
Database and Display Algorithms for

Interactive Visualization of Architectural Models

by

Thomas Allen Funkhouser

B.S. (Stanford University) 1983
M.S. (University of California at Los Angeles) 1989

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Carlo H. S�equin , Chair
Professor Lawrence Rowe
Professor Jean Pierre Protzen

1993

The dissertation of Thomas Allen Funkhouser is approved:

Chair Date

Date

Date

University of California at Berkeley

1993

Database and Display Algorithms for

Interactive Visualization of Architectural Models

Copyright c
1993

by

Thomas Allen Funkhouser

1

Abstract

Database and Display Algorithms for

Interactive Visualization of Architectural Models

by

Thomas Allen Funkhouser

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Carlo H. S�equin , Chair

This thesis describes a system for interactive walkthroughs of large, fully furnished

architectural models.

Realistic-looking architectural models with furniture may consist of millions of polygons

and require gigabytes of data { far more than today's workstations can render at interactive

frame rates or �t into memory simultaneously. In order to achieve interactive walkthroughs

of such large building models, a system must store in memory and render only a small

portion of the model in each frame; that is, the portion seen by the observer. As the

observer \walks" through the model, some parts of the model become visible and others

become invisible; some objects appear larger and others appear smaller. The challenge is

to identify the relevant portions of the model, swap them into memory and render them at

interactive frame rates as the observer's viewpoint is moved under user control.

We have developed data structures and algorithms for identifying a small portion of a

large model to render and store in memory during each frame of an interactive walkthrough.

Our algorithms rely upon an e�cient display database that represents a building model as a

set of objects, each of which can be described at multiple levels of detail. The database also

contains an index of spatial cells with precomputed cell-to-cell and cell-to-object visibility

information.

As the observer moves through the model during an interactive walkthrough, visibility

information for the cell containing the observer is fetched from the display database and

used by dynamic culling algorithms to identify a small superset of objects potentially visible

to the observer. An optimization algorithm is used to select a level of detail and rendering

algorithm with which to display each potentially visible object in order to meet a user-

speci�ed target frame time. Meanwhile, memory management algorithms are used to predict

2

observer motion and to pre-fetch objects from disk that may become visible during upcoming

future frames.

We have implemented an interactive building walkthrough system using these data

structures and algorithms. During tests, this system is able to maintain over ten frames

per second with little noticeable detail elision during interactive walkthroughs of a building

model containing over one million polygons.

Carlo H. S�equin

Thesis Chair

iii

To Dad, whose love inspired this work.

iv

Contents

Table of Contents iv

List of Figures vi

List of Tables xi

1 Introduction 1

1.1 Motivation : 1
1.2 Goals : 2
1.3 Problem Statement : 7
1.4 Basic Approach : 7
1.5 Organization : 8

2 Previous Work 10

2.1 Vehicle Simulators : 10
2.2 Computer-Aided Design Systems : 11
2.3 Building Walkthrough Systems : 12

3 System Organization 14

3.1 Modeling Phase : 15
3.1.1 Model Loading : 15
3.1.2 Model Representation : 16
3.1.3 Object Abstraction : 18
3.1.4 Results : 21
3.1.5 Discussion : 23

3.2 Precomputation Phase : 24
3.2.1 Spatial Subdivision : 24
3.2.2 Visibility Precomputation : 25
3.2.3 Results : 30
3.2.4 Discussion : 31

3.3 Walkthrough Phase : 31
3.3.1 User Interface : 33
3.3.2 Display Management : 39
3.3.3 Memory Management : 39

v

4 Display Management 41

4.1 Visibility Determination : 41
4.1.1 Observer Viewpoint : 42
4.1.2 Observer Visibility : 42
4.1.3 Results : 44
4.1.4 Discussion : 53

4.2 Detail Elision : 55
4.2.1 Levels of Detail : 56
4.2.2 Adaptive Detail Elision : 57
4.2.3 Optimization Detail Elision : 58
4.2.4 Results : 70
4.2.5 Discussion : 76

5 Memory Management 82
5.1 Database System : 82

5.1.1 Segments : 85
5.1.2 Data Types : 86
5.1.3 Operations : 89
5.1.4 Implementation : 91

5.2 Predictive Memory Management : 93
5.2.1 Observer Range : 94
5.2.2 Object Lookahead : 94
5.2.3 Cache Management : 99
5.2.4 Fault Tolerance : 100
5.2.5 Results : 101
5.2.6 Discussion : 117

6 Concurrent Processing 119

6.1 Pipelining : 120
6.2 Results : 121
6.3 Discussion : 129

7 Results 132
7.1 Display Management : 133
7.2 Memory Management : 138

8 Conclusion 142

8.1 Summary and Re
ections : 142
8.2 Comparison to Other Approaches : 143
8.3 Final Observation : 144

Bibliography 146

vi

List of Figures

1.1 Exterior view of Soda Hall. : 3

1.2 Exterior view of Soda Hall \cut open" by a horizontal plane at the sixth
oor. 3

1.3 Typical o�ce with furniture and textures. : : : : : : : : : : : : : : : : : : : 3

1.4 Board room with furniture and textures. : 3

1.5 Radiosity rendering of hallway. : 5

1.6 Radiosity rendering from di�erent viewpoint. : : : : : : : : : : : : : : : : : 5

1.7 Radiosity computation is independent of observer viewpoint. : : : : : : : : 5

1.8 Polygonal mesh generated during radiosity computation. : : : : : : : : : : : 5

1.9 A typical sequence of operations performed during rendering of three dimen-
sional polygons. : 7

3.1 System overview. : 14

3.2 Loading operations of the modeling phase. : : : : : : : : : : : : : : : : : : : 15

3.3 Three LODs for a chair. : 16

3.4 Object instances can share geometries stored in an object de�nition. : : : : 17

3.5 An object instance can store its own geometries. : : : : : : : : : : : : : : : 17

3.6 Di�erent representations for a doorhandle constructed using a parameterized
generator program. : 18

3.7 Three LODs for a canary. : 19

3.8 Deleting polygons. : 19

3.9 Deleting edges. : 20

3.10 Deleting the vertices with hexagonal and pentagonal symmetry. : : : : : : : 20

3.11 Collapsing the pentagons. : 20

3.12 Collapsing the edges shared by hexagons. : : : : : : : : : : : : : : : : : : : 21

3.13 Three LODs for a desk lamp. : 22

3.14 A hierarchical object representation with multiple LODs. : : : : : : : : : : 23

3.15 Functional steps of the precomputation phase. : : : : : : : : : : : : : : : : : 24

3.16 Spatial subdivision of the sixth
oor of Soda Hall. The image on the left
shows the actual three dimensional subdivision, while the image on the right
shows a two dimensional schematic representation. : : : : : : : : : : : : : : 26

3.17 A sight-line stabbing a portal sequence. : 26

vii

3.18 Bowtie-shaped region containing sightlines stabbing a portal sequence (shown
in stipple gray). Opaque boundaries are shown in solid black. Extremal
sightlines are shown as dashed lines. : 27

3.19 Cell visibility (shown in stipple gray) for source cell (shown in dark gray). : 27

3.20 Two dimensional schematic diagram of a) cell-to-cell visibility (shown in stip-
ple gray), and b) cell-to-object visibility (shown as solid black squares) for a
particular source cell (shown in dark gray). : : : : : : : : : : : : : : : : : : 28

3.21 Cell visibility in three dimensions. Visible region (beams) and cell-to-cell
visibility (outlined) are shown for one source cell. : : : : : : : : : : : : : : : 29

3.22 Stab list data structure. : 29

3.23 Organization of data in the display database. : : : : : : : : : : : : : : : : : 32

3.24 Functional operations of the walkthrough phase. : : : : : : : : : : : : : : : 33

3.25 Panels used for controlling parameters for a) observer navigation, b) visibility
determination, and c) memory management. : : : : : : : : : : : : : : : : : : 35

3.26 Panel used for controlling detail elision parameters. : : : : : : : : : : : : : : 36

3.27 Visualization program supports two views. : : : : : : : : : : : : : : : : : : : 37

3.28 Panel containing controls for rendering parameters. : : : : : : : : : : : : : : 38

4.1 View frustum variables. : 42

4.2 Mapping view frustum to perspective projection. : : : : : : : : : : : : : : : 42

4.3 Visible region is a wedge that typically narrows as it traverses through more
portals. : 43

4.4 Visible region for view frustum in two dimensions. : : : : : : : : : : : : : : 43

4.5 Cells in the eye-to-cell visibility are shown in stipple gray. : : : : : : : : : : 44

4.6 Objects in the eye-to-object visibility are shown as by solid squares. : : : : 44

4.7 All objects incident upon cells in the eye-to-cell visibility. : : : : : : : : : : 45

4.8 Objects in the eye-to-object visibility. : 45

4.9 Test path through the sixth
oor of Soda Hall. : : : : : : : : : : : : : : : : 46

4.10 Frame time for each observer viewpoint along test walkthrough path. Note
di�erent scales along the \Frame Time" axis. : : : : : : : : : : : : : : : : : 50

4.11 Compute time, draw time, and frame time for each observer viewpoint along
the test walkthrough path using (CTO, ETC, ETO) visibility determination. 52

4.12 Two possible spatial subdivisions for the same model. : : : : : : : : : : : : 54

4.13 Trade-o�s in spatial subdivision granularity. : : : : : : : : : : : : : : : : : : 54

4.14 Two-stage model of the rendering pipeline. : : : : : : : : : : : : : : : : : : 60

4.15 Cost model coe�cients can be determined empirically. The plots show actual

at-shaded rendering times for the chair shown in Figure 3.3 using di�erent
numbers of polygons (on the left), and di�erent sizes (on the right). : : : : 62

4.16 Comparison of actual and estimated rendering times of frames during an
interactive building walkthrough. : 62

4.17 Objects that appear larger \contribute" more to the image. : : : : : : : : : 63

4.18 Plots of pixel intensity across a sample scan-line of images generated using
di�erent representations and rendering algorithms for a simple cylinder. : : 64

viii

4.19 Images depicting the relative bene�t of objects with the Focus factor of the
Bene�t heuristic set to a) 1.0 and b) 0.1. Darker shades of gray represent
higher values for the Bene�t heuristic. : 67

4.20 Pseudocode for the constrained optimization algorithm. : : : : : : : : : : : 69
4.21 Test observer path through an auditorium on the third
oor of Soda Hall. : 71
4.22 Plots of frame time for every observer viewpoint along test observer path

using a) no detail elision, b) static algorithm, c) feedback algorithm, and d)
optimization algorithm. Note: the \Frame Time" axis in plot (a) is �ve-times
larger than the others. : 72

4.23 Images depicting the LODs selected for each object at the observer viewpoints
marked `A' using the Static and Optimization algorithms. Darker shades of
gray represent higher LODs. : 74

4.24 Images depicting the LODs selected for each object at the observer viewpoints
marked `C' using the Feedback and Optimization algorithms. Darker shades
of gray represent higher LODs. : 75

4.25 Images for observer viewpoint `A' generated using a) no detail elision (72,570
polygons), and b) the Optimization algorithm with a 0.10 second target frame
time (5,300 polygons). : 76

4.26 Image of library generated using no detail elision (19,821 polygons). : : : : 77
4.27 Images of library generated using the Optimization detail elision algorithm

with a target frame time of 0.10 seconds (8,882 polygons). LODs chosen
for objects in (a) are shown in (b) { darker shades of gray represent higher
LODs. Pixel-by-pixel di�erences from Figure 4.26 are shown in (c) { brighter
colors represent greater di�erence. : 78

4.28 Images of library generated using the Optimization detail elision algorithm
with a target frame time of 0.05 seconds (3,568 polygons). LODs chosen
for objects in (a) are shown in (b) { darker shades of gray represent higher
LODs. Pixel-by-pixel di�erences from Figure 4.26 are shown in (c) { brighter
colors represent greater di�erence. : 79

4.29 Images of library generated using the Optimization detail elision algorithm
with a target frame time of 0.02 seconds (1,161 polygons). LODs chosen for
objects in (a) are shown in (b) { all objects are rendered using the lowest
LOD. Pixel-by-pixel di�erences from Figure 4.26 are shown in (c) { brighter
colors represent greater di�erence. : 80

5.1 References to addresses internal to other segments are not allowed. : : : : : 87
5.2 The building walkthrough data structures partitioned into segments. Seg-

ment boundaries are represented by thick, dashed lines. Inter-segment ref-
erences are depicted by stipple gray squares labeled by the type of segment
referenced (e.g., `C' = Cell, `O' = Object, `G' = Geometry, `M' = Material,
`T' = Texture, `I' = Image, and `L' = List). Intra-segment references are
depicted by hollow squares. : 88

5.3 Layout of database �le. Mandatory inter-segment references are shown as
solid arrows, while possible application-de�ned inter-segment references are
shown as dashed-arrows. : 91

ix

5.4 The observer range contains all observer view positions (inside sphere) and
view directions (inside range frustum) possible during the upcoming N frames. 95

5.5 Observer range is reduced if the user interface prevents traversal through
solid walls. : 95

5.6 The observer range cells (shown in cross-hatch) contain all observer view
positions possible during the upcoming N = 4 frames. Each cell is labeled
by the number of frames before the observer can be resident in it. : : : : : : 97

5.7 The lookahead cells (shown in stipple gray) contain all objects that can be
visible to the observer during the upcoming N frames. Each cell is labeled
by the number of frames before it can become visible to the observer. : : : 97

5.8 Lookahead objects are stored in memory only up to the LOD at which they
can possibly be rendered during the next N frames. Each cell is labeled and
shaded by the maximum level of detail any object incident upon it is stored
in memory { darker shades of gray represent higher levels of detail. : : : : : 98

5.9 Cache management algorithm results. Each cell is labeled by the number
of frames since objects incident upon it were included in the lookahead set.
Shading for each cell indicates whether or not it contains objects in the
memory resident cache (stipple gray), read set (left-hatch), and resident set
(right-hatch). : 100

5.10 Test path through the �fth
oor of Soda Hall. : : : : : : : : : : : : : : : : : 103

5.11 Size of the lookahead set (in MB) for various lookahead depths. : : : : : : : 106

5.12 Read times and frame times using cell granularity looking 16 frames in advance.109

5.13 Number of LODs skipped using cell granularity and object granularity look-
ing 1 frame in advance. Frames in which the observer crosses a cell boundary
are marked by a dash on the \Frames" axis. : : : : : : : : : : : : : : : : : : 110

5.14 Visibility from a box bounding the observer range. : : : : : : : : : : : : : : 118

6.1 Pipeline stage implementation. : 120

6.2 Test path through the seventh
oor of Soda Hall. : : : : : : : : : : : : : : : 122

6.3 Frame time during each frame along a portion of the test walkthrough path
for representative 1-, 2-, 3-, and 4-stage pipelines. : : : : : : : : : : : : : : : 125

6.4 Response time during each frame along a portion of the test walkthrough
path for representative 1-, 2-, 3-, and 4-stage pipelines. : : : : : : : : : : : : 125

6.5 Throughput is determined by the slowest stage in a concurrent pipeline. : : 126

6.6 Time for the Visibility Determination operation is larger when other opera-
tions are executing on other processors. : 126

6.7 Frame time during each frame of test walkthrough path for various queue
depths in Rendering stage. : 130

6.8 Response time during each frame of test walkthrough path for various queue
depths in Rendering stage. : 130

7.1 Test observer path through the top four
oors of Soda Hall. : : : : : : : : : 133

7.2 Frame time for each observer viewpoint along the entire test observer path
during the detail elision test. : 134

x

7.3 Rendering times using cell-to-object, eye-to-object, and detail elision cull
methods for each observer viewpoint along complex portion of test observer
path. : 137

7.4 Frame time, visibility time, detail elision time, and draw time using detail
elision cull method for each observer viewpoint along complex portion of test
observer path. : 137

7.5 Frame time for each observer viewpoint along the entire test observer path
during the test with memory management. : : : : : : : : : : : : : : : : : : 140

xi

List of Tables

3.1 Multi-resolution modeling statistics for Soda Hall. : : : : : : : : : : : : : : 22
3.2 Mean and maximum statistics for cells in the spatial subdivision of Soda Hall. 31
3.3 Statistics gathered during each frame of an interactive building walkthrough. 40

4.1 Mean and maximum set statistics collected during tests with various combi-
nations of precomputation and real-time visibility determination algorithms. 48

4.2 Mean and maximum timing statistics collected during tests with various com-
binations of precomputation and real-time visibility determination algorithms. 49

4.3 Minimum, mean, and maximum timing statistics collected during tests with
various detail elision algorithms (in seconds). : : : : : : : : : : : : : : : : : 71

5.1 Mean and maximum set statistics collected during tests with various looka-
head depths. : 105

5.2 Mean and maximum timing statistics collected during tests with various
lookahead depths. : 105

5.3 Mean and maximum set statistics collected during tests with various looka-
head granularities. : 108

5.4 Mean and maximum timing statistics collected during tests with various
lookahead granularities. : 108

5.5 Mean and maximum numbers of range cells during tests with various combi-
nations of range and lookahead cull methods. : : : : : : : : : : : : : : : : : 111

5.6 Mean and maximum numbers of lookahead objects during tests with various
combinations of range and lookahead cull methods. : : : : : : : : : : : : : : 112

5.7 Mean and maximum numbers of LODs skipped during tests with various
combinations of range and lookahead cull methods. : : : : : : : : : : : : : : 113

5.8 Mean and maximum compute times during tests with various combinations
of range and lookahead cull methods. All times are in seconds. : : : : : : : 114

5.9 Mean and maximum read times during tests with various combinations of
range and lookahead cull methods. All times are in seconds. : : : : : : : : : 115

5.10 Mean and maximum frame times during tests with various combinations of
range and lookahead cull methods. All times are in seconds. : : : : : : : : : 116

6.1 Mean and maximum compute time statistics collected during tests with var-
ious pipeline stage partitions. : 124

xii

6.2 Mean and maximum frame time and response time statistics collected during
tests with various pipeline stage partitions. : : : : : : : : : : : : : : : : : : 124

6.3 Mean and maximum compute time statistics collected during tests with var-
ious Rendering stage queue depths. : 128

6.4 Mean and maximum frame time and response time statistics collected during
tests with various Rendering stage queue depths. : : : : : : : : : : : : : : : 128

7.1 Mean and maximum frame time and response time statistics collected during
display management tests. : 135

7.2 Mean and maximum compute time and rendering time statistics collected
during display management tests. : 135

7.3 Mean and maximum numbers of cells, objects, and polygons rendered during
display management tests. : 135

7.4 Mean and maximum frame time, response time, and numbers of LODs skipped
statistics collected during tests with and without memory management. : : 139

7.5 Mean and maximum visibility determination, detail elision, rendering, looka-
head, and read time statistics collected during tests with and without memory
management. All times are in seconds. : 139

7.6 Mean and maximum set statistics collected during memory management tests.139

xiii

Acknowledgements

I have been incredibly lucky to have Professor Carlo S�equin as my thesis advisor. His

warmth, enthusiasm, and clever insights have been inspirational. I will never forget Carlo,

and I hope that his in
uence never wears o�.

Several other professors have contributed to this thesis. Randy Katz, Dave Patterson,

and the members of the RAID group got me started thinking about visualization of very

large databases. Larry Rowe provided helpful hints about object oriented databases and

user interfaces. Professor Jean Pierre Protzen provided insights on building walkthroughs

from an architect's perspective.

This thesis would not exist in its current form without the help of the many other

graduate students who have been part of the UC Berkeley Building Walkthrough Project.

Special thanks are due to Seth Teller who provided code for spatial subdivisions, visibility

algorithms, and many other support libraries. Delnaz Khorramabadi created the original

three dimensional model of Soda Hall. Thurman Brown, Laura Downs, Dan Rice, Priscilla

Shih, Maryann Simmons, Ajay Sreekanth, and Greg Ward generated models of furniture

and plants for the building interior. Graham Beasley, Mark Halstead, Henry Moreton, Seth

Teller, and Greg Ward provided images for textures to make the model look more realistic.

It's been very pleasant to be a graduate student at UC Berkeley. Seth Teller, Henry

Moreton, Mike Hohmeyer, Paul Heckbert, Ziv Gigus, and Nina Amenta provided early

lessons in computer graphics and a friendly academic environment. Terry Lessard-Smith,

Bob Miller, Liza Gabato, and Kathryn Crabtree were always there when I needed help

wading through the UC Berkeley bureaucracy.

Silicon Graphics, Inc. has been very generous, allowing me to use equipment and

donating a VGX 320 workstation to this project as part of a grant from the Microelectronics

Innovation and Computer Research Opportunities (MICRO 1991) program of the State of

California.

Finally, I'd like to thank Marty and my family for having faith in me.

1

Chapter 1

Introduction

1.1 Motivation

Interactive computer graphics systems for visualization of realistic-looking, three di-

mensional models are useful for evaluation, design and training in virtual environments,

such as those found in architectural and mechanical CAD, vehicle simulation, and virtual

reality. These systems simulate the visual experience of moving through a three dimensional

model on the screen of a computer workstation by displaying rendered images of the model

as seen from a hypothetical observer viewpoint under interactive control by the user. If

images are rendered smoothly and quickly enough, the illusion of real-time exploration of a

virtual environment can be achieved.

Interactive visualization is particularly valuable in computer-aided architectural design.

A building walkthrough system, which uses three dimensional computer graphics to simulate

\walking" through a building, can be used by architects and interior designers to visualize

and evaluate architectural designs before a building has been constructed. Such a system

provides a means by which architects, interior designers, and clients can communicate their

ideas to one another. In particular, it is extremely di�cult for a typical client, who has

commissioned a building but has not been trained in visualization of three dimensional

spaces, to understand what the inside of a building might actually look like by viewing

blue prints or cardboard models. An interactive, three dimensional building walkthrough

system allows an architect to show a client a proposed architectural design, and elicit real-

time feedback as the client interactively \walks" through the interior of the building. As a

result, visual simulation and veri�cation of an architectural design may be performed early

2

in the design cycle, thereby saving time and money.

1.2 Goals

Model Size

For accurate evaluation of a building design using visual simulation, it is important that

the building model contain a large amount of detail, including representative light �xtures

and furniture modeled with accurate materials and textures. If the visualization system

supports interactive manipulation of such models, an architect or interior designer could

try out di�erent furniture arrangements and color schemes, or test whether a particular room

is large enough to hold furniture for a particular number of people. Also, a client could

experiment with di�erent types of furniture to see which type �ts best into a proposed

architectural design.

A primary goal of our work is to support computer-aided visualization of very large,

detailed three dimensional models. Our test case is a model of Soda Hall, the future

computer science building at the University of California, Berkeley. Soda Hall is a seven

oor academic building containing more than one hundred faculty and student o�ces, twelve

computer laboratories, and six class rooms (see Figure 1.1). Almost every room in the model

contains a functionally complete set of furniture (see Figure 1.2). For instance, each o�ce

has at least one desk, a few chairs, a bookshelf, a plant, etc. On each desk, there is at least

one book, a desk lamp, and a few pencils (see Figures 1.3 and 1.4). Furthermore, most

pieces of furniture are modeled with a large amount of detail. For example, each pencil has

an explicitly modeled graphite point, each door has a shiny brass handle, and each book

has a separate binder.

The model is described completely by planar polygons. Curved surfaces, such as those

found in desk lamp shades and the seat cushions of chairs, are approximated by many
at

polygons. Hundreds, and sometimes thousands, of polygons are required to describe the

most detailed representations of plants and complex pieces of furniture. In all, the model

of Soda Hall contains 1,418,807 polygons, of which only 31,625 represent the walls, ceilings,

and
oors of the building, while the remainder represent its \contents."

3

Figure 1.1: Exterior view of Soda Hall. Figure 1.2: Exterior view of Soda Hall \cut

open" by a horizontal plane at the sixth

oor.

Figure 1.3: Typical o�ce with furniture and

textures.

Figure 1.4: Board room with furniture and

textures.

4

Image Quality

If a visualization system includes rendering algorithms based on realistic illumination

simulations, an architect can evaluate a building's lighting characteristics before it has

been constructed. For instance, an architect might experiment with di�erent wall, window

or lamp placements while viewing images containing appropriate re
ections and shadows;

or an interior designer might try di�erent materials or color schemes, evaluating them at

di�erent times of day, or during di�erent seasons.

A second goal of our work is to use radiosity illumination simulation methods to gen-

erate realistic-looking images with indirect di�use re
ections and shadows (See Figures

1.5 and 1.6). Radiosity methods, based on models of radiation emission and re
ection in

thermal-engineering, consider every polygon a potential emitter or re
ector of radiance (or

luminance). Conceptually, for every pair of polygons, A and B, a form factor is computed

which measures the fraction of the energy leaving polygon A that arrives at polygon B. This

approach yields a set of simultaneous equations which are solved to obtain the radiance for

each polygon. See [7, 15, 28, 29, 30, 40] for more information.

The advantage of radiosity methods for interactive visualization is that a global radios-

ity solution can be precomputed, i.e. the solution does not depend on a particular observer

viewpoint (see Figure 1.7). Therefore, a radiosity computation can be performed for an en-

tire building model during a precomputation phase in which results are stored in a database

for use later during interactive visualization. This approach o�-loads the expensive illumi-

nation computations required to capture realistic lighting e�ects, such as shadows, so that

rendering during interactive visualization can produce high-quality images quickly.

One di�culty associated with radiosity methods is that a tremendous amount of data

is required to describe a radiosity solution. A separate color is stored for each vertex

of each polygon in the model; and large polygons are split into many smaller ones (along

gradients of radiosity) in order to capture complex illumination e�ects along the boundaries

of shadows and highlights (see Figure 1.8). Furthermore, although many of the polygons in

the original model can be shared via hierarchical instances, each polygon is illuminated and

meshed independently during the radiosity computation, and must be stored separately in

the resulting model. As a result, a model that originally contains millions of possibly shared

polygons may contain tens of millions of separate polygons and may require gigabytes of

data after a radiosity computation.

5

Figure 1.5: Radiosity rendering of hallway. Figure 1.6: Radiosity rendering from di�er-

ent viewpoint.

Figure 1.7: Radiosity computation is inde-

pendent of observer viewpoint.

Figure 1.8: Polygonal mesh generated dur-

ing radiosity computation.

6

Performance

Another extremely important goal of our system is to provide performance that is

adequate to maintain the real-time feel of interactive visualization. If frame rates (i.e.

number of images displayed per second) are too slow or too variable, the illusion of being

present in a virtual environment is likely to be diminished signi�cantly.

It is not only important that the rate at which images appear on the screen be as fast

as possible, but also as uniform as possible. For instance, a walkthrough sequence in which

nine out of ten images are on the screen for 1/100th of a second and the tenth is on the

screen for 9/10ths of a second most likely would not be as satisfying as one in which each

image is on the screen for exactly 1/10th of a second, even though the average frame rates

are nearly identical. After initial experimentation with interactive walkthroughs, we have

chosen a target frame rate of at least ten frames per second.

Short response times (i.e. the time required for the system to react to user input) is

also important during interactive visualization. If there are delays in system response, a

user may become disoriented or have di�culty navigating in a virtual environment. Even

worse, users often complain of feeling sick after using virtual reality systems with especially

poor response times. We would like to keep the response time of our visualization system

under 1/2 of a second.

Hardware

Finally, we aim to support interactive visualization of large, detailed building models

using commonly available, o�-the-shelf computer systems { rather than building special-

purpose hardware.

For our display algorithms, we assume a graphics subsystem (either hardware or soft-

ware) that is able to perform the basic steps required for rendering three dimensional

polygons { i.e., modeling transformations, viewing transformations, clipping, projection,

rasterization, and hidden surface removal. A typical sequence of rendering operations is

shown in Figure 1.9 [22] (assuming radiosity, Gouraud shading, and z-bu�er hidden surface

removal). This thesis addresses only the �rst two operations of this sequence: database

traversal and trivial accept/reject. We assume that the other �ve operations are performed

by the graphics subsystem, so they are not discussed in this thesis.

Thus far, we have been using a Silicon Graphics 320 VGX with 64MB of memory which

7

Database
Traversal

Trivial
Accept/
Reject

Coord.
Transform−

ations
Clipping

Div. by w,
Map to 3D
Viewport

Raster−
ization

Display

Figure 1.9: A typical sequence of operations performed during rendering of three dimen-

sional polygons.

can draw approximately 50-100K Gouraud shaded polygons per second. In the near future,

we hope to use a Silicon Graphics Reality Engine which can render polygons at similar rates,

but also with texture mapping and antialiasing [1]. These computer systems currently cost

between $50K and $100K.

1.3 Problem Statement

Large, furnished building models are far too complex to be rendered with realistic-

looking images at interactive frame rates on currently available hardware. After radiosity

analysis, a building model may contain 107 independent polygons and require 109 bytes of

data. However, currently available graphics workstations can render only 104 polygons in

a tenth of a second, and store only 108 bytes of data. Therefore, realistic building models

are 103 times too large to be rendered at interactive frame rates, and 101 times too large

to �t into memory.

In order to achieve interactive walkthroughs of such large building models, a system

must store in memory and render only a small portion of the model in each frame; that is,

the portion seen by the observer. As the observer \walks" through the model, some parts

of the model become visible while others become invisible; some objects appear larger and

others appear smaller. The challenge is to identify the relevant portion of the model, load

it into memory, and render images at interactive frame rates as the observer viewpoint is

moved under user control.

1.4 Basic Approach

We have developed a system that supports interactive walkthroughs of large, fully

furnished building models. Our basic approach is to use an e�cient display database that

describes a building model as a set of objects, each of which is represented at multiple levels

8

of detail, and contains an index of spatial cells with precomputed visibility information.

This display database is used by adaptive display algorithms to compute the set of objects

potentially visible from each observer viewpoint. In each frame, an appropriate level of

detail is selected for each object during rendering in order to maintain an interactive frame

rate. Real-time memory management algorithms are used to predict observer motion and

pre-fetch objects from disk that may become visible during upcoming future frames. Using

these techniques, we are able to determine a small portion of the model to store in memory

and render during each frame of a building walkthrough.

1.5 Organization

The thesis is organized as follows. Chapter 2 contains a review of previous work in

interactive visualization algorithms. Special emphasis is paid to research on display of very

large three dimensional databases.

Chapter 3 contains a description of the organization of our building walkthrough sys-

tem. It describes the functional components of the system, and the information stored in

the display database which links these components.

Chapter 4 contains a description of the real-time display algorithms. It describes the

dynamic visibility algorithm used to compute a set of objects seen by a simulated observer.

For each observer viewpoint, the algorithm traces visibility beams through the transparent

portions of the boundaries of a precomputed spatial subdivision to determine which volume

of space is visible. Bounding boxes of objects are checked for intersection with visibility

beams to construct a potentially visible set of objects to display. An adaptive detail elision

algorithm is described in which a level of detail and rendering algorithm is chosen for the

display of each potentially visible object in order to achieve a user-speci�ed target frame

time. The algorithm uses a constrained optimization to generate the best possible image

within the user-speci�ed target frame time.

Chapter 5 contains a description of the real-time memory management system. We have

implemented a database system that supports e�cient access to large, dynamic, persistent

data structures via asynchronous application-de�ned functions. We use this database sys-

tem, along with lookahead algorithms that predict future observer viewpoints, to determine

which objects are likely to be rendered during upcoming frames, and to prefetch relevant

portions of the model into memory before they are rendered.

9

Chapter 6 contains a description of the architecture used for concurrent processing in

our building walkthrough system. We use a coarse-grained concurrent pipeline in which

separate stages execute asynchronously in separate processes on a shared memory multi-

processor workstation.

Chapter 7 contains overall results for interactive walkthroughs using the display and

memory management algorithms described in this thesis. We �nd that interactive visual-

ization of a model containing over 1.4 million polygons is possible on currently available

hardware.

Chapter 8 contains a summary and conclusion.

10

Chapter 2

Previous Work

2.1 Vehicle Simulators

Most work in interactive visualization has been done on vehicle simulators. Numer-

ous, sophisticated commercial vehicle simulators have been built over the last thirty years,

including many which contain algorithms for visibility-based culling, detail elision, and

real-time management of very large databases [20, 47, 48, 60]. However, since most are

commercial systems, very little has been published on this vast quantity of work.

Although there are many similarities between vehicle simulators and building walk-

through systems, there are several important di�erences. First, the types of environments

encountered in vehicle simulators are quite di�erent from building interiors. Typical vehicle

simulator models contain terrain data augmented with plants, buildings, roads, etc. In these

models, space tends to be \sparsely occluded" { i.e., there are few observer viewpoints for

which a signi�cant portion of the model is occluded by other parts of the model. In con-

trast, building models typically contain walls, ceilings, and
oors which partition space into

rooms. These models tend to be \densely occluded" { i.e., a large portion of the model is

occluded by some polygon for observer viewpoints in the interior of the building. Therefore,

visibility determination algorithms that cull not only polygons outside the observer's view,

but also ones occluded by other polygons (e.g., walls) may be better suited for visualization

of building models than for vehicle simulator models.

Second, the types of navigation supported by vehicle simulators are very di�erent than

those in building walkthrough systems. In a vehicle simulator, the observer viewpoint

corresponds with the view from the driver's seat of the vehicle, and observer viewpoint

11

navigation is limited to movements possible by the vehicle. During normal execution, the

observer does not generally move sideways, or change direction suddenly. As a result, there

is a large amount of coherence in the observer position (and hence the visible portion of the

model) from frame to frame, and it is relatively easy to predict future observer viewpoints

from the current observer viewpoint and direction of travel. In addition, since the observer

rarely travels close to detailed model features (e.g., aircraft are typically several thousand

feet up in the air, and cars are typically on roads), realistic-looking detail can be achieved

using texture maps applied to relatively few, distant polygons. In contrast, in a building

walkthrough system, the observer viewpoint corresponds to the view from the eyes of a

human being walking through the building. The observer may step in any direction, spin

around quickly, or look very closely at any feature of the model. Therefore, many of the

optimizations used by vehicle simulators based on assumptions of observer navigation are

not possible in a building walkthrough system.

Finally, the performance and hardware constraints for vehicle simulators are very dif-

ferent than for building walkthrough systems. Since inaccurate vehicle simulation during

training may cause serious accidents during operation later, vehicle simulation systems must

maintain strict frame rates in order to approximate vehicle operation as realistically as pos-

sible (e.g., exactly sixty frames per second). To do this, they typically enforce restrictions

on model complexity, and use special-purpose display hardware costing millions of dollars.

In contrast, the frame rate requirements of building walkthrough systems are not as strict

{ nobody will be killed if the simulation is inaccurate. Although uniform frame rates are

desirable in a building walkthrough system, they are not essential. Frame rates must be

only fast enough and uniform enough for a user to intergrate impressions derived from se-

quential images to derive a feeling of the building interior space. In contrast to commercial

vehicle simulators, we aim to support only near-uniform, bounded frame rates, however for

use with standard, o�-the-shelf hardware, and allowing visualization of arbitrarily complex

models.

2.2 Computer-Aided Design Systems

There also has been a considerable amount of work in interactive visualization of three

dimensional models in computer-aided design (CAD) systems. Mechanical and medical

CAD models can be quite complex, containing tens of millions of polygons (e.g., a car

12

engine, spacecraft assembly, or protein structure), and thus may require sophisticated real-

time display algorithms for interactive visualization.

There are several di�erences between most CAD applications and building walkthrough

systems. First, visual realism is generally less important in mechanical and medical CAD

applications than in building walkthrough systems. In most CAD applications, objects are

represented symbolically. For instance, parts in a complex assembly may be displayed with

attributes (e.g., color) representing semantic characteristics (e.g., function, interference,

connectivity, etc.), and meta-data may be included in the display (e.g., the path through

which a part moves). Visual veri�cation of a CAD model is based mainly on positional

and semantic characteristics rather than appearance. In contrast, lighting and coloring

characteristics are usually very important in architectural design. Thus, realistic-looking

images generated using physically-based lighting simulations are required for lighting design

veri�cation.

Second, mechanical and medical CAD systems generally simulate an observer looking

at the model \through a window" from the outside. The Environment in Hand metaphor

[58] is used to support observer \navigation" by means of translation, scaling and rotation.

In contrast, building walkthrough systems simulate an observer moving through the inte-

rior of the model. These di�erent metaphors for observer navigation may imply di�erent

approaches to observer viewpoint prediction, visibility determination, and detail elision.

Finally, mechanical engineering CAD systems are typically used during design as well

as visualization and veri�cation. In such systems, the user can modify the model during

interactive visualization. For instance, the designer of a mechanical assembly may exper-

iment with various placements for a particular part. In contrast, current applications of

building walkthroughs are aimed at visualization and veri�cation of relatively static models.

Therefore, it may be possible to precompute visualization results in these systems.

2.3 Building Walkthrough Systems

Commercial products for visualization of architectural models have recently become

available. However, many of these systems do not allow a user to control the simulated

observer viewpoint interactively. Instead, travel along a predetermined, �xed path is sim-

ulated by displaying a sequence of precomputed images. These systems can generate very

realistic-looking walkthroughs (since images are rendered o�-line), and are well-suited for

13

presentation of a completed design. However, they do not support interactive visualization

or design.

Currently available commercial products that do allow interactive, real-time navigation

generally support only small buildings models (e.g., less than one hundred thousand poly-

gons), displayed with simple rendering algorithms (e.g., wire-frame or
at shading) [8, 56].

These commercial systems generally make little use of sophisticated precomputation, vis-

ibility determination, or detail elision, and require that the entire model be resident in

memory.

Research on increasing frame rates during interactive visualization of architectural

models has been under way for over twenty years [34]. Pioneering work in spatial subdivision

and visibility precomputation has been done at the University of North Carolina at Chapel

Hill [2, 3, 11]. Airey developed algorithms for partitioning architectural models into cells,

and precomputing a potentially visible set of polygons (PVS) for each cell. Cell visibility was

determined by tracing ray samples through transparent portions of cell boundaries to �nd

polygons that can be seen from any observer viewpoint within the cell. The disadvantage

of this approach is that computation is stocastic, and thus can under-estimate true cell

visibility and requires a large amount of computation.

Improved spatial subdivision and visibility precomputation techniques for building

walkthroughs were developed by Teller [53, 55] at UC Berkeley. His visibility precom-

putation algorithm is deterministic, never under-estimates true cell visibility, and runs ef-

�ciently. Teller also developed real-time visibility determination algorithms that compute

a set of cells potentially visible from a particular observer viewpoint. His spatial subdivi-

sion, visibility precomputation, and real-time visibility determination algorithms are used

in conjunction with object-based visibility algorithms we developed jointly with Teller in

our building walkthrough system. Summaries of relevant data structures and algorithms

appear in Chapters 3.2 and 4.1 of this thesis.

14

Chapter 3

System Organization

Our building walkthrough system is divided into three distinct phases as shown in

Figure 3.1. First, during the modeling phase, we construct the building model from Auto-

CAD
oor plans and elevations and populate the model with furniture. Next, during the

precomputation phase, we perform a spatial subdivision and observer-independent lighting

and visibility calculations. Finally, during the walkthrough phase, we simulate an observer

moving through the building model under user control with the mouse, rendering the model

as seen from the observer viewpoint in each frame. The display database is the link between

these three phases. It stores the complete building model, along with the results of the

precomputation phase, for use during the walkthrough phase.

Display
Database

Precomputation
Phase

Walkthrough
Phase

Modeling
Phase

Figure 3.1: System overview.

15

3.1 Modeling Phase

3.1.1 Model Loading

Our interactive building walkthrough system requires a 3D polygonal model stored in

a display database. Currently, we load models into the display database from UC Berkeley

UNIGRAFIX format �les [49]. Models described in other formats (e.g., AutoCAD DXF)

are �rst converted to UNIGRAFIX before being loaded into our display database, as shown

in Figure 3.2.

Display
DatabaseUNIGRAFIX

Loader

AutoCad
Converter

AutoCad
Models

UNIGRAFIX
Models

Figure 3.2: Loading operations of the modeling phase.

In the case of Soda Hall,
oorplans and elevations for the major structure elements of

the building (i.e., walls, ceilings, and
oors) were received from the architects in AutoCAD

DXF format [5]. We converted these 21
2
D models into a consistent 3D representation in

UC Berkeley UNIGRAFIX format. Unfortunately, the raw architectural models were not

true three dimensional models { they contained nonplanar polygons, coincident coplanar

polygons, improper polygon intersections, and inconsistent polygon orientations. We used

automated programs to detect and correct many of these anomalies [36] and then corrected

any remaining modeling errors manually using interactive tools.

Furniture, stairs, and other objects that a user would expect to �nd in a typical building

have been modeled in a variety of ways. Stairs, window frames, and doors were created by

Khorramabadi using AutoCAD. Models for many types of furniture (e.g., chairs, desks, and

co�ee cups) were created with interactive modeling programs by Ward [57]. Other types

of furniture (e.g., bookshelves, plants, door handles, and lights) were created by procedural

object generators developed by students at UC Berkeley.

Instances of these objects were placed into the building model using both automatic

16

and interactive placement programs. Students in a graduate course on geometric modeling

wrote programs that place objects into speci�c types of rooms automatically based on sets of

parameters. For instance, the \conference room generator" places a rectangular or elliptical

table in the middle of a room, chairs around it, a blackboard on one wall, a transparency

projector on the table, and so on. The \o�ce generator" places a desk against one wall,

a chair in front of the desk, some bookshelves against the walls, and so on. Numerous

parameters are available for the user to control the size, number, and placement of objects.

Alternatively, we use interactive placement programs, such as AutoCAD, ugitools [36]

(an interactive UNIGRAFIX tool), or wkedit [12] (an interactive walkthrough editor) to

generate object instances. These programs allow a user to add, delete, copy, or move object

instances interactively with real-time visual feedback.

3.1.2 Model Representation

The walkthrough display database represents the model as a set of objects, each of

which can be described at multiple levels of detail (LODs) [18]. For example, a chair

may be described by three di�erent representations, as shown in Figure 3.3: 1) a highly

detailed chair containing hundreds of polygons to approximate the curved surfaces of the

cushions and rounded edges of the arms and legs, 2) a slightly less-detailed chair with simpler

polygonal approximations for the cushions, arms, and legs, and 3) a coarsely detailed chair

with just a simple box for each cushion. Simpler representations for objects are used during

the interactive walkthrough phase to improve refresh rates and memory utilization.

889 Polygons 241 Polygons 44 Polygons

Figure 3.3: Three LODs for a chair.

17

In general, if there is more than one instance of the same object type (e.g., the same

type of chair may appear in many positions throughout the building), they all share the

same object de�nition, which stores the geometries (i.e., vertices, polygons, materials, and

textures) that describe the object at each LOD. Each instance of the object may specify a

4x4 transformation matrix which is to be applied to the object de�nition, and a material

which is to be applied to polygons that do not already have one speci�ed. An example

hierarchy of object instances and de�nitions is shown in Figure 3.4. The model shown

contains four instances of a chair whose de�nition has three LODs, and two instances of a

table whose de�nition has only one LOD.

Although models are most often stored as a hierarchy with shared object de�nitions,

the display database also allows object instances to store a speci�c geometry for any LOD.

Geometries stored speci�cally with an object instance override the geometries for the cor-

responding LODs stored with the object de�nition. Other LODs (i.e., ones not explicitly

stored with an object instance) are inherited from the object de�nition. This feature is im-

portant for the storage of radiosity information, since di�erent instances of the same object

de�nition are likely to be meshed and illuminated di�erently after a radiosity computation.

An example object hierarchy containing an object instance with its own geometries is shown

in Figure 3.5. For chair instance #1, the lowest LOD is inherited from the object de�nition,

whereas the medium and high LODs are speci�ed explicitly.

Chair
Instance

#1

Chair
Instance

#2

Chair
Instance

#3

Table
Instance

#1

Table
Instance

#2

Chair
Definition

Table
Definition

Low Detail
Geometry

Med Detail
Geometry

High Detail
Geometry

Low Detail
Geometry

Chair
Instance

#4

Figure 3.4: Object instances can share ge-

ometries stored in an object de�nition.

Chair
Instance

#1

Chair
Instance

#2

Chair
Instance

#3

Table
Instance

#1

Table
Instance

#2

Chair
Definition

Table
Definition

Low Detail
Geometry

Med Detail
Geometry

High Detail
Geometry

Low Detail
Geometry

Chair
Instance

#4

Med Detail
Geometry

High Detail
Geometry

Figure 3.5: An object instance can store its

own geometries.

Objects that move over time are represented by a simple extension to this hierarchy

using a technique derived from ugbump [41]. The 4x4 transformation of any object instance

can be represented by a sequence of strings representing translate, rotate and scale trans-

18

formations that depend on a variable, t. For instance, the string \-rz $10� t$" means rotate

the object around the `z' axis by 10 degrees every second. Objects are animated as the

strings representing their transformation matrices are re-evaluated with a new value of t,

which is incremented by the elapsed frame time during the walkthrough.

3.1.3 Object Abstraction

We currently use the following techniques to create multiple LODs for each object

de�nition:

� Procedural modeling:

For objects created by procedural generation programs, it is usually possible to extend

the programs to produce not only a very detailed model of the object, but also simpler

representations as appropriate. For instance, the program used to generate the door

handle shown in Figure 3.6 is parameterized to output segments with a user-speci�ed

number of sides.

6-sided prisms. 4-sided prisms.

Figure 3.6: Di�erent representations for a doorhandle constructed using a parameterized

generator program.

� CSG modeling:

For objects described as a hierarchy of high-level shapes (e.g., boxes, spheres, cones,

cylinders, etc.), it is possible to create simpler representations by a combination of:

1) choosing simpler representations for some shapes and 2) removing some shapes.

Using these techniques, more than one polygonal representation must be constructed

for only a few standard shapes, rather than many complex objects. An example of

this abstraction technique is shown in Figure 3.7.

� Interactive Modeling:

Unfortunately, many of the objects we use in our model of Soda Hall are described

19

336 Polygons 134 Polygons 70 Polygons

Figure 3.7: Three LODs for a canary.

originally in a
at, polygonal format { containing no information about how they

were generated, or whether there is a hierarchy of parts. We are currently working on

automatic tools for object abstraction. Until now, we have constructed less detailed

representations from highly detailed originals using an interactive UNIGRAFIX edi-

tor, called animator [23, 51], which has editing features aimed speci�cally at reducing

the complexity of 3D polyhedral models. A few of these features are:

{ Deleting Polygons:

The Delete Polygon command removes a polygon, leaving a hole (see Figure 3.8).

Vertices attached to the polygon are not deleted.

Delete Polygons
=)

Figure 3.8: Deleting polygons.

{ Deleting Edges:

The Delete Edge command removes an edge, connecting the two polygons at-

tached to it (see Figure 3.9). This operation may create new polygons that are

not planar.

20

Delete Edges
=)

Figure 3.9: Deleting edges.

{ Deleting Vertices:

The Delete Vertex command replaces a vertex, and all polygons attached to it,

by a single polygon (see Figure 3.10). It deletes the vertex, and then creates a

polygon (which may not be planar) containing all vertices previously connected

to the vertex by an edge.

Delete Vertices
=)

Figure 3.10: Deleting the vertices with hexagonal and pentagonal symmetry.

{ Collapsing Polygons:

The Collapse Polygon command replaces a polygon by a vertex (see Figure 3.11).

A new vertex is created at the centroid of the polygon, and then all vertices of

the polygon are merged into this new vertex.

Collapse Polygons
=)

Figure 3.11: Collapsing the pentagons.

{ Collapsing Edges:

The Collapse Edge command replaces an edge by a vertex (see Figure 3.12). A

21

new vertex is created at the midpoint of the edge, and then the two vertices at

the endpoints of the edge are merged into this new vertex.

Collapse Edges
=)

Figure 3.12: Collapsing the edges shared by hexagons.

3.1.4 Results

Using the techniques described in this section, we built a three dimensional polygonal

model of Soda Hall, complete with furniture, textured materials, and multiple LODs. In

all, the model contains 2,217,792 polygons, of which 1,418,807 represent objects at the

highest LOD. Including the walls, ceilings, and
oors of the building, the model contains

14,478 object instances of 8,037 unique object descriptions. It contains 129 unique pieces

of furniture, 406 unique materials, and 58 unique textures. The display database for this

model requires 21.5MB of storage if object instances reference shared object de�nitions, and

349.5MB of storage if all object instances are
attened (i.e., a separate copy of the object

de�nition is stored for each instance). Overall statistics regarding the number of objects

described at each LOD, and the cumulative number of polygons used to represent them are

shown in Table 3.1.

We have generated multiple LODs for numerous complex object de�nitions. An exam-

ple is the desk lamp shown in Figure 3.13. For each object, appropriate LODs are evaluated

and adjusted so that transitions between LODs are barely noticeable as one zooms closer

to an object and detail is re�ned.

We have attempted to maintain guidelines regarding construction of LODs in our model

of Soda Hall. For example, we �ll LODs from lowest to highest for each object. We also

aim to generate geometries with no more than 100 polygons in the lowest LOD, and at least

double the number of polygons in each successively higher LOD. However, we clearly have

more multi-resolution modeling work to do { there is at least one object that has 2,598

polygons describing its lowest (and only) LOD (a sculpture of a Klein bottle)!

22

Polygons
Level Number Number Minimum Mean Maximum

of Detail of Objects of Polygons Per Object Per Object Per Object

Low 14,478 240,149 1 16.59 2,598
MedLow 3,954 256,895 16 64.97 810
Medium 2,497 476,957 29 191.01 2,707
MedHigh 949 728,978 97 768.15 4,211
High 437 514,813 157 1,178.06 1,977

Lowest 14,478 240,149 1 16.59 2,598
Highest 14,478 1,418,807 1 98.00 4,211

All 14,478 2,217,792 1 153.18 4,211

Table 3.1: Multi-resolution modeling statistics for Soda Hall.

597 Polygons 98 Polygons 28 Polygons

Figure 3.13: Three LODs for a desk lamp.

23

3.1.5 Discussion

In order to keep our display and memory management algorithms as simple as pos-

sible, we implemented a one-level modeling hierarchy in the �rst version of our building

walkthrough system (i.e., geometries cannot instance other geometries). In retrospect, it

would have been more interesting, and possibly more e�cient, to support geometries with

arbitrary hierarchy. A possible data structure for storing multiple LODs in a multi-level

hierarchy is shown in Figure 3.14 { each node in the hierarchy stores multiple abstract

representations for the visual appearance of its children with reduced detail. For example,

a bookshelf may have a very simple representation with only a few polygons or one large

texture mapped polygons representing several books. This data structure would be very

useful in situations in which there are several orders of magnitude di�erence in resolution

between the �nest and coarsest details of the model. Then, abstract representations for

higher nodes in the tree can be rendered when the observer is far away and cannot see small

details [18].

Office

Low Med High

Desk Setup

Low Med High

Lamp

Low Med High

Leg

Low Med High

Chair

Low Med High

Bookshelf

Low Med High

Desk

Low Med High

Drawer

Low Med High

Book

Low Med High

Shelf

Low Med High

Figure 3.14: A hierarchical object representation with multiple LODs.

24

3.2 Precomputation Phase

During the precomputation phase, we perform a set of calculations on the building

model that do not depend on a speci�c observer viewpoint, and thus can be done o�-line,

before a user begins an interactive building walkthrough. The idea is to precompute complex

spatial, visibility, and lighting relationships, and store the results in the display database.

Then, during the walkthrough phase, the precomputed relationships can be fetched from

the database rather than computed in real-time. By taking this approach, we trade space

for time to accelerate frame rates during the walkthrough phase.

The steps of the precomputation phase are shown in Figure 3.15. We �rst perform a

spatial subdivision in which the building model is partitioned into roughly room-sized cells,

and a cell adjacency graph and an index of objects incident upon each cell is constructed. We

then perform a visibility precomputation in which sets of cells and objects visible from each

cell are computed. The results of the spatial subdivision and visibility precomputation are

stored in the display database for use during the walkthrough phase. Viewpoint-independent

calculations for ray-tracing and radiosity can also be done during the precomputation phase,

but they have not yet been implemented.

Display
Database

Ray Trace
Analysis

Spatial
Subdivision

Visibility
Precomputation

Radiosity
Analysis

Figure 3.15: Functional steps of the precomputation phase.

3.2.1 Spatial Subdivision

We partition the model into a spatial subdivision using a variant of the k-D tree data

structure [9]. Splitting planes are introduced along the major opaque elements in the model

(i.e., the walls,
oors, and ceilings of the building). See [55] for details.

25

After subdivision, cell portals (i.e., the transparent portions of shared boundaries) are

identi�ed and stored with each leaf cell, along with an identi�er for the neighboring cell to

which the portal leads. Enumerating the portals in this way amounts to constructing an

adjacency graph over the leaf cells of the spatial subdivision { two cells (nodes) are adjacent

(share an edge) if and only if there is a portal connecting them.

Sets of objects partially and completely inside cell boundaries are also constructed and

stored with each cell. The space occupied by each object in the model is classi�ed with

respect to each cell in the spatial subdivision by a traversal of the k-D tree. At each node

of the tree traversal, the bounding box of the object is compared to the bounding box of

the cells under the node. If the intersection has zero volume, the traversal of that branch is

terminated. Otherwise, if the node is an interior node, the traversal is applied recursively

to the node's children. If the node is a leaf node, the object is classi�ed as either completely

or partially inside the cell, and added to the cell's list of incident objects.

The current implementation of the building walkthrough system supports spatial sub-

divisions containing only axis-aligned, rectangular cell boundaries and portals (i.e., cells are

axial three dimensional boxes, and portals are axial two dimensional rectangles). Such a

spatial subdivision for the sixth
oor of Soda Hall is shown in three dimensions in Figure

3.16a { cell boundaries are shown as gray outlines. Figure 3.16b shows a two dimensional

schematic representation of the subdivison, in which opaque cell boundaries are represented

by thick, black lines and portals are represented by dashed lines. During spatial subdivi-

sion, we precompute and store in the display database for each cell: 1) the portals on its

boundaries, 2) the cells sharing its boundaries, and 3) the objects completely or partially

inside its boundaries.

3.2.2 Visibility Precomputation

Once the spatial subdivision has been constructed, we perform a visibility precompu-

tation in which we determine the portion of the model visible from each cell of the spatial

subdivision. We de�ne a cell's visibility to be the region of space visible to a generalized

observer (i.e., one that is able to look in any direction and move to any position within the

cell). The precomputed cell visibility is stored in the display database and used to aid real-

time visibility determination and database management algorithms during the walkthrough

phase.

26

a) Actual three dimensional subdivision.

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

b) Two dimensional schematic representation.

Figure 3.16: Spatial subdivision of the sixth
oor of Soda Hall. The image on the left

shows the actual three dimensional subdivision, while the image on the right shows a two

dimensional schematic representation.

We observe that a cell's visibility is the region of space to which an unobstructed

sightline can lead from some point inside the cell. Such a sightline must be disjoint from

any opaque cell boundaries, so it must intersect, or stab, a portal in order to pass from

one cell to the next (see Figure 3.17). Sightlines connecting cells that are not immediate

neighbors must traverse a portal sequence, each member of which lies on the boundary of

an intervening cell. Therefore, a cell's visibility is the union of all points in space that can

possibly be reached by a sightline that originates inside the cell, and intersects only portals

at cell boundaries along the way.

CCC
CCC
CCC
CCC
CCC
CCC
CCC

+++++++
+++++++
+++++++
+++++++
+++++++*********

!!!!!
!!!!!

++++++++
++++++++
++++++++
++++++++
++++++++

CCC
CCC
CCC
CCC
CCC
CCC
CCC

++++++++
++++++++
++++++++
++++++++**********

CCC
CCC
CCC
CCC
CCC
CCC
CCC

!!
!!
!!!!!!!!
!!!!!!

!!!!!
!!!!!
!!!!!

!!!
!!!
!!!
!!!
!!!
!!!

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!
!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!
!!!!

Figure 3.17: A sight-line stabbing a portal sequence.

These observations suggest that the visibility for a source cell, C, can be computed

27

using a depth-�rst search of the cell adjacency graph. Cells that are immediate neighbors

of C are always entirely visible to it, since all points in space can be reached by some

sightline stabbing the adjoining portal. Each step into a cell, R, farther away from C, adds

another portal to the sequence of portals through which a sightline must pass in order for

the cell to be visible to C. If we determine that the portal sequence does not admit a

sightline, then R is determined to be unreachable along the path. Otherwise, we call R a

reached cell, and recurse, stepping into cells neighboring R.

The visible region of cells farther away from C typically narrows as the length of the

portal sequence increases. After stepping through n portals, the visible region is a bowtie-

shaped bundle of lines that stab every portal of the sequence, and which \fans out" beyond

the �nal portal into an in�nite wedge (see Figure 3.18). During each iteration of the depth-

�rst search, the visible region of the reached cell is determined by clipping the in�nite wedge

to the reached cell's boundary. In all, the visibility of the source cell is the union of the

visible regions of cells reached during the search (see Figure 3.19).

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Portals in
Sequence

Visible
Region

Extremal
Stab Lines

Figure 3.18: Bowtie-shaped region contain-

ing sightlines stabbing a portal sequence

(shown in stipple gray). Opaque boundaries

are shown in solid black. Extremal sight-

lines are shown as dashed lines.

! !

! !

!! !!

!!!!!!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!! !!!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!

!!
!!

!! !! !! !!

!!!! !!!!

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCC
CCCC
CCCC
CCCC
CCCCCCCC
CCCC
CCCC
CCCCCC
CC

???
???
???
???

Source
Cell

Visible
Region

Figure 3.19: Cell visibility (shown in stipple

gray) for source cell (shown in dark gray).

In axial three dimensional models, all portals are axial rectangles, so any portal se-

quence can generate at most three pairs of bowtie constraints (one from each of two portal

edges parallel to the x, y, and z axes). Hohmeyer and Teller have implemented a procedure

to �nd sightlines through axial portal sequences, or determine that no such sightline exists,

28

in O(n logn) time, where n is the number of portals in the sequence [31]. Amenta has

proposed an O(n) solution for this problem [4], although it has not yet been implemented.

We construct the cell-to-cell and cell-to-object visibility for the source cell during the

depth-�rst search. We de�ne the cell-to-cell visibility for cell C to be the set of cells possibly

visible from C, i.e., the cells reached during the depth-�rst search originating from C (see

Figure 3.20a). We de�ne the cell-to-object visibility to be the set of objects possibly visible

from cell C, i.e., the objects whose bounding boxes are incident upon some region visible

from C. In Figure 3.20b, the objects found potentially visible from the source are shown as

solid black squares. Figure 3.21 shows the cell visibility for a source cell in three dimensions.

The visible region is the volume of space enclosed in the polyhedral beams emanating from

the source cell; the cell-to-cell visibility is the set of cells outlined; and the cell-to-object

visibility (not shown) includes all objects incident upon the brown polyhedral beams.

CC
CC
CC
CC
CC
CC
CC

CCC
CCC
CCC
CCC

CCCCC
CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC

CC
CC
CC

CC
CC
CC

CCCCCCC
CCCCCCCCCCC

CCCC
CCCC
CCCC
CCCC
CCCC
CCCC

CC
CC
CC

CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC

CCCC
CCCC
CCCC
CCCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CC
CC
CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC

CCC
CCC

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

??
??
??

CCCC
CCCC
CCCC
CC

Source
Cell

a) Cell-to-cell visibility.

! !

! !

!! !!

!!!!!!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!! !!!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!

!!
!!

!! !! !! !!

!!!! !!!!

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCC
CCC

???
???
???
???

CCCC
CCCC
CCCC
CCCC

Source
Cell

b) Cell-to-object visibility.

Figure 3.20: Two dimensional schematic diagram of a) cell-to-cell visibility (shown in stipple

gray), and b) cell-to-object visibility (shown as solid black squares) for a particular source

cell (shown in dark gray).

The cell-to-cell and cell-to-object visibility sets are stored in the display database for

each source cell, C, in the form of a stab list. A stab list contains an entry for each reached

cell, R, consisting of: 1) a reference to R, 2) a superset of C's cell visibility in R, constructed

by assembling a set of halfspaces bounding the portion of R visible from C, and 3) a set of

objects in R visible from C, i.e., ones that are completely or partially inside the assembled

halfspaces. One special case exists: if R is a neighbor of C, all objects are tagged as visible

from C without any halfspace or object set computations. Figure 3.22 shows a schematic

29

Figure 3.21: Cell visibility in three dimensions. Visible region (beams) and cell-to-cell

visibility (outlined) are shown for one source cell.

diagram of the stab list data structure. During the interactive walkthrough phase, the stab

list for the observer's cell is retrieved from the display database and culled dynamically

based on the observer's position and view direction to determine the set of objects visible

to the observer.

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

!!!!!!!
!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!
!!!!!!!

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!
!!!!!!!!!!!!

Stab List

Halfspace

Halfspace

Halfspace

Halfspace

Reached Cell

Visible Region

Visible Objects

Halfspace Halfspace

Object

Object

Object

Object

Object

Halfspace List

Object List

CCCCCCCCCCCCCCCC

Reached Cell

Visible Region

Visible Objects

CCCCCCCCCCCCC
CCCCCCCCCCCCC CCCCCCCCC

CCCCCCCCC

Figure 3.22: Stab list data structure.

When the bounding box of an object in the interior of a cell is moved, we must update

the cell-to-object visibility of all cells from which that object was previously visible, or is

newly visible. Conceptually, this update could be performed using an algorithm similar

30

to the one used in the cell-to-cell visibility computation { we could �nd the set of cells

visible to an object extent (rather than a cell extent) before the object has moved, and

after it has moved, and then update the cell-to-object visibilities for those cells accordingly.

However, such an algorithm has not yet been implemented. Instead, we store the set of

half spaces that bound the visible region of the reached cell in every stab list entry. By

checking for an intersection between the appropriate set of half-spaces and the extent of an

object, we can quickly determine whether the object should be added or removed from a

cell's cell-to-object visibility set when an object moves. As a practical optimization, objects

that move regularly but only over limited distances (e.g., animated sculptures) are de�ned

with bounding boxes that enclose the entire range of motion so that precomputed visibility

information does not have to be updated during each frame. Further experimentation

is required to determine the time and space trade-o�s between di�erent approaches to

updating precomputed object visibility information. See [55] for a discussion of updating

precomputed visibility information as opaque objects contributing to cell boundaries move

(i.e., thereby a�ecting the opacity of cell boundaries and precomputed cell-to-cell visibility

information).

3.2.3 Results

Mean and maximum precomputation statistics for cells in the spatial subdivision of

Soda Hall are shown in Table 3.2. In all, the spatial subdivision contains 5,060 leaf cells,

of which 1,889 are possibly inhabitable by an observer { the other 3,171 cells occupy dead

space inside the walls and ceilings. Except for a few large cells that have many portals and

objects incident upon them (e.g., the cells that span the entire length of the building just

outside the windows), the spatial subdivision classi�es the object distribution and visibility

properties of the building model fairly well.

Computing the spatial subdivision took 4 minutes and 36 seconds, and 6.9MB are

required to store the cells, portals, and lists of objects incident upon each cell. The visibility

precomputation took 3 hours and 31 minutes and requires 9.4MB of storage for the stab

lists.

31

Statistic Mean Maximum

Portals 3.10 63
Objects Completely Inside 4.16 86
Objects Partially Inside 6.04 195

Cells Visible 65.28 652
Objects Visible 263.10 3830

Table 3.2: Mean and maximum statistics for cells in the spatial subdivision of Soda Hall.

3.2.4 Discussion

The current implementation of the building walkthrough system supports spatial sub-

divisions containing only axis-aligned, rectangular cell boundaries and portals. Clearly, this

restriction severely limits the types of environments with which our walkthrough system

can be e�ective { i.e., only models with rectangular, axis-aligned walls, ceilings and
oors.

There are many other types of interesting virtual environments whose major occluders are

not axis-aligned, including cars, airplanes, boats, terrain, and many other types of archi-

tectural models.

In order to support interactive visualization of these other types of models, our system

must use enhanced spatial subdivision and visibility algorithms that allow cell boundaries

and portals with arbitrary three dimensional geometry. Teller has implemented such al-

gorithms for models constructed from planar polygons with arbitrary alignment in three

dimensions [54, 55]. The spatial subdivisions generated using these algorithms tend to re-

quire more storage than axial ones, and the visibility algorithms have higher computational

complexity. A study of the impact of using more general spatial subdivisions and visibility

algorithms on the space and performance characteristics of our building walkthrough system

is a topic for further study.

3.3 Walkthrough Phase

During the walkthrough phase, we simulate an observer moving through the architec-

tural model under user control. The goal is to render the model as seen from the observer

viewpoint in a window on the workstation display at interactive frame rates as the user

moves the observer viewpoint through the model.

32

The primary problem during the walkthrough phase is that building models are very

large, and so 1) they cannot be rendered completely in an interactive frame time (i.e., the

display management problem), and 2) they do not �t into memory all at once (i.e., the

memory management problem). Thus, we must identify a small, but relevant, portion of

the model to render and store in memory during each frame. We use the object hierar-

chy, spatial subdivision, and results of the visibility precomputation stored in the display

database (summarized in Figure 3.23), along with real-time display and database manage-

ment algorithms to compute this relevant portion of the model for each observer viewpoint.

CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Levels of
Detail

Cell Object Geometry

Visible
Cells

Adjacent
Cells Incident

Objects

Visible
Objects

Portal

Spatial Relationships

Hierarchical
Relationships

Visibility Relationships

Figure 3.23: Organization of data in the display database.

Execution during the walkthrough phase proceeds as diagrammed in Figure 3.24. In

every frame, the system performs seven operations, each of which can run asynchronously

in a separate concurrent process in a two-forked pipeline:

� User Interface: Interact with the user to generate an observer viewpoint.

� Visibility Determination: Compute the set of objects potentially visible from the

observer viewpoint.

� Detail Elision: Choose a level of detail and rendering algorithm for each potentially

visible object.

33

� Rendering Operations: Render potentially visible objects with a chosen level of

detail and a rendering algorithm on the monitor of the workstation.

� Lookahead Determination: Compute the set of objects to store in memory, i.e.,

the ones that might be rendered in upcoming frames.

� Cache Management: Determine which objects must be added to or removed from

the memory resident cache.

� Input/Output Operations: Load and update objects in the display database.

Display
Database

Detail
Elision

User
Interface

Mouse

MonitorVisibility
Determination

Rendering
Operations

Display Management

Database Management

Cache
Management

Lookahead
Determination

Input/Output
Operations

Figure 3.24: Functional operations of the walkthrough phase.

3.3.1 User Interface

During every frame of an interactive walkthrough, the system �rst determines the

simulated observer position. The walkthrough system used for demonstrations has a simple

user interface to control the simulated observer based on mouse and keyboard input. In

general, the user presses one of three mouse buttons to move through the building:

Input Action

Hold down left mouse button Move forward while turning
Hold down right mouse button Move backward while turning
Hold down middle mouse button Spin without moving

While a mouse button is down, the observer moves along the current view direction,

and turns to look in the direction pointed to by the mouse cursor. Therefore, to move

34

straight forward, the user must hold down the left mouse button, while keeping the mouse

cursor near the middle of the screen. To turn left (or right), the user holds down a mouse

button and moves the mouse cursor to the left (or right) part of the screen. In general, the

observer always moves toward or away from the portion of the building pointed to by the

mouse cursor.

To make navigation simple, our system allows the observer to turn only left or right, by

default { i.e. turning up or down is disabled. However, if the user holds down the control

key, the observer can turn up (if the mouse cursor is near the top part of the screen) or

down (if the mouse cursor is near the bottom part of the screen), as well as left and right.

When the user releases the control key, the program adjusts the observer back to horizontal

viewing gradually.

The user can also press the arrow and keypad arrow keys to move through the model

one step at a time. The four arrow keys, labeled ` ', `#', `!', and `"', turn the observer

viewpoint left, down, right, and up, respectively. The six arrow keys on the keypad, labeled

`2', `4', `6', `8', `5', and '/' move the observer viewpoint down, left, right, up, forward, and

back, respectively. In all, the relevant keyboard keys perform the following actions:

Input Action

Left arrow Spin left
Right arrow Spin right
Up arrow Spin up
Down arrow Spin down
Keypad 4 Move left
Keypad 6 Move right
Keypad 8 Move up
Keypad 2 Move down
Keypad 5 Move forward
Keypad / Move back
Control Allow up/down turning with mouse
ESC Exit the program

The walkthrough program also supports a variety of panels with toggles, buttons, and

sliders to control various program options (see Figures 3.25{3.26). We have also included

an ASCII text �le interface that allows the user to specify default parameter settings at

program startup. Using these controls, we can specify and experiment with many possible

parameter combinations relatively easily.

In order to evaluate and understand the behavior of our walkthrough algorithms for any

given combination of parameter settings, we have included code in our building walkthrough

35

Figure 3.25: Panels used for controlling parameters for a) observer navigation, b) visibility

determination, and c) memory management.

36

Figure 3.26: Panel used for controlling detail elision parameters.

37

application for \visualization of the algorithms". The program allows a user to view the

building model from either an \interior view" in which the model is rendered from the

simulated observer viewpoint (the default), or from a \bird's eye view" in which the model

is rendered as if the user were looking down from the sky (see Figure 3.27). In either

case, we perform exactly the same algorithms, and render exactly the same set of polygons.

However, in bird's eye view, we also include line drawing of the simulated observer view

frustum in the image so that the user can visualize where the observer viewpoint is and

which polygons are rendered from that observer viewpoint during each frame.

a) Interior View b) Bird's Eye View

Figure 3.27: Visualization program supports two views.

The panels that control parameter settings in our building walkthrough program also

contain toggles that control features for visualization of the behavior and results of the

walkthrough algorithms. For instance, the program can draw outlines of all cells and objects

in any visibility set, shade objects based on their bene�t, cost, or LOD chosen for display,

and/or draw outlines of cells and objects in any memory lookahead set. The program also

contains a panel that controls rendering attributes, such as whether edges are drawn on

polygons, whether polygon and vertex normals are drawn, whether objects are
at-shaded

or Gouraud-shaded, whether texture is applied to object surfaces, and various other lighting

characteristics (see Figure 3.28). We have found these visualization controls to be essential

for debugging and understanding the behavior of complex three dimensional geometric

algorithms. For instance, they were used to generate Figures 3.16, 3.21, 4.7, 4.8, and 4.19.

In order to compare various algorithms and parameter settings quantitatively, we have

included features for capturing and repeating a particular observer path, and for gathering

38

Figure 3.28: Panel containing controls for rendering parameters.

39

a large set of statistics in our building walkthrough program. Currently, the system can

measure the quantities shown in Table 3.3 during every frame of an interactive walkthrough.

Using these statistics, we can compare the performance of di�erent tests frame-by-frame.

We have found that typical cumulative statistics (e.g., mean, median, standard deviation,

minimum, and maximum) are useful, but not complete enough to perform an in-depth

analysis of di�erences between the performance of various tests. For instance, plots in

Figures 4.10, 4.11, 4.22, 5.11, 5.12, 5.13, 7.3, and 7.4 show frame-by-frame statistics that

are used to understand interesting performance features.

3.3.2 Display Management

The operations in the lower-fork of the walkthrough pipeline address the display man-

agement problem. For each observer viewpoint generated by the user interface, the system

performs a visibility determination to compute a set of potentially visible objects. Next,

detail elision algorithms are used to choose an appropriate level of detail and rendering

algorithm for each potentially visible object. Finally, rendering commands are sent to the

graphics workstation to display the potentially visible objects with the chosen levels of de-

tail and rendering algorithms on the monitor. These display management operations are

described in detail in Chapter 4.

3.3.3 Memory Management

The operations in the upper-fork of the walkthrough pipeline address the memory

management problem. The system uses visibility and detail elision algorithms to determine

the set of objects, and a level of detail for each one, to store in a memory resident cache.

Then, cache management techniques are used to determine the sets of objects to load

from the display database and release from memory during each frame. Finally, database

Input/Output operations (e.g., read, write and release) are used to transfer data between

the memory resident cache and display database. These memory management operations

are discussed in Chapter 5.

40

Statistic Description

Frame Time Time between end-of-rendering of successive frames
Response Time Time between start-of-frame and end-of-rendering

Visibility Time Compute time required for visibility determination
Detail elision Time Compute time required for detail elision
Rendering Time Time required for rendering polygons
Lookahead Time Compute time required for lookahead determination
Read Time Time required for database input/output operations

Rendered Cells # cells determined potentially visible
Rendered Objects # objects determined potentially visible
Rendered Polygons # polygons rendered
Rendered MBytes # bytes required to describe rendered polygons

Range cells # cells in range set

Lookahead Cells # cells containing objects in lookahead set
Lookahead Objects # objects in lookahead set
Lookahead Polygons # polygons describing objects in lookahead set
Lookahead MBytes # bytes describing objects in lookahead set

Resident Cells # cells containing objects in memory resident cache
Resident Objects # objects in memory resident cache
Resident Polygons # polygons describing objects in memory resident cache
Resident MBytes # bytes describing objects in memory resident cache

Read Cells # cells containing objects in read set
Read Objects # objects in read set
Read Polygons # polygons describing objects in read set
Read MBytes # bytes describing objects in read set

Release Cells # cells containing objects in release set
Release Objects # objects in release set
Release Polygons # polygons describing objects in release set
Release MBytes # bytes describing objects in release set

Objects Skipped # visible objects skipped because not yet in memory
LODs Skipped # LODs of visible objects skipped because not yet in memory
Wait Time Time spent waiting for visible object to be read into memory

Table 3.3: Statistics gathered during each frame of an interactive building walkthrough.

41

Chapter 4

Display Management

Three dimensional models of large, furnished buildings contain too many polygons to

be rendered at interactive frame rates (e.g., ten frames per second) on currently available

hardware. We use two techniques to compute a small, but most relevant, portion of the

model to render in each frame: 1) we determine the set of objects visible to the observer

using a real-time visibility algorithm based on the spatial subdivision and visibility precom-

putation results of the precomputation phase and 2) we choose a level of detail and rendering

algorithm with which to render each visible object in order to generate the \best" image

possible within a user-speci�ed target frame time. Using these techniques, we are able to

cull away large portions of the model that are irrelevant from the observer viewpoint, and

achieve faster, more uniform frame times than would be possible otherwise.

4.1 Visibility Determination

The procedure to compute the portion of the model visible to an observer during the

walkthrough phase is similar to the one used to compute cell visibility during the precom-

putation phase (see Section 3.2.2). The di�erence is that we can compute the visibility for

the actual observer viewpoint during the walkthrough phase, whereas we computed visibil-

ity for each cell (i.e., a generalized observer free to look in any direction and move to any

position within the cell) during the precomputation phase.

42

4.1.1 Observer Viewpoint

We represent an observer viewpoint by a view frustum, which is speci�ed by an \eye"

position, a view direction, azimuthal and altitudinal half angles, and an up vector (see Fig-

ure 4.1). This representation is mapped to a perspective viewing transformation for display

purposes by setting the center of projection to the observer eye position, the view reference

point to the center of the window, and the view plane normal and up vectors to the corre-

sponding frustum parameters (see Figure 4.2). The ratio of the tangents of the azimuthal

and altitudinal half angles is always kept equal to the aspect ratio of the viewport on the

graphics workstation display in order to avoid distortion due to anisotropic scaling.

Eye PositionView Direction

Up Vector
Altitudinal
Half Angle

Azimuthal
Half Angle

Figure 4.1: View frustum variables.

Center of
Projection

Up Vector

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

View Plane

Normal
Vector

View
Reference

Point

Figure 4.2: Mapping view frustum to per-

spective projection.

4.1.2 Observer Visibility

Given an observer view frustum, F , we can determine the region visible to it using

a procedure similar to the one described in Section 3.2.2. We �rst identify the cell, C,

containing the observer position and initialize the visible region to be the wedge which is

the intersection of the volumes enclosed by F and C. Next, we perform a constrained depth-

�rst traversal of the cell adjacency graph, starting at C and propagating outward through

portals to neighboring cells (i.e., only ones in the cell-to-cell visibility of the observer's

cell). The region of space visible to a view frustum through a sequence of axial rectangular

portals is always a wedge with at most ten sides (one for each of four planes bounding

the view frustum, plus one for each of six planes derived from portal edges parallel to the

43

x, y, and z axes). For each step through a portal, P , into a reached cell, R, we update

the wedge visible through the current portal sequence, W , by intersection with a wedge

bounded by planes through the observer eyepoint and edges of the portal (see Figure 4.3).

If the resulting intersection is empty (i.e., W is disjoint from P , so the new portal sequence

does not admit any sightline passing through the observer eye position), that branch of the

depth-�rst search is terminated. Otherwise, the region of R visible to the view frustum

(i.e., the intersection of R and W) is included in the visible region, and the search recurses

into neighboring cells.

A schematic diagram of the visible region computation is shown in two dimensions in

Figure 4.4. The observer view frustum is represented in two dimensions by a wedge outlined

by thick black lines, and the visible region is shown in stipple gray.

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

View
Frustum

Visible
Region

Figure 4.3: Visible region is a wedge that

typically narrows as it traverses through

more portals.

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

C
C
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@

Figure 4.4: Visible region for view frustum

in two dimensions.

We construct the eye-to-cell and eye-to-object visibility for the observer view frustum

during the depth-�rst search. We de�ne the eye-to-cell visibility to be the set of cells visible

by some sightline that contains the observer view position, that lies within the observer

view frustum, and that does not pierce any opaque cell boundaries (see Figure 4.5). That

is, the eye-to-cell visibility is exactly the set of cells reached during the depth-�rst search

described in the previous paragraph.

Similarly, we de�ne the eye-to-object visibility to be the set of objects whose bounding

box is visible by some sightline that contains the observer view position, that lies within

the observer view frustum, and that does not pierce any opaque cell boundaries. The eye-

44

to-object visibility is the set of objects incident upon the observer view frustum's visible

region. During computation of the eye-to-object visibility using the depth-�rst search, we

check only objects in the observer cell's cell-to-object visibility for a suitable sightline.

Figure 4.6 shows a schematic representation of the eye-to-cell visibility and eye-to-

object visibility for a particular observer frustum in two dimensions. Cells in the eye-to-cell

visibility are shown in gray stipple. Objects in the eye-to-object visibility are represented

by �lled squares; whereas those that are in the observer cell's cell-to-object visibility, but

not in the observer view frustum's eye-to-object visibility, are shown as hollow squares.

Example of eye-to-cell visibility and eye-to-object visibility in three dimensions are shown

in Figures 4.7 and 4.8, respectively.

CCCCCCC
CCCCCCC
CCCCCCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC

@@
@@
@@

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

C
C
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@

Figure 4.5: Cells in the eye-to-cell visibility

are shown in stipple gray.

CCCCCCC
CCCCCCC
CCCCCCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCC

@@
@@
@@

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

C
C
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@CC
CC

Figure 4.6: Objects in the eye-to-object vis-

ibility are shown as by solid squares.

The eye-to-object visibility for most observer viewpoints is a small subset of all objects

in the model, but still a superset of the objects actually visible to the observer. Therefore,

we can greatly accelerate frame rates, if we render only objects in the eye-to-object visibility

during each frame of an interactive walkthrough.

4.1.3 Results

To evaluate the e�ectiveness of the precomputation and real-time visibility determina-

tion algorithms, we ran a series of tests using our building walkthrough application. During

these tests, we logged statistics for combinations of the following visibility precomputations

and real-time visibility determination algorithms as a user walked through the model of

Soda Hall:

45

Figure 4.7: All objects incident upon cells

in the eye-to-cell visibility.

Figure 4.8: Objects in the eye-to-object vis-

ibility.

Visibility Precomputations:

� None: All objects.

� Cell-to-Cell (CTC): All objects incident upon a cell in the cell-to-cell visibility of

the observer's cell.

� Cell-to-Object (CTO): All objects in the cell-to-object visibility of the observer's

cell.

Real-time Cell Visibility Determination:

� None: All objects.

� Frustum-to-Cell (FTC): All objects incident upon a cell inside the observer view

frustum.

� Eye-to-Cell (ETC): All objects incident upon a cell in the eye-to-cell visibility of

the observer view frustum.

Real-time Object Visibility Determination:

� None: All objects.

� Frustum-to-Object (FTO): All objects inside the observer view frustum.

46

� Eye-to-Object (ETO): All objects in the eye-to-object visibility of the observer

view frustum.

The set of objects rendered in each test is the intersection of the sets generated during

the visibility precomputation and real-time cell and object visibility determinations. As

a practical optimization, objects consisting of just one polygon (e.g., walls, ceilings, and

oors) are trivially accepted during real-time object visibility determination. Since each

precomputed, cell visibility, and object visibility set is a superset the objects actually visible

to the observer, intersections of these sets is a superset as well. So an image generated by

rendering only objects in any intersection of these these sets appears the same as an image

generated by rendering all objects in the entire model.

Our notation for referring to the set of objects rendered in each test is a 3-tuple of

abbreviated names for the three visibility determination algorithms used (precomputation,

cell visibility, object visibility). For example, the notation for the set of objects determined

to be visible by the combination of cell-to-object, eye-to-cell, and eye-to-object visibility

algorithms is (CTO, ETC, ETO).

In each test, we used the sample observer path through the sixth
oor of Soda Hall

shown in Figure 4.9. This test path was chosen because it represents typical behavior of real

users of a building walkthrough system. Note the observer viewpoints marked `A', where

the observer is viewing a relatively open area, and `B' and `C', where the observer is in

enclosed o�ces. These observer viewpoints are marked in graphs and referenced during the

following discussion.

!!!
!!!
!!!

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!
!!
!!

Start

End

A

B

C

Figure 4.9: Test path through the sixth
oor of Soda Hall.

47

During each test, we measured compute time (i.e., the time required to execute the

real-time observer visibility algorithm and to construct a list of objects to be rendered),

rendering time (i.e., the time required to render objects), and frame time (i.e., the total

time between successive frames), as wells as the numbers of cells, objects, and polygons

rendered during each frame. All tests were performed on a Silicon Graphics VGX 320

workstation with two 33MHz MIPS R3000 processors, 64MB of memory, and a 16�s timer.

The application was con�gured as a two-process pipeline with one process used for visibility

computations, while the other was used for rendering. In order to eliminate the e�ects of

memory management in these tests, we used a model of Soda Hall with shared object

de�nitions (21.5MB) that �ts in memory entirely.

Mean and maximum statistics for all observer viewpoints along the test walkthrough

path are shown for each combination of visibility precomputation and real-time cell visibility

and object visibility algorithms in Tables 4.1 and 4.2. Plots of the frame time for every

observer viewpoint along the test walkthrough path are shown for (None, None, None),

(None, FTC, FTO), (CTO, None, None), and (CTO, ETC, ETO) in Figure 4.10.

No Visibility Determination

If we perform no visibility precomputation and no real-time visibility determination,

and render all objects in the entire model during each frame (i.e., (None, None, None)), the

frame rate is a near-constant 1/17.9 frames per second { i.e., 1 frame every 17.9 seconds

(see Figure 4.10a). The model of Soda Hall has 1,418,807 million polygons. It is too large

to be rendered in its entirety at interactive frame rates.

Visibility Precomputation

If we use the results of the cell-to-object visibility precomputation described in Section

3.2.2, but do no real-time visibility determination (e.g., (CTO, None, None)), frame rates

are generally faster (see Figure 4.10c). The number of polygons required to describe objects

in the cell-to-object visibility set for the observer cells along the test walkthrough path is

only 3.28% of the entire model on average, and it takes only an average of 0.645 seconds

to render them (1.6 frames per second). Furthermore, since the precomputed cell-to-object

visibility set can be fetched from the display database and is relatively small (at most 752

objects consisting of 74,071 polygons), little real-time computation is required to identify

48

Precomp Cell Object # Cells # Objects # Polygons
Cull Cull Cull Mean Max Mean Max Mean Max

None None None 5,060 5,060 14,478 14,478 1,418,807 1,418,807
FTO 5,060 5,060 8,949 11,520 228,236 811,469

FTC None 851 3122 3,115 9,337 319,359 947,203
FTO 851 3122 2,624 8,757 221,537 806,850

ETC None 19 54 274 657 24,775 70,357
FTO 19 54 239 562 18,596 62,034
ETO 19 54 185 426 7,899 19,809

CTC None None 117 216 1,309 2,108 102,320 134,818
FTO 117 216 914 1,567 30,151 70,921

FTC None 40 120 534 1,181 44,706 85,940
FTO 40 120 443 905 29,635 70,608

ETC None 19 54 272 657 24,359 70,357
FTO 19 54 237 562 18,216 62,034
ETO 19 54 185 426 7,898 19,809

CTO None None 117 216 526 752 46,510 74,071
FTO 117 216 366 566 15,264 47,394

FTC None 40 120 228 419 22,426 57,439
FTO 40 120 186 357 15,048 47,263

ETC None 19 54 154 340 16,870 41,895
FTO 19 54 130 278 12,038 34,989
ETO 19 54 110 208 7,823 19,768

Table 4.1: Mean and maximum set statistics collected during tests with various combina-

tions of precomputation and real-time visibility determination algorithms.

49

Precomp Cell Object Compute Time (s) Render Time (s) Frame Time (s)
Cull Cull Cull Mean Max Mean Max Mean Max

None None None 0.290 0.357 17.937 19.388 17.937 19.388
FTO 0.300 0.368 3.260 10.379 3.260 10.379

FTC None 0.137 0.329 4.199 12.183 4.199 12.183
FTO 0.150 0.377 2.965 10.371 2.965 10.371

ETC None 0.014 0.045 0.358 0.925 0.360 0.925
FTO 0.015 0.050 0.272 0.839 0.276 0.843
ETO 0.078 0.209 0.130 0.301 0.141 0.311

CTC None None 0.032 0.062 1.410 1.814 1.410 1.814
FTO 0.033 0.069 0.454 0.979 0.454 0.979

FTC None 0.015 0.037 0.634 1.320 0.634 1.320
FTO 0.017 0.050 0.428 0.967 0.428 0.967

ETC None 0.016 0.042 0.354 0.932 0.356 0.942
FTO 0.017 0.050 0.268 0.841 0.272 0.844
ETO 0.080 0.225 0.131 0.308 0.142 0.319

CTO None None 0.013 0.030 0.645 0.970 0.645 0.977
FTO 0.014 0.033 0.241 0.637 0.244 0.638

FTC None 0.008 0.023 0.329 0.769 0.333 0.774
FTO 0.008 0.031 0.229 0.627 0.235 0.633

ETC None 0.012 0.040 0.250 0.621 0.255 0.629
FTO 0.012 0.049 0.183 0.531 0.189 0.530
ETO 0.050 0.128 0.127 0.301 0.133 0.311

Table 4.2: Mean and maximum timing statistics collected during tests with various combi-

nations of precomputation and real-time visibility determination algorithms.

50

0

5

10

15

20

0 A B C 445

F
r
a
m
e

T
i
m
e

(
s
)

Frames

a) (None, None, None)

0

0.5

1

1.5

2

0 A B C 445

F
r
a
m
e

T
i
m
e

(
s
)

Frames

c) (CTO, None, None)

0

2

4

6

8

10

12

0 A B C 445
F
r
a
m
e

T
i
m
e

(
s
)

Frames

b) (None, FTC, FTO)

0

0.1

0.2

0.3

0.4

0.5

0 A B C 445

F
r
a
m
e

T
i
m
e

(
s
)

Frames

d) (CTO, ETC, ETO)

Figure 4.10: Frame time for each observer viewpoint along test walkthrough path. Note

di�erent scales along the \Frame Time" axis.

51

visible objects and load them onto a list to be rendered.

Real-Time Frustum Cull

If we perform no visibility precomputation, and instead use only a simple real-time cull

which rejects objects outside the observer view frustum (i.e., (None, FTC, FTO)), we render

221,537 polygons during each frame on average. Although this simple technique culls away

84.4% of the model on average, frame rates are not nearly interactive (1 frame every 2.965

seconds). Furthermore, the e�ectiveness of the frustum cull is highly variable (see Figure

4.10b). Few objects are visible from observer viewpoints looking outward from positions

near the perimeter of the building (e.g., the observer viewpoint marked `B'), whereas many

objects are visible from other viewpoints. In the worst case along this test walkthrough

path, there are 8,757 objects (806,850 polygons) inside the observer view frustum, and the

frame time slows to 10.371 seconds, when the observer is looking towards the center of the

building from a corner (e.g., the observer viewpoint marked `C').

If we consider only objects in the precomputed cell-to-object visibility set of the observer

cell, and apply a real-time frustum cull to each one during every frame of an interactive

walkthrough (e.g., (CTO, ETO, FTO)), we cull away almost 99% of the model and gen-

erate frames in 0.235 seconds on average (4.3 frames per second). The real-time compute

time using this combination of visibility algorithms is relatively small (0.008 seconds), even

smaller than the tests in which no real-time visibility determination is performed (0.013

seconds). This is because the measured compute time is a�ected by both the complexity of

the real-time visibility determination algorithm and the size of the resulting visibility set.

In this case, the real-time visibility determination algorithm is relatively simple (i.e., check

each object in the cell-to-object visibility of the observer cell to see if it is inside the observer

view frustum), and the resulting visibility set is relatively small (i.e., the time required for

constructing the list of objects to render is small). Since a large portion of the model is

eliminated from consideration during the visibility precomputation, a very small subset of

the model can be selected for rendering with little real-time computation.

Real-Time Sight-Line Cull

The fastest frame rates are achieved in our tests using the eye-to-cell and eye-to-object

real-time visibility determination algorithms (see Figure 4.10d). For instance, using these

52

algorithms with the cell-to-object visibility precomputation (i.e., (CTO, ETC, ETO)), we

are able to cull away almost 99.5% of the building model, and render frames in 0.133 seconds

on average (7.5 frames per second).

However, the eye-to-cell and eye-to-object visibility algorithms require the most com-

pute time per frame (0.050 seconds on average). For each cell reached during the eye-to-cell

adjacency graph traversal (see Section 4.1), we must check for a feasible sightline from the

observer eye position to the bounding box of each object that is both inside the reached

cell and in the cell-to-object visibility set of the observer cell. Fortunately, since real-time

visibility determination is done on a separate processor in parallel with rendering of the pre-

vious frame in a pipelined architecture, compute time does not in
uence the e�ective frame

rate unless it is the rate-limiting step. Figure 4.11 shows the compute time, draw time,

and e�ective frame time for (CTO, ETC, ETO) in each frame along the test walkthrough

path. The e�ective frame time is correlated with the maximum of the compute time and

draw time. Since the compute time is almost always less than the draw time in this test,

it contributes little to the e�ective frame time (this is not true if we use detail elision to

further decrease rendering time). A more in-depth discussion of concurrent processing in

our walkthrough appears in Chapter 6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 A B C 445

T
i
m
e

(
s
)

Frames

Frame Time
Draw Time

Compute Time

Figure 4.11: Compute time, draw time, and frame time for each observer viewpoint along

the test walkthrough path using (CTO, ETC, ETO) visibility determination.

53

4.1.4 Discussion

The success of our precomputation and real-time visibility algorithms depends greatly

on the granularity (i.e., the number of cells) of the spatial subdivision. In our approach,

the same granularity is used for both \source" cells and \reached" cells, and only opaque

polygons that lie on cell boundaries are considered occluders by the visibility algorithms.

So, unless the spatial subdivision contains a \split" along a particular polygon, neither

precomputation nor real-time visibility algorithms bene�t from its occlusion. This factor

suggests a very �ne spatial subdivision with splits along almost every polygon in the model.

Finer spatial subdivisions (i.e., ones with smaller cells) also allow the visibility precompu-

tation to determine a smaller potentially visible subset of the model for each source cell.

For instance, the cell-to-region visibility (shown in stipple gray) for the source cell drawn

in black in Figure 4.12a is smaller than the cell-to-region visibility for the larger source cell

shown in Figure 4.12b.

On the other hand, a �ner spatial subdivision requires more data to be stored in

the display database. In addition, since our visibility determination algorithms perform a

depth-�rst search of the cell adjacency graph, checking for a feasible sight-line through each

portal sequence encountered during the search, a �ner spatial subdivision may cause portal

sequences to be longer, more cells to be searched, and each cell to be reached by more pos-

sible paths through the cell adjacency graph during visibility determination. For instance,

the region marked `A' can be reached by 4 non-degenerate paths (shown by thin black lines)

through the spatial subdivision shown in Figure 4.12a (average portal sequence length =

4); whereas the same region can be reached by only 1 path in the spatial subdivision shown

in Figure 4.12b (average portal sequence length = 1). In general, there is a combinatorial

explosion in the number of paths to be checked during visibility determination due to adding

cells to the spatial subdivision whose boundaries do not have \su�cient" occlusion.

The trade-o�s in choosing an appropriate spatial subdivision granularity and visibility

determination algorithm are summarized in Figure 4.13 which contains graphs of spatial

subdivision granularity versus: a) cumulative opaque area on cell boundaries, b) CTO

visibility precomputation time, c) cumulative storage requirements for CTO visibility, d)

percentage of the model in the CTO visibility for average cell, e) (CTO, FTC, FTO) real-

time visibility compute time, and f) (CTO, ETC, ETO) real-time visibility compute time

for hypothetical spatial subdivisions. Estimated granularity for the spatial subdivisions

54

???
???
???
???
???

CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC

A

a) Fine granularity. CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCC

??????
??????
??????
??????
??????
??????
??????
??????

A

b) Coarse granularity.

Figure 4.12: Two possible spatial subdivisions for the same model.

shown in Figure 4.12a and 4.12b are marked on these graph by `A' and `B', respectively.

Cumulative Opaque
Area on Cell Boundaries

GranularityCoarse Fine

Cumulative
Storage Requirements

for CTO Visibility

GranularityCoarse Fine

(CTO,FTC,FTO)
Real−time Visibility

Compute Time

GranularityCoarse Fine

Area MB

Time

(a)

(d) (e)
B

A

A

B

A

B

% of Model in
CTO Visibility for

Average Cell

GranularityCoarse Fine

GranularityCoarse Fine

Time% of
Model
Visible
From
Cell

(c)

(f)

B

A

CTO Visibility
Precomputation Time

GranularityCoarse Fine

Time

(b)

B

A

(CTO,ETC,ETO)
Real−time Visibility

Compute Time

A
B

Figure 4.13: Trade-o�s in spatial subdivision granularity.

It seems that there are two \local optima" in the search for an appropriate combination

of spatial subdivision granularity and visibility determination algorithm. First, a very �ne

spatial subdivision might be used with a cell-to-object visibility precomputation and a

simple frustum-based real-time visibility determination algorithm (i.e., (CTO, FTC, FTO)).

Visibility precomputation might even be extended to classify visibility for particular view

direction ranges. Using this approach, precomputation time and storage requirements are

quite high, but real-time visibility compute time is very small. Since the cell-to-object

visibility precomputation for a �ne spatial subdivision culls away a large portion of the

55

model and is performed o�-line, a close approximation to the true observer visibility can be

generated with very little real-time computation.

Second, a rather coarse subdivision might be used with a cell-to-object visibility pre-

computation and an eye-to-object real-time visibility determination algorithm (i.e., (CTO,

ETC, ETO)). Using this approach, the precomputation time and storage requirements are

much smaller, but the real-time visibility compute time is larger. If the spatial subdivision

is �ne enough to capture the occlusion in the model, yet coarse enough that there are not

too many di�erent possible portal sequences to check during visibility determination (i.e.,

to the right of the \knee" near point `A' in Figure 4.13b), then a very close approximation

to the true observer visibility can be generated with very little visibility precomputation

and storage, yet reasonable compute time.

In our work, we have chosen to pursue the latter approach { we use a relatively coarse

spatial subdivision (i.e., with cells roughly corresponding to rooms of the building) and the

eye-to-object real-time visibility determination algorithm. This choice is made because we

expect the storage requirements for a very �ne spatial subdivision to be prohibitive in our

current implementation. Perhaps other types of visibility precomputation results (e.g., ones

that store incremental visibility results with portals) might be more storage e�cient. Or

perhaps non-uniform spatial subdivisions (i.e., ones in which the granularity of \source"

cells di�ers from the granularity of \searched" cells) might be more appropriate. Our

current spatial subdivision for Soda Hall has required quite a bit of hand tuning { we are

still investigating techniques for generating spatial subdivisions of appropriate granularity

automatically.

4.2 Detail Elision

Visibility determination is very e�ective at culling away a large portion of the model

that is invisible to the observer, thereby accelerating frame rates considerably. However, the

complexity of the portion of the model visible to the observer can be highly variable. Tens

of thousands of polygons might be simultaneously visible from some observer viewpoints,

whereas just a few can be seen from others. Certainly, there is no upper bound on the

complexity of the scene visible from an observer viewpoint. For instance, consider walking

through a very detailed model of a fully stocked department store, or viewing an assembly

of a complete airplane engine. In our model of Soda Hall, there are some viewpoints from

56

which an observer can see more than eighty thousand polygons. Clearly, visibility processing

alone is not su�cient to guarantee a uniform, interactive frame rate. As a result, a simple

display algorithm that renders all potentially visible polygons with some predetermined

quality may generate frames at highly variable rates, with no guaranteed upper bound on

any single frame time.

We have developed an adaptive algorithm for interactive visualization that guarantees

a user-speci�ed target frame rate. The idea behind the algorithm is to trade image quality

for interactivity in situations where the environment is too complex to be rendered in full

detail at the target frame rate. We perform a constrained optimization that selects a level

of detail and a rendering algorithm with which to render each potentially visible object to

produce the \best" image possible within a user-speci�ed target frame time. In contrast to

previous culling techniques, this algorithm supports a uniform, bounded frame rate, even

during visualization of very large, complex models.

4.2.1 Levels of Detail

To reduce the number of polygons rendered in each frame, an interactive visualization

system can use detail elision. If a model can be described by a hierarchical structure

of objects, each of which is represented at multiple levels of detail (LODs) (see Section

3.1.2), simpler representations of an object can be used to improve frame rates and memory

utilization during interactive visualization. This technique was �rst described by Clark

[18], and has been used by numerous commercial visualization systems [48]. If di�erent

representations for the same object have similar appearances and are blended smoothly,

using transparency blending or three dimensional interpolation, transitions between levels

of detail are barely noticeable during visualization.

Previously described techniques for choosing a level of detail at which to render each

visible object use static heuristics, most often based on a threshold regarding the size or

distance of an object to the observer [10, 44, 45, 48, 59], or the number of pixels covered by

an average polygon [24]. These simple heuristics can be very e�ective at improving frame

rates in cases where most visible objects are far away from the observer and map to very

few pixels on the workstation screen. In these cases, simpler representations of some objects

can be displayed, reducing the number of polygons rendered without noticeably reducing

image quality.

57

Although static heuristics for visibility determination and LOD selection improve frame

rates in many cases, they do not generally produce a uniform frame rate. Since LODs are

computed independently for each object, the number of polygons rendered during each

frame time depends on the complexity of the scene viewed by the observer. For instance,

in some cases, the observer might be looking closely at a very complex scene, containing

many detailed objects (e.g., a
ower garden). If many complex objects appear large enough

to pass the static size threshold for detail reduction and are rendered at the highest LOD,

the frame rate is very slow. In other cases, the scene visible to the observer might be very

simple, consisting of just a few objects that appear small to the observer. These objects are

rendered at the lowest LOD, resulting in a very fast frame rate. Using static heuristics, the

frame rate can vary dramatically from frame to frame, depending on the complexity and

size of the objects visible to the observer.

Furthermore, static heuristics for visibility determination and LOD selection do not

even guarantee a bounded frame rate. The frame rate can become arbitrarily slow, as the

scene visible to the observer can be arbitrarily complex. In many cases, the frame rate may

become so slow that the system is no longer interactive. Instead, a LOD selection algorithm

should adapt to overall scene complexity in order to produce uniform, bounded frame rates.

4.2.2 Adaptive Detail Elision

In an e�ort to maintain a speci�ed target frame rate, some commercial
ight simula-

tors use an adaptive algorithm that adjusts the size threshold for LOD selection based on

feedback regarding the time required to render previous frames [47]. If the previous frame

took longer than the target frame time, the size threshold for LOD selection is increased so

that future frames can be rendered more quickly.

This adaptive technique works reasonably well for
ight simulators, in which there is a

large amount of coherence in scene complexity from frame to frame. However, during visu-

alization of more discontinuous virtual environments, scene complexity can vary radically

between successive frames. For instance, in a building walkthrough, the observer may turn

around a corner into a large atrium, or step from an open corridor into a small, enclosed

o�ce. In these situations, the number and complexity of the objects visible to the observer

may change suddenly. Thus, the size threshold chosen based on the time required to render

previous frames is inappropriate, and can result in very poor performance until the system

58

reacts. Overshoot and oscillation can occur as the feedback control system attempts to

adjust the size threshold more quickly to achieve the target frame rate.

In order to guarantee a bounded frame rate during visualization of discontinuous virtual

environments, an adaptive algorithm for LOD selection should be predictive, based on the

complexity of the scene to be rendered in the current frame, rather than reactive, based

only on the time required to render previous frames. A predictive algorithm might estimate

the time required to render every object at every level of detail, and then compute the

largest size threshold that allows the current frame to be rendered within the target frame

time. Unfortunately, implementing a predictive algorithm is non-trivial, since no closed-

form solution exists for the appropriate size threshold.

4.2.3 Optimization Detail Elision

Our approach is a generalization of the predictive approach. Conceptually, every poten-

tially visible object can be rendered at any level of detail, and with any rendering algorithm

(e.g.,
at-shaded, Gouraud-shaded, texture mapped, etc.). Every combination of objects

rendered with certain levels of detail and rendering algorithms takes a certain amount of

time, and produces a certain image. We aim to �nd the combination of levels of detail

and rendering algorithms for all potentially visible objects that produces the \best" image

possible within the target frame time.

More formally, we de�ne an object tuple, (O;L;R), to be an instance of object O,

rendered at level of detail L, with rendering algorithm R. We de�ne two heuristics for

object tuples: Cost(O;L;R) and Bene�t(O;L;R). The Cost heuristic estimates the time

required to render an object tuple, and the Bene�t heuristic estimates the \contribution to

model perception" of a rendered object tuple. We de�ne S to be the set of object tuples

rendered in each frame. Using these formalisms, our approach for choosing a level of detail

and rendering algorithm for each potentially visible object can be stated:

Maximize :
P

S Bene�t(O;L;R)

Subject to : (4.1)

P
S Cost(O;L;R)� TargetFrameTime

This formulation captures the essence of image generation with real-time constraints:

59

\do as well as possible in a given amount of time." As such, it can be applied to a wide

variety of problems that require images to be displayed in a �xed amount of time, including

adaptive ray tracing (i.e., given a �xed number of rays, cast those that contribute most to

the image), and adaptive radiosity (i.e., given a �xed number of form-factor computations,

compute those that contribute most to the solution). If levels of detail representing \no

polygons at all" are allowed, this approach handles cases where the target frame time is not

long enough to render all potentially visible objects even at the lowest level of detail. In such

cases, only the most \important" objects are rendered so that the frame time constraint is

not violated. Using this approach, it is possible to generate images in a short, �xed amount

of time, rather than waiting much longer for images of the highest quality attainable.

For this approach to be successful, we need to �nd Cost and Bene�t heuristics that

can be computed quickly and accurately. Unfortunately, Cost and Bene�t heuristics for a

speci�c object tuple cannot be predicted with perfect accuracy, and may depend on other

object tuples rendered in the same image. A perfect Cost heuristic may depend on the

model and features of the graphics workstation, the state of the graphics system, the state

of the operating system, and the state of other programs running on the machine. A

perfect Bene�t heuristic would consider occlusion and color of other object tuples, human

perception, and human understanding. We cannot hope to quantify all of these complex

factors in heuristics that can be computed e�ciently. However, using several simplifying

assumptions, we have developed approximate Cost and Bene�t heuristics that are both

e�cient to compute and accurate enough to be useful.

Cost Heuristic

The Cost(O;L;R) heuristic is an estimate of the time required to render object O with

level of detail L and rendering algorithm R. Of course, the actual rendering time for a set

of polygons depends on a number of complex factors, including the type and features of the

graphics workstation. However, using a model of a generalized rendering system and several

simplifying assumptions, it is possible to develop an e�cient, approximate Cost heuristic

that can be applied to a wide variety of workstations. Our model, which is derived from the

Graphics Library Programming Tools and Techniques document from Silicon Graphics, Inc.

[50], represents the rendering system as a pipeline with the two functional stages shown in

Figure 4.14:

60

� Per Primitive: coordinate transformations, lighting calculations, clipping, etc.

� Per Pixel: rasterization, z-bu�ering, alpha blending, texture mapping, etc.

CCCC
CCCC
CCCC
CCCCPer−Primitive

Processing
Per−Pixel

Processing
CCCC
CCCC
CCCC
CCCC

DisplayHost
CCCC
CCCC
CCCC
CCCC

Figure 4.14: Two-stage model of the rendering pipeline.

Since separate stages of the pipeline run concurrently, and must wait only if a subse-

quent stage is \backed up," the throughput of the pipeline is determined by the speed of

the slowest stage { i.e., the bottleneck. If we assume that the host is able to send primitives

to the graphics subsystem faster than they can be rendered, and no other operations are

being executed that a�ect the speed of any stage of the graphics subsystem, we can model

the time required to render an object tuple as the maximum of the times taken by any of

the stages.

We assume that the time required for the Per Primitive stage is simply the sum of

the times taken for each rendering command sent by the host. We also assume that the

host sends rendering commands either per polygon or per vertex, as is the case in most

applications.

For each polygon do ...
f Per polygon commands g
BeginPolygon;
For each vertex do ...

f Per vertex commands g
EndPolygon;

End;

The actual number and type of commands performed per polygon and per vertex depend

on the rendering algorithm used. For instance, if
at shading is used, only one color must be

speci�ed per polygon, and only coordinates must be speci�ed per vertex. On the other hand,

if Gouraud shading, hardware lighting, and texture mapping is used, a material and texture

must be speci�ed per polygon, and a normal vector, texture coordinates, and positional

coordinates must be speci�ed per vertex.

61

We model the time taken by the Per Primitive stage as a linear combination of the

number of polygons and vertices in an object tuple, with coe�cients that depend on the

rendering algorithm and machine used. Likewise, we assume that the time taken by the

Per Pixel stage is proportional to the number of pixels an object covers. Our model for the

time required to render an object tuple is:

Cost(O;L;R) = max

8<
:

C1Poly(O;L) + C2Vert(O;L)

C3Pix (O)

9=
;

where O is the object, L is the level of detail, R is the rendering algorithm, and C1, C2 and

C3 are constant coe�cients speci�c to a rendering algorithm and machine.

For a particular rendering algorithm and machine, useful values for these coe�cients

can be determined experimentally by rendering sample objects with a wide variety of sizes

and LODs, and graphing measured rendering times versus the number of polygons, vertices

and pixels drawn. Figure 4.15a shows measured times for rendering four di�erent LODs of

the chair shown in Figure 3.3 with
at-shading. The slope of the best �tting line through

the data points represents the time required per polygon during this test. Similarly, per

pixel coe�cients are derived from plots like the one shown in Figure 4.15b. Using empirical

techniques, we have derived cost model coe�cients for our Silicon Graphics VGX 320 that

are accurate within 10% at the 95% con�dence level. A comparison of actual and predicted

rendering times for a sample set of frames during an interactive building walkthrough is

shown in Figure 4.16. In the future, we hope to extend our system to \learn" appropriate

cost coe�cients during real-time walkthroughs.

Bene�t Heuristic

The Bene�t(O;L;R) heuristic is an estimate of the \contribution to model perception"

of rendering object O with level of detail L and rendering algorithm R. Ideally, it predicts

the amount and accuracy of information conveyed to a user due to rendering an object

tuple. Of course, it is extremely di�cult to model human perception and understanding

accurately, so we have developed a simple, easy-to-compute heuristic based on intuitive

principles.

Our Bene�t heuristic depends primarily on the size of an object tuple in the �nal image.

Intuitively, objects that appear larger to the observer \contribute" more to the image (see

Figure 4.17). Therefore, the base value for our Bene�t heuristic is simply an estimate of

62

0

10

0 900

T
i
m
e

(
m
s
)

Polygons
0

6

0 900K

T
i
m
e

(
m
s
)

Pixels

Figure 4.15: Cost model coe�cients can be determined empirically. The plots show actual

at-shaded rendering times for the chair shown in Figure 3.3 using di�erent numbers of

polygons (on the left), and di�erent sizes (on the right).

0

0.2

0 250

T
i
m
e

(
s
)

Frames

Estimate
Actual

Figure 4.16: Comparison of actual and estimated rendering times of frames during an

interactive building walkthrough.

63

the number of pixels covered by the object, e.g., the area of the projection onto the view

plane of a sphere bounding the object.

View Plane

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

Observer

Figure 4.17: Objects that appear larger \contribute" more to the image.

Our Bene�t heuristic also depends on the \accuracy" of an object tuple rendering.

Intuitively, using a more detailed representation or a more realistic rendering algorithm for

an object generates a higher quality image, and therefore conveys more accurate informa-

tion to the user. Conceptually, we evaluate the \accuracy" of an object tuple rendering

by comparison to an ideal image generated with an ideal camera. For instance, consider

generating a gray-level image of a scene containing only a cylinder with a di�usely re
ecting

Lambert surface illuminated by a single directional light source in orthonormal projection.

Figure 4.18a shows an intensity plot of a sample scan-line of an ideal image generated for

the cylinder.

Consider approximating this ideal image with an image generated using a
at-shaded,

polygonal representation for the cylinder. Since a single color is assigned to all pixels covered

by the same polygon, a plot of pixel intensities across a scan-line of such an image is a stair-

function. If an 8-sided prism is used to represent the cylinder, at most 4 distinct colors can

appear in the image (one for each front-facing polygon), so the resulting image does not

approximate the ideal image very well at all, as shown in Figure 4.18b. By comparison, if a

16-sided prism is used to represent the cylinder, as many as 8 distinct colors can appear in

the image, generating a closer approximation to the ideal image, as shown in Figure 4.18c.

Next, consider using Gouraud shading for a polygonal representation. In Gouraud

shading, intensities are interpolated between vertices of polygons, so a plot of pixel intensi-

ties is a continuous, piecewise-linear function. Figure 4.18d shows a plot of pixel intensities

64

I
n
t
e
n
s
i
t
y

Pixels
a) Ideal image.

I
n
t
e
n
s
i
t
y

Pixels

Prism
Ideal

c) Flat-shaded 16-sided prism.

I
n
t
e
n
s
i
t
y

Pixels

Prism
Ideal

b) Flat-shaded 8-sided prism.

I
n
t
e
n
s
i
t
y

Pixels

Prism
Ideal

d) Gouraud-shaded 16-sided prism.

Figure 4.18: Plots of pixel intensity across a sample scan-line of images generated using

di�erent representations and rendering algorithms for a simple cylinder.

65

across a scan line for a Gouraud shaded 16-sided prism. Compared to the plot for the

at-shaded image (Figure 4.18b), the Gouraud shaded image approximates the ideal image

much more closely.

More complex representations (e.g., parametric or implicit surfaces) and rendering

techniques (e.g., Phong shading, antialiasing, or ray tracing) could be used to approx-

imate the ideal image even more closely. Based on this intuition, we assume that the

\error" (i.e., the di�erence from the ideal image) decreases with the number of samples

(e.g., rays/vertices/polygons) used to render an object tuple and is dependent on the type

of interpolation method used (e.g., Gouraud/
at). We capture these e�ects in the Bene�t

heuristic by multiplying by an \accuracy" factor:

Accuracy(O;L;R) = 1� Error = 1�
BaseError

Samples(L;R)m

where Samples(L, R) is #pixels for ray tracing, or #vertices for Gouraud shading, or #poly-

gons for
at-shading (but never more than #pixels); and m is an exponent related to the

error of the interpolation method used (
at = 1, Gouraud = 2). The BaseError is arbitrar-

ily set to 0.5 to give a strong error for a curved surface represented by a single
at polygon,

while still accounting for a signi�cantly higher bene�t than not rendering the surface at all.

In addition to the size and accuracy of an object tuple rendering, our Bene�t heuristic

depends on several other, more qualitative, factors, some of which apply to a static image,

while others apply to sequences of images:

� Semantics: Some types of object may have inherent \importance." For instance,

walls might be more important than pencils to the user of a building walkthrough;

and enemy robots might be most important to the user of a video game. We adjust

the Bene�t of each object tuple by an amount proportional to the inherent importance

of its object type.

� Focus: Objects that appear in the portion of the screen at which the user is looking

might contribute more to the image than ones in the periphery of the user's view.

Since we currently do not track the user's eye position, we simply assume that objects

appearing near the middle of the screen are more important than ones near the side.

We reduce the Bene�t of each object tuple by an amount proportional to its distance

from the middle of the screen.

66

� Motion Blur: Since objects that are moving quickly across the screen appear blurred

or can be seen for only a short amount of time, the user may not be able to see them

clearly. So we reduce the Bene�t of each object tuple by an amount proportional to

the ratio of the object's apparent speed to the size of an average polygon.

� Hysteresis: Rendering an object with di�erent levels of detail in successive frames

may be bothersome to the user and may reduce the quality of an image sequence.

Therefore, we reduce the Bene�t of each object tuple by an amount proportional to

the di�erence in level of detail or rendering algorithm from the ones used for the same

object in the previous frame.

Each of these qualitative factors is represented by a multiplier between 0.0 and 1.0

re
ecting a possible reduction in object tuple bene�t. The overall Bene�t heuristic is the

product of the following factors:

Bene�t(O;L;R) = Size(O) �Accuracy(O;L;R)�

Importance(O) � Focus(O) �Motion(O) �Hysteresis(O;L;R)

This Bene�t heuristic is a simple experimental estimate of an object tuple's \contri-

bution to model perception." Greater Bene�t is assigned to object tuples that are larger

(i.e., cover more pixels in the image), more realistic-looking (i.e., rendered with higher levels

of detail, or better rendering algorithms), more important (i.e., semantically, or closer to

the middle of the screen), and more apt to blend with other images in a sequence (i.e.,

hysteresis). In our implementation, the user can manipulate the relative weighting of these

factors interactively using sliders on a control panel (see Figure 3.26), and observe their

e�ects in a real-time walkthrough. For example, Figure 4.19 shows images depicting the

relative bene�ts of objects for di�erent settings for the Focus factor of the Bene�t heuristic

{ darker shades of gray represent more bene�t. Notice that objects near the periphery of

the image have less bene�t when the Focus factor is set to a smaller value. Although our

current Bene�t heuristic is rather ad hoc, it is useful for experimentation until we are able

to encode more accurate models for human visual perception and understanding.

Optimization Algorithm

We use the Cost and Bene�t heuristics described in the previous sections to choose a

set of object tuples to render each frame by solving equation 4.1 in Section 4.2.3.

67

a) Focus = 1.0 b) Focus = 0.1

Figure 4.19: Images depicting the relative bene�t of objects with the Focus factor of the

Bene�t heuristic set to a) 1.0 and b) 0.1. Darker shades of gray represent higher values for

the Bene�t heuristic.

Unfortunately, this constrained optimization problem is NP-complete. It is the Con-

tinuous Multiple Choice Knapsack Problem [26, 32], a version of the well-known Knapsack

Problem in which elements are partitioned into candidate sets, and at most one element

from each candidate set may be placed in the knapsack at once. In this case, the set S of

object tuples rendered is the knapsack, the object tuples are the elements to be placed into

the knapsack, the target frame time is the size of the knapsack, the sets of object tuples

representing the same object are the candidate sets, and the Cost and Bene�t functions

specify the \size" and \pro�t" of each element, respectively. The problem is to select the

object tuples that have maximum cumulative bene�t, but whose cumulative cost �ts in the

target frame time, subject to the constraint that only one object tuple representing each

object may be selected.

We have implemented a simple, greedy approximation algorithm for this problem that

selects object tuples with the highest Value, de�ned as Bene�t(O;L;R)=Cost(O;L;R).

Logically, we add object tuples to S in descending order of Value until the maximum cost

is competely claimed. However, if an object tuple is added to S which represents the same

object as another object tuple already in S, only the object tuple with the maximum bene�t

of the two is retained. The merit of this approach can be explained intuitively by noting

that each subsequent portion of the frame time is used to render the object tuple with the

68

best available \bang for the buck." It is easy to show that a simple implementation of this

greedy approach runs in O(n logn) time for n potentially visible objects, and produces a

solution that is at least half as good as the optimal solution [26].

Rather than computing and sorting the Bene�t, Cost, and Value for all possible object

tuples during every frame, as would be required by a naive implementation, we have imple-

mented an incremental optimization algorithm that takes advantage of the fact that there

is typically a large amount of coherence between successive frames. The algorithm works

as follows: At the start of the algorithm, an object tuple is added to S for each potentially

visible object. Initially, each object is assigned the LOD and rendering algorithm chosen

in the previous frame, or the lowest LOD and rendering algorithm if the object is newly

visible. In each iteration of the optimization, the algorithm �rst increments the accuracy

attribute (LOD or rendering algorithm) of the object that has the highest subsequent Value.

It then decrements the accuracy attributes of the object tuples with the lowest current Value

until the cumulative cost of all object tuples in S is less than the target frame time. The

algorithm terminates when the same accuracy attribute of the same object tuple is both

incremented and decremented in the same iteration. Psuedocode for this algorithm is shown

in Figure 4.20.

This incremental implementation �nds an approximate solution that is the same as the

solution found by the naive implementation, provided that Values of object tuples decrease

monotonically as tuples are rendered with greater accuracy (i.e., there are diminishing

returns with more complex renderings). In this case, the Value of the tuple both incremented

and decremented in the �nal iteration separates the tuple space into two groups: ones with

higher Value (all of which have been selected), and ones with lower Value (all of which have

not been selected).

In any case, the worst-case running time for the algorithm is O(n logn). However, since

the initial guess for the LOD and rendering algorithm for each object is generated from the

previous frame, and there is often a large amount of coherence from frame to frame, the

algorithm completes in just a few iterations on average. Moreover, computations are done

in parallel with the display of the previous frame on a separate processor in a pipelined

architecture; they do not increase the e�ective frame rate as long as the time required for

computation is not greater than the time required for display.

69

// Initialize set of object tuples
S = InitialTupleSet();
COST = CumulativeCost(S);

// Build increment/decrement priority queues of tuples
NEXT = CreatePriorityQueue(S, MaxValueAfterIncrement);
CURRENT = CreatePriorityQueue(S, MinCurrentValue);

// Iteratively increment/decrement tuples
while not Done do
// Increment tuple with maximum next value
if (COST � MAXCOST) then
// Get tuple with maximum next value
BEST = GetPriorityQueue(NEXT);
if (!BEST) Done;

// Increment BEST tuple
IncrementTuple(BEST);
UpdatePriorityQueue(NEXT, BEST);
UpdatePriorityQueue(CURRENT, BEST);
UpdateCost(COST, BEST);

endif

// Decrement tuples with minimum current value
while (COST > MAXCOST) do
// Get tuple with minimum current value
WORST = GetPriorityQueue(CURRENT);
if (!WORST) Done;

// Decrement WORST tuple
DecrementTuple(WORST);
UpdatePriorityQueue(NEXT, WORST);
UpdatePriorityQueue(CURRENT, WORST);
UpdateCost(COST, WORST);

// Check termination criterion
if (� BEST == -� WORST) Done;

endwhile
endwhile

Figure 4.20: Pseudocode for the constrained optimization algorithm.

70

4.2.4 Results

To test whether this new cost/bene�t optimization algorithm produces more uniform

frame rates than previous LOD selection algorithms, we ran a series of tests with our

building walkthrough application using four di�erent LOD selection algorithms:

� No Detail Elision: Each potentially visible object is rendered at the highest LOD.

� Static: Each potentially visible object is rendered at the highest LOD for which an

average polygon covers at least 1024 pixels on the screen.

� Feedback: Similar to Static test, except the size threshold for LOD selection is

updated in each frame by a feedback loop, based on the di�erence between the time

required to render the previous frame and the target frame time of one-tenth of a

second.

� Optimization: Each potentially visible object is rendered at the LOD chosen by the

cost/bene�t optimization algorithm described in Section 4.2.3 in order to meet the

target frame time of one-tenth of a second. For comparison sake, the Bene�t heuristic

is limited to consideration of object size in this test, i.e., all other Bene�t factors are

set to 1.0.

All tests were performed on a Silicon Graphics VGX 320 workstation with two 33MHz

MIPS R3000 processors and 64MB of memory. We used the (CTO, ETC, ETO) visibility

algorithm described in Chapter 4.1 to determine a set of potentially visible objects to be

rendered in each frame. The application was con�gured as a two-process pipeline with

one process for visibility and LOD selection computations and another separate process for

rendering. Timing statistics were gathered using a 16�s timer.

In each test, we used the sample observer path shown in Figure 4.21 through a model of

an auditorium on the third
oor of Soda Hall. This path was chosen because the auditorium

contains a set of objects complex enough to di�erentiate the characteristics of various LOD

selection algorithms. At the observer viewpoint marked `A', many complex objects are

simultaneously visible, some of which are close and appear large to the observer; at the

viewpoint marked `B', there are very few objects visible to the observer, most of which

appear small; and at the viewpoint marked `C', numerous complex objects become visible

suddenly as the observer spins around quickly. We refer to these marked observer viewpoints

71

in the analysis, as they are the viewpoints at which the di�erences between the various LOD

selection algorithms are most pronounced.

A

B

C

Start

End

Figure 4.21: Test observer path through an auditorium on the third
oor of Soda Hall.

Figure 4.22 shows plots of the frame time (seconds per frame) for each observer view-

point along the test path for the four LOD selection algorithms tested. Table 4.3 shows

cumulative compute time (i.e., time required for execution of the LOD selection algorithm)

and frame time statistics for all observer viewpoints along the test path.

LOD Selection Compute Time (s) Frame Time (s)
Algorithm Min Mean Max Min Mean Max Std. Dev.

None 0.00 0.00 0.00 0.025 0.43 0.99 0.305
Static 0.00 0.00 0.01 0.025 0.11 0.20 0.048
Feedback 0.00 0.00 0.01 0.025 0.10 0.16 0.026
Optimization 0.00 0.01 0.03 0.075 0.10 0.13 0.008

Table 4.3: Minimum, mean, and maximum timing statistics collected during tests with

various detail elision algorithms (in seconds).

No Detail Elision

If no detail elision is used, and all potentially visible objects are rendered at the highest

LOD, the time required for each frame is generally long and non-uniform, since it depends

directly on the number and complexity of the objects visible to the observer (see Figure

4.22a). In our test model, far too many polygons are visible from most observer viewpoints

to generate frames at interactive rates without detail elision. For instance, at the observer

72

0.0

1.0

0 A B C 250

T
i
m
e

(
s
)

Frames

a) No detail elision.

0

0.2

0 A B C 250

T
i
m
e

(
s
)

Frames

c) Feedback algorithm.

0

0.2

0 A B C 250
T
i
m
e

(
s
)

Frames

b) Static algorithm.

0

0.2

0 A B C 250

T
i
m
e

(
s
)

Frames

d) Optimization algorithm.

Figure 4.22: Plots of frame time for every observer viewpoint along test observer path

using a) no detail elision, b) static algorithm, c) feedback algorithm, and d) optimization

algorithm. Note: the \Frame Time" axis in plot (a) is �ve-times larger than the others.

73

viewpoint marked `A' in Figure 4.21, 72K polygons are simultaneously visible, and the

frame time is 0.98 seconds. Overall, the mean frame time for all observer viewpoints on the

test path is 0.43 seconds per frame (2.3 frames per second).

Static Algorithm

If the Static LOD selection algorithm is used, objects whose average polygon is smaller

than a size threshold �xed at 1024 pixels per polygon are rendered with lower LODs.

Even though the frame rate is much faster than without detail elision, there is still a large

amount of variability in the frame time, since it depends on the size and complexity of

the objects visible from the observer viewpoint (see Figure 4.22b). For instance, at the

observer viewpoint marked `A', the frame time is quite long (0.19 seconds) because many

visible objects are complex and appear large to the observer. A high LOD is chosen for

each of these objects independently, resulting in a long overall frame time. This result can

be seen clearly in Figure 4.23a which depicts the LOD selected for each object in the frame

for observer viewpoint `A' { higher LODs are represented by darker shades of gray. On the

other hand, the frame time is very short in the frame at the observer viewpoint marked

`B' (0.03 seconds). Since all visible objects appear relatively small to the observer, they

are rendered at a lower LOD even though more detail could have been rendered within the

target frame time. In general, it is impossible to choose a single size threshold for LOD

selection that generates uniform frame times for all observer viewpoints.

Feedback Algorithm

The Feedback algorithm adjusts the size threshold for LOD selection adaptively based

on the time taken to render previous frames in an e�ort to maintain a uniform frame rate.

This algorithm generates a fairly uniform frame rate in situations of smoothly varying scene

complexity, as evidenced by the relatively
at portions of the frame time curve shown in

Figure 4.22c (frames 1{125). However, in situations where the complexity of the scene vis-

ible to the observer changes suddenly, peaks and valleys appear in the curve. Sometimes

the frame time generated using the Feedback algorithm can be even longer than the one

generated using the Static algorithm, as the Feedback algorithm is lured into an inappropri-

ately low size threshold during times of low scene complexity. For instance, just before the

viewpoint marked `C', the observer is looking at a relatively simple scene containing just

74

a) Static algorithm b) Optimization algorithm

Figure 4.23: Images depicting the LODs selected for each object at the observer viewpoints

marked `A' using the Static and Optimization algorithms. Darker shades of gray represent

higher LODs.

a few objects on the stage, so frame times are very short, and the size threshold for LOD

selection is reduced to zero. However, at the viewpoint marked `C', many chairs become

visible suddenly as the observer spins around quickly. Since the adaptive size threshold is

set very low, inappropriately high LODs are chosen for most objects (see Figure 4.24a),

resulting in a frame time of 0.16 seconds. Although the size threshold can often adapt

quickly after such discontinuities in scene complexity, some e�ects related to this feedback

control (i.e., oscillation, overshoot, and a few very slow frames) can be quite disturbing to

the user.

Optimization Algorithm

The Optimization algorithm predicts the complexity of the model visible from the

current observer viewpoint, and chooses an appropriate LOD and rendering algorithm for

each object to meet the target frame time. As a result, the frame time generated using the

Optimization algorithm is much more uniform than using any of the other LOD selection

algorithms (see Figure 4.22d). For all observer viewpoints along the test path, the longest

frame time is 0.13 seconds, and the shortest is 0.075 seconds, while the standard deviation

in the frame time is 0.008 seconds, less than one third of any of the other three algorithms

tested. The shortest frame times occur in situations where drawing every potentially visible

object at the highest LOD with the most realistic rendering algorithm available still does

75

a) Feedback algorithm b) Optimization algorithm

Figure 4.24: Images depicting the LODs selected for each object at the observer viewpoints

marked `C' using the Feedback and Optimization algorithms. Darker shades of gray represent

higher LODs.

not take long enough to �ll the entire target frame time (e.g., Frames 125 - 150). In these

cases, the system should employ even more realistic rendering algorithms (e.g., adaptive

ray tracing). Currently, our system either stalls to �ll the extra time (as in this test), or

renders frames faster than the target frame time while adjusting the observer's step length

to maintain an illusion of constant velocity navigation through the environment.

As the Optimization algorithm adjusts image quality to maintain a uniform, interactive

frame rate, it attempts to render the \best" image possible within the target frame time

for each observer viewpoint. As a result, there is usually little noticeable di�erence between

images generated using the Optimization algorithm and ones generated with no detail elision

at all. A comparison of images for observer viewpoint `A' generated using a) no detail elision

and b) using the Optimization algorithm to meet a target frame time of one tenth of a second

are shown in Figure 4.25. Figure 4.25a has 72,570 polygons and took 0.98 seconds to render,

whereas Figure 4.25b has 5,300 polygons and took 0.10 seconds. Even though there are less

than a tenth as many polygons in Figure 4.25b, the di�erence in image quality is barely

noticeable. For reference, the LOD chosen for each object in Figure 4.25b is shown in Figure

4.23b. Note that reduction in rendering time does not map to a linear reduction in polygon

count since polygons representing lower levels of detail tend to be larger on average.

The Optimization algorithm is more general than other detail elision algorithms in that

it also adjusts the rendering algorithm (and possibly other attributes in the future) for each

76

a) No detail elision b) Optimization algorithm (0.10 seconds)

Figure 4.25: Images for observer viewpoint `A' generated using a) no detail elision (72,570

polygons), and b) the Optimization algorithm with a 0.10 second target frame time (5,300

polygons).

object independently. Examine Figures 4.26{4.29 which show four images of a small library

on the sixth
oor of Soda Hall containing several textured surfaces generated using a Silicon

Graphics Reality Engine. Figure 4.26 shows an image without any detail elision { it contains

19,881 polygons and took 0.22 seconds to render. Figures 4.27a, 4.28a, and 4.29a show

images generated for the same observer viewpoint using the Optimization algorithm with

target frame times of 0.10 seconds, 0.05 seconds, and 0.02 seconds, respectively. Although

the Optimization algorithm uses simpler levels of detail and rendering algorithms for many

objects (see Figures 4.27b, 4.28b, and 4.29b), and generates images that are quite di�erent

from the one generated with no detail elision (see Figures 4.27c, 4.28c and 4.29c), all three

images look very similar. Notice the reduced tessellation of chairs further from the observer,

and the omission of texture on the bookshelves in Figure 4.28a. In Figure 4.29, texture has

been removed from all surfaces except the large polygons that make up the
oor and ceiling.

Since the Optimization algorithm uses reduced levels of detail and rendering algorithms

for only the least important objects, di�erences between the three images are not very

noticeable, even though rendering times di�er by a factor of ten.

4.2.5 Discussion

The Optimization algorithm maintains a more uniform frame rate and produces higher

quality images than other detail elision algorithms. However, it is particularly prone to

77

Figure 4.26: Image of library generated using no detail elision (19,821 polygons).

hysteresis during interactive visualization since it varies LODs and rendering algorithms of

potentially visible objects to �ll the entire target frame time during every frame. As objects

become newly invisible (or visible) during an interactive walkthrough, there becomes more

(or less) frame time available to render other potentially visible objects. The LOD or

rendering algorithm used for some object(s) may be increased (or decreased) to �ll the

available frame time. In this manner, the LOD and rendering algorithms used for each

object may vary according to the number and complexity of other objects visible to the

observer. Therefore, although the frame rate is kept nearly constant using the Optimization

algorithm, the LODs and rendering algorithms used for some objects may change from

frame to frame.

This e�ect can be minimized by adjusting the Hysteresis factor of the Bene�t heuristic.

Decreasing the bene�t of objects whose LOD or rendering algorithm is di�erent than the

one used to render the object in the previous frame directs the Optimization algorithm to

favor fewer LOD and rendering algorithm switches between successive frames. However,

since the algorithm always �lls the entire target frame time in each frame, the LOD or

rendering algorithm of some object is necessarily switched whenever an object becomes

newly visible or invisible. This e�ect is disturbing when a few objects are visible to the

observer continuously, while others become visible and invisible intermittantly. Possible

solutions to this problem might be to modify the Optimization algorithm to require objects

to be rendered with each set of rendering attributes for a minimum number of frames,

78

a)

b) c)

Figure 4.27: Images of library generated using the Optimization detail elision algorithm

with a target frame time of 0.10 seconds (8,882 polygons). LODs chosen for objects in (a)

are shown in (b) { darker shades of gray represent higher LODs. Pixel-by-pixel di�erences

from Figure 4.26 are shown in (c) { brighter colors represent greater di�erence.

79

a)

b) c)

Figure 4.28: Images of library generated using the Optimization detail elision algorithm

with a target frame time of 0.05 seconds (3,568 polygons). LODs chosen for objects in (a)

are shown in (b) { darker shades of gray represent higher LODs. Pixel-by-pixel di�erences

from Figure 4.26 are shown in (c) { brighter colors represent greater di�erence.

80

a)

b) c)

Figure 4.29: Images of library generated using the Optimization detail elision algorithm

with a target frame time of 0.02 seconds (1,161 polygons). LODs chosen for objects in (a)

are shown in (b) { all objects are rendered using the lowest LOD. Pixel-by-pixel di�erences

from Figure 4.26 are shown in (c) { brighter colors represent greater di�erence.

81

to allow a range of target frame times, or to perform an unconstrained optimization which

includes consideration for variation from the target frame time in the optimization objective

function. Further experimentation is required to determine the merit of these possible

approaches.

In order to make switches between di�erent LODs or rendering algorithms less no-

ticeable, we plan to use a transparency blending technique in which objects in transition

between successive representations, A and B, are rendered twice: once with representation

A, and once with representation B. The resulting images are blended pixel-by-pixel using

transparency factors which sum to one, and then painted into the frame bu�er. We have

not yet included this feature in our rendering system because the hardware we currently

use does not support the necessary blending operation (more recently available hardware

does).

To include transparency blending in our system, we must extend our Optimization

algorithm to consider object tuples (O;L;R) in transition between successive LODs or

rendering algorithms { i.e., with \non-integral" values for L and R. Although few conceptual

changes are necessary to support transparency blending, the optimization algorithm must

be extended to increment and decrement rendering attributes by fractional values; the Cost

heuristic must be updated to account for the time required to draw an object in transition

(i.e., rendered twice and then blended); and the Bene�t heuristic must be modi�ed to

consider the \contribution" of rendering a blended object tuple image. Although these

extensions are possible in principle, further research is required to evaluate the e�ects of

blending on the Optimization detail elision algorithm.

There are still many unanswered questions regarding detail elision for interactive visual-

ization applications. However, having experimented with several LOD selection algorithms,

we are optimistic that variation in image quality is less disturbing to a user than varia-

tion in frame times, as long as di�erent representations for each object appear similar, and

transitions between representations are neither very frequent nor noticeable.

82

Chapter 5

Memory Management

Detailed building models with radiosity data are too large to �t into main memory

all at once on typical graphics workstations. Therefore, we must choose a subset of the

model to store in memory, and swap di�erent portions of the model in and out of memory

in real-time as the observer moves through the model. We always must store in memory at

least the portion of the model to be rendered in the current frame. However, since it takes

a relatively large amount of time to load data from disk into memory, we also must predict

which parts of the model might be rendered in future frames and begin loading them into

memory in advance. An extremely e�cient database system running under asynchronous

control must be used for loading object descriptions from disk into memory in real-time.

Otherwise, frame updates might be delayed, waiting for data to be read from disk before it

can be rendered.

5.1 Database System

The challenge of a database system for interactive visualization applications is to pro-

vide e�cient storage and real-time access to the complex, dynamic data structures required

for display of large three dimensional models at interactive frame rates.

Most visualization systems store three dimensional models in graphical display lists

under the assumption that the models �t entirely into physical memory of the workstation.

If the size of a graphical model exceeds the capacity of physical memory, the operating

system uses standard virtual memory techniques to swap portions of the model out to disk.

Unfortunately, this hands-o� approach to memory management is often inadequate for

83

visualization of very large models for several reasons. First, references to data in a virtual

memory system are generally unique to a speci�c address space, so cannot be stored on disk

and then used later during a di�erent program execution. Second, data elements may grow

in size, and consequently be forced to move in the virtual address space. Since references are

only via direct pointers in virtual memory, all references to a data element must be found

and updated whenever a data element is moved. Such updates are both ine�cient and

di�cult to implement unless explicit back-references are stored, which is often impractical.

Third, many small blocks of memory allocated for related data elements may be scattered

over the virtual memory address space resulting in poor physical memory utilization and

swapping performance. Finally, virtual memory provides no synchronization point to control

simultaneous access to data elements by separate concurrent processes. Therefore, display

lists stored in virtual memory are most practical for access by a single process to static

models that �t in memory entirely.

To manage storage of large, dynamic three dimensional models in a visualization sys-

tem, a more complete database system is required that allows data elements to be mod-

i�ed, moved, and accessed by separate processes concurrently. Such a database system

must perform many operations standard in traditional database systems, such as bu�er

pool management, clustering of related data elements, concurrency control, and persistent

updates. However, other functional and performance requirements of a database system

for interactive visualization applications are quite di�erent than for traditional database

applications.

In visualization applications, data location typically is performed by functional queries

that traverse sequences of references through data stored in the database. During every

second of execution, the application may perform hundreds of thousands of references and

execute tens of thousands of functions on data stored in the database (e.g., rendering a

polygon requires references to data stored in the database). Some of these functions may

be recursive, executed on another processor asynchronously, or depend on special-purpose

hardware (e.g., the graphics engine). Therefore, general purpose query techniques requiring

parsing a query language, executing a query engine, copying data into application bu�ers,

converting data between database and application formats, or executing functions in the

database system address space are not
exible or fast enough for visualization applications.

Even the overhead of a single function call or \if" check per reference is too ine�cient.

Instead, arbitrary application-de�ned functions must be allowed to access data stored in

84

the database memory pool directly, by the most e�cient means possible in the programming

language (i.e., direct pointer dereference).

As the user explores a large three dimensional model, the data describing the portions

not already resident in memory must be loaded from disk in real-time while the system

continues to render images at interactive frame rates. Since the portion of the database

required to be in memory can be highly dynamic and di�cult to predict far in advance,

memory management functions that pre-fetch data into memory must be de�ned by the

application, execute asynchronously, and support very high performance transfers of data

from disk into memory { i.e., must have both low latency and high throughput. Therefore,

very little dynamic memory allocation or data replication can be done during disk to memory

transfers, and asynchronous read operations must be used so that frame refreshes are not

delayed waiting for slow disk i/o operations to complete.

In all, the essential requirements of a database system for three dimensional visualiza-

tion applications are: 1) store very large models (larger than will �t into main memory); 2)

support persistent addition, deletion, and modi�cation of data; 3) support e�cient access to

data by application-de�ned functions; 4) allow asynchronous, application-de�ned memory

management functions; and 5) perform e�cient transfers from disk into memory.

Most traditional database systems do not provide the necessary combination of exten-

sibility,
exibility and performance to be used in high-performance, interactive visualization

applications. This is partially due to support for a multitude of services that are not typically

essential in a visualization application, such as crash recovery, security, and general-purpose

queries. Many of these features reduce database system performance signi�cantly: 1) crash

recovery requires logging updates to disk, 2) security requires application-de�ned functions

to run outside the database system's address space, and 3) general purpose queries require

execution of a query engine and often copy query results into application bu�ers.

We have developed a database system designed speci�cally for interactive visualization

applications. It is NOT a general purpose database management system. Instead, it is a

low-level storage system that provides management of arbitrarily moving/growing groups

of bytes in a persistent database �le. High-level database features and policies, such as

crash recovery, security, and query execution are left to the application programmer so

that no unnecessary overhead is incurred by the database system. In this regard, our

database system is similar to Exodus [14] and Genesis [6] { it is a modular, low-level storage

system suitable for use directly by an application program, or by a complete object-oriented

85

database system.

5.1.1 Segments

Our database system stores persistent application data in segments, which contain ar-

bitrary groups of bytes that are manipulated by the database system as a unit. The content

of a segment is completely application-de�ned, and is not interpreted by the database sys-

tem. So, any data structure, including pointers, may be stored inside a persistent segment

and managed by the database system.

An important aspect of our database system is that application-de�ned functions can

access data stored in memory resident segments directly via pointers in the native program-

ming language. This feature is important for several reasons. First, applications can access

persistent data stored in the database very e�ciently. No copy into an application bu�er

(e.g., [38]), or indirection via an object identi�er (e.g., [19]) is required.

Second, database queries can be executed directly by the application using functions

de�ned in the native programming language, rather than by the database system using

a query language. As a result, greater expressive power is available to the application.

Queries can be iterative or recursive, partitioned among multiple processors, take advan-

tage of application-speci�c semantics, or utilize special-purpose hardware. For instance, in

our building walkthrough application, we execute a query to \Find all objects potentially

visible to the observer" during every frame of an interactive walkthrough (see Section 4.1).

This query requires execution of a recursive search of the cell-adjacency graph to �nd cells

potentially visible to the observer, and performs a linear program for each object incident

upon a potentially visible cell. In future versions of our system, the query may search di�er-

ent paths through the cell-adjacency graph in parallel, or render polygons directly. Clearly,

the native programming language is better suited for this type of query than a traditional

database query language.

Third, application code must not be rewritten to access data stored in persistent

database segments. Visualization applications often are written using main memory data

structures �rst, and then converted to use persistent storage of a database system. In our

case, the display management algorithms described in Chapter 4 were developed in the C

programming language using small, memory resident models. Later, when we began using

building models that were too large to �t into memory, the visualization data structures

86

were mapped directly into database segments, and no existing code had to be rewritten or

modi�ed at all.

Another important feature of our database system is that memory allocation and I/O

operations are performed only for entire segments, which may contain numerous related data

elements, rather than for individual data elements separately. For example, all polygons

representing the same object at the same level of detail might be grouped into a single

segment. Then, only one memory allocation and read operation is required to transfer

many polygons from disk into memory, rather than su�ering the latency resulting from a

separate memory allocation and read operation for each polygon. This feature improves

performance and simpli�es data management signi�cantly.

Using the segment abstraction, database management gets divided into two parts: 1)

the application part that de�nes the data types to be stored in each segment and uses

segment operations to dictate high-level memory management policies and 2) the database

system part that manages low-level storage of persistent segment data and references.

5.1.2 Data Types

In order to use our database system, a programmer must partition application data

structures into segments. Since segments reside either entirely in memory or entirely on

disk, and can grow in size and/or move, there are certain rules and guidelines an applica-

tion programmer must follow when partitioning data into segment types. First, application

data pointers are required to reference addresses that are either: 1) within the same segment

(i.e., intra-segment references) or 2) the base address of another segment (i.e., inter-segment

references) and MUST NOT reference addresses internal to another segment. This require-

ment, shown in Figure 5.1, is necessary to insure that every data reference can be stored in

a single pointer �eld (e.g. four bytes), regardless of whether the referenced data moves or

is resident in memory or on disk. If references to addresses internal to other segments were

allowed, separate segment address and o�set �elds would be required for each reference,

thereby forcing the application and/or the database system to allocate and manage extra

meta-data for each reference.

Second, application programmers are advised to group related data elements into seg-

ments together. Since disk I/O may be more e�cient for larger segments, all data elements

that are likely to be needed in memory at the same time should be stored in the same

87

Segment #1

Segment #2

Segment #3

CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC

CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC

CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC
CCCCCCCCCCCCC

OK

OK

BAD

Figure 5.1: References to addresses internal to other segments are not allowed.

segment. However, since all data elements stored in a segment must be read and stored

in memory together as a unit, I/O performance and memory utilization is compromised if

unrelated data elements are grouped together in the same segment inappropriately.

Finally, application programmers are advised to store data elements that are likely

to grow (e.g. lists) in segments separate from data that is likely to remain �xed in size.

Since space in the database �le and/or memory must be re-allocated for an entire segment

whenever any data element stored inside the segment grows, storing data that is likely to

grow in a separate segment can have signi�cant space utilization advantages.

For example, the data structures used in our building walkthrough application are

partitioned into segments as shown in Figure 5.2. Note that many static, related data

elements, such as the polygons describing an object at a particular LOD, are grouped into a

single segment. However, dynamic data elements, such as the list of objects incident upon

a cell, are stored in separate segments since they are likely to grow and shrink as objects

are added, deleted, or moved in the database.

An application programmer speci�es how data structures are partitioned into segments

by de�ning a set of segment types, with six callback functions for each type:

DFCreateSegmentData (void *data)

Initialize segment data at address data.

DFDeleteSegmentData (void *data)

Delete segment data at address data.

DFPackSegmentData (void *src, void *dst)

88

Cell

Boundary Portals

Adjacent Cells

Geometry

Polygons

Visible Objects

Incident Objects

Visible Cells

Object Texture

Image

List of Cells

Portal

Polygon

Transformation

LODs

Name

Animation

Material

List of Objects List of Materials List of Textures

Name Name

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

CCCCC
CCCCC
CCCCC

CCC
CCC
CCC
CCC
CCC

C C C C

C C

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCCC C C C

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCCC C C C O O O O M M M M T T T T

M

T

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCCO O O O

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCCO O O O

I
CCC
CCC
CCC

CCCCCCC
CCCCCCC
CCCCCCCL L L

G
CCCCCCCCC
CCCCCCCCC
CCCCCCCCCG G G

CCCCC
CCCCC
CCCCCM T

Header

CCCCCCCCC
CCCCCCCCC
CCCCCCCCCL LLL

Figure 5.2: The building walkthrough data structures partitioned into segments. Segment

boundaries are represented by thick, dashed lines. Inter-segment references are depicted

by stipple gray squares labeled by the type of segment referenced (e.g., `C' = Cell, `O' =

Object, `G' = Geometry, `M' = Material, `T' = Texture, `I' = Image, and `L' = List).

Intra-segment references are depicted by hollow squares.

89

Copy segment data at address src into contiguous memory at address dst.

DFUnpackSegmentData (void *src, void *dst)

Copy segment data at address src into segment data at address dst.

DFFixupSegmentData (void *data, DF FIXUP FUNCTION before,
DF FIXUP FUNCTION after, DF FIXUP FUNCTION external)

Apply �xup functions to all references within the segment data at address
data. The before and after functions are applied to each intra-segment ref-
erence before (after) the reference is used. The external function is applied
to each inter-segment reference.

int DFGetSegmentDataSize (void *data)

Return the size of the segment data at address data in bytes.

These six callback functions provide an abstraction used by the database system to

manage the application-dependent data of each segment type in an application-independent

manner. The most important aspect of this abstraction is the conversion of references (i.e.,

pointers) stored in the application data structures as data is transferred between memory

and disk. In particular, inter-segment references must be converted to direct memory point-

ers when segment data is read from disk, and converted back to unique segment ids (OIDs)

when segment data is written to disk (i.e., swizzled). This conversion is accomplished via

the DFFixupSegmentData callback in which the application calls speci�ed functions for

each intra- and inter-segment reference contained in the segment's data.

Like a data description language [19, 13] or tag table [37], this callback mechanism

allows the database system to manipulate data and references in application-de�ned data

types transparently. However, callbacks are more general than these previously described

declarative methods because data manipulation is procedural. Reference �xup can be con-

ditional, iterative, or even recursive, and depend on values of application-speci�c data.

Therefore, very complex data structures can be stored in a single segment type (e.g., a

cell with lists of its neighbors and portals), and segment types can be described in any

programming language (e.g., C).

5.1.3 Operations

The database system supports a simple set of operations to create, open, and close

database �les, and to create, delete, and manipulate database segments:

90

Database Operations:

DFNewDatabase(DF DATABASE *database, char *name)

Creates and initializes a new database.

DFOpenDatabase(DF DATABASE *database, char *name)

Opens an existing database.

DFCloseDatabase(DF DATABASE *database)

Closes an open database. Any dirty, memory resident segments are rewrit-
ten to the database disk �le.

Segment Operations:

DFCreateSegment(DF DATABASE *database, DF SEGMENT *segment,

DF SEGMENT TYPE type, void *data)

Creates a segment with the speci�ed type and data, and adds it to the
database. New memory is allocated for the segment's data, and the data
passed as an argument is copied into it.

DFDeleteSegment(DF DATABASE *database, DF SEGMENT *segment)

Removes a segment from the database.

DFWriteSegment(DF DATABASE *database, DF SEGMENT *segment)

Writes a segment's data from memory into the database disk �le.

DFReadSegment(DF DATABASE *database, DF SEGMENT *segment)

Reads a segment's data from the database disk �le into memory.

DFReleaseSegment(DF DATABASE *database, DF SEGMENT *segment)

Releases a segment's data from memory.

The DFReadSegment, DFWriteSegment, and DFReleaseSegment operations control

which segments are resident in memory at any given time. Unlike some object-oriented

database systems, which at most allow an application to provide hints regarding bu�er pool

management [14], our database system allows an application to control segment loading

and replacement policies explicitly. For example, our building walkthrough application uses

these operations to implement a rather complex pre-fetch memory management algorithm

(see Section 5.2). Read, write and release operations access shared memory synchronized

by locks, and segment loading is executed from a separate, asynchronous process in order

to avoid waiting for slow disk i/o operations during image generation.

91

5.1.4 Implementation

The database system uses memory allocation and �le input/output features provided

by the operating system, along with the application-de�ned callback functions described in

Section 5.1.2, to implement the i/o operations described in Section 5.1.3.

The database system stores all data in the database in a single �le, as shown in Fig-

ure 5.3. The �rst 512 bytes of the database �le are reserved for the database prologue,

which stores the application-independent state of the database (e.g., magic number, version

number, revision number, and text descriptor) and references to segments containing the

database header and the segment index. The remainder of the database �le is used to store

application segment data.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Database Prologue

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Segment Index

Database Header

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Segment #1

Segment #2

Figure 5.3: Layout of database �le. Mandatory inter-segment references are shown as solid

arrows, while possible application-de�ned inter-segment references are shown as dashed-

arrows.

The database header is a segment, which is speci�ed by the application as the top-level

access point to the data stored in the database. It is possible for a database to contain

only one segment, i.e. the database header. However, the database system is intended to

be used such that the database header contains references to other segments, which contain

references to still other segments, etc. In this way, a complex structure of segments and

references can be built, originating from the data stored in the database header segment.

The segment index is a segment that contains an array of entries that store the state of

all other segments in the database. Each segment index entry contains the following �elds:

� OID - speci�es the segment's unique integer identi�er. The OID for the segment

associated with the ith segment index entry is constructed by OIDi = (i << 1)j1,

92

which allows a segment's index entry to be located from its OID quickly, and allows

a segment OID to be distinguished from a pointer, since pointers are constrained to

reference only even memory addresses in our implementation.

� Type - speci�es the segment's application-de�ned type. As described in Section 5.1.2,

the segment type indicates which set of application-de�ned callback functions should

be called by the database system during manipulation of the segment.

� Size - speci�es the number of bytes reserved for the segment's data in the database

�le. If the segment's data is resident in memory, its actual size can exceed the number

of bytes reserved in the database �le. In this case, a new location in the database �le

is found when the segment is rewritten to the database �le.

� File o�set - speci�es the location reserved for the segment's data in the database �le.

The size and �le o�set �elds together indicate the space set aside for the segment's

data in the database �le.

� Memory pointer - speci�es the memory address of the segment's data, if the segment

is resident in memory.

� Reference count - speci�es whether or not a segment's data is resident in memory.

The reference count starts at zero, and is incremented each time the segment is \read,"

and decremented each time it is \released." If the reference count is greater than zero,

the segment's data is resident in memory.

� Status - speci�es the segment's status. This �eld currently contains bits indicating

whether the segment data is \dirty" (i.e., needs to be updated on disk) or \packed"

(i.e., contiguous in memory).

A segment's data can either be memory resident or not, as indicated by the reference

count �eld. If a segment's data is memory resident, the memory pointer �eld speci�es the

location of the segment's data in virtual memory, and the �rst four bytes of the segment's

data contain a pointer to the segment index entry. This back-pointer is used to convert direct

memory references back to OIDs when a segment is written to or released from memory.

If a segment's data is not memory resident, the �le o�set �eld speci�es the segment's data

location in the database disk �le, and the memory pointer is NULL.

93

The layout of segment data on disk is the same as in memory, so transfers from disk

into memory are very e�cient. In order to read a segment's data from disk into memory, the

database system performs the following: 1) allocates memory for the segment data (using

malloc), 2) executes a read system call, and 3) swizzles intra-segment references into direct

memory pointers using the DFFixupSegmentData application-de�ned callback function.

Inter-segment references are not swizzled during read operations by default { the referenced

segments may or may not be read later by the application. In order to write a segment's

data from memory into the database disk �le, the database system performs the following:

1) allocates space in the database disk �le (preferably at the same location from which it was

read initially), 2) packs the segment data into contiguous memory using the application-

de�ned DFPackSegmentData callback function, 3) converts each inter-segment reference

into an appropriate OID and each intra-segment reference into an o�set from the beginning

of the segment using the DFFixupSegmentData application-de�ned callback function, and

4) executes a write system call. Reference counts and dirty bits are maintained by the

database system in order to avoid redundant or unnecessary read/write operations.

Note that our database system reads and writes data in segment-size blocks, rather

than page-size blocks like many object-oriented database management systems [14, 37, 19].

Page-size blocks are preferable when only a small portion of a segment must be accessed,

whereas segment-sized blocks are preferable when entire segments are accessed each time

any part is, as long as greater performance can be derived from larger i/o operations.

5.2 Predictive Memory Management

Since realistic-looking three dimensional models may be much larger than can �t into

main memory, an interactive walkthrough system must swap portions of the model in and

out of memory in real-time as the observer navigates through the model. However, since it

takes a relatively large amount of time to load data from disk into memory, we must pre-

fetch parts of the model that might be rendered in future frames. Consequently, we have

implemented a predictive memory management algorithm that forecasts a range of possible

observer viewpoints during the next N future frames and uses precomputed cell-to-cell and

cell-to-object visibility information fetched from the display database to determine a looka-

head set of objects (i.e., a set of objects that are likely to be visible to the observer during

the next N future frames). We choose a level of detail at which to store each lookahead

94

object in a memory resident cache. Simple cache management algorithms determine which

objects to load into memory from disk, and which to replace when the cache is full, as the

observer moves through the model.

5.2.1 Observer Range

An ideal memory management algorithm predicts the observer viewpoint in each future

frame perfectly. Then it can use the visibility determination and detail elision algorithms

described in Chapters 4.1 and 4.2 to determine exactly which objects and LODs will be

rendered during future frames and pre-fetch them into memory, replacing ones that will not

be rendered for the longest time in the future. Unfortunately, since the observer viewpoint

is under interactive control by the user and cannot be predicted perfectly, we must consider

a range of possible future observer viewpoints in our memory management algorithm.

Given a particular observer viewpoint in the current frame and constraints on observer

movement and rotation enforced by the user interface, we can determine an observer range

that contains a superset of all observer viewpoints possible during the next N future frames.

For example, if the observer is allowed to move and turn in any direction, but is constrained

by maximum positional and rotational velocities, vp and vr, the upper bound on the observer

range during the next N frames is a sphere centered at the observer eye position with radius

Nvp, as shown in Figure 5.4. All possible observer view directions are enclosed in a range

frustum whose eye position is directly behind the observer, and whose view angle is widened

by Nvr, and which contains the range sphere. If the observer is prevented from moving

directly through solid walls (a parameter in our user interface), the observer range is further

constrained as shown in Figure 5.5.

5.2.2 Object Lookahead

In order to pre-fetch objects into memory before they are rendered, we must determine

which objects are likely to become visible to the observer in advance. This observation

suggests a predictive memory management algorithm similar to the visibility determination

algorithm described in Section 4.1, but extended to compute visibility for a range of possible

future observer viewpoints. Such an algorithm might cast visibility beams from the observer

range through the portals of the spatial subdivision to determine a set of potentially visible

objects. Unfortunately, real-time visibility determination for a �nite, non-zero volume of

95

Potential
Movement

Potential
Spin

Range
Frustum

Current
Frustum

Figure 5.4: The observer range contains all

observer view positions (inside sphere) and

view directions (inside range frustum) pos-

sible during the upcoming N frames.

CCC
CCC
CCC

CCC
CCC
CCC
CCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCC
CCCC
CCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC

Current
Frustum

Potential
Range

Actual
Range

Figure 5.5: Observer range is reduced if

the user interface prevents traversal through

solid walls.

space (even an axial box) seems to be too compute intensive to be practical for interactive

walkthroughs [55].

Fortunately, memory management does not typically require as exact a visibility solu-

tion as display management. During display management, the bandwidth of the graphics

rendering system is generally the limiting resource. Typically, a system must cull away over

99% of a detailed building model in order to generate images at interactive frame rates.

In addition, each potentially visible object must be passed through the graphics rendering

system in every frame. Therefore, it is extremely important that the set of objects selected

for display comprise a very small superset of the objects actually visible to the observer.

In contrast, during memory management, the capacity of workstation memory and

the bandwidth of disk to memory transfers are generally the limiting factors. Typically, a

workstation must cull away only 90% of a detailed building model to select a portion that

�ts into memory. Furthermore, potentially visible objects must be loaded into memory only

once, and then can be resident in memory for several frames. Therefore, it is su�cient, and

even advantageous, for the set of objects stored in memory to be a rather large superset of

the objects potentially visible to the observer range, as long as it is a small enough subset

of the entire model to �t in main memory and the di�erence between successive frames is

small.

Our visibility determination algorithm for memory management �nds a set of cells

96

whose cumulative boundary contains the observer range. It then utilizes precomputed cell-

to-cell and cell-to-object visibility information for those range cells to compute a superset

of the objects potentially visible from the observer range.

In each frame of an interactive walkthrough, we compute a set of range cells,R, that are

likely to contain the observer eye position during the next N future frames by performing a

shortest path search of the cell adjacency graph. The search, implemented using Dijkstra's

method [21], adds cells to the range set in order of minimum number of frames before the

observer can enter the cell. Maximum positional and rotational velocities and constraints

preventing observers from walking directly through solid walls are used to determine the

number of frames required for the observer to enter a cell.

Since there is a large amount of coherence in observer motion from frame to frame, we

use the current direction of observer movement to help predict future observer eye positions.

During the shortest path search, we add cells to the range set only if they satisfy certain

directional constraints speci�ed by the range cull algorithm parameter. Currently supported

range cull algorithms include: 1) any direction { all cells that can contain the observer in

the next N frames are included in the range set, 2) observer plane { range cells must be at

least partially in front of the observer, 3) observer frustum { range cells must be at least

partially inside the current observer frustum, and 4) observer direction { range cells must

be hit by a ray traced from the current observer eye position along the current observer

view direction.

Figure 5.6 shows an example shortest path search result in which the observer range

is not limited to any particular direction. Each cell is labeled by the minimum number

of frames before it can contain the observer, assuming the observer is constrained to the

maximum positional and rotational velocities, and cannot walk through walls. For N = 4,

range cells are highlighted in cross-hatch.

We use precomputed cell-to-cell and cell-to-object visibility information for the range

cells fetched from the display database to compute a set of lookahead objects that are likely

to be visible to the observer during the next N future frames. When a new range cell is

discovered during the shortest path search, we check each cell in its cell-to-cell visibility to

see if the cell satis�es the directional constraints speci�ed by the lookahead cull algorithm

(similar to the range cull algorithm). If so, we add all potentially visible objects incident

upon the cell to the lookahead set. The lookahead granularity parameter speci�es whether

we add all objects incident upon the cell to the lookahead set (i.e., cell granularity), or only

97

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

13

6 10 14 17 194

2

1

2246

4

2

15

20 20

!!
!!

!!
!!

!!
!!

17

5

1

5

10

15 15

18

9 15

25

23

24

5

15 21

4

!!
!!

21 23 25 30 31 31 33

11

16

17
18

10
21

17 23

21

25

24

2727

25

29

2921

25 2626

12 25

23

312022 34

277

@@
@@

&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&

&&&&
&&&&
&&&&
&&&&
&&&&
&&&&

&&&
&&&
&&&
&&&
&&&
&&&
&&&
&&&
&&&

&&&
&&&
&&&
&&&
&&&
&&&
&&&
&&&

&&&
&&&
&&&
&&&

Figure 5.6: The observer range cells (shown in cross-hatch) contain all observer view posi-

tions possible during the upcoming N = 4 frames. Each cell is labeled by the number of

frames before the observer can be resident in it.

the objects in the cell-to-object visibility of the range cell (i.e., object granularity).

Figure 5.7 shows an example computation of the lookahead set of objects in which both

the range cull algorithm and lookahead cull algorithm are any direction, and the lookahead

granularity is cell granularity. Each cell is labeled by the minimum number of frames before

it can become visible to a cell in the observer range set. For N = 4, cells in the range set

are highlighted again in cross-hatch, and cells containing objects in the lookahead set are

highlighted in stipple gray.

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

5

0 0 1 9 90

0

0

1512

4

2

5

4 4

!!
!!

!!
!!

!!
!!

5

4

1

4

4

4 4

4

0 1

15

2

9

4

2 2

2

!!
!!

15 10 10 24 24 15 27

5

5

5
11

5
5

5 5

5

5

5

1515

11

18

1510

18 1821

5 21

1

151015 24

154

@@
@@

&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&

&&&&
&&&&
&&&&
&&&&
&&&&
&&&&

&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&CC
CC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCC
CCCC
CCCC
CCCC
CCCC
CCCCCCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCC
CCC
CCC
CCC
CCC

CCC
CCC
CCC
CCCCCCC

CCCC
CCCC
CCCC
CCCC
CCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

Figure 5.7: The lookahead cells (shown in stipple gray) contain all objects that can be

visible to the observer during the upcoming N frames. Each cell is labeled by the number

of frames before it can become visible to the observer.

As each object is added to the lookahead set, we mark and claim memory for all LODs

98

for the object that can possibly be rendered during the next N future frames. We use a

size threshold for static detail elision, along with precomputed information regarding which

objects can be drawn at a given LOD for an observer inside a particular cell, to choose a

maximum LOD at which to store each potentially visible object. The e�ect is that objects

near the observer range are stored in memory up to higher LODs than ones further away,

as shown in Figure 5.8.

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

4 4 35

5

5

54

5

5

1 1

!!
!!

!!
!!

!!
!!

5

4

3

2 2

2

4 2

1

4

2 1

5

!!
!!

3

15

@@
@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

BBBB
BBBB
BBBB
BBBB
BBBB

BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB

BBBBBBB
BBBBBBB
BBBBBBB

BBB
BBB
BBB
BBB

BBBB
BBBB
BBBB
BBBB
BBBB

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

1111111
1111111
1111111
1111111
1111111

111
111
111
111

11111
11111
11111
11111
11111

BBB
BBB
BBB
BBB

Figure 5.8: Lookahead objects are stored in memory only up to the LOD at which they

can possibly be rendered during the next N frames. Each cell is labeled and shaded by the

maximum level of detail any object incident upon it is stored in memory { darker shades of

gray represent higher levels of detail.

The shortest path search for range cells and lookahead objects terminates when either:

1) there are no cells remaining that can contain the observer during the next N frames, or

2) all available memory has been claimed (as long as all objects visible from the current

observer viewpoint are in the lookahead set). In either case, if the range cull algorithm and

lookahead cull algorithm are both any direction, the range set is guaranteed to contain the

cells that the observer can enter soonest (since cells are added to the range set in order of

minimum distance from the current observer position), and the lookahead set is guaranteed

to contain objects represented at LODs that can potentially be rendered for an observer

viewpoint within a range cell within the next N frames. If the algorithm terminates due

to condition (1), the set of lookahead objects is a provable superset of the objects that can

possibly be rendered during the next N frames, and �ts into available memory. Otherwise,

if the algorithm terminates due to condition (2), the set of lookahead objects is certainly

a superset of the objects visible from the current observer viewpoint, as well as a good

99

estimate of the objects that are most likely to be rendered in upcoming frames.

5.2.3 Cache Management

After computing the set of lookahead objects, we must determine which objects to load

into memory (i.e., the read set) and which to remove from memory (i.e., the release set)

during each frame of an interactive walkthrough. Conceptually, memory resident objects

are stored in a fully associative, write-back cache which is the size of available memory

(i.e., the size of the physical memory of the workstation minus the amount reserved for the

spatial subdivision and precomputed visibility information).

To determine which objects to load into memory during each frame, we �rst check

every object in the lookahead set to determine whether or not it is already represented

at the appropriate LODs in the memory resident cache. In principle, we should issue

read requests for every lookahead object that is not already in the memory resident cache.

However, since a new lookahead set is constructed during every frame, and lookahead sets

computed during later frames have more up-to-date predictive power, it is pointless (and

even counterproductive) to start loading all such lookahead objects into memory during

the current frame, since they may take several frame times to transfer from disk. Instead,

during each frame, we load into memory only as many objects as can be read from disk in a

single frame time. We construct a read set of objects to load from disk by adding lookahead

objects in order of LOD (i.e., lowest to highest) and when they can possibly become visible

to a range cell (i.e., the order they are added to the lookahead set). Construction of the read

set terminates when the cumulative size (in bytes) of the set exceeds the estimated capacity

of disk reads during a single frame time (maximum bytes read per frame), and all objects

visible to the observer in the current frame are in either the memory resident cache or the

read set. Read requests are issued for each object in the read set from an asynchronous

database input/output process.

As objects from the lookahead set are added to the memory resident cache, other objects

originally in the cache might need to be removed to free memory for the new ones. Our

object replacement algorithm closely resembles a least recently used (LRU) policy. Objects

in the memory resident cache are kept ordered by when they can possibly become visible

to a range cell. As objects are added to the lookahead set, they are marked and moved

to the head of the memory resident cache queue. Objects that are not in the lookahead

100

set maintain their relative ordering in the queue across successive frames. We construct a

release set of objects to remove each frame by choosing objects from the tail of the memory

resident cache queue (i.e., the ones that have least recently been a member of the lookahead

set) until enough memory is available for all objects in the read set. Objects in the release

set are removed from memory before objects in the read set are loaded so that memory is

never overburdened.

Figure 5.9 shows results of the cache management algorithm for a particular observer

path. Each cell is labeled by the number of frames since objects incident upon it were

included in the lookahead set. The shade of each cell indicates whether or not it contains

objects in the memory resident cache (stipple gray), read set (left-hatch), or release set

(right-hatch).

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

1

0 0 00

0

00

0

0

1

0 0

!!
!!

!!
!!

!!
!!

1

0

0

0 0

0

0 0

0

0

0 0

0

!!
!!

6 6

1

1

1
7

1
1

1 1

1

1

1
7

6

1

0

6

0

Start

End

CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCC
CCCCC
CCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCCCCCC

CCCC
CCCC
CCCC
CCCC
CCCC

CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC

44444
44444
44444
44444

44444
44444
44444
44444
44444

4444444444
4444444444
4444444444
4444444444
4444444444444444444
444444444
444444444

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

CCCCC
CCCCC

CCC
CCC
444
444

999999999
999999999
999999999
999999999

99999
99999
99999
99999
CCC
CCC

Figure 5.9: Cache management algorithm results. Each cell is labeled by the number of

frames since objects incident upon it were included in the lookahead set. Shading for each

cell indicates whether or not it contains objects in the memory resident cache (stipple gray),

read set (left-hatch), and resident set (right-hatch).

5.2.4 Fault Tolerance

During each frame of an interactive walkthrough, an asynchronous database input/output

process loads objects in the read set into memory from disk. Meanwhile, the walkthrough

system renders objects potentially visible from the current observer viewpoint using LODs

chosen by the detail elision algorithm. What happens if the database input/output process

is not fast enough to load an object into memory before it is selected for rendering? This

situation must be considered since there is no bound on the rate at which new data can

101

become visible to the observer. For instance, the observer can \run" through the building,

or turn several corners quickly to view portions of the model not previously visited. In these

cases, the rate at which data becomes visible to the observer may be faster than the rate

at which data can be loaded from disk.

In our �rst implementation, the walkthrough system stalled when it found that an

object to be rendered had not yet been loaded into memory at the appropriate LOD. It

simply waited until the appropriate LOD for an object was loaded into memory, and then

it continued rendering. Needless to say, this behavior was extremely bothersome. At times,

the system would stall for several seconds waiting for a particular object geometry that was

rendered for only a few frames.

In our current implementation, the system never waits for an object to be loaded into

memory. Instead, if a potentially visible object has not been loaded into memory at the

desired LOD, the rendering process simply skips that LOD and renders the object at the

next highest LOD that is resident in memory. If the object is not resident in memory at any

LOD, the object is skipped completely. Like detail elision during display, we trade image

quality for interactivity using this approach. When the asynchronous database input/output

process cannot keep up with the rest of the system, some objects may be rendered at lower

LODs. Or, if the database input/output process falls behind the rest of the system by

several frames, some potentially visible objects may not be rendered at all. Fortunately,

since the lookahead algorithm orders objects based on when they are likely to be visible to

the observer, and the cache manager loads object geometries in order from lowest LOD to

highest LOD, generally only the higher LODs for newly visible objects are skipped.

5.2.5 Results

To evaluate the e�ectiveness of the database system and predictive memory manage-

ment algorithms, we ran a series of tests using our building walkthrough application with

various combinations of the following parameters:

Lookahead Depth:

� N (1, 4, 8, 16, 32, 64): The memory management algorithm terminates its looka-

head search when it has found all objects potentially visible during the next N frames.

Lookahead Granularity:

102

� Object Granularity (Obj): Objects in the cell-to-object visibility of a range cell

are included in the lookahead set.

� Cell Granularity (Cell): All objects incident upon a cell in the cell-to-cell visibility

of a range cell are included in the lookahead set.

Lookahead Cull Algorithm:

� Any Direction (Any): All objects incident upon cells potentially visible from a

range cell can be included in the lookahead set.

� Observer Plane (Plane): Lookahead objects must be incident upon cells at least

partially in front of the observer.

� Observer Frustum (Frust): Lookahead objects must be incident upon cells at least

partially inside the current observer frustum.

Range Cull Algorithm:

� Any Direction (Any): All cells that can contain the observer in the next N frames

are included in the range set.

� Observer Plane (Plane): Range cells must be at least partially in front of the

observer.

� Observer Frustum (Frust): Range cells must be at least partially inside the current

observer frustum.

� Observer Direction (Dir): Range cells must be hit by a ray traced from the current

observer eye position along the current observer view direction.

In these tests, we used a
attened version of the Soda Hall model (i.e., without shared

object de�nitions) that requires 349.5MB of storage. Although this
attened model is some-

what arti�cial since every instance of a particular object type just stores a
attened copy of

the object de�nition's geometries (i.e., using a shared object hierarchy is far more practical

in this situation), we believe that the storage requirements are representative of models

containing radiosity information { i.e., each object instance may be colored and/or meshed

independently after radiosity, thereby requiring a separate description in the database.

103

Each test was performed on a Silicon Graphics VGX 320 workstation with two 33MHz

MIPS R3000 processors, 64MB of memory, a 16�s timer, and a local disk. 6.9MB of memory

was reserved to store the spatial subdivision cell structure; 9.4MB was reserved to store the

precomputed visibility stab lists; 4.6MB was reserved to store the segment, object, material,

and texture headers; and 12MB was reserved to store object geometries in the memory

resident cache. During each test, we used the (CTO,ETC,ETO) visibility determination

algorithm described in Section 4.1, and the Optimization detail elision algorithm described

in Section 4.2 with a target frame rate of ten frames per second combined with a static

detail elision size threshold of 4096 pixels/face. The application was con�gured as a four-

process pipeline with one process used for visibility determination and detail elision, a

second process for rendering, a third process for memory management computations, and

a fourth process for database input/output operations.

We collected statistics as the observer navigated along the path through the �fth
oor

of Soda Hall shown in Figure 5.10. This path was chosen because it spans a large part of

the model and visits the same portion of the model more than once, and thus tests both

the lookahead and caching features of our memory management algorithm.

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!!!

!!
!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!

!!

!!

!!

!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

Start

End

B

A

C

Figure 5.10: Test path through the �fth
oor of Soda Hall.

For each frame along the test walkthrough path, we measured the numbers of range

cells and lookahead objects, the compute time (i.e., the time required to perform memory

management computations), the read time (i.e., the time required to load objects into

memory from disk), and the frame time (i.e., the total time between successive frames) {

these statistics give quantitative insights into the behavior of the pre-fetch algorithm. We

also measured the number of LODs skipped by the rendering process due to failure of the

104

system to load the appropriate LOD into memory in time before it is selected for rendering

{ this statistic gives a qualitative insight into how well the pre-fetch algorithm is performing

its job.

Lookahead Depth

We �rst tested the e�ect of lookahead depth (i.e., the number of frames the pre-fetch

algorithm looks in advance to load objects into memory) on the performance of our memory

management algorithms. Results of tests using a variety of lookahead depths are shown in

Tables 5.1 and 5.2. During these tests, object lookahead granularity was used, and the

range and lookahead sets were not constrained to any particular direction.

Using the larger lookahead depths, the pre-fetch algorithm found a larger number of

range cells, which could see a larger number of lookahead objects. As a result, the system

was able to load objects into memory further in advance of when they potentially could

become visible to the observer. This behavior is evidenced by the plot in Figure 5.11 which

shows the amount of data required to store geometries of objects in the lookahead set during

each frame along a portion of the test walkthrough path for a variety of lookahead depths.

The lowest curve (labeled \0 Frames") represents the size (in MB) of the set of objects

determined to be potentially visible from the actual observer viewpoint using the (CTO,

ETC, None) method described in Section 4.1 { it provides a base-line indication of the

complexity of the scene potentially visible to the observer viewpoint during each frame.

Curves representing the size of the lookahead set using larger lookahead depths rise earlier

before frames with large potentially visible sets.

Mean and maximum compute and read times were longer for larger lookahead depth

because the pre-fetch algorithm traversed more nodes of the cell adjacency graph during

the shortest path search and added more objects to the lookahead set. However, memory

management computations and database input/output operations were executed in separate

processes, asynchonous from the rest of the walkthrough system. The walkthrough system

did not wait for the database input/output process to complete loading lookahead objects

during each frame. Instead, it continued to render frames while the lookahead set was

computed and objects were loaded from the database asynchronously. The walkthrough

system did not wait even if an object to be rendered had not yet been loaded into memory

{ it just skipped to the highest LOD that was memory resident. Therefore, increased

105

Look Range Cells Look Objects LODs Skipped
Depth Mean Max Mean Max Mean Max

1 1.11 3 439 955 1.20 19
4 1.44 5 464 955 1.07 19
8 2.20 8 502 1,024 0.90 19
16 4.64 15 588 1,037 0.79 19
32 11.24 35 1,000 3,345 1.42 19
64 22.95 63 2,012 3,851 2.29 29

Table 5.1: Mean and maximum set statistics collected during tests with various lookahead

depths.

Look Compute Time (s) Read Time (s) Frame Time (s)
Depth Mean Max Mean Max Mean Max

1 0.001 0.056 0.034 0.483 0.066 0.260
4 0.001 0.062 0.035 0.518 0.067 0.214
8 0.002 0.068 0.040 0.536 0.067 0.208
16 0.002 0.084 0.040 0.544 0.068 0.210
32 0.004 0.175 0.068 0.475 0.070 0.221
64 0.010 0.137 0.105 0.609 0.074 0.258

Table 5.2: Mean and maximum timing statistics collected during tests with various looka-

head depths.

106

0

5

10

15

20

25

200 300 400 500 600 700 800

L
o
o
k
a
h
e
a
d

S
e
t

S
i
z
e

(
M
B
)

Frames

0 Frames
4 Frames

16 Frames
32 Frames

Figure 5.11: Size of the lookahead set (in MB) for various lookahead depths.

compute and read times did not result in an equal increase in the e�ective frame time. In

this test, the frame time increased slightly with larger lookahead depths, most likely due to

the fact that only two physical processors were available to run four concurrent processes.

The mean number of LODs skipped during rendering of each frame did not decrease

monotonically as the lookahead depth increased. The reason for this behavior is that there

was a point at which looking too far in advance was detrimental. Mean read time increased

with larger lookahead depths, and lookahead objects claimed a larger percentage of the

memory resident cache. As a result, precious read time and memory resources were spent

loading and storing objects that were determined to be potentially visible many frames in

advance, but actually never were rendered. Also, unnecessarily high LODs were loaded for

some objects since the observer range included viewpoints closer to the objects. Evidence

of these e�ects is shown in Figure 5.11 { the curve representing the size of the lookahead

set while looking 32 frames in advance (labeled \32 Frames") has a peak between frames

500 and 600, even though the curve representing the size of the objects potentially visible

from the actual observer viewpoint (labeled \0 Frames") does not rise during or after those

frames. In these tests, looking 16 frames in advance caused the fewest LODs to be skipped

(0.79 LODs per frame on average).

107

Lookahead Granularity

We also tested the e�ects of di�erent lookahead granularities on the performance of our

predictive memory management algorithms. Results of tests using object and cell lookahead

granularities with a variety of lookahead depths are shown in Tables 5.3 and 5.4. During

these tests, the range and lookahead sets were not constrained to any particular direction.

The di�erence between object and cell lookahead granularities pertains to the grouping

of elements in the lookahead, read, and release sets. If object granularity is used, objects

are added and removed from the sets independently { e.g., appropriate LODs for objects

are added to the lookahead set when the object becomes visible from a range cell (i.e., in

the cell-to-object visibility of the range cell) and a cell containing the object satis�es the

lookahead cull. In contrast, using cell granularity, LODs for all objects incident upon a

cell are added and removed from the sets as a unit { e.g., appropriate LODs for all objects

incident upon a cell are added to the lookahead set when the cell becomes visible from

a range cell and satis�es the lookahead cull. The motivation behind the cell granularity

approach is that a few very large read operations may be far quicker than many small ones

for some storage devices. For instance, our walkthrough system may eventually connect to a

RAID storage system that supports very high throughput and long latency read operations

for large chunks of data [16, 17, 35, 42]. For such storage devices, it may be advantageous

to group read operations into large units. Unfortunately, there is no support for reading

more than one object description in a single read operation in the current implementation

of our system.

As expected, we found that the mean and maximum number of lookahead objects and

read times were signi�cantly greater using cell granularity than using object granularity.

This is because all objects incident upon a cell were loaded from disk into memory together,

even though many of them were not likely to become visible to the observer. These extra

objects (i.e., the ones not in the cell-to-object visibility of any range cell) were added to the

lookahead set only because they were incident upon a cell containing some other object that

was likely to become visible, and were often read and released without ever being rendered.

Using cell granularity, read times for some sequences of frames were so long (i.e., more than

2 seconds per frame) that the entire input queue for the database input/output process

became full (64 frames in these tests), at which point the rest of the walkthrough system

waited for the database input/output process to �nish execution of its read operations before

108

Look Look Range Cells Look Objects LODs Skipped
Gran Depth Mean Max Mean Max Mean Max

Obj 1 1.11 3 439 955 1.20 19
4 1.44 5 464 955 1.07 19
8 2.20 8 502 1,024 0.90 19
16 4.64 15 588 1,037 0.79 19
32 11.24 35 1,000 3,345 1.42 19
64 22.95 63 2,012 3,851 2.29 29

Cell 1 1.11 3 764 1,629 0.96 19
4 1.43 5 833 1,830 0.84 19
8 2.08 8 840 1,830 2.15 33
16 4.13 15 949 1,854 1.90 34
32 8.09 26 1,488 4,950 1.94 33
64 11.90 44 1,941 5,172 3.97 76

Table 5.3: Mean and maximum set statistics collected during tests with various lookahead

granularities.

Look Look Compute Time (s) Read Time (s) Frame Time (s)
Gran Depth Mean Max Mean Max Mean Max

Obj 1 0.001 0.056 0.034 0.483 0.066 0.260
4 0.001 0.062 0.035 0.518 0.067 0.214
8 0.002 0.068 0.040 0.536 0.067 0.208
16 0.002 0.084 0.040 0.544 0.068 0.210
32 0.004 0.175 0.068 0.475 0.070 0.221
64 0.010 0.137 0.105 0.609 0.074 0.258

Cell 1 0.001 0.052 0.063 1.559 0.074 0.473
4 0.001 0.029 0.063 1.507 0.075 0.780
8 0.001 0.031 0.082 2.373 0.089 2.317
16 0.002 0.026 0.112 2.089 0.100 1.605
32 0.004 0.905 0.152 2.395 0.115 1.654
64 0.011 1.332 0.187 2.301 0.134 2.476

Table 5.4: Mean and maximum timing statistics collected during tests with various looka-

head granularities.

109

another frame was added to its input queue. These waiting periods are re
ected in long

frame times following long read times. Figure 5.12 shows a plot of read times and frame

times measured during each frame along a portion of the test path using cell granularity

while looking ahead 16 frames in advance. Sharp peaks in the read time curve occur during

frames in which a large amount of data was read into memory all at once { peaks in the

frame time curve often appear exactly 64 frames later. See Chapter 6 for more information

on process synchronization in the walkthrough system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 510 520 530 540 550 560 570 580 590

T
i
m
e

(
s
)

Frames

Read Time
Frame Time

Figure 5.12: Read times and frame times using cell granularity looking 16 frames in advance.

The mean number of LODs skipped using cell granularity was less than using object

granularity for small lookahead depths. Figure 5.13 shows a plot of the number of levels

skipped during each frame along a portion of the walkthrough path using cell and object

granularities while looking only 1 frame in advance. During this sequence of frames, the

number of levels skipped was small in both cases during frames in which the observer stayed

within the same cell, but was less for cell granularity during frames in which the observer

crossed a cell boundary and moved into a new cell (marked by tick marks on the "Frames"

axis). Fewer LODs were skipped for very small lookahead depths using cell granularity

because there is a large amount of coherence in the cell-to-cell visibilities of neighboring

cells.

On the other hand, the mean number of LODs skipped using cell granularity was greater

110

than using object granularity for large lookahead depths because the sizes of the lookahead

and read sets increased dramatically with larger lookahead depths using cell granularity.

Since there was no advantage to reading more than one object description at once in our

current implementation, precious resources, such as disk i/o bandwidth and space in the

memory resident cache, were simply wasted using cell granularity. This behavior caused

descriptions for objects that did become visible to the observer eventually to be removed

from the memory resident cache, or to not be read into memory in time for display by the

rendering process. In general, object granularity provided �ner control over memory and

disk-to-memory bandwidth utilization.

0

1

2

3

4

0 | | | | | |300

L
O
D
s

S
k
i
p
p
e
d

Frames

Cell
Object

Figure 5.13: Number of LODs skipped using cell granularity and object granularity looking

1 frame in advance. Frames in which the observer crosses a cell boundary are marked by a

dash on the \Frames" axis.

Range and Lookahead Culls

We also measured the e�ect of using the observer's current direction of movement to

predict the range of future observer viewpoints and future observer visibility. Results of

tests using di�erent combinations of range cull and lookahead cull methods with object

lookahead granularity are shown in Tables 5.5-5.10.

We found results obtained using the observer's current direction of movement to predict

111

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 1.11 3 1.11 3 1.11 3
4 1.44 5 1.44 5 1.44 5
8 2.20 8 2.20 8 2.20 8
16 4.64 15 4.64 15 4.65 15
32 11.24 35 11.46 35 11.78 39
64 22.95 63 23.55 63 27.61 71

Plane 1 1.10 3 1.10 3 1.10 3
4 1.35 4 1.35 4 1.35 4
8 1.86 8 1.86 8 1.86 8
16 3.43 13 3.44 13 3.44 13
32 7.16 26 7.22 28 7.24 28
64 13.48 46 15.01 46 17.61 58

Frust 1 1.10 3 1.10 3 1.11 3
4 1.34 4 1.34 4 1.34 4
8 1.72 6 1.72 6 1.72 6
16 2.71 10 2.71 10 2.71 10
32 5.23 19 5.24 19 5.24 19
64 10.26 33 10.92 33 11.55 35

Dir 1 1.05 3 1.05 3 1.06 3
4 1.22 4 1.22 4 1.22 4
8 1.38 4 1.38 4 1.38 4
16 1.84 7 1.84 7 1.84 7
32 2.53 8 2.53 8 2.53 8
64 3.27 14 3.31 14 3.65 14

Table 5.5: Mean and maximum numbers of range cells during tests with various combina-

tions of range and lookahead cull methods.

112

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 439 955 323 943 238 577
4 464 955 357 946 269 683
8 502 1,024 402 1,020 305 746
16 588 1,037 506 1,031 379 878
32 1,000 3,345 895 3,356 721 3,040
64 2,012 3,851 1,876 3,815 1,536 4,444

Plane 1 438 955 320 943 237 577
4 457 955 348 946 263 683
8 478 973 377 971 287 700
16 526 1,037 445 1,031 335 773
32 880 3,194 684 2,217 538 1,961
64 1,201 3,296 1,319 4,372 1,005 3,104

Frust 1 439 955 323 943 237 577
4 459 955 352 946 264 683
8 482 1,024 381 1,020 291 746
16 523 1,024 446 1,020 329 750
32 787 3,194 632 2,121 481 1,727
64 1,064 3,199 897 3,394 753 2,439

Dir 1 434 955 317 943 234 577
4 447 955 338 946 256 671
8 460 955 358 946 273 683
16 483 957 392 955 298 705
32 602 3,194 465 946 357 1,060
64 748 3,194 593 1,972 423 1,447

Table 5.6: Mean and maximum numbers of lookahead objects during tests with various

combinations of range and lookahead cull methods.

113

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 1.20 19 1.12 19 0.80 23
4 1.07 19 1.05 19 1.48 58
8 0.90 19 0.96 19 1.69 52
16 0.79 19 0.82 19 1.11 24
32 1.42 19 1.31 19 0.93 19
64 2.29 29 2.77 29 4.70 60

Plane 1 1.20 19 1.10 19 0.81 23
4 1.07 19 1.05 19 1.48 60
8 0.90 19 0.96 19 1.69 51
16 0.78 19 0.82 19 1.08 24
32 1.32 19 1.32 19 1.33 19
64 2.60 19 2.96 28 2.08 22

Frust 1 1.20 19 1.12 19 0.81 23
4 1.05 19 1.04 19 1.45 57
8 0.95 19 0.95 19 1.54 32
16 0.76 19 0.82 19 1.12 24
32 1.04 19 1.01 19 1.07 19
64 1.73 17 2.51 19 1.81 21

Dir 1 1.19 19 1.12 19 0.79 23
4 1.05 19 1.03 19 1.43 57
8 0.96 19 0.98 19 1.52 32
16 0.87 19 0.89 19 1.07 22
32 0.77 19 0.80 19 1.94 21
64 0.92 18 0.92 19 1.01 19

Table 5.7: Mean and maximum numbers of LODs skipped during tests with various com-

binations of range and lookahead cull methods.

114

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 0.001 0.056 0.002 0.047 0.002 0.044
4 0.001 0.062 0.002 0.047 0.002 0.035
8 0.002 0.068 0.003 0.053 0.003 0.041
16 0.002 0.084 0.004 0.065 0.004 0.056
32 0.004 0.175 0.008 0.184 0.009 0.087
64 0.010 0.137 0.017 0.120 0.024 0.113

Plane 1 0.002 0.061 0.002 0.045 0.002 0.032
4 0.002 0.058 0.002 0.057 0.003 0.036
8 0.002 0.064 0.003 0.054 0.003 0.042
16 0.002 0.085 0.004 0.067 0.004 0.067
32 0.004 0.151 0.007 0.083 0.007 0.075
64 0.008 0.242 0.015 0.227 0.020 0.177

Frust 1 0.001 0.064 0.002 0.045 0.002 0.032
4 0.001 0.054 0.002 0.047 0.002 0.035
8 0.002 0.061 0.003 0.056 0.003 0.042
16 0.002 0.085 0.003 0.068 0.003 0.051
32 0.004 0.136 0.005 0.103 0.006 0.068
64 0.006 0.235 0.011 0.168 0.013 0.119

Dir 1 0.001 0.058 0.002 0.048 0.002 0.032
4 0.001 0.060 0.002 0.049 0.002 0.033
8 0.001 0.048 0.002 0.045 0.003 0.046
16 0.002 0.062 0.003 0.054 0.003 0.049
32 0.002 0.134 0.004 0.081 0.004 0.076
64 0.003 0.211 0.005 0.118 0.006 0.092

Table 5.8: Mean and maximum compute times during tests with various combinations of

range and lookahead cull methods. All times are in seconds.

115

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 0.034 0.483 0.034 0.443 0.032 0.418
4 0.035 0.518 0.036 0.518 0.033 0.447
8 0.040 0.536 0.042 0.516 0.036 0.594
16 0.040 0.544 0.041 0.542 0.040 0.567
32 0.068 0.475 0.070 0.488 0.054 0.459
64 0.105 0.609 0.104 0.592 0.092 0.501

Plane 1 0.035 0.624 0.035 0.664 0.032 0.460
4 0.036 0.401 0.036 0.677 0.033 0.523
8 0.040 0.471 0.042 0.735 0.035 0.614
16 0.042 0.503 0.043 0.543 0.041 0.532
32 0.065 0.486 0.070 0.466 0.051 0.508
64 0.097 0.606 0.096 0.535 0.084 0.564

Frust 1 0.035 0.411 0.034 0.499 0.032 0.520
4 0.034 0.461 0.037 0.490 0.034 0.478
8 0.040 0.524 0.041 0.619 0.039 0.473
16 0.041 0.576 0.044 0.808 0.040 0.624
32 0.057 0.417 0.055 0.445 0.044 0.428
64 0.083 0.508 0.087 0.432 0.063 0.573

Dir 1 0.034 0.396 0.034 0.465 0.032 0.463
4 0.036 0.580 0.034 0.388 0.033 0.559
8 0.037 0.406 0.035 0.431 0.034 0.463
16 0.038 0.598 0.038 0.481 0.037 0.536
32 0.054 0.415 0.049 0.443 0.049 0.450
64 0.056 0.532 0.050 0.526 0.044 0.504

Table 5.9: Mean and maximum read times during tests with various combinations of range

and lookahead cull methods. All times are in seconds.

116

Look Cull
Range Look Any Plane Frustum
Cull Depth Mean Max Mean Max Mean Max

Any 1 0.066 0.260 0.067 0.220 0.068 0.242
4 0.067 0.214 0.067 0.215 0.068 0.231
8 0.067 0.208 0.068 0.208 0.071 0.223
16 0.068 0.210 0.067 0.208 0.068 0.216
32 0.070 0.221 0.071 0.213 0.071 0.216
64 0.074 0.258 0.076 0.280 0.077 0.354

Plane 1 0.067 0.214 0.069 0.269 0.069 0.223
4 0.067 0.218 0.068 0.214 0.069 0.219
8 0.069 0.228 0.067 0.233 0.070 0.238
16 0.068 0.209 0.068 0.214 0.071 0.235
32 0.070 0.216 0.071 0.213 0.072 0.214
64 0.077 0.285 0.075 0.258 0.076 0.220

Frust 1 0.068 0.243 0.068 0.216 0.070 0.232
4 0.068 0.216 0.069 0.217 0.070 0.222
8 0.069 0.221 0.069 0.212 0.071 0.212
16 0.069 0.222 0.071 0.219 0.071 0.218
32 0.072 0.222 0.073 0.226 0.071 0.210
64 0.074 0.225 0.080 0.369 0.074 0.222

Dir 1 0.070 0.225 0.069 0.216 0.069 0.227
4 0.068 0.296 0.068 0.234 0.070 0.224
8 0.069 0.227 0.068 0.226 0.069 0.220
16 0.069 0.233 0.069 0.216 0.070 0.300
32 0.071 0.214 0.072 0.216 0.071 0.305
64 0.071 0.217 0.071 0.215 0.072 0.248

Table 5.10: Mean and maximum frame times during tests with various combinations of

range and lookahead cull methods. All times are in seconds.

117

future observer range cells and lookahead objects to be mixed. On the one hand, directing

the shortest path search to consider only range cells and lookahead objects in front of

the observer caused the pre-fetch algorithm to �nd fewer lookahead objects during each

frame. Less cache memory was required to store the lookahead objects, and less read time

was required to load them. Therefore, the algorithm could look further in advance while

using the same amount of cache memory and disk bandwidth resources. Accordingly, the

mean and maximum numbers of LODs skipped were less using more constrained range and

lookahead cull methods for large lookahead depths.

On the other hand, for small lookahead depths, the mean and maximum numbers

of LODs skipped were greater using more constrained range and lookahead cull methods.

This di�erence was isolated to a few frames along the test walkthrough path { i.e., the ones

after the observer switches direction of movement suddenly. For instance, at the observer

viewpoint marked `B' in Figure 5.10, 57 LODs were skipped using the observer direction

range cull method and observer frustum lookahead cull method with a lookahead depth of

4 frames, while only 19 LODs were skipped using the any direction method for both range

and lookahead culls. As we expected, the more constrained cull methods did not predict

future observer viewpoints adequately at times when there is a sudden change of direction.

Clearly, the best combination of range and lookahead cull methods depends on the

path taken by the observer. Since observer's tend to turn more quickly than they move,

the default for our system is to use the most constrained range cull method (i.e., observer

direction) and the least constrained lookahead cull method (i.e., any direction). Other

factors, such as the size of the memory resident cache and the speed at which objects can

be loaded from disk into memory, certainly may a�ect these choices as well.

5.2.6 Discussion

In order to compute a set of objects to store in memory during each frame of an

interactive walkthrough, we predict a range of observer viewpoints during the upcoming N

future frames (i.e., the observer range), and then determine a superset of objects potentially

visible from that observer range. Unfortunately, we currently are not able to perform an

exact observer range visibility determination (e.g., range-to-object visibility) in real-time

due to the high computational complexity of our algorithm for computing visibility from a

�nite, non-zero volume of space. For instance, computing the region of space visible from a

118

box requires execution of an O(n) algorithm for each portal encountered through a sequence

of N portals [55] (compared to O(1) for each portal encountered during computation of

visibility from a single point). Instead, we over-estimate the range-to-object visibility set

using the precomputed cell-to-object visibility information of the cells containing some

viewpoint in the observer range (i.e., the range cells). Using this technique, expensive

computations for determining visibility from a �nite, non-zero volume of space are performed

only o�-line, during the precomputation phase.

As described in Section 4.1.4, the amount of data in the cell-to-object visibility for an

average cell can depend on the granularity of the spatial subdivision. During our tests, we

found that the objects in the lookahead set for a single range cell can require as much as

23MB of storage (e.g., large cells in the exterior space around the building). Therefore, the

visibility of the range cells can be quite a large over-estimate of the true visibility of the

observer range, especially if the spatial subdivision granularity is rather coarse.

Perhaps it would be better to perform an approximate, but e�cient, real-time visiblity

determination for the observer range to determine a lookahead set rather than using the

cumulative visibility of the range cells. Such an algorithm might cast visibility beams from

a bounding box around the observer range through the portals of the spatial subdivision to

determine a set of potentially visible objects (see Figure 5.14), checking the feasibility of a

sight-line for portal sequences only up to a certain length, or only through the last portal of

the portal sequence. Further experimentation is required to determine exactly which types

of observer range visibility determination computations are possible in real-time.

!
!

!
!

!
!

!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!!

!
!
!!

!
!
!

!!
!!

!!
!!

!!
!!
!!
!!

!!!
!!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

@@
@@

&&&
&&&
&&&
&&&

CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCC

Bounding
Box for

Observer
Range

Visible
Region

Figure 5.14: Visibility from a box bounding the observer range.

119

Chapter 6

Concurrent Processing

In this chapter, we study the e�ects of concurrent processing in an interactive visualiza-

tion application. The motivation behind multiprocessing is obvious: faster frame rates via

concurrent processing. Overlapping computations is particularly important in our building

walkthrough system, since the display and memory management algorithms described in

Chapters 4 and 5 perform a signi�cant amount of computation.

In order to add concurrent processing to our building walkthrough system, we must

decide how to partition the system into concurrent processes, and choose a communication

protocol for process synchronization. Unfortunately, our choices are constrained by the

limitations of the Silicon Graphics workstations used by our system. Although Silicon

Graphics workstations may have many general purpose processors, there is a limitation

that the graphics engine may only be accessed by one process at once. Accordingly, we

use a single rendering process, which is responsible for all communication with the graphics

engine.

A further constraint is due to data dependencies in certain computational steps of

our building walkthrough system. The Rendering step relies upon information computed

during the Detail Elision step, which, in turn, relies upon information computed during the

Visibility Determination step. These constraints imply a sequential
ow of data through

the system, making a coarse-grained pipeline the obvious parallel system architecture.

120

6.1 Pipelining

We added concurrency to the building walkthrough system by mapping the functional

operations of the walkthrough phase (see Figure 3.24) into separate stages of a pipeline.

Each functional operation (except Cache Management) can run asynchronously in a separate

thread on a separate CPU. A thread is spawned for each independent pipeline stage using

the system call sproc, which creates a lightweight process in the same address space as the

original heavyweight process. All concurrent threads access the same copy of the building

model stored in shared memory. The threads are locked onto separate physical CPUs using

the system call sysmp.

Each stage of the pipeline is implemented using an input queue and a computational

unit, as shown in Figure 6.1. The input queue, which stores frames waiting to be processed

by the computational unit, is synchronized by full and empty counting semaphores. The

full semaphore is initialized to the depth of the queue, and is decremented each time a

frame is added to the queue and incremented each time a frame is removed from the queue.

The empty semaphore does the opposite { it is initialized to zero, incremented each time a

frame is added to the queue and decremented each time a frame is removed from the queue.

These semaphores control asynchronous access to the queue. The caller (i.e., the previous

stage in the pipeline) must wait if the queue is full (i.e., the full semaphore is zero), and the

computational unit must wait if the queue is empty (i.e., the empty semaphore is zero).

Full Empty
Semaphores

Computation

Queue synch’ed
by semaphores

Figure 6.1: Pipeline stage implementation.

The pipeline is implemented in such a way that any grouping of functional operations

into pipeline stages can be tested. In our notation for stage partitioning, each functional

121

operation is represented by a single letter: \U" = User Interface, \V" = Visibility Deter-

mination, \D" = Detail Elision, \R" = Rendering Operations, \M" = Lookahead Deter-

mination and Cache Management, and \I" = Database Input/Output Operations. Map-

pings of functional operations into pipeline stages are represented by groupings of these

letters in parentheses. Input queue depths are represented by numbers proceeding the

letters (no number indicates a queue depth of one frame). For instance, each functional

operation might be mapped to a separate pipeline stage with a one frame input queue

(i.e., (U)(V)(D)(R)(M)(I)). Alternatively, the User Interface, Visibility Determination,

and Detail Elision operations might be grouped into one stage, while the Rendering, Mem-

ory Management, and Database Input/Output operations execute in separate stages with

queue depths 1, 12 and 64, respectively (i.e., (UVD)(R)(12M)(64I)). Our application is

implemented such that the grouping of functional operations into pipeline stages can be

controlled by the user, which allows us to experiment with di�erent pipeline partitions.

6.2 Results

To test the performance of various pipeline architectures in our building walkthrough

system, we ran a set of tests on a Silicon Graphics GTX workstation with four 33MHz

MIPS R3000 processors and 32MB of shared memory. Note that this machine is di�erent

than the one used in all other tests described in this thesis { it has four processors and a

slower graphics engine.

To simplify the characterization of performance during our tests, we experimented

with pipeline parameters for only the lower-fork of the double pipeline shown in Figure

3.24. The lower-fork performs the display management operations to generate images on

the screen of the graphics workstation during each frame (i.e., Visibility Determination,

Detail Elision, and Rendering). Therefore, the performance of the lower-fork dictates the

apparent frame times and response times of the system. In order to eliminate the e�ects

of memory management in these tests, we used a model of Soda Hall with shared object

de�nitions which �t entirely in memory.

In each test, we gathered statistics as the simulated observer \walked" along the path

shown in Figure 6.2. This path was chosen due to its cyclical nature, which allows cer-

tain performance characteristics to be more easily identi�ed. The path alternates between

relatively restricted views encountered inside o�ces, and wide-open views in the hallway.

122

Inside an o�ce, the times required by the Visibility Determination and Detail Elision com-

putations are small relative to the time required for Rendering. Once we enter the hallway,

the time required for Visibility Determination becomes more signi�cant and sometimes sur-

passes Rendering time. Visibility Determination becomes less signi�cant as the observer

progresses further down the hallway, since there are fewer cells and objects in the observer's

view.

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!
!
!

!!
!!

!!
!!!! !!

!!
!!

!!
!!

!
!

!
!

!
!
!
!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!
!

!
!
!!
!!

!
!
!!
!!

!!
!!
!!
!!

Start End

Figure 6.2: Test path through the seventh
oor of Soda Hall.

During each frame of each test, we measured the time required for computation during

each functional operation, the overall frame time (i.e., the inverse of frame rate), and the

response time (i.e., the real-time expired between the time an observer viewpoint is speci�ed

by the user and the time the corresponding image appears on the workstation screen).

Timing statistics were gathered using a 16�s timer.

Pipeline Partition

We �rst experimented with di�erent groupings of functional operations into pipeline

stages using a one frame input queue for each stage in each test. For the four functional op-

erations of display management, there are eight possible groupings of functional operations

into pipeline stages. There is one possible one-stage pipeline (all in the same stage), three

possible two-stage pipelines, three possible three-stage pipelines, and one possible four-stage

pipeline. Mean and maximum compute time, frame time, and response time statistics for

each of these eight possible partitions are summarized in Tables 6.1 and 6.2. Plots of the

frame time and response time measured in each frame along a portion of the walkthrough

path for representative 1-, 2-, 3-, and 4-stage pipelines are shown in Figures 6.3 and 6.4,

123

respectively.

This experiment con�rmed many expected results. First, the mean throughputs (1/frame

time) of all concurrent pipeline partitions were higher than the throughput of the sequential

pipeline partition (i.e., the mean frame time for (UVDR) was the highest). This result can

be explained by noting that the frame time in a concurrent pipeline (i.e., stages on separate

processors) typically equals the time required for the slowest stage, whereas the frame time

in a sequential pipeline (i.e., all stages on the same processor) equals the sum of the times

for its stages. This behavior can be seen in Figure 6.5, which shows the time required for

each stage of the pipeline at each frame along the test walkthrough path. The overall frame

time was almost exactly equal to the time required for the slowest stage in each frame along

the path. The speed-up due to concurrency was much less than four times for a 4-way

pipeline because the User Interface and Detail Elision operations generally required far less

time than the Visibility Determination and Rendering operations.

Second, the mean response times (time from start of user interaction to completion

of drawing) of all concurrent pipeline partitions were higher than the sequential pipeline

partition (i.e., the response time for (UVDR) is the lowest). This result can be explained by

noting that the pipeline stages contain queues that can bu�er frames inside the pipeline.

As a result, in cases where the last stage is the limiting step, frames get queued up inside

the pipe, adding to the latency of the system (i.e., longer response time).

However, this experiment generated an interesting and unexpected result. One would

expect that increasing the number of pipeline stages would necessarily increase overall

pipeline throughput. But, examining the \Frame Time" column of Table 6.2, we found that

overall pipeline throughput was highest in the (U)(VD)(R) three-stage pipeline partition,

rather than the (U)(V)(D)(R) four-stage partition. Furthermore, it seems that throughput

was not correlated with the number of pipeline stages at all! Instead, the throughputs

of the eight pipeline partitions appear to be correlated with the grouping of stages in

each partition. For instance, partitions with the Visibility Determination, Detail Elision,

and Rendering operations in the same pipeline stage (i.e., (UVDR) and (U)(VDR)) were

the slowest (0.16 seconds); partitions with the Visibility Determination and Detail Elision

operations in di�erent stages (i.e., (UV)(DR), (UV)(D)(R), (U)(V)(DR), and (U)(V)(D)(R))

were just a little faster (0.14 seconds); and partitions with the Visibility Determination and

Detail Elision operations in the same stage, and the Rendering operation in a separate stage

(i.e., (UVD)(R) and (U)(VD)(R)) were the fastest (0.12 seconds).

124

Pipeline Visibility Detail Elision Rendering
Stages Partition Mean Max Mean Max Mean Max

1 (UVDR) 0.069 0.384 0.004 0.012 0.083 0.142

2 (U)(VDR) 0.075 0.410 0.005 0.015 0.083 0.137
2 (UV)(DR) 0.125 0.493 0.005 0.013 0.083 0.160
2 (UVD)(R) 0.094 0.507 0.005 0.049 0.083 0.159

3 (UV)(D)(R) 0.127 0.502 0.005 0.069 0.083 0.145
3 (U)(V)(DR) 0.123 0.494 0.005 0.016 0.083 0.141
3 (U)(VD)(R) 0.125 0.683 0.005 0.048 0.084 0.161

4 (U)(V)(D)(R) 0.125 0.508 0.005 0.038 0.083 0.155

Table 6.1: Mean and maximum compute time statistics collected during tests with various

pipeline stage partitions.

Pipeline Frame Time Response Time
Stages Partition Mean Max Mean Max

1 (UVDR) 0.162 0.516 0.161 0.515

2 (U)(VDR) 0.164 0.541 0.330 1.081
2 (UV)(DR) 0.148 0.494 0.243 0.641
2 (UVD)(R) 0.121 0.517 0.211 0.641

3 (UV)(D)(R) 0.148 0.504 0.269 0.644
3 (U)(V)(DR) 0.145 0.489 0.390 1.124
3 (U)(VD)(R) 0.118 0.645 0.363 1.126

4 (U)(V)(D)(R) 0.144 0.503 0.419 1.135

Table 6.2: Mean and maximum frame time and response time statistics collected during

tests with various pipeline stage partitions.

125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 150 200 250 300

F
r
a
m
e

T
i
m
e

(
s
)

Frames

(UVDR)
(UVD)(R)

(U)(VD)(R)
(U)(V)(D)(R)

Figure 6.3: Frame time during each frame along a portion of the test walkthrough path for

representative 1-, 2-, 3-, and 4-stage pipelines.

0

0.2

0.4

0.6

0.8

1

1.2

100 150 200 250 300

R
e
s
p
o
n
s
e

T
i
m
e

(
s
)

Frames

(UVDR)
(UVD)(R)

(U)(VD)(R)
(U)(V)(D)(R)

Figure 6.4: Response time during each frame along a portion of the test walkthrough path

for representative 1-, 2-, 3-, and 4-stage pipelines.

126

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900

T
i
m
e

(
s
)

Frames

Detail Time
Rendering Time

Visibility Time
Frame Time

Figure 6.5: Throughput is determined by the slowest stage in a concurrent pipeline.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900

V
i
s
i
b
i
l
i
t
y

T
i
m
e

(
s
)

Frames

(UVDR)
(U)(V)(D)(R)

Figure 6.6: Time for the Visibility Determination operation is larger when other operations

are executing on other processors.

127

This result can be explained by noting that the execution time of each stage was not

independent of the pipeline partition. That is, within a given operation, the same sequence

of instructions took a di�erent amount of time depending on how many other stages were

executing simultaneously, even though each stage was running on a separate physical CPU.

For instance, Figure 6.6 shows the time required for the Visibility Determination operation

in two cases: 1) when all operations were grouped in the same stage (i.e., (UVDR)), and 2)

when each operation was in a separate stage executing simultaneously (i.e., (U)(V)(D)(R)).

The time to execute the visibility operation (i.e., the same sequence of instructions) was

di�erent in these two cases. This e�ect was most likely due to contention between concurrent

processes accessing shared resources (e.g., cache
ushes and shared memory contention).

Further work is necessary to better understand the cause of this e�ect.

Queue Depth

We also measured the performance of the display management pipeline using various

queue depths for the Rendering stage of the (UVD)(R) two-stage pipeline. We used this

2-stage pipeline partition, with only the Rendering operation separated into a separate

process, to keep the test as simple as possible. Mean and maximum compute time, frame

time, and response time statistics for several queue depths are summarized in Tables 6.3

and 6.4. More detailed statistics describing the frame time and response time for each frame

along the walkthrough path are shown in Figures 6.7 and 6.8, respectively.

This experiment also veri�ed many expected results. Most signi�cantly, the mean

response time was larger as the depth of the Rendering queue increased. This can be

explained by noting that the queue bu�ered frames whenever the Rendering operation was

the slowest stage. This queueing e�ect can be seen clearly in the regions of large positive

slope in the response time curves of Figure 6.8. During the down slopes in these curves,

the Visibility Determination operation was the rate limiting step, so the queue was able to

drain out.

There was also an unexpected result in this experiment. One would expect that in-

creasing the queue depth for the draw stage would increase overall throughput. This is

expected since the slowest stage in the pipeline varied alternately between the Visibility

Determination and Rendering operations for this test walkthrough path. During periods

in which the Rendering operation was slowest, the queue �lled; and during times when

128

Queue Pipeline Visibility Detail Elision Rendering
Depth Partition Mean Max Mean Max Mean Max

0 (UVDR) 0.069 0.384 0.004 0.012 0.083 0.142
1 (UVD)(R) 0.094 0.507 0.005 0.049 0.083 0.159
4 (UVD)(4R) 0.097 0.508 0.005 0.062 0.083 0.159
16 (UVD)(16R) 0.102 0.726 0.006 0.055 0.083 0.139
64 (UVD)(64R) 0.111 0.694 0.006 0.084 0.084 0.491

Table 6.3: Mean and maximum compute time statistics collected during tests with various

Rendering stage queue depths.

Queue Pipeline Frame Time Response Time
Depth Partition Mean Max Mean Max

0 (UVDR) 0.162 0.516 0.161 0.515
1 (UVD)(R) 0.121 0.517 0.211 0.641
4 (UVD)(4R) 0.123 0.519 0.291 0.643
16 (UVD)(16R) 0.122 0.733 0.544 1.629
64 (UVD)(64R) 0.122 0.712 1.158 6.157

Table 6.4: Mean and maximum frame time and response time statistics collected during

tests with various Rendering stage queue depths.

129

the Visibility Determination operation was slowest, the queue drained. This bu�ering e�ect

was expected to improve throughput since the overall frame time matched the time required

for the Visibility Determination operation in situations where the Rendering operation was

slowest (assuming that the queue eventually drained). This e�ect can be seen clearly in

regions of the frame time curves for (UVD)(64R) and (UVD)(R) in Figure 6.7 where the

Rendering operation is the slowest stage (e.g. frames 300 and 650). In these cases, the

frame time for (UVD)(64R) was less than for (UVD)(R).

However, looking at Table 6.4, the mean frame time did not improve for larger queue

depths, even though the frame time was shorter for frames in which the Rendering operation

was slowest. This result can be explained by noting the large peaks in the frame time curve

for (UVD)(64R) at frames 100, 400, and 680 in Figure 6.7. These peaks appear during

periods in which the queue was draining, i.e., times when the Visibility Determination and

Rendering operations were both very active. The peaks were caused by a marked increase

in the time required by the Visibility Determination operation. Once again, this decrease in

performance can be explained by the contention introduced by heavy periods of concurrent

execution. The fact that the mean frame times for all queue depths greater than one were

the same seems to be just a coincidence resulting from the combination of some shorter

frame times for some frames due to bu�ering frames in the queue, and longer frame times

for frames in which there was high contention. For a di�erent walkthrough path, the balance

between these two phenomena might have been di�erent, resulting in di�erent means for

each queue depth.

6.3 Discussion

Using pipelining, we were able to improve mean frame times of the building walkthrough

application by 25% { about one third of what could ideally be realized by a balanced

four-stage pipeline. Speed-up is sub-linear due in part to poor partitioning of functional

operations into pipeline stages { the times required by two of the four stages dominate most

frames (i.e., Visibility Determination and Rendering). Speed-up was further diminished by

contention for data between processes executing concurrently.

The small improvement in frame times is achieved at the expense of longer response

times. This tradeo� is a consequence of our implementation of the asynchronous pipeline.

The User Interface enters observer viewpoints into the pipe as soon as the subsequent stage

130

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

F
r
a
m
e

T
i
m
e

(
s
)

Frames

(UVD)(R)
(UVD)(64R)

Figure 6.7: Frame time during each frame of test walkthrough path for various queue depths

in Rendering stage.

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900

R
e
s
p
o
n
s
e

T
i
m
e

(
s
)

Frames

1R
4R

16R
64R

Figure 6.8: Response time during each frame of test walkthrough path for various queue

depths in Rendering stage.

131

has room in its input queue. As a result, many frames can be bu�ered inside the pipeline

causing long response times. Alternatively, the User Interface could wait until the previous

frame has passed some particular stage in the pipeline before entering the next observer

viewpoint so as to minimize this e�ect. In our experience, the tradeo� between frame time

and response time seems to favor faster frame times at the expense of slower response times,

as long as response times are not so large that the user becomes frustrated or has trouble

navigating (e.g., 500 milliseconds).

On Silicon Graphics workstations, pipelining seems to be the best method for distribut-

ing computation. However, a signi�cant bottleneck often occurs at the Rendering stage,

which cannot be further subdivided due to the constraint that only a single process may

communicate with the graphics engine. Other forms of rendering parallelism exist in di�er-

ent types of graphics systems, and several of them have the potential to provide substantial,

scalable speed gains by eliminating this constraint. Two approaches for coordinating the

e�orts of more than one drawing process are: 1) division in object space, and 2) division in

screen space. In the case of object space parallelism (e.g., [39]), each processor produces a

full-screen image of a portion of the scene; in addition to the usual color and pixel coverage

information calculated at each pixel, the depth of the closest object (or several objects if

rendering of transparent objects is to be implemented) is computed and kept with the pixel

data. A separate processor, or more generally a hierarchy of processors, gathers pixel data

from the scene processors and composites it by choosing the closest object at each pixel. In

the case of image space parallelism (e.g., [43]), each processor is responsible for rendering

only objects which map to a particular area of the screen. In either case, the scene is broken

up into disjoint pieces, and separate processors work on separate pieces with little or no

communication between them. Results of separate processors are composed to form a single

image. These approaches to parallelism are promising topics for further study.

132

Chapter 7

Results

In many of the preceding chapters, we have presented results of tests to evaluate the

e�ectiveness of particular algorithms used in our building walkthrough system. Section 4.1.3

contains results gathered using various visibility precomputation and real-time visibility

determination algorithms; Section 4.2.4 contains detail elision results; Section 5.2.5 presents

results gathered during memory management experiments; and Section 6.2 contains results

of experiments with concurrent processing. In this chapter, we summarize our results and

present overall statistics gathered during a \full-blown" interactive walk through the Soda

Hall model using combinations of these previously described algorithms.

We ran two experiments: one that tests only display management algorithms (i.e., vis-

ibility determination and detail elision), and another that also tests memory management

algorithms (i.e., pre-fetching objects into memory). Both experiments were performed on

a Silicon Graphics VGX 320 workstation with two 33MHz MIPS R3000 processors, 64MB

of memory, and a 16�s timer. In the display management experiment, the application was

con�gured as a two-process pipeline with one processor used for user interface, visibility

determination and detail elision computations, and a second processor used for rendering

(queue depth = 2) { i.e., (UVD)(2R). In the memory management experiment, the appli-

cation was con�gured as a four-process pipeline using the same processes as the display

management experiment, but also with memory management computations in a separate

third process (queue depth = 12), and database input/output operations in a separate

fourth process (queue depth = 64) { i.e., (UVD)(2R)(12M)(64I).

In both experiments, we used the observer path shown in Figure 7.1. It contains over

8,000 observer viewpoints, and visits the top four
oors of Soda Hall.

133

1000
1500

2000 1000
1500

2000

1000

1500

X
Y

Z

Figure 7.1: Test observer path through the top four
oors of Soda Hall.

7.1 Display Management

In the �rst experiment, we tested the combined e�ectiveness of the display management

algorithms described in this thesis, independent of memory management. We used the

hierarchical representation of the Soda Hall model with shared object de�nitions requiring

only 21.5MB of storage so that the entire model could be resident in memory for the

duration of the experiment. We ran four tests using the following combinations of visibility

determination and detail elision algorithms:

� Entire Model: Renders every object in the model at its highest level of detail { i.e.,

without any visibility determination or detail elision.

� Cell-to-Object: Renders each object in the cell-to-object visibility of the observer

cell at its highest level of detail { i.e., uses (CTO, None, None) visibility determination

without any detail elision.

� Eye-to-Object: Renders each object in the eye-to-object visibility of observer view-

point at its highest level of detail { i.e., uses (CTO, ETC, ETO) visibility determina-

tion without any detail elision.

� Detail Elision: Render each object in the eye-to-object visibility of observer view-

point (i.e., (CTO, ETC, ETO)) with the level of detail and rendering algorithm (not

texture) chosen by the optimization detail elision algorithm to keep the rendering time

under one tenth of a second.

134

During each test, we measured the frame time (i.e., total time between successive

frames), the response time (i.e., total time between a user action and the resulting image),

the real-time visibility determination compute time, the detail elision compute time, and

the rendering time, as well as the numbers of cells, objects, and polygons rendered in each

frame. Mean and maximum statistics for all observer viewpoints along the test walkthrough

path are shown for each combination of visibility determination and detail elision algorithms

in Tables 7.1{7.3. Figure 7.2 contains a plot of the frame time for each observer viewpoint

along the test path during the test using detail elision.

0

0.1

0.2

0.3

0 2000 4000 6000 8000

F
r
a
m
e

T
i
m
e

(
s
)

Frames

Figure 7.2: Frame time for each observer viewpoint along the entire test observer path

during the detail elision test.

During the test in which we rendered every object in the entire model at the highest

level of detail, the graphics engine processed all 1,418,807 polygons during every frame and

the frame time was 17.937 seconds on average.

During the cell-to-object test, in which we used precomputed visibility information

stored in the display database, and considered only objects in the cell-to-object visibility

of the observer cell without any real-time visibility determination or detail elision (CTO,

None, None), we rendered only 45,691 polygons (3.22% of the model) during each frame and

generated an image every 0.616 seconds on average (1.6 frames per second). The maximum

frame time was 2.137 seconds.

135

Cull Frame Time (s) Response Time (s)
Method Mean Max Mean Max

Entire Model 17.937 19.388 53.619 55.352

Cell-to-Object 0.616 2.137 1.874 7.000

Eye-to-Object 0.104 0.624 0.311 1.872

Detail Elision 0.072 0.259 0.147 0.500

Table 7.1: Mean and maximum frame time and response time statistics collected during

display management tests.

Cull Visibility Time (s) Detail Time (s) Rendering Time (s)
Method Mean Max Mean Max Mean Max

Entire Model { { { { 17.937 19.388

Cell-to-Object { { { { 0.617 2.152

Eye-to-Object 0.047 0.217 { { 0.095 0.619

Detail Elision 0.047 0.215 0.016 0.093 0.044 0.121

Table 7.2: Mean and maximum compute time and rendering time statistics collected during

display management tests.

Cull # Cells # Objects # Polygons % of Model
Method Mean Max Mean Max Mean Max Mean Max

Entire Model 5,060 14,478 1,418,807 100%

Cell-to-Object 126 322 545 1,608 45,691 169,102 3.22% 11.92%

Eye-to-Object 19 67 111 469 5,300 45,829 0.37% 3.23%

Detail Elision 19 67 108 465 1,533 5,175 0.11% 0.36%

Table 7.3: Mean and maximum numbers of cells, objects, and polygons rendered during

display management tests.

136

During the eye-to-object test, in which we also used the eye-to-object real-time visibility

determination algorithm (CTO, ETC, ETO) but still no detail elision, we rendered only

5,300 polygons (0.37% of the model) on average and the mean frame time was 0.104 seconds

(9.6 frames per second). However, the maximum frame time was still quite large using only

visibility determination because there are some viewpoints along the test path at which the

scene visible to the observer is very complex (465 objects containing 45,829 polygons at the

highest level of detail). At these viewpoints, the frame time increased to 0.624 seconds (1.6

frames per second).

During the detail elision test, in which we also used the optimization detail elision

algorithm to select a possibly reduced LOD for each potentially visible object, we rendered

only 1,533 polygons (0.11% of the model) and generated an image every 0.072 seconds (13.9

frames per second) on average. The maximum rendering time was 0.121 seconds, and the

the maximum response time was 0.500 seconds { short enough for the system to maintain

an interactive feel.

Figure 7.3 shows rendering times for each observer viewpoint along the portion of the

walkthrough path in which the scene visible to the observer is most complex. In the eye-

to-object and cell-to-object tests, the rendering time was correlated with the complexity of

the scene visible to the observer (or observer cell). Whereas, in the detail elision test, the

rendering time did not exceed the target frame time of 0.1 seconds during this portion of the

walkthrough. Although this fast, uniform rendering time was achieved by rendering simpler

representations for some objects during some frames, the visual e�ects of detail elision were

barely noticeable during this test.

Although the maximum rendering time (0.121 seconds) was very close to the target

rendering time (0.100 seconds) during the detail elision test, the maximum frame time

was much larger (0.259 seconds). Large frame times occurred when the compute time

dominated the rendering time. There is currently no adaptive control over the time required

for computation in our system. Since the walkthrough system was con�gured as a two

process concurrent pipeline in this test, with visibility determination and detail elision

computations performed in one process and rendering in another, the e�ective frame time

was closely correlated with the maximum of the rendering time and the sum of the visibility

determination and detail elision compute times. Figure 7.4 shows the measured frame

time, rendering time, and compute time for each frame along the same portion of the

walkthrough path shown in Figure 7.3. The process performing visibility and detail elision

137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

600 1200

R
e
n
d
e
r

T
i
m
e

(
s
)

Frames

Cell-to-Object
Eye-to-Object

Detail Elision

Figure 7.3: Rendering times using cell-to-object, eye-to-object, and detail elision cull meth-

ods for each observer viewpoint along complex portion of test observer path.

0

0.1

0.2

0.3

600 1200

T
i
m
e

(
s
)

Frames

Frame Time
Visibility Time

Detail Time
Render Time

Figure 7.4: Frame time, visibility time, detail elision time, and draw time using detail elision

cull method for each observer viewpoint along complex portion of test observer path.

138

computations was the bottleneck during this portion of the test path, and thus determined

the e�ective frame time. However, note that frame times would have been far greater if

either the visibility determination or detail elision computation were not performed. In a

future version, perhaps computations can be optimized, executed with more parallelism, or

be made adaptive so that they never exceed the target frame time.

7.2 Memory Management

In the second experiment, we tested the cumulative e�ectiveness of the display and

memory management algorithms described in this thesis. We used the same display man-

agement algorithms as were used in the test labeled \detail elision" in the previous section

(i.e., (CTO, ETC, ETO) visibility determination and Optimization detail elision). However,

in this experiment, we used the
attened model of Soda Hall (349.5MB of storage) and the

predictive memory management algorithm described in Section 5 to swap objects in and

out of memory in real-time as the observer moved along the test walkthrough path. The

memory management algorithm was con�gured to use the Observer Direction range cull,

the Observer Frustum lookahead cull, and Object lookahead granularity, while the lookahead

depth was set to 1 frame in advance. This combination of parameters causes the lookahead

set to be a rather small superset of the objects actually visible to the observer, and thus

makes the most frugal use of available memory.

In addition to the statistics measured during the display management experiment, we

gathered statistics regarding the lookahead compute time (i.e., time required to execute

the pre-fetch memory management algorithm), the read time (i.e., the time required to

load objects into memory from disk), the sizes of rendered, lookahead, read and release

sets, and the number of LODs skipped by the rendering process during each frame due to

failure of the pre-fetch process to load the appropriate LOD into memory in time before it is

selected for rendering. Mean and maximum statistics for all observer viewpoints along the

test walkthrough path are shown for tests with and without memory management in Tables

7.4{7.5. Table 7.6 contains mean and maximum statistics regarding the lookahead sets

collected during the memory management test. Figure 7.5 contains a plot of the frame time

for each observer viewpoint along the test path during the test using memory management.

The entire
attened model of Soda Hall requires 349.5MB of storage. However, using

the predictive memory management algorithm, we were able to maintain 13 frames per

139

Mem Frame Time (s) Response Time (s) LODs Skipped
Mgmt Mean Max Mean Max Mean Max

No 0.072 0.259 0.147 0.500 { {
Yes 0.077 0.319 0.131 0.381 2.56 109

Table 7.4: Mean and maximum frame time, response time, and numbers of LODs skipped

statistics collected during tests with and without memory management.

Mem Vis Time Detail Time Render Time Look Time Read Time
Mgmt Mean Max Mean Max Mean Max Mean Max Mean Max

No 0.047 0.215 0.016 0.093 0.044 0.121 { { { {
Yes 0.051 0.229 0.016 0.119 0.048 0.127 0.003 0.220 0.030 1.613

Table 7.5: Mean and maximum visibility determination, detail elision, rendering, lookahead,

and read time statistics collected during tests with and without memory management. All

times are in seconds.

Object # Objects # Polygons # MBytes % of Model
Set Mean Max Mean Max Mean Max Mean Max

Entire Model 14,478 1,418,807 349.5 100%

Rendered 108 465 1,533 5,175 0.246 0.757 0.07% 0.22%
Lookahead 299 1,229 25,287 124,072 3.857 17.539 1.10% 5.02%

Read 1 190 98 4,929 0.014 0.695 0.004% 0.20%
Released 1 862 88 80,232 0.013 11.346 0.004% 3.25%

Table 7.6: Mean and maximum set statistics collected during memory management tests.

140

0

0.1

0.2

0.3

0 2000 4000 6000 8000

F
r
a
m
e

T
i
m
e

(
s
)

Frames

Figure 7.5: Frame time for each observer viewpoint along the entire test observer path

during the test with memory management.

second (0.077 seconds per frame) during an interactive walkthrough on a workstation con-

taining only 64MB of memory. Of the 349.5MB of data in the entire model, only 246KB

of data was required to describe the polygons rendered during each frame on average. The

lookahead algorithm was able to determine a relatively small set of object descriptions to

store in memory (3.857MB on average) by predicting which object descriptions were most

likely to be rendered during upcoming frames. The lookahead computation required very

little time (0.003 seconds per frame on average), and executed in a separate asynchronous

process with a 12 frame input queue, so had very little impact on the e�ective frame time.

During each frame on average, 14KB of data describing objects new to the lookahead

set was read from disk into memory, requiring 0.030 seconds per frame. Although the read

time was highly variable (the maximum read time was 1.613 seconds), read operations were

performed in an asynchronous database input/output process with a 64 frame input queue,

so large read times did not a�ect the frame time directly.

In order to maintain an interactive frame rate, the rendering process did not wait

for any object description to be loaded into memory during the memory management test.

Instead, it simply skipped object LODs that were not yet memory resident, and rendered the

object at the next highest LOD that was resident in memory. During this test, 2.56 LODs

141

were skipped on average, and as many as 109 LODs were skipped during some frames (e.g.,

when the observer entered a region of the model with many complex objects). Although

this e�ect was noticeable during several sequences of the walkthrough path, we found it

to be less disturbing than the alternative { i.e., requiring the rendering process to stall

while waiting for the appropriate LOD for an object to be read into memory before it was

rendered.

142

Chapter 8

Conclusion

8.1 Summary and Re
ections

This thesis describes a system for interactive walkthroughs of very large architectural

models. It builds a hierarchical display database containing objects represented at multiple

levels of detail during a modeling phase, performs a spatial subdivision and visibility anal-

ysis during a precomputation phase, and uses real-time display and memory management

algorithms during a walkthrough phase to select a relevant subset of the model for rendering

and storing in memory.

We have found visibility determination to be extremely useful for generating fast frame

rates during visualization of complex models. By partitioning the model into a spatial

subdivision of cells whose boundaries coincide with the major occluding polygons, and by

performing visibility precomputations to determine a superset of objects visible from each

cell, we characterize the portion of the model visible from di�erent regions of space during

an o�-line computation. We use this precomputed spatial and visibility information in the

real-time visibility determination algorithms to determine the relevant subset of the model

for each observer viewpoint during an interactive walkthrough.

However, visibility determination alone is not su�cient to generate uniform, fast frame

rates during visualization of complex models. There may be observer viewpoints at which far

too many polygons are simultaneously visible to render at interactive frame rates. Therefore,

during each frame of an interactive walkthrough, we execute an Optimization detail elision

algorithm that may choose a reduced level of detail or a simpler rendering algorithm with

which to display each potentially visible object in order to achieve a user-speci�ed target

143

frame time.

We have found that it is possible to swap objects in and out of memory as a simulated

observer walks through a model that is much larger than can �t into memory. We use an

asynchronous pre-fetch algorithm to load objects that are likely to become visible to the

observer up to the maximum level of detail at which they can possibly be rendered during

upcoming future frames. An approximate least-recently used algorithm determines which

objects to replace in the memory resident cache as new objects are added. A database

system manages storage of visualization data structures in memory and on disk, swizzling

pointers to memory resident data so that direct access by application-de�ned functions is

e�cient.

We have implemented a �rst version of a building walkthrough system, and tested it

in real walkthroughs of a furnished model of Soda Hall, the planned Computer Science

building at UC Berkeley. Our initial results show that these display and memory manage-

ment techniques are e�ective at culling away substantial portions of the model, and make

interactive frame rates possible even for very large models.

8.2 Comparison to Other Approaches

Many other approaches using di�erent combinations of precomputation and real-time

computation are possible. For instance, at one extreme, a visualization system could per-

form all calculations during precomputation, generating complete images o�-line, and then

display a sequence of these precomputed images under interactive user control. The advan-

tage of this approach is that very realistic-looking images can be generated o�-line using

either view-dependent rendering algorithms too expensive to run in real-time (e.g., ray trac-

ing) or a camera if a physical model exists. Image display time is most critical and does

not depend on how an image was generated. On the other hand, precomputed images have

several potential disadvantages: they may require a large amount of storage, introducing a

real-time memory management problem; there may be limits on the resolution and/or speed

at which precomputed images can be displayed in real-time; and the simulated observer may

be limited to viewpoints for which images have been precomputed. Also, since precomputed

images must be updated when objects move or change appearance, this approach does not

seem well-suited for visualization of dynamic models.

At the other extreme, a visualization system could perform no precomputation and

144

render images completely in real-time during an interactive walkthrough. The advantage of

this approach is that it supports arbitrary observer viewpoints and highly dynamic models

with moving objects. However, currently available rendering systems are generally not able

to produce realistic lighting simulations for complex models without any precomputation.

We have taken an intermediate approach { we precompute observer-independent in-

termediate rendering results that reduce the amount of real-time computation required

to generate reasonably realistic-looking images (e.g., with radiosity) and interactive frame

rates (e.g., visibility determination and detail elision). Although the storage requirements

of precomputed radiosity information can be quite large (i.e., a color for each vertex), they

are not nearly as large as would be required for precomputed images (i.e., a color for each

pixel of each image). Our approach supports arbitrary observer viewpoints, and can handle

moving objects without radiosity illumination.

Since graphics workstations are continually gaining computing and graphics render-

ing speed, and models are becoming more dynamic, with animated and moving objects,

we believe that there will be a trend towards real-time computation during visualization.

However, no matter how much faster or bigger computer workstations become, there will

always be interesting models that are too large to be rendered at interactive frame rates

without some amount of precomputation. For instance, today we are walking through a

building { tomorrow we may be walking through a city, or a country, or a universe, etc.

The appropriate partition between precomputation and real-time computation will always

depend on the goals and constraints of a particular visualization system.

8.3 Final Observation

Although the focus of this thesis is data structures and algorithms for improving frame

rates during visualization of complex models, the most important lesson learned during

this work is that generating interesting, detailed models is DIFFICULT. In our case, it has

taken almost as much time to construct our current model of Soda Hall as it has to develop

algorithms to visualize it! Approximately eighteen \person months" were spent during

conversion of 21
2
D models received from the architects into a consistent 3D representation

suitable for rendering; six \person months" were spent creating multi-resolution models for

various pieces of furniture; and six \person months" were spent placing instances of the

furniture models into the building model. Although some of the models can be re-used in

145

other projects (e.g., the furniture models), most of this e�ort must be replicated for each

new building model. Clearly, modeling tools must be developed that are more user-friendly

and more automatic in order to make interactive visualization of complex three dimensional

environments a reality, even a virtual reality.

146

Bibliography

[1] Akeley, K. Reality Engine Graphics. To appear in Computer Graphics (Proc. SIG-

GRAPH '93).

[2] Airey, John M. Increasing Update Rates in the Building Walkthrough System with Au-

tomatic Model-Space Subdivision and Potentially Visible Set Calculations. Ph.D. thesis,

UNC Chapel Hill, 1990.

[3] Airey, John M., John H. Rohlf, and Frederick P. Brooks, Jr. Towards image realism with

interactive update rates in complex virtual building environments. ACM SIGGRAPH

Special Issue on 1990 Symposium on Interactive 3D Graphics, 24, 2 (1990), 41-50.

[4] Amenta, Nina. Finding a Line Traversal of Axial Objects in Three Dimensions. Proc.

3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, 66-71.

[5] AutoCAD Reference Manual, Release 10, Autodesk Inc., 1990.

[6] Batory, D. GENESIS: A Project to Develop an Extensible Database Management Sys-

tem. Proceedings of 1986 International Workshop on Object-Oriented Database Sys-

tems. Asilomar, California, September, 1986.

[7] Baum, Daniel, R., Stephen Mann, Kevin P. Smith, and James M. Winget. Making

Radiosity Usable: Automatic Preprocessing and Meshing Techniques for the Genera-

tion of Accurate Radiosity. Computer Graphics (Proc. SIGGRAPH '91), 25, 4 (August

1991), 51-60.

[8] Bechtel, Inc. WALKTHRU: 3D Animation and Visualization System. Promotional lit-

erature, 1991.

147

[9] Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching.

Communications of the ACM, 18 (1975), 509-517.

[10] Blake, Edwin H. A Metric for Computing Adaptive Detail in Animated Scenes using

Object-Oriented Programming. Eurographics `87. G. Marechal (Ed.), Elsivier Science

Publishers, B.V. (North-Holland), 1987.

[11] Brooks, Jr., Frederick P. Walkthrough - A Dynamic Graphics System for Simulating

Virtual Buildings. Proceedings of the 1986 Workshop on Interactive 3D Graphics.

[12] Brown, Thurman A. Interactive Object Displacement in Building Walkthrough Models.

Master's Thesis, Computer Science Division (EECS), University of California, Berkeley,

1992.

[13] Butterworth, Paul, Allen Otis, and Jacob Stein. The GemStone Object Management

System. Communications of the ACM, 34, 10 (October, 1991), 64-77.

[14] Carey, Michael, J., David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita. Object

and File Management in the EXODUS Extensible Database System. Proceedings of

the Twelfth International Conference on Very Large Databases, Kyoto, Japan, August,

1986, 91-100.

[15] Cohen, Michael, F., and Donald P. Greenberg. The Hemi-cube: A Radiosity Solution

for Complex Environments. Computer Graphics (Proc. SIGGRAPH '85), 19, 3 (July

1985), 31-40.

[16] Chen, Peter, M., Edward K. Lee, Ann L. Drapeau, Ken Lutz, Ethan L. Miller, Srini-

vasan Seshan, Ken Shirri�, David A. Patterson, and Randy H. Katz. Performance and

Design Evaluation of the RAID-II Storage Server. International Parallel Processing

Symposium Workshop on I/O in Parallel Computer Systems, April, 1993.

[17] Chervenak, Ann, L., and Randy H. Katz. Perfomance of a Disk Array Prototype. Proc.

SIGMETRICS, May, 1991.

[18] Clark, James H. Hierarchical Geometric Models for Visible Surface Algorithms. Com-

munications of the ACM, 19, 10 (October 1976), 547-554.

[19] Deux, O., et al. The O2 System. Communications of the ACM, 34, 10 (October, 1991),

34-48.

148

[20] Deyo, R. J., J. A. Briggs, and P. Doenges. Getting Graphics in Gear: Graphics and

Dynamics in Driving Simulation. Computer Graphics (Proc. SIGGRAPH '88), 24, 4

(July 1988), 317-326.

[21] Dijksta, E.W. A Note on Two Problems in Connexion with Graphs. Numerische Math-

ematik 1, 1959, 269-271.

[22] Foley, J.D., A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice. 2nd ed., Addison-Wesley, Reading, MA, 1990.

[23] Funkhouser, Thomas A. An Interactive UNIGRAFIX Editor. Unpublished. May, 1991.

[24] Funkhouser, Thomas A., Carlo H. S�equin, and Seth J. Teller. Management of Large

Amounts of Data in Interactive Building Walkthroughs. ACM SIGGRAPH Special

Issue on 1992 Symposium on Interactive 3D Graphics, March, 1992, 11-20.

[25] Funkhouser, Thomas A., and Carlo H. S�equin. Adaptive Display Algorithm for Inter-

active Frame Rates During Visualization of Complex Virtual Environments. To appear

in Computer Graphics (Proc. SIGGRAPH '93).

[26] Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[27] Garlick, Benjamin, Daniel R. Baum, and James M. Winget. Interactive Viewing of

Large Geometric Databases Using Multiprocessor Graphics Workstations. SIGGRAPH

'90 Course Notes (Parallel Algorithms and Architectures for 3D Image Generation).

[28] Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, and Bennett Bat-

taile. Modeling the Interaction of Light Between Di�use Surfaces. Computer Graphics

(Proc. SIGGRAPH '84), 18, 3 (July 1984), 213-222.

[29] Hanrahan, Pat, and David Salzman. A Rapid Hierarchical Radiosity Algorithm. Com-

puter Graphics (Proc. SIGGRAPH '91), 25, 4 (August 1991), 197-206.

[30] Heckbert, Paul, S. Simulating Global Illumination Using Adaptive Meshing. Ph.D. the-

sis, Computer Science Division (EECS), University of California, Berkeley, 1991. Also

available as Technical Report UCB/CSD 91/636.

149

[31] Hohmeyer, Michael E., and Seth J. Teller. Stabbing Isothetic Rectangles and Boxes in

O(n lgn) Time. Technical Report UCB/CSD 91/634, Computer Science Department,

U.C. Berkeley, 1991.

[32] Ibaraki, T., T. Hasegawa, K. Teranaka, J. Iwase. The Multiple Choice Knapsack Prob-

lem. J. Oper. Res. Soc. Japan 21, 1978, 59-94.

[33] Ibarra, O. H. and C. E. Kim. Fast Approximate Algorithms for the Knapsack and Sum

of Subset Problems. J. Assoc. Comput. Mach. 22, 1975, 463-468.

[34] Jones, C.B. A New Approach to the `Hidden Line' Problem. The Computer Journal,

14, 3 (August 1971), 232-237.

[35] Katz, Randy, H., Peter M. Chen, Ann L. Drapeau, Edward K. Lee, Ken Lutz, Ethan

L. Miller, Srinivasan Seshan, and David A. Patterson. RAID-II: Design and Implemen-

tation of a Large Scale Disk Array Controller. 1993 Symposium on Integrated Systems.

Also available as UC Berkeley technical report UCB/CSD 92/705.

[36] Khorramabadi, Delnaz. A Walk through the Planned CS Building. Master's Thesis,

Computer Science Division (EECS), University of California, Berkeley, 1991. Also avail-

able as UC Berkeley technical report UCB/CSD 91/652.

[37] Lamb, Charles, Gordon Landis, Jack Orenstein, and Dan Winreb. The ObjectStore

Database System. Communications of the ACM, 34, 10 (October, 1991), 50-63.

[38] Lohman, Guy, M., Bruce Lindsay, Hamin Pirahesh, and K. Bernhard Schierfer. Ex-

tentions to Starburst: Objects, Types, Functions, and Rules. Communications of the

ACM, 34, 10 (October, 1991), 94-109.

[39] Molnar, Steven, Eyles, John, and Poulton, John. PixelFlow: High-Speed Rendering

Using Image Composition. Computer Graphics (Proc. SIGGRAPH '92), 26, 2 (July

1992), 231-240.

[40] Nishita, T., and E. Nakamae. Half-Tone Representation of 3D Objects Illuminated by

Area Sources or Polyhedron Sources. Computer Graphics (Proc. SIGGRAPH '85), 19,

3 (July 1985), 23-30.

[41] Oakland, Steven Anders. BUMP, A Motion Description and Animation Package. Tech-

nical Report UCB/CSD 87/370, Computer Science Department, U.C. Berkeley, 1987.

150

[42] Patterson, David, A., Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays

of Inexpensive Disks (RAID). Proc. ACM SIGMOD, June, 1988, 109-116.

[43] Potmesil, Michael and Ho�ert, Eric M. The Pixel Machine: A Parallel Image Computer.

Computer Graphics (Proc. SIGGRAPH '89), 23, 3 (July 1989), 69-78.

[44] Rossignac, J. and P. Borrel. Multi-resolution 3D approximations for rendering complex

scenes. IFIP TC 5.WG 5.10 II Conference on Geometric Modeling in Computer Graph-

ics, Genova, Italy, 1993. Also available as IBM Research Report RC 17697, Yorktown

Heights, NY 10598.

[45] Rubin, S. M. The representation and display of scenes with a wide range of detail.

Computer Graphics and Image Processing. 19 (1982), 291-298.

[46] Sahni, S. Approximate Algorithms for the 0/1 Knapsack Problem. J. Assoc. Comput.

Mach. 22, 1975, 115-124.

[47] Schachter, Bruce J. Computer Image Generation for Flight Simulation. IEEE Computer

Graphics and Applications. 1, 5 (1981), 29-68.

[48] Schachter, Bruce J. (Ed.). Computer Image Generation. John Wiley and Sons, New

York, NY, 1983.

[49] S�equin, Carlo H. Introduction to the Berkeley UNIGRAFIX Tools (Version 3.0). Tech-

nical Report UCB/CSD 91/606, Computer Science Department, U.C. Berkeley, 1991.

[50] Silicon Graphics, Inc. Graphics Library Programming Tools and Techniques, Document

#007-1489-01, Silicon Graphics, Inc., Mountain View, CA, 1992.

[51] Smith, Kevin, P. Interactive Modeling Tool. Unpublished. September, 1990.

[52] Stonebraker, Michael, and Greg Kemmitz. The POSTGRES Next Generation Database

Management System. Communications of the ACM, 34, 10 (October, 1991), 78-92.

[53] Teller, Seth J., and Carlo H. S�equin. Visibility Preprocessing for Interactive Walk-

throughs. Computer Graphics (Proc. SIGGRAPH '91), 25, 4 (August 1991), 61-69.

[54] Teller, Seth J. Computing the Antiumbra Cast by an Area Light Source. Computer

Graphics (Proc. SIGGRAPH '92), 26, 2 (August 1992), 139-148.

151

[55] Teller, Seth J. Visibility Computations in Densely Occluded Polyhedral Environments.

Ph.D. thesis, Computer Science Division (EECS), University of California, Berkeley,

1992. Also available as UC Berkeley technical report UCB/CSD-92-708.

[56] Virtus Walkthrough. Promotional literature, 1991.

[57] Ward, Greg. Lawrence Berkeley Labatories. Personal Communication, 1993.

[58] Ware, Colin, and Steven Osborne. Exploration and Virtual Camera Control in Virtual

Three Dimensional Environments. ACM SIGGRAPH Special Issue on 1990 Symposium

on Interactive 3D Graphics, 24, 2 (1990), 171-176.

[59] Zyda, Michael J. Course Notes, Book Number 10, Graphics Video Laboratory, Depart-

ment of Computer Science, Naval Postgraduate School, Monterey, California, Novem-

ber, 1991.

[60] Zyda, Michael J., David R. Pratt, James G. Monahan, and Kalin P. Wilson. NPSNET:

Constructing a 3D virtual world. ACM SIGGRAPH Special Issue on 1992 Symposium

on Interactive 3D Graphics, March, 1992.

