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Abstract

Evaluation of Multithreading and Caching
in Large Shared Memory Parallel Computers

by

Robert Francis Boothe
Doctor of Philosophy in Computer Science

University of California at Berkeley
Professor Abhiram G. Ranade, Chair

Shared memory multiprocessors are considered among the easiest parallel comput-
ers to program. However, building shared memory machines with thousands of processors
has proven difficult. Two main problems are the long latencies to shared memory and the
large network bandwidth required to support the shared memory programming style.

In this dissertation, we quantify the magnitude of these problems and evaluate
multithreading and caching as mechanisms for solving them. Multithreading works by
overlapping communication with computation, and caching works by filtering out a large
fraction of the remote accesses.

We evaluate several multithreading models using simulations of eight benchmark
applications. On systems with multithreading but without caching, we have found that the
best results are obtained for the explicit-switch multithreading model. This model provides
an explicit context switch instruction that allows the compiler to select the points at which
context switches occur. Qur results suggest that a 200 cycle memory access latency can be
tolerated using multithreading levels of 10 threads or less per processor. On systems with
both multithreading and caching, we have found that the switch-on-miss multithreading is
best. For this model, our results suggest that a 200 cycle memory access latency can be
tolerated using multithreading levels of 3 threads or less per processor.

We show that by using multithreading techniques, systems both with and without



requirement,

Professor Abhiram G. Ranade
Dissertation Committee Chair
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Chapter 1

Introduction

Shared memory multiprocessors are considered among the easiest parallel comput-
ers to program [Boo89, HLRW92, Ken92, LM92, LLG*92, NL91, RT86, SHG92, TKB92].
Programming is easier because the shared memory programming model allows the pro-
grammer to ignore issues such as the explicit location of data and its movement between
processors. This model, however, is just an abstraction, and its success depends on the
ability of the computer hardware and software to efficiently support it. This is analogous

to the abstraction of a large virtual memory.

For small machines, with from 4 to 30 processors, this shared memory abstraction
has been relatively easy to provide. It involves snooping caches on a single memory bus
connecting all of the processors. This configuration has been named a multiBel85] and
has been widely adopted for building small multiprocessors for which a single bus is able
to provide sufficient bandwidth. Examples include the Sequent Symmetry[LT88], Encore
Multimax[Enc87], and Silicon Graphics 4D-MP[BJS88].

However, building large shared memory machines has proven to be much more
difficult than building other types of large parallel machines. For example, there exist 1,024
processor (message passing) Ncube’s, 1,024 processor (message passing) CM-5s, 16,384 pro-
cessor (SIMD) MasPar’s, and 65,536 processor (SIMD) CM-2’s[DM93]. Large commercial
shared memory multiprocessors such as the KSR1{Ken92] or the Cray-T3D[KS93] have only
recently been introduced and have not yet been built in very large configurations. The goal
of this dissertation is to understand and address the key difficulties impeding the design

~ and development of large shared memory multiprocessors.



1.1 The Latency Problem

By large shared memory machines, we mean hundreds or thousands of processors.
For machines of this size, the bandwidth of a single bus is inadequate, and thus more
complex networks, such as butterfly or grid networks, are required. The latency problem
arises when a processor accesses a shared memory variable that is located in a memory
module across the network. To perform this remote memory access, the processor issues a
request message into the network. This message then traverses the network to the memory
module. The’memory module reads the value. And then it sends a result message back to
the requesting processor. The interval between the sending of the request message until the
return of the result message is called the remote memory access latency, or just the latency.

The networks of large machines are multi-hop networks, and messages are subject
to switching, transmission, and congestion delays at each stage of the network. In a butterfly
network, for example, a message traverses O(logp) nodes to reach its destination, and in
a two dimensional grid network a message traverses O(\/p) nodes. The aggregate latency
through these networks can be hundreds of cycles. The latency becomes a problem if the
processor spends a large fraction of its time sitting idle waiting for remote accesses to
complete.

Figure 1.1 shows the extrapolated round trip network latencies (expressed in terms
of the processor’s cycle time) for several recent or proposed large parallel machines. These
machines have a variety of architectures. The CM-5[LAD+92] is a message massing ma-
chine with a fat-tree[Lei85] network. DASH[LLJ*92] is a cache-coherent shared-memory
multiprocessor with a two-dimensional toroidal mesh network. The KSR1[Ken92] is also a
cache-coherent shared-memory multiprocessor but with a ring (or hierarchy of rings) net-
work. And TERA[ACC*90] (expected in 1994) is a shared-memory multiprocessor without
caching, and it uses a three-dimensional toroidal mesh network.

The latencies shown in the graph have been extrapolated based on scaling these
networks. For the CM-5 and DASH, the latencies do not include congestion affects, and
thus the actual latencies in heavily loaded networks will be higher than these curves. The
KSR1 has not yet been disclosed well enough to allow extrapolating a complete latency
curve.

For machines supporting 1024 processors, these graphs suggest that we can expect

latencies of 200 cycles or more, once congestion affects are taken into account. Furthermore,
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l Application cycles / remote access

sieve 11.0
blkmat 102.5
sor 44
ugray 17.5
water 40.2
locus 6.5
mp3d 5.7
barnes 41.3
Table 1.1: Frequency of accesses to shared memory.

we expect that the latencies wil] continue to increage over time as on-chip speeds are reduced

more quickly than off-chip speeds.

superscalar and superpipelining techniques, and thys further increase the opportunity cost
of remote accesses,

In contrast with these latencies, Table 1.1 shows the reference rates for a number
of paralle] shared-memory applications. These applications will be used throughout this
thesis and will be described in Chapter 2. These Temote reference rateg were calculated
by dividing the tota] number of executjon cycles (excluding stalls) by the tota] number of
shared memory loads and stores. If these applications were rup 0L a machine that hag te
stall on each remote access for a 200 cycle latency, the machine would be busy as little as
3% of the time, Clearly some means of tolerating the latency is essentia] for building large
sha.red-memory Parallel computers,

1.2 Solutions to the Latency Problem

IThe KSR1 Processor is two-way Superscalar, and the TERA processor has a wide instruction word and
can issue three operations per cycle.
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Figure 1.2: Mechanisms for reducing the impact of memory latency.

different thread while waiting for a remote reference to complete. Weak consistency[AH90]
allows some overlapping of writes without concern that they might arrive out of order.
Prefetching[LYL87] allows requesting data before it will be needed. By layout[Hig93] we
mean the idea of arranging data on or near the processor that is going to use it. And

aggregation[HLRW92] is the idea of getting large amounts of data at once.

The mechanisms near the top of the diagram are more commonly automatic (or
invisible) as far as the programmer is concerned and are generally implemented in hard-
ware. The mechanisms near the bottom of the diagram are often implemented in software
either by a smart compiler or manually by the programmer. For example in a message
passing program, the programmer explicitly specifies the layout of data and the packaging

of messages(i.e., aggregation of data).

All of these mechanisms have their limitations. Caches must be kept coherent,
which becomes complex for large machinest HLRW92, TD91]. Furthermore, the hit rates
may be low for accesses to shared data[DRPS87, GHG*91]. Multithreading requires com-
plex hardware to allow rapidly switching between the threads on a processor. And since it
requires extra threads, it also requires extra parallelism and is thus limited to larger prob-
lems. Consistency models prohibit many compiler optimizations. Weak consistency allows
more than sequential consistency, but it is a less intuitive programming model{GLL*90].
Prefetching is useful for applications with predictable behavior such as many scientific codes,

but it is of limited applicability for more chaotic codes that use complex data structures. It
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also may waste bandwidth by prefetching data that is not used. Generation of good layouts
is limited to the more regular and predictable applications. Finally, aggregation requires
coarse grain parallelism where large data items can be manipulated.

In this dissertation we have chosen to focus on evaluating the mechanisms of
multithreading and caching. A weakly consistent memory model is assumed throughout.
These are the more automatic mechanisms and are most consistent with the shared memory
programming model. The mechanisms of prefetching and layout can be of additional benefit,
and we have incorporated them in a limited fashion in a few of our studies, however there

remains room for further research in these areas.

1.3 Overview of Previous Multithreading Work

Previous multithreading research has been motivated by three concerns: tolerating
memory latency, building a fast pipeline, and supporting a dynamic dataflow like execution

model. Figure 1.3 shows the evolution of multithreading models and some of the motiva-
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tions for moving from one model to another. Some of these models have not been studied
Previously but can be predicted based on the motivations.

The costs and concerns of multithreading are: the large number of threads needed,
the scheduling mechanism used to schedule the many threads on a Processor, the cycles lost
to context switching overhead, and the large register file. These costs and concerns are

influenced by when and how often context switching is performed.

1.3.1 Fast Pipeline

The oldest model switch-every-cycle was used in the Denelcor HEP [Kows5]
and in MASA [HFS88). After each instruction, the processor switches to a different thread.
This allows a fast CPU pipeline to be built because it eliminates data dependencies between
instructions in the pipeline by interleaving different threads. It also a.llqws memory latencies
to be tolerated by not scheduling a thread until its reference has completed. Unfortunately
this model requires a large number of threads and a large amount of hardware to support -
them. Also, by interleaving the instructions from many threads, a single thread is limited
to a small fraction of the processing power. TERA[ACC*90] is similar to the HEP, but the

1.3.2 Hiding Memory Latency

The rest of the multithreading models that we consider execute a thread for many
cycles before context switching. The optimizing compiler is responsible for the ordering of
instructions so as to hide the small pipeline delays, and context switches are thus used only
to hide the long memory latency of remote accesses.

The switch-on-load mode] switches on load instructions which access shared
memory. Loads from local memory and other instructions all complete quickly and can be
scheduled by the compiler. Shared memory stores do not wait for their completion and
therefore do not cause context switches either. The advantages of this model over switch-
every-cycle are that a single thread can execute at full speed until it context switches, and
fewer total threads will be needed since multithreading is not being used to hide pipeline
delays. Simpler hardware may also be possible since context switches are less frequent.

The switch-on-load model sometimes context switches sooner than jt needs to.



instruction is issued and set when the resylt returns from the network. The switch-on-
use multithreading model context switches on the use of an invalid register, rather than
on a load instruction. The switch-on-use mode] Was used in the design of the CHoPP
archjtecture[MPSS’('] which had a VLIW multithreaded processor.

A benefit of the switch-on-use model] is that several load instructions cap be

switch model allows similar grouping to switch-on-use, but is simpler to implement ang
requires the addition of only a single instructjon. We evaluate the explicit-switch mode]
in Chapter 4 and find that it can eliminate from 50% to 80% of the context switches needed
by the switch-on-load model.

The most recent data flow research[CSS*91, NPA92] has adopted the explicit-
switch model. Short threads execute until their completion at which point they cause a

context switch to a new thread.

1.3.3 Adding Caches



The switch-on-miss model switches at points where load instructions miss in the
cache. An early study of this by Weber & Gupta[WG89] suggested substantial performance
benefits were available, but a later study as part of the DASH project [GHG*91] had
less optimistic results. Switch-on-miss multithreading was also studied as part of the
ALEWIFE project [ALKK90] and achieved good results for a few simple applications. One
draw back of context-switching on cache misses is that the context switch is detected after a
number of subsequent instructions have started down the CPU pipeline. These instructions
must be canceled, and thus there will be a context switch cost of several cycles because of
the w:;sted pipeline slots.

The switch-on-use-miss model context switches when a use instruction tries to
use the value from a shared load that missed in the cache. It was studied (approximately)
by the DASH project{GHG*91] when they looked at the combination of prefetching and
multithreading. Their prefetch instructions act like the initial load instructions, and their
subsequent load instructions act like the use of the data. They found little benefit from
prefetching when combined with multithreading, however they state that their prefetching
method was meant for a single threaded processor and should be done differently for a
multithreaded processor.

The conditional-switch model adds caching to the explicit-switch model. The
code appears the same as that for the explicit-switch model: there is a group of load
instructions, followed by a context switch instruction, followed by the instructions that
use the loaded data. The difference is that the context switch instruction is treated as a
conditional switch instruction. If any of the loads preceding the switch instruction missed
in thé cache, a context switch is performed as expected. But if all of the preceding loads hit,
the context switch instruction is ignored and the thread continues executing. This model
provides the benefits of grouping and caching as in the switch-on-use-miss model, but it

may be simpler to implement.

1.4 Limited Bandwidth

Besides having long latencies on remote accesses, the networks on large parallel

machines are also likely to have limited bisection bandwidths?. Figure 1.4 shows the bi-

?Bisection bandwidth is defined as the minimum bandwidth capacity between the two halves of a bisected
machines, considering all possible bisections.
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Figure 1.4: Bisection bandwidth of various parallel computers as a function
of machine size. The bandwidth is expressed in terms of bits per processor
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section bandwidths of various parallel computers. These are peak bandwidths and are not
expected to be fully achieved under real traffic patterns. Also, the bandwidths have been
extrapolated to 1024 processors based on the proposed designs, even if such a large machine
has not actually been built. The bandwidth values were calculated based on descriptions
of the networks in [ML92], [Ken92], [LLI+92], [LAD*92], and [ACC*90].

The key point of this graph is that for most networks, the bisection bandwidth
drops as the number processors is increased, and that for a large (1024 processor) machine,
only 1 or 2 bits of bandwidth per operation will be available. In fact, achievable bandwidth
may be only half of that amount because of the congestion caused by irregular traffic
patterns[Dal90].

The reason the bandwidth drops off as the number of processors increases is related
to the scaling characteristics of the networks. For the Sequent[ML92], there is a single
shared bus and thus the bandwidth per processor diminishes in proportion to the number
of processors. For both bandwidth and electrical reasons, sharing a single bus limits the
number of processors to around 30.

The KSR1[Ken92] is similar, it uses a single high bandwidth ring for small ma-
chines, or a two level ring of rings for larger machines. The bisection bandwidth depends
only on the top level ring, and when calculated on a per processor basis, decreases linearly.
For large machines they stave off the bandwidth decline by providing multiple rings at the
top level. The three lines in Figure 1.4 for the KSR1 represent the three configuration
options for these top level rings. The largest option has 4 GB/sec of bandwidth along the
ring (8 GB/sec crossing the bisection), but when divided among 1024 processors (two-way
superscalar) running at 20 Mhz, this provides only 1.6 bits per operation.

The DASH[LLJ*+92] architecture scales better because it is based on a 2-D wrap-
around mesh (torus) rather than a ring. The bisection bandwidth per processor drop off as
the square root of the number of processors. At 1024 processors, which is more than this
design was meant for, the bisection bandwidth is 1.8 bits per operation.

The CM-5 network[LAD*92] is a fat tree. Fat trees[Lei85] are a family of networks
where the connections between nodes at higher levels of the tree are generally “fatter” than
the connections between nodes at lower levels of the tree. With the appropriate connection
widths, a fat tree can provide constant bisection bandwidth per processor as the machine
is scaled. However to save costs, the designers chose to eliminate many of the channels at

~ the higher levels in the tree. For 1024 processors, the bisection bandwidth is 2.5 bits per
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operation. This figure is without the optional vector units. If they are included and achieve
their potential factor of 4 performance increase, the bandwidth when expressed in bits per
operation will be reduced to only 0.6 bits. ,

Finally, and in contrast to the other networks, the proposed Tera network pro-
vides a bisection bandwidth of 55 bits per operation and scales the bandwidth linearly
with the number of processors. The network is a sparsely populated 3-D wrap-around
mesh[ACC*90], and to scale the bandwidth linearly, they increase the number of network
nodes faster than the number of processors. For large machines Tera has more than an order
of magnitude 'greater bandwidth than other machines. We suspect however, that providing
this large network bandwidth may not prove cost effective.

In this thesis we do not focus on any particular network topology. Instead we
measure the bandwidth needs of our benchmark applications, and then use the results to
reason about the types of machines that should be built and the bandwidth capacity that
they should supply.

1.5 Overview of Thesis

In this dissertation we concentrate on the switch-on-load, explicit-switch,
switch-on-miss, and conditional-switch models. If caches are not used, our results
will show that grouping is important and thus explicit-switch is preferable to switch-on-
load. However if caches are used, our results will show that grouping has little benefit and
thus switch-on-miss is preferable to conditional-switch.

The remainder of this dissertation is organized as follows: Chapter 2 discusses
our simulation methodology and our set of benchmark applications. Chapter 3 presents
a performance model for a multithreaded processor. Chapter 4 focuses on hiding latency
with multithreading and evaluates the switch-on-load and explicit-switch multithread-
ing models. Chapter 5 adds coherent caching to the system and evaluates the switch-on-
miss and conditional-switch multithreading models. Chapter 6 considers the problem of
limited network bandwidth and presents results on the amount of bandwidth that is needed
by the various applications and multithreading models. Chapter 7 presents miscellaneous
studies and experiments on synchronization and various caching issues. Chapter 8 discusses
the hardware mechanisms needed to support a multithreaded processor. And Chapter 9

presents conclusions and directions for future research.
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There are also two appendices: Appendix A explains a new method for plotting
distributions that we have introduced in order to visually present both clearly and com-
pactly the types of distributions that we have encountered. And Appendix B explains the

techniques used to build the simulator that made this research possible.
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Chapter 2

Meth‘odology

This chapter discusses our simulation based research methodology. First we Present
our model of a large shared memory parallel machine. Then we Present the benchmark ap-
plications that we have used to evaluate this model, And lastly we Present our simulation

system and its limitatjons.

complex interacting systems that are difficylt to model accurately. Saavedra-Barrera et
al.[SBCVE9Q, SBC91] and Agarwal[Aga92] have done analytic models of simplified multj-
threading systems, but for reasons of tractability they are forced to assume that threads
are independent and have accesses at exponentially distributed intervals (i.e. according to a

Poisson process). The threads of paralle] programs, however, are not independent because

inter-arrival distributions. Real programs also have many parameters (such as reference
rates, amount of sharing, synchronization patterns, imperfect load balancing, paralleliza-
tion overhead, and time varying behavior) that are difficult to characterize and are not yet

well understood.

2.1 Machine Model
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Figure 2.1: Model of large shared memory multiprocessor.

variables local to threads, stacks, and the code. We assume all accesses to local memory are
instantaneous. This is reasonable since local data and instructions can be easily cached, and
any misses can be serviced locally. Accesses to shared memory are sent across the network
and thus have a long latency before they return.

We look at two variations of this model: one with caching of shared data (as
shown in the figure), and the other without it. Both types of systems have been and
are being built. Examples of systems without coherent caching are the HEP[Kow85),
BBN Butterfly[BBN89], and Tera[ACC*90]. Systems with coherent caching include all
of the shared bus based systefns such as the Sequent[Ost89] as well as the more scal-
able KSR1[Ken92] and research projects such as DASH[LLG+90, LLGt92, LLJ*92] and
ALEWIFE[ALKK90].

For a real machine, the model in Figure 2.1 will likely be folded back upon itself so
that each processor is directly connected to one of the shared memory modules. This would
give each processor direct access to a small portion of shared memory. If the programmer
(or compiler) can control the layout of data onto the memory modules, she might be able
to arrange the data on or near the processors where it will be used. Such layouts could
eliminate a large fraction of the remote references, but they are not possible for many
applications[SHG92). '

In this research (with our applications, programming languages, and compiler tech-
nology) we do not have the capability of customizing the data layout for each application.

We therefore assume that data is randomly interleaved across the memory modules. This



16

interleaving is done at the level of the largest memory access unit. For systems without
caches, the largest memory access unit is a double word; for systems with caches, the
memory access unit is a cache line.

Without optimization of the data layout, the performance advantage of the folded
machine configuration is small, On a 1000 processor machine, for example, only 1/1000th
of the accesses will be to the locally accessible memory module. This small factor is in-
significant, and thus we study the model as shown in Figure 2.1 (with no locally accessible
shared memory.)

Meﬁor-Crummey and Scott[MCS91] argue against building such “dance ha]j”! ma-
chines because their efficient synchronization techniques depend upon having either coher-
ent caching or local access to part of shared memory. In Section 7.1 we Propose preferable

synchronization techniques that will eliminate this taboo on “dance hall” machines.

2.1.1 Network

There are many proposed network topologies?. Figure 2.2 shows some that are
popular for reasons involving: latency, bandwidth, cost, modularity, and availability of sim-
ple routing algorithms. N etwork design is still an active research area with many competing
concerns. In this research we do not select any specific network, but instead we focus on the
general characteristics of all of these networks. First, they all are packet switched networks
that allow many parallel references to be traveling through the network simultaneously.
Second, if the processors can support it, each processor may have several] outstanding ref-

erences in the network at once. And third, references will have long latencies because they

In this research we are interested in machines which range in size from a hundred
processors up to a few thousand processors. We will use the design point of a 1000 processor
machine for choosing parameters and further reasoning. Figure 1.1 in Chapter 1 showed
the latencies of several existing and proposed large interconnection networks. For a 1000
processor machine, these networks all have round trip latencies in the range of a few hun-

dreds processor cycles. We choose a latency of 200 cycles as representative of these figures

'The term “dance hall” comes from an analogy between a machine with the processors and memories
separated at different ends of the network and a dance hall with separated boys and girls.
*See for example: Almasi/ Gottlieb[AG89] chapter 8. '
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and focus this research on tolerating latencies of this magnitude.

We model the network and shared memories simply as a black box that takes 200
cycles to respond to a remote memory reference. In a real network, much of this latency will
come from delays due to minor random congestion, and these small delays are an expected
component of the 200 cycle latency. A more difficult case is severe congestion caused, for
instance, by a program induced hot spot in which every processor tries to simultaneously
access the same memory location. In this case delays can become much longer than the delay
of 200 cycles t’hat we have assumed. We ignore such congestion initjally, but in Section 6.2

we assess the frequency of such hot spots and their impact on our simulatjon results,

2.1.2 Processor

We expect that the processors used in parallel systems will be the same or very
similar to the micrbprocessors used in high performance workstations. This is because the
peak performance of a parallel system is the product of the performance of 2 single processor
and the number of processors. Such a large development effort is put into the race for the
highest performance microprocessor that these push the technology curve and offer the most
cost effective single processor.

To tolerate latency, however, we evaluate multithreading techniques which require
that the processor be able to context switch rapidly between threads. In the past, mul-
tithreaded processors, such as the HEP[Kow85], have involved very different and complex
processor designs that context switch every cycle and use a a large number of threads. In-
stead we look at multithreaded processors that are similar to today’s RISC microprocessors
with the addition of being able to context switch on long latency remote memory accesses.
Chapter 8 discusses the hardware issues in detail. Here we wish simply to specify our as-
sumptions about the multithreaded processors that we simulate, and leave their justification
to Chapter 8.

We assume the same instruction set and instruction timings as the MIPS
R3000[Kan89), but with a few modifications. Most importantly, we assume that the register
file has been replicated on the chip enough times so that each thread running on the chip
can have its own set of registers. Because the registers are on chip and do not have to be
saved or loaded from memory on a context switch, the processor should be able to switch

quickly between threads; in some cases as fast a single cycle (see Section 8.1.1).
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Another modification is that we have added double word loads and stores to the
instruction set. Many floating point numbers are stored as double words, and it is crucial
(when the network has long latencies) to get the whole thing at once rather than having
two separate references as is done on the MIPS R3000. More recent machines, such as the
MIPS R4000, all provide double word loads and stores.

Finally, we provide both local and shared versions of all memory access instruc-
tions. This is based on the assumption that memory references can be classified by the com-
piler as either local or shared. For instance references to locations in a shared array would
use sh;red-load instructions while references to local variables would use local-load in-
structions. This compiler classification may not be possible in the case of pointers if it is
unclear what is pointed to and whether or not it resides in shared or local memory. We call
these unclear cases ambiguous pointers, and they must be resolved at run-time either with
extra code or special hardware, which will likely slow down and/or complicate the machine.
Ideally we would like the compiler to classify as many references as possible because this

information will be needed for compiler optimizations in Chapter 4.

2.1.3 Programming Language

Our applications are written in the augmented C dialect that is used in writing
shared memory programs on the Sequent[Ost89]. Figure 2.3 shows an example of a simple
program that multiplies two matrices. The arrays d, e, and £ are declared as residing in
shared memory by the addition of the type modifier “shared” before their declaration.

Unfortunately this language does not have shared memory declarations for objects
accessed indirectly via pointers. The compiler does not know that the parameters a, b, and
¢ to the worker function will be arrays in shared memory. For this simple program the
compiler might deduce this information through global analysis, but in the general case this
is difficult.

In our simulations we at first used dynamic testing of pointers to determine if
addresses were in local or shared memory. Later we observed that for our application pro-
grams, true ambiguous cases (where sometimes a pointer points to a local location but at
other times points to a shared location) never occurred. We thus collected classification
information from an initial run of the application and fed it back into subsequent compi-

lations, as is done in trace analysis. This allowed complete compiler classification of all



---------------------------------------------------------------- */
shared doyble d[10][10], e[10]1[10], 1[101[10];
main() /* will compute f = 4 & ¢ 4/
- initialjze: dand e ..,
n_set-procs(iOO); /* set to 100 threads */
n_tork(worker, d, e, 1); /* tork the threads */
‘- Print result. T ...
}
worker(a, b, ¢) /* wily compute ¢ = a3 * p */
double a[10] (101, br10] (101, c[107 [10];
int i, j, X, myiq;
double sum;
myid = m_get_myid(); /* get unique thread ig 0,100) »/
is= myid/10; /* calculate thread’s roy */
j= myid%10; /* calculate thread’s col %/
sum = 0,0;
for (k = 0; k < 10; k++)
sum += a[i][k] = b[x]1[j]; /* calculate Sum of products x/
clil[j] = sum; /* each thread calculates #/
} /* one element of */

Figure 2.3: Example of 3 shared memory program.
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Application | Lines | Cycles | Description & Problem size
sieve 236 | 106 M | counts primes .
number of primes < 4,000,000
blkmat 369 87 M | blocked matrix multiply
200 x 200 matrices
sor 333 | 258 M | successive over relaxation
192 x 192 grid
ugray 10784 | 1353 M | ray tracing graphics renderer
gears (7169 faces), 20 x 512 slice of image
water 1368 | 1082 M | simulate a system of water molecules
. 343 molecules, 2 iterations
locus 6347 | 665 M | route wires in a standard cell circuit
Primary2 (1290 cells x 20 channels)
mp3d 1510 | 192 M | simulate rarefied hypersonic flow
100,000 particles, 10 iterations
barnes -| 2109 | 1148 M | gravitational N-body simulation
- | 4096 bodies in two clusters

Table 2.1: Parallel Applications

references.

Although we were able to obtain complete classification information through trace
analysis, we would like to advocate that this shared versus local distinction is important and
that it should be supported explicitly by future shared memory parallel languages. This
could be done by allowing declarations of parameters (such as a, b, and c in the example)

and pointers as pointing to shared memory.

2.2 Benchmark Applications

Table 2.1 shows the eight benchmark applications used in this research. These
are all scientific programs that perform some computation or numeric simulation. The first
three (sieve, blkmat, and sor) are toy applications written as part of this research. The
other five are real applications. Ugray[Boo89] was parallelized by myself, and has been used
in a few parallelism studies[BR92, LS91, 0’K92]. The last four (vater, mp3d, locus, and
barnes) are part of the Stanford SPLASH benchmark set[SWG92] and have been used in
many studies, especially those associated with the DASH project[LLI*+92].

Each of the applications has some unique behavioral characteristic(s), and the

three toy applications were chosen because they each have distinct behaviors that broaden



~— known region "I"\ unknown region \,{

the scope of the tota] benchmark set. The following sections contajp brief descriptions of
each application ang Teport their maip characteristics. Their original descriptions and codeg
often mix the terminology of processes and processors, Here we are Inore careful ang will
use the term thread to mean a process, and Processor to mean a physical Processor,

2.2.1 Sieve

The sieve application findg and counts the number of primeg that are Jegs than
SOme given number, Figure 2.4 shows how this algorithm Was partitioned for Paralle] execy-

tion. Tt represents the number space by a bit vector in shared memory with ope bit for each

that the numbers might pe Prime. As the sieve €xecutes, whenever 5 Dumber jg determined
to not be Prime, its bjt jg set to 1.

Initially there is a sma]] region of knowp Primes. If this Tegion goes up to n, thep
it is adequate for Computing a]] Primes up to n2. The region from n, to n? is called the

unknown region, and jt is Partitioned across the threads, Each threaq uses the primeg

The main characteristjcg of sieve are:
* Regular intervals between shared memory accesses,
¢ No sharing of data in the unknown region.

¢ Very infrequent Synchronizatjop.

2.2.2 Blkmat

The blkmat application multiph’es matrices. Figure 2.5(a) shows the Partitioning



i rows ——
4 (b) block assigned @ 3 multiplications
(©) order of accesses to a thread
and multiplicationg

Figure 2.5(b) shows the 4 x 4 block of the computation assigned to thread 5. T,
do its Computations, thread
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Stencil:

afi][3j] =wi*a[i][j] +
w2* (a[i+1] [§] +
afi-1][3] +
ali][j+1] +
afi]l[j-1));

Figure 2.6: Sor: successive over relaxation.

during this phase are much higher than in the main calculation phase of the algorithm.
The main characteristics of blkmat are:
® Low access rates to shared memory.
* Varying intervals between accesses.

¢ A separate termination phase with much higher access rates.

2.2.3 Sor

The sor application is an iterative solver of Laplace’s equation using the method
of successive over relaxation. We use it for computing the heat flow in a square metal
plate. The plate is represented by a grid of cells and is partitioned into regions as shown
in Figure 2.6. Interactions between threads occur along the edges between regions, and
thus the cells are partitioned into squarish regions in order to minimize the lengths of their
edges. The outside edges of the grid contain the fixed boundary conditions and are not part
of any thread’s partition.

The computation proceeds by taking a cell in the grid and replacing it with a new
value computed as a weighted sum of the old value and the four manhattan neighboring
cells. The weights are chosen so as to make the computation converge as quickly as possible.
After every few iterations convergence is checked for by comparing the new values to saved
copies of previous values.

In order to avoid mixing results from the current and previous iterations, the grid

is split like a checkerboard into red and black cells. First all of the red cells are calculated
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and updated, and then this js followed by a barrier synchronization. After the barrier, all of
the black cells are calculated and updated, and then there is another barrier. Recalculation
of the red and black cells alternates in this fashion.
The main characteristics of sor are:
¢ High access rates to shared memory.
¢ Repeated barrier synchronization.

e Static Partitioning and reuse of shared data.

2.2.4 Ugray

The ugray application is a Tay tracing graphics renderer. This js a computationally
intensive rendering algorithm for producing high quality images. The sequential program
is discussed in [Mar87], and its Parallelization is discussed in [Boo89).

The data structures used to describe a scene are a complex web of cross connected
structures. The top level is a large three dimensional array which is a coarse cellular map
of space. It is used to quickly locate objects as light rays are traced through and bounce
around space. Each cells has a linked list of objects that intersect it, and ob jects themselves
are circular linked lists of vertices with additional links to attributes. The test scene of glass
gears has 7169 faces and uses 7 Megabytes of data structures to describe it.

The main characteristics of ugray are:

¢ Complex linked data structures. (can not be prefetched)
* Moderate access rates. (complex calculations)

o Dynamic scheduling of jobs.

Unpredictable reuse of data.

2.2.5 Water

The water application simulates a system of water molecules in the liquid state.
A brief description of thjs application and its parallelization appears in the SPLASH
report[SWG92]. It is an N-body simulator that Computes the pairwise interactions be-
tween molecules, except that is uses a spherical cut-off radius and thus ignores interactions
with molecules beyond a certain distance. »

The data set we used has 343 molecules (this was the largest data set available).

These molecules are statically subdivided among the threads, and the same molecules are



of the small (and odd) number of molecules, load balancing was usually imperfect, The
most heavily loaded thread determines the rate of progress of the computation. Thus for

The main characteristics of vater are;
* Bursty traffic with long periods having no remote accesses,
* Good reuse of dats.

* Imperfect static load balancing that s sensitive to the number of threads used.

2.2.6 Locus

The locus application is a router for standard ce]] VLSI circuits. A brief descrip-
tion of this application and jts parallelization appears in the SPLASH report[SWGQ?].
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initial routing, wires are ripped up and re-routed to further optimize the result.

We used the largest input circuit available (Primary2.grin) which has 3817 wires
and a 1290 x 20 array of routing channels. This input shows good speedups up to around
64 threads, but performance gains diminish past this point. This application has the least
parallelism of the applications we have used, but was included for reasons of application
diversity.

The main characteristics of locus are:

° .High access rates.
¢ Linear sequences of array accesses.
¢ Dynamic scheduling.

e Limited parallelism.

2.2.7 Mp3d

The mp3d application simulates rarefied fluid flow, such as that which occurs in the
upper atmosphere. It uses Monte Carlo methods and simulates a representative collection
of molecules. A brief description of the application and its parallelization appears in the
SPLASH report[SWG92].

We simulate a system of 100,000 molecules. These molecules are statically assigned
to threads, but no attempt is made to assign nearby molecules to the same thread. Because
of this, the interactions of molecules are almost always with molecules assigned to other
threads, and since the molecule are all moving, the collection of interactions is changing
constantly. The net result is that there is little reuse of data.>

The main characteristics of mp3d are:

¢ High access rates.

e Little reuse of data.

2.2.8 Barnes

The barnes application simulates the gravitational interaction of a system of n
bodies. It uses the O(nlogn) Barnes-Hut algorithm rather than the O(n?) direct pairwise
computation. A brief description of this application and its parallelization appears in the

SPLASH report[SWG92], and [SHG92] is a more thorough study.

3Mp3d has since been rewritten at NASA-Ames using spatial decomposition techniques and has improved
locality of reference[LLJ*92). Unfortunately this improved code has not been publicly released.
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Application | Access Rate | Reuse of Data | Comment

sieve high very high regular access intervals

blkmat low low varying intervals between accesses
sor high high many barrier synchronizations
ugray medium medium complex data structures

water medium medium bursty traffic

locus high high linear sequences of accesses

mp3d high low changing data usage

barnes medium high complex data structures

Table 2.2: Summary of Application Characteristics.

In this application, bodies are organized in a three dimensional hierarchical struc-
ture called an octree. This allows aggregation of distant particles for computational ef-
ficiency, but individual access to mearby particles for computational accuracy. This is a
well crafted implementation that assigns neighboring particles to the same thread, and thus

there is much reuse of data.

Hierarchical structures are used for both the organization of data and the parti-
tioning of work among the threads. Building tree like structures can not be completely
parallelized since there is little concurrency near the root of a tree. With large numbers of
threads, a substantial amount of time is spent waiting for synchronization events. This is
due both to incomplete parallelization of tree operations and to imperfect load balancing

among the threads.

The main characteristics of barnes are:
o Moderate access rates.
¢ High reuse of data.

¢ Many long synchronization stalls.

2.2.9 Summary of Application Characteristics

Table 2.2 summarizes the preceding application discussions in terms of the ap-
plications’ access rates and reuse of data. These characteristics will affect the results of
the experiments presented in this dissertation. High access rates, for example, will require
multithreading to use many threads per processor, and low reuse of data will cause caching

to perform poorly.
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2.3 Simulation System

In order to conduct this research we have built a fast and accurate simulator called
FAST (for Fast Accurate Simulation Tool). In this section we summarize a few important
details and then discuss the usage of the simulator for the studies conducted as part of this
thesis. Appendix B contains a detailed discussion of the simulator and the techniques and

tradeoffs chosen in its design.

2.3.1 The Simulator

The simulator is based on the technique of execution driven simulation. This is
a process whereby the application program to be simulated is actually directly exe;:uted,
but it has been modified so that it counts its own execution time and returns control to
the simulator at special events, such as shared memory references. The simulator works
by executing the many parallel threads for small periods of time, and then scheduling the

resulting events so that they are all simulated in a correct global time order.

The modifications to the application program are best made at the object code
level, since at this level accurate timing can be determined based on the individual assembly
language instructions. All of our applications were compiled at optimization level “-027,

and their timing results are based on this.

The simulator accurately models the timing of the MIPS R3000[Kan89] pipeline,
and all interactions between threads are accurately ordered. One slight inaccuracy occurs
for simulations using caching of shared data: the cache interactions, such as invalidations,
are done instantaneously rather than being delayed for the transit time for the invalidation
messages to travel from the directory to the cache. This simplification makes the cache
simulator much more efficient and easier to write, but means that data gets invalidated

slightly sooner than it would on a real machine.

Because of careful use of execution driven simulation techniques, our simulator
is approximately 50 times faster than comparable simulators such as Tango[DGH91] or
[0’K89]. The main advantage of this speed is that it allows us to run longer and larger sim-

ulations (and thus more representative of large systems) than those of previous researchers.
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| Experiment: efficiency on an ideal machine j
— en -
ggihca.tlon Pro;fsls;)c;r: Multi hlreadmg e Latency = 0 cycles
blkmat 1-1024 1
sor 1-1024 1
ugray 1-512 1
water 1-343 1
locus 1-128 1
mp3d 1-1024 1
barnes 1-512 1

-

Table 2.3: Experimental parameters for measuring the execution efficiencies

on an ideal machine.

2.3.2 Simulatiqn Constraints

There are a number of constraints that have kept us from running simulations
as large as we would have liked. First, some of the applications (water and locus) had
only moderate input sizes available. Second, despite our fast simulator, simulation is still
time consuming. We thus restricted problem sizes so that individual simulations completed
within a few hours. And third, simulations of large parallel machines require a lot of space to
hold the state of the many simulated threads and caches. We were limited to 128 mega-bytes
that was available on the largest of our simulation host machines.

Table 2.1 listed the input sizes that were used for each of the applications. In order
to gauge the amount of parallelism available, we have simulated the applications as if they
were executing on an “ideal” machine that had 0 latency and no contention on accesses to
shared memory. Such a machine would be impossible to build, but it corresponds to an
upper bound on achievable performance. Table 2.3 list the experiment’s parameters and
Figure 2.7 shows the results.

Rather than show the standard speedup curves (speedup = execution time on 1
processor / execution time on P processors), we have plotted the efficiency vs. the number
of processors (efficiency = speedup / P). Efficiency is much like processor utilization. The
difference is that efficiency is directly related to performance, where as utilization is simply
a metric of how busy the processors are. For example, processors might be busy spinning
or doing redundant work and thus not contributing to overall speedup. The advantage of

efficiency over speedup is that it has been normalized by the number of processors and
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Figure 2.8: Revised model of parallel machine with fewer processors but the

same latency as expected on a 1000 processor machine,

problems, we expect to see the same multithreading behavior on large machines as we
observe in our studies of the reduced machine model.

A final note on our simulations is that all results are based solely on the parallel
phase of computation. All of the applications studjed in this dissertation have a sequential
initialization phase, a paralle] computation phase, and a sequential terminatijon phase. It
is common practice in simulation studies to report only the paralle] phase. This is done
for a number of reasons. First, many of the application are iterative, but only a small
number of iterations s simulated, thus artificially decreasing the duration of the paralle]
phase and thereby increasing the significance of the sequential phases. Second, as problem
sizes are increased, the sequential phases become a smaller and smaller fraction of the to-
tal computation[Gus88]. Third, many of these applications were written for today’s small
shared memory machines, and often much of the initialization could have been parallelized,
but this was not deemed necessary on a small machine. Finally, a large part of the initial-
ization and termination phases is input and output, which we expect to be done in paralle]

for larger machines.
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oo processor idle coe

Figure 3.2: Multithreading with 3 threads per processor. (C = Context

switch cost)

3.1.1 Analysis Under Constant Run-Lengths

Under simple assumptions about R, L, and C, we can compute the processor
utilization as a function of the multithreading level M. The simplest assumption is that
R, L, and C are all constants. Under this assumption, the performance analysis can be
broken into two Separate cases. The first case occurs when there are not enough threads
to hide the latency, and thus the processor is sometimes idle. Figures 3.1 & 3.2 both show
this case. The system forms a renewal process[Wol89] that starts at the end of each idle

period. The length of the renewal period is R + L and the amount of work done is M - R.

and thus processor utilization js R/(R+C). The boundary between the two case occurs
when M(R+C)= R+ L. Solving for M we get:

Ry M <14LC
Processor Utilization = { RiL ! + &¥e

%c’" otherwise

If C is small, we can approximate the number of threads needed to maximize
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run-length distributions,

Processor utilization as M = 1 + L/R.

Rule 1 With q constant run-length distribution, approzimately M = 1 + L/R threads are
needed to keep the processor busy.

This function is shown graphically in Figure 3.3 as the curve labeled “constant”,
using the values of B = 20, L = 200, and ¢ = 1, which are similar to the values that we

expect for real applications and hardware.
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3.1.2 More Complex Distributions

In real applications the run-lengths will rarely be predictable. A better model
is to choose the run-lengths from some random distribution. Figure 3.3 also shows the
processor utilization curves for three other distributions: uniform, geometric, and bimodal.
Each of these is parametrized to have the same mean run-length (R = 20). For the uniform
distribution, the run-lengths are chosen with equal probability over the range 1 to 39. For
the geometric distribution, the run-length comes from a sequence of biased coin flips where
at each step the Probability of completion is P = 1 /20. And for the bimodal distribution,
the run-length is either: R = 1 with 75% probability, or R = 77 with 25% probability.

For the geometric run-length distribution the model was solved by Saavedra-
Barrera and Culler[SBC91] using Markov chain analysis. However for more general dis-
tributions, analytic solutions become intractable. We have extended the applicability of
the model by -using numeric simulation to compute the processor utilization versus multi-
threading curves for any specified distribution. For the uniform and bimodal distributions,
the curves in Figure 3.3 were calculated using this technique. ‘

The histograms of these distribution functions are shown in Figure 3.4. These
histograms are drawn with triangular piles who’s area Tepresents the percentage of total
run-lengths having a particular value. Piles that would overlap are combined to make a
larger pile. Refer to appendix A for a complete explanation and rationale of thjs new and
somewhat odd histogram. These histograms will be used as a basis for building intuition
into multithreading behavior.

By comparing the distributions and the plots of their performance, we can observe
that the distributions with the most short run-lengths need the highest multithreading
levels. This occurs even though the mean run-length remains the same (20) for all of
these distributions. The short run-lengths cause problems when, by random chance, several
threads have short run-lengths in succession, and the remaining threads are unable to hide
the latency. In these cases the processor will be forced to stall. In the opposite case, when
several successive threads all have long run-lengths, the latency is easily covered, but the

excess latency tolerance is wasted.

Rule 2 When run-lengths are random, the presence of short run-lengths increases the mul-

tithreading level needed to keep the processor busy.



38

1009/0 ! I 1 lllllll l | Illllll l | LIIIIJl I | llllll}
constant mean = 20

50%— —
25%— —
10%— —

2%— —
0% l lllllfll IIIHHI I IIIIIHI , IIIIIHI

l
1 2 5 10 20 50 100 200 500 1K 2K 5K 10K+

I .. ' | lllllll I | IIIIHI l | lllllll l | I’IIHI
100%
0 uniform mean = 20
50%— L

25%— —

10%—
2%— —
0%— . [TTTT [T T [T

1 2 5 10 20 50 100 200 500 1K 2K 5K 10K+

l l 1 IIIIH! I 1 lllllll I 1 lIIlIll [ I Illlll'
100%

° geometric mean = 20
50%— —

25%— —
10%— —

2% — —
0%— ‘ an [T T [T T

1 2 5 10 20 S50 100 200 500 1K 2K 5K 10K+

0, , ] | llllll' I I |[]|Hl ' | lllllll I | lllllll
100% bimodal mean = 20
50% -

25% -
10% -
2% ‘ —
0% N AL T 7] | [T T [T T

1 2 5 10 20 S50 100 200 500 1K 2K 5K 10K+

Figure 3.4: Histograms of distribution functions. The horizontal axis shows
the run-length. Each data point is represented by a pile who’s size corre-
sponds to its percentage of the total, and overlapping piles combine together
to make taller piles.



load

16 ¢ Latency = 20¢ cycles
32 ¢ Context switch — 0 cycles
8 * Scheduling = round robin
¢ No shared memory caches

10

lengths under switch-on-load.

3.2 Applications’ Run-Length Distributions
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[ Experiment: switch-on-load ]

ggfehcatxon Proct;sgors Multxtlh_r ;3 ding e Latency = 200 cycles
blkmat 32 1-20 ¢ Context switch = 0 cycl.es
sor 8 1-50 o Scheduling = round robin
ugray 8 1-20 ¢ No shared memory caches
water 10 1-34

locus 2 1-40

mp3d 8 1-40

barnes 12 1-20

Table 3.2: Experimental parameters for switch-on-load.

short mean run-lengths, we can expect sor, locus, and mp3d to require high multithreading
levels to keep the processor busy. Also, ugray and water will require extra multithreading

because of the large number of short run-lengths in their distributions.

3.3 Testing the Multithreading Model

In this section we compare the performance predicted by the multithreading model
to the actual performance observed in simulations. The parameters of the simulation ex-
periments are shown in table 3.2. We have assumed a 200 cycle remote access latency and
a context switch cost of 0 cycles?.

Many of the applications will require a large multithreading level in order to reach
high execution efficiencies, but the total number of threads available is limited by the fixed
problem sizes that we are able simulate (as discussed in Chapter 2). Therefore, for each
application, we have taken the multithreading level (M) needed in order to achieve high
efficiency, and selected the number of processors so that P - M is approximately equal to
the thread limit. The results are presented here as if a just a single set of experiments were
performed, but, in fact, preliminary experiments were also performed in order to determine
the multithreading levels needed by the applications.

For some applications, such as locus, the resultant number of processors used was
quite small. In later experiments, with better multithreading models that require fewer

threads per processor, we will increase the number of processors used in our simulations.

1The zero cycle context switch is justified in Chapter 8.
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Figures 3.7 & 3.8 show the predicted and observed performance of the applications
under the switch-on-load multithreading model. The predicted performance is based
on the multithreading model and the run-lengths distributions presented in the previous
section. The observed performance is based on the simulations.

The multithreading model predicts processor utilization rather than our preferred
metric of ezecution efficiency, which we use for most of the results presented in this disser-
tation. The model predicts processor utilization because the run-length distributions fed
into it reflect the entire parallel execution. Some of this execution may include extra opera-
tions Berformed by the parallel program that are not performed by the sequential program.
These extra operations keep the processor busy, but they do not contributed to application
speedup. Figures 3.7 & 3.8 show both the processor utilizations and the execution effi-
ciencies observed in the simulations. For some applications (water, mp3d, and locus) the
processor utilizations and executions efficiencies are indiscernible from each other. For the
others, the gap between utilization and efficiency arises because of the extra operations done
by the parallel programs. Locus and ugray, for example, both do dynamic job scheduling
and use spinning to wait for jobs to become available. This spinning keeps the processors
busy but does not perform useful computation. Sieve, blkmat, and sor also exhibit a gap
between processor utilization and efficiency. These applications do static partitioning of the
work among the threads. Each thread does the partitioning calculation, and thus with more
threads, more time is spent doing these partitioning calculations that are not needed by
the sequential programs. All of the applications actually have parallel overheads. They are
just much more visible for sieve, blkmat, and sor because these applications have shorter
execution times than the other applications.

For most of the applications, there is a also large gap between the processor uti-
lization predicted by the multithreading model and the processor utilization observed in
the simulations. This gap arises because the processors sometimes sit idle or underuti-
lized while threads wait on synchronization or because of imperfect load balancing. The
jaggedness in the processor utilization curves for sor and water is an indicator of this load
imbalance problem. Another inaccuracy of the multithreading model is that it assumes
that the run-lengths drawn from the distribution are mutually independent. In actuality,
the applications proceed through different phases of their computations; some phases have
short run-lengths, and some phases have long run-lengths. All of these reasons contribute

to the optimistic predictions of the multithreading model.
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Figure 3.7: Predicted and observed performance for switch-on-load.
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in synchrony, when one thread has a short run-length, so do all the others. Likewise the

threads all have their long run-lengths during the same scheduling cycle. If the threads were

latency hiding would improve. The exact synchrony can be jumbled by random scheduling,
and for sor it improves the efficiency at M = 40 from 59% to 73%. Other applications and
other multithreading models do not benefit from this random scheduling, and thus we do

not pursue it further.

problem size and number of threads. Blkmat partitions the computation into blocks (as
described in Sectjon 2.2.2), with one block per thread. It makes a local copy of the shared

data used within a block, and thus with larger blocks (fewer threads), the average run-

3.4 Conclusions

The performance model presented in this chapter provides intuition into the be-
havior of multithreaded systems. If run-lengths are constant, a multithreading leve] of
M =1+ L/R is needed to hide the latency. For other distributions, more multithreading
is required, particularly for those distributions with short run-lengths.

For real applications, the situation is more complex. Unlike our mathematical
model of program behavior, real applications have varying behavior over time, and their
threads are not independent. In sor, for example, there are alternating phases of compu-
tation and convergence checking. The convergence checking phases have little computation

and thus shorter average run-lengths than the computation phases. Also, threads synchro-
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Chapter 4

Multithreading Without Caching

In this chapter we continue the evaluation of switch-on-miss and also evalyate
the explicit-switch multithreadjng model. These are machine models that do not pro-
vide caching of shared data. Their advantage over systems with caching is that they avoid
the cost and complexity of cache coherency. Their disadvantages are that they will cop.
text switch more frequently, Tequire more threads per processor, and use more network
bandwidth,

cesses. The processor can then issue the entire group of messages into the network before

it context Switches.

4.1 New Format
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Figure 4.1: New format for presenting multithreading efficiency results.

is 84.6%. A slightly higher efficiency of 85.2% is achieved at M = 22, but we do not show it
because such a minor increase in performance would probably not be worth increasing the
multithreading level. Although we may hope that applications will have abundant threads,
for many applications threads will be a limited resource. In this and other results presented
in this bar graph formaf, we report the highest efficiency up to the point where the efficiency
increases by less than 1% per additional thread.

4.2 Switch-On-Load

Figure 4.2 shows the switch-on-load multithreading efficiencies in the new for-
mat. Many of the applications need large multithreading levels. Particularly high are
sor(M = 40), locus(M = 32), and mp3d(M = 29). Furthermore, even at high mul-
tithreading levels, some applications are achieving only moderate efficiencies: sor(59%),

ugray(66%).
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Figure 4.2: Multithreading levels and the efficiencies they achieve under
switch-on-load.

cause of the short average run-lengths and the many short run-lengths in the distributions.
With such high multithreading levels, large problem sizes will be required in order to pro-
vide sufficient parallelism. Also the hardware cost to support these mu]tithreading levels
will be large because of the large number of Tegister sets required. Machines, such as the
HEP[KowSS], have been built that provide more than enough register sets, however de-

creasing the required multithreading leve]l has many benefits: smaller problem instances
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4.3 Increasing the Run-Lengths: Explicit-Switch

The key to decreasing the multithreading level and increasing preformance is to
increase the run-lengths. This involves both raising the average run-lengths and eliminating
short run-lengths. To do this, a thread must be allowed to issue more than one reference
into the network before being context switched. There are two multithreading models that
address this: switch-on-use and explicit-switch.

Under switch-on-use, the hardware issues remote loads into the network and
continues exeeuting the same thread. It context switches only when the thread tries to use
a value that has not yet returned. If the compiler can arrange instructions so that several
remote loads are grouped together, the loads will all be issued into the network before the
thread tries to use any of the results and is forced to context switch. This will eliminate
excess context switching and thereby increase run-lengths.

Another way to allow issuing multiple loads before context switching is to provide
an explicit context switch instruction that the compiler can insert between the group of
loads and the later uses of the requested data. The effect is the same as under switch-on-
use. The difference is that the hardware may be a little simpler under explicit-switch
than under switch-on-load because it does not have to check the status of registers as they
are used. In this section we will explore performance of the explicit-switch model. We
expect that the results for switch-on-use would be virtually identical. Relevant hardware

issues are discussed in Chapter 8.

4.3.1 Grouping Within Basic Blocks

The inner loop of the sor application is shown in Figure 4.3(a) as an example.
Without grouping, the 5 loads are issued one at a time, with a context switch after each
one. In Figure 4.3(b) the code has been reorganized so that all 5 loads are grouped together
and are then followed by a single context switch instruction. Rather than having four short
run-lengths followed by one long run-length, there is now just a single long run-length.

A compiler designed for a multithreaded architecture will group shared loads when-
ever possible. Since the compilers we have today do not do this grouping, we wrote a post-

processor which finds the basic blocks in an ob ject file!, does dependency analysis within the

A basic block is a sequence of instructions that are executed without any branches into or out of it
- except at the ends. ' ) : .



51

Switch
Points

switch
adarTee "

- add
Data mul <

Dependencies add
store

branch
(a) switch—on-Toag (b) explicit-switch

Figure 4.3: Inner loop of sor under switch-on-load and réorga.nized for
explicit-switch.

Table 4.1 shows the grouping obtained by reorganizing the basic blocks of our
benchmark applications. The grouping factor is the average number of shared loads per
context switch. For sor and water this grouping was very successful, grouping on average

almost 5 loads between context switches. Grouping in the other applications was less

2We assume that every shared store might have 3 conflict with every shared load because of address
aliasing. : .
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Application Grouping Mean
Factor | Run- Length
sieve 1.00 19.3
blkmat 1.00 164.9
sor 4.65 29.2
ugray 1.29 26.4
water 4.76 206.6
locus 1.05 8.3
mp3d 2.28 22.6
barnes 1.68 71.5

L4

Table 4.1: Grouping and mean run-lengths achieved for the applications

after reorganization of their basic blocks.

| Experiment: run-lengths for explicit-switch N

;?:\f;hcatlon Procisesors MultxthlrQeadmg e Latency = 200 cycles .

blkmat 32 4 ¢ Context switch = 1 cycle

sor 16 8 * Scheduling = round robin

ugray 8 12 ¢ No shared memory caches

water 20 6

locus 2 28

mp3d 16 14

barnes 16 8

Table 4.2: Experimenta] parameters for measuring run-lengths for explicit-

switch.

The new run-length distributions are shown in Figures 4.4 & 4.5; they were
obtained from experiments as specified in Table 4.2. These run-length distributions for
explicit-switch should be compared to the run-length distributions for switch-on-load
that were shown on Pages 40 & 41.

For sor and water virtually all of the short run-lengths have been eliminated.
Mp3d and barnes still have some short run-lengths, but they show higher mean run-lengths
and fewer short run-lengths.

The other four applications show little change. Locus had a small amount of
grouping that eliminated the shortest (1 or 2 cycle) run-lengths, but thjs is not very sig-
nificant because these short run-lengths comprised only 4.5% of thé total. The change in
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Figure 4.4: Histograms of the run-lengths distributions of the applications

running under explicit-switch.
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| Experiment: explicit-switch ]
S“lf’)‘f;hcatlon Procizsors Multltlh—rle;.dmg e Latency = 200 cycles
blkmat 32 1-4 o Context switch = 1 cycle
sor 16 1-8 ¢ Scheduling = round robin
ugray 8 1-12 o No shared memory caches
water 20 1-6
locus 2 1-28
mp3d 16 1-14
barnes 16 1-8

Table 4.3: Experimental parameters for explicit-switch.

mean run-length from 7.0 under switch-on-load to 8.3 under explicit-switch can mainly
be attributed to the extra cycle in each run-length from the added switch instruction. This
extra cycle is overhead and diminishes performance. The next most troubling application
is ugray. The grouping factor was only 1.29 and there are still many short run-lengths of
just 2, 3, or 4 cycles. These short run-lengths will hamper the efforts of multithreading.
The lack of grouping for sieve and blkmat is unimportant since these applications already

had well behaved run-length distributions and moderate or long mean run-lengths.

The experiments used to measure explicit-switch execution efficiencies are listed
in Table 4.3. There is now a context switch cost of 1 cycle because of the added context
switch instructions. We have also increased the number of processors used for sor, water,
mp3d, and barnes. Under explicit-switch they use lower multithreading levels than they
did under switch-on-load, and thus the surplus threads were used to increase the number
of processors. It might seem odd to compare results from switch-on-load and explicit-
switch that use different numbers of processors, nevertheless it is reasonable because there
is very little difference in the results when using either the old or new processor numbers.
This might seem more obvious if we recall that the multithreading behavior depends on
the run-length distributions. For the switch-on-load and explicit-switch multithreading
models the run-lengths usually do not depend on the number of threads used. As long as
the number of threads is kept within the limits set by the available parallelism, the number
of processors used does not have much impact on the efficiency results obtained. We have
chosen to increase the number of processors because it makes the simulations more similar

to the way that applications will be run on real machines (with many processors).
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Figure 4.6: Multithreading levels and the efficiencies they achieve under
explicit-switch. The bars in the foreground show the results for explicit-
switch, while the bars in the background show the results for switch-on-

load for comparison.



(sor, vater, and mp3d) achieve equal or better performance while using Jess than ha)f

multithreading levels required. The one disappointment was with locus, whijch had negli-
gible érouping. Its efficiency actually declineq because of the overhead of the added switcp

In the water application, there are Some run-lengths of around 5,000 cycles. It
might make Sense to try some sort of Preemptive scheduling mechanism rather thap round-
robin scheduling in order to better utilize those long run-lengths for hiding the latency of
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tl = shared_x; if (shared flag) while (i > 0)
if (tl1 > xmax) sum += shared_x; {
xmax = tl; ’ sum += shared x[il];
t2 = shared y:; i--;
if (t2 > ymax) }
ymax = t2;
(a) Code Motion (b) Speculative Loading (c) Loop Unrolling

Figure 4.7: Example code fragments with potential for inter-block grouping.

for these applications and raise their performance to be comparable with the rest of the

applications.

4.3.2 Grouping Beyond Basic Blocks

In the previous section, our code reorganization and grouping of shared loads was
done only within basic blocks. Compiler based optimization could do better by looking
beyond the scope of a single basic block.

Figure 4.7 shows three simplified examples of situations taken from the ugray and
locus applications that would be amenable to inter-block grouping by a good optimizing
compiler. In these examples, shared variable are prefixed with “shared”, and all other
variables are local. In example (a), the loading of shared_y can be moved upward past the
conditional test and grouped with the loading of shared x. In example (b), the loading
of shared_x could be moved ahead of the if statement and grouped with the loading of
shared flag. This is called a speculative load since it is done on the speculation that the
conditional test will be true and that the load will in fact be needed. In example (c), several
iterations of the loop could be unrolled and the exposed multiple loads from the shared x
array could then be grouped.

Code motion and loop unrolling are standard optimizations for a good optimizing
compiler. Speculative loading, however, is trickier. It might be the case that the conditional
test checks the boundary conditions of an array. If the load is moved before the boundary
check, it might access off the end of the array and cause an unwarranted memory trap.
Rogers and Li[RL92] have proposed a simple mechanism of dealing with this problem by
adding a poison bit to each register and taking a trap only upon the use of a poisoned

register. A further problem arises if speculative loads are used indiscriminately. If many of
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Figure 4.8: Multithreading levels and the efficiencies they achieve under
explicit-switch with estimated inter-block grouping. The bars in the fore-
ground show the results for explicit-switch with inter-block grouping, while
the bars in the background show the earlier results for explicit-switch with-

out it.
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same compiler unrolling technique could group these loads as well, but they were missed
by the cache. Thus for locus our experiment underestimated the potential for interblock
grouping.

For the toy applications (sieve, blkmat, and sor), we have also verified that
inter-block grouping is possible. In sieve this would involve inter-procedural analysis. In
blkmat it involves a complex code motion. And in sor it involves a simple loop unrolling.

Figure 4.8 shows that with the addition of inter-block grouping, all of the applica-
tions can now obta.m efficiencies near or above 80% using 10 threads or less per processor.
In pa,rtlcular, notice the dramatic improvement of locus because of the grouping made

possible by loop unrolling.

4.4 Conclusions

In this chapter we have shown that multithreading is effective at hiding long la-
tencies to shared memory. The switch-on-load model performs poorly for applications
that access memory frequently, but the explicit-switch model solves this problem by al-
lowing the grouping of independent loads and thereby eliminates many extraneous context
switches. For most of our applications grouping within basic blocks is adequate, and for
the others there do exist inter-block grouping opportunities. Further research in compiler
optimization is needed to fully explore the grouping of accesses.

Simulation results indicate that a multithreading level of 10 threads per processor
is adequate for hiding a 200 cycle remote reference latency, and that we can expect effi-
ciencies of 80% or better from a multithreaded parallel machine. This machine provides
no hardware caching of shared data, and thus it does not have the complexity of providing
cache coherency. The one drawback, which is the sub ject Chapter 6, is that all accesses to
shared data are sent across the interconnection network, and thus the network bandwidth

requirements will be high.
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ON90]. In this chapter we first evaluate a system that provides caching but not multithread-
ing, and then evaluate the additional performance improvement possible with switch-on-

miss and conditional-switch multithreading.

Simulation studies in the literature have reported varying effectiveness for caching
on large scale parale] computers. Early DASH results[GHG"’Ql] Teported miss rates of
20%, 23%, and 34% for three applications (mp3d, Pthor, and 1u). Whjle O’Kra.fka[ONQO]
Teported miss rates of 1.3%, 4.8%, and 2.7% on a different set of applications (ssim, verf,

rates for our applications. For these simulations, the cache size is 64K bytes, it is 4 way
set associative, and jt has a 16 byte line sizel, Coherency is maintaineq with the Censjer
and Feautrier[CF78] invalidation baged cache coherency Protocol. This protoco) maintains
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[ Experiment: caching ' ]

Q::):.lcatxon Proi;sssors Multlthlreadmg o Latency = 200 cycles

blkmat 64 1 ¢ Each processor has a 64K byte cache
sor 16 1 with a 16 byte line size and 4 way set
ugray 39 1 associativity.

water 29 1

locus 10 1

mp3d 32 1

barnes 32 1

-

Table 5.1: Experimental parameters for caching without multithreading.

comparison with other research, however this may not be the most cost effective choice
because of its large hardware cost[ON90].

For simplicity, we continue to assume a latency of 200 cycles for all network refer-
ences. In reality, references causing coherency traffic would take longer than other references
because of the additional message(s) sent to maintain coherency. For example, a straight-
forward implementation of invalidations would take two round-trip message times (four
messages): the request message from the processor to the memory, the invalidation mes-
sage from the memory to the invalidation site, the acknowledgment message back to the
memory, and finally the response message back to the processor. However, a smarter imple-
mentation, such as the DASH protocol[LLG*90], can reduce this from four message times
to three. Furthermore, in their prototype implementation[LLI*92] they found the extra
latency of a reference requiring coherency to be only 30% over that for a normal reference.
Our constant latency assumption is thus slightly optimistic.

Table 5.2 shows the simulation results. For most of the applications the miss rates
are just a few percent and caching performs well. The two exceptions are mp3d and blkmat.

Mp3d has low reuse of data?, and its high miss rate is a result of this. It also has a
high access rate, and thus despite the presence of caches, it still sends a large number of ac-
cesses into the network. Without multithreading, it achieves an execution efficiency of only
15%. Gupta et. al.[GHG'91] obtained a processor utilization of 26% for this application on

their simulations of the DASH multiprocessor®. They assumed a latency of less than half

2See Section 2.2.7.
3This value was calculated based on their results under release consistency, which is similar to our
- assumption of weak consistency. :
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Application | Miss Rate | Efficiency
sieve 0.3% 89%
blkmat 42.5% 59%
sor 0.9% 67%
ugray 3.9% 63%
water 2.9% 73%
locus 1.8% 65%
mp3d 16.0% 15%
barnes 2.3% 78%

. Table 5.2: Average miss rates and execution efficiencies on a machine with

64K byte caches, 200 cycle latency, but no multithreading.

of what we did, and thus our lower efficiency is to be expected.

Blkmat also has a high miss rate (42.5%), but because it has a low access rate, the
resultant access rate is low enough to allow it to achieve 59% efficiency. Blkmat has a low
access rate because it was programmed to make local copies of shared data. These local

copies can be thought of as software caching, and thus the hardware cache is superfluous.

For the other applications, the efficiencies are in the 60% to 70% range. These
efficiencies are acceptable for large parallel machines. For instance, executing at 70% effi-
ciency on a 1000 processor machines would give a speedup of 700. We thus conclude that

multithreading is not essential when caching is provided.

Gupta et. al.[GHG'91] obtained quite different results in their studies of cache
coherent multiprocessors. They looked at just three applications: mp3d, pthor, and lu.
These all have high miss rates and low execution efficiencies, as mp3d does in our studies.

In our larger application suite, mp3d is the exceptional case.

Most of our applications achieve acceptable execution efficiencies, but there is still
significant performance loss due to latency. Thus there is an opportunity for multithreading
to help push execution efficiencies higher. In the subsequent sections we look at the per-
formance improvements that can be obtained by using multithreading to hide the network

latency.
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| Experiment: run-lengths under switch-on-miss ]
3;)5;]10811011 Pro;gs;ors Multxthrfadmg e Latency = 200 cycles
blkmat 64 3 o Context switch = 3 cycles if caused by a
sor 16 4 miss, 0 cycles if caused by the scheduling
ugray 32 3 policy . .. .
water 29 3 . Scl.zedtihng = lock-priority + spin-
locus 10 2 switch
mp3d 39 1 ® Each processor has a 64K byte cache
barnes 39 2 with a 16 byte line size and 4 way set

associativity.
3 _—

Table 5.3: Experimental parameters for measuring run-lengths under

switch-on-miss.

5.2 Run-Lengths with Caching

Multithrea.ding behaves very different when thereis a cache in the system compared
to when there is not. Without a cache, under explicit-switch, context switches occur at
rates ranging from once every 30 cycles, to once every 300 cycle. However with caches, we
can now expect most of the previous context switches to be avoided and the mean run-
lengths between context switches to rise considerably. Rather than multithreading many
threads in order to hide each other’s latency, we will need perhaps only two threads per
processor so that one can execute while the other is waiting on memory.

The experiments described in Table 5.3 were used to measure the run-length dis-
tributions of the applications. The multiple threads on a processor all share the cache,
and thus they may interfere with each others’ cached data. The miss rates will thus be
higher under multithreaded execution than the miss rates listed in Table 5.2 for execution
without multithreading®. The differing miss rates imply differing run-lengths, and thus the
run-length distributions with caching will vary based on the level of multithreading and
the size of the caches. We gathered the run-lengths at the multithreading levels that were
found to be appropriate for each application.

Figures 5.1 & 5.2 show the run-length distributions under switch-on-miss. The

*The scheduling policy will be discussed in Section 5.2.1. This policy is non-optimal, but it was chosen
because it causes minimum interference with the run-lengths.
*Section 7.3 studies the increase in miss rates from multithreading.
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running under switch-on-miss.
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mean run-lengths are now above 200 cycles (except for mp3d). If the run-length distributions
were constant, M = 2 would be sufficient to completely hide the 200 cycle latency, but
unfortunately this is not the case. There are still many short run-lengths where misses
occur on successive references. The net effect of the cache is that it raises the average
run-lengths and spreads out the run-length distributions. When long sequences of accesses
hit in the cache, there are run-lengths that last for thousands or even tens of thousands of

cycles.

5.2.1 Smarter Scheduling

The disparity in run-lengths suggests that a simple round-robin scheduling policy
may no longer be the best choice. Long run-lengths can cause problems because they block
out other threads from the processor. Consider the following scenarios with two threads on

a processor:

unbalanced scenario: Thread A is executing with long run-lengths taking thousands of
cycles, while thread B is executing short run-lengths of just 20 cycles. A good schedul-
ing policy should switch out thread A whenever thread B is ready to run. This allows

hiding the latency from as many of B’s references as possible.

locking scenario: Thread A is executing with long run-lengths, while thread B is at-
tempting to obtain a lock, do a few critical operations, and release the lock. In order
to minimize contention for the critical region, it is important for B to hold the lock
for as short a time as possible. Idealy thread A should be switched out when thread
B is ready to run, giving B priority when it is holding a lock.

spinning scenario: If thread B is spinning while waiting for some event to happen, it
should be given lower priority so that thread A, which is doing useful work, can make
progress. In fact, it is essential that A be given access to the processor since B might

be waiting on an event that will be caused by A.®

These scenarios all suggest that context switching must be done more often than

just on cache misses. In fact, long run-lengths can be broken into several smaller and more

®Spinning is a bad idea on a multithreaded processor since the processor will usually have work that can
be done by another thread. In Section 7.1.2 we will discuss the implementation of synchronization primatives
that do not involve spinning. -
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uniform run-lengths to help improve their latency hiding capacity. Below are a number
of basic scheduling policies that we studied alone and in combination with each other.
These policies all switch on cache misses, but also context switch for the additional reasons

specified by the policies.

Basic Scheduling Policies:

spin-switch: Spinning threads are switched out after every shared memory load instruc-

tion. This minimizes the number of execution cycles wasted by spinning threads.

timeout(N): Threads are forced to switch after they have held the processor for N cycles.
(Tried with N ranging from 10 to 200.)

lock-priority: Threads holding a lock are given preemptive priority. This allows a thread

to execute and exit a critical region as quickly as possible.

new-priority: Newly ready threads (those having just received a result from a remote
reference) are given preemptive priority. The object is to give priority to those threads

that are executing with short run-lengths.

always-switch: Threads are context switched after every shared memory load instruction
regardless of whether it missed in the cache. This is a simple policy that gives all

threads frequent access to the processor.

Table 5.4 shows the execution efficiencies under some of the scheduling policies that
we studied. These simulations are for the switch-on-miss model, which will be discussed
in the next section. We present these scheduling results first because the best scheduling
policy found here will be used in the next section for the switch-on-miss simulations.
Experimental parameters are specified in Table 5.5.

Overall, the best policy that we studied was one that combined timeout(100),
lock-priority, and spin-switch. This was selected as best based on averaging the execution
efficiencies of all of the applications except sieve and mp3d. Sieve was excluded because
it runs well without multithreading, and thus the scheduling policy is irrelevant when there
is only one thread on a processor. Mp3d was excluded because we will see in Chapter 6 that

its performance will likely be constrained by bandwidth rather than latency.
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blkmat M=3 75.3 ] 75.6 76.6 | 77.3 | 76.2 76.2
sor M=4 79.71 79.7 84.4 | 89.6 | 88.8 88.8
ugray M=3 73.6 | 81.9 89.3 | 88.3 | 89.4 89.8
water M=3 89.1 | 92.8 92.8 | 92.1]934 93.5
locus M=3 745 753 84.8 | 85.6 | 85.6 89.5
mp3d | M=11 | 84.5| 845 | 83.7 | 924|846} 846 J
barnes M=2 80.0 | 80.9 82.0 | 82.5| 82.3 82.4
Average .
(excluding mp3d) || 78.7 | 81.0 85.0 | 85.9 86.0 86.7 J‘

Table 5.4: Execution efficiencies under various scheduling policies.

| Experiment: scheduling under switch-on-miss |
icat] P Multithreadi

g&ﬁf ion roczs:ors 1 r;.a ng il . Latency = 200 cycles

sor 16 4 e Context switch = 3 cycles if caused by a
ugray 32 3 miss, 0 cycles if caused by the scheduling
water 29 3 policy ) .

locus 10 3 o Scheduling = ezperimental parameter
mp3d 32 1 o Fach processor has a 64K byte cache
barnes 32 9 with a 16 byte line size and 4 way set

associativity.

Table 5.5: Experimental parameters for evaluating scheduling policies under

switch-on-miss.
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[ Experiment: switch-on-miss ‘ |

:;s\?:lcatxon Proie;ssors Multlthlrea,dmg « Latency = 200 cycles
blkmat 64 1-4 o Context switch = 3 cycles if caused by a
sor 16 1-4 milsis, 0 cycles if caused by the scheduling
- policy
:gartajr( gg i__; e Scheduling = timeout(100) + lock-
locus 10 1-3 priority + spin-switch
mp3d 32 1-11 o Each processor has a 64K byte cache
barnes 32 1-3 with a 16 byte line size and 4 way set
. associativity.

Table 5.6: Experimental parameters for switch-on-miss.

Many other scheduling policies performed nearly as well as the chosen policy. In
fact, simple policies such as timeout(100) or always-switch performed within 1% of the
chosen policy on average. These policies address the three scenarios given above because
they limit the interval in which a thread can dominate the processor. We thus conclude
that choosing a particular scheduling policy is not critically important and can be based on

what the hardware designer finds most convenient.

5.3 Switch-On-Miss

The experimental parameters used in our simulations of switch-on-miss are
shown in Table 5.6. The context switch cost was 3 cycles if caused by a cache miss, but
0 cycles if forced by the scheduler because of some scheduling policy related decision such
as a preemption or timeout. The differing context switch times depend upon whether the
context switch decision is made early (scheduler) or late (cache miss) in the pipeline. This
is explained in Chapter 8.

Figure 5.3 shows the execution efficiencies at various multithreading levels. The
bars with M = 1 are the results that were presented in Section 5.1 for caching without mul-
tithreading. A few bars, such as M = 3 and M = 4 for blkmat, are unlabeled because there
was not sufficient room to insert the labels. In all cases, these unlabeled bars correspond
to the next sequential multithreading level.

At M =1, most of the applications perform in the 60% to 70% efficiency range, and
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the addition of multithreading raises the performance to the 80% to 90% range. Expressed
in terms of relative performance (multithreaded performance/single threaded performance),
multithreading provides a 30% to 40% performance increase for most applications. There
are three exceptions. Sieve caches extremely well and thus has no use for multithread-
ing. Barnes has a large performance loss due to synchronization, which is not helped by
multithreading, and mp3d caches poorly and thus has room for and achieves much larger
performance gains from multithreading.

The number of threads used for sor is small because of the sensitivity of its
performance tc.> the degree of parallelization. It partitions the 192 by 192 grid into as many .
square (or rectangular) regions as there are threads. Cache interactions occur just along
the edges of these regions because the algorithm accesses only neighboring values in the
grid. The cache hit rate is thus strongly affected by the size of the regions. To allow
a fair comparison between switch-on-miss and explicit-switch, we kept the number of -
processors the same. This lets switch-on-miss receive the benefit of requiring fewer threads
and thus having larger regions for a given problem size. In the configuration used here (P
= 16, M = 4), /sor/ runs at 89% efficiency. With more processors and threads (P=64,M
= 4), and thus finer partioning, efficiency drops to 75%.

Compared to the results for multithreading without caching (from Chapter 4),
the execution efficiencies vary from a few percent worse to 15% better, depending on the
application. The big change is that since run-lengths are much longer with caching, not as
many threads are needed, and the improvement due to multithreading is much less. For
most of the applications, multithreading of 3 threads per processor is adequate to hide the
200 cycle latency.

5.4 Conditional-Switch

Grouping was very effective at improving the performance and decreasing the
multithreading levels needed under explicit-switch compared to switch-on-load. We can
apply the same idea to a caching system by treating the switch instructions conditionally.
Under the conditional-switch model, if all of the references proceeding a switch instruction
hit in the cache, the switch instruction is ignored, but if any of them miss, then the switch
is taken in order to wait for the result(s). The potential benefit is that we can issue more

than one reference per thread into the network before waiting for the results to return.



* Latency = 20¢ cycles

¢ Context switch = 1 to 3 cycles

® Scheduling = timeout( 100) + Jock.
Priority 4 spin-switch

* Each processor has a 64K byte cache
with a 16 byte line sjze and 4 way get
associativity,

The experimenta] Parameters for conditional-switch are shown jp Table 5.7.
They are the Same as those for switch-on-miss except for the different multithrea.djng
model and different context switch timing assumptions. The context switch cogt varies

the pipeline, the context switch cap be done immediately as it was for explicit-switch.
Otherwise, the context switch will oceyr deeper in the Pipeline as it did for switch-on-miss.

we do not have 5 compiler that cap do inter-block grouping. At this level of 8rouping, al] of
the applicatjons have equivalent or lower Performance thap under switch-on-miss, except
for mp34. Mp3d is an éxception becayse jt does not cache well and thyg Tetains some of the
behavior of an uncached systep.

The lower performance indicates that grouping is not ysefy] in conjunctjop with

caching. Thjs occurs becayse grouping is beneficia] only when more than ope reference is
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context switch instructions. These extra instructions take a cycle in the execution stream

regardless of whether they are useful or not.

5.5 Conclusions

Caching is effective for most of our applications. We observed miss rates ranging
from 1% to 4%. These low miss rates mean that threads execute for longer intervals before
context switching and thus fewer threads will be needed to hide the latency.

However, sometimes these long execution intervals can cause performance problems
by letting one thread hold the processor and thereby block other threads from executing.
This can be dealt with by adding a timeout or other mechanism to the scheduling policy.

Our simulations show that a machine without multithreading can obtain efficien-
cies of 60% to 70% with a latency of 200 cycles, and that a machine with switch-on-miss
multithreading using 3 threads per processor can boost these efficiencies to 80% to 90%.

Finally, our simulations of the conditional-switch model show that grouping is

not beneficial in conjunction with caching.
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Chapter 6

Limited Bandwidth

In the previous chapters we have shown that the long latencies of the communica-
tion network can be tolerated by using multithreading techniques. In this chapter we look
at the other main ché.racteristic of a communication network: bandwidth.

Where as long latencies are inevitable because of the large number of processors
and memories that must be connected together, the bandwidth capacity of a network can
be increased by spending more money and adding more wires and/or switches. Unfortu-
nately, as machines grow, the network becomes a larger and larger fraction of the total
system hardware. For example on indirect networks such as butterflys and fat-trees[Lei85],
O(plog p) routing nodes are used to connect p processors. For direct networks, the number
of routing nodes is the same as the number of processors, but if you count pins and wires,
the amount of hardware increases for direct networks as well. On a hypercube, the degree
of the routing nodes increases as O(logp). On a 2-D mesh, the width of the channels must
grow as O(,/p) if a fixed bisection bandwidth/processor is to be maintained. The bottom
line is that for a large machine, the network will be expensive, and therefore we need to
understand and minimize the bandwidth demands put upon it.

In this chapter we present the bandwidth needs of our benchmark application
suite under the explicit-switch and switch-on-miss multithreading models. Our results
will show that caching substantially reduces the the network bandwidth needed. We then
look more closely at the traffic patterns of switch-on-miss systems. The traffic on these
systems will be bursty and thus some execution periods will need more network bandwidth
that others. We measure this burstiness and use the results along with a performance model
to suggest the level of bandwidth that should be suplied by the network.



79

| Experiment: remote memory bandwidth needs of explicit-switch |

ggfehcatxon Proc§s2sors Multxthr;admg « Latency = 2 00 cycles

blkmat 64 3 o Context. switch = 1 cycl'e

sor 16 9 ¢ Scheduling = round robin

ugray 12 10 ) Inter-blo?k grouping estimates as in Sec-
water 20 5 tion Section-IBG!

locus 8 7

mp3d 32 11

barnes 16 5

L 4

Table 6.1: Experimental parameters for measuring the remote memory band-

width needs of the applications under explicit-switch.

6.1 Bandwidth Requirement

The bandwidth which an application uses depends upon a number of factors. First,
the application may be either computationally or communication intensive. Second, if the
machine provides caching, much of the potential traffic may get filtered out by the cache.
And third, if the processor is multithreaded, the higher processor utilization and thus higher

computational rate will increase the bandwidth requirement.

6.1.1 Bandwidth Requirement Without Caching

We measured the bandwidth requirements of the applications by summing the
sizes of all messages sent through the network. This gave us the total traffic used by an
application. We then normalized this to bits/cycle/processor by dividing the total traffic
by the execution time and by the number of processors. We call this the remote memory
bandwidth.

Table 6.1 lists the simulation parameters. We measured the bandwidths of
explicit-switch with inter-block grouping, which was the best performing multithread-
ing model (without caching). The bandwidths were computed based on the message sizes
shown in Figure 6.1. These messages are used for sending loads and stores and for returning

their results. The first field in a message is its destination memory module or processor.

1For the inter-block grouping estimates we used a one line cache for each thread. This affected the
grouping but not the bandwidth results. The bandwidth was calculated as if all messages were sent into the
network and no caching was present.
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bits: 0 32 64 96 128
I T N T DT T
load word

P=—=M [mem [taglop[32bitaddr |

P-<—M [proc [tagop[32bitdata |

load double

P=—eM [mem [taglop[32bitaddr |

P-<—M [proc [tag[op|64 bit data |

store word
" p=—M [mem [taglop[32bitaddr |[32bitdata |
P<—M [proc [tagjop| (ack)
store double
P=—=M [mem [taglop[32bitaddr |64 bitdata ]

P——M (ack)

Figure 6.1: Message sizes for remote references to shared memory.

Next is an 8 bit tag field that is used to identify results as they are returned?. Then is an
8 bit opcode that specifies the operation type and message size. The last field(s) is either
the address being referenced, the data returned, or the address and data for a write.

These messages sizes are at the small end of the spectrum of possible implemen-
tations. For instance, we have assumed that the only routing information needed is the
number of the destination memory bank or processor, and that the return address can be
generated as the message is routed[GGK*82]. Also we have used 32 bit addresses, whereas
a large parallel machine will likely support a larger address space. To apply our simula-
tion results to a machine using larger messages, our bandwidth results should be scaled up
proportionally to the increase in message sizes.

Table 6.2 shows the remote memory bandwidth results. The bandwidths vary
considerably by application, and range as high as 30 bits/cycle/proc to as low as 1.44
bits/cycle/proc. For comparison, Table 6.3 shows the bisection bandwidths of proposed
and existing machines. These bandwidths are for machines scaled to 1024 processor and
are taken from Figure 1.4 in Chapter 1.

At first glance, our measurements of remote memory bandwidth in Table 6.2 may

. 2See Section 8.1.2.
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Application | Remote Memory Bandwidth
(bits/cycle/proc)
sieve 9.80
blkmat 1.44
sor 30.20
ugray 6.16
water 3.59
locus 15.07
mp3d 19.91
. barnes 3.08

Table 6.2: Average remote memory bandwidth needs of applications under

explicit-switch multithreading.

Machine Bisection Bandwidth
(P = 1024) (bits/op/proc)

TERA 55.0
CM-5 2.5
DASH 1.8
KSR1 1.6

Table 6.3: Bisection bandwidths of proposed and existing machines if scaled

to 1024 processors.

network bisection

Figure 6.2: A 2-D mesh network and its bisection.



bandwidth denotes the bandwidth between two halves of a machines, The amount of
bisection bandwidth useq depends upon the network and traffic patterns. For example,

Figure 6.2 shows a 2.D mesh network with a dashed line drawn across its bisection. If daty

actually needed, but was purposefully designed so as not to be bandwidth limited[Smi92].

For the other networks, there must be some mechanism for reducing the bandwidth require-

*We have expressed our bandwidth results in terms of bits/cycle/proc because it is an easily understood
unit. However, we have expressed the network bandwidth in the more architecturally independent units
of bits/operation/proc. These units are equivalent for our simulations because we model a pipelined RISC
Processor that executes at one operation per cycle.
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bits: 0 32 64 96 128 160 192
l:lnl:lufllll;l|ltl|f|l|f

read or write miss
P—=M |mem [tag[op[32 bit addr ]

P<—M [proc [taglop[16 byte cache ing ]
invalidate

M= C [proc [tag[op[32 bit addr |

M=—C [mem [tag[op] (ack)

recall (get modified line from another cache)

M= C [proc [tag[op[32 bit addr |

M=—C [mem ftag[op[16 byte cache iine ]
write hit unmodified (acquire ownership)

P=—=M [mem [taglop[32 bit addr |

PeM (ack)
cache replacement unmodified

C—=M |[proc [tag[op[32 bit addr ]
cache writeback

C==M [proc [tag[op[32 bit adar [16 byte cache line ]

Figure 6.3: Messages used to support coherent caching.

6.1.2 Bandwidth Requirement With Caching

In Chapter 5 most applications showed high cache hit rates and thus caching should
be effective at reducing the network bandwidth requirements. The bandwidth reductions,
however, will not be as high as the hit rates. Caches typically have large line sizes, and
these large lines will require more bandwidth to transmit than the single word memory
accesses used on systems without caching. Also, extra traffic will be needed to maintain

cache coherency.

Figure 6.3 shows the messages and sizes that we have assumed for our simulations
of cache coherent systems. These are similar to the messages for a non-caching system
(Figure 6.1), but now the memory returns an entire cache line of data rather than just a
single or double word. There are also additional messages, such as invalidation and recall

messages, that are used to maintain cache coherency.

Table 6.4 shows the simulation parameters, and Table 6.5 shows the bandwidth
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Experiment: bandwidth under switch.

Application —Processors Multithreading |
1

sieve
blkmat
sor
ugray
water
locus
mp3d
barnes

* Latency = 9¢g cycles

* Context switch — 3 cycles if caused by a
miss, 0 cycles if caused by the scheduling
policy

¢ Scheduling = timeout(100) + lock-
priority + spin-switch

* Fach processor has a 64K byte cache
with a 16 byte line size and 4 way set
associativity.

Table 6.4: Experimenta] Parameters for measuring bandwidth under
switch-on-miss.

Application Bandwidth
(bits/cycle/proc)
i 0.10

switch-on-miss.
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,j)xperiment: bursty traffic under switch-on-miss ‘,
ﬁ‘lii?::' o Pro;gsésors Mult1t112readmg ¢ Latency = 200 cycles
sor 256 4 ¢ Context switch = 3 cycles if caused by a
ugray 256 3 miss, 0 cycles if caused by the scheduling
barnes 256 2 policy

¢ Scheduling = timeout(100) + lock-
priority + spin-switch

* Each processor has a 64K byte cache
with a 16 byte line size and 4 way set
associativity.

Table 6.6: Experimental parameters for bursty traffic under switch-on-

miss.
Simulation
Length Processor Cache
Application | Problem Size (cycles) | Utilization Miss Rate
blkmat 320 x 320 matrices 1.8 M 93% 35%
sor 768 x 768 grid first 20 M 94% 1%
ugray gears — 160 x 512 slice of image | first 20 M 88% 12%
barnes 16,384 bodies first 20 M 72% 15%

Table 6.7: Increased problem sizes of applications.

ables, will be more Pronounced in larger systems with more processors. For this reason we
have simulated systems as large as possible. The simulations were for 256 processors and
are specified in Table 6.6. The problem sizes were increased so as to provide enough work

to allow adequate parallelism.

We selected four of the eight benchmarks for the studies in the remainder of this
chapter: blkmat, sor, ugray, and barnes. We could not use locus or water because we
did not have large enough inputs for these applications. We rejected mp3d because it caches
poorly and thus is incompatible with a switch-on-miss parallel machine, and we rejected

sieve because its bandwidth usage is so low that it is not interesting for this study.

Table 6.7 lists the increased problem sizes. Unfortunately, these larger problems
(except blkmat) took far too long to allow executing them to completion. Thus sor, ugray,

and barnes were executed only for the first 20 million cycles. We list the processor uti-
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BW profile

BW slowdown of
constraint high BW phase

- H ;

Figure 6.4: High bandwidth phases will slow down as they squeeze through

BWe—p

the bandwidth constrained network.

lizations over this period since the execution efficiencies can not be computed unless the
applications are run to completion. For ugray and barnes the cache miss rates have in-

creased because of the larger problem sizes.

6.2.1 Remote Memory Bandwidth

In this section we look at how the total remote memory bandwidth needs of the
applications vary over time. We will predict the performance that will be achieved on
machines with limited bandwidth networks by developing a performance model and then

applying it to the bandwidth needs of the applications.

Squeeze Performance Model

Figure 6.4 shows the basic idea of our performance model. We start with a band-
width profile of an application. This is obtained from simulations, and it shows the varying
bandwidth needs of the application as a function of time. For most applications the band-
width will not be uniform. Instead, the applications will have different phases with different
bandwidth needs as shown in the figure. The network of a real machine will have a maximum
bandwidth capacity, which is represented in the figure by the pipe labeled BW constraint,
For our performance model, we assume that during phases when an application needs less
bandwidth than is available, it will execute at full speed. But during phases when then
bandwidth needs exceed the network bandwidth capacity, we assume that execution slows
down and makes progress at the rate as which messages squeeze through the network.

Figure 6.5 formally specifies our performance model. This model is much more
accurate than simply looking at the average bandwidth over the entire run of the execution,
but it is still optimistic. Under some adverse traffic patterns there may be some links of

the network or memory modules that are more heavily used than others. These will be
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Squeeze Performance Model

i bw;,
Z t; max (l, )
bwpet

slowdown = =1 =

n = number of phases

t; = duration of phase i

v bw; = bandwidth needed in phase i
bwpet = bandwidth available

Figure 6.5: Performance model of an application having phases with varying
bandwidth needs being executed on a machine with limited network band-
width.

bottlenecks and could further slow down the execution of the machine. Hopefully, such
bottlenecks will be rare when data is spread randomly across the machine as we have

assumed.

Simulation Results

In practice, applications do not exhibit long uniform phases as suggested by the
squeeze performance model. The processors are all semi-independent systems which issue
occasional messages into the network. Together they form a very bursty system. At some
particular point in time, there might be a large burst of new messages resulting from random
coincidence. However, this burst will not slow down the machine if on subsequent cycles
there is a compensating lull in new traffic. On a small time scale the network and its
buffering serve to smooth out the traffic.

To take into account this natural smoothing of the traffic, we have gathered our
simulation data over intervals of 100 cycles. Much shorter sample intervals would be pes-
simistic since they would report bursts of traffic that could be smoothed out by a real

netw‘ork, and likewise much longer sample intervals would be optimistic since they would



of 100 cycles. During each interval, the sizes of all messages sent into the network were
added together to give a single sample value: the remote memory bandwidth tota] for that

interval. These sample values were then normalized to bits/ cycle/proc.

burstiness of traffic, but the entire 20,000,000 cycle profiles are too large to be included in

a compact graph that more clearly shows the fraction of time the applications operate at
various bandwidth levels. For example, when running sor the network sits idle (or nearly
idle) for 54% of the time. For 12% of the time (the interval of sorted samples from 54%
to 66%) the bandwidth is between 0 and 1 bits/cyc]e/proc, and the rest of the time it is
higher. About 10% of the time it is higher than 4 bits/cycle/proc. The other applications

exhibit less variance in their bandwidth profiles.

factor of 1.37.

Using this table, one can choose an appropriate bandwidth level such that the
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bandwidth
(bits/cycle/proc)

bandwidth
(bits/cycle/proc)

bandwidth
(bits/cycle/proc)

bandwidth
(bits/cycle/proc)

time (tick marks every 10,000 cycles)

Figure 6.6: Snippets of Temote memory bandwidth profiles,
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32

16

8 101 1.01

41 102 1.07

2| 113 129 1.092

1 1.37 1.85 1.71 1.01
bw | blkmat sor ugray barnes

Table 6.8: Slowdown factors under various bandwidth limits.

-

tree saturation[PN 85].
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Hot Memory Module Bandwidth Profiles
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Figure 6.8: Sorted profiles of the applications’ hot memory module band-

width usage.

Simulation Results

Figure 6.8 shows the simulation results for the hot spot memory module band-
width. These are typically a factor of 4 to 8 larger than the remote memory bandwidths,
and thus hot spots are an important part of the traffic picture.

Table 6.9 shows the application slowdowns computed using our performance model.

Based on these results we can say that the network needs a memory module bandwidth of

32| 1.01 1.08 1.02 1.01
16 1.03 1.19 1.05 1.03
8 1.25 1.55 1.36 1.10
4 223 241 265 1.77
2| 444 426 5.31 3.49
1] 888 8.02 10.61 6.97

bw | blkmat sor wugray barnes

Table 6.9: Slowdowns factors based on hot spot memory module bandwidth.
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Network Memory Module
over design over design
Application | Average BW || BW factor BW factor
blkmat 0.98 4 4 16 16
sor 1.24 4 3 32 26
ugray 1.68 2 1.2 16 10
barnes 0.59 1 1.7 8 14

Table 6.10: Over design factors for the network and memory modules.

»

16 bits/cycle. We should qualify this by restating that this is a pessimistic model, and
that it assumes either rapid onset of tree saturation or propagation of delays to processors
not directly involved in the hot spot. We performed additional simulations with a sample
interval of 500 cycles in order to gauge how sensitive our results are to this assumption.
These simulation, which are probably optimistic, suggest that a memory bandwidth of 8
bits/cycle is adequate. Thus our conclusion is that memory module bandwidth should be
from 8 to 16 bits/cycle.

Compared to our results in Section 6.2.1 indicating a remote memory bandwidth
of 2 to 4 bits/cycle/proc, the memory module bandwidth is a factor of 4 higher. The direct
implication is that networks having higher local bandwidths than bisection bandwidths are
advantageous. For instance the fat tree network in the CM-5[LAD*92] was designed so that
the lowest level of the network has four times the bandwidth of the upper levels. Another
example is the networks of M. T. Raghunath[RR93] that provide higher local bandwidths
as a means of getting high utilization of the bisection bandwidth. A third example is mesh

networks that allows adaptive routing of traffic around the hot spot memories.

Another implication of the higher memory module bandwidths is that the memory
modules must be over designed so that they have far more capacity than will be needed
on average. We can calculate this over design factor by dividing our performance model’s
bandwidth suggestions by the average bandwidths actually used by the applications. Ta-
ble 6.10 shows this calculation (for each application individually) for both the network and
the memory modules. The network and memory module bandwidths used in this table
were taken from Tables 6.8 & 6.9 at levels that allowed achieving slowdowns < 1.10. The
network over design factors are moderate and range from 1.2 to 4. The memory module

over design factors are much larger and range from 10 to 26.
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Such large over design factors are required to service the hot spots in the memory
access patterns. These hot spots arise because of the inevitable non-uniformity of the
random message distribution. An analogous problem is the random distribution of n balls
into n buckets. On average each bucket will recejve 1 ball, but the worst case bucket will

receive ((log n/loglog n) balls.

6.2.3 Location Hot Spots

» The elimination and reduction of location hot spots has been the subject of a
large body of research[DK92, GGK*82, MCS91, PN85, Ran89, YTL86]. These involve
either hardware combining of messages or software combining trees. Hardware support is
typically for fetch-and-add operations, from which many highly paralle] synchronization
techniques can be built[GGK*+82]. Software techniques have been devised for barriers and
synchronous reductions[MCS91, YTLS6].

Despite the large amount of research on combining techniques, there has been little
previous work done on measuring how beneficial combining would be for real applications.
This is partly a chicken and egg problem because without hardware support, programmers
have little incentive to use fetch-and-add like operations. Although it has been suggested
that fetch-and-add is useful even if not combined[MCS91] because it is a simple atomic
operation that can be performed quickly at the memories. We have provided such a non-
combining fetch-and-add operation in our simulation system, but we have used it only a
few times.

In general, ordinary memory requests, such as several reads to a single location,
can also be combined. In this section we determine an upper bound on the benefits of
hardware combining. Our simulations measure (indirectly) the total number of accesses to
each individual memory location during a sample interval. We then use these numbers as
our upper bound on combining. In other words, we assume that all references to a single
location during a sample interval can be combined. This is optimistic for two reasons. First,
combining of different reference types (such as a read, a fetch-and-add, and a write) is very
complex and unlikely to ever be implemented. And second, our sample interval of 100 cycles
is long enough that in a real network messages will often pass through the routing nodes
before their potential combining partners arrive.

Figure 6.9 shows the amount of traffic at the hottest (most heavily used) location



96

Hot Location Bandwidth Profiles
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Figure 6.9: Sorted profiles of the applications’ hot location bandwidth usage.

during each sample interval. As before, the samples are sorted from lowest to highest.
To interpret this data we need to know the correspondence between bandwidth and the
actual number of memory operations that occurred. Figure 6.3 showed our assumptions for
message sizes. The messages needed to service a simple read miss constitute a total of 224
bits (7 words) of traffic. A read miss is the most common operation in the network and
we will use it as our basis for calculation. When normalized to bits/cycle over a 100 cycle

sample interval, as we have used, a single read miss uses a bandwidth of 2.24 bits/cycle.

Using ugray as an example, the lowest 16% of the intervals show a hot location
bandwidth of 2.24 bits/ cycle, which is equivalent to the traffic from one read miss message.
This means that no location was referenced more than once during these intervals. Next
there are some sample intervals that have slightly higher bandwidths. These most likely
represent a single access that caused some invalidation traffic. After these, the rest of the
intervals all the way up to the 94th percentile show a bandwidth of 4.48 bits/cycle, which
equals 2 messages. These two messages might be combined, but such limited combining has

little benefit and is not the motivation for combining hardware.
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purpose barrier network ag on the CM-5[LAD+92] or perhaps with software barriers[M CS91,
YTL86]. Since serious location hot Spots are so infrequent, we do not beljeve that hardware

combining is justified.

a paralle] free list.

6.3 Summary and Implications
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Network Routing | Links? Link Width if constrained by: Total
Nodes Per | Remote Memory Memory Module Wires
Node Bandwidth Bandwidth

[128] 4
18] 2
1.3
2
2]
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a.lternatives.

7.1.1 Spin Waiting



primatives. For example, a lock on the Sequent Symmetry is just a memory location and
its value[GT90]. If the value is 0, the lock is free; if it is 1, the lock is taken. To obtain the
lock a processor executes a swap(addr,1) instruction. This instruction atomically reads
the old value at the address and writes the new value of 1. If the 8vap instruction returns
an old value of 0, the lock has been obtained, but if it returns the value 1, then the lock is
already taken. In this case, the processor spins: continuously reading the memory location
until it changes to 0, at which point the Processor retries the swap instruction.

When the lock is free, this s very efficient since there is Jjust a single memory
reference used to obtain the lock, and later just a single write(addr,0) instruction to
release the lock. The problem arises when the lock js simultaneously desired by several
processors. Ome processor will obtajn the lock; the others will incessantly read the lock
location waiting for its release. These reads would saturate the bus to shared memory
except that most are filtered out by the caches. After the first read, the value s cached
and subsequent reads simply spin on the value in the cache. When eventually the processor
holding the lock relinquishes it by writing a 0 to the lock location, it triggers invalidations
(or updates) of all the caches. At this point the remaining contenders all race to obtain the
lock.

With n processors contending for the lock, each of these races involves O(n) bus
accesses. By the time a group of n processors all get their turn with the lock, there will
have been 0(n?) bus accesses to the lock location. There are a number of more sophisticated
lock implementation which try to reduce this trafficlAnd90, GT90, MCS91]. The best of
these reduce bus traffic to 0(n) by building a software queue in which the waiting processors
can all spin on local flags. Releasing a lock involves clearing the flag belonging to the next
processor in line.

All of these lock implementations use spinning. The difference between them is

simply how much of the traffic is local or global.

Fetch-And-Add

The NYU Ultracomputer project[GGK+82] proposed an innovatjve synchroniza-
tion instruction: fetch-and-add (f2add). Feadd(addr, value) reads the specified mem-
ory address, returns the contents as the operation’s result, and then adds the specified value

and stores the sum back into the addressed location.
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A simple use of f&add is to have each of n processors execute f&add(X, 1). If
initially X = 0, the values returned will all be unique and go from 0 to n — 1. These values
might then be used to select unique tasks for each Processor in a parallel computation,

The power of f&add comes from the fact that multiple fgadd messages can be
combined in a tree like fashjon as they proceed through a butterfly network. If combining
works well, a group of simultaneous fg&add’s will get fully combined so that only a sin-
gle message actually reaches the memory module. The result message returned from the
memory module will then be split apart and the correct return values computed as the
message(s) return back down the combining tree. This can be done in such a way that
the responses are the same as if the f&add’s had been performed sequentially. Combining
allows congestion at the memories due to hot spots to be eliminated (although our results
in Section 6.2.3 suggest that such congestion is rare in our applications).

Gottlieb[GGK*82] shows that data structures such as parallel queues can be de-
signed using f&add and combining so that there is no seria] bottleneck. In other words,
hundreds of processor can simultaneously insert and remove entries from the queue without
ever entering a critical section (where only a single processor has exclusive access to the
internal queue data structures).

Although f&add based synchronization routines (along with combining) can elim-
inate memory hot spots (if they were a problem), these routines still use spinning in order
to wait for a synchronizing event: such as the release of a lock or the insertion of an entry
in a queue. Thus from the point of view of a multithreaded Processor, cycles would still be

wasted by threads waiting on synchronization operations.

Full/Empty Bits

Synchronization on the HEP[Kow85] was done through full/empty bits associated
with each memory location. For example, there was a write instruction that would set the
full bit when it wrote a value, and there was a read instruction that would check that the
full bit was set before reading the value. If the location Was empty, the reading thread
would wait until an appropriate write occurred. These full /empty bits a.lloWed very fast
and fine-grained synchronization.

Since HEP was a multithreaded Processor, spinning the processor while waiting

would be wasteful. Instead there Was a separate unit called the Storage Function Unit that
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did the spinning.

7.1.2 Non-Spinning Synchronization

All of the spin based synchronization techniques reviewed in the previous sectiop
treat synchronization as simply a “fancy” memory reference: g memory reference that also
does a test or additjon. The desired synchronization constructs are then built by using

L 4
these “fancy” memory references in conjunction with spinning,

In fact, synchronization is really something more than this, Obtaining a lock js
really a request to be notified when the lock becomes available, and releasing a lock should
instigate the notification of a waiting thread. Likewise, checking in at a barrier is a request
to be notified when al] cohorts have also checked in, and the final thread to check in should

instigate this notification.

provides a mecham’sm for eliminating spinning. Queue-On-Sync-Bit[GVWSQ] and Queue-
On-Lock-Bit[Gus92] are similar mechanisms for building queues of waiting processors, but
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Messages

What was described above as the synchronization agent, is really just the interface
to a memory module. For normal memory operations the interface receives messages, does
the memory operation, and sends replies. It also must send and receive any messages needed
to maintain cache coherency. For synchronization operations, the memory interface sends
the messages dictated by those operations.

A synchronization variable is a memory location just like any other variable, the
only difference is that it is accessed via synchronization instructions rather than normal
memorY access instructions.

We have provided the following synchronization operations in our simulator:

lock: A message is sent to request a lock, and when the lock becomes available, a message

is returned granting the lock. An unlock message is used to release a lock.

barrier: Each thread sends a message when it is ready to check in at a barrier, and when
all threads have checked in, barrier completion messages are returned to each of the
threads!.

fetch-and-add: This is the same as for the NYU Ultracomputer except that there is no
combining. A f2add message is sent to the memory, the addition is performed there,

and the reply message returns the fetched value.

wait: This is similar to the full/empty bits on the HEP except that it is just a synchroniza-
tion: there is no associated data transfer. A message is sent to wait for a specified flag
to be set. If the flag is already set, a completion messages is immediately returned,
otherwise the response occurs later when the flag is set. There are also messages for

setting and resetting the flag.

The messages formats and their sizes are shown in Figure 7.1. These messages
are the same format as the messages used for regular memory operations, except that no
data is associated with most of the synchronization operations. They are therefore compact

messages; most are just one or two words long.

'In our general simulations we have not modeled the limited network bandwidth and the serialization
at the memory module of the many barrier messages. In Section 6.2 we addressed the network bandwidth
limits and found that barriers are infrequent enough in our applications that the occasional congestion they
cause has only a minor performance impact. Later in this section we will mention some congestion free
-alternatives. ‘
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~lock

P—=M [mem [taglop[32bitaddr | (request lock)

P M (lock granted)

unlock
P==M [mem [taglop[32bitaddr | (releass lock)

Pt (a0

barrier

P==M |[mem [taglop[32bitaddr | (check in)

Pe—M (barrier completed)

fetch-and-add

P==M [mem [tagiop[32bitaddr |32bitdata | (fetch-and-add)
P-<—M [proc Jtaglop[32bitdata | (resuk)

wait

" P==M |mem |taglop[32bitaddr | (wait for flag)

P-—M (wait completed)

set or reset

P—=M |[mem [taglop[32bitaddr | (setor reset flag)

P fack)

Figure 7.1: Messages for synchronization operations.
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Implementation

granted. The only difference between the two cases, as far as the processor is concerned, is
that memory references have fairly uniform latencies (a few hundred cycles), but locks have
varied latencies (depending upon how many other threads are also waiting for the lock and

how long they each hold it).

should not wait on a specific thread if other threads are ready to execute. First-in-first-out
(FIFO) is a simple scheduling policy, and the policies looked at in Section 5.2.1 were all
Just slight modifications to FIFO.




waalra

107
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Figure 7.2: Operation of the waiting queue for a Jock.
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in which it can build waiting queues as linked lists. This array contains one location for
each thread, but only one such array will be needed per memory module, regardless of the
number of locks. _

In the example in Figure 7.2, A is a lock variable which is initially set to free.
Thread 6 is the first to request the lock and is therefore immediately granted the lock.
Threads 5 and 3 then request the lock and are queued up in FIFO order. Next thread
6 releases the lock, which causes the lock to be granted to the thread at the head of the
waiting list: thread 5. When thread 5 releases the lock, the lock is granted to thread 3.
And finally when thread 3 releases the lock, the lock returns to the free state.

Since the three word lock structure and the waiting queue array all reside on the
same memory module, they can easily be updated atomically. The memory interface unit
simply performs all its operations for the lock variable before servicing the next incoming
message.

If an application has multiple lock variables, they should be spread across the
memory modules to avoid unnecessary hot spots. Since the number of lock variables is
unlimited, there may be several lock variables on each memory module. These can all share
a single waiting queue array since the threads in each waiting queue will be distinct. This
is true because it is only possible for a thread to be waiting on one lock at a time, and thus
it could never be on more than one queue. It is perfectly valid, however, for a thread to
obtain nested locks. They just must be obtained one at a time.

Because of the complexity of synchronization (and cache coherency) it is likely
that the memory interface will be some sort of programmable device. In fact, each memory
module will likely be connected to one of the processors, and the synchronization and cache
coherency might be handled by a quick interrupt to the processor. The Wisconsin Wind
Tunnel[HLRW92] uses a CM-5 in this fashion; the processor manages the cache coherency
protocol. We suggest letting the processor handle synchronization operations in the spirit
of active messages[VECGS92]. This allows the synchronization operations to be changed
and supplemented rather than being designed into the machine.

Besides locks, other synchronization operations such as barriers, waits, and queues
can also be built with messages so that no spinning is required. In addition to eliminat-
ing spinning, performing complex synchronization operations at the memory modules has
the advantage of being faster than building them out of several simpler synchronization

operations that each involve a network traversal delay[BR90).



109

If contention is a problem, many synchronization operations can be implemented in
a distributed fashion. Barriers can be implemented with software combining trees[YTL86]
or a potentially faster technique called the dissemination barrierlMCS91]. Index distribution
and work queues can be implemented using the low contention techniques of Herlihy[HLSQ2].
These are based on counting networks and do not use spinning if there is an atomic memory

operation such as fetch-and-add.

7.2 Line Size for Minimizing Bandwidth

In this section we study the affect of cache lines sizes on the network bandwidth
needs of our applications. A large cache line has the potential of decreasing network band-
width because the headers for routing and specifying a memory access are of fixed size (see
Figure 6.3), but the data payload varies with the cache line size. With a larger line, the
fraction of bandwidth used for data is higher.

In practice, a larger line size might might actually increase the bandwidth require-
ment for several reasons. First, the requesting processor may not use all of the locations
in a cache line. These unused locations use bandwidth when they are brought across the
network, but do not otherwise affect performance. Second, a large line size increases the
likely hood of false sharing. This is the case where two different processors access different
parts of a single cache line, and the cache line is ping-ponged back and forth between the
processors even though they are not actually sharing any variables. T hird, larger line sizes
imply fewer total lines in the cache and thus increase the probability that useful data will
get replaced with unwanted data (cache pollution).

Figure 7.3 shows the bandwidth usage of the applications when run with cache line
sizes ranging from 8 to 128 bytes. The experimental parameters are shown in Table 7.2.
These experiments did not use multithreading. However, we expect that the same rela-
tive relationship between bandwidth and line size will continue to hold for multithreaded
systems.

Most of the applications have increasing bandwidth needs with larger line sizes.
The best choices for minimizing bandwidth usage are either 8, 16, or 32 byte cache lines,
depending upon the application. A 16 byte line size is the best overall choice, and that is
the value we have used throughout the studies in this thesis.

O’Krafka[0’K92] also looked at traffic as a function.of cache line size. He studied
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Bandwidth (bits/op)

32
Cache Line Size (bytes)

Figure 7.3: Bandwidth as a function of line size.

128

= =——o blkmat

*—===— sor

Oeernaann, - ugray
b= water
[ S —a jocus
o———o mp3d

*———xbarnes

l&xperiment: Bandwidth versus Line Size

-

Application | Processors Multithreadjng
sieve 128 1
blkmat 64 1
sor 16 1
ugray 32 1
water 29 1
locus 10 1
mp3d 32 1
barnes 32 1

¢ Latency = 200 cycles

¢ Each processor has a 64K byte cache
with 4 way set associativity. The line
size was a parameter of the experiment,

Table 7.2: Experimental parameters for measurement

line size.

s of bandwidth versus
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Figure 7.4: Miss rates as a function of line sjze.

update based and competitive protocols. He found that update and competitive protocols
“are only appropriate for multiprocessors with 100 or fewer processors”, and we therefore

limited our studies to invalidation based protocols.

The rising bandwidth usage with large line sizes Suggests that the problems of
unused data, false sharing, and cache pollution do occur for many of the applications.
Figure 7.4 shows the miss rates as a functjon of line size. These would be expected to
decrease with larger line size, and do for some of the applications (blkmat, mp3d, water,
and locus). The diminishing rates of decrease with larger line sizes suggest some of the
data fetched in large lines is unused. The other applications (ugray, barnes, sor, and
sieve) shows increasing miss rates with large line sizes, which suggest false sharing and

cache pollution are occurring for these applications.
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Figure 7.5: Processor utilization as a function of line size.

for all of the applications, performance increases for some applications but declines for

others.

The goal of this section is to determine an appropriate line size for minimizing the
network bandwidth requirement. Simply looking at the bandwidth as a function of line size
can be misleading because bandwidth usage might be low simply because the Processors were
idle most of the time. Figure 7.6 adjusts for this possibility by normalizing the bandwidth
results from Figure 7.3 by the processor utilization results from Figure 7.5. (This sort of
normalization actually occurs when multithreading is used to increase performance to a
higher level.) The earlier conclusion that a 16 bytes line size js the best overall choice
for minimizing bandwidth still holds, although several applications now have slightly lower

bandwidth requirements with a 39 byte line size.

Network bandwidth is not the sole issue in choosing a line size. Another major
factor is the overhead in terms of cache tag space and directory storage that is needed to
locate lines and manage coherency. The number of lines is directly proportional to the
amount of this storage, and thus doubling the lines size halves the amount of tag and
directory storage. Because of the large amount of directory storage, this may be a more
important factor than bandwidth. The KSR1[Ken92], for example, has chosen a 128 byte

line size in order to limit the size of its distributed directories.
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tion of line size.

7.3 Cache Degradation due to Multithreading

One concern with multithreaded Processors is that they may have poor cache
behavior if the threads on a Processor compete for space in the cache and knock out data
used by each other[ALKK90, CGL92, SBCVE90, WG89]. The interaction between threads

of multithreading?.

*The simulation parameters are the same ag in Table 5.6.
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Figure 7.7: Cache miss rates as a function of multithreading.

Generally the miss rates increase slightly with multithreading. Saavedra-Barrera
[SBCVE90] modeled this increase in miss rates based on the assumption that with multi-
threading of NV, the cache would behave as if it were partitioned into N subsets, each of size
1/Nth of the original cache. Then based on an analytic model of cache behavior, he derived
an expression for the miss ratio as a function of multithreading: m(N) = m(1)NK, where
m(N) is the miss ratio with multithreading N, and K is a constant that depends on the
behavior of the applications. This model does fit the behavior of many of the applications,

but the values of K vary widely.

A major factor in this variation in cache behavior is whether the threads interact

constructively or destructively. For some applications this depends on the order in'which
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thread: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
interleaved: | | E - "

blocked:

Figure 7.8: Assignment of threads to processors.

thread.s are assigned to processors. For example, the sor application works on a two di-
mensional array that is partitioned into rectangular blocks with one block per thread (see
Section 2.2.3). Interaction between threads occurs for the data along the edges of these
blocks, and if abutting blocks (threads) are assigned to the same processor, the common
edges will interact constructively in the cache.

Figure 7.8 shows two possible orders for assigning threads to processors. The
blocked order is better for sor, barnes, and blkmat because they partition the problem by
thread id numbers; and thus threads working on neighboring regions are assigned to the
same processor. Blocked ordering is actually worse for water because the particles are not
isotropically distributed; and thus blocked assignment aggravates load imbalance on the
processors. For the other applications, work scheduling is less structured and the thread
ordering is unimportant. For the simulations in this thesis, we used blocked assignment for

all of the applications except for water, for which we used interleaved assignment.

7.4 Longer Latencies

The final issue which we address in this chapter is what happens when latencies
are longer than 200 cycles. We should expect that without multithreading the increased
latencies will mean longer waits for remote references and thus lower efficiencies. With
multithreading, we should expect that more threads will be needed to hide the longer
latencies.

Figures 7.9 & 7.10 show simulation results for the applications at latencies of

200, 500, and 1000 cycles®. As expected, single-threaded efficiencies drop with increased

*The simulation parameters are the same as in Table 5.6 except that the latency has been varied and
higher multithreading levels. were used for some apphcatlons :
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for longer periods of time, increasing lock contention.

Finer Granularity: As more threads are demanded from a fixed sized problem, the prob-
lem must be divided into smaller pieces or work. This finer partitioning leads to more

communication and thus shorter run-lengths.
There also several Ways to ameliorate the impact of longer latencies:

Larger Problem Sizes: When the applications are run with larger problem sizes, the
granularity of tasks can be increased and/or more threads will be available to hide

latency.

Larger Caches: Larger caches can decrease the miss rates, which both increases average

run-lengths and decreases the number of points at which stalling might occur.

Better Load Balancing: More careful load balancing of threads will help limit the dura-

tion of the slow completion process of the last thread.

Despite the lower efficiencies achieved with multithreading under very long laten-
cies, multithreading provides larger net performance gains. The typical application (such
as sor) has a 100% performance improvement (from 30% to 60% efficiency) under multi-
threading with a 1000 cycle latency. Whereas with a 200 cycle latency, typical performance

improvements were 33% (from 60% efficiency to 80% efficiency).
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Chapter 8

Hardware Support

Most previous research into multithreading machines has involved complex hard-
ware to support the switch-every-cycle model[ACC*90, HFSS, Kow85, PC90]. These ma-
chine were built to switch every cycle so as to allow a fast pipeline implementation with-
out concern for data dependencies. In addition, this multithreading mechanism is used
to tolerate long unpredictable memory latencies. These machines typically also provide -
sophisticated synchronization (using full/empty bits on memory), and support powerful
programming models allowing rapid and dynamic creation of threads.

Unfortunately, every hardware capability has its cost. TERA[ACC*90], for in-
stance, allows fast dynamic creation of threads, and it provides 128 banks of 32 registers to
hold these threads’ register values. This huge amount of hardware complicates the machine
because it slows down the access time to the register file. Alternatively, Monsoon[PC90]
limits the size of the register file by severely restricting the number and lifetimes of reg-
isters, which undoubtably has a negative performance impact. It remains unclear if these
machines offer advantages in either performance or ease of programming compared to the
simple multithreaded shared memory model studied in this dissertation.

We have studied multithreading models which we feel have a balance between com-
putational flexibility and implementation simplicity. Only a small number of threads are
allowed per processor and thus the register file can be kept reasonably small. The program-
ming model involves a static set of threads that is used for the lifetime of the program and
thus support for fast dynamic thread creation is not needed. The synchronization mecha-
nisms are simple and similar to remote memory references. Finally, thread scheduling uses

simple policies and only switches threads at special events. In this chapter we will present



SOT as a multithreaded Processor by using jts register windows to hold multiple contexts
instead[ALKKQO]. We will present the ideas in this chapter as modifications or additions
to an ordinary pipelined RISC Processor, and we €Xpect that these jdeas can be incorpo-
rated into existing processor designs. These ideas shoyld also extend to Superpipelined ang
superscaler Processors and thus the considerable development effort into thege Processors

can be leveraged in the development of multithreaded Processors,

8.1 Hardware for Explicit-Switch

Support required for switch-on-load is virtually identical.

would be more complex, but this diagram is sufficient for explaining the jdeas developed jp
this section,

Figure 8.2 shows arevised data path that has been modified to Support the explicit-
switch multithreading model. Thjs diagram shows support for a multithreading level of

at most 4 threads Per processor. There are 4 register sets, 4 program counters, and 4



122

2 \
< bus to: local data, code, or network interface >
S ' f7
Instruction —— Local Data V.
Cache Cache
~{_Pc]
Y )
Reg File
R [ 1y 1
g |-
S |m ALU
o
-
. *
= | MDR& MAR

Figure 8.1: Datapath for RISC processor.




123

\
< bus to: local data, code, or network interface >
\ F
Instruction ———{ Local Data g

Cache PC#O Cache
Jad.PCH#1
.PC#2 |
PC #3
Y )
—®™1 Reg Set#0
Scheduler fey (| RegSetst
.
. Reg Set #2
[ R#0 5 : Reg Set #3
IR #1 IS
--\.---l-ﬁyé----— 8 B f * ’
............ b
IR #3 - ALU
.
. '
| MDR&MAR |




124




125

Application Efficiency Efficiency Loss |
(multithrea.ding) switch = 1 cycle switch = 9 cycles

sieve (mt = 5) 86 86 0%
blkmat (mt = 3) 80 77 3%
sor (mt = 9) 83 67 16%
ugray (mt = 10) 76 68 8%
Wwater (mt = 5) 90 89 1%
locus (mt = 8) 80 72 8%
mp3d (mt = 1) 89 73 16%
barnes (mt = 5) 87 83 4%

access different register sets, the Processor must pass the register set number down the
Pipeline with the instructions. This transition between threads is similar to the transition
between register windows ip the SPARC Processor.

do in uniprocessor operating Systems, the context switch time is not critical. But jf context
switches occur every 20 cycles, as they might op 5 multithreaded Processor, even just 5
single cycle spent context switching decreases Performance by 5%,

A slower context switch would result if the CPU Pipeline were drained before
starting a new thread[GHG"‘Ql]. For a pessimistic value we assume ap 8 cycle pipeline as
on the MIPS R4000[MIP91], pPlus 1 cycle for the switch instruction, This gives a context
switch cost of 9 cycles. |
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grouping (refer to Table 4.4) except that the context switch time has been increased. The
performance loss varies by application. The applications that have long average run-lengths
(such as sieve, blkmat, water, and barnes) lose just a few percent of their performance.
The other applications (sor, ugray, locus, and mp3d) have shorter run lengths, context
switch more frequently, and thus incur a larger performance loss from the slow context
switch. The worst performance loss is 16% which occurs for sor and mp3d.

The performance losses are lower than we expected for two reasons. First, average
run-lengths for the explicit-switch model with inter-block grouping (as seen in Section 4.3.2)
range from 30.cycles to more than 200 cycles. With longer run-lengths, the context switch
time has less impact on performance. Second, some of the cycles lost to the slower context
switch would have otherwise been lost to memory latency. This is a small effect, since
multithreading is usually effective at hiding most of the memory latency.

This section has shown that pipelining the context switch is feasible and can
provide as much as 16% performance improvement over a slower context switch that waits

for the pipeline to drain before sta.rtingbthe next thread.

- 8.1.2 Result Matching

Multithreading allows issuing multiple memory references into the network to hide
network latency. A difficulty arises because most networks do not preserve message order
and thus the responses must be matched with the requests.

A simple solution is to send a small tag along with each message. This tag is later
used to identify the returning result message. The tag should contain the thread number
of the issuing thread and the register in which to put the result. This allows writing the
result directly into the register file through a second write port at shown in Figure 8.2.
By storing results directly into the register file, no special storage is needed and they are
immediately available upon resumption of the thread. Alternatively, the second write port
can be eliminated if the results are buffered and later written into the register file during

cycles in which the processor does not write to the register file.

8.1.3 Scheduling

The main task of the scheduler is to determine when a thread is ready. In the
multithreading‘models we have _looked at, a thread becomes ready when all of ifs_sha.red
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memory accesses have returned from the network. To keep track of outstanding references
the scheduler will need a counter for each thread. The counter is incremented on each
shared load issued into the network and is decremented upon its return. When the counter
reaches zero, the thread becomes ready.

The ready threads may be scheduled with any sort of scheduling policy. For
explicit-switch we used first-come-first-serve (which is the same as round robin when
accesses return in order.) This is simple and fair. Other policies, such as those studied in
Section 5.2.1, might provide some additional benefit, for instance, by causing timeouts on
long rl.m-lengths. However since long run-lengths are uncommon under explicit-switch,

we expect the benefits of more complex policies will be small.

8.1.4 Multiple Register Sets

The largest change to the processor design in terms of chip area is the addition of
multiple register sets. These multiple register sets are essential for fast context switching
because without them it would take at least 128 cycles to save the register set? for the
current thread out to memory and then load in the register set for the next thread. This
overhead for context switching would overshadow any gains made from hiding the memory
latency.

In a typical RISC processor design, the register file only occupies a few percent
of the chip area. On the Stanford MIPS processor[PGH*84], for example, the register file
occupied 8.3% of the chip area. For more recent processors with large on chip caches,
the percentage of chip area used for the register file is even less. At this size, providing
10 register sets on chip, as was found to be sufficient to support the explicit-switch
multithreading model, is conceivable. However, multithreading designs that allow hundreds
of threads per processor, such as TERA. have so far been prohibited from considering single
chip implementation because of the size of their register files. Other multithreading designs,
such Monsoon and *T[NPA92], do not provide a separate register set for each thread.

The precedent for increasing the register file size has already been set by the
SPARC[Fuj88] chip and the Am29000{Man92]. SPARC has 120 integer registers, and the
Am?29000 has 192. Most of these are used to provide register windows to help speedup

procedure call and return by shifting to a new register set rather than saving and restor-

2Here we assume that the iegister set is 32 general purpose and 32 floating registers. -
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ing registers to memory. However, the benefit of these register windows is small because
compilers have been able to do a good job of avoiding most register saves and restores.
Some researchers have therefore proposed using the register windows for multiple contexts
instead[APRIL]. Unfortunately, as far as multithreading is concerned, the SPARC architec-

ture does not provide register windows for the floating registers.

8.1.5 A Denser Register File

If the multithreading level and the number of register sets supported is small (say
4), the chip a;ea. used for the registers will be comparable to that used on the SPARC or
AM29000 chips. Supporting M = 4 is thus clearly reasonable. However as the number of
threads and register sets is increased, the chip area will become more of a concern and we
therefore propose the following design which can be used for a denser implementation of
the register file for a multithreaded processor.

The key to this design is that only the register set of the currently active thread is
used by the processor. The other register sets sit idle until their thread is scheduled by the
processor. Rather than keep all register sets in large multiported register cells, the inactive
register sets can be kept in smaller single ported register sets until they are needed. If the
single ported cells are implemented as dynamic memory, then on a VLSI chip they will
require less than one twelfth the area of a regular multiported static cell®.

The main obstacle in implementing this is being able to switch to a new active
register set quickly at a context switch. At a context switch, the entire contents of the
active register set must be saved into the inactive storage area, and the register set of the
next thread must be loaded. For a register file of 32 registers, each of which is 32 bits,
this constitutes 1024 bits that must be saved and another 1024 bits to be loaded. If done
quickly, i.e. in parallel, this can be done in two cycles. In the first cycle all 1024 bits are
transferred out of the active register file into the inactive register file, and in the second
cycle the new 1024 bits are transferred in. Moving 1024 bits into (or out of) the register
file in a single cycle would require 1024 wires, and this would be unwieldy.

This obstacle can be overcome by interlacing the inactive register file within the
active register file as shown in Figure 8.4. This shows a single block that can be used in an

array of 32 by 32 blocks to implement the full collection of active and inactive register sets.

‘ 3A static cell with 2 read and 1 write ports can be implemented in 64X x 41A. A dynamic cell in
10.5X x 18A[Waw91). ' ‘ S
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Figure 8.4: One bit of register file supporting 12 threads per processor.

The figure shows 12 single ported dynamic register cells for the inactive register sets and
2 multiported register cells for the active register sets. Usually just one of the two active
register sets is used, except that when then processor is in transition from one thread to
the next, instructions from both threads are in the pipeline and thus both register sets are

needed.

The multiported register cells are used in an alternating fashion as shown in Fig-
ure 8.5. This example shows the transition from running one thread to the next and then
to a third (shown in white, grey, and black respectively). At the start, the white thread has
been executing out of the A-registers, and the B-registers have been loaded with the register
set for the grey thread. When the white thread context switches, the registers for the grey
thread are available and it can start executing immediately. The A-registers are retained
until all of the white thread’s instructions have exited the pipeline (except the switch in-
struction which does not use any registers). At this point, the A-registers are written into
the dynamic memory storage area used for the inactive threads. The A-registers are now
loaded with the register values of the black thread. By alternating between. the A-registers
and the B-registers, the active registers can always be kept available.

This technique allows enough registers for twelve contexts to be implemented in

_thé space that would normally be needed for three. This compact register file keeps the bus
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Figure 8.5: This shows the operation of the denser register file design. During
the transition between threads, both the A register bank and the B register

bank are in use simultaneously.
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loading and lengths of the register read and writes busses within acceptable bounds. As the
number of register sets is increased, this design becomes more desirable because additional
register sets can be added using only one twelfth the area that would be required for adding
a multiported static register set.

A potential complication arises because dynamic registers are often difficult to
use. In a dynamic register, the value is set by trapping a charge on a small capacitor. This
small capacitor has limited driving capacity, its charge is destroyed when it is read, and
it slowly leaks and therefore must be refreshed periodically. These are characteristics are
all a.cc.eptable for use in our register file design. The limited driving capacity is acceptable
because only a small number of cells are on any wire and these wires all short. Destructive
read is acceptable because register values are re-written when a thread completes its active
phase. And refreshing is not needed because the threads and their registers are constantly
being cycled through the processor.

A minor limitation of this design is that there is a minimum period after a context
switch before the processor can context switch again. This minimum period is 4 cycles for
a 5 stage pipeline like the MIPS R3000 and is shown in Figure 8.5. The grey thread (which
uses register bank B) executes for the minimum period of 4 cycles, during which the A
register bank is in use every cycle either by the white or black thread or for saving and
restoring registers. This 4 cycle minimum on the context switch interval should not pose a

problem since context switches rarely occur this frequently.

8.2 Hardware for Switch-On-Miss

This section describes the additions and changes to our multithreaded processor
that are needed to support the switch-on-miss multithreading model. A revised processor
datapath is shown in Figure 8.6. The main change is the addition of a cache for shared
data and support for cache coherency. Since the processors are multithreaded, the caches
must be lock up free so that they can continue operating while misses are being serviced in

the network.

8.2.1 Cache Coherency

Supporting cache coherency is complex(HLRW92], and some machines, such as
CRAY’s parallel vector computers and the TERA computer, choose to put their complexity
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Figure 8.6: Datapath with changes for switch-on-miss multithreading.



invalidation Protocol. This is a conceptually simple Protocol, and a slight variatjon was used
in the 64 Processor DASH Prototype[LLJ +92], However, for a large paralle] machine, C&F

data line.



This table is the address table shown in Figure 8.6. A similar idea was proposed by Dickey
& Kenner[DK92] where the tag was called the Outstanding Request Index.

8.2.3 Stalling On Writes

(or context switch to another thread).

The one case where one might need to stall the Processor is to satisfy the
requirements of the memory consistency model. For example, to provide sequential
consistency[Lam?Q], all accesses must appear as if they were executed in some global order

that is consistent with a sequential interleaving of the thread executions. If the network

Alternatively, the processor can avoid stalling by providing a weaker consistency
model such as weak consistency[DSB88] or release consistency[GLL*90]. These are appli-
cable to programs that use explicit synchronization primatives (such as locks) to coordinate
the interchange of data among threads. This class of programs (to which all of our applica-
tions belong) are called data race free[AH90]. For these Programs, waiting for accesses to
complete is only required at synchronization points. This effectively eliminates almost all
stalls on writes.

An additional cause for stalling occurs on systems with caching. When a Processor
tries to write a value, the processor must first have exclusjve ownership of the valye’s cache
line. If the cache does Dot contain the line (or exclusive ownership status), it must be
obtained (over the network) before the write can be performed. In order to allow the
processor to continue executing, the pending write can be put into a write buffer[PHQO].
This buffer holds the write operation unti] the cache line is obtained, and then it performs
the write.

For the simulation studies in this dissertation, we have assumed a write buffer
of sufficient size to hold all pending writes, and thus we never stal] Or context switch the

- Processor because of a write to shared memory.
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Application Efficiency Efficiency Loss
(multithreading) | switch cycles: switch = 8 cycles

on miss = 3

on timeout = 0
sieve (mt = 1) 89 86 3%
blkmat (mt = 3) 79 77 2%
sor (mt = 4) 88 85 3%
ugray (mt = 3) 88 85 3%
water (mt = 3) 91 90 1%
locus (mt = 2) 83 78 5%
mp3d (mt = 11) 86 77 11%
"barnes (mt = 2) 82 80 2%

Table 8.2: Switch-On-Miss: Performance loss with 8 cycle context switch.

If, however, the context switch is caused by a timeout rather than a cache miss,
the context switch can be performed at the start of the pipeline rather than from deep
within it. This means that a context switch caused by a timeout can be fully pipelined and
thus without any wasted cycles.

Table 8.2 shows the performance loss if all context switches take 8 cycles instead
of either 3 or 0 as just explained. The experimental parameter are otherwise the same as in
the studies of switch-on-miss (refer to Table 5.6. Excluding mp3d, which does not cache
well, the performance loss due to the longer context switch is typically 2% or 3% with the
worst case being 5% for locus. In fact, the performance loss is somewhat overstated here
because of the timeout switches. Other scheduling policies that introduce fewer spurious
context switches would be able to mitigate the performance loss further.

These results show that a fast pipelined context switch provides only small perfor-
mance gains over a less aggressive implementation that drains the pipeline before staring
the next thread. This smaller performance impact of context switch time, compared to that

under explicit-switch, results from the longer run-lengths between context switches.

8.3 Conclusions and Extension to Multiprogramming

In this chapter we have indicated that the hardware mechanisms needed to build
an explicit-switch or switch-on-miss multithreaded processor are reasonable. We have
presented them as modifications and additions to a simple RISC processor, and we have sug-

gested that multithreaded processors might be designed by modifying current microproces-
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sor designs. Some researchers have recently proposed that in the future even uniprocessors
should be multithreaded[CGL92, FP91, LGH92] because of increasing memory latencies
and the increased difficulty of scheduling deeper and wider pipelines.

Some of the simplicity of the multithreading support hardware presented in this
chapter comes from the fact the we have only considered the parallel machine to be running
a single application at a time. If instead we had tried to provide a more general parallel
processor, such as TERA[ACC+90], where each processor could be shared by threads from
several different programs, there would have been additional hardware complexities. TERA
allows up to 128 threads per processor and 16 simultaneously executing programs. The
large number of threads requires a very large register file. And the simultaneous execution
of multiple programs requires memory protection to protect all the threads from each other.

Multiprogramming is a very desirable attribute of a parallel machine. At times the
machine must clearly be devoting 100% of its resources to solving a single large problem,
for otherwise such a large machine would not be needed. But often the machine must
support the simultaneous development and testing of applications by many programmers.
We believe the approach taken by the CM-5 is a good compromise. The CM-5 allows the
machine to be partitioned into smaller machines for independent use, and it also allows the
entire machine to be time sliced between applications. This time slicing can be done at
intervals in the range of seconds, to limit the throughput loss due to stopping the machine,
draining the network, and switching to a new process.

Partitioning the machine allows a real time user to collar a portion of the machine,
whereas time slicing allows multiple application developers to share the machine while
testing their applications at the full machine size. Under these policies, the individual
Processors are always executing just a single program at a time, and thus the processor
model presented in this chapter is adequate for building real parallel machines.

An additional benefit of multithreading over current parallel machines is that the
number of processors assigned to an executing program can be easily changed. For example,
consider a program that is being run at a multithreading level of M = 2 and is using all
1024 processors. If a second program is started, the first program can be compressed down
to use 512 processors at M = 4, or 256 processors at M = 8. Without multithreading it is
difficult to change the number of processors since somehow the running program must be

reconfigured to use fewer threads.
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latencies because of the many nodes, links, and delays which messages will encounter on
their transit through the network. Also any network that provides some level of scalable
bandwidth will represent a large fraction of the hardware in a large system, and thus cost
effectiveness will dictate that bandwidth be limited.

We do not expect that any technological innovation in network design will be able
to eliminate the latency and bandwidph problems, so instead we have focused on making
the processor tolerant of long latencies and reducing and quantifying the amount of network
bandwidth needed.

9.1 Conclusions

The main focus of this research has been on models of multithreaded Processors

whose design is similar to Current state-of-the-art microprocessors except for the addition of

For machines without caching of shared data, we have looked at the switch-
on-load and explicit-switch multithreading models. Switch-on-load performs poorly
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because context switches occur frequently and often very close together. This means that a
large number of threads will be needed to hide the latency, and because of the many short
run-lengths, sometimes the latency still will not be completely hidden.

Explicit-switch improves performance by introducing an explicit context switch
instruction. This instruction can be used by an optimizing compiler to group together
independent shared memory references. This grouping allows a single thread to issue mul-
tiple references into the network before switching to another thread. The run-lengths are
increased, and the distributions are significantly improved by the elimination of most short
run-lel.lgths.

Our results show that explicit-switch is able to tolerate latencies of 200 cycles by
using a multithreading level of 10 threads (or less) per processor, and that this is sufficient
to allow all of the applications studied to obtain efficiencies of 80%.

However, since there is no caching of shared memory in these systems, all shared
references are sent across the network, and thus the resulting network bandwidth demands
can be quite high. These bandwidth demands vary considerably across the applications
and range as high as 30 bits/operation. We expect that providing such high bandwidth will
be expensive, and thus conclude that although multithreaded systems without shared data
caching can achieve high execution efficiencies, they may not be cost effective because of
their high bandwidth requirements.

Caching was effective for all but one of our applications (which has since been
rewritten to improve its caching behavior). For the rest of the applications, caching was
able to reduce the average bandwidth requirement to under 2 bits/operation. This large
reduction in bandwidth suggests that the cost and complexity of maintaining coherent
caches on a large machine will be justified by the savings afforded from use of a skinnier
network.

Caching is also beneficial in that it filters out many of the remote references and
thus eliminates many potential long latency operations. Typical miss rates ranged from 1%
to 4%. With so mé.ny fewer remote references, the impact of long latency is diminished.
Our results show that with latencies of 200 cycles, execution efficiencies of 60% to 70% can
be achieved without multithreading, and that with a multithreading level 6f 3 threads per
processor, efficiencies can be raised to 80% to 90%.

Multithreading systems both with and without caching are able to achieve effi-

ciencies of 80%. The advantage of caching is that it reduces the multithreading level and
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the amount of network bandwidth that is required.

While most of our experiments have assumed that there will be adequate network
bandwidth available, we also looked at the impact on performance of having limited band-
width, as will be the case for real networks. Our results forvlarge (256 processor) systems
(using both multithreading and caching) show that network traffic will be bursty. If the sys-
tem is to have at most minor performance degradation, then the network will need to supply
a remote reference bandwidth of 2 to 4 bits/operation and a memory module bandwidth
of 8 to 16 bits/operation. The higher memory module bandwidth is necessary because of

random hot s;;ot congestion.

9.2 Future Directions

We expect in the future that the latency problem will continue to increase. Proces-
sors will continue to get faster, and because of both higher clock rates and superscalaring,
they will issue remote references at higher rates. Ever larger parallel machines will also be
desired and these will have larger networks and longer latencies. These faster processors
and larger networks will both contribute to an increased need for latency tolerance.

Without caching, our simulations show that tolerating a 200 cycle latency requires
10 threads per processor. We expect that the number of threads needed will grow at least
linearly with latency, and thus at significantly larger latencies, the number of threads needed
may grow prohibitively large. An important aspect of these machines that needs further
research is the amount of inter-block grouping that can be obtained by a smart compiler.
Our estimates in Section 4.3.2 suggests that research in this area should be successful.

With caching, our simulations in Section 7.4 show that with longer latencies the
performance of a single threaded processor drops to 30% efficiency at a latency of 1,000
cycles. At this point multithreading is very beneficial and can double the performance to
60% efficiency, while still using just a moderate number of threads per processor.

In the introduction of this dissertation we listed six mechanisms for reducing the
impact of memory latency: caching, multithreading, weak consistency, prefetching, layout,
and aggregation. In this dissertation have focused primarily on the first three techniques.
These are the most hardware oriented and the most broadly applicable, but there is po-
tential benefit from all of these mechanisms, and we suggest future research should look at

exploiting all of these techniques.
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Appendix A

Distribution Function Histograms

Normally, distribution functions are shown either as cumulative distribution func- .
tions or as hjstogfams, where both axis have linear scales. These turned out to be inadequate
for showing the properties of the distributions which arose in this research, so as an alter-
native, we have developed a new type of histogram that represents data primarily by area
rather height.

A.1l Area Proportional to Value

Figure A.1 shows an example of our new histogram with various data points
ranging from 50% to 0.05% of the total data.! The data Points are represented as two.
dimensional triangular piles whose area is proportional to their value. You can think of

!Please excuse the fact that the piles do not sum to exactly 100% in this example.

1000,/0 , , | l,lllll , | I,llll, ' | I,IIII, ’ ] l'llll'

25%
10% 05%)
1% 5% 29, 49 \

lllllll' | llil!ll,

1 2 5 10 20 S0 100 200 500 1K 2K 5K 10K+

e 4% 3y o

Figure A.1: Example histogram showing piles of various sizes.
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A.2 Aggregation of Adjoining Piles

Another important Property of these histograms is the ability to combine nearby
piles together when appropriate. For example, if 1% of the run-lengths were spread out
evenly over the range from 2000 to 2100, each point in this range would have a valye of
less than 0.01%, and the individual points would be indjstingujshably small, Together,
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Figure A.3: Example histogram showing a uniform distribution over the
domaint [1,100].

points are far enough apart on the logarithmic scale that the piles remain independent.
The second cluster of points is {11,12,13,14,15}. These piles are starting to merge, but
are still distinguishable. The third cluster of points is {21,22,23,24,25}, and these are close
enough together that they have almost merged into a single pile. Finally, the fourth cluster
of points at {101,102,103,104,105} are so close together that the merged pile looks identical
to a single pile of 25%. The important point is that each of the four piles comprises a total
of 25% and uses the same amount of ink on the page. Where there is room to distinguish
the individual components, this is done, and when there is not enough room, the pile are

aggregated into a larger pile.

A.3 Mismatch with Old Intuition

Unfortunately, if we are familiar with the look of a distribution when plotted on
linear axis, it will appear distorted when plotted in this new format. A strong example of
this is shown in Figure A.3. Here we show a uniform distribution where each point from 1
to 100 has 1% of the run-lengths. On linear axis this would appear flat. But in our new
format, the tighter spacing at the high end does not allow enough room to show the many
small piles independently. These adjoining piles are aggregated together and the graph
rises.

Despite this mismatch with our old intuition, in most cases these graphs provide

a compact and clear understanding of the distributions that we will see in this dissertation.
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Appendix B

Simulator

B.1 Introduction

Simulation is an essential tool in the process of computer design. While the speed
of simulation has always been a concern, it is of critical concern when simulating parallel
machines because of the increased computational power of these machines. The arithmetic is
obvious: simulating one second of execution of a one MIP uni-processor requires simulating
one million instructions, but simulating one second of execution of a thousand processor
parallel machine requires simulating one billion instructions. Most simulation based research
reports being limited in scope and accuracy by the speed of their simulators[BR92, GHG*91,
ON90]. Faster simulators allow larger and more realistic simulations to be performed and
help speed up the experimental process by allowing more rapid feedback of simulation
results.

Our simulation system, FAST (Fast Accurate Simulation Tool), has a simulation
slowdown ranging from 10 to 100. This slowdown factor is the average number of cycles it
takes to simulate a single cycle of execution for a single processor. It varies based on the
application program being simulated. Applications with more frequent references to shared
memory interact with the simulator more frequently and therefore take longer to simulate.
Comparable simulation systems such as that of O’Krafka[0’K89] or Tango[DGH91] have
reported slowdowns of 2,000 and 500-6,000 respectively.

FAST was developed for the purpose of studying large shared memory multipro-
cessors with hundreds or thousands of processors, and to run real applications on these

simulated machines. To support our simulation studies of such large systems, we needed a



at the time of its development.
The technique of ezecution driven simulation[C*88] is the foundation of FAST.
We are not concerned with the simulation of 2 new instruction set, but rather we are

concerned with higher level aspects of the simulated machine. Because of this, we can

memory. The net result is that most instructions are directly executed in a single cycle,
and only the small fraction_of instructions which interact with the rest of the system need
to be simulated.

B.1.1 Overview

The remainder of this appendix is broken into five sections. Section B.2 discusses
several previous simulators and their tradeoffs in performance, accuracy, and other concerns.
Section B.3 presents an overview of FAST. Section B.4 explains our extensions to the ideas
of execution driven simulation. Section B.5 Teports performance results. And section B.6

summarizes and suggests directions for future research.

B.2 Previous Simulators and Tradeoffs

There have been an enormous number of simulation systems written for various
purposes. Here we focus on a few recent simulators that have all been designed for basically
the same purpose: simulating large shared memory multiprocessors at the instruction level.

We compare their performance in terms of their slowdown factors, and we also

of an actual Processor, and the second is the degree to which shared memory references are

interleaved and simulated in an accurate global order.
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B.2.1 Cycle-by-Cycle Simulators

The most straight forward type of simulator to build is one that cycles through the
parallel processors, simulating one instruction at a time from each of the processors. Two
examples are the simulator by O’Krafka[0’K89], which we are more familiar with since this
was done at Berkeley, and ASIM(refer to the description in [Del91]) developed at MIT as
part of the Alewife project. These simulators are slow because they are essentially assembly
language interpreters. The reported slowdown factor for O’Krafka’s simulator is 2,000, and
for ASIM it is reported as ranging from 200-5,000. Cycle-by-cycle simulators are accurate
in interleaving global events since they simulate the entire machine one cycle at a time,
but they may be inaccurate in instruction timing (as is O’Krafka’s simulator) because it is
complex and time consuming to accurately model the processor’s pipeline.

The performance of these cycle-by-cycle simulators is dominated by instruction
interpretation since this is done for every single cycle of the executed program. Interesting

events, like shared memory references, occur less frequently.

B.2.2 Execution Driven Simulators

Execution driven simulation can be substantially faster than a cycle-by-cycle sim-
ulator because it eliminates the instruction interpretation portion of the simulator. Instead,
control is handed over to the augmented program which executes for several cycles before
encountering an event of interest and returning control to the simulator. The simulated
processor has now advanced its private clock past those of other simulated processors. Ac-
curate event interleaving dictates that the event should not be processed immediately, but
rather it must be scheduled and executed once the entire global state has advanced to the
event’s time step. This means that instead of cycling between the simulated processors on
a cycle by cycle basis, it is sufficient to cycle between them at each event (as long as the
events are then queued and later executed at their proper times).

The Tango simulator[DGH91] developed at Stanford is an execution driven simu-
lator. It is based on Unix shared memory and uses Unix context switches in order to switch
from executing one processor to another. These heavy weight context switches however
require thousands of cycles, and thus they slow the simulator substantially if it switches at
every event in order to accurately interleave them. For accurate simulations they report

slowdown factors ranging from 500 to 6000. Because of this large cost of context switching,
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they provide an option to tradeoff accuracy for faster execution by letting the individual
processor clocks get out of sync and not trying to accurately interleave the shared mem-
ory references. They have recently rewritten their simulator to use a light weight thread
package, which should significantly reduce the magnitude of their context switch overhead
problem.

The Proteus simulator developed at MIT[BDCW91, Del91] is another execution
driven simulator. It does use a light weight thread package, and is substantially faster
than Tango. They report typical slowdown factors ranging from 35 to 100. However they
have a substantial accuracy problem in their instruction timing because they do not apply
code augmentation at a consistent low level. They replace shared memory references in
the C source code with calls to the simulation routines (and optionally also insert statistics
gathering calls.) They then compile this modified code and apply code augmentation for
timing on the assembly language. Because each shared reference (which should be just a
single instruction) is replaced with a procedure call, the compiler optimizations that can be
applied and the object code produced are substantially changed from that which would have
been produced if the original code were compiled directly. In fact, their good performance
is partially due to the fact that their insertion of procedure calls causes the compiler to save
away important registers, and thus allows them to “exploit ‘partial’ context switches” in
which they only save a limited amount of the register file. This is good for performance,

but bad for timing accuracy.

B.2.3 Tradeoffs
We have identified the following five tradeoffs in simulator design:

Performance: Execution driven simulation is the most important factor in building a
fast simulator because otherwise the interpretation of individual instructions is the
dominant cost. The next most important factor is fast context switching between
the simulated processors because frequent context switching is required to accurately
order global events.

Accuracy: Performing all code augmentation at the assembly language level is necessary
for accurate instruction timing. Any source code modifications that change the code
generated by the compiler affect the compiler’s optimization ability and the thus

a.écuraéy of instruction level timing. Switching between simulated processors at all
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globals events is required in order to obtain a correct global ordering. If context
switching is expensive, then the simulator writer or user js tempted to trade accuracy

for performance by context switching less often.

Source Alteration: Ideally the source code should be compiled and optimized in its orig-
inal form as it would be written for a shared memory multiprocessor. However, all
of these simulators require some source changes. Proteus is the most egregious and
requires new operators be used for all shared memory references. O’Krafka’s simula-
tor and Tango both disallow static shared variables, and thus all such variable must
be allocated dynamically and referenced indirectly through pointers. FAST only re-
quires minor syntactic changes! that have no affect on the instructions generated by

the compiler.

Modularity: Al of the simulators have similar modularity. Each allows selecting and
mixing different modules for different aspects of the machine: such as the cache and
the interconnection network. Normally this is done by linking the modules togefher,
but Tango also has the option (at substantial performance cost) of using distinct Unix

processes.

Portability: Portability is poor for all of these systems because they are tied to the instruc-
tion set that they are designed for. Direct execution simulators must be run on that
specific type of machine, but cycle-by-cycle simulators, since they are interpreters, can
use cross-compiled applications and be run on any machine. Porting execution driven
simulators to a new machine involves changing the code augmentation to understand
the new machine’s instruction set. The actual simulators are all written in high level

languages and should presumably be portable.

Based on an understanding of these tradeoffs, we have built our FAST simulation
system so that it is faster, more accurate, and uses less mutative source alterations. It has

similar modularity and portability as in the other simulators discussed.

B.3 Simulator

"Most of our applications were originally written for the Sequent[Ost89]. Their syntax for declaring a
shared variable is: shared int x;. Our syntax is: int shared x;. All uses of the variable x are also changed
to to shared x. These changes allow shared variables in the object file to be identified by using symbol table

information that is normally used for linking. . , : :



158

application
program:
app.c

library
routines

compile
cc-02

code
modifier

modified code:

app.o

simulator

cache
module

network
module

scheduler
module

executable:
app.out

simulation
parameter
file

statistics
and trace
files

Figure B.1: Diagram of using FAST.
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Figure B.1 shows a diagram of using FAST. First the application program to be
simulated is compiled with full optimization just as it would be for a real parallel processor,

and then it is linked with any libraries that it uses, such as math routines.

The linked object code module is then read into the code modifier which performs
the various code augmentations (which will be discussed in the next section). It is im-
portant that augmentation be done on library functions since some applications use these
extensively. System calls are not handled, but these usually do not occur in the parallel

compitation phases of the parallel applications that we have studied.

The modified code is then linked with the simulator and selected modules that
simulate the caches, network, and scheduler. A large number of these modules have been
written, and they can be selected based on what is of interest to the user. For caching there
are modules for various cache configurations and protocols, or for no caching at all. For
networks the simulator is usually used with a simple constant time network approximation,
but it has also been used with a detailed simulator of packet switched networks. The sched-
uler module is used for multithreading studies and implements simple scheduling policies

such as FIFO, or more complex policies like priority scheduling or timeouts.

The single executable file produced includes the simulator, the various modules,
and the modified application code. When it is run, the simulator starts first. It reads in a
simulation parameter file that specifies the number of processors, level of multithreading,
network latency, and other parameters. It then calls initialization routines for the various
modules, and then starts up and manages the execution driven simulation of the application

program.

The core of the simulator is a simple time wheel scheduler. This is just a linear
array with one slot per time step (modulo the array size), where each slot points to a linked
list of events that will occur at that time step. The simulator operates by removing an
event at the current time step, simulating it (using execution driven simulation), and then
placing the resulting event into the proper slot to be executed in the future. This is very
efficient since there is no polling to test for ready events. For simulations of large parallel
machines, there are so many events that typically every slot has one or more events in it.

The average cost of scheduling an event is thus very small.
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B.4 Code Augmentation

Code augmentation is the process of taking an original piece of code and adding
to it and/or modifying it so that it can perform additional functions. Traditionally it has

been used for the following three purposes:

Time Counting: Instructions are added to the each basic block so that when that block
is executed, the extra instructions increment a time counter with an amount corre-
sponding, to the number of cycles required for the processor to execute the original
basic block. This is the basic code augmentation that is used in all execution driven

simulators.

Statistics Gathering: Instructions are added to gather statistics such as counts of the
number of times that certain pieces of code are executed. This is the basis.of execution

driven profilers, such as the MIPS pixie program[MIP86].

Event Call-Outs: At special events, such as shared memory references, code is inserted
to call out to the simulator in order to let the simulator regain control and process
the event. This is used in a simplified form when debuggers create breakpoints by

replacing the instruction at the breakpoint with a trap instruction.
In this section we extend the idea of augmentation with several new uses:

In-line Context Switching: The augmented code typically runs for just a small number
cycles before reaching an event and returning control to the simulator. During this
execution only a small subset of the register file is ever accessed, and therefore it is
wasteful to actually load and store the entire register set. We use code augmentation
to load and store register values at basic block boundaries so that only the used and

modified registers are loaded and stored.

Reference Indirection: For a single threaded program, which the compiler thinks it is
compiling, static local variables are assigned to fixed memory addresses. However,
for a parallel program, each thread needs its own copy of these variables. Qur code
augmenter converts these references into indirect references into the executing thread’s

context block which contains the thread’s local state: register values, local variables,

and 'stkzick.
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Dynamic Reference Discrimination: We suggested in Section 2.1.3 that a compiler,
with proper language support, should be able to statically identify all memory accesses
as going to either local or shared memory. Since we do not have languages and
compilers that support this, we have added code augmentation to check address ranges
at execution time and determine if a pointer is to shared or local memory. Optionally,
this reference classification information can be collected as a trace file on the first
run of an application and then fed back into the code modifier to do complete static

classification.?

Re-Optimization: During our studies of multithreading we found it important to group
shared memory load instruction together. We implemented this within the code mod-
ifier by reordering instruction and percolating shared memory load instructions up

towards the tops of basic blocks.

Extended. Instruction Sets: For the most part we accepted the instruction set of the pro-
cessor on which simulations were being executed: the MIPS R3000[Kan89]. However
we did want to add a number of new instructions such as: double word load and stores,
local and shared memory versions of all loads and stores, an explicit thread switch in-
struction, fetch-and-add, and other special synchronization instructions. These were
all added by having the code modifier convert these into calls to special simulator

routines.

Virtual Registers: On of the most useful new code augmentations is virtualization of the
register file. This simplified implementation of the other code augmentations because
it eliminated concerns about remapping registers. This will discussed more fully at

the end of this section.

B.4.1 An Example

Figure B.2 shows an example of code augmentation for a small code fragment
which will be used to demonstrate several of the code augmentations described above.
The original assembly language instructions are shown in part (a); the modified code is

shown in part(b).3 These instructions were generated by the compilation of the expression

This accurate static classification is required for our re-optimization of the code.
3The instruction set is approximately that of the MIPS R3000[Kan89], but it has been simplified slightly
to make the example clearer. '
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registers: Rgp = global pointer

codeforr A=B+C+X Rsbp = shared base pointer
where: A is variable in shared memory Rcp = context pointer
B,C are variables in local memory Rtime = time value

X is variable in register r8

simulator interface:
simulator_sw(r4 = address, r5 = value)

------------ w18, offset of r8(Rep) O load usedregisters
1w rl, local_addr_of_B(Rgp) 1w rl, local_addr_of_B(Rcp)
1w r2, local_addr_of_ C(Rgp) 1w r2, local_addr_of_C(Rcp)
add r3, rl, r8 add r3, rl, r8
add r3, r3, r2 add r3, r3, r2
sw r3, shared addr of A(Rgp)™.. swo ri, offset of ri(Rep)

sw  r2, offset_of r2(Rcp) save modified registers

. SW r3, offset_of_ r3(Rcp)
“.. addi "Rtime, Rtime, 4 T accumulate time

addi r4, Rsbp, shared_addr_of_ A
1w r5, offset_of_r3(Rcp)

. addi Rtime, Rtime, 1

. call simulator_sw

call out to simulator

(a) original code _(b) modified code

Figure B.2: Example of code augmentation

A = B + C + X, where the variables B and C will be loaded from local memory, the
variable X is already in register r8, and the result A will be stored in shared memory.
Assume for this example that this expression by itself forms a basic block. Basic blocks are
the granularity at which we perform analysis and code augmentation, and thus this small
basic block can serve as a complete example.

The first step is to identify which instructions can be directly executed by the host
processor and which instructions will require call-outs to the simulator. In this example the
last instruction references shared memory and thus will be replaced with a call-out. The
other four instructions are local to the processor and can be directly executed. For ease of
manipulation, the call-out instruction is isolated into its own basic block, as indicated by
the horizontal lines separating the instructions.

The second step is to calculate the timing of the basic blocks. The first block has
four instructions and takes four cycles. The second block has one instruction and takes one

cycle?. The timing of each basic block is computed statically and is used in the inserted

*In general determining accurate timing is somewhat more complicated because the processor pipeline
must be modeled. Usually looking just within a basic block is adequate, but sometimes long latency floating
point operations continue executing past the end of a basic block and affect the timing of subsequent blocks.
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instructions which accumulate the running execution time in register Rtime.

The third step is reference indirection. The loads of local variables B and C are
originally relative to the global pointer (register Rgp). These are changed to be thread

relative by indexing off of the thread context pointer (register Rcp).5

Step four involves adding code for in-line context switching. In our implemen-
tation, we maintain the invariant condition that between basic blocks all register values
should be correctly stored in the context block of the executing thread. In our system this
contex.t block is pointed to by the Rcp register, and thus register load and stores are relative

to this pointer.

At the start of each basic block we insert code to load the registers whose values
will be used. In the example, only the value in register r8 is used. The registers ri1, r2
and r3 also appear, but they do not need to be loaded since their original values a.1.-e not
used. At the end of each basic block we append code to store any registers who’s values

have been redefined. In the example this is r1, r2 and r3.

This completes the code augmentation for the first basic block. The second basic
block is the save word instruction (sw) that originally saved the value in register r3 to an
address in shared memory. It is replaced by a sequence of instructions which load parameters
and then call-out to a simulation routine to perform the shared memory operation. The
address and data values are loaded into the argument registers (r4 and r5), and the time
counter (Rtime) is incremented by 1 (the time taken by the original instruction). If the
simulator finds that more time would be needed by this instruction, for instance if the
memory network is clogged or there is a cache miss, the simulator would add the additional

time.

This completes the code augmentation. The code has now been converted so that
it is context block relative. The simulator can now switch threads by changing the context

pointer and time counter and then jumping into the new thread to be executed.

If these subsequent blocks are selected by conditional branches, the exact timing will depend upon the
branch paths taken at execution time. These cases are rare, and for our simulator we use timings based on
the statically predicted most likely branch paths.

"®Here reference indirection is simply changing from Rgp to Rcp and possibly changing the offset. It is
more involved when the original reference is not relative to Rgp.
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B.4.2 Virtual Registers

The technique of in-line context switching usually leaves most register values in
the context block, and this motivated the idea of virtualizing the register file. When register
r8 was loaded and later used in Figure B.2(b), it could have been loaded into any physical
register as long as the register later used in the add instruction was also changed to the
same register. Thus the virtual registers used in the original code need not be the same as
the physical registers used in an expanded basic block. Different basic blocks could choose
to use different physical registers to hold the virtual register r8.

The benefit of this is that we can now have more virtual registers than there are
physical registers. For instance we have used virtual registers Rtime, Rcp, and Rsbp in
our modified code. The mapping between virtual and physical registers is possible as long
as each individual basic bl—ock does not use more virtual registers than there are physical
registers to map into. Mapping problems are rare and occur only for large basic blocks, and
they are easily handled by splitting these large blocks into multiple smaller blocks.

This virtualization of the register file actually simplifies other code augmentations.
For instance in the old style of code augmentation, some specific physical register, say r30,
is used for time counting. Thus wherever r30 is used in the original code, the code must
be modified to work around the usurpation of this register.

Virtual register have many potential uses. One example use was in a research
project that tried to improve memory reference patterns by re-optimizing basic blocks in
order to group together shared memory load instructions. This re-optimization needed a
few extra temporary registers to allow reordering of instructions while still preserving all

data dependencies, and these extra registers were made available as extra virtual registers.

B.5 Performance

In this section we discuss three aspects of the performance of our simulator: the
cost of in-line context switching, the slowdown factors of basic simulations, and the affects

on slowdown when simulating multithreading or caching.

B.5.1 Cost of In-line Context Switching
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Context Average
switch cost interval | Amortized
switch | switch || between | cost per

Application | Description in out switches | instruction
sieve finds primes 9.8 7.9 7.0 2.5
blkmat blocked matrix multiply 47.7 50.3 48.0 2.0
sor solves Laplace’s equation 8.5 5.5 4.2 3.3
ugray ray tracing renderer 11.8 9.1 10.1 2.1
water system of water molecules || 27.7 22.2 33.1 1.5
locus standard cell router 8.0 5.2 4.0 3.3
mp3d rarefied hypersonic flow 8.1 6.3 4.7 3.1

Table B.1: Context Switch Costs

Table B.1 shows the effectiveness of in-line context switching. It gives the context
switch frequency and the average context switch costs for the applications that we have
used in our simulation studies. ‘

The switch in cost listed in the table is the average number of registers loaded per
context switch into the application from the simulator. The switch out cost is the average
number of registers saved per context switch from the application out to the simulator.
Recall that these register loads and stores do not all occur at the points of context switching
between the simulator and threads, but are spread among the prefixes and suffixes of the
sequence of basic blocks executed between context switches. Also included in these context
switch costs are the overheads incurred by the simulator in saving and restoring reserved
registers such as the program counter, time counter, stack pointer and context pointer.

The column labeled average interval between switches shows the average number of
simulated cycles between context switches. For those applications that context switch most
frequently, the context switch cost is less than 10 cycles. The locus program, for example,
accesses shared memory very frequently and thus context switches at an average rate of
once every four cycles. The average cost of these context switches is 8.0 cycles to switch in
and 5.2 cycles to switch out. In all cases, the context switch cost is less than the size of the
register set®. In comparison, the light-weight thread package used in Proteus[Del91] loads
and stores the entire register set and takes 135 cycles per context switch.

In our system, the cost of context switching is roughly proportional to the fre-

quency of occurrence. The longer an application executes, the more registers it is likely to

80On a Mips processor there are 29 integer, 32 floating point and 3 special purpose registers in the usable
register set. : )
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Figure B.3: Simulation slowdown

use. The blkmat and vater applications, for example, context switch less frequently than
the other applications and their average context switch costs are higher. However since
they do not context switch as frequently, the higher context switch costs are amortized over
a longer period. Overall, the total context switch overhead ranges from 2 to 3 cycles per

simulated cycle.

B.5.2 Slowdowns Factors for Basic Simulations

Figure B.3 shows the performance of the FAST simulator on the various benchmark
applications. Results are shown with the number of processors varied from 1 to 1024. The
slowdown factors shown in this graph are the number of cycles taken to simulate a single
cycle of a single thread. Since most instructions are directly executed and the context
switching cost has been reduced to just 2 to 3 cycles per simulated cycle, one might expect
slowdown factors of 3 or 4. The slowdowns are larger because of the remaining overhead
which comes from the scheduling mechanism within the simulator, the simulation of shared
references, the memory simulator, and statistics gathering. For this graph the memory
model is a simple ideal memory that has 0 latency and no contention.

Two interesting trends can be observed from this graph. First, the slowdowns vary
for different programs. Programs such as blkmat and water have typical slowdowns from
10 to 30, while programs such as locus and sor have typical slowdowns from 60 to 100.

‘The difference comes from the different frequencies at which the applications interact with
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Figure B.4: Simulation slowdowns under different configurations.

the simulator. Sor and locus had context switches every 4 cycles compared to blkmat and
water which have context switches only every 30 to 50 cycles and thus require much less
scheduling by the simulator. The cost of simulated events is amortized over a larger number
of instructions, and thus the overall slowdown factors for blkmat and water are lower than
those for the other applications.

The second interesting trend is that as the number of processors is increased, the
slowdown factor initially drops and then slowly rises. The initial decrease in slowdown is
due to the time wheel algorithm used to schedule threads and events. It works best when
there are many processors and thus there are many events per cycle. The later increase in
the slowdown factor occurs because the applications use more synchronization operations as
the number of processors is increased. Synchronization operations, especially spinning on

locks or barriers, involve many shared accesses and thus increase the work of the simulator.

B.5.3 Multithreading and Caching

FAST was designed in a modular fashion and can be configured to perform a
wide variety of different simulations depending upon what is of interest to the researcher
conducting the simulation studies. The main uses of the simulator have been for studies of
multithreading under long memory latencies and for performance studies of cache coherency
protocols.

Figure B.4 shows the performance of the simulator under three configurations:

the ideal case which has 0 latency, the multithreading case which has 200 cycle latency and
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several threads per processor, and the caching case which uses a cache simulator of the
Censier and Feautrier[CF78] directory based cache coherence protocol. The ideal case and
the multithreading case have roughly the same performance. This occurs because studying
multithreading was one of the primary intended uses of FAST, and thus multithreading
support was built in from the start. Single threaded execution is simply a special case
of multithreading in which there is just one thread per processor. The cache simulator
typically takes hundreds of cycles per reference to check and manipulate the caches’ states,
and this extra overhead slows the simulations. The change in performance is moderated
by the fact that the cache simulation cost is amortized over the total number of simulated

cycles.

B.6 Summary and Future Research

We have used FAST to perform a large number of architectural simulations. Its
fast speed has allowed us to simulate larger problems and larger machines than would have
been possible with previous comparable simulators. Execution driven simulation is the most
important technique for obtaining high performance. ’

However speed is just one important aspect of FAST. By carefully understanding
the tradeoffs in design choices, we have been able to build a simulator that is also more
accurate than previous instruction level simulators. The most important point is that code
augmentation must be applied at a low level since source code alterations can perturb the
object code produced and thus the accuracy of instruction level timings. A second point
is that accurate interleaving of global events requires frequent context switching between
simulated processors, and thus fast context switching is desirable.

In building FAST, we have extended the idea of code augmentation into a number
of new areas such as in-line context switching, re-optimization, extended instruction sets,
and virtualization of the register file. These extensions have been important in making
the right design tradeoffs sd as to obtain both high performance and high accuracy, and in
making a simulator that is flexible enough to be used for a large variety of experiments.

There are several possible directions for future research with FAST 01; similar
simulators. First, since we are simulating a shared memory multiprocessor, it should be
possible to speed up the simulator be executing it in parallel on today’s small shared memory

multiprocessors in order to simulate. tomorrow’s larger machines. The main problem that
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will arise is synchronizing and correctly interlea.ving the concurrent simulations of multiple
Processors. ’

Second, FAST would be a good foundation for a parallel program development
and debugging system. Simulators are useful for debugging because they can reproduce
identical timing races on subsequent runs. The Proteus[Del91] simulator provides a powerful
monitoring facility by inserting monitoring code into the source code of applications, and we
would like to see if similar mechanisms could be built without modifying the applications’
source code.

Third, our new augmentation techniques of virtualizing the register file and ex-
tending the instruction set could be used along with a modified compiler to study various

architectural changes such as larger register files or new instructions.





