
Canonic representations

for the geometries of multiple projective views

Q.-T. Luong� T. Vi�eville
EECS, Cory Hall 211-215 I.N.R.IA.
University of California 2004, route de Lucioles
Berkeley, CA 94720 06902 Sophia-Antipolis, France

qtluong@robotics.eecs.berkeley.edu

Technical Report UCB/CSD-93-772

October 7, 1993

Abstract

We show how a special decomposition of a set of two or three general projection matrices,
called canonic enables us to build geometric descriptions for a system of cameras which are
invariant with respect to a given group of transformations. These representations are minimal
and capture completely the properties of each level of description considered: Euclidean (in the
context of calibration, and in the context of structure frommotion, which we distinguish clearly),
a�ne, and projective, that we also relate to each other. In the last case, a new decomposition
of the well-known fundamental matrix is obtained. Dependencies, which appear when three or
more views are available, are studied in the context of the canonic decomposition, and new
composition formulas are established. The theory is illustrated by examples with real images.
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1 Introduction and background

Motivations This paper is about an uni�ed framework to account for the Euclidean, a�ne,
and projective geometries of two, three, or more cameras. Three dimensional problems involving
several views such as model-based recognition, stereovision or motion and structure from motion
analysis have traditionnally been studied under the assumption that the cameras are calibrated.
The idea that several classical vision tasks could be performed without full calibration of the
cameras, but only using some geometric information which can be obtained from mere point
correspondences between uncalibrated images, has generated during the last few years an active
research area, whose framework has been projective geometry (see the collective volume [23]).
However, the constraints provided by projective geometry have sometimes proven quite weak
for some applications. More recently, a�ne geometry has been found to provide an interest-
ing framework (see for instance [1], where no less than six papers about a�ne structure can
be found), borrowing some nice characteristics from both Euclidean geometry and projective
geometry.

However, one can remark that the representations adopted in the literature are of very
disparate nature, and that often they are not even minimal. The relationships between di�erent
levels of representation has not been investigated thoroughly, which is a consequence of the
fact that as the mathematical language used was quite di�erent, comparisons were di�cult.
Another important point which has not yet received much attention is the problem of dealing
with multiple viewpoints to build a coherent representation in the case of uncalibrated cameras.
Thus a uni�ed representation is needed, to account in a single framework for the di�erent
geometric levels of representation, in the case of two, three, or more views. The principal aim
of this paper is to describe such a framework, the canonic decomposition. In this section, some
background material is presented. Section 2 �rst introduces representations for each level of
description considered, and then gives the canonic decomposition for two views. It is extended
to the case of three and more views in Section 3. Section 4. discuss the relations between levels
of representation, and the problem of their recovery from image measurements. The paper ends
with some examples, presented in Section 5.

The projective model The camera model which we consider is the pinhole model. In
this model, the camera performs a perspective projection of an object point M onto a pixel m
in the retinal plane R through the optical center C. The main property of this camera model
is thus that the relationship between the world coordinates and the pixel coordinates is linear
projective. This property is independent of the choice of the coordinate systems in the retinal
plane or in the three-dimensional space. The consequence is that the relationship between 2-D
pixel coordinates 3-D and any world coordinates can be described by a 3 � 4 matrix ~P, called
projection matrix, which maps points from P3 to P2:

2
4 x1

x2
x3

3
5 = [P p]| {z }

~P

2
664
X1

X2

X3

X4

3
775 (1)

where the retinal projective coordinates x1, x2, x3 are related to usual pixel coordinates by
(u; v) = (x1=x3; x2=x3) and the projective world coordinates X1, X2, X3, X4 are related to
usual a�ne world coordinates by (X;Y; Z) = (X1=X4;X2=X4;X3=X4). The points for which
X4 = 0 cannot be related to a�ne space, and are called points at in�nity. Although this model
has been known for decades, its main characteristic is emphasized in the recent appellation
projective camera [23].

Note that since we assume a full perspective model, there is an optical center at �nite
distance. Such a point C has to verify the matrix equation:

~P

�
C
1

�
= 0
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It is easy to see that it is uniquely de�ned if, and only if the 3 � 3 submatrix P is invertible,
which is an assumption that we will use all the way through the paper. This is in opposition
with another class of simpli�ed models ranging from orthographic, weak perspective, to the
a�ne camera [23], the most general form of these models, which is studied extensively in [28].

The goal of this paper is to exploit equation (1) to its fullest extend by deriving algebraic con-
sequences (with geometric interpretations) of this equation in the case where several viewpoints
are available. The generality of the approach comes from the fact that only projection matrices
are manipulated in the paper, thus the results found do not depend on the di�erent primitives
one may be interested in, or the algorithms used for the estimation. In the case of a calibrated
system, we are just left with the classical description in terms of rotations and translations.
In the case of an uncalibrated system of cameras, we show that a complete description for the
geometry of two views is given by fundamental matrices, which are described next.

Fundamental matrices as projective view invariants When considering two projec-
tive views, the main geometric property is known in computer vision as the epipolar constraint.
It can readily be understood by looking at the left part of �gure 1. Let C (resp. C0) be the
optical center of the �rst camera (resp. the second). The line hC;C0i projects to a point e (resp.
e0) in the �rst retinal plane R (resp. in the second retinal plane R0). The points e, e0 are the
epipoles. The lines through e in the �rst image and the lines through e0 in the second image
are the epipolar lines. The epipolar constraint is well-known in stereovision: for each point m
in the �rst retina, its corresponding point m0 lies on its epipolar line l0m, projection of hC;Mi
in the second retina.
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m

l’m
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R’

Π
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M1 M2

M3 M4
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Figure 1: The epipolar geometry and epipolar pencils

Let us consider the one parameter family of planes going through hC;C0i. This family is a
pencil of planes, shown at the right of �gure 1. Let � be any plane containing hC;C0i. Then �
projects to an epipolar line l in the �rst image and to an epipolar line l0 in the second image.
The correspondences �^ l and �^ l0 are homographies between the two pencils of epipolar
lines and the pencil of planes containing hC;C0i. It follows that the correspondence l^ l0 is a
homography, called the epipolar transformation.

An algebraic formulation of these properties has been introduced in [6] thanks to the key
notion of fundamental matrix, or F-matrix. It can be shown only from the hypothesis (1) that
the relationship between the projective retinal coordinates of a point m and the projective
coordinates of the corresponding epipolar line l0m is linear. The fundamental matrix describes
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this correspondence: 2
4 l01

l02
l03

3
5 = l0m = Fm = F

2
4 x1

x2
x2

3
5

The epipolar constraint has then a very simple expression: since the point m0 corresponding to
m belongs to the line l0m by de�nition, it follows that

l01x
0
1 + l02x

0
2 + l03x

0
3 =m0TFm = 0 (2)

The epipolar transformation is characterized by the 2�2 projective coordinates of the epipoles e
and e0 (which are de�ned respectively by Fe = 0 and FTe0 = 0), and by the 3 coe�cients of the
homography between the two pencils of epipolar lines. It follows that the epipolar transforma-
tion, like the fundamental matrix, depends on seven independent parameters, which represent
the only generic information relating two uncalibrated views. Unless further hypotheses are
made, there is no way to extract other geometric parameters from correspondences, since one
has, in this case, to assume that the transformation between the two retinal plane is a general
projective transformation, whereas the fundamental matrix contains the only geometric quanti-
ties which are invariant by any projective transformation. Thus the fundamental matrix can be
described as an invariant of views, which means that it is a function of the projection matrices
which is left invariant by any projective transformation of the 3D space P3.

We want to extend this idea to show that the fundamental matrix and the classical description
in terms of intrinsic parameters, rotations, translations, can be represented in a single frame-
work, which includes also a new intermediate representation. We will see that the fundamental
matrix represents indeed the minimal information (two views, no additional hypotheses), in a
hierarchy of representations obtained by making further assumptions and adding views. Since
the observation of planes play a critical role in the sequel, we recall now another important
result.

Homographies generated by a plane Let Mi be space points which happen to lie in
the same plane � and mi be their images by a projective linear relation from P3 to P2. Its
restriction to � is a projective linear relation between points of P2, which is an homography
h. This relation is invertible, in the generic case where the plane does not contain the optical
center. If two images of the pointsMi lying in a plane,mi andm0

i are available, we can consider
the relation h0 � h�1 between these two images. It is thus an homography, which means there is
a 3� 3 invertible matrix H, such that the following projective relation holds for each i:

m0
i = Hmi (3)

2 A global framework to analyze the geometries of two

views

In this section, we introduce a canonic representation of a system of two projection matrices
which enables to group Euclidean, a�ne, and projective invariance properties in a single frame-
work. To lay the ground for such a representation, we �rst detail the characteristic elements
of representation at each level and give a geometric interpretation for them. In particular, a
detailed discussion of a�ne invariants, and new decomposition of the fundamental matrix are
given with algebraic and geometric descriptions.
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2.1 The Euclidean parameters and the absolute conic

Using the QR theorem, it can be seen that the projection matrix can be decomposed uniquely
in the following way:

~P = �w

2
4 �u 
 u0

0 �v v0
0 0 1

3
5

| {z }
A

2
4 1 0 0 0

0 1 0 0
0 0 1 0

3
5� Rw Tw

0T3 1

�
| {z }

Dw

(4)

where A is a 3 � 3 matrix describing the change of retinal coordinate system1, whose �ve
entries are called intrinsic parameters, and Dw is a 4� 4 matrix describing the change of world
coordinate system (the pose of the camera) called extrinsic parameters. It can be seen that the
5 intrinsic parameters and the 6 pose parameters together account for the 11 parameters of ~P,
which is a 3� 4 matrix de�ned up to a scale factor.

The Euclidean structure of P3 is characterized2 by the the absolute conic 
 which lies in
the plane at in�nity �1 (X4 = 0) and has equation:

X 2
1 + X 2

2 + X 2
3 = 0 (5)

A transformation of P3 leaves 
 invariant if, and only if it is a similarity, which is a rigid dis-
placement multiplied by a scale factor [7, 5]. There is an interesting and important relationship
between the camera intrinsic parameters and the absolute conic, already used in [7] and in [22].
Since the absolute conic is invariant under these transformations, its image ! by the camera,
which is also a conic with only complex points, does not depend on the pose of the camera.
Therefore, its equation in the retinal coordinate system does not depend on the extrinsic pa-
rameters and depends only on the intrinsic parameters. Its matrix is B = A�1A�1T , whereas
its dual conic (the set of its tangents) has matrix K = B�, the adjoint matrix of B, de�ned as
B� = det(B)B�1T [6]. The matrix K is called the Kruppa matrix, and is a better description
of camera calibration than the intrinsic parameters, since it does not depend on the choice of
a particular model. There is a one-to-one correspondence between these matrices of Kruppa
coe�cients and the intrinsic parameters [6, 37]. It can be shown [5] that ! determines the angle
between optical rays, which is in coherence with the fact that the similarities conserve angles.

In the case of two views, the extrinsic parameters of the stereo system are classically described
by a rotation R and a translation T, such that if M (resp. M0) represents the coordinates of
a point in the �rst (resp. second) camera coordinate system, then M0 = RM + T. When a
calibration object and its associated coordinate system are known, the projection matrices can
be fully recovered by model-based calibration [33, 9, 34], and the transformation between the
two camera coordinate systems is described as a rigid displacement R;T which leaves absolute
distances invariant. However, in the structure frommotion paradigmwhere the data used is only
image measurements, there is an ambiguity between the amount of displacement, represented by
kTk, and the depth of objects, thus only the direction of translation can be determined, and we
have to consider a global scale factor, and only relative distances. The transformation between
the two camera coordinate systems has then to be described by a similarity. It can be noted
that the observation of just one line segment of known length would be su�cient to eliminate
the scale indetermination.

2.2 A�ne structure and the plane at in�nity

The projective space P3 can be described as the union of the usual a�ne space (points [M;M4]
T

with M4 6= 0) and the plane at in�nity �1 (points [M; 0]T ). A�ne transformations are trans-
formations of P3 which conserve parallelism. Since in projective geometry the direction d of a

1To obtain a unique decomposition (4), we have to restrict the form of A. Di�erent formulations are possible, as
long as the unicity of decomposition is preserved. Other models with direct physical interpretation can be found for
example in [9, 5]. The one adopted here for simplicity appeared in [32] and is also discussed in [38].

2The idea �rst appeared in the work of Caylay, and has been introduced in the computer vision literature by [7].
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line l = [d; d4]
T can be represented by its intersection with the plane at in�nity �1, [d; 0]T , the

conservation of parallelism by a general transformation A of P3 is equivalent to the fact that A
leaves the plane at in�nity �1 invariant. Expressing this invariance leads to the fact that the
last row of the matrix of A has to be [0; 0; 0; �], with � 6= 0. Since A is de�ned only up to a scale
factor, we can take � = 1, and then the transformation A is fully described by its �rst 3 � 4
submatrix [A1; a], which is consistent with the classic de�nition of an a�ne transformation of
the a�ne space M0 = A1M+ a.

Vanishing points are images of the points at in�nity of P3. Parallel lines of P3 have the
same direction, hence the same point of in�nity, thus their projection is a set of lines of R which
contains the image of this vanishing point. If the projection matrix is ~P = [P;p], then, since the
image of each point at in�nity [d; 0]T is v = Pd,P can be considered as the homography between
the plane at in�nity �1 and the retinal plane R. If a second projection matrix ~P0 = [P0;p0] is
considered, then the transformation:

H1 = P0P�1 (6)

is an homography from the �rst image to the second image, which maps vanishing points to
vanishing points, as already remarked by [24]. Introducing the intrinsic parameters into the
classical equation for the motion of planes [35, 3] yields the following expression for a general
homography:

H = A0(R+
1

d
tnT )A�1 (7)

where n is the normal vector of the plane and d the distance of the plane to the origin. This
expression has for limit (6) when d ! 1, which shows that H1 is indeed the limit of the
homographies de�ned by �nite planes when they move towards in�nity. We will call the matrix
H1 in�nity homography. It allows us to determine whether two lines of P3 are parallel or not
by just checking if their intersection in the �rst image is mapped to their intersection in the
second image by H1. That fact is equivalent to the belonging of the intersection of the two
lines of P3 to �1. Thus the knowledge of H1 determines of parallelism of lines of P3, which
is in coherence with the fact that a�ne transformations preserve parallelism.

The matrix H1 is proportional to Q = A0RA�1, and thus does not depend on the trans-
lational component of the displacement, a propriety used by [2, 39] to obtain the rotational
component of the displacement between two cameras once the intrinsic parameters are known.
The other component of the representation, e0 depends only on the translational component,
since it is proportional to s = A0T. These two quantities together de�ne the uncalibrated mo-
tion, called Qs-representation in [37] which appears to be the simplest generalization of what is
well known in the calibrated case, with identical laws of composition as it will be seen in sec-
tion 3. UnlikeH1 and e0, which are basically projective quantities de�ned up to a scale factor3,
the norm of Q and s is completely �xed. Thus the full Qs representation, function of 12 pa-
rameters, is a superset of the a�ne representation H1, e0, but depending on the computational
context, one or two unknown scale factors are to be taken into account.

We will see in the next section that when the homographyH1 is known, the knowledge of the
position of an epipole is su�cient to determine completely the epipolar geometry. Reciprocally,
if the fundamental matrix is known, then a consequence of the relation between F-matrices and
H-matrices (8) is that H1 is speci�ed by three parameters, which is coherent with the fact
already mentioned in [4, 26, 29] that a�ne structure has still three degrees of freedom given
only the epipolar geometry. Without an \a�ne calibration" [24] consisting of an identi�cation
of the plane at in�nity, one would have to chose an arbitrary plane to play its role. While some
a�ne properties would then be conserved, the special properties of �1 would be lost. It can be
noted that in the special case of an a�ne camera [28] , a�ne shape reconstruction is possible
from point correspondences, as �rst discovered by [13] for the case of orthographic projection.
This is because an a�ne camera performs an a�ne transformation between P3 and the retina,

3They are de�ned from the projection matrices, which are themselves projective quantities
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thus conserving a�ne properties such as parallelism. In the case of a projective camera, some
limited knowledge about the scene such as identi�cation of parallel lines, vanishing points, or
horizon, has to be used. This is intermediate between the full calibration required for the
Euclidean representation, and the absence of any requirement other than correspondences, for
the projective "weak calibration".

2.3 A new representation for projective structure

Only a little has to be said about projective transformations, since the only geometric property
which is left invariant is incidence. It can be shown that this entails the invariance of cross-ratio,
which will not be used in this paper. Thus this section is only devoted to the detailed study of
a new representation for fundamental matrices.

Factorizations of the fundamental matrix It has been shown in [18] that if we have
two projective views of a scene, the homography matrix H mapping the image of a point of a
given 3D plane in the �rst view to its image in the second view, and the fundamental matrix
are related by the following system of equations:

HTF+ FTH = 0 (8)

We are going to show that this condition is equivalent to the fact that:

F = [e0]�H (9)

If this condition is satis�ed, We will say then that the matrix H is compatible with the funda-
mental matrix F. It is straightforward to verify that (8) is satis�ed if the substitution of (9)
is made in that equation. Now let suppose that F and H satisfy (8), and consider a pair of
corresponding points m and m0. The equation (8) is equivalent to the fact that FTH is an
antisymmetric matrix, thus:

(Fm)THm = 0 (10)

Since the fundamental matrix maps points to corresponding epipolar lines, Fm = e0�m0. Using
this relation, we see that (10) is equivalent to: m0T [e0]�Hm = 0. If we identify this equation
with the epipolar constraint: m0TFm = 0, we obtain the expression (9). Note that the proof
does not depend on the fact that H is an invertible (or homography) matrix. In the case where
this matrix is singular, it also de�nes a mapping from the �rst plane to the second plane, but this
mapping is not invertible. We also obtain as an easy consequence of (8) that if H is compatible
with F, then:

He = �e0 or He = 0 (11)

The �rst case corresponds to the homography matrices, de�ned by a plane in general position.
The second case corresponds to the degenerated case where the plane contains the optical center
C0, thus yielding a non-invertible correspondence.

It is obvious that the decomposition (9) is not unique, since H can be any matrix de�ning
a correspondence compatible with F. More precisely, since the matrix equation (8) includes six
homogeneous equations, such matrices form a 3 dimensional set, each of them being de�ned
by three corresponding points, as shown in [27]. This is coherent with the fact that a plane
is de�ned by three points. If two matrices H1 and H2 satisfy (9), then [e0]�M = 0, where
M = �H1 �H2. This implies that M = e0rT for a certain vector r. Thus we �nd (like [10])
that any two matrices H1 and H2 satisfying the decomposition (9) are related by:

�H2 = H1 + e0rT (12)
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The S-matrix We are going to de�ne a special matrix S compatible with F, and which is
only function of F. Using the relation:

kvk2I3 = vvT � [v]2� (13)

it is seen that:

F =
e0

ke0k2
e0TF| {z }
0

+[e0]� (�
[e0]�
ke0k2

F)| {z }
S

(14)

This relation shows that S is determined by F (since e0 is determined by F), and that F is
determined by S and e0. An analogy can be noted with the decomposition of the essential
matrix E = [T]�R as the product of an antisymmetric matrix and a rotation matrix R, since
the fundamental matrix is decomposed as the product of an antisymmetric matrix and the
singular special matrix S, which we call epipolar projection matrix, for geometric reasons which
will be explained later.

An alternative way of de�ning S is to add an additional constraint to the condition (9) to
ensure the unicity:

F = [e0]�S STe0 = 0 (15)

Let H be an homography matrix compatible with F. By transposing (12) we get: HT =
ST +re0T . Since STe0 = 0, we obtain r = HT e0=ke0k2. By using the relation (13) a substitution

of this value back to (12) yields S = �
[e0]2

�

ke0k2H. Since H is compatible with F the relation (9)

applies, and the expression given in (14), independent of H, is again found for S.
Once the fundamental matrix is known, equation (12) can be used to characterize any plane

� by the vector r� such that:
H� = S+ e0rT� (16)

Let use write again equation (12) between the matrix S and the homographyH1 with the value
of r found previously:

H1 = S+ e0 e0TH1=ke0k2| {z }
rT
1

(17)

The vector r1 which appears in this relation is a complete characterization of the plane at
in�nity, once the fundamental matrix is known. By combining (7), (16) and (17), we see that
r� = r1 +ATn=d, and thus we can interpret the vector r� as the projective characterization
of the plane �. An a�ne characterization would be the vector ~� = ATn=d [38], whereas an
Euclidean characterization would be n=d, the normal vector of the plane divided by the distance
of the plane to the origin.

Relation with projection matrices The two projection matrices are noted ~P = [P;p]
and ~P0 = [P0;p0]. The epipole in the second image is the projection of the optical center of the
�rst camera into the second camera, thus:

e0 = ~P0
�
�P�1p

1

�
= p0 � P0P�1p (18)

As shown in section 2.2, P0P�1 de�nes an homography matrix compatible with F, noted H1,
which gives an expression of S from the projection matrices, using (14). A geometric interpre-
tation is that the epipolar line of a point m of the �rst retina is de�ned by the epipole e0, and
the image by the second camera of the point of in�nity of the optical ray hC;mi. We have seen
that this image is H1m, and thus we obtain as expected:

F = [p0 � P0P�1p]�P
0P�1 ; S = [p0 �P0P�1p]2�P

0P�1=kp0 � P0P�1pk2 (19)
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To obtain the second equality, we applied the property (proved for example in [8]):

8M 2 GL3; 8x;y 2 R
3;M�[x]�y = [Mx]�My (20)

Let us now show that S relates the projection matrices through two relations which will be
used in section 2.5:

P0 = SP+ e0LT (21)

p0 = Sp+ e0� (22)

First, multiplying relation (17) by P yields equation (21), with L = PT r1 = P0Te0=ke0k2.
Using the expression (14) and expending the double crossproduct leads to:

Sp = 1:H1p� (
e0TH1p

ke0k2
)e0

Since from (18), H1p = p0 � e0, we obtain equation (22), with � = (1 + e0TH1p=ke
0k2) =

p0Te0=ke0k2. Although the quantities are projective, we have kept the scale factors, in order to
make their dependencies explicit, which is important since we often have to add these quantities
in this paper. Note that the use of the projection matrices enable us to determine all the scale
factors which are undetermined in a projective context, and to obtain for example:

He = �e0 F0 = (detH1)FT (23)

instead of the mere projective relations (11) and F0 � FT . A technique which has been found
useful is to express all the quantities as functions of elements of the projection matrices, which
ensures that the scale factors are coherent, and to account for the fact that these scale factors
are not always observable in a latter stage.

2.4 A geometric interpretation

In this section, we drop the scale factors, since we are not seeking algebraic relations. Let us
�rst establish a result which will be used in this section: a plane � of direction d containing the
optical center C of a camera with projection matrix ~P = [P;p], is projected on the line P�1Td
by this camera. By writing the equivalence of the fact that � contains M: �TM = 0 and of
the fact that its image l� contains the projection of M: lT�PM = 0, we obtain two equations.
They are compatible because C belongs to �: �TC = 0, and eventually yield: l� = P�1Td.

Although the matrix S is singular, the fact that it is compatible with the fundamental
matrix allows to interpret this matrix as a correspondence between the two retinas induced by a
plane. Some computations that are detailed in Appendix B, show that this plane has projective
equation:

�e0 =

�
P0Te0

p0Te0

�
It can be easily veri�ed that this plane contains the optical center of the second camera:

C0 =

�
P0�1p0

�1

�

The correspondence from the �rst image to the second image is thus a mapping to the line which
is the image of �e0 in the second retina, and this mapping is a projection and is not invertible.
Applying the result proved at the beginning of this section, we obtain that the matrix S is the
correspondence de�ned by the place�e0 which contains the optical center of the second camera,
and whose image in the second camera is the line he0i. It can also be veri�ed that in the canonic
decomposition proposed in (2.5) the homographyH from the �rst view to the second view maps
the plane�e0 to the plane at in�nity�1. Let see that this is coherent with de�nition (14). The
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matrix F maps points to lines, the matrix [e0]� either maps lines to points or points to lines,
thus from (14) the matrix S maps points to points. More speci�cally, a point m is mapped to
m0

1 = e0 � Fm, which is the intersection of the epipolar line of m with the line he0i. We can
note that this point is always de�ned as soon as m 6= e since the distinctive property of the
line he0i is that it does not contain the point e0, as we have always e0Te0 = ke0k2 6= 0. The
interpretation of (14) is that the epipolar line l0m = Fm is de�ned by joining the epipole e0 and
the point m0

1 = Sm, (intersection of the epipolar line and the epipole) thus the transformation
S and the epipole e0 de�ne completely the epipolar geometry.

Let consider ST = FT [e0]�, and an epipolar line l0 of the second retina. Then m0
1 = e0� l0 is

a point of l0 which is always de�ned if l0 6= he0i. Then l = FTm0
1 is the epipolar line of m

0
1, but

since m0
1 is a point of l0, l and l0 are corresponding epipolar lines. Thus the matrix ST maps

epipolar lines to corresponding epipolar lines (a property which is also true of any homography
matrix as mentioned by [10, 30]). From relations (15,14), and the fact that F0 = FT , we obtain:

S0 = [e]�S
T [e0]�

which can be interpreted as follows: a pointm0 is mapped to an epipolar line l0 passing through
it, which is then mapped into the corresponding epipolar line l. The �nal result is the intersection
of this line with the line hei which is what we expected.

The epipole e0 depends on two independent parameters, since it is de�ned only up to a scale
factor. The transformation S is a linear projection of a projective plane (the �rst retina) on a
projective line he0i, thus it is de�ned by a 2� 3 matrix de�ned up to a scale factor. Since the
line he0i is also de�ned by the same parameters than the epipole, we see that the knowledge of
the linear projection (5 parameters) and the epipole (2 parameters) de�ne completely the 3� 3
matrices S and F, which is consistent with the result that the fundamental matrix depends on
7 parameters [6]. We have thus exhibited a new decomposition of this matrix in two subsets
of independent parameters, which has a sound geometric interpretation in terms of epipolar
mappings.

To determine the in�nity homographyH1 three more parameters are needed. These param-
eters are for example the coordinates of the vector r1 = HT

1e
0=ke0k2, which has been shown

to characterize the in�nity homography once the epipolar geometry is known. The direction
of this vector de�nes the line in the �rst retina which is the image by HT

1 of the special line
he0i of the second retina. This line is the projection of the plane parallel to �e0 and containing
the optical center C of the �rst camera. Note that a general property of the dual homography
HT
1 is that two lines l and l0, respective projections of the planes � and �0 in each retina, are

in correspondence by HT
1 if, and only if the planes � and �0 are parallel. This comes from

the relation between planes and lines established at the beginning of the section. Taking the
direction of r1 drops one parameter, since we have lost the information corresponding to the
norm of this vector. Thus knowing the epipolar geometry and the line hHT

1e
0i is not su�cient

to determine HT
1, and we need another piece of geometric information, for instance the line

hH�1T
1 ei in the second retina. The lines hei and hHT

1e
0i are never identical, since we have

eTHT
1e

0 = �e0Te0 6= 0, and thus these two line correspondences, together with the epipolar
projection S are su�cient to characterize the in�nity homography.

2.5 The canonic decomposition for two views

If two projective views are considered, the most complete description is given through the
two projection matrices ~P = [P;p] and ~P0 = [P0;p0]. Since each matrix is de�ned up to
a scale factor, this representation is not unique and the total number of parameters is 22.
However, a total determination of these matrices cannot be done except in the case where a
calibration object and its associated coordinate system are known. This total determination is
not necessary: for example, in the Euclidean case, the choice of a particular world coordinate
system is arbitrary, which means that the representation is de�ned up to a displacement. One
is generally interested only in descriptions of the geometric relationship between the two images
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EUCLIDEAN
(calibration)

displacements preserve angles, distances
kD(i)k = kik

SO3 D =

�
R T
0T3 1

�
R: rotation matrix
T : translation vector

6

invariant A,A0 : intrinsic parameters of cameras 5+5
description R : rotation from camera 1 to camera 2 3

T : translation from camera 1 to camera 2 3

canonic
decomposition

�
~P = A[I3; 0] D
~P0 = A0[R;T] D

R = R0

wR
T
w

T = T0w �R
0

wR
T
wTw

R = Rw

T = Tw

where
~P = A[Rw;Tw]
~P0 = A0[R0

w;T
0

w]

EUCLIDEAN
(motion)

similarities preserve angles, relative distances
S(
) = 


�SO3 S =

�
R T
0T3 �

� R: rotation matrix
T : translation vector
�: non-null scalar

7

invariant A,A0 : intrinsic parameters of cameras 5+5
description R : rotation from camera 1 to camera 2 3

t : direction of translation from camera 1 to camera 2 2

canonic
decomposition

�
~P = A[I3; 0] S
~P0 = A0[R; t] S

R = R0

wR
T
w

t = T=kTk
R = Rw

T = Tw

� = kTk

where
T = t0w �R

0

wR
T
wTw

AFFINE
a�ne transformations preserve parallelism, center of mass
A(�1) = �1

GA3 A =

�
M V
0T3 �

� M: non-singular 3� 3 matrix
V: 3D vector
�: non-null scalar

9=
;

A de�ned up
to a global
scale factor

12

invariant H1 : in�nity homography from image 1 to image 2 8
description e0N : normalized epipole in image 2 2

canonic
decomposition

�
~P = [I3; 0] A
~P0 = [H1; e0N ] A

H1 = P0P�1

e0N = e=ke0k
M = P

V = p

� = ke0k

where
H1 � A0RA�1

e0 = p0 �H1p � A
0T

PROJECTIVE
homographies preserve collinearity, cross-ratio
H(P3) = P3

GL4 H =

�
M V
LTN �N

� M: 3� 3 matrix
V, LN : 3D vectors
�N : scalar

9=
;

H non-singular
de�ned up to

a global scale factor
15

invariant S : epipolar projection from image 1 to image 2 5
description e0N : normalized epipole in image 2 2

canonic
decomposition

�
~P = [I3; 0] H
~P0 = [S; e0N ] H

S = �[e0N ]�
2
H1

e0N = e=ke0k
M = P

V = p

LN = P0Te0N
�N = p0Te0N

where
H1 = P0P�1

e0 = p0 �H1p

Table 1: The geometries of two views: canonic representation
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that are invariant by some group G of transformation of the projective space P3, which will be
refered to as descriptions of level G or G-invariant descriptions. The properties which can be
recovered from these descriptions are those which are left invariant by the transformations of G.

The basic idea is very simple and powerful, and allows to derive in a purely algebraic way
invariant descriptions of views knowing only the properties of the elements of G. Note that by
the term view invariant, we do not mean a function attached to a set of observed geometric
entities, but rather a function attached to the set of two cameras, which describes the geometric
relations between these cameras, in a way which is invariant with respect to a transformation of
G applied to the object space P3. Further details about this derivation are given in Appendix A
for the a�ne case.

The matrices I, I0, expressed as functions of a pair of generic projection matrices
~P, ~P0, such that there is a unique decomposition, called canonic:

~P = IT ~P0 = I0T (24)

with T being an element of G, provide a a complete description of the geometric prop-
erties of two projective views which are left invariant by the group of transformation
G.

If the pair ~P, ~P0 is transformed by any member T1 of G, then a decomposition of the same
form still holds where T is just replaced by T2 = T T1. The equivalence of these representations
comes from the group properties of G. It follows that the relation <(G) de�ned by:

f( ~P1; ~P
0
1) <(G) ( ~P2; ~P

0
2)g , f9T 2 G ; ~P2 = ~P1T ^ ~P02 = ~P01T g

is an equivalence relation over the set of pairs of projection matrices. The canonic decomposition
is an explicit decomposition over a canonic representant of each equivalence class of <(G). Let
us list some consequences of this construction:

� The sum of the number of parameters in the representation I, I0 and in the generic
transformation T has to be 22.

� Every quantity which depends only on the projection matrices and is invariant with respect
to G is also function of I0 and I0.

� The quantities which appear in matrix T are not measurable from two views using the
representation of level G. But they may be expressed using representations of the previous
level, instead. Example of such quantities include the scale factor �, which corresponds
to the norm of the translation, and the vector [LT ; �] which corresponds to the reciprocal
image of the plane at in�nity by the homography H.

� The decomposition provides a tool for building explicitly a pair of projection matrices
~P; ~P0 from the invariants obtained with respect to G, which captures all the properties of
a pair of views up to a transformation of G. For example, if G is the projective group,
the general invariant of two views is the fundamental matrix. Now given a particular fun-
damental matrix F, the decomposition formulas (24) gives two projection matrices whose
fundamental matrix is F. Further, if we reconstruct 3D points using these projection ma-
trices, then we obtain a reconstruction which is coherent up to a projective transformation
of P3, as done already in [4, 11].

We consider as group of transformations G the group of the displacements SO3, the group of
similarities �SO3, which are the product of a multiplication by a scalar and a displacement,
the group of a�ne transformations GA3 and the group of homographies of P3, GL4. Note
that SO3 is not relevant in the context of analysis from views, since the scale factor ambiguity
can not be resolved in this framework, because of the well-known depth-speed ambiguity. The
previous sections have laid the groundfor the results which are summerized in table 1, in which
we mention:
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� the characteristic properties and generic decomposition of a member of each of these group
of transformations,

� a canonic decomposition of the form (24) of two projection matrices. The quantities above
the horizontal line are the elements of the invariant description, the quantities under that
line are non-measurable,

� indication of links with the previous level,

� the number of parameters, whose sum is exactly 22.

The veri�cation of each decomposition is straightforward, except for the Euclidean decompo-
sition of the projection matrices, already discussed in section 2.1, and for the projective case,
where it depends on the equations (21,22) already established. It should be noted that the in-
variants e0, H1, S are projective, thus de�ned only up to a scale factor, as well as the matrices
A and H. It can be veri�ed that this re
ects coherently the fact that the projection matrices
~P; ~P0 are also projective quantities, as follow:

~P ~P0 e0, H1 S A H

�~P ~P0 e0, ��1H1 ��1S �A �H
~P �~P0 �e0, �H1 �S �A �H

It is important to notice that reciprocally, multiplying any of the elements e0, H1, S in the
canonic decomposition will only multiply the projection matrices ~P; ~P0 by a scale factor, which
is not signi�cant. Using the projective epipole e0 as an invariant would have been perfectly
adequate in this two-view analysis, because the norm of this quantity is not constrained in any
way by two mere views. However, we will see in the next section that it is constrained if three
views are considered, and thus, in order to be coherent with the sequel, we have taken a scale-
invariant representation for the epipole, the normalized epipole e0N = e=ke0k. The vectors r1,
L and the scalar � have to be scaled accordingly, resulting in the quantities:

r1N = HT e0N LN = P0Te0N �N = p0Te0N (25)

Although the canonic decomposition given in table 1 are somewhat arbitrary, we can note
that they are based on the idea of minimizing the change of coordinate system in the �rst
camera, and thus are very natural. The fact that in the a�ne and projective formulation, the
�rst invariant matrix of the canonic decomposition is the identity means that it is possible
to work directly from pixel coordinates, no retinal coordinate change being necessary. Another
thing worth noting is that the epipole e0 is part of the representation for the a�ne and projective
formulation, which con�rm the importance of computing this quantity accurately, a fact already
stressed in [16] where algorithmic issues were considered.

3 The geometries of three projective views

3.1 Some composition relations

We turn now to the case of three views, and will use the subscripts 1, 2, 3, to designate them.
A transformation noted Mij will always map quantities of view i to quantities of view j. A
quantity present in view i in relation with view j will be noted vij. We �rst describe the relations
between the descriptions relating each of the three pairs of views.

Euclidean representation The knowledge of the intrinsic parameters ensures that in the
case where the translations are completely determined, the composition relations are obviously
obtained as composition of displacements. If the displacements D12 and D23 are known only
up to a scale factor, (which means that their translational component is: t12 = T12=kT12k and
t23 = T23=kT23k), it is still possible to determine the rotation:

R13 = R23R12 (26)
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but not the direction of the translation of D23D12, since there are two additional unknowns in
the relation:

�1t13 = R23t12 + �2t23 (27)

which are �1 = kT13k=kT12k and �2 = kT23k=kT12k. But if D12, D23 and the ratio �2 are
known, then it is possible to determine t13 and the other ratio. This means that D12 and D23

(resp D13) being known, the knowledge of D13 (resp. D23) is equivalent to that of �2 (resp �1).
When we have three views, there is only a global scale indetermination, but the ratio of the local
scale factors is completely determined. This was the idea behind a self-calibration approach to
analyze the motion from three views [19]. Thus, the description is complete if, in addition to
the direction of translations, the ratio of their norm is known.

A�ne representation Let us �rst point out to a general result for homographies generated
by a plane � between three images:

H13 =H23H12 (28)

This result is obvious for the in�nite homography considering the equation (6), but it is also easy
to see that it is true for any homography, by decomposing each homography Hij as a product
of the homographies between retina Rj and plane �, and between plane � and retina Ri. If
the epipoles are determined by the formula (18), then we have also easily, using this formula,
and equation (6):

e31 = H123e21 + e32 (29)

Thus it can be seen that the formulas for composition of a�ne4 descriptions have the same form
than the one for composition of Euclidean description. In this sense, they can be thought as
"uncalibrated motion", as already noted in section 2.2.

The reader may wonder why these projective quantities can be treated as Euclidean values.
The reason is that when starting from the formulas (6) and (18), scale factors coherent with the
three projection matrices are automatically obtained. But if not starting from the projection
matrices, the scale factors are undetermined, as expected. That means that we have to normalize
the description, if we are to use more than two views, as it was done in the case of the similarity-
invariant description, as opposed to the displacement-invariant one. Thus in the description, we
have to replace eij by the normalized epipole eNij = eij=keijk. We then see that the reasoning
introduced in the preceding paragraph still holds. Thus a complete description for the a�ne
parameters of three views includes the descriptions between views 1 and 2, 2 and 3, and the
ratio �2 = ke21k=ke32k, these quantities being de�ned by (18). It can be noted that �2 can be
computed from �2 and the elements of the similarity invariant description.

Projective representation The reason why the similarity-invariant description yields
more complicated composition relations than the displacement-invariant description is that we
have in the �rst case an indetermination in the description, which is represented by the last
element of the canonic similarity matrix, a non-measurable quantity. Only the ratios of these
quantities can be obtained, using the three descriptions together. We have just seen that the
behavior of the a�ne description is the same than the one of the similarity-invariant in this
respect. Now the projective-invariant description in turn has more non-measurable variables,
which are the last row of this matrix, thus the composition relations are even more complicated.
If we start from the projection matrices, the following relationswhich are proved in Appendix B
hold:

e31 = S23e21 + e32(q
T
2 e21) S13 = S23S12 + e32(q

T
2 S12 +

eT12
ke12k2

) + e31q
T
1 (30)

4Note that (29) does not hold with general homographies.
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where q2 = r123�r121, and q1 = r112�r113, the vectors r1ij being the non-measurable quan-
tities de�ned in (17). Now introducing the scale factors �1 = ke31k=ke21k, �2 = ke32k=ke21k,
we can write these relations:

�1eN31 = S23eN21 + �2eN32(q
T
N2eN21) (31)

S13 = S23S12 + �2eN32(q
T
N2S12 + 
1e

T
N12) + �1eN31q

T
N1 (32)

where 
1 = ke21k=ke12k, and:

qN1 = ke21kq1 = r1N12 �
1

�1
r1N13

qN2 = ke21kq2 =
1

�2
r1N23 � 
1r1N21

all the normalized vectors (denoted with a subscript N) being de�ned in (17). Note that the
quantities 
1 and e12 appearing in these equations are not part of the description 1-2, however
they can be derived from it although there is no simple closed-form formula, by noting that by
de�nition S12e12 = 0, which gives eN12. The ratio 
1 is computed by assigning an identical
value to an identical component in the kernels of ST12 and of S12.

By analogy with the previous geometries where only a ratio of the non-measurable quan-
tities (the norms of translations or epipoles) was available, we see that only a di�erence of
non-measurable vectors is accessible. The following relations are veri�ed with easy algebra by
substracting the canonic description equations (21) and (22) between 1 and 3:

P3 = (S13 � e31q
T
1 )P1 + e31L

T
12 = (S13 � �1eN31q

T
N1)P1 + �1eN31L

T
N12 (33)

p3 = (S13 � e31qT1 )p1 + e31�12 = (S13 � �1eN31q
T
N1)p1 + �1eN31�N12 (34)

Let us give an interpretation of these results. From equations (31) and (32), it can be seen
that the quantities �1eN31 and S13 � �1eN31n

T
N1 can be computed from the elements of the

invariant descriptions 1-2 and 2-3, the 3D vector qN2, and the ratio �2. Equivalently, these
quantities could be obtained from the description 1-3, the 3D vector qN1, and the ratio �1,
which gives a complete description together with 1-2. This means that the description depends
on 7+7+3+1=18 parameters. This result proves that the three fundamental matrices F12, F23,
and F13 are not independent, but are linked by three equations. This may be an explanation
why the purely projective self-calibration algorithms based on the Kruppa equations presented
in [6, 17] do not perform as well as the formulation based on the global minimization of epipolar
constraints with respect to Euclidean parameters [15, 17]: the latter formulation allows to take
into account the composition constraints and thus to proceed with a minimal parameterization,
whereas the former misses these constraints. A geometric argument enables to see what the
three constraints are. Let us consider F31e32, the epipolar line of e32 in the �rst image. This
line is the projection of the line hC2;C3i in the �rst retina, through the optical center C1.
Thus it is the intersection of the trifocal plane [8, 37] hC1;C2;C3i with the �rst retina. Now
the epipoles e12 and e13 also belong to this plane and to the �rst retina, thus the epipolar line
e12� e13 is identical to F31e32. By a circular permutation of indices follow the three equations:

F31e32 = e12 � e13 F12e13 = e23 � e21 F23e21 = e31 � e32 (35)

3.2 The canonic decomposition for three (and more) views

Three projective views are now considered, and their most complete description is given
through the three projection matrices ~Pi = [Pi;pi]; i = 1; 2; 3, totalizing 33 independent
parameters. The canonic decomposition for three views is de�ned as the unique representation:

~P1 = I1T ~P2 = I2T ~P3 = I3T (36)
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EUCLIDEAN
(calibration)

D 2 SO3 displacement 6

A1,A2,A3 intrinsic parameters 5+5+5
invariant R12, R23 R12, R13 rotations 3+3
descriptions T12, T23 T12, T13 translations 3+3

canonic
decomposition

8>><
>>:

~P1 = A1[I3; 0]D
~P2 = A2[R12;T12]D

~P3 =
A3[R13 ;T13]D
A3[R23R12;R23T12 +T23]D

EUCLIDEAN
(motion)

S 2 �SO3 similarity 7

A1,A2,A3 intrinsic parameters 5+5+5
invariant R12, R23 R12, R13 rotations 3+3
descriptions t12, t23 t12, t13 directions of translations 2+2

�1 �2 ratios of translation norms 1

canonic
decomposition

8>><
>>:

~P1 = A1[I3; 0]S
~P2 = A2[R12; t12]S

~P3 =
A3[R13 ; �1t13]S
A3[R23R12;R23t12 + �2t23]S

�1 = kT13k=kT12k
�2 = kT23k=kT12k

AFFINE A 2 GA3 a�ne transformation 12
H112,H123 H112,H113 in�nity homographies 8+8

invariant eN21,eN32 eN21,eN31 normalized epipoles 2+2
descriptions �1 �2 ratios of epipole norms 1

canonic
decomposition

8>><
>>:

~P1 = [I3; 0]A
~P2 = [H112; eN21]A

~P3 =
[H113 ; �1e31N ]A
[H123H112;H123eN21 + �2eN32]A

�1 = ke31k=ke21k = �1kA3t13k=kA2t12k
�2 = ke32k=ke21k = �2kA3t23k=kA2t12k

PROJECTIVE H 2 GL4 homography 15
S12,S23 S12,S13 epipolar projections 5+5

invariant eN21,eN32 eN21,eN31 normalized epipoles 2+2
descriptions qN1 qN2 di�erences of r1-vectors 3

�1 �2 ratios of epipole norms 1

canonic
decomposition

8>>>><
>>>>:

~P1 = [I3; 0]H
~P2 = [S12; eN21]H

~P3 =
[S13 � �1e31Nq

T
N1; �1e31N ]H

[S23S12+ �2eN32(qTN2S12 + 
1e
T
N12) ;

S23eN21 + �2eN32(q
T
N2eN21)]H

qN1 = HT
112eN21 � 1

�1
HT
113eN31

qN2 =
1

�2
HT
123eN32 � 
1H

T
121eN12

�1 = ke31k=ke21k
�2 = ke32k=ke21k

with 
1 = ke21k=ke12k

Table 2: The geometries of three views: canonic representation

17



where I1 and I2 have the same form than in the canonic decomposition for two views (24). Of
course, the form of I3 is expected to be in general di�erent from the form of I2. Let us list the
consequences of this construction:

� The two-view canonic decomposition and its properties are extended: construction of an
invariant description with respect to a given group of transformations, determination of
the exact number of parameters in the representation and of the nature of the measur-
able and the non-measurable quantities. Explicit formulas are obtained, to build three
projection matrices which are captures all the properties of a triple of views up to a trans-
formation of G, thus allowing to perform trinocular reconstruction up to a certain group
of transformations.

� There are two descriptions for the invariants of three views, one build upon the pair of
descriptions 1-2, 1-3, the other upon the pair of descriptions 1-2, 2-3. They are more than
the two descriptions for two views, including some additional parameters, which cannot
be determined from them. Rather, these parameters are functions of descriptions of the
previous level.

� The equivalence of the two forms of the alternative descriptions for three views gives the
dependency of the composed description 1-3 (resp. 2-3) over the descriptions for 1-2 and
2-3 (resp. 1-3), and the additional parameters.

� The additional parameters can be determined from the knowledge of the three descriptions
1-2, 2-3, and 1-3. It means that knowing all the triples of descriptions for two views are
equivalent to a description for three views. The formulas are given explicitly in the next
section. From the count of parameters, it is seen that the triple of descriptions for two
views is not a minimal representation.

In order to make a purely algebraic derivation for the last points, we notice that simultaneously
to (36), the following canonic representations of two views must hold:

~P1 = I01T
0 ~P3 = I02T

0 (37)

~P2 = I001 T
00 ~P3 = I002 T

00 (38)

where all the quantities with the same subscript have to be of the same form. In Appendix A,
we give as an example the derivation of the composition properties for the a�ne case using this
approach. The groups of transformations considered are the same than in section (2.5), and we
have not repeated their properties, nor have we repeated the de�nitions of the elements of the
canonic representation for two views, since these elements are already found in table 1. We have
summarized in table 2 the results speci�c to the canonic decomposition of a triple of projection
matrices:

� the nature of the two equivalent invariant description, the quantities above the horizontal
line being the elements of the invariant description for two views, the quantities under
that line being the additional parameters, which are measurable from three views but not
from two pairs of invariant description for two views,

� the two alternative expressions for ~P3, as a function of the description 1-2, 1-3, or of the
descriptions 1-2, 2-3,

� the de�nition of the additional elements, as a function of the description of previous level,

� the number of parameters, whose sum is exactly 33.

One advantage of the previous formalism is that the generalization of the canonic decompo-
sition to the case of N views is straightforward, since to build a description for N views is just a
matter of considering the triplet of the �rst and second views and the Nth view, or alternatively
any triple of views including the Nth view. Thus the elements of the description are exactly the
same than for three views, and can be summarized in the table 3 where it can be veri�ed that
the total number of parameters is 11N :
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EUCLIDEAN displacement 6
(calibration) intrinsic parameters 5N

rotations 3 (N-1)
translations 3 (N-1)

EUCLIDEAN similarity 7
(motion) rotations 3 (N-1)

directions of translations 2 (N-1)
ratio of translation norms N-2

AFFINE a�ne transformation 12
in�nity homographies 8 (N-1)
normalized epipoles 2 (N-1)
ratios of epipole norms N-2

PROJECTIVE homography 15
epipolar projections 5 (N-1)
normalized epipoles 2 (N-1)
di�erences of r1 vectors 3 (N-2)
ratios of epipole norms N-2

Table 3: The geometries of N views: canonic representation

3.3 From triples of two views to three views

In this section, we give details about the computation of the three views invariant description
which has been described previously from when triples of two views invariant descriptions. Scale
factors indeterminations are discussed.

Euclidean representation First, there is no ambiguity for the rotational part. For the
translational part, if we take by de�nition tij = Tij=kTijk, as previously done, then there is no
sign ambiguity. But in the structure from motion paradigm, the sign information contained in
Tij is also lost in the direction of translation tij, a fact we take into account by writing that the
recovered quantities are: t12 = "12T12=kT12k and t23 = "23T23=kT23k. In the relation (27), the
de�nition of the scale factors is thus: �1 = "12"13kT13k=kT12k and �2 = "12"23kT23k=kT12k.

However, the relation (27) constraints t13 to lie in the plane hR23t12; t23i, and thus if t12,
t23, and t13 are all known, the ratio �2 can be computed by expressing the proportionality
constraint:

t13 � (R23t12 + �2t23) = 0 (39)

Once �2 is determined, �1 can also be computed. We obtain:

�2 = �
t13 �R23t12
t13 � t23

�1 =
R23t12 + �2t23

t13
= �

t23 �R13R
�1
21 t12

t13 � t23
for i = 1; 2; 3 (40)

where we have used the usual division symbol for the the vector division of two proportional
vectors: if v1 = �v2, then v1=v2 = �. Please note that it would be incorrect to consider only
the quotient of the norms, since the signs would be lost.

A�ne representation Using the fact that the composition laws are similar, and applying
the same technique, it is found that: �1eN31 = H123eN21 + �2eN32 with:

�2 = �
eN31 �H123eN21

eN31 � eN32
�1 =

eN32 �H113H
�1
112eN21

eN31 � eN32
for i = 1; 2; 3 (41)

In addition to the indetermination on the epipole, we have to take into account the fact that in
the a�ne description for two views, the in�nity homography is de�ned only up to a scale factor.
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It means that we know only the matrices �12H112, �23H123, �13H113. Expliciting also the
dependencies on the scale factors which are in (41), the invariant descriptions become:8<
:
I1 = [I3; 0]
I2 = [�12H112; eN21]
I3 = [�13H113; �13�

�1
12 �1e31N ]

8<
:

I1 = [I3; 0]
I2 = [�12H112; eN21]
I3 = [�12�23H123H112; �23H123eN21 + �23�2eN32]

Let us remark that the pairs of projection matrices which yield the same H1,e0 description
than f[P;p] ; [P0;p0]g are of the form: f[��P; �p] ; [�0�P0; �0p0]g. Then we see that both the
invariant descriptions are not a�ected by a change of the unknown scale factors �12, �23, �13.
Note that this result depends on the way the ratios �i are computed. If, for example, the ratio
�1 was computed from H123 instead of H113H

�1
112, the result would not hold.

Projective representation Let �rst deal with the �rst canonic decomposition, and com-
pute �1 and qN1 from the pairs of descriptions 1-2, 1-3, and 2-3. The following pairs of projection
matrices have to yield the same projective view invariants:�

[I3; 0]
[S32; eN23]

�
[ 1
�1
S13 � eN31q

T
N1; eN31]

[S12; eN21]

Writing that the fundamental matrices and epipoles obtained from the two pairs are proportional
yield eventually the two equations:

([eN23]�S32)(S13 � eN31�1q
T
N1) � ([eN23]�S12)

eN23 � (eN21 � �1S12(S13 � eN31�1q
T
N1)

�1eN31) = 0

The solution is obtained by:

�1(qN1)k =
([eN23]�S32S13)k � ([eN23]�S12)k
([eN23]�S32eN31)� ([eN23]�S12)k

, �1 =
eN23 � eN21

eN23 � S12(S13 � eN31(�1qN1)T )�1eN31

(42)
where the notation (M)k (resp. (v)k) designates the kth column vector (resp. component) of
a matrix (resp. vector). From the formulas given above, it is easy to see that the solution is not
a�ected by a scaling of the matrices Sij, since �1 is proportional to ��1

13 and qN1 to �213.
The second canonic decomposition is dealt with in the same way, by expressing the projective

equivalence of the pairs of projection matrices:�
[I3; 0]
[S31; eN13]

�
[S23S12 + �2eN32(qTN2S12 + 
1e

T
N12) ;S23eN21 + �2eN32(qTN2eN21)]

[I3; 0]

In writing the proportionality of the fundamental matrices, the term with 
1 cancels because
of (35), and we are left with the equation:

[eN13]�S31(S23S12 + eN32(�2q
T
N2)S12) � [eN13]�

which can be solved similarly for �2qN2. Then �2 is determined by solving:

(S23S12 + eN32((�2qN2)
TS12 + �2
1e

T
N12))eN13 � (S23eN21 + eN32((�2qN2)

TeN21)) = 0

We have just given a sketch of the solution, and have not explicited it, because in practice, one
would prefer to deal with the �rst equivalent canonic decomposition, which is less complicated.
It can be noted that the simpler formulas5:

�2 =
eN31 � S13eN12


1eN31 � eN32
�2qN2 = 
1

ST21S
T
13eN32 + eTN32eN31S

T
23eN31

1� (eTN32eN31)2

do not give consistent solutions when the scale of the matrices Sij is changed.

5The �rst one is obtained by equalizing the two �rst 3�3 submatrix of the two forms of the canonic decomposition,
then taking the cross-product with e31 and the dot-product with eN12, the second is from [37].
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4 Some consequences of the representations

4.1 Relations between the levels of representation

From tables 1 and 2 we remark that each invariant description of a given level is formulated in
terms of descriptions of the previous level. This heritage of descriptors is quite natural, except
for the link between the similarity-invariant representations and the a�ne representations where
a di�erent change of retinal coordinates occur. It can be seen that the simplest representation
is the a�ne one.

Projective representation and a�ne representation Since the in�nite homography
H1 included in the a�ne representation is compatible with the fundamental matrix, and since
the epipole e0 is also part of the representation, it can be seen that all the results of section 2.3
apply entirely. In particular, we have:

F = [e0]�H1 S = �
[e0]2�
ke0k2

H1

The knowledge of the in�nity homography does not constraint the projective representation
more than does the knowledge of any homography. However, the in�nity homography, unlike
the other homographies, is guaranteed to be compatible with the fundamental matrix.

Let us examine the case of three views. From the two fundamental matrices F12 and F23

alone, there is no way to obtain the fundamental matrix F13, since four additional parameters
are needed. The canonic representation shows also that adding the homography matrices H112

and H123 is not su�cient, but that the scale ratio �2 is also needed. In order to cope with
the problem of scale factors, let us work with the non-normalized quantities, and establish the
interesting relation:

F13 = H�
123F12 +F23H112 = (detH123)(H

T
132F12 + FT32H112)

= (detH123)(H
T
132([e21]� � [e23]�)H112) (43)

Applying the property (20), and then (29) and (28) yield the �rst equality of (43):

H�
123F12 =H�

123[e21]�H112 = [e31 � e32]�H123H112 = [e31]�H113| {z }
F13

� [e32]�H123| {z }
F23

H112

To obtain the second equality, we also use (23). The last member is obtained by substitution of
the decompositions of F12 and F32. It allows to write the following expression using normalized
quantities:

F13 �HT
132(
2[eN21]� � �2[eN23]�)H112 (44)

where 
2 = ke32k=ke23k is obtained in the same way than the ratio 
1 appearing in (32).
It can be noted that the system of equations obtained by writing (44) between the three

images can not determine the in�nity homography matrices from the knowledge of the three
fundamental matrices, because there are 21 parameters in the a�ne representation, versus only
18 in the projective representation. However, it can be seen that this system determines the
in�nity homography matrices as soon as one of them is known. By substitution of H132 =
S32 + eN23r

T
132 into (44), and some easy algebra, the following formula is obtained:

(r132)k =
(HT

112(�2[eN23]� � 
2[eN21]�)S32)k � (F31)k

2(HT

112[eN21]�eN23)� (F31)k
(45)

where the notations are the same than in (42). The additional knowledge needed correspond for
example to one of the three vectors r1 de�ned in (17), which identify the plane at in�nity. This
means that is this quantity is identi�ed anywhere in an image sequence, it can be propagated
along the whole sequence.

21



Euclidean representation and a�ne representation It is easy to see that the rela-
tion:

H1 = A0RA�1 (46)

together with the relation between the fundamental and the essential matrix [6]:

F = A
0�1T [t]�RA

�1 (47)

which entails e0 = A0t allows to determine directly the motion parameters, the rotation R
and the direction of translation t from the a�ne representation, if the intrinsic parameters are
determined.

We examine now the relation with the intrinsic parameters. In the case of self-calibration
in the projective framework, equation (47) was used to constraint the intrinsic parameters from
the fundamental matrix by means of the rigidity constraint expressing that the matrix:

E = A
0�1TFA�1 (48)

is an essential matrix [14] (product of an antisymmetric matrix by a rotation matrix, for several
characterizations see [12, 21]), thus eliminatingR and t [17]. Now by analogy, if we eliminateR
from (46), by expressing that it is a rotation matrix, we will get equations relating the intrinsic
parameters and the in�nity homography matrix. This can be done much more simply than in
the projective framework. The fact that R is a rotation matrix is equivalent to:

RRT = I3 (49)

Substituting R = A
0�1H1A obtained from equation (46) into (49), yield:

K0 = H1KH
T
1 (50)

where the matrices K = AAT and K0 = A
0

A
0T represent the dual of the image of the absolute

conic in each camera coordinate system, as mentioned in section 2.1. Each of these matrices
is symmetric and de�ned only up to a scale factor, thus they depend on �ve independent
parameters. It can be seen that relation (50) allows us to update camera calibration through a
sequence of images where they do not remain constant, once that the initial camera parameters
are known.

We have obtained from (50) �ve constraints on the intrinsic parameters, which are linear,
whereas from the projective invariants, only two quadratic constraints were obtained [22, 6].
These last constraints are in fact implied by the former ones.

Let us suppose that A and A0 satisfy the constraint (50), then H1A = A0R. The matrix
H1 has also to be compatible with the epipolar geometry, thus, F = [e0]�H1. By substitution
of the second, and then the �rst relation into (48), we obtain: E = A

0
T [e0]�A0R which is

the product of an antisymmetric matrix and a rotation matrix. Thus we have shown that the
rigidity constraint (and in particular the Kruppa equations of [22, 6]) are indeed implied by (50),
and do not yield additional equations.

If we have three views, then the relations (50) yield the following system of equations:8<
:

K2 = H112K1H
T
112

K3 = H123K2H
T
123

K1 = H131K3H
T
131

(51)

Since the last equation is a consequence of the two �rst ones, the system provides with at most
10 independent equations. This is coherent with a simple count of the number of parameters.
We have seen that in the case of structure from motion, the Euclidean representation has 26
independent parameters, whereas the a�ne representation has 21 independent parameters. Thus
the knowledge of 5 more variables is needed to determine the Euclidean representation from the
a�ne representation. These parameters are for instance the set of intrinsic parameters of one
of the three cameras, or, equivalently, the equation of the image of the absolute conic in one of
the cameras.
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4.2 Computing from the images

We discuss now which parts of the representations previously described can be recovered from
measurements made in the images, and in particular we consider the self-calibration problem.

Uncalibrated cameras When working with uncalibrated cameras, the only information
that is accessible are pixel coordinates. Let us suppose that we observe corresponding points in
two images. They are the image of same point ~M of P3:

�m = ~P ~M �0m0 = ~P0 ~M

From the canonic decomposition, we see that this can also be written:

�m = [I3; 0] ~M1 �0m0 = [Pc;pc] ~M1

where [Pcpc] are one of the canonic forms of the second projection matrix, either the projective
or the a�ne one. The substitution of the �rst relation into the second yields:

�0m0 = �Pcm+ pc (52)

There are several consequences of this relation. The �rst one is that since the quantities � and
�0 are unknown, the only equation relatingm andm0 is obtained by writing that the vectorsm0,
Pcm, and pc are coplanar. This is a generalization of the Longuet-Higgins condition [14], as �rst
pointed out to in [6]. By writing that the mixed product of the three vectors is zero, we obtain:
m

0T [pc]�Pcm = 0, which is the epipolar constraint, with fundamental matrix F = [pc]�Pc.
Thus we �nd again that this fundamental matrix is the only information which can be obtained
from image correspondences alone. We can notice that the projective decomposition and the
a�ne decomposition yield the same fundamental matrix. A second consequence is that one
can see equation (52) as a generalization of the relation: Z0m0 = ZRm + t which holds in
the calibrated case, provided a normalized representation is taken for m and m0. Thus, we
can interpret the quantities � and �0 as a�ne or projective depths, and use equation (52) to
recover 3D structure up to an a�ne or projective transformation. Only the elements of the
representation Pc and pc are needed, as shown in [37]. An alternative interpretation of similar
quantities can be found in [29].

A�ne calibration To recover the three parameters which de�ne the a�ne representation,
in addition to the seven parameters representing the projective representation, some additional
knowledge is needed. Several approximations and heuristics can be used. Drawing upon the
concepts of section 2.2, there are two ways to compute H1:

� Identifying parallel directions: if images of three set of lines which are parallel in 3D space
can be identi�ed (a task addressed for example in [20, 25]) then we obtain three vanishing
points vi and v0i in each image, and the in�nity homography matrix is the solution of the
system fH1vi = �iv

0
ig;H1e = �e0, as mentioned by [24].

� Identifying in�nity: the homography H1 is the limit of any homography induced by a
plane, when the distance of the plane to the optical centers increases arbitrarily. Thus
observing corresponding points which are at the horizon, or at remote distances provide
an approximative way to compute H1, used already in [36].

If we write equation (52) in the a�ne case: �0am
0 = �aH1m+ e0, we also see, since e0 = A0T

that:

� When the translational component of the motion can be neglected, the average homogra-
phy (ie the homography computed from all the point correspondences) is an approximation
of the in�nity homography.

Recently, the following result has been proved and used in [38]:

� The average homography computed from a random set of points is almost equal to the
homography of the in�nity homography
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The case of a single moving camera It has been shown [22, 6] that Euclidean rep-
resentations can be recovered from three displacements of a single uncalibrated camera, which
means a camera whose intrinsic parameters remain constant. However, it is not possible to use
such a constraint to recover directly intermediate a�ne representations, since this information
cannot be expressed within this representation.

If the two cameras are the same, then from H1 = ARA�1 it is seen that the in�nity
homography matrix is similar to a rotation matrix. Considering that this matrix is recovered up
to a scale factor, its eigenvalues �i are �; �e

i�; �e�i�. They have thus to satisfy two constraints,
which are for example k�1k = k�2k and k�3k

3 = �1�2�3. They result in two algebraic constraints
on the entries of the in�nity homography matrix which would be interesting to investigate
further. We can conclude that in this case the matrix H1 depends only on six parameters.
Note that these constraints should be incorporated in any algorithm to estimate the matrixH1

for a single camera. A consequence is that the natural approach to solve the linear system of
equations K = H1KH

T
1 for the Kruppa coe�cients would fail, since this system would not

provide with �ve independent equations. Let us make this point more precise. The equation (50)
becomes:

K = (ARA�1)K(ARA�1)T

Using the fact that RRT = I3, this equation can be transformed into:

RA�1KA�1T| {z }
X

= A�1KA�1T| {z }
X

R (53)

The matrix K and the matrix X are obtained from each other in a unique way. Using X as
unknown, we see that (53) is a commutator equation, but with the additional condition that
X has to be symmetric. All the solutions to this matrix equation RX = XR can be obtained
by using a rationnal parameterization of R by quaternions6 which accounts for the orthogonal
structure of the matrix R, and writing explicitly the linear system of equations in the entries of
X. Such an approach, which is not detailed here, enables to prove that the rank of the system if
4. Let us instead give a less analytical solution. Obviously, the identity matrix I3 is a solution.
If u is the rotation axis of the rotation R, we have:

(Ru)uT = uuT = u(RTu)T = uuTR

thus the symmetrical matrix uuT is the other solution, and we can conclude that the general
solution isX = �uuT+�I3. This means that by solving the equation (50) for the Kruppa matrix,
we recover: K = �Au(Au)T+�AAT , and thus there is an indetermination onK in the direction
Au(Au)T . Thus two displacements with non-parallel rotation axes, or further constraints on
the parameters, such as a restricted model, are necessary to recover K unambiguously.

As soon as three views are available, the knowledge of only one in�nity homography matrix
allows to obtain all the in�nity homography matrices, and thus the Kruppa coe�cients can
be solved using the system of equations (51). Although the solution is more simple, since it
involves only linear equations, we see that no more information is obtained than by proceeding
only from the more general projective framework, where no a�ne calibration is necessary. Thus
the best way to use a�ne information seems to be the updating scheme, where a camera is �rst
self-calibrated, and then a�ne information is used to track its calibration parameters as they
evolve over an image sequence.

5 Examples

Two examples are provided to illustrate the theory. The associated numerical values are given
in appendix C. They involve real images, and tasks that we shall hopefully be able to perform
automatically in a near future. Since our goal here is not to address stability or robustness

6See for example [40, 5]
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issues, we have computed the fundamental matrices and the in�nity homography matrices us-
ing calibration or self-calibration methods, in order to obtain very coherent values for these
matrices. Robust methods to obtain the fundamental matrix from point correspondences exist
already[16, 31], whereas practical methods to estimate the in�nity homography are currently
being developed [38].

5.1 Computation of the canonic representation for three views and
reconstruction

Three images of the calibration grid are used. We start from the three fundamental matrices
F12, F32, F13. The normalized epipoles eNij are obtained by solving FijeNij = 0, and this
yield the epipolar projection matrices Sij = [eNij]�Fij. Applying the formulas (42), we obtain
�1 and qN1, and then compute the invariant descriptions P1, P2, P3 from table 2. General
projective transformations can yield very strange deformations7 which may make the shape
of an object totally impossible to recognize, thus we �rst apply a carefully chosen projective
transformation of P3 to the three matrices above, in order to obtain three projection matrices
~Pi. The epipolar geometry computed from the matrices ~Pi is shown �gure 2. It can be seen that
it is perfectly coherent. Thus, the classical trinocular algorithms can be used for matching and
reconstruction. This is a progress over previous methods [4, 11] where only two cameras could
be considered at the same time, since it is well known that trinocular methods are more precise,
robust, and e�cient. A 3D reconstruction is shown �gure 3. It can be veri�ed on the stereogram
that collinarity and coplanarity are preserved. The two last views, taken under orthographic
projections along the normal of each of the two planes, show clearly that parallelism is not
preserved.

Figure 2: Epipolar lines from the projection matrices obtained using only fundamental matrices.

Control points are at the two opposite corners of the grid.

If, in addition to the fundamental matrices, the knowledge of one in�nity homography ma-
trix is added, then the three in�nity homography matrices can be computed using (45). Apply-
ing (41), the value of �1 is obtained, and then a�ne invariant descriptions are given by table 2.
Unlike the projective reconstruction, the a�ne reconstruction limits deformations, since paral-
lelism has to be preserved, and thus we can use directly the invariant description A1, A2, A3

7For instance, the inversion can map �nite points to points at in�nity.
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Figure 3: Projective 3D reconstruction. Left: stereogram. Right: two orthographic projections

as projection matrices. Although the reconstructed points in the stereogram shown in �gure 4
might seem all coplanar, they are not. It is just that the angle between the two planes in this
reconstruction is very small. Applying a chosen a�ne transformation of P3 to the three matrices
above makes the di�erence between the planes appear, as seen in the two last reprojected views.
These views, taken under orthographic projection along the normal of each of the two planes,
illustrate clearly that parallelism is preserved, but that distances and angles are not. This is
to be compared with an Euclidean reconstruction, obtained from three views, given �gure 5.
Although some information is lost, the a�ne reconstruction remains attractive.

Figure 4: A�ne 3D reconstruction. Left: stereogram. Right: two orthographic projections

Figure 5: Euclidean 3D reconstruction. Left: stereogram. Right: two orthographic projections

5.2 Using a�ne information to perform self-calibration

Three images of an indoor scene taken by a zooming camera are used. The focal has been changed
from 8mm to 12mm (read on the lens barrel). The in�nity homography matrix between the two
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�rst views is:

H112 =

"
1:72134 �:172135 �218:805
:758041 1:59733 �620:388

:00109138 :000592603 1:00000

#

The three eigenvalues ofH112 have the same norm, 1:57575, thus we conclude that the intrinsic
parameters remain constant between image 1 and image 2. The system of equations (50), with
K =K0, is linear. Let us use, in conformity with previous work [6], the notation:

K =

2
4��23 �3 �2

�3 ��13 �1
�2 �1 ��12

3
5

Normalizing by �12 = �1, we obtain a 5 � 5 matrix for the system. The singular values of this
matrix are: 957; 462; :19; :00055; :82 10�11. The rank of this matrix is thus 4, as expected,
and the solutions found are:

�1 = 776:394� :00115042t
�2 = �118:969 + :000817533t
�3 = 400000 � :747472t

�13 = �731756 + :353407t
�23 = �40381:4 � :562483t

A further assumption is needed to obtain a unique solution. Let us suppose that the two axes of
the retinal coordinate system are orthogonal, which means that 
 = 0 in equation (4), then we
have the additional constraint [6]: ��3�12 = �1�2, which yields the two solutions: t = 448873,
t = :116628 107. The �rst solution leads to:

�1 = 260; �2 = 248; �3 = 64480; �13 = �573121; �23 = �292865

and then to the intrinsic parameters (formulas are in [6]):

�u = 481; �v = 711; u0 = 248; v0 = 260

The second solution is to be discarded, because it leads to:

�1 = �565:319; �2 = 834:501; �3 = �471759; �13 = �319585; �23 = �696393

Thus we see that �22 = �23�12 and �21 = �13�12, which corresponds to a degenerate case where K
represents a line, and �u = �v = 0.

Now, having the three fundamental matrices between the images, we are able to obtain,
using (45), the other in�nity homography matrices from H112. In particular, we have:

H123 =

"
1:07992 :302292 �35:2662
�:905154 :959146 413:566

�:0000364269 �:000355526 1:00000

#

The norms of the eigenvalues are 1:21; 1:21;1:0, thus we conclude that the intrinsic parameters
have changed between image 2 and image 3. Applying formula (50) gives immediately the new
matrix K0, from which the following parameters are computed:

�u = 642; �v = 950; u0 = 248; v0 = 263

It can be veri�ed that they correspond to the variation of focal length described previously. From
the intrinsic parameters and the fundamental matrices, we can obtain the essential matrices,
and thus the motions, up to a scale factor. Applying (40) as done in [19] it is thus possible
to recover three projection matrices which are equivalent to the initial ones, up to a global
scale factor and a change of coordinate system. Some epipolar lines obtained from these new
projection matrices are show �gure 6. Note that if we have a fourth view, the same method will
allow us to obtain a fourth projection matrix with Euclidean information, and so on.

This example has illustrated how knowing only one in�nity homography matrix, enables to
perform (partial) self-calibration from two views in the case of constant intrinsic parameters,
but also to deal with the case of variable intrinsic parameters, by propagating a�ne, and then
Euclidean information.
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Figure 6: Three images taken by a zooming camera, with epipolar lines

6 Conclusion

This paper lays the ground for further studies about problems involving 3D information, multiple
viewpoints, and uncalibrated cameras. It con�rms the interest of the a�ne representation, which
turns out to yield simple and powerful descriptions.

We have described the canonic decomposition, an idea to account in a single framework for
the di�erent geometric levels of representation, in the case of two views, three views, or more.
The approach is very general, since it involves only reasoning about the projection matrices.
We �rst presented new descriptions for the a�ne and projective geometries of two views, which
are respectively the in�nity homography matrix and the epipolar projection matrix, which have
been described from both an algebraic and geometric viewpoint. Then, a coherent hierarchy
of representations has been studied. In particular, we have exhibited minimal and complete
representations for each level of description, and showed clearly which elements of representation
change and which ones are conserved across two di�erent levels. These representations are
description of the geometry of the cameras which are invariant with respect to a given group of
transformations. In the case of three views, new representations and their associated composition
formulas have been established. They allow to deal with the case of multiple viewpoints while
working with uncalibrated cameras. We have also investigated the relationships which occur
between the di�erent levels of representation, and some computational consequences, which have
began to be explored [37, 38] in order to recover e�ciently the invariant descriptions studied in
this paper from various primitives extracted in uncalibrated images.
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A Algebraic derivation of the a�ne invariants

In this section, we illustrate the principle of the derivation of invariants thanks to the simplest
case, the a�ne one. One choice has to be made, the form of the invariant for the �rst camera,
which we make to be the simplest possible. Then the case of two views gives the nature of the
invariant as function of projection matrices, and the case of three views gives also in addition the
composition relations. All is done just by applying the de�nition of the canonic decomposition.

Two views In the a�ne case, looking for a matrices X, Y, vectors x,y and a scalar � such
that: �

~P = [I3; 0] A
~P0 = [X;x] A

with A =

�
Y y
0T3 �

�
(54)

gives the equations:
P = Y ; p = y ; P0 = XY ; p0 = Xy + �x
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which immediately yield the representation X = P0P�1, �x = P0P�1p � p0. One arbitrary
choice for kxk has thus to be made, and we take the value 1, thus � = kxk.

Three views Starting from the canonic representation found for two views, we look for
matrices X,Y0,Y00, vectors x,y0,y00, and scalars �0, �00, such that:8<

:
~P1 = [I3;0] A
~P2 = [H12; eN21] A
~P3 = [X;x] A

with A =

�
Y y
0T3 �

�
(55)

�
~P2 = [I3;0] A0

~P3 = [H23; eN32] A
0 with A0 =

�
Y0 y0

0T3 �0

�
(56)�

~P1 = [I3;0] A00

~P3 = [H13; eN31] A
00 with A00 =

�
Y00 y00

0T3 �00

�
(57)

By equating expressions in (55) and in (56), we obtain:

Y0 = H12Y ; y0 = H12y + �eN21 ; �
0 = ke32k

X =H23H12 ; x = H23eN21 + (�0=�)eN32
(58)

where � = ke21k, cannot be eliminated from the equations, and by equating expressions in (55)
and in (57), we obtain:

Y00 = Y ; y00 = y ; �0 = ke31k ; X = H13 ; x = (�00=�)eN31 (59)

We thus obtain the two alternative representations. By equating the values of X and x found
in (58) with those found in (59), the composition relations are obtained.

B Proofs of some formulas

B.1 The epipolar projection

We show that the matrix S describes the correspondence from image 1 to image 2 generated by
the plane �e0 .

First let compute the intersection of the optical ray of a point m in the camera de�ned by
the projection matrix ~P = [P;p] with a given plane �. Two points of this optical ray are the
optical center C and the point of in�nity representing the direction P�1m of this line, thus a
point of this optical ray can be written:

M = C + �

�
P�1m

0

�
=

�
P�1(p+ �m)

�1

�
By writing that �TM = 0, a value for � is found as a function of ~P, �, and m, and by back-
substitution in the previous relation, we obtain, after some algebra (the double cross-product
formula is used):

M� =

�
P�1([P�1Td]�[p]� + �I3)m

�dTP�1m

�
where � =

�
d
�

�
Now let de�ne �e0 by d = P

0Te0 and � = p
0Te0. The correspondence to m through plane �e0

is m0 = ~P0M�, which can be written as:

m0 = H1([HT
1e

0]�[p]� + p
0Te0)m� p0(e

0TH1m)

Expending the double cross-product and using H1p = p0 � e0 yield:

H1[HT
1e

0]�[p]�m = (e
0TH1m)(p0 � e0)� (e

0T (p0 � e0))H1m

Several terms cancels and it follows:

m0 = �(e
0TH1m)e0 + (e

0Te0)H1m = �[e0]�[e
0]�H1m
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B.2 Composition of projective representations

The third epipole Starting from the de�nition of S23, then using (35) and expending the
double crossproduct yield:

S23e21 = �
[e32]�
ke32k2

F23e21 = �
e32

ke32k2
� (e32 � e31) = e31 �

(eT32e31)

ke32k2
e32 (60)

Starting from the de�nition of the vectors r1 and using (29) and (23) yield:

(r123 � r121)
T e21 = �

eT12
ke12k2

H121e21 +
eT32

ke32k2
H123e21 = 1 +

eT32
ke32k2

(e31 � e32) =
(eT32e31)

ke32k2

Thus:
S23e21 + ((r123 � r121)

Te21)e32 = e31

The third epipolar projection matrix The substitution of the decompositions (17)
into (28) yields:

S13 � S23S12 = S23e21r
T
112 + e32r

T
123S12 + e32r

T
123e21r

T
112 � e31r

T
113

The �rst term of the right side is transformed using (60). The fourth term is transformed using

rT123e21 = rT123(e31 � e32) =
eT
32
e31

ke32k2 � 1 This yields after simpli�cations:

S13 � S23S12 = e32r
T
123S12 + (e31 � e32)r

T
112 � e31r

T
113

By expressing S12 and r121 as functions of in�nite homographies and epipoles and using (13)

and then (23), we obtain: r112 = ST12r121 �
eT
12

ke12k2 . The substitution of this value yields:

S13 � S23S12 = e32((r
T
123 � r

T
121)S12 +

eT12
ke12k2

) + e31(S
T
12r121 �

e12
ke12k2| {z }

r112

�r113)
T

C Numerical values

We provide numerical values corresponding to the examples of Section 5.

C.1 Example 1

F12 =

2
4 �:1395 10�5 :1853 10�5 :001981
�:8986 10�5 :1374 10�5 :01201
:001424 �:01269 1

3
5 ; F32 =

2
4 �:8549 10�5 :7565 10�5 :01596
�:1561 10�5 :2783 10�5 :004520
�:01474 �:01013 1

3
5

F13 =

2
4 :5978 10�5 :4767 10�5 �:02712

:4380 10�5 :2787 10�5 :005137
:02105 �:007449 1

3
5

�1 = 2:5651 ; qN1 = [�:00759; :008898;�:03468]T

P1 =

2
4 1 0 0 0

0 1 0 0
0 0 1 0

3
5 ; P2 =

2
4 6911:48 �1363:61 2373:28 7873:86
�1200:83 343:822 �8656:55 �1381:41
:803724 �:161854 99:3223 1:000000

3
5

P3 =

2
4 �635:855 126:875 �1835:90 �694:050
�3351:10 640:177 �1440:08 �3859:31
:877744 �:158361 �42:4041 1:00000

3
5
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H112 =

2
4 :7091 �:004109 397:0

�:01186 1:004 �148:7
�:0006201 :0001081 1:000

3
5 ; H132 =

2
4 1:034 :3276 163:0

�:2321 1:177 �796:9
�:0005753 :0005679 1:000

3
5

H113 =

2
4 :8853 �:1793 140:9

�:007023 :7471 549:2
�:0002499 �:0003943 1:0000

3
5

A1 =

2
4 1 0 0 0

0 1 0 0
0 0 1 0

3
5 ; A2 =

2
4 �5668:34 32:85 �:31736 107 7873:86

94:778 �8023:47 :11885 107 �1381:41
4:9569 �:864224 �7994:12 1:000

3
5

A3 =

2
4 541:50 �514:85 404452: �694:05
�20:1608 2144:7 :15767 107 �3859:3
�:717456 �1:1320 2870:78 1:000

3
5

C.2 Example 2

F12 =

2
4 :00030194 :00022904 :20447
�:00018455 �:000039449 �:070503
�:34804 :17286 1:000

3
5 F23 =

2
4 :000049813 �:000052961 �:022319

:000059537 :000017487 �:0043212
�:0026382 :0021470 1:00

3
5

F13 =

2
4 :43369 10�5 �:000014001 :0024273

:000012721 :19193 10�5 �:0068886
�:0053471 :0050099 1:00

3
5
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