August 19, 1993

Ko

An Efficient Network
Interface for the RAID-II

File Server

Srinivasan Seshan

1.0 Abstract

Distributed systems in use today depend heavily on network com-
munications between clients and servers. In this report, we describe the
design and implementation of the network architecture (hardware, soft-
ware and protocols) of the RAID-II system. RAID-Iis a high speed net-
work file server connected to an UltraNetwork. In order to support high
bandwidth network transfers with the RAID-II server, we partitioned the
networking software among the various processors in the system. Mea-
surements of the system show that the RAID-II server can sustain 21
MB/s of data bandwidth to the Ultranet.

2.0 Introduction

2.1 Problem Description

Over the past decade, we have experienced a major shift from
centralized computing using mainframes to a distributed model of com-
puting using workstations connected via high-performance networks. In
the traditional mainframe-centered view of computer systems, storage
devices are tightly coupled to the computation system. In the newer
workstation model of computing, storage is attached to file servers dis-

Introduction

tributed throughout a network. The workstation clients make file requests to
these servers through a message based protocol over a high speed network.

This centralized file storage has several advantages and disadvan-
tages. Users can have access to the same file system on different client
machines. Also, a centralized file system simplifies administration. Typical
client/server environments have approximately many workstations per file
server. Therefore, the speed of the entire system is highly dependant upon the
efficiency of the communication between the server and its clients. In this
report we explore the design of a network architecture (hardware, software,
and protocols) for RAID-II, a high-speed network file server.

2.2 RAID-II Hardware

There are three major sources of overhead in a client/server system:
the [/O subsystem of the server, the operating system overhead in both the
client and server, and the network communication overhead. [Chen93,
Welch90] explore operating system and I/O hardware performance of the
RAID-II system. This paper is primarily concerned with network overhead in
the file server.

RAID-II (“RAID the Second”) is a high-performance network file
server developed at the University of California at Berkeley. The system was
designed to support both high bandwidth (scientific, engineering, multi-
media) applications and low latency applications (UNIX, database). The
hardware currently allows a maximum of 144 3.5” disk drives, providing
45GB of storage (150GB+ with state-of-the-art disk drives). RAID-II cur-
rently supports clients on an Ultranet network, and in the future will support
HIPPI networks and Ethernet.

A significant portion of the RAID-II system is made from commer-
cially available components. Thinking Machines (TMC) provided a board set
for the HIPPI channel interface. Interphase provided a single board multiple
string VME SCSI controller. Custom hardware, the XBUS board, was devel-
oped by the RAID research group to provide an interconnect between multi-
ple VME busses, the HIPPI boards, and an interleaved, multiported memory.
A Sun-4 CPU is used to control the various systems and run the file system
software. A block diagram of the interconnections is shown in Figure 1.

There are a number of programmable CPU’s present in the RAID-II
system. The Sun-4 CPU runs the Sprite Operating System. It is responsible
for controlling the XBUS board, the disk controllers, the HIPPI boards and
running the file system code. In addition to the Sun-4, there is a AMD 29000

An Efficient Network Interface for the RAID-1I File Server

Raid - II

Client
=t Ultranet Hub

125 MB/s

!

[Uire/mHIPPI comnect |

HIPPI
100 MB/s

HIPPIS Bu.

to disks
XBUS Board | 100 MB/s

HIPPID Bus

VYME
VME Link

2 MB/s (20 MB/s DMA)

FIGURE 1. RAID-II Block Diagram

processor on each TMC HIPPI board. These processors are user programma-
ble and are used to implement a significant portion of the network protocol.

2.3 Report Organization

This report describes goals, constraints and design of the RAID net-
work interface. The report is organized as follows. Section 3.0 describes the
RAID-II hardware, target application and performance goals. Section 4.0
provides a detailed description of the network interfaces involved in the sys-
tem. Both the Ultranet network and the TMC HIPPI board set are covered.
Section 5.0 explains the network interface architecture we chose. Section 6.0

presents some network performance measurements taken of the RAID-II
system. We present our summary and conclusions in Section 7.0 .

3.0 Raid - 11

In this section, we describe sections of the RAID-II file server hard-
ware that had a significant impact on the design of the network interface. We
describe the initial performance and functionality goals for the server. We

An Efficient Network Interface for the RAID-II File Server 3

Raid - II

also discuss the interconnection and the programmability of resources in the
system. Details about the system are available in [Lee93].

3.1 Goals

The RAID-II file server was designed to support applications typical
to high-speed workstations of the future. These applications are composed of
a mixture of high bandwidth scientific, engineering and multi-media data and
low latency, high transaction rate UNIX-like /O patterns. The main perfor-
mance goal for the server was to provide 40 MB/s to high bandwidth applica-
tions. The file server uses both RAID and LFS technologies to meet our
goals for both large and small transfers. Since the full data rate must be made
available to clients on the network, an efficient network interface was critical
to the success of the project.

3.2 Overall architecture

The RAID-II server is composed of four major parts: the host CPU,
the XBUS board, the disk interfaces and the HIPPI interfaces. These compo-
nents and interconnections are described in greater detail in the following
sections. The interconnection of these interfaces is shown in Figure 1.

3.3 YME Link Boards

The remote VME links that connect the host CPU to the other sec-
tions of the system are extremely slow. The remote links are implemented
using Bit-3 VME link boards. Each link supports about 2 MB/s for most
applications. In a few select applications, the link board can DMA data at up
to 20 MB/s. To meet our performance goal of 40 MB/s of data transfer, it is
necessary that very little data be transferred to the host CPU across the VME
link boards.

3.4 HIPPIS Bus and HIPPID Bus

The two HIPPI backplane busses are unidirectional busses that move
data between the TMC HIPPI boards and the XBUS board. Both busses are
addressless and only the TMC boards can be the bus master. The simple bus
protocol used allows the TMC board to select a target or source board for the
transfer and to do flow control. Since the bus is addressless, any source or
target device (for example the XBUS board) must be set up for the transfer
before being selected.

An Efficient Network Interface for the RAID-II File Server

Raid - 11

Due to physical limitations only 2 XBUS boards may reside on the
backplane at one time. The backplane can theoretically support 100 MB/s,
however, each XBUS board supports only 40 MB/s.

3.5 Host

The host CPU in the RAID-II server is a Sun-4/280 single board com-
puter. It has 32 MB of VME memory and runs the Sprite operating system.
The CPU performance of this machine is approximately 8 SPECMarks. The
host is responsible for running most of the code that coordinates the RAID-II
server. It is responsible for running the file system code and controlling the
drive interfaces, XBUS board and HIPPI boards.

3.6 XBUS Board

The XBUS card implements a 4-by-8 32-bit wide crossbar bus. All
transfers use a four port memory as either the source or the destination. Each
memory port can sustain transfers of 40 MB/s. Two of the remaining eight
interfaces provide connections to the HIPPI backplane busses. Since these
busses are addressless, the XBUS board must be set up for any transfers
across this bus in advance. These ports can sustain 40 MB/s of transfer to/
from the TMC HIPPI boards. A single port is used for a hardware XOR com-
pute engine. This XOR unit is used to compute parity for the disk array. A
VME connection to the host CPU uses another single port. The XBUS board
is controlled by a set of registers present on this VME interface. The remain-
ing four ports provide connections to VME busses. These interfaces connect
to standard VME SCSI controllers. Each VME interface can sustain 8 MB/s.
This gives an aggregate bandwidth of 32 MB/s to the SCSI disk controllers.

3.7 SCSI controllers

The XBUS board is connected to a set of four VME busses. Each of
these VME busses currently contains an Interphase Cougar SCSI controller.
A single Cougar board is capable of handling approximately 7 MB/s of data
traffic from two independent SCSI strings. Physical packaging limits each
string to 3 disks. The RAID-II system is limited by the current SCSI boards
to 28 MB/s of disk bandwidth and 24 disks. Future SCSI boards will allow
the system to use 72 disk drives and to provide up to 32 MB/s per XBUS
board.

An Efficient Network Interface for the RAID-II File Server 5

Network Interfaces

3.8 HIPPI interface

The HIPPI interface is described in detail in the Section 4.0.

4.0 Network Interfaces

In this section, we describe the network environment of the RAID-II
file server. The operation of the TMC HIPPI boards, which provide the net-
work interface for RAID-II, is explained. The UltraNetwork, which provides
connectivity to the client machines, is also described in this section.

4.1 TMC HIPPI Boards

The HIPPI interface for RAID was implemented using a two board
set built by Thinking Machines Corporation (TMC). The architecture of the
boards is shown in Figure 2. Each board contains an interface to a single
direction of the HIPPI channel, a unidirectional backplane bus, and a control
VME bus. The two backplane busses are addressless and only the HIPPI
boards can be bus masters. This requires that the opposite end of any transfer
be set up in advance to send or receive data. Each board also contains an
AMD 29000 processor and some local memory. Programs and data for the
29k processor can be downloaded from the VME control bus. The 29k pro-
cessor can be used to set up transfers as well as run any general purpose code
(protocol code). There are some significant differences between the two
boards. The individual boards are described in more detail in the next few
sections.

4.1.1 HIPPI Source Board

The HIPPI Source board interfaces to the VME bus through a set of
five registers. The functions of these registers are summarized in Table 1.
The input and output FIFO are the most important of these registers since
they provide the only general purpose communication interface between
code running on the 29k processor and the host CPU. Since the Source board
has no VME bus mastering capability, the host CPU must copy data into the
input FIFO and from the output FIFO.

The Source board’s interface to the HIPPI output channel and the
input backplane bus is controlled by seven registers. Their function is sum-
marized in Table 2. These registers are only accessible by the 29k processor.
The HIPPI data FIFO contains the data to be sent out on the HIPPI channel.

An Efficient Network Interface for the RAID-1I File Server

Network Interfaces

« Source Board:

HIPPI

State HIPPIS Bus
< EIFQ Machine

29K CPU emor

I VME Bus

. Destination Board:

FIFO

4—{FIFO

HIPPI
ﬁ

Stat HIPPID Bu
Mgc?line %

FIGURE 2. TMC HIPPI Board Block Diagram

TABLE 1. HIPPI Source Board VME registers

VME Register Description
T
Configuration Sets up VME functionality of board - enable interrupts,
set VME address modifier, etc.
Input FIFO Receives data from VME into FIFO read by 29k.
Output FIFO Stores data written by 29k into a FIFO that can be read
from the VME.
Status Stores current status of board
Reset Controls reset of various sections of board

This FIFO can be filled by data from the 29k or from the backplane bus.
When the source of the data transferred is the 29k, the 29k must force the
data to be sent from the data FIFO by writing HIPPI events to the HIPPI
event FIFO. This is an extremely slow process and limits the transfer rate of
data. When data is being sent from a different board on the backplane, the
data is copied by a state machine on the Source board from the backplane to
the HIPPI channel. The 29k must initiate this transfer by writing the length of
the transfer to the total counter register. The transfer is started by the 29k
writing to the HIPPI command register. The completion of the transfer is sig-

An Efficient Network Interface for the RAID-1I File Server 7

Network Interfaces

naled by a change in the status register. By not involving the 29k in transfers
from the backplane, the system can achieve the full link bandwidth (100 MB/
s).

TABLE 2. HIPPI Source Board HIPPI registers

Register Description
P
Data FIFO Stores data to be sent on HIPPI channel.

Total Counter Stores number of 64-bit words to receive from back-
plane.
Event FIFO Used to perform HIPPI transfers such as sending bursts

of data and starting/ending packets.

HIPPI Command Used to enable and contro! status of HIPPI channel and
backplane

HIPPI Status Stores current status of HIPPI channel and backplane.

Backplane Target Stores slot number of boards in backplane to receive data
RAM from.

Backplane Counter | Stores number of 64-bit words to receive from each
board in the backplane. Used to stripe data from multiple
boards.

4.1.2 HIPPI Destination Board

TMC designed the Destination board much after the Source board.
Thus, it includes many more features than the Source board. The VME inter-
face includes several new registers and the input and output FIFOs used to
communicate with the host. The Destination board VME registers are sum-
marized in Table 3. The Destination board also has VME bus master capabil-
ities. The board can write data from the output FIFO to any VME location.
Similarly, it can read VME locations to the input FIFO.

The Destination board’s interface to the HIPPI in channel and the
backplane output is summarized in Table 4. These registers are only accessi-
ble by the 29k. Data from the HIPPI channel is automatically placed in the
HIPPI data FIFO. Data in the FIFO can either be read out by the 29k or cop-
jed by a state machine to the backplane. The reading of data by the 29k
occurs at a fraction of the maximum link bandwidth. However, transfers
using the state machine can occur at the maximum link bandwidth. The 29k
must set up the transfer to the backplane by writing the length of the transfer
to the total transfer counter. The transfer is started by writing to the HIPPI
command register. The end of the transfer is signaled by a change in the sta-
tus register.

An Efficient Network Interface for the RAID-II File Server

Network Interfaces

TABLE 3. HIPPI Destination Board VME Registers

Register Description
Configuration Sets up VME functionality of board - enable interrupts,

set VME address modifier, etc.

Input FIFO Receives data from VME into FIFO, can be read by 29k.
Output FIFO Stores data written by 29k into a FIFO that can be read
from the VME.
Status Stores current status of board
Command Stores data written from VME, can be read by 29k.
Response Stores data written by 29k, can be read from VME.
Reset Controls reset of various sections of board

TABLE 4. HIPPI Destination Board HIPPI Registers

Register Description
Data FIFO Stores data receive from HIPPI channel.
Total Counter Stores number of 64-bit words to send to backplane.
Event FIFO Describes incoming HIPPI transfers.
HIPPI Command Used to enable and control status of HIPPI channel and
backplane

Backplane Status Stores current status of backplane.

HIPPI Status Stores current status of HIPPI channel.

Backplane Target Stores slot number of boards in backplane to send data
RAM to.

Backplane Counter | Stores number of 64-bit words to send to each board in
the backplane. Used to stripe data across muluple
boards.

4.1.3 Original Use

TMC originally built the boards for use with a CM-2. These boards
plug into a specially engineered backplane containing three busses. Two of
these are simple high speed unidirectional busses, the HPPIS bus and the
HPPID bus. The third is a VME bus that is used to control the board set. In a
typical TMC CM-2 setup, a single chassis contains the two HIPPI boards, a
Sun-4 CPU board (to control the HIPPI boards), and up to 7 10P controllers
that connect to the CM-2. Very little code runs on the 29k processor in the
typical setup. Much of the transfer set up and protocol processing is done by
the Sun-4 host in the system. The Sun-4 host remains lightly loaded since it
has no other computational responsibilities. This allowed TMC to easily
debug their network code since it is running under a standard UNIX system.

An Efficient Network Interface for the RAID-II File Server 9

Network Interfaces

However, they sacrificed speed to obtain this improved programming envi-
ronment.

4.2 Ultranet

The UltraNetwork is a hub-based store and forward network capable
of transmission rates up to 1Gbit/second. Figure 3 shows our Ultranet topol-
ogy. The hubs create a high speed switching interconnection by routing
incoming packets to the proper destination.

Link Adapters

N
\ ity

Sun3 Sun4 Sund Hub-based HIPPI
VME VME VME Adapter

FIGURE 3. UC Berkeley UltraNetwork Topology

Hubs are physically connected by serial links capable of transmission
rates of 250Mbits/second. Up to 4 links can be used to connect a pair of hubs.
Data can be striped across these links to achieve Gbit/second speed. These
links terminate in link adapters in the hubs. The link adapters are also used to
connect to machines with Ultranet host adapters. Host adapters are available
for machines with industry standard backplanes (for example VME). Each
host adapter contains an on-board microprocessor and can perform DMA to
the host’s memory. The on-board microprocessor does all the protocol pro-
cessing necessary to communicate across the UltraNetwork to remote clients.
Computers without standard backplanes, typically mainframes and super-
computers, can connect to the UltraNetwork using standard channel inter-
faces (for example HIPPI, HSX) attached to a hub-based adapter. This
essentially moves the network interface into the hub itself. Much of the
UltraNetwork protocol is handled by a processor on the hub-based adapter.
However, software must run on channel connected hosts to handle communi-
cation to the hub-based adapter. This software is described in more detail
below.

Typical VME Ultranet host adapters provide a maximum of about 8
MB/s to the network. On the basis of the RAID-II performance goal of 40

10

An Efficient Network Interface for the RAID-1I File Server

Network Interfaces

MB/s, we decided to use a HIPPI attachment between the drive array and the
Ultranet hub.

Each transfer between the UltraNetwork hub and the hub-adapter
attached host is composed of a DMA word followed by either a request block
or data. The maximum size of the data segment of each transfer is 32 KB.
The DMA word accompanying each transfer describes the contents of the
transfers. Analyzing the DMA word provides sufficient information to iden-
tify the correct destination in the system for the transfer. Request blocks are
commands that pass between the hub-based adapter and the host. Each
request block roughly has an analogue in BSD 4.2 network socket calls. Sev-
eral of the most important request blocks are summarized in Table 5. Only a
few standard data formats are used to transmit the various request blocks. As
a result each request block requires sending significantly more data than is
necessary.

TABLE 5. UltraNetwork Request Blocks

Request Blocli BSD Equivalent
J— —
OPEN socket()
ADAPTER LISTEN | combination of bind(), listen() and accept()

CONNECT connect()
CLOSE close()
SEND send()

RECEIVE recv()

4.2.1 Original Use

Typical UNIX UlwraNetwork configurations use host based adapters.
This enables the network interface processor to access the host memory
through the use of DMA. This setup allows the host CPU to provide pointers
to the necessary data and information to the host adapters on-board protocol
processor. The protocol processor then interprets the information using some
built-in microcode and sends the appropriate packets to the UltraNetwork
hub. This reduces the amount of data copying and computation the host CPU
does. Systems that used the hub-based adapters were not similar enough to
RAID-II to provide insight for the network software development.

An Efficient Network Interface for the RAID-II File Server 11

Software Architecture/ Implementation

5.0 Software Architecture!/ Implementation

In this section, we describe the organization of the networking soft-
ware of the RAID-II file server. Various aspects of the implementation, such
as lines of code and difficulty, are also described.

5.1 Motivation

Before developing the networking code for RAID-IL, it was necessary
to examine code written by TMC and UltraNetwork for their hardware’s
original uses.

The first major challenge was that the RAID-II system runs the Sprite
Operating System. Sprite was used to improve disk performance through the
use of the Log Structured File System (LFS) and other file system improve-
ments unique to the Sprite OS. Both the TMC and Ultranet software were
developed for Sun-OS and needed a significant amount of work to port to
Sprite.

Thinking Machines had developed their code in a system environ-
ment that was very different from RAID-IL. In their typical system, a Sun-4
machine was located on the same VME bus as the HIPPI board set. This
allowed high bandwidth, low latency communication between the Sun-4
CPU and the 29k CPU’s on the HIPPI boards. In addition the Sun-4 CPU was
lightly loaded since it had no other computational responsibilities. In the
RAID-II system, the Sun-4 CPU was connected to the HIPPI boards through
a VME link board. This limited the bandwidth between the Sun-4 VME bus
and the TMC VME bus to 2 MB/second. The Sun-4 CPU was also responsi-
ble for running file system software and handling the control of the remain-
der of the RAID-II system (XBUS board, SCSI controllers, etc.). The RAID-
11 architecture required that the 29k processors on the TMC HIPPI boards run
much more sophisticated software This software would have to interpret and
control the data transfers without the help of the Sun-4 CPU. This would
reduce the communication between the Sun-4 CPU and the remote VME
bus. It would also reduce the load on the host CPU.

UltraNetwork’s code was written to support a host-based adapter, not
a hub-resident adapter. In addition, RAID-II’s network interface had some
very significant peculiarities. Although accessing host memory was very
slow (across a VME link card), the network interface could access memory
on the XBUS board via a very fast backplane. Also, unlike most network
adapters the TMC HIPPI boards only had very limited DMA capabilities.
RAID-II needed additional software that emulates some of the funcuons

12

An Efficient Network Interface for the RAID-1I File Server

Software Architecture/ Impiementation

present in a host-based adapter. These various factors made it necessary for
the host to perform some of the actions normally assigned to the network
controller. To keep the load on the host CPU as low as possible, as much of
the network header processing as possible was done by the 29k CPU’s on the
HIPPI board.

Little of the networking code from TMC and UltraNetwork could be
used in the RAID-II system. We needed new code that was much more suited
to the interconnection and performance of the system.

§.2 Architecture

The RAID-TI block diagram [Figure 1] shows that only one path
exists between the network and disk that supports the desired bandwidth of
40 MB/second. This path passes through the HIPPI boards, XBUS board and
the SCSI controllers. Since only the 29k processors lie on this data path, itis
necessary that they control the flow of information. For the 29k processors
on the HIPPI board to place data in the correct location, they were pro-
grammed to understand the UlraNetwork protocol. This division of software
is shown in Figure 4. Using the RAID-II architecture and the characteristics
of the Ultranet communication protocol, we came up with a example transfer
of data that would meet our performance goals. This example is subsection
below.

Ultranet Request Blocks Ultranet Request Blocks
Socket Interface Socket Interface

HIPPI Source 29k HIPPI Dest. 29k

VME Link

Sun4 Host CPU #
Socket Interface

File System

FIGURE 4. Software Architecture Division

An Efficient Network Interface for the RAID-II File Server 13

Software Architecture/ Impiementation

5.2.1 Sample Transaction

This section describes a sample transaction that may occur between

the RAID server and a client on the Ultranet. In this example the client opens
a file, reads 64K bytes and then closes the file. More complicated transfers
are possible but this gives a good example of the communications involved
and the software needed. The communication needed to open a file is graphi-
cally shown in Figure 5.

1.

The file server host will start by issuing an open () of a socket. This will result in the
HIPPI source board sending out an OPEN request block. The HIPPI destination board
will receive the completed OPEN request block from the Ultranet hub with a new socket
id. This socket id is returned to the file server and the cpen () call completes.

The file server host issues a 1isten () on the socket id. This is accomplished by the
source board sending an ADAPTER LISTEN request block to the Uliranet hub. 1is-
ten () is a combination of BSD bind(), listen() and accept(). When a client creates a
connection to the file server the completed ADAPTER LISTER request block returns to
the destination board. The destination board sends information about the established con-
nection to the file server and the 1isten () call completes.

The file server does a recv () for file request information on the connected socket id. A
pointer to an empty host buffer and a tag that uniquely identifies the transfer are passed to
the destination board. The source board sends a RECEIVE request block to the Ultranet
hub. The Ultranet matches up the request block with a client’s send of “open file x™ and
transfers the data to the HIPPI destination board. The destination board uses the unique
tag to identify the transfer and DMA’s the data into the correct memory location. A com-
pleted RECEIVE request block is sent by the Ultranet hub after the transfer completes.
The destination board sends the request block status to the file server and the recv ()
completes.

The host will open the appropriate file, and create data structures to handle it. The server
will construct a message: “Your file open has status x™ and will issue a send () on the
socketid. A pointer to the host data buffer and a tag that uniquely identifies the transfer
are passed to the destination board. The source board sends a SEND request block to the
Ultranet hub. The Ultranet matches up the request block with a client’s receive of return
status. The Ultranet hub sends a request to the HIPPI destination board to begin transfer
of the data. The destination board uses the unique tag to identify the transfer request and
determine the data to be sent. The source board must be set up to transfer the desired data
to the Ultranet hub. A completed SEND request block is sent to the destination board by
the Ultranet hub after the transfer completes. The destination board sends the request
block status to the file server and the send () completes.

The file server does a recv () for file request information on the connected socket id.
This proceeds similarly to the previous recv () request. However, the client requests
“read 64 KBytes at position x”.

The host will perform the actions necessary to read the appropriate data into an XBUS
memory buffer and will issue a send () of the data. A pointer to the XBUS buffer and a
tag that uniquely identifies the transfer are passed to the destination board. As before, the
source board sends a SEND request block to the Ultranet hub. The Ultranet matches up
the request block with a client’s receive of expected data. In this transfer, the Ultranet hub
sends a request to the HIPPI destination board to send only the first 32 KBytes of the

14

An Efficient Network Interface for the RAID-II File Server

Software Architecture/ Impiementation

transfer. This is due to buffering limitations in the Ultranet hub. The destination board
uses the unique tag to identify the transfer request and determine the portion of the data
to be sent. The source board must be set up to transfer the desired data to the Ultranet
hub. Theses 32 KByte transfers are repeated until the full transfer completes. A com-
pleted SEND request block is then sent to the destination board by the Ultranet hub. The
destination board sends the request block status to the file server and the send () com-
pletes.

. The file server does a recv () for file request information on the connected socket 1d.
This proceeds similarly to the previous recv () request. However, the client requests
“close file x”.

. The host will close the file then issue a close () on the socket id. This is accomplished

by having the source board send a CLOSE request block to the Ultranet hub. When the
hub frees up resources allocated to the connection it returns the completed CLOSE
request block to the destination board. The destination board forwards the CLOSE status
to the host and the close () completes.

Sun-4 HIPPI Ultranet Client
CPU Boards Hub

.\0&’
‘% Alsn_RB
recv() '\w*
/ / eturn send()
/ Recv_RB

ec
return recv()

File Opened

d
——end) | Send RB

4<mquegp

w
w A—S-ﬂq’gﬂ"/ o
return recv()

FIGURE 5. Communication between Sun-4 CPU, TMC HIPPI Boards,
Ultranet Hub and Ultranet client to open a file

An Efficient Network Interface for the RAID-II File Server 15

Software Architecture/ Implementation

5.3 Source Board Code

From the example transfer, it is evident that the HIPPI source board
has to be able to send both data and request blocks to the Ultranet hub. The
commands to perform these actions are summarized in the following sec-
tions. These commands are written into the HIPPI source board’s VME
FIFO. Every command to the source board starts with the following com-
mand header:

31, . . .24 | 23. . . .16 15. . . .8 | 7.0

Source Magic Serial Opcode

Source magic is a single unique number used to help identify corrupted
commands. Serial is used to trace the execution of a single command.
Opcode identifies which command type follows. All parameters for the
command follow the command header.

5.3.1 Sending Data
SendData (
int VMEDataSize;
int XBUSDataSize;
int VMEData[VMEDataSize];)

The above command requests the HIPPI source board to send VME-
Data and XBUSDataSi ze words from the XBUS on the HIPPI channel.

5.3.2 Ultranet Request Blocks

Most of the commands to the Source board send specific UltraNet-
work request blocks. Each command copies only the essential parameters of
the associated request block to the 29k processor. This reduces the traffic
between the Sun-4 and the source board. Each command is summarized in
Table 6.

In addition to the needed request block fields the following must also
be sent for each Ultranet specific command:

31. . . .24 | 23. . . .16 [15. . . .8 {7.0

Kernel Command Pointer

Kernel Buffer Pointer

These fields are necessary to identify the return values of the command to the
kernel.

16

An Efficient Network Interface for the RAID-1I File Server

Software Architecture/ Implementation

TABLE 6. Command Format between 29k and host CPU

UltraOpen()
short Socket ID;
char status;

Description

Sends request to UltraNetwork to open a socket.
Socket ID and status are empty parameters.

UltraListen{()
short Socket ID;
char status;
int Connection Parameters{4];
char remote address{7};
char local address[7];
char port[4];

Sends request to bind Socket ID to port. Then
listens for a connection and accepts it. Connec-
tion Parameters specify UltraNetwork specific
parameters for each connection.

UltraClose()
short Socket ID;
char status;

Sends request to close connection active on
socket ID.

UltraSend()
short Socket ID;
char status;
int size;
char tag;

Sends request to send size bytes on connection
associated with Socket ID. Each send request
block is given a unique 8 bit tag that identifies it.

UltraRecv{()
short Socket ID:
char status;
int size;
char tag;

Sends request to receive size bytes on connec-
tion associated with Socket ID. Each receive
request block is given a unique 8 bit tag that
identifies it.

R

5.4 Destination Board Code

To support the example transfer, the destination board needs to inter-
pret the incoming Ultranet request blocks and scatter-gather Ultranet data
requests. The VME commands and HIPPI transfers that the destination board
must understand are summarized in the following sections.

Every VME command is written to the destination board VME FIFO.
These commands must starts with the following command header:

31....24123....16 15. . . .8 | 7.0
Opcode

Destination Magic Serial

Destination magicisa single unique number used to help identify cor-
rupted commands. Serial is used to trace the execution of a single com-
mand. Opcode identifies which command type follows. All parameters for
the command follow the command header.

An Efficient Network Interface for the RAID-II File Server 17

Software Architecture/ Implementation

Every HIPPI transfers sent from the Ultranet hub to the destination
board starts with the following DMA word structure.

31. . . .24 | 23. . . .16 | 15. . . .8 |7. . . - -0

Content Description

Transfer Offset

Tag

Transfer Length

Content Description identifies the type of request block or data being
sent. If the current transfer is part of a larger multipart data transfer (larger
than 32 KByte transfer), Transfer Offset provides the byte offset of
the data being sent into the entire transfer. Tag is the unique identifier for
every send or receive of data. Transfer Length s the byte length of the
current transfer. Due to buffering limitations in the Ultranet hub, Transfer
Length is never more than 32 KBytes.

5.4.1 Allocating Buffers
ScatterGather(
short numberElements;
char tag:;
struct ScatterGatherElements ({
int size;
int address;
} elements[numberElements];)

This command, sent by the host CPU to the destination board 29k,
allocates buffers for the transfer labeled with tag.

5.4.2 Ultranet Request Blocks

When the HIPPI destination board receives a completed request
block from the Ultranet hub, it must notify the Sun-4 host. The destination
board uses the same message format to communicate with the Sun-4 as is
used to send request block from the source board. These data formats are
summarized in Table 6. Since only the most necessary fields of each request
block are sent, traffic between the 29k processors and Sun-4 is reduced. The
destination board uses its VME DMA engine to copy the message into the
host CPU’s main memory. Next, the destination board interrupts the Sun-4
CPU to notify it of the completion of an Ultranet request. The host CPU may
then examine the completed request for either returned values or status.

18

An Efficient Network Interface for the RAID-II File Server

Software Architecture/ Implementation

In addition to the request block fields listed in Table 5, the following
is also copied to Sun-4 memory for each Ultranet request block:

31. . . 24 | 23. . . .16 | 15. . . .8 | 7. . . . - 0

Kernel Command Pointer

Kernel Buffer Pointer

These fields are necessary to identify the return values of the command to the
kernel.

5.4.3 Incoming Data

When incoming data arrives at the destination board, the 29k proces-
sor uses the tag, transfer offset and transfer length fields
of the DMA word and previously processed ScatterGather() commands to
determine the destination of the data. If the destination address of the data is
in host memory, the 29k removes the data from the HIPPI channel and DMA
copies the data to the proper VME location. However, if the data should be
placed in XBUS board memory, the destination board sets the XBUS board
up for the transfer by writing to the XBUS VME registers. Next, the 29k
enables the state machine to copy data from the HIPPI channel to the XBUS
board. The data transfer is complete when the state machine finishes.

5.4.4 Outgoing Data

When incoming data arrives at the destination board, the 29k proces-
sor uses the tag, transfer offset and transfer length fields of the DMA word
and previously received ScatterGather() commands to determine the source
of the data. The destination board cannot use its VME DMA engine to set up
the transfer for several reasons. First, access to the source board VME FIFO
cannot be shared by the host and the destination board. Second, the destina-
tion board’s VME DMA engine reads data into the destination board’s VME
input FIFO. However, the host CPU must also access this input VME FIFO
and its access cannot be shared. As a result the host CPU must set up the
transfer of data. The destination board copies the length and source address
of the transfer to its VME output FIFO and interrupts the host CPU. The host
CPU uses the length and source address to set up the XBUS and HIPPI
source board for the transfer. This is done by writing to the XBUS control
registers and issuing the SendData() command to the HIPPI source board.

An Efficient Network Interface for the RAID-II File Server 19

Software Architecture/ Implementation

5.5 Implementation

The approximate complexity of code running on the TMC HIPPI

boards is summarized in Table 7.

TABLE 7. HIPPI Board Code Statistics

R
Lines Estimated
Section of Code | Man Hours
Destination Board C Code 3500 900
Source Board C Code 3500
Shared TMC Boards C Code 1500
Shared TMC Boards Assembly 700

Almost 7000 additional lines of code were written by Ethan Miller
for the Sun-4 host CPU to support the UltraNetwork and HIPPI boards.

TABLE 8. Implementation Time

% of total
Activity time
I

Reverse engineering Ultranet and 45%
Ultranet specific debugging

Writing HIPPI Board Code 25%
Interfacing with Sun-4 0S device 5%
driver code

Miscellaneous debugging 25%

TOTALS

Table 7 describes how long the different network interface develop-
ment activities took. No documentation existed for developing code to inter-
face to a hub-based adapter. This interface had to be reverse engineered from
the Ultranet UNIX device driver code and experimentation with the Ultranet
hub. This proved to be the most time consuming task. Much of the testing of
the HIPPI board code was done independent of the Sun-4 CPU code. We
defined the interface between the Sun-4 CPU and the HIPPI boards early in
the development process. This early definition of the interface helped reduce
the time taken to combine the Sun-4 CPU code and the HIPPI board code. A
number of tasks compose the Miscellaneous debugging entry. These tasks
include: debugging the HIPPI channel communication code and identifying

hardware problems in the system.

20

An Efficient Network Interface for the RAID-II File Server

Performance Measurements

6.0 Performance Measurements

The two basic goals of the RAID-II network software were to provide
high bandwidth to clients on the UltraNetwork and to make the load on the
Sun-4 host CPU as light as possible. In this section, we present measure-
ments of network bandwidth and CPU load of the RAID-II system.

6.1 Reduction of VME Link Traffic

To improve network performance of the RAID-II system, we
included only the essential fields of Ultranet request blocks in the messages
between the Sun-4 and the HIPPI boards. The “compression” achieved is
summarized in Table 9. On the average, messages were reduced in size by
50%. This reduction had two effects. It reduced the load on the server CPU

TABLE 9. Ultranet Request Block Size

—

Normal Compressed
Request Block Size Size
OPEN 11 5

LISTEN 23 14
CLOSE 23

SEND 11
RECEIVE 11
R

by reducing the number of memory copies. It also lowered the utilization of
the slow VME link connecting the server CPU and the TMC HIPPI boards.

LL_—

6.2 Bandwidth

The UltraNetwork currently installed at UC Berkeley supports three
Sun VME workstations. Each Sun (Sun-3 or Sun-4) workstation supports a
approximately 3.5 MB/s [Clinger89]. This provides a maximum aggregate
bandwidth of 10.5 MB/s. RAID-II is capable of completely satisfying this
network load. Under the current maximum load, all clients receive data at
their full desired bandwidth. Therefore, bandwidth limitations of the RAID-
II network interface can currently only be estimated from scaling arguments.
A thousand packets of a fixed size were sent between RAID-II and a client
machine. The time to complete these transfers was used to obtain average
bandwidth and latency measurements for various sizes.

An Efficient Network Interface for the RAID-II File Server 21

Performance Measurements

Figure 6 shows the bandwidth of data for different sized packets
being sent between RAID-II and individual clients. The bandwidth of a Cray
supercomputer commaunicating with a single Sun-3 client is shown for com-
parison. The SunOS version used in the measurements with the Cray, SunOS
3.5, performs network transfers approximately 10-15% faster than the ver-
sion used in measurements with the RAID-II system, SunOS 4.1.2. The max-
imum bandwidth for the Sun-3 clients is 3.5 MB/s reading data from RAID-
11 and 3.7 MB/s writing data to RAID-II. The maximum bandwidth for the
Sun-4 clients is 3.0 MB/s reading data from RAID-II and 3.8 MB/s writing
data to RAID-II. This large performance gap reading and writing data from a
Sun-4 is due to cache conflicts in Sun-4 memory system. When data is being

Uttranet Read From Server (bandwidth)

—o
-—— RAID to Sun-3
-—o— RAID to Sun-4
—«=— Cray-2 to Sun-3
0 65536 131072 196608 262144
Packet Size (Bytes)
Utltranet Write To Server (bandwidth)
—
—s— Sun-3to RAID
—o— Sun-4 to RAID
—-+— Sun-3to Cray-2
0.00 ¥— + + + —
0 65536 131072 196608 262144

Packet Size (Bytes)

FIGURE 6. Bandwidth vs. Packet Size for transfers between RAID-II and a single
client

written to Sun-4 memory from the network, the virtually addressed cache in

22

An Efficient Network Interface for the RAID-II File Server

Performance Measurements

the Sun-4 must be updated. This results in a lower bandwidth writing to the
Sun-4 memory.

Figure 7 shows the latency to send different sized packets between
RAID-II and individual clients. The performance of a Cray supercomputer
communicating with a single Sun-3 client is shown for comparison. The min-
imum latency of packets for a Sun-3 is 6.0ms reading from RAID-II and
4.8ms writing to RAID-IL.The minimum latency of packets for a Sun-4 is
2.2ms reading from RAID-II and 1.3ms writing t0 RAID-II. These numbers
indicate that it is the processing speed of the clients that limits the end-to-end
latency of communication.

Ultranet Read From Server (latency)

45.00 T
4000 ¢
35.00 1

50007 —«— RAIDto Sun3
£2500 ¢

g 2000 ¢
E
1500 +
10.00 + /
500 >~

[
0.00 + —
0 32768 65536 98304 131072

Packet Size (Bytes)

—~o— RAIDto Sun-4

—+— Cray-2 to Sun-3

Ultranet Write To Server (latency)

—— Sun-3to RAID
—0— Sun-4 to RAID

—-+—— Sun-3 to Cray-2

—

0 32768 65536 98304 131072

Packet Size (Bytes)

FIGURE 7. Latency vs. Packet Size for transfers between RAID-II and a single
client.

An Efficient Network Interface for the RAID-II File Server 23

Performance Measurements

6.3 Utilization

The network software for RAID-II splits the workload of network
communication across three processors, the Sun-4 host CPU and the two
AMD 29k CPU'’s on the HIPPI boards.

The utilization of the Sun-4 CPU is highly dependant on the packet
size of the transfers occurring. Figure 8 shows the utilization of the Sun-4
CPU when all three clients transferring data. The three clients consume/cre-
ate approximately 10.5 MB/s of data traffic. When the clients are writing
data to RAID-II the host CPU must take a single interrupt per packet. As a
result the load on the host CPU is inversely proportional to the packet size.
When clients are reading data from RAID-II, the host CPU must be inter-
rupted for every outgoing data fragment transfer requested by the Ultranet
hub. All packets are fragmented into 32Kbyte transfers across the HIPPI
channel. A packet size of 32Kbytes reduces the host CPU utilization to a
minimum of 48%. CPU utilization stays roughly constant for packets larger
than 32Kbytes.

Sun-4 Host Utilization
3 Clients simultaneously transfering

100

a0 1

3

70 +1\ 4 ——s—— RAID to Clients
3 07 \/_/ —o— Clients to RAID
g 50 ¢+
X 401

30 +

20 +

10 + —_—

] + +
0 65536 131072 196608 262144

Packet Size

FIGURE 8. Sun-4 Host CPU utilization vs. Packet Size for three clients
communicating with RAID-II

The host CPU utilization limits the network performance of clients
reading from RAID-II to 21 MB/s, about twice the currently available perfor-
mance. Since packets on the UltraNetwork can be several megabytes, the
host utilization places no limits on the bandwidth of clients writing data to
the RAID-II system

The utilization of the 29k CPU’s on the HIPPI boards depends on the
actual bandwidth of the communication. This is due to the fact that the 29k

24

An Efficient Network Interface for the RAID-Il File Server

Conclusions

processors have a fixed computation overhead per 32 KByte fragment trans-
ferred on the HIPPI channel. Their utilization is, therefore, not dependant on
packet size but only on the number of bytes transferred. Table 10 shows the
utilization of the 20k CPU’s with 1,2 and 3 clients transferring. When writing
data to RAID, the destination board is highly utilized since it must set up and
perform the data transfers. For the same transfers, the source board only pro-
cesses outgoing request blocks. During reads from the RAID system, the
source board must perform the overhead of transferring the data. The desti-
nation must still set up the transfers of data.

TABLE 10. Utilization of 29k Processors during Network Transfers

Read From RAID Write To RAID

Bandwidth | Source | Destination Source | Destination
(MB/s) 29k 29k 29k 29k
35 21% 7% 18% 14%
7.0 N/A 18% 16% 23%
10.5 35% 20% 18% 27%

These numbers indicate that the 29K CPU’s would limit the network
to approximately 32Mbytes/second for both reads and writes to RAID-IL.

7.0 Conclusions

The two basic goals of the RAID-II network software were to provide
high bandwidth to clients on the UltraNetwork and reduce the load on the
host CPU. [Chen93] measurements indicate that the RAID-II system hard-
ware can support a raw bandwidth of 38.5 MB/s between memory and the
network. Based on our scaling estimates, the RAID-II server can source
approximately 21Mbytes/second to the Ultranet (limited by the host CPU)
and sink 32 MB/s (limited by the destination board 29K CPU) from the net-
work. Upgrading the host CPU to more modern hardware would allow the
RAID-II system to source 32 MB/s to the network. This bandwidth is signif-
icantly higher than that of Ethernet-based file servers in our environment.
For comparison, our Sprite OS file server supports a bandwidth of about 1
MByte/sec to the network [Welch90]. These results show that the RAID-II
network interface is effective at providing a high bandwidth to clients on the
Ultranet. However, although the software design did reduce the load on the
host CPU by effectively using the 29K CPU'’s, we could not prevent the host
CPU from being a critical resource for sourcing data. We feel that the net-

An Efficient Network Interface for the RAID-II File Server 25

Acknowledgments

work performance of the RAID-II server with Ultranet clients cannot be
improved significantly.

With some minor hardware changes, there are a number of mecha-
nisms to improve the performance of the system up to the maximum
38.5Mbytes/second First, the limiting CPU utilizations could be reduced by
sharing access to the HIPPI source board by the host CPU and the HIPPI des-
tination board. The sharing would make it unnecessary to interrupt the Sun-4
host every 32Kbytes. However, this sharing is impossible to achieve effi-
ciently without an improved VME interface on the HIPPI boards. Another
possibility would be using larger packets to communicate to/from the TMC
HIPPI boards. The Ultranet hub architecture currently limits us to 32Kbyte
transfers. The utilization of both the 29K CPU’s and the Sun-4 CPU would
greatly be reduced by the use of larger packets. This would allow us to scale
to much higher bandwidths. To increase the packet size, we plan on replacing
the Ultranet with a HIPPI switch network. Using the HIPPI switch network
we hope to support transfers at over 70Mbytes/sec to a pair of XBUS boards.

8.0 Acknowledgments

I would like to thank Professor Randy Katz and the RAID group for
their help and support.

9.0 References

[AnonA] Network Operations Manual, Ultra Network Tech-
nologies, Part Number 06-0001-001, Revision A, (1990).
Chapter 2: UltraNet Architecture; Chapter 3: UltraNet Hard-
ware.

[AnonB] HPPI Destination Module (HPPID) Hardware
Specification. Thinking Machine Corp. October 1990.

[AnonC] HIPPI Source Interface Hardware Register
Specification. Thinking Machine Corp. September
1990.

[ANSI91] High-Performance Parallel Interface -
Framing Protocol (HIPPI-FP), American National
Standard for Information Systems X3T9.3/89-013 Rev 4.2.
June 1991.

26

An Efficient Network Interface for the RAID-II F. ile Server

References

[Chen93]

Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Ken Lutz,
Ethan L. Miller, Srinivasan Seshan, Ken Shirriff, David A.
Patterson, Randy H. Katz. Performance and Design Evalua-
tion of the RAID-II Storage Server. to appear in Interna-
tional Parallel Processing Symposium 1993
wWorkshop on I/0.

[Chervenak91] Ann L. Chervenak and Randy H. Katz. Performance of a Disk

[Clinger89]

[Katz91]

[Katz93]

[Lee92]

[Patterson88]

Array Prototype. Proceedings of the 1991 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, volume 19, pages
188-197, May 1991.

Marke Clinger. Very High Speed Network Prototype Devel-
opment; Task 2.1: Measurement of Effective Transfer Rates.
Ultra Network Technologies. October 1989.

Randy H. Katz. High Performance Network and Channel-
Based Storage. Proceedings of the IEEE, Vol
80, No. 8. pages 1238-1260. August 1992.

Randy H. Katz, Peter M. Chen, Ann L. Drapeau, Edward K.
Lee, Ken Lutz, Ethan L. Miller, Srinivasan Seshan, and David
A. Patterson. RAID-II: Design and Implementation of a Large
Scale Disk Array Controller. 1993 Symposium on
Integrated Systems, 1993. University of California at
Berkeley UCB/CSD 92/705.

Edward K. Lee, Peter M. Chen, John H. Hartman, Ann L.
Chervenak Drapeau, Ethan L. Miller, Randy H. Katz, Garth
A. Gibson, and David A. Patterson. RAID-II: A Scalable
Storage Architecture for High-Bandwidth Network File Ser-
vice. Technical Report UCB/CSD 92/672, University of Cali-
fornia at Berkeley, February 1992.

David A. Patterson, Garth Gibson, and Randy H. Katz. A
Case for Redundant Arrays of Inexpensive Disks (RAID). In
International Conference on Management of
Data (SIGMOD), pages 109-116, June 1988.

An Efficient Network Interface for the RAID-II File Server 27

References

[Welch90] Brent B. Welch. Naming, State Management, and User-Level
Extensions in the Sprite Distributed File System. University
of California at Berkeley UCB/CSD 90/567. April 1993

28

An Efficient Network Interface for the RAID-II File Server

