at a point, thus keeping the shape (i.e. principal curvatures) constant, but varying
the direction of tilt with respect to the surface, and thus varying r�t, r�b, and r� . We show the
relationship between the values of r�t, r�b, and r� in Table 3. We see, roughly, that estimates
are worst for larger r� i.e. when the tilt direction is in between the two principal directions.

In the �nal experiment, we varied the slant of a cylindrical surface, keeping the tilt perpendic-
ular to the axis of the cylinder. This amounts to computing shape estimates for a series of points
along the circumference of the cylinder. In Figure 23 we plot the con�dence intervals for the
estimate of r�t. Note that for smaller slants we expect more error in the curvature parameter.
This may explain much of the error in r�t for both our synthetic cylinder example and for the
�rst point in the real cylinder example.

These observations suggest several lines of psychophysical investigation.

3Unless otherwise speci�ed, the �eld of view used was quite small to insure that our di�erential assumptions

held: 0:15 degrees. We found no qualitative di�erence for larger �elds of view, though of course the con�dence

intervals are larger for smaller �elds of view.
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Figure 19: Con�dence intervals for slant and tilt as a function of slant for a planar
surface.
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Figure 20: Con�dence intervals for slant and tilt as a function of f .o.v. angle.
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Figure 21: Con�dence intervals for slant and tilt as a function of r�t and r�b (r� = 0).
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Figure 22: Con�dence intervals for slant and tilt as r�t, r�b, and r� vary, keeping
principal curvatures constant.
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Figure 23: Con�dence intervals for r�t as a function of slant, for a cylinder.

Conclusion

In conclusion, we have presented a method for �nding the shape of surfaces locally from texture
distortion, modeled as a set of a�ne transforms in di�erent directions in the image. The advan-
tage of this representation is that it captures all the information available locally and does so
without any restrictive assumptions. We develop a di�erential technique for estimating the a�ne
transforms, which can be applied to a number of other vision problems. Our results demonstrate
that local shape-from-texture without any a priori assumptions on the texture is a viable mod-
ule for early vision. Our second shape recovery algorithm has an associated sensitivity analysis,
which both allows us to �nd con�dence intervals for our estimated parameters and serves as an
ideal observer model that can make predictions about human estimates of shape from texture.

This research was supported by NSF PYI grant IRI-8957274, Xerox, JSEP contract F49620-
93-C-0014, and Rosenbaum fellowship from the Newton Institute. We thank Phil Lapsley, Pietro
Perona and Sanjay Tiwari for useful discussions, and John Oliensis for catching an error in an
earlier version.

A Textural homogeneity for curved surfaces

As was pointed out by Helmholtz back in the last century, the notion of free mobility of �gures{
sliding �gures around on a surface without distorting the shapes of �gures{is equally valid for
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surfaces of zero Gaussian curvature e.g. planes, cyliders, surfaces of constant positive Gaussian
curvature e.g. spheres and surfaces of constant negative Gaussian curvature. Rigorous results
were obtained by Cartan who showed that in some sense, the Riemannian metric is determined
locally by the curvature. We refer the reader to [9], pp. 156-159 for the proof and the following
corollary;

Corollary 2.3 Let M be a space of constant gaussian curvature and let p and q be
any two points of M . Let fejg and ffjg be arbitrary orthonormal bases of the tangent
spaces Tp(M) and Tq(M), respectively. Then there exist neighborhoods U of p and V
of q, and an isometry g : U ! V such that dgp(ej) = fj , where dgp is the di�erential
of the map g at p.

The isometry g can be used to slide �gures around on a surface without having to distort
their shapes or having to leave the surface. In this setting the notion of texture homogeneity
for a patch of surface is quite naturally de�ned. The derivative of this isometry gives us the
mapping between the orthonormal bases (T1;B1) and (T2;B2) of the tangent spaces at points
P1 and P2 respectively that we use in Section 3. This is just a rotation by angle �T .

For surfaces which do not have constant Gaussian curvature, the concept of a texture pattern
which is homogeneous over the surface becomes somewhat ill-de�ned. The pattern cannot be
isometrically related at two distinct points P1 and P2. To proceed further, we believe that some
additional assumptions about the physical processes which generated the texture are necessary.
We do not pursue this line of inquiry in this paper.

While our model is rigorously valid only for surfaces of constant Gaussian curvature, we can
extend it heuristically to surfaces where over the local scale of analysis i.e. the patches over
which a�ne transforms are measured, the Gaussian curvature does not vary `too much'.

B Relation Between Spherical and Planar Perspective

Projection

The geometry described in Section 3 assumes that we have spherical projection. In reality, our
images are projected using planar perspective projection. Therefore we must convert between the
two kinds of projection. This involves both rewriting the step (�x;�y) on the viewing sphere and
converting our empirically measured a�ne transform, �A, to the corresponding transformation on
the viewing sphere.

Figure 24 depicts the situation. Let � be the viewsphere of unit radius centered at the origin
of R3. Longitude and latitude on the earth suggest a convenient parametrization. We have the
Cartesian coordinate system oriented as follows{the x-axis points due east, the y-axis points due
north and the z-axis is oriented to make a right-handed coordinate system. The point p(�; �)
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(0,0,f)

Image Plane

0
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X
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Z

P(0, 0)

Viewsphere 

O

Figure 24: Transforming image plane coordinates into longitude/lattitude spherical
coordinates. The optical center is at the origin, O, of the coordinate system. The Z-axis
intersects the image plane Z = f at the point (0; 0; f). Point P = P (�; �) lies on the surface of
the unit viewsphere �. Point P corresponds to a point Q = (X;Y; f) (not shown) in the image
plane, i.e. point P is the intersection of ray OQ with the surface of the unit viewsphere. The
projection of P onto the Z-X plane makes a counterclockwise angle of � with respect to the
Z-axis.
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of � with longitude � (��=2 � � � �=2) and latitude � (��=2 � � � �=2) has Euclidean
coordinates

p(�; �) = (cos� sin �; sin�; cos� cos �)

We can measure angles and distances on the viewing sphere using the (orthonormal) spherical
frame �eld

E1 = cos � i� sin � k

E2 = � sin� sin � i+ cos � j� sin� cos �k

E3 = cos� sin � i+ sin� j+ cos � cos � k

where i; j; and k are the unit vectors along the x; y; and z axes respectively. E1 points due east
along a circle of latitude, E2 points due north along a circle of longitude. At a point (�; �) on the
viewsphere, the vectors E1, E2 provide an orthonormal basis for the tangent space at the point.
We de�ne �t, the tilt angle, as the counterclockwise rotation needed to align the E1, E2 vectors
with the t;b vectors.

We next introduce the dual 1-forms of the (E1;E2) basis, D1 = cos �d� and D2 = d�. If at a
point (�0; �0), one takes a small step (��;��), then the dual 1-forms tell us that the component
of this vector in the E1 direction, �x, is cos �0�� and the component in the E2 direction, �y,
is ��.

We can identify the point p(�; �) of the viewsphere with the direction (X;Y; f) where X, Y
are the coordinates of the projection on an image plane at distance f from the optical center.
We then get the following simple relationship between �, �, and the image plane coordinates:

� = tan�1
X

f
(25)

� = sin�1
Y

R
(26)

where R =
p
X2 + Y 2 + f2. This de�nes a mapping from (X;Y ) to (�; �) . We compute its

Jacobian which can be used to approximate the step (��;��), associated with the step in the
image plane, (�X;�Y ).

"
��
��

#
�
2
64

f

X2+f2 0

� XY

R2

p
X2+f2

p
X2+f2

R2

3
75
"
�X
�Y

#

We next need to �nd the step (�x;�y) on the viewsphere measured in the orthonormal
basis (E1;E2), associated with the step (��;��). For this we use the 1-forms above. Thus the
complete transformation between (�X;�Y ) on the image plane and (�x;�y) on the viewing
sphere is:

"
�x
�y

#
�

"
cos� 0
0 1

# 264
f

X2+f2
0

� XY

R2

p
X2+f2

p
X2+f2

R2

3
75
"
�X
�Y

#
(27)
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=
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Note that for the point (0; 0) where the optical axis intersects the image plane, J is just
1=f times the identity matrix and this transformation reduces to simply scaling (�X;�Y ) by a
factor of 1=f . For other points on the image plane, we get a distortion which becomes signi�cant
for large �elds of view. Leonardo da Vinci was the �rst to point out this e�ect of position on the
image plane. He drew a distinction between natural perspective (onto a sphere) and arti�cial
perspective (onto a plane) as used in constructing a painting.

Converting from a�ne transforms A on the image plane to a�ne transforms Ameasured with
respect to the bases (Ei1;Ei2), i = 1; 2 on the image sphere is simple:

A = J2 �AJ
�1
1 = G( �A)

where Ji is as de�ned in equation 28.

To give an idea of the signi�cance of the transformation, G, between the a�ne transform
matrices on the plane and the sphere, we work it out numerically for one of our examples. Note
that in general the e�ect of G will be greater for larger �elds of view and for starting points
which are further from the center of the image plane. The Lecture Hall image (Figure 13) was
taken using a lens with a �eld of view of 45 degrees, which is greater than that for any of our
other images. The focal length for this image is roughly 908 pixels. The e�ect of G will be more
signi�cant for the second point in this image, which is at (122;�49) relative to the center of the
image. Thus we expect G to have a greater e�ect at the second point in the Lecture Hall image
than for any other points in our examples, so we will demonstrate the \worst case" e�ect of G
for the a�ne transform between the second point and a point 25 pixels to the right. Our a�ne
transform on the plane between these two points was

�A =

"
0:8433 0:0092
0:0178 0:9725

#

On the sphere, the transform is

A =

"
0:8366 0:0091
0:0180 0:9689

#

Note that the largest di�erence between the two matrices is 0:0067, in the (1; 1) entry. To get
a feel for the order of magnitude of the error, note (Section 7) that the standard deviation of
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the errors in the elements of the a�ne transformation matrices for our synthetic examples was
roughly twice this value. Since this was a worst case scenario for our examples, we assumed
throughout that the transformation between the two forms of projection was insigni�cant, and
ignored it.
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