User Interface Management System Embedded
in a Multimedia Document Editor Framework”*

Takashi Ohtsu! and Michael A. Harrison?

! Information Systems Research Lab., Matsushita Electric Industrial Co., Ltd.,
1006 Kadoma, Kadoma, Osaka 571 Japan
? Computer Science Division, University of California at Berkeley,
571 Evans Hall, Berkeley, CA 94720 U.S.A.

Abstract. This paper describes Duma: a Data-based User interface man-
agement system for Multimedia Application, which is embedded in 2 mul-
timedia document editor framework (MMDEF). MMDEF is the core of
a multimedia document editor, which can adapt to externally defined
media types and operations, and enables the user to work on docu-
ments composed of multimedia objects, including objects of newly de-
fined types, through a coherent user interface. Duma introduces an ex-
tensible data model called interactor that abstracts the user interac-
tion between application semantics and user interface components. Also.
Duma’s data-based UIMS architecture embodies an interactive Ul design
environment in which interfaces to the interactor model are given.

1 Introduction

Remarkable advances in CPU performance and system software enable recent
desktop computers to process and present non-textual objects with relatively
inexpensive cost. Accordingly, in the field of document processing, a number of
DTP systems have started incorporating capabilities to let non-professional users
author multimedia documents that combine not only text objects but multiple
kinds of non-textual media objects. An example of such systems is Microsoft’s
Word which is equipped with the ‘plug-in’ capability that allows externally-
defined media objects and their subeditors to be hooked up to its main editor.
Meanwhile, most of these DTP systems treat foreign media objects as special
textual objects that inherit features of text in terms of presentation and editing.
Therefore, in editing a multimedia document, users have to explicitly go back
and forth between the main editor for textual media and other medium-specific
editors as shown in Fig. 1{A). We observe that this type of user interfaces (UI’s)
will become unacceptable for users when the number of foreign media explodes,
since users will have to take care of the differences of all media incorporated in
documents.

* This research has been sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract N00039-88-C-0292, monitored by Space and Naval
Warfare Systems Command, and under Grant MDA972-92-J-1028. The content of
the irformation in this paper does not necessarily reflect the position or the policy
of the U.S. Government.

(A) Current Approach (B) MMDEF's Approach

Fig. 1. Editing Environment for Multimedia Documents

To deal with this problem, we have been designing and implementing a mul-
timedia document editor called Ensemble. Ensemble, whose appearance is shown
in Fig. 2, is built on our research framework called MMDEF (MultiMedia Docu-
ment Editor Framework). MMDEF is the core of a tightly integrated multimedia
document editor that adapts to different media. Ensemble uses a novel architec-
ture to utilize common services unlike a system like Quill [3] which is a collection
of subeditors. The user of Ensemble may have the illusion that s/he is in a subed-
itor when editing a MODULA program. For the integrated multimedia document
editor on MMDEF, all of the available media are adapted. In other words, the
differences among media are taken care of by MMDEF instead of by users as
shown in Fig. 1(B).

St rupd an e 0 Hhe fove with U
aehdner Sonndel i 971
on GRS Ames e
e s e Kand 0]
ot

s ¢ gy catos C e b o dd
T
-hc-'.—l-u‘y-'gl

Fig. 2. A Screen Dump of Ensemble based on MMDEF

We claim that MMDEF plays the role of a user interface management system
(UIMS). In addition, MMDEF should offer software repository of UI’s that can
be shared among adapted media at runtime. The repository might store diverse
models of user interaction that can be reused rapidly by newly adapted media.

In this paper, we describe the design and the implementation of Duma [7]: an
embedded data-based UIMS in MMDEF, that provides users, Ul designers, and
AP designers with coherent UI’s. Duma’s achievement is characterized by the

following two medium-independent services. First, Duma introduces an extensi-
ble data model called tnteractor that abstracts runtime user interaction between
applications (AP’s) on MMDEF and Ul widgets. Secondly, Duma’s data-based
UIMS architecture embodies an interactive Ul design environment in which both
Ul and AP designers are given interfaces to the interactor model by means of a
Ul specification language and coherent tools provided by MMDEF. Fig. 3 shows
the architecture of Ensemble consisting of MMDEF and Duma.

Multimedia document oditor : Ensemble
[Services
edtom-specttic] (1=) ((wdw) (Proviess)

- o) (o) (=)

Multimedia
Document MMD
Editor EF
Framework
ecData
Data Repository L R:pol:lory
—

Fig. 3. Ensemble Architecture

In the following chapters, we discuss the data-based UIMS followed by the
architecture of MMDEF. Then, we introduce the interactor model, the Ul design
layers we adopted into Duma, and the Duma prototype we have implemented.
Finally, we discuss our conclusions and our plans for future work.

2 Related Work

2.1 Graphical UIMS Architecture

Since the Seeheim model [10] calls for three components in a UIMS - presenta-
tion, semantic interface, and dialog control - a number of UIMS architectures
have been proposed. Recently, as window applications proliferate, the role of Ul
widgets in terms of graphical UIMS’s is getting more important. On the other
hand, we observe that currently available graphical UIMS’s such as Motif, Open-
Look, and ET++ [11] are still primitive and do not clarify the border between
UI's and AP’s.

For example, to switch a set of radio buttons into a menu, one must replace
lines of code statically written in the AP and recompile it because s/he has
to verify compatibilities of these Ul widgets by hand. We observe that prob-
lems mentioned above arise because most traditional UIMS’s have been focusing
on the sequence of users’ events rather than the semantics of user interaction
between Ul's and AP’s.

2.2 Data-based UIMS Architecture

Depicting universal semantics of user interaction is unrealistic; but considering
the fact that most interactions using typical Ul components like buttons and pan-
els contributes to transfer certain data objects to/from AP’s/users, representing
the user interaction as data types that encapsulate two concepts is realistic and
effective in reducing AP/UI designers’ chores. The two concepts are: the class
of the data to be transferred, and the scenario that demonstrates the detailed
runtime manner of user interaction. In this paper, we define a data-based UIMS
as one that explicitly supports such abstract data types of user interaction. The
design of Duma is based on this UIMS architecture.

The ITS architecture [12] is considered to be a data-based UIMS architecture.
In ITS, data values to be passed among application semantics and Ul's are
stored in data tables. User interaction of ITS is represented by two models of
communication: one between the data tables and the application semantics, and
another between the tables and the Ul widgets. As for the style specification, ITS
adopts if-then rules. The if part specifies a pattern of attributes. The then part
specifies an attribute environment in which the Ul is presented. These rules are
compiled statically and produce runtime objects that keep the Ul consistency
defined by the rules. However, neither users, nor the Ul designers, nor the AP
designers can interactively edit the rules at runtime.

Selectors [6] are widgets used in the ACE environment that enhances the ITS
architecture. Selectors are classified according to semantics of interaction rather
than their appearances. Though this idea is close to what we would like to have,
we pursue the following three properties in addition to those of the Selectors:
the rapid adaptability of new Ul objects to the application and the UIMS, the
extensibility of abstraction for runtime interaction, and the interactivity of Ul
design environment.

3 MMDEF Architecture

MMDEF treats each multimedia document as an object instantiated from a
certain document class. A document class can be composed of multiple media
while a document class itself is also considered to be one composite medium.
Please notice that we use the term medium (or media in plural form) in a slightly
different way from the general usage. Common examples of media, such as Text
and Video, can not be decomposed, therefore, we call them primitive media.
The research goal of MMDEF is to clarify medium-independent services for
multimedia document processing and to guarantee the adaptability of externally
defined document class to its multimedia document editor. MMDEF should co-
ordinate editing protocols and UI’s of media objects of multimedia documents
so that their boundaries could be virtually hidden. We claim MMDEF to be
composed of several well-organized modules each of which serves as a medium-
independent abstraction for a certain purpose. We call such a module a mediator.
MMDETF consists of five mediators in its initial design: tree data mediator, struc-
ture mediator, preseniation medtator, editor mediator, and Ul mediator. Fig. 3

shows the Ensemble architecture including Duma and MMDEF. The architec-
tural goals of Duma meet those of the Ul mediator of MMDEF. In the following,
we briefly discuss each mediator.

MMDEF

Editor
Mediator

Fig.4. MMDET Architecture

3.1 Tree Data Mediator

The fundamental information regarding documents in MMDEF such as their
logical structure have the form of trees, which are stored in the tree data repos-
itory shown in Fig. 3. The tree data mediator provides interfaces to effective
operations on those tree-formed data.

One distinguished service of the tree mediator is its virtual tree service which
is for multiple clients who share the same logical tree data simultaneously. In
our design, a virtual tree class takes an essential tree as a base tree and derives
multiple virtual trees whose structures are, at first, the same as that of the base
tree. Structural modifications of the base tree are reported to each virtual tree
immediately. On the other hand, modifications to virtual trees are not propa-
gated to the base tree and other derived trees. This mechanism allows clients
to annotate the same tree as they please without affecting the underlying data
structure. Clients will use virtual trees for their own transitory data represen-
tations. To maintain the integrity of such tree-structured data, the tree data
mediator also provides transaction services in terms of a database management
system to ensure atomic editing operaticns on trees.

3.2 Structure Mediator

The structure mediator maintains the structural consistency of documents. In
other words, according to requests to modify the structures of documents, the
structure mediator examines whether the requests are acceptable or not by ap-
plying a set of rules to the logical structure of the document. The set of rules is
called a structure schema, which is given to each document class and is stored
as an external ASCII file. An example of the structure schema for the memo
document class is shown in Fig. 5(A).

The logical structure tree of a document, which is maintained by a certain
structure schema, is called a document tree. An example of the document tree
which is derived from the memo structure schema is shown in Fig. 5(B).

SCHEMA Mamo:

Mamo: Head Body:

Head: To From Subject? Face?:
To: text:

Prom: text;

Face: Graphics;

Subject: text;

Body: Paragraph+;

Paragraph: text | foreign :

(A) Stricture Schema for "Memo™ (B) A Document Tree for "Memo"

Fig. 5. Structure Schema and Document Tree for Memo

3.3 Presentation Mediator

The presentation mediator supports the management of multi-media document
presentation [4]. In the first place, the presentation mediator accepts a document
tree, maps a set of rules to it, and derives a presenfation tree that includes the
structural information regarding its presentation. Finally, the presentation tree is
formatted to various kinds of physical devices such as printers for page-oriented
documents, bitmap displays for graphics, speakers for audible objects, and so
on.

The set of rules called presentation schema are stored as an external ASCII
file. Each document class may have more than one presentation schemas, which
implies that the documents of the class might have several presentations simul-
taneously. An example of the presentation schema for memo document class is
shown in Fig. 6.

T
(MEDTUM tex:: |RULES h
, Memo :
PRESENTATION memo FOR memo: f BEGIN
. Width = 432:
DEFAULT . Herizbos: Left = 72:
BEGIN \ Vertbes: Top = 26:
width = AliChildren . Width- FontFamily = ®schoolbock®:
Height = AliChildren . Height: Linespacing = 1.2;
Vertfes: Top = LeftSib . Bcttom: Size = 14&:
Horizbos: Left = Farent . Left: Justify = LeftJustify:
Justify = Parent . Justify: ENLC:

|
'
)
.
'
parent . FontFamily: B
. BEGIN
. HorizFos: Left = Rightsib . Left:
. Size- 5
|
.
'
)
)
'

Iralic = Yes:
Farent . LineSpacing: T

Indent G-
Visikle = Yes:
RightMargin = 504:
END:;

: Left = RightSik . Left:

Fig. 6. Presentation Schema for Memo

3.4 Editor Mediator

The editor mediator receives editing requests on multimedia documents and
interprets them as a set of procedural commands on involving different media.
Then, it invokes appropriate services with those commands.

For example, with an editing request on objects presented in a view, the
editor mediator functions as follows. First, the editor mediator specifies objects
on documents to which the request is issued by both the locational information
from the presentation mediator and the structural information from the structure
mediator. Then, it finds services corresponding to the objects. Finally, the editor
mediator interprets the request as a sequence of commands and dispatches them.
The editor mediator should also take care of multiple users’ requests on the
same logical document, since one logical document may be viewed with different
presentations simultaneously.

3.5 UI Mediator: Goals of Duma

The Ul mediator offers a medium-independent Ul model to AP’s such as services
and viewers, and embodies a UI development environment where highly interac-
tive design and customization are possible. Our goal here is to make UD’s adapt-
able to MMDEF as well as externally defined document classes so that newly
adapted document classes can reuse and share Ul’s. This adaptability must take
two forms. First, it must be relatively easy to define new UI's. Secondly, it must
be possible to register these new UI's with MMDEF without having to directly
modify the code. To explore the adaptability of UI’s, the medium-independent
U1 model of the Ul mediator utilizes the model of user interaction which was
introduced in the data-based UIMS architecture. We call the model that we
discuss in detail in the next section the tnteractor model.

At runtime where particular interaction is requested, the UI mediator deploys
a Ul agent who binds the AP to Ul widgets by examining the data types of the
user interaction. Then, AP and UI widgets are allowed to communicate with each
other through the agent. The characteristics of the agent include understanding
which class of values should be transferred and which Ul widgets are valid to
effect the user interaction in exchanging the values of the class.

The ultimate goal of the Ul mediator is to providle MMDEF with the user
interaction models and Ul widgets as one media type. By doing so, the Ul
mediator can utilize the full set of services given by MMDEF to edit, author,
and customize Ul specifications. We expect that the Ul mediator will make it
possible to embed Ul components in documents as well as other media objects.
We are looking at the Embedded Buttons architecture {2] as the first step. In the
long run, the Ul guideline itself will be produced as one multimedia document
on MMDEF.

4 Interactor Model

The interactor is the fundamental model that the Duma adopts in order to com-
bine AP’s with UI’s under the data-based UIMS architecture. As introduced in
section 2.2, we represent user interaction as the transfer of primitive/composite
objects and the scenarios that describe the detailed manner of interaction. For
example, suppose we have an interaction ‘get one full-name of an employee

of the company’. In this case, an employee object, whose name attribute is
Takashi_Ohtsu, will be transferred and its scenario might be ‘to select one high-
lighted name from the employees listed sequentially in a scrollable window pane
widget’.

Therefore, the interactor model also represents both the scenario and the
class of media objects to be transferred in a common model to all the media
supported in MMDEF. An interactor consists of the following three objects:
virtual interactor(V1) that provides interfaces to the interactor with AP’s, inter-
actor widget(IW) that provides interfaces to the interactor with Ul’s, and real
interactor{R1) that connects a virtual interactor and an interactor widget. An
interactor is represented by one of the following tuples:

1) (a VI, a IW, a RI)
2) (a VI, a RI)
3) (a RI, a IW)

Most interactors are represented by 1). Interactors defined of the form of 2) and
3) are called application-defined interactor and user-defined tnteractor respec-
tively. AP’s can not access the user-defined interactor, while UI’s can not access
the application-defined interactor.

In the following, we discuss each object in detail.

4.1 Virtual Interactor

The virtual interactor is an object that manages data to be passed to/from users
and represents the essential interaction method which is completely independent
of detailed behaviors and appearances of UI’s. In Duma, AP’s communications
with Ul widgets are substituted by communications with virtual interactors.

Each virtual interactor is typed by an tinteractor type. The interactor type
is represented by a decision tree that consists of classes of media objects to be
transferred in interaction and partial interaction scenarios which are independent
of the appearences of Ul widgets. Schematic examples of the interactor types are
shown in Fig. 7.

In Fig. 7, each leaf of an interactor type is a basetype that represents a class
name of the media object adapted to MMDEF. We assume that the basetypes
have a class hierarchy. In Fig. 7(A), a basetype FONTNAME is shown, which may
have values of Helvetica, Courier, or Schoolbook. Meanwhile, internal nodes
of an interactor type are instances of the CHOICE function, which takes a single
argument k representing the number of choices that can be made simultaneously.
The value of k may be a positive number or either of the two special values, ARY
and EVERY. The semantics of the CBOICE function make it pointless for an internal
node to have a single internal node child. The semantics of the CHOICE function
depend on the type(s) the of node’s child(ren). Namely, if the CEOICE function
has a single base child, k is the maximum number of basetype values that may
be selected, while if it has multiple internal children, k is the maximum number
of subtrees whose decision points can be selected. A value of ANY indicates that

any number of subtrees are selectable while a value of EVERY indicates that a
value should be obtained for every subtree.

In Fig. 7(A), k is equal to oune. Accordingly, the interactor type shown in
Fig. 7(A) has the semantics of choosing one of the known fontnames. Meanwhile,
in order to get a font size from the user, s/he will define an interactor type
GETFONTSIZE as shown in Fig. 7(B). Fig. 7(C) shows the font face style selection
that we often see in commercial products such as Microsoft’s Word. The value of
OTHERTYPEFACE is either Bold, Italic, Underline, Shadow, or Dutline, while
the NORMALTYPEFACE takes the value Normal only.

1 (1)
FONT VAMEl FONTSIZE

(A) GETFONTNAME (B GETFONTSIZE (O GETFACENAME
InteractorType InteractorType InteractorType

Fig. 7. Interactor Types

4.2 Interactor Widget

The interactor widget is an object that embodies one well-organized widget set
composed of more than one primitive widget component such as buttons and
panes, which behaves as one integrated Ul component. Selectors widgets are
thought to be categorized in these interactor widgets. We show the appearances
of interactor widgets in Fig. 8. Like the virtual interactor, the interactor widget
is given a type by the interactor type except that the interactor type for the
interactor widget has only two nodes, a root and a leaf, where the CHOICE(x)
function represents how many media object values of the basetype could be
selectable at most by the user, where x could be a natural number or ANY. The
basetype of the Jeaf is the type of the media object that the interactor widget can
manipulate. In our approach, interactor widgets are Ul guideline independent,
namely, file selection boxes of Motif and OpenLook are treated equally regardless
of their different policies.

In Fig. 8, each interactor widget has a CHOICE(1) function where (A) has
the basetype FONTNAME, (B) has the basetype IMAGE, and (C) has the basetype
STRING. A simple string label and an icon are considered to have CHOICE(O)
function.

4.3 Real Interactor

The real interactor mediates between a virtual interactor and an interactor wid-
get. It assigns a virtual interactor to an interactor widget once it verifies the
compatibility of their interactor types at runtime. The algorithm applied to this
verification is shown in Fig. 9. It first checks whether all the basetypes of the

& Helwetica

& Courier

@ Bookaan Input FileName

| [NEREE] |E=—
(A} radiobox (B) radio box (C) text box

Fig. 8. Interactor Widgets

interactor type are “compatible” with the basetype of the interactor widget. We
define a type A to be compatible with a type Bif A is defined as a subclass of B.

Since a font name is expressible by a string, the basetype FILENAME is defined
as a subclass of STRING. Therefore, according to the algorithm, the interactor
type GETFONTNAME in Fig. 7(A) not only matches the sophisticated file selection
box, but also matches a simple interactor widget as we show in Fig. 8(C). Cf. [5]
for a more elaborate design of a file browser for Ensemble.

(CheckTypesof(ITV:IntezactorType of a Virtuallnteractor,
ITW: InteractorType of an InteractorWidget){
// check all base types
for (all leaves of ITV){
if (basetype of leaf is not compatible the base
type of ITW) return ERROR;
)
// check CHOICE types
for (traverse ITV){
if (current node is CHOICE(x) node)(
if (children are base types)
currentnode.maxchoice = x;
if (children are CHOICE nodes)
currentnode.maxchoice =
maximum selectable items at this level
considering x and the maxchoice of each child;
)
}
Node node = rootNode of ITV:
if (node.maxchoice <= y) // where ITW has a type
// of CHOICE(y)
return AGREE:
else
return ERROR;

k) J

Fig. 9. Compatibility Checking Algorithm

5 Data-based UIMS Architecture in Duma

Duma’s data-based UIMS architecture provides a UI design environment for
window-oriented AP’s such as services and viewers on MMDEF according to the

interactor model described in the previous section. Duma divided the Ul design
process into the following five layers: medium action, dialog, style compostiion,
layout composition, and command dispatcher as shown in Fig. 10.

afdecccncay

'
[l
'
]
.
[l
]
Il
.
’
.
'
»
:
v
¢
'
b
‘.
»
]
'
*
’
'
T
'
»
'
]
'
'

.
*
+
'
-
h
H
Virtual :
Interactor H L=
interactor Type E 1 interactor Widget
ModiaObject(s)| | vy interactor Type JI
[>
4 i ' Editing
e ' Conymand
beeeeen e o eeememeeeeccceoemeoaee leeeemecceemecemenan S e

-~ Editor Mediator (Medium Objects)«—

Fig.10. UIMS Architecture in Duma

Medium Action Layer The medium action layer provides interfaces to design
interactor types by means of basetypes adapted to MMDEF. Please note that the
design of interactor types is a process independent from the AP semantics and
interactor widgets. At runtime, AP’s instantiate virtual interactors according to
the interactor type defined in this layer. For now, as soon as a virtual interactor
is instantiated, a real interactor is also instantiated and bound to it. Then, the
real interactor waits for requests to bind interactor widgets.

Dialog Layer The dialog layer provides interfaces to group semantically related
interactors into one object called a shell. The shell is considered a container
object whose constituent elements are interactors. It gives one scope in the sense
of programming language to those interactors. The shell is one of interactors
and is assigned to an interactor widget whose appearance is an window. An
interactor may belong to more than one shell. The constraints among interactors
are described as behaviors of shell objects.

For example, suppose we design a dialog that prompts for several font prop-
erties such as name, size, and face style at a time. The application designer might
define a shell object called FontSelectDialog with real interactors whose inter-
actor types are GETFONTNAME, GETFONTSIZE, and GETFACENAME.

Style Composition Layer The style composition layer provides interfaces to
assign interactor widgets to interactors according to the compatibility checking
described in section 4.3. Since this assignment is performed at runtime, UI de-
signers can easily prototype interactor widgets on the fly. Also, Ul designers may
search for interactor widgets compatible with the interactors from the tree data
repository.

Layout Composition Layer The layout composition layer provides runtime
formatters for interactor widgets according to a certain layout policy that the
user can specify. The examples of the layout policies are the simple hierarchi-
cal model, the constraint based model, and the TgX’s box and glue model. The
fundamental services of the formatters should be similar to that of the presen-
tation mediator of MMDEF. For now, the layout composition layer has its own
formatters.

Ul designers may append user-defined interactor widgets to the shell and lay
them out as well as the usual interactor widgets. These widgets are the user-
defined interactor widgets, which are, in fact, not bound to any AP’s semantics.
However, they can work as assistants that guide the user’s operations by offering
informative messages.

As an example of layout results, the appearance of a shell window derived
from the shell object FontSelectDialog we mentioned earlier is shown in Fig. 11.
The layout policy we adopted here is a simplified box and glue model.

= | Bualop |
Seloct Font Info.
Seckground
B

Fig. 11. The Appearance of a Shell FontSelectDialog

Command Dispatcher Layer The command dispatcher layer provides inter-
faces to assign commands to command-dispatchable interactor widgets such as
menus, buttons, and keys. The commands are acceptable either by Duma or sys-
tem services adapted to MMDEF. Duma has a built-in basetype called COMMAND
for the interactors that dispatch commands. In other words, menus and buttons
are considered to have interactor types whose basetypes are COMMANDS, and they
dispatch commands by users’ operations at runtime to the editor mediator of

MMDEF. Commands that are acceptable by the editor are called ediling com-
mands and commands acceptable by Duma’s objects are called Ul commands.
Commands that open/close windows are examples of Ul commands.

6 Duma Prototype

The current Duma prototype is implemented as a module of Ensemble, which
is written in C++ using the GNU C++ library and the OSF/Motif X11 toolkit
on Sun SparcStations. At the time of this writing, our group is near completion
of the interactor model and the data-based UIMS architecture with a limited
number of primitive media provided by MMDEF.

Interactive Ul specification in the Duma prototype is done through a human-
readable declarative language, or USPEC. USPEC specification can be loaded
at any time while the MMDEF is running, and its modifications are promptly
reflected in the UI design of the AP’s. For now, USPEC specifications are edited
through a text editor of Ensemble.

All the objects of interactors designed by USPEC have their own identifiers.
The identifiers are unique. At runtime, AP’s and UI’s can access these objects
by querying the built-in INTERACTOR class with identifiers.

In the following, we introduce several Ul specification examples that have
been implemented.

Virtual/Real Interactor Specification In the current implementation, in-
teractor type specification is done by naive C++ description. For example, the
interactor type GETFONTNAME and GETFONTSIZE we mentioned earlier are de-
fined with the fragment shown in Fig. 12 where IDT_ONE, IBT_FONTNAME, and
IBT_FONTSIZE represent CHOICE(1),a basetype FONTNAME and a basetype FONTSIZE,
respectively. Then, using these specified interactor types, interactors are gener-
ated as shown in Fig. 13. In the third line of the Figure, an interactor size
whose interactor type is GETFONTSIZE is generated and stored in the tree data
repository.

new InteractorType("GETFONTNAME", IDT_ONE, IBT_FONTNAME);
new InteractorType!*GETFONTSIZE", IDT_ONE, IBT_FONTSIZE);

Fig.12. Interactor Type Specification

registerInteractor(*body”, "LABEL")}:
registerInteractor(*fonts", "GETFONTNAME®);
registerInteractor{“size®, “GETFONTSIZE");
registerInteractor("style”, “GETFACENAME");
registerinteractor(“bgcolor”, *GETCOLOR") ;
registerInteractor("fgcolor®, *GETCOLOR");

oMb W

Fig. 13. Virtual/Real Interactor Specification

Shell and Interactor Widget Specification In Fig. 14, we show the USPEC
specification of the shell object FontSelectDialog that consists of the six inter-
actors previously specified in Fig. 13. At the same time, the Figure shows which
interactor widget is assigned to each interactor. For example, in the third line
of Fig. 14, the real interactor body is assigned the interactor widget of the class
SIMPLE LABEL, which is a label widget whose the interactor type is CROICE(O)
of STRING. The rest of interactor widgets used by this dialog have class names
beginning with ONE_OF M indicating the type CEOICE(1) of STRING. The compat-
ibility checking is done when this specification is loaded. If the checking fails, an
appropriate interactor widget is chosen as default from the tree data repository.

DIALOGSET FontSelectDialog
BEGIN
PARTS = (Sbody, SIMPLE_LABEL), // label

(sfonts, ONE_OF_M_LIST), // list selection box
{ssize, ONE_OF_M_RBTN), // radic button
(Sstyle, ONE _OF_M_LIST), // list selection box
(8Sfgcolor,ONE_OF_M_PBTN), // push button
(Abgcolor,ONE_OF_M_PBTN); // push button

W o d A WN e

END

Fig. 14. Interactor Widget Style Specification for a Shell FontSelectDialog

Layout Specification Currently, layout specification in Duma is based on a
tree structured presentation whose internal nodes have one of two types, VPack
or HPack. A VPack node implicitly specifies that its children should be packed
vertically. An HPack node implies horizontal packing.

Fig. 15 shows the part of the USPEC that defines the tree structure of the
shell window FontSelectDialog. This specification defines a presentation tree
using a function-call-like notation.

DIALOGSET FontSelectDialog
BEGIN
STYLE = VPack(%body, Sep(),
HPack (VPack {SLabel (“Font*), Sfonts),Sep(),

VPack (SLabel (“Size") ,8size), Sep(),
VPack (SLabel ("Style*) ,Sstyle), Sep{(}.
VPack {SLabel (*Foreground"}, Sfgcolor),Sep(},
VPack (SLabel ("Background*) , $bgcolor}}):

Fig. 15. Layout Specification

Command Dispatcher Specification The specifications in the command dis-
patcher layer are for keyboard commands and pulldown/popup menus, which
are written in USPEC. Fig. 16 shows an example for popup-menu and menubar
specification where Fig. 17 shows the generated hierarchy of the menubar from

Fig. 16.

MENUSET Default BEGIN
MENUBAR (View, Edit(Insert, Delete});
POPUPMENU (Insert, Delete):;
DEFINE View BEGIN

LABEL="View"; MEDIUM= TextEd;

ITEMS=("Open", "editor SuperEditor OpenDocument™},
{*Save",“editor SuperEditor SaveDocument®”),
(“Export", "editor TextEd ExportDocText*}; END

DEFINE Insert BEGIN

LABEL="Insert"; MEDIUM= TextEd;

ITEMS=("Node", "editor StructEditor InsertNode"),
{"Query*, *editor StructEditor Querylmnsert®);END

DEFINE Delete BEGIN
LABEL="Delete”; MEDIUM= TextEd;
ITEMS={"Atom", "cursor DeleteAtom”),
{*"AtomBack", "cursor DeleteAtomBack®),
{*Word", "cursor DeletewWord-); END
DEFINE Edit BEGIN
LABEL="Edit"; MEDIUM= ;
ITEMS= ("Redraw", "editor StructEditor Repaint*); END
END

Fig.16. Command Dispatcher Specification for Menus

MENUBAR *View"
b Save
Export
"Edit* "Redraw*"
"Insert" *Node™
L. *Query"
"Delete” “Atom"
E *AtomBack*
"Word"

Fig.17. Complete Menu Structure for a Menubar

7 Conclusion and Future Work

We have designed and implemented Duma as the Ul mediator of the integrated
multimedia document editor, Ensemble, on MMDEF. Duma adopts the interac-
tor model and the data-based UIMS architecture to realize a highly extensible Ul
design environment. Though the number of available media given by MMDEF is
currently limited, all windows of Ensemble including the control panel, the doc-
ument viewers, and the dialog panels shown in Fig. 2 are built by Duma. Most
of the Ul features are customizable by Duma through the USPEC description,
while the detailed settings such as what X resources do are not fully supported.
Currently, Ensemble on MMDEF exceeds 90,000 lines of code of which the Ul
mediator occupies about 15%.

Our future work is to eliminate all C++-style Ul specifications and imple-
ment direct manipulative editors for Ul design. Furthermore, Duma should have
multi-view interactive editors for Ul design. The two-view approach is proposed
by FormsVBT [1] and we extend their idea by incorporating MMDEF’s multi-
presentation services. At this point, the tree-structured data viewer realize [9] is
attached to MMDEF and gives fundamental interactive features.

We also plan to enrich interactor types and interactor widgets so that the

interactor object model could support a wider range of media objects. The very
first step is to review the decision tree representation of the interactor type. We
currently consider attributes to be annotated on the CHOICE function. Moreover,
we consider the runtime command interpreter on the interactor object model.
This enriches the semantics of the events to be passed to interactors. For that
reason, we are planning to incorporate the Tcl/Tk [8] architecture with the in-
teractor model soon.

References

10.

11.

12.

Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A two-view approach
to constructing user interfaces. Computer Graphics, 23(3):137-146, July 1989.
Fric A. Bier. EmbeddedButtons: Documents as user interfaces. In proceedings
of the ACM SIGGRAPH Symposium on User Interface Software and Technology,
pages 45-53, November 1991.

Donald D. Chamberlin, Helmut F. Hasselmeier, Allen W. Luniewski, Dieter P.
Paris, Bradford W. Wade, and Mitch L. Zolliker. Quill: An extensible system for
editing documents of mixed type. In Proc. of the 21st Hawais International Con-
ference on System Sciences, pages 317-326, Kailua-Kona, Hawaii, Jan 5-8 1988.
Susan L. Graham, Michael A. Harrison, and Ethan V. Munson. The Proteus pre-
sentation system. In ACM SIGSOFT symposium on software development envi-
ronments, pages 130-138, Tyson’s Corner, VA, 1992.

Michael A. Harrison and Thomas A. Phelps. The next best thing in file browsers.
In Proceedings of the TCL/Tk Workshop, pages 110-112, Berkeley. CA, June 1993.
Computer Science Division, University of California at Berkeley.

Jeff Johnson. Selectors: Going beyond user-interface widgets. In proceedings of
CHI 92 Conference: Human Factors in Computing Systems, pages 273-279, NY,
May 1992.

Takashi Ohtsu. Duma: a data-based user interface management system for mul-
timedia application. Master’s thesis, Computer Science Division, University of
California, Berkeley, Berkeley, CA 94720, October 1992.

John K. Ousterhout. An X11 toolkit based on the tcl language. In USENIX
Summer Conference Proceedings, pages 105-115, 1991.

John L. Pasalis. Realize: An interactive graphical data structure presentation and
rendering system. Master’s thesis, Computer Science Division, University of Cali-
fornia, Berkeley, Berkeley, CA 94720, 1992.

Gunther E. Pfaff, editor. User Interface Management Systems. Spring-Verlag,
Berlin, 1985.

Andre Weinand, Erich Gamma, and Rudolf Marty. ET++ - an object-oriented ap-
plication framework in C++. In OOPSLA 1988 Proceedings, pages 46-57, Septem-
ber 1988.

Charles Wiecha, William Bennett, Stephen Boies, John Gould, and Sharon Greene.
ITS: A tool for rapidly developing interactive applications. ACM Transactions on
Information Systems, 8(3):204-236, July 1990.

This article was processed using the INXTEX macro package with LLNCS style

