Can Logic Programming Execute
as Fast as Imperative Programming?

By
Peter Lodewijk Van Roy
Graduate (Vrije Universiteit Brussel, Belgium) 1983
M.S. (University of California) 1984
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved: ' _ ’) /\/
Chair:. . .. : Y o s R /b/ . QW/"@E‘(’\» o
A i Date
R APAL TN /2 A ?' -?../‘./3.“;.[5./.(...
% ¢ "/:
e ﬂ”(’f M‘ﬁ /.Z."f"; ./.‘*.;. ! ?fo ..

FTTITTIIITIT T IR III A4 D P22 2222 22 L] 2

Can Logic Programming Execute
as Fast as Imperative Programming?

Copyright © 1990
Peter Lodewijk Van Roy

Can Logic Programming Execute as Fast as Imperative Programming?
Peter Lodewijk Van Roy

ABSTRACT

The purpose of this dissertation is to provide constructive proof that the logic programming language
Prolog can be implemented an order of magnitude more efficiently than the best previous systems, so that
its speed approaches imperative languages such as C for a significant class of problems. The driving force
in the design is to encode each occurrence of a general feature of Prolog as simply as possible. The result-
ing system, Aquarius Prolog, is about five times faster than Quintus Prolog, a high performance commer-

cial system, on a set of representative programs. The design is based on the following ideas:

(1) Reduce instruction granularity. Use an execution model, the Berkeley Abstract Machine (BAM),
that retains the good features of the Warren Abstract Machine (WAM), a standard execution model
for Prolog, but is more easily optimized and closer toa real machine.

(2) Exploit determinism. Compile deterministic programs with efficient conditional branches. Most
predicates written by human programmers are deterministic, yet previous systems often compile
them in an inefficient manner by simulating conditional branching with backtracking.

(3) Specialize unification. Compile unification to the simplest possible code. Unification is a general
pattern-matching operation that can do many things in the implementation: pass parameters, assign
values to variables, allocate memory, and do conditional branching.

(4) Dataflow analysis. Derive type information by global dataflow analysis to support these ideas.

Because of limitations of the dataflow analysis, the system is not yet competitive with the C language for

all programs. 1 outline the work that is needed to close the remaining gap.

_

Alvin M. Despain (Committee Chairman)

o

Acknowledgments

This project has been an enriching experience in many ways. It was a privilege to be part of a team
consisting of so many talented people, and I learned much from them. It was by trial and error that 1
tearned how to manage the design of a large program that does not all fit into my head at once. Interaction
with my colleagues encouraged the development of the formal specifications of BAM syntax and seman-
tics, which greatly eased interfacing the compiler with the rest of the system. The use of the compiler by
several colleagues, in particular the development of the run-time system in Prolog by Ralph Haygood,

improved its robustness.

I wish to thank all those who have contributed in some way 0 this work. Al Despain is a2 wonderful
advisor and a source of inspiration to all his students. Paul Hilfinger’s fine-tooth comb was invaluable.
Bruce Holmer’s unfailing sharpness of thought was a strong support. 1 also would like to thank many
friends, especially Ariel, Bernt, Francis, Hervé, Josh, Mireille, Sue, and Dr. D. von Tischtiegel. Veel dank

ook aan mijn familie, et gros bisous pour Brigitte.

This research was partially sponsored by the Defense Advanced Research Projects Agency (DoD)

and monitored by Space & Naval Warfare Systems Command under Contract No. N00014-88-K-0579.

il

- iii -

Table of Contents
Chapter 1: Introduction
1. THESES SLALEIMICTIL cvv.evereereascseresersesssssesasssssssssssssasssessesssssobsss e s st sa e s e SRS SRS SR 0 1
2. The AQUAMUS COMPILET .cvcevonerrirrissssrsssressssesesersssssssosssssass s s RS RS st 3
3. SLUCLUTE OF the QISSEITALION .eeuvveeevurrrasessisssmssssesascessessissass st s s ses s sbs s e s RS Seratsnsense 4
4. CONUADULONS <ervvrrevseeseseesensssnessseessessssssssesssssss sesssesssesssstas sorsshssa AL SR S48 1008 SR RS R SRS S b L0000 6
4.1. Demonstration of high performance Prolog eXeCutionoeceescacusssimsinisimssmssmscnsissseesess 6
4.2. Test Of the theSiS SLALEMENTecuvuiimrisismrnisssesstesssisarmssr st asass st asnshstr s st st s s e e s sunee 6
4.3. Development Of a new abSUraCt MACKINEovvvrvvisemimcenmsisissirnsissssissetis e st 7
4.4. Development of the AQUATiUS COMPILETvcuuemriviersessssesssesimssstusssisss st semmesssensse 8
4.5. Development of a global dataflow ANAIYZET ...cwcwwivievcemmssrmmnssinss it ssiassseeees 8
4.6. Development of a tool for applicative PIOZIAMMINEG .cvovverrserorssessessssessssmassssssssssesssssinssasensas 9
Chapter 2: Prolog and Its High Performance Execution
1. The PrOOR JANZUAZE ...covvreccersansirssssssssesessesasssessssssesssas s st s s s s s st e 10
TR 0 7 RO OO R P S SR R R R L R i tatet 11
1.1.1. The 10gical VAIADIEc..ovvimeuerireeiscerresnrisrissssssses sttt s eses 11
1.1.2. DYNAMIC LYPINE oovuveunirrrnsesnresreeassessstusnssssmusassssenssisssssssssssss s asiss s sessssisssnsss st s snsssesss 11
1.1.3. UTSICALION vveveverrenisesereressessensesacasssssssanssssassssssesessssonsomasasastssassssss st ststasnsssasasssasssonatuss 12
172, COMEOL vt eeeeseseeeses s s sesesesesere s sasansas b st st s sod R SR SRS R eSS LRSS S e 12
1.2.1. THE CUL OPETALON .ceuvvuievrisrsensassssnessesssessssssssssasassssenasssssosssissrasssn st s et mm et sin st 13
1.2.2. The GISJUNCHON «.ceuoceusiverrsresssssessessesssesssssmssasasssssssss et tasssns s sas st e ss st st ss s 13
12,3, IE-LREN-CISE wvveeeeererurretssnsreseeeanstrtrererasasssssssnssacssssusam st e sbst st semsmsa s es bbb ss e senen 14
1.2.4. NEGation-aS-fAIIUIEvvuiremnresserremiiin sttt sssms s s 14
1.3, SYIAX ovvorevessseersesessssrissssssssssssssissesss s ass s SR 14
2. The principles of high performance Prolog EXECULON .cverecverrreerecsersrssssmosssssnsssasesuasssasatsstssssnsssnansasss 16
2.1. Operational SeMantics Of PIOIOR ...covvuuuururirriusmsssssrrsiemmassssissmsssss s st ssss e 16
2.2, PrinCIples Of the WAMcoiuiuirriuceseremmsssisssssmssssssisss s nsssisiassss s s s st ms s sissss s rinsse 18
2.2.1. Implementation of dynamic typing With 1AgSe..eeeemmnssimmnsismmnissssinassssisinensssiess 19
2.2.2. EXPIOIt AELEITIMISI 1..ovvuurirsussereersessesssnmsrssssssssssssssss s st s b s s sress 20
2.2.3. SPECialize UNIfICAUON ..u..ncvvvvvesmmecermsmsssesssassssssssrssissss s sssass s sama s s snneess 21
2.2.4. Map €Xecution 10 a real MACKINEcorrmvmmmssreemsssssmmmssss st essaness 22
2.3. DesCription Of the WAMcouumeeciueassesesismmmsmessssssss st aniasss s amass s s s nsnsnse 22
2.3.1. MEINIOTY @IEAS ..vevreevseeeressssssssnsssssssssssisssessossmss st st s oms s seamsssass st sn s s s 22
D 3.2, EXCCULION SLALE ..vuvvrrreercenssrserraresessessssessssssstssesstssssisssasmsssssistsssssasssaussacis st bssiarasessess s 24
23,3, THe INSIUCLION SEL «.ouvveuserasssresesscssirssssssnssesssesissssessssastissansshsssstse s iones asn s s crses s 25

2.3.4. An example Of WAM COUE ...cvvurveiemisrmiimimmsseris s 25

-1V -

2.3.5. Compiling into WAMcoevvmrerenen reeeeesaeieseestesss b et shsRe s st s e bR asas 26

3. GOING DEYONA the WAM ..occooeeeee s sssssseses s e s sessss s s s s e 27
3.1. Reduce inStruction EIANLIATILYc.ccouveiimsirererrensssasisissssssosssesmasssssssmnsssenssssssasssasassasssasssusesnss 28
3.2. EXPIOit dELEMMUNISII c..overennrnrnnriecreeisnssrseiscesesstsissan b sn s en s ss st ssnssassssssens . 29
3.2.1. Measurement Of dEterMIRISMccovvimenncessnrinenssssssnseonsssssasasamsannennanas oo 29

3.2.2. Ramifications of exploiting determiniSMc.cceeeeresssmsssssssssssscsossscssmssnnsssssssrorssnassns 30

3.3, SPECIAlize UNIMICALON ouuveeueersrresiscrsssese st sessstsssinssisss s srsss s sass s s st as st bt s b b e 31
3.3.1. Simplifying variable bindingcccoeorercimmvinicnnsss s s 32

3.4. DALaflow ANALYSIS ..covcevunirricireriiersiissiser s sisssssssessss b st s s st st et ot n s ns 33
4. REIAIEA WOTK .r.eoeveveeeeeenieesivesssssssssssessasssseresesesoresesesrrssessnsantasasessassessatsssstssisessssssnmanssnssasassasassasannsasass 33
4.1. Reduce inStruction GranUIATILYccceeeesmsessssassssscssssessssminssinensiessassissssssnssssnassrssasesassesessess 34
4.2, EXPIOit QELEITIINISIT w..ovvviiuvreetsrrersestessssssnessssrsessessssassss st sasrn s s st s s s s assbs st st st b s 34
4.3. SPECIialize UNIfICAUON ...cvviveeiriiersstseese e tenssi s s s st st b bbb ass 35
4.4, DAAflOW ANALYSIS ...cucverueeereririiemiiiemsrisrisssssssssstont et ast s st s s s sae e s a st sas b 36
4.5, Other IMPIEMENLALIONSvvvvrveeevereseersecceessassssssssnssnsssssssssssassssssascsersssssmsssssssssssssssssssssssssss s 37
4.5.1. Implementing Prolog on general-purpose Machineso.coeeeeermcesssessennicnsscnsinennns 37
4.5.1.1. TAYIOT'S SYSIEM woucerureeerervecrinnnsressrssssesassssesansssssssssnsssasssssssasassasssssssssssasnsnsss 38

4.5.1.2. IBM Prologccccvuvnrrearecoennes eeetsmerenisetraea et atsrestes serssse s bensennseaes 38

4.5.1.3. SICSIUS PIOIOZ ...ovuvrrirrrenrisrencisississessssmsssssssssnscsstscsssssssnsnssssssnesssrsssansssssas 38

4.5.1.4. SB-PIOIOZ ..oucevucuercrmeriniisinireinssssssssissssssesssstssassssissssnssssasssasssasssssssssssss s sssos 39

4.5.2. Implementing Prolog on special-purpose Machingscoeeoevemsusrascrssenssermssisssenes 39
B.5.2.1.PLM oottt teceestseseesssensesessssenestssssnessasasasasasssansssuass rebsss et s sssan s siaen 39

4.5.2.2. SPUR ..ooeeveeeeeeststeeses s sesessssesssssesssrsesssssstsssnssenssansaserasaststase sessassstsasassonsansssans 40

4.5.2.3. PSI-IT aNd PIM/D ...cocveeececcrcmetinsencssnsnsessne s sesssisssssesssssstsssssnasssssasnsssssssasssass 40

4.5.28. KOM ooeeeeeereer et sess s sesasssesesssesessansssssnssssassssssssasasesasasstossson sasassnsansss 40

4.5.2.5. VLSI-BAM oot reesiesessessserssesessasmsssssssssasassssssssssessnseass sasosonensassssussans 40

Chapter 3: The Two Representation Languages

1. TEHEOGUCHION +vveveeeeveeeeseeeresesestsssseessessrsesesessssnsssesssessssmsesssnsssnsrsns sases sensassseaesssststssssssinsesshnssnssssnsstnnssasins 42
2. KEIMCE PIOIOE .ouovvervivtsisncsecaseioeesesssassasesss s ssssssss st sessese st ses s sss s ARS8 RS SE s 42
2.1. Internal predicates of KeMEl PrOLOEc.couveuierinnmncmiinimninitininsists sttt 44

2.2. Converting standard Prolog to Kemel Prolog ... seessicnsinnssnsnssesnens 46

2.2.1. Standard form transfOIMALIONccceeerisemsisciniessersassmsasissssssansssseesssssnssnsnsmessssnssasasess 46

2.2.2. Hea UNTAVELING ..covvveereececmsireniiiiiressassassessssise s tnsss s s st st se s sscssensssansns 46

2.2.3. Arithmetc ranSTOTMALIONcccoreeereeeecrseresesmissssstsnssimssstasesesesssesssssassnsnsasasassassasasss 48

22.4. Cul TANSTOTNALION ..ovvivivirreierereeseeseeorescssorsssssssssssssnasessansresssssssessmscsssasssssnssasssasssssss 48

2.2.5. FIAUERING ..ovvevrrermeecereremscssessemnessesarssensssssesss ossersssnsansnassventssssosssssass shaseassnssnssanssssssases 49

3. The Berkeley Abstract Maching (BAM)cooicrmiiiminimtiniss st 51
3.1. Data types in the BAM ...ttt sens s s ssias s s 52

3.2. AN OVErvIEW Of The BAM ...c.iuiiiieeiicisieecerie st s srassssssss et sotasensssssss sasssasasassssscusos siss s 55

3.3. Justification of the COMPIEX INSUUCHOMS ...ovveverruersmeeisesmseimmniiniesstsinsnsstssssscs st enens 57

3.4. Justification of the instructions needed for UNIfICALON ...overiiioeniniii e 59

3.4.1. The existence of read mode and Write MOAEc.ovoirrirvenenniciinini s 61

3.4.2. The need fOr dereferenCingc.couvmvmvnrinscsssesesnmsssssssoseresssssssssssssssssesssrsessseasssescases 62
3.4.3. The need for a three-way branCh ... 62
3.4.4. Constructing the read mode INSIMUCHONSccoverrmreermrenrasssisssusenssssssaseseseensssmsmnmacsses 63
3.4.5. Constructing the write mOde INSUUCHONScreeeeererirecsisernemsssssesssesessasssnsmsssnsessnsaces 64
3.4.6. Representation of variablescormieeiersisisinisssnsnniescsescmsmiissesssssssisss e snss 66
3.4.7. Summary of the Unification INSITUCLONS ..oeeerieeerecesssisrsnssssrsssssisiscusmsmsssssssnsessssassass 67

Chapter 4: Kernel transformations

1. IREPOGUCHION «..veevieveieerirsuistesenesesseseesasaesssessasenssarnssossnest stsssonsstssrstssiessssasssnssesessesssessbsssssssssessasnssenssanssses 68
2. Types as 10gICal FOIMUIAScooooivimrieieiee ittt ers s ts st s seb s s st as s 69
3. Formula ManiPUlBLONc.covmiiiiniiiinniniien s ssasss s cases s tassstassa st st s ssssssaas st s sasasssssssssas s ssnaces n
4. FACIOTINE ..veveeueeincncsireseresmasisssessssessssssssassassassssssasesnsasassistassssesasassansassasases - 73
5. Global dAtAfloOW ANAIYSISccereerererenenercresenesteteinesserere e ssssseressseseast st sisasss st shsisasas st storasssasan st sussananasoe 7
5.1. The theory of abstract iNTEIPrELAtIONccovviveeeresssrencassseescsitsssssssnsistscsereseasarssnsssssssranannannss 77

5.2. A practical application of abstract interpretation t0 Prologoveeveemsmstsnessnsssienuesnscenes 80
5.2.1. The Program LAtLCEcoevurisirernrusssessssnssssssnsessescsstscsssesssssnsssssssesssssssssasssasassssssess 81

5.2.2. An example of generating an uninitialized variable typeccoviverscrcrneierescnsnnns 82

5.2.3. Properties Of the lattice EIEMENLScoccvcueieererrcnscrcusisisenninsrssenssrsnensstssssssssansessnsese 83

5.3. Implementation of the analysis AGOTIAM ...ttt 84

5.3.1. Dala EPIESENLALIONcvcecerueereveririssrsnsssasatassasssssssressssssststsessassssaresassasssvasassssssssssassnss 84

5.3.2. Evolution Of the @NalYZerccecconmnriiimenninsiiastsnsnnssstsssssssnesssesnansnssisssssnmsesasssnnes 85

5.3.3. The analysis AIZOMIMccccervinsiirninerntsrrrss i isterssst s sssss e ssssesesssonstsissasssnsssnnsesss 86

5.3.4. Execution time Of @NALYSISccccvceccrcniierissrisisessissessresssssssssssssssescscsassesstsisssasesnsassens 88

5.3.5. Symbolic execution of @ PrediCalecccereeresenciincaiininiinirentenesnsess s snacs 91

5.3.6. Symbolic execution 0f @ GOlccccireeiincieictcii e 91

5.3.6.1. UNIfiCAtION ZOAISocviueeesuriensrircmnninesrssstisssisinsssssssnesstsssas st sunassnsassnsnsnsssanens 91

5.3.6.2. Goals defined in the PrOZIAMcccccviviiiirinnieissisiensrnnressssectsesessacsssssise 93

5.3.6.3. Goals not defined in the PrOZIaMcovevirierersrerersrsssneniesscsensssses s nasaess 93

5.3.7. An example Of @NAIYSIS ...civerieriirirerimniiiininiiesss sttt s s 93

5.4. Integrating analysis int0 the COMPIIETcvoriiieieiieiiit s 94

5.4.1. Enmry SPeCialiZAtionc..cccoeveuvevisireinremeremisiessssssesessnstimssssssms s s etssassasasanassasssnnesacne 96

5.4.2. Uninitialized register CONVETSIONc.cccvererriermisnerisceresenenesisnssstsssssesinsonsrsransssassensessses 96

5.4.3. Head UNTAVELING ...ovvcecererecerniitsesessnesciinesnresesnssnasssstsessssssistsessssasnsssessasnsassasassssssssases 97

6. DeterminiSm traNSfOTTNALONcceeceeeerrrveessessertsesssrenssissssoresssansesmssassssasessssstsssssssssssssssssrnssssassassasess 98
6.1. Head-body SEZMENLALONovuevivrrerrersissssssrssisssansssstssssssesssssssmsssnisssiasasistsssasssassasassestsesctasnss 99

6.2. TYPE ENIICHMENL ...covnerariininnirerree e riastess s ans s esbsnsenssn s asaa s R s E s st b an s e 100

6.3. GOAl TEOTACTINGcvveoeveererecrecnisisrasseessisses st s ssasessesssscrsttsrsss s s s ba b s s s st ssnsst st s cnnes 102

6.4. Determinism eXtraction With LESL SELSccoevueerririserminisreressninsessorsussssssssnsssnmsesssnssssssossessss 103
641 DEAIMIONS .eoeeeeeeeesesssnrereeresssssssssessessssssssessesssssssess s sssss s sssssss s sisssss oo 104

6.4.2. SOME EXAMPIES ...coceueueerirreensrevsisiisiesissessssssrsiss s sasesistssssssssestan s b srs s sas s e sasssastsusssbass 105

6.4.3. The AIZOTIRIM ..couvvvniiiiic et s s sttt s s e e 106

-vi-

_Chapter 5: Compiling Kernel Prolog to BAM Code
1. INMTOAUCHON <..eeveereeeeemeneeeteereassssesessesssrsssenseassentassestsestsssossss et as srssssssssasassasstsssssrsnsesessnsnssssnsssansussossasasass
2. The PrediCate COMPIIETcoiuivureiirissessrsesssecessesssis s ssaestn s ib s s s s st s i s bR s

2.1. The determinism COMPILETo.ovvivevviririnrcirnnessisicsnisesissensanans

2.2. The diSJunction COMPIETc.viviiricmisismmsnieesesistrsessetssaasirsrsnsnssssssssessssssssssrsssmmssasassrssssess
3. The ClAUSE COMPILETcvueieveemienireienisieeissressssess s sesen st st b s san s ses s s s e sem s st st bas asRs b s e st

3.1. Overview of clause compilation and register AllOCAUONcccocueurimimncrinneierissensnsnnnsascsines

3.1.1. Construction Of the VATLISLcccceceerorceesresneesissuesnnssnssnnesassssssnas

3.1.2. The regiSter AllOCALOTcciveiermrrssierasersesseustsstsssrisissarssssstsssssesstsossssssssasassssissassess
3.1.3. THE fINAL TESUIL ...ooveiceieiiriiseeneesreeseeesestesisriressersesastasassanssssasatsbstssestenssessassasaesssasasanns
3.2. ThE ZOAI COMPILETo.oviuerrrrnniinsiistsssrssseiscussessssssns i ss s et st st ar b a s s b s st e
3.2.1. An example of g0al COMPIIAtONovvuvieeerescriireinciiisiiiensntss s sesssssssasinssnsiscasnnsens
3.3. The unNifiCaON COMPALET ...ccciuiiriririiirensrerssesecussscssussssissssssssnssss st sssstssss st st sesssas s erssnasases

3.3.1. The unification algOTithMccoeeervereremorsernenesststesiisesinenenesssssransesencnsmsssis s ssssassanscs
3.3.2. OPLIMUZALONS «...coovumrsrinerssssrrasssassesessssssssresssssssssssssassastassosthsasssssstsssssnsssnanssssasasessenss
3.3.2.1. Optimal write mode UNIfICALONocurimreriiianstsrinrinnsen s enensinsnscen i
3.3.2.2. Last argument OPUMIZALONceveresesresesessussacssssssnmssssmsssssssssasissasassacsssssasnsnes

3.3.2.3. TypPe PrOPAZALIONocvvereresescrmresesessisessinsessnsiassassasssussssesssssnssasiasaaes “
3.3.2.4. DEPth MILING .cecoccvnrriimrimiennirsanssensrcnstssssesssssassr st ssssssssstassesesessssssssenness
3.3.3. Examples Of UNIfICALONcoviiireciniinesmecsissitsensmsns st s tssostasstssss s s ssnisass

3.4. Entry SPECIAliZALION ...ccoeiueieirerserisiieicrecssessssimaisessstss s s siassscnstse s s tasan st sna st s e
3.5. The write-0nce tranSfOMMALIONccceerrrrveressisssioresesmamesesmssrossssssssssssnasmesssmesenasssonsssasssessesess
3.6. The dereference chain tranSfOrMALIONcocoiieuiirmsiereersiissseonsssssisnnismsmssesssansissnsrssssssssosasaess

Chapter 6: BAM Transformations

1. INLTOTUCHON o1 ovveeeevesveeeeeneenesressessasssonsesssnessestesesnsestastossasssssrasressssassstesssssonsasbssrsssssssarssessnsensssisneseass snssnsas

D DIEIIMILIONS +vroeeeereeeeeeseseseseecessessesesssssasesiassassseseresasesesssesasessatnsastsesussssasassstsassssst ihostsntassatassassomassssssssesiess

3. ThE (TANSTOTINALIONS «..evevieeeereereeesesersssessssesssossinstssrasansrssessasssessenssestsssassestsintsssssnssassstesssasor sasassesscacas
3.1. Duplicate code elMINALONccvorvverreessrieesisinsemer st s s st ss st
3.2. Dead cOde SlMINALIONcoevivcrrererieecerreeeresecreresresssrsisstastsesaessssussessssssnssssssssssssasasss satsessissssns

3.3, JUMP ClIMINAUON oucvvuvcvverisierssessasssassssssesssecsssosmssessssnss s ansass s asssesssssae s ans s s s eneness -

3.4, Label ClIMINALON ...ovevivvevireeenreeeereeesssesessstsmssesesesmrsssssssssnsssmssssestsssssssssansssassssnasssssssnsstsnsassssases
3.5. SYNONYM OPUIMHZALONvvuunrrsnersssrmsssoresssesmessssssssssssssmassssssssasssssessensssssmss st s s i cosesinse
3.6. Peephole OPUIMIZALONcuuvvurerurisrisicmssessiuss s sse s s sas s s st nnas
3.7. DelerminiSm OPUIMHZALONovcsvuiurersenrmssmssssisseserssssssssissiassssssssssass st assasensns sossssnssn s s sasescses

Chapter 7: Evaluation of the Aquarius system

1. IIEEOGUCHION «.veeveerereereeesserensorestosesseseesssassasesseseaststosssssbessamessatssssssseessatsssunasas nsnsssnsseasesssisseiamsssasasssnsscees
2. ADSOIIE PETTOTIMANCEoovvrremnirsersemssrssesscess s trs st s b s SR SR s e
3. The effectiveness of the dataflow aNALYSISc.oviviiveriiirieinnenscesesisiii st e
4. The effectiveness of the determinism tranSfOrMALIONoceeeiiecrrerrnsstesnsesinsnsnsstisnsesnssseissnsntnessees
5. PTOIOZ ANA € ..oooeereecerevesiscsiuiseesssasess e sss st e ess e s s s s LR S 0
6. BUE ANALYSIS ...evvvrereeneieerunriairasss et srssess e css et s s RS

- vii -

Chapter 8: Concluding Remarks and Future Work

1 TNEFOQUCHION evrreeeneveseessenssssseseseecussesssserssnsssssasssseesss s rRs SRS S LS TSSEER S E e RR r 159
2. MM TESBIL . oevereeeesnrerseresssseeeessseses e sassas s e ss e sssese R R AR SRS R SR 159
3. PrACUCAL IESSOMS .vvvvvvsemrsnsseresssissrssesssssersssssesssssssssssssssbase s s s s RSS20 159
4. LANGUAGE AESIZN ..revvcvrirrrersssesssessessssssssansssmsssss s S 160
. FFULUTE WOTK «vvvorveresennsssoeeesecsssssssssssssesssesas s smase s RS AR S SR 00 161

5.1. DALAAOW ANALYSIS .v.cverererecersersiessarsssssrssscsssisssssma s sasssine a0 162

§.2. DEIEITINISITL ..oovvvvseesssreesecssnssssnsssesssssssecssstsssssmmss s s sEas s b S s RS s ss ss RSSSSEES R0 163
REEETEIICES ovvvvoseereveomeeeessssssssesesssesssssosesssss s e AR S SR R R0 164
Appendix A: User manual for the AQUArius Prolog COMPIIETicrmiecesisimmmssismmisssscsnassaseess 171
Appendix B: Formal specification of the Berkeley Abstract Machine SyNtaxccccoceseressnsense 179
Appendix C: Formal specification of the Berkeley Abstract Machine semanticsc..cccoeeeeeeee 184
Appendix D: Semantics of the Berkeley Abstract Machinecoouiemscussnimssmmscmssssenssnssiens 203
Appendix E: Extended DCG notation: A tool for applicative programming in Prolog 213
Appendix F: Source code of the C and Prolog benchmarks ..o 220

Appendix G: Source code of the AqQuarius Prolog COMPIEr ... 224

Chapter 1

Introduction

““You're given the form,

but you have to write the sonnet yourself.
What you say is completely up to you.”’
— Madeleine L’Engle, A Wrinkle In Time

1. Thesis statement

The purpose of this dissertation is to provide constructive proof that the logic programming language
Prolog can be implemented an order of magnitude more efficiently than the best previous systems, so that

its speed approaches imperative languages such as C for a significant class of problems.

The motivation for logic programming is to let programmers describe what they want separately
from how to get it. It is based on the insight that any algorithm consists of two parts: a logical specification
(the logic) and a description of how to execute this specification (the control). This is summarized by
Kowalski's well-known equation Algorithm = Logic + Control [40]. Logic programs are statements
describing properties of the desired result, with the control supplied by the underlying system. The hope is
that much of the control can be automatically provided by the system, and that what remains is cleanly
separated from the logic. The descriptive power of this approach is high and it lends itself well to analysis.
This is a step up from programming in imperative languages (like C or Pascal) because the system takes

care of low-level details of how to execute the statements.

Many logic languages have been proposed. Of these the most popular is Prolog, which was origi-
nally created to solve problems in natural language understanding. It has successful commercial imple-
mentations and an active user community. Programming it is well understood and a consensus has
developed regarding good programming style. The semantics of Prolog strike a balance between efficient
implementation and logical completeness [42,82]. It auempts to make programming in a subset of first-
order logic practical. It is a naive theorem prover but a useful programming language because of its
mathematical foundation, its simplicity, and its efficient implementation of the powerful concepts of

unification (pattern matching) and search (backtracking).

Prolog is being applied in such diverse areas as expert systems, natural language understanding,
theorem proving {57], deductive databases, CAD tool design, and compiler writing [22]. Examples of suc-
cessful applications are AUNT, a universal netlist translator {59], Chat-80, a natural language query system
[81], and diverse in-house expert systems and CAD tools. Grammars based on unification have become
popular in natural language analysis [55,56]. Important work in the area of languages with implicit paral-
lelism is based on variants of Prolog. Our research group has used Prolog successfully in the development

of tools for architecture analysis [12, 16, 35], in compilation [19,73,76], and in silicon compilation [11].

Prolog was developed in the early 70’s by Colmerauer and his associates [38]. This early system
was an interpreter. David Warren’s work in the late 70’s resulted in the first Prolog compiler {80]. The
syntax and semantics of this compiler have become the de facto standard in the logic programming com-
munity, commonly known as the Edinburgh standard. Warren’s later work on Prolog implementation cul-
minated in the development of the Warren Abstract Machine (WAM) in 1983 [82], an execution model that

has become a standard for Prolog implementation.

However, these implementations are an order of magnitude slower than imperative languages. As a
result, the practical application of logic programming has reached a crossroads. On the one hand, it could
degenerate into an interesting academic subculture, with little use in the real world. Or it could flourish as
a practical tool. The choice between these two directions depends crucially on improving the execution
efficiency. Theoretical and experimental work suggests that this is feasible—that it is possible for an

implementation of Prolog to use the powerful features of logic programming only where they are needed.

Therefore 1 propose the following thesis:

A program written in Prolog can execute as efficiently as its imple-
mentation in an imperative language. This relies on the development
of four principles:

(1) An instruction set suitable for optimization.

(2) Techniques to exploit the determinism in programs.

(3) Techniques to specialize unification.

(4) A global dataflow analysis.

2. The Aquarius compiler

I have tested this thesis by constructing a new optimizing Prolog compiler, the Aquarius compiler.

The design goals of the compiler are (in decreasing order of importance):

(1

2

©)

High performance. Compiled code should execute as fast as possible.

Portability. The compiler’s output instruction set should be easily retargetable to any sequential

architecture.

Good programming style. The compiler should be written in Prolog in a modular and declarative
style. There are few large Prolog programs that have been written in a declarative style. The com-

piler will be an addition to that set.

I justify the four principles given in the thesis statement in the light of the compiler design:

)

@

3

Reduce instruction granularity. To generate efficient code it is necessary to use an execution
model and instruction set that allows extensive optimization. I have designed the Berkeley Abstract
Machine (BAM) which retains the good features of the Warren Abstract Machine (WAM) [82],
namely the data structures and execution model, but has an instruction set closer to a sequential
machine architecture. This makes it easy to optimize BAM code as well as port it 10 a sequential

architecture.

Exploit determinism. The majority of predicates written by human programmers are intended to be
executed in a deterministic fashion, that is, to give only one solution. These predicates are in effect
case statements, yet systems too often compile them inefficiently by using backtracking to simulate

conditional branching. It is important to replace backtracking by conditional branching.

Specialize unification. Unification is the foundation of Prolog. It is a general pattern-matching
operation that can match objects of any size. Its logical semantics correspond to many possible
actions in an implementation, including passing parameters, assigning values to variables, allocating
memory, and conditional branching. Often only one of these actions is needed, and it is important to
simplify the general mechanism. For example, one of the most common actions is assigning a value

to a variable, which can often be simplified to a single load or store.

(4) Dataflow analysis. A global dataflow analysis supports techniques to exploit determinism and spe-
cialize unification by deriving information about the program at compile-time. The BAM instruction

set is designed to express the optimizations possible by these techniques.

Simultaneously with the compiler, our research group has developed a new architecture, the VLSI-BAM,
and its implementation. The first of several target machines for the compiler is the VLSI-BAM. The
interaction between the architecture and compiler design has significantly improved both. This dissertation
describes only the Aquarius compiler. A description of the VLSI-BAM and a cost/benefit analysis of its

features is given elsewhere [34,35].

3. Structure of the dissertation

The structure of the dissertation mirrors the structure of the compiler. Figure 1.1 gives an overview
of this structure. Chapter 2 summarizes the Prolog language and previous techniques for its high perfor-
mance execution. Chapters 3 through 6 describe and justify the design of the compiler in depth. Chapter 3
discusses its two internal languages: kemel Prolog, which is close o the source program, and the BAM,
which is close to machine code. Chapter 4 gives the optimizing transformations of kernel Prolog. Chapter
5 gives the compilation of kemel Prolog into BAM. Chapter 6 gives the optimizing transformations of
BAM code. Chapter 7 does a numerical evaluation of the compiler. It measures its performance on several
machines, does an analysis of the effectiveness of its optimizations, and briefly compares its performance

with the C language. Finally, chapter 8 gives concluding remarks and suggestions for further work.

The appendices give details about various aspects of the compiler. Appendix A is a user manual for
the compiler. Appendices B and C give a formal definition of BAM syntax and semantics. Appendi).(Dis
an English description of BAM semantics. Appendix E describes the extended DCG notation, a tool that is
used throughout the compiler’s implementation. Appendix F lists the source code of the C and Prolog

benchmarks. Appendix G lists the source code of the compiler.

Prolog e
/7
/

Convert to
kemel Prolog
(Chapter 3)

Kernel Prolog
(Chapter 3)

Kemel Prolog
transformations
(Chapter 4)

Optimized
kemnel Prolog

Y

Kemel to BAM
compilation
(Chapter 5)

BAM code
(Chapter 3) P

BAM
transformations
(Chapter 6)

I'd
I

\ determinism

s standard form

transformation

[head unraveling

arithmetic
transformation

|

| cut ransformation]
al flattening |

[formula manipulation |

3

factoring

dataflow analysis

determinism
transformation

predicate compiler

clause compiler

7 duplicate code
elimination

[dead code elimination |
[jump elimination |
[label elimination |
[synonym optimization |
[peephole optimization]

optimization

[symbolic execution |

[enmy specialization |

uninitialized register
conversion

| typeupdating |

F head unraveling]

[head-body segmentation]

[type enrichment |

[goal reordering |

rdctcrminism extraction]

[disjunction compiler |

[determinism compiler |

[entry specialization |

write-once
transformation

dereference chain
transformation

[unification compiler |

=

r register atlocator }

goal compiler |

Figure 1.1 - Structure of the compiler and the dissertation

) 4, Contributions

4.1. Demonstration of high performance Prolog execution

A demonstration that the combination of a new abstract machine (the BAM), new compilation tech-
niques, and a global dataflow analysis gives an average speedup of five times over Quintus Prolog [58], a
high performance commercial system based on the WAM. This speedup is measured with a set of
medium-sized, realistic Prolog programs. For small programs the dataflow analysis does better, resulting in
an average speedup of closer to seven times. For programs that use built-in predicates in a realistic
manner, the average speedup is about four times, since built-in predicates are a fixed cost. The programs
for which dataflow analysis provides sufficient information are competitive in speed with a good C com-
piler.

On the VLSI-BAM processor, programs compiled with the Aquarius compiler execute in 1/3 the
cycles of the PLM [28], a special-purpose architecture implementing the WAM in microcode. Static code
size is three times the PLM, which has byte-coded instructions. The WAM was implemented on SPUR, a
RISC-like architecture with extensions for Lisp [8], by macro-expansion. Programs compiled with

Aquarius execute in 1/7 the cycles of this implementation with 1/4 the code size [34].

4.2. Test of the thesis statement

A test of the thesis that Prolog can execute as efficiently as an imperative language. The results of
this test are only partially successful. Performance has been significantly increased over previous Prolog
implementations; however the system is competitive with imperative languages only for problems for

which dataflow analysis is able to provide sufficient information. This is due to the following factors:
° I have imposed restrictions on the datafiow analysis to make it practical. As programs become
larger, these restrictions limit the quality of the results.

o The fragility of Prolog: minor changes in program text often greatly alter the efficiency with which
the program executes. This is due to the under-specification of many Prolog programs, i.e. their logi-

cal meaning rules out computations but the compiler cannot deduce all cases where this happens.

For example, often a program is deterministic (does not do backtracking) even though the compiler
cannot figure it out. This can result in an enormous difference in performance: often the addition of

a single cut operation or type declaration reduces the time and space needed by orders of magnitude.

] The creation and modification of large data objects. The compilation of single assignment semantics
into destructive assignment (instead of copying) in the implementation, also known as the copy
avoidance problem, is a special case of the general problem of efficiently representing time in logic.
A quick solution is to use nonlogical built-in predicates such as setarg/3 [63]. A better solution

based on dataflow analysis has not yet been implemented.

° Prolog’s apparent need for architectural support. A general-purpose architecture favors the imple-
mentation of an imperative language. To do a fair comparison between Prolog and an imperative
language, one must take the architecture into account. For the VLSI-BAM processor, our research
group has analyzed the costs and benefits of one carefully chosen set of architectural extensions.

With a 5% increase in chip area there is a 50% increase in Prolog performance.

4.3. Development of a new abstract machine

The development of a new abstract machine for Prolog implementation, the Berkeley Abstract
Machine (BAM). This abstract machine allows more optimization and gives a better maich to general-
purpose architectures. Its execution flow and data structures are similar 1o the WAM but it contains an
instruction set that is much closer to the architecture of a real machine. It has been designed to allow
extensive low-level optimization as well as compact encoding of operations that are common in Prolog.
The BAM includes simple instructions (register-transfer operations for a tagged architecture), complex
instructions (frequently needed complex operations), and embedded information (allows better translation
to the assembly language of the target machine). BAM code is designed to be easily ported to general-
purpose architectures. It has been ported to several platforms including the VLSI-BAM, the SPARC, the

MIPS, and the MC68020.

4.4. Development of the Aquarius compiler

The development of the Aquarius compiler, a compiler for Prolog into BAM. The compiler is
sufficiently robust that it is used routinely for large programs. The compiler has the following distinguish-
ing features:

. It is written in a modular and declarative style. Global information is only used to hold information

about compiler options and type declarations.

. It represents types as logical formulas and uses a simple form of deduction to propagate information
and improve the generated code. This extends the usefulness of dataflow analysis, which derives

information about predicates, by propagating this information inside of predicates.

. It is designed to exploit as much as possible the type information given in the input and extended by

the dataflow analyzer.

. It incorporates general techniques to generate efficient deterministic code and to encode each

occurrence of unification in the simplest possible form.

) It supports a class of simplified unbound variables, called uninitialized variables, which are cheaper

1o create and bind than standard variables.

The compiler development proceeded in parallel with the development of a new Prolog system, Aquarius
Prolog [31]. For portability reasons the system is written completely in Prolog and BAM code. The Prolog

component is carefully coded to make the most of the optimizations offered by the compiler.

4.5. Development of a global dataflow analyzer

The development of a global dataflow analyzer as an integral part of the compiler. The analyzer has

the following properties:

° It uses abstract interpretation on a lattice. Abstract interpretation is a general technique that proceeds
by mapping the values of variables in the program to a (possibly finite) set of descriptions. Execu-
tion of the program over the descriptions completes in finite time and gives information about the

execution of the original program.

° It derives a small set of types that lets the compiler simplify common Prolog operations such as vari-
able binding and unification. These types are uninitialized variables, ground terms, nonvariable
terms, and recursively dereferenced terms. On a representative set of Prolog programs, the analyzer
finds nontrivial types for 56% of predicate arguments: on average 23% are uninitialized (of which
one third are passed in registers), 21% are ground, 10% are nonvariables, and 17% are recursively
dereferenced. The sum of these numbers is greater than 56% because arguments can have multiple
types.

° It provides a significant improvement in performance, reduction in static code size, and reduction in
the Prolog-specific operations of trailing and dereferencing. On a representative set of Prolog pro-
grams, analysis reduces execution time by 18% and code size by 43%. Dereferencing is reduced

from 11% t0 9% of execution time and trailing is reduced from 2.3% to 1.3% of execution time.

° It is limited in several ways to make it practical. Its type domain is small, so it is not able to derive
many useful types. It has no explicit representation for aliasing, which occurs when two terms have
variables in common. This simplifies implementation of the analysis, but sacrifices potentially useful

information.

4.6. Development of a tool for applicative programming

The development of a language extension to Prolog to simplify the implementation of large applica-
tive programs (Appendix E). The extension generalizes Prolog’s Definite Clause Grammar (DCG) notation
to allow programming with multiple named accumulators. A preprocessor has been written and used

extensively in the implementation of the compiler.

Chapter 2

Prolog and Its High Performance Execution

This chapter gives an overview of the features of the Prolog language and an idea of what it means to
program in logic. It summarizes previous work in its compilation and the possibilities of improving its exe-
cution efficiency. It concludes by giving an overview of related work in the area of high performance Pro-

log implementation.

1. The Prolog language

This section gives a brief introduction to the language. It gives an example Prolog program, and
goes on to summarize the data objects and control flow. The syntax of Prolog is defined in Figure 2.2 and
the semantics arc defined in Figure 2.3 (section 2.1). Sterling and Shapiro give a more detailed account of

both [62], as do Pereira and Shieber [56].

A Prolog program is a set of clauses (logical sentences) written in a subset of first-order logic called
Horn clause logic, which means that they can be interpreted as if-statements. A predicaie is a set of
clauses that defines a relation, i.e. all the clauses have the same name and arity (number of arguments).
Predicates are often referred to by the pair name /arity. For example, the predicate in_t ree/2

defines membership in a binary tree:

in_tree(X, tree(X, _,_)).
in_tree(X, tree (V,Left,Right)) :- X<V, in_tree(X, Left) .
in_tree(X, tree (V,Left,Right)) := X>V, in_tree(X, Right).
(Here **: - '’ means if, the comma *, ** means and, variables begin with a capital letter, tree(V,L,R)

is a compound object with three fields, and the underscore *‘_’" is an anonymous variable whose value is
ignored.) In English, the definition of in_tree/2 canbe interpreted as: ‘X is in a tree if it is equal 10
the node value (first clause), or if it is less than the node value and it is in the left subtree (second clause),

or if it is greater than the node value and it is in the right subtree (third clause).”

The definition of in_tree/2 is directly executable by Prolog. Depending on which arguments
are inputs and which are outputs, Prolog’s execution mechanism will execute the definition in different

ways. The definition can be used to verify that X is in a given tree, or 10 insert or look up X in a tree.

10

11

The execution of Prolog proceeds as a simple theorem prover. Given a query and a set of clauses,
Prolog attempts to construct values for the variables in the query that make the query true. Execution
proceeds depth-first, i.e. clauses in the program are tried in the order they are listed and the predicates
inside each clause (called goals) are invoked from left to right. This strict order imposed on the execution
makes Prolog rather weak as a theorem prover, but useful as a programming language, especially since it

can be implemented very efficiently, much more so than a more general theorem prover.

1.1. Data

The data objects and their manipulation are modeled after first order logic.

1.1.1. The logical variablet

A variable represents any data object. Initially the value of the variable is unknown, but it may
become known by instantiation. A variable may be instantiated only once, i.e. it is single-assignment.
Variables may be bound to other variables. When a variable is instantiated to a value, this value is seen by
all the variables bound to it. Variables may be passed as predicate arguments or as arguments of com-
pound data objects. The latter case is the basis of a powerful programming technique based on partial data

structures which are filled in by different predicates.

1.1.2. Dynamic typing

Compound data types are first class objects, i.e. new types can be created at run-time and variables
can hold values of any type. Common types are atoms (unique constants, ¢.g. f£co, abcd), integers, lists
(denoted with square brackets, e.g. [Head] Taill], [a,b,c,d]l), and structures (e.g.
tree(X,L,R), quad(X,C,B,F)). Structures are similar to C structs or Pascal records—they have a
name (called the functor) and a fixed number of arguments (called the arity). Atoms, integers, and lists are

used also in Lisp.

+ Not to be confused with variables of type LOGICAL in Fortran.

12

Figurc 2.1 — An example of unification

1.1.3. Unification

Unification is a pattern-matching operation that finds the most general common instance of two data
objects. A formal definition of unification is given by Lloyd [42]. Unification is able t0 match compound
data objects of any size in a single primitive operation. Binding of variables is done by unification. Asa
part of matching, the variables in the terms are instantiated to make them equal. For example, unifying
s(X,Y,a) and s(2,b,2) (Figure 2.1) maiches X withZ, Y with b,and a with Z. The unified term

is s(a,b,a),Yisequalto b, and both X and Z are equal 10 a.

1.2. Control

During execution, Prolog atempts to satisfy the clauses in the order they are listed in the program.
When a predicate with more than one clause is invoked, the system remembers this in a choice point. If the
system cannot make a clause true (i.e. execution fails) then it backtracks to the most recent choice point
(i.e. it undoes any work done trying to satisfy that clause) and tries the next clause. Any bindings made
during the ai;templed execution of the clause are undone. Executing the next clause may give variables dif-
ferent values. In a given execution path a variable may have only one value, but in different execution

paths a variable may have different values. Prolog is a single-assignment language: if unification attempts

13

to give a variable a different value then failure causes backtracking to occur. For example, trying to unify

s(a,b) and s (X,X) will fail because the constants a and b are not equal.

There are four features that are used to manage the control flow. These are the “‘cut’” operation

(denoted by ‘!’ in programs), the disjunction, the if-then-else construct, and negation-as-failure.

1.2.1. The cut operation

The cut operation is used to manage backtracking. A cut in the body of an clause effectively says:
““This clause is the correct choice. Do not try any of the following clauses in this predicate when back-
wracking.”” Executing a cut has the same effect in forward execution as executing true, i.e. it has no

effect. But it alters the backtracking behavior. For example:

p(A) :- g(A), !, r(A}).
p(A) := s(A).

During execution of p(A),if g(A) succeeds then the cut is executed, which removes the choice points
created in g (a) as well as the choice point created when p(a) was invoked. As a result, if r(A)

fails then the whole predicate p (A) fails. If the cut were not there, then if r (A) fails execution back-
tracks first to g (A), and if that fails, then it backtracks further to the second clause of p (A), and only

when s (A) in the second clause fails does the whole predicate p (A) fail.

1.2.2. The disjunction
A disjunction is a concise way to denote a choice between several alternatives. It is less verbose than
defining a new predicate that has each altenative as a separéte clause. For example:
g(A) :- { A=a ; A=b ; A=c).
This predicate returns the three solutions a, b, and c on backtracking. It is equivalent to:

q(a).
q(b).
gl(c).

14
) 1.2.3. If-then-else

The if-then-else construct is used to denote a selection between two alternatives in a clause when it is
known that if one alternative is chosen then the other will not be needed. For example, the predicate

p(A) above can be written as follows with an if-then-else:

p(A) := (q(A) => r(A) ; s(B)).

This has identical semantics as the first definiion. The arrow -> in an if-then-else acts as a cut that

removes choice points back to the point where the if-then-else starts.

1.2.4. Negation-as-failure

Negation in Prolog is implemented by negation-as-failure, denoted by \+(Goal). This is not a
true negation in the logical sense so the symbol \+ is chosen instead of not. A negated goal succeeds if

the goal itself fails, and fails if the goal succeeds. For example:

r(A) :- \+ t (7).
The predicate r (A) will succeed only if t (&) fails. This has identical semantics as:

r(A) :- t(a)y, !, fail.
r(a).

In other words, if t (A) succeeds then the fail causes failure, and the cut ensures that the second
clause is not tried. If t (A) fails then the sccond clause is tried because the cut is not executed. Note that
negation-as-failure never binds any of the variables in the goal that is negated. This is different from a
purely logical negation, which must return all results that are not equal to the ones that satisfy the goal.
Negation-as-failure is sound (i.c. it gives logically correct results) if the goal being negated has no unbound

variables in it.

1.3. Syntax

Figure 2.2 gives a Prolog definition of the syntax of a clause. The definition does not present the
names of the primitive goals that are part of the system (e.g. arithmetic or symbol table manipulation).

These primitive goals are called ‘‘built-in predicates.” They are defined in the Aquarius Prolog user

15

clause (H) :~ head (H).

clause((H:-B)) :- head(H), body(B).

head (H) :- goal_term(H).

body (G) :- control(G, A, B), body(A), body (B) .
body (G) :- goal(G).

goal(G) :- \+control(G, _, _), goal_term(G).

control ((A;B), B).

A,
control ((A,B), A, B).
control ((A->B), A, B).
control (\+(A), A, true).
term(T) :- var(T).
term(T) :- goal_term(T).

goal term(T) :- nonvar(T), functor(T, _, A), term args(l, A, T).

term_args(I, A, _) = I>A.
term args(I, A, T) :- I=<A, arg(I, T, X), term(X), Il is I+l, term args(Il, A, T).

$ Built-in predicates needed in the definition:

functor (T, F, A) :- (Term T has functor F and arity A).
arg(I, T, X) :- (Argument]of compound term T is X).
var (T) :- (ArgumentT is an unbound variable).

nonvar (T) :- (ArgumentT is a nonvariable).

Figure 2.2 - The syntax of Prolog

manual [31]. The figure defines the syntax after a clause has already been read and converted to Prolog’s
internal form. It assumes that lexical analysis and parsing have already been done. Features of Prolog that
depend on the exact form of the input (i.e. operators and the exact format of atoms and variables) are not

defined here.

To understand this definition it is necessary to understand the four built-in predicates that it uses.
The predicates functor (T, F, A) and arg(I, T, X) are used to examine compound terms.
The predicates var (T) and nonvar (T) are opposites of each other. Their meaning is straightfor-
ward: they check whether a term T is unbound or bound to a nonvariable term. For example, var (_)

succeeds whereas var (foo(_)) doesnot.

16

2. The principles of high performance Prolog execution

The first implementation of Prolog was developed by Colmerauer and his associates in France as a
by-product of research into natural language understanding. This implementation was an interpreter. The
first Prolog compiler was developed by David Warren in 1977. Somewhat later Warren developed an exe-
cution model for compiled Prolog, the Warren Abstract Machine (WAM) [82]. This was a major improve-
ment over previous models, and it has become the de facto standard implementation technique. The WAM

defines a high-level instruction set that corresponds closely to Prolog.

This section gives an overview of the operational semantics of Prolog, the principles of the WAM, a
summary of its instruction set, and how to compile Prolog into it. For more detailed information, please
consult Maier & Warren [43] or Ait-Kaci [1]. The execution model of the Aquarius compiler, the BAM
(Chapter 3), uses data structures similar to those of the WAM and has a similar control flow, although its

instruction set is different.

2.1. Operational semantics of Prolog

This section summarizes the operational semantics of Prolog. It gives a precise statement of how
Prolog executes without going into details of a particular implementation. This is useful to separate the
execution of Prolog from the many optimizations that are done in the WAM and BAM execution models.

This section may be skipped on first reading.

Figure 2.3 defines the semantics of Prolog as a simple resolution-based theorem prover. For clarity,
the definition has been limited in the following ways: It does not assume any particular representation of
terms. It does not show the implementation of cut, disjunctions, if-then-else, negation-as-failure, or built-in
predicates. It assumes that variables are renamed when necessary to avoid conflicts. It assumes that failed
unifications do not bind any variables. It assumes also that the variable bindings formed in successful
unifications are accumulated until the end of the computation, so that the final bindings give the computed

answer.

Terminology: A goal G is a predicate call, which is similar to a procedure call. A resolvent R is a

listof goals [G, , G2,G, 1. The query Q is the goal that starts the execution. The program is a list of

17

function prolog_execute(Q : goal) : boolean;

var
B : stack of pair (list of goal, integer); /* the backtrack stack */
R : list of goal; /* the resolvent */
i :integer; /* index into program clauses */
begin
R=[01
B =empty;
push (R, 1)on B;
while true do begin
/* Control step: find next clause. */
if empty(B) then return false else pop B into (R,i);
if (R = []) then return true;
if (i+1<n) then push (R ,i+l)onB;
/* Resolution step: try to unify with the clause. */
/* At this point, R =[G, ..., Gr 1and A; = (H; - Ail ey Aig) ¥/
/* Unify the first goal in R with clause A;. */
unify G and H;;
if successful unification then begin
/* In R , replace G by the body of A; */
/* If A; does not have a body, then R is shortened by one goal */
R Z=[A;1 y aen ’Aiﬂ. ,Gz, ,Gr];
push (R,1) on B /* proceed to next goal */
end
end
end;
Figure 2.3 - Operational definition of Prolog execution
clauses [Ay, A2, ... , Ax). The number of clauses in the program is denoted by n. Each clause A; has a

head H; and an optional body given as a list of goals [A;1, A2, Aig

Execution starts by setting the initial resolvent R 10 contain the query goal . In a resolution-based
theorem prover, the resolvent is wransformed in successive steps until (1) it becomes empty, in which case
execution succeeds, (2) all the clause choices are exhausted, in which case execution fails, or (3) the pro-
gram goes into an infinite loop. In a single transformation step, a goal G is taken from the current resol-
vent R and unified with a clause in the program. The next resolvent is obtained by replacing G by the

body of the clause.

This process is nondeterministic, and much work has been done in the arca of automatic theorem

proving to reduce the size of its search space [7]. To get efficiency, the approach of Prolog is to restrict the

18

_process in two ways: by always taking the first goal from R and by trying clauses in the order they are
listed in the program (Figure 2.3). If no successful match is found, then the program backtracks—a previ-
ous resolvent is popped off the backtrack stack and execution continues. Therefore the execution flow of
Prolog is identical to that of a procedural language, with the added ability to backtrack to earlier execution

states.

The function prolog_execute(Q) retumns a boolean that indicates whether execution was successful
or not (Figure 2.3). If execution was successful, then there is a set of bindings for the variables in Q that
gives the result of the computation. As a definition, prolog_execute(Q) faithfully mirrors the execution of
Prolog. As an implementation, however, it is incredibly inefficient. For each clause that is tried, it pushes
and pops the complete resolvent (which can be very large) on the backtrack stack. The backtrack stack

grows with each successful resolution step. A practical implementation avoids much of this overhead.

The next section describes the WAM, an execution model that is much more efficient. In the WAM,
the resolvents are stored in a compact form on several stacks. Only the differences between successive
resolvents are stored, so that memory usage is much less. The stack discipline is used to make backtrack-
ing efficient. The WAM also defines a representation for data items that allows an efficient implementation

of unification.

2.2. Principles of the WAM

The WAM defines a mapping between the terminology of logic and of a sequential machine (Figure
2.4). Predicates correspond to procedures. Procedures are always written as one large case statement.
Clauses correspond to the arms of this case statement. The scope of variable names is a single clause.
(Global variables exist; however their use is inefficient and is discouraged.) Goals in a clause correspond to
calls. Unification corresponds to parameter passing and assignment. Tail recursion corresponds to itera-
tion. Features that do not map directly are the single-assignment nature and altering backtracking behavior

with the cut operation.

The WAM is based on four ideas: use tagged pointers to represent dynamically typed data, optimize

backtracking (exploit determinism by doing a conditional branch on the first argument), specialize

19

Prolog Imperative language

set of clauses «4————— program

predicate; set of clauses -a——————p procedure
with same name and arity

clause; axiom -e——— if stalement; one arm of a nondeterministic
case statement; series of procedure calls

goal invocation ~e———— procedure call

unification <e———— parameter passing; assignment;
dynamic memory allocation;
conditional branching

backtracking ~e————= continuation passing;
execution state manipulation

logical variable <————— pointer manipulation

tail recursion -.«————» iteration

Figure 2.4 - Mapping between Prolog and an imperative language (according to WAM)

unification (instead of compiling a general unification algorithm, compile instructions that unify with a
known term), and map the execution of Prolog to a real machine. The WAM defines a high-level instruc-

tion set to represent these operations.

2.2.1. Implementation of dynamic typing with tags

Data is represented by objects that fit in a register and consist of two parts: the tag ficld (which gives
the type) and the value field (Figure 2.5). The value field is used for different purposes in different types: it
gives the valuc of integers, the address of variables and compound terms (lists and structures), and it
ensures that each atom has a unique value different from all other atoms. Unbound variables are imple-
mented as self-referential pointers (that is, they point to themselves) or as pointers to other unbound vari-
ables. The semantics of unification allow variables to be unified together, so that they have identical values
from then on. In the implementation, such variables can point to other variables. Therefore retrieving the

value of a variable requires following this pointer chain to its end, an operation called dereferencing.

heap
Atom tatm| Unique ID tatm |Name/Arity| Main functor
First argument
Integer tint Value . .
Last argument
Structure | tstr —
List | tlst —

_/— Head of list
Tail of list
—

Variable tvar

tvar ‘\-D

Figure 2.5 - Representation of Prolog terms in WAM and BAM

2.2.2. Exploit determinism

It is often possible to reduce the number of clauses of a predicate that must be tried. The WAM has
instructions that hash on the value of the first argument and do a four-way branch on the tag of the first
argument. These instructions avoid the execution of clauses that could not possibly unify with the goal.
The four-way branch distinguishes between the four data types—variables, constants (atoms and integers),
lists (cons cells), and structures. The hashing instructions hash into tables of constants and tables of struc-

tures. For example:

week (monday) .
week (tuesday) .
week (wednesday) .
week (thursday) .
week (friday) .
week (saturday) .
week (sunday) .

21

This is a set of seven clauses with constant arguments. If the argument X of the call week (X) isacon-
stant, then at most one clause can unify successfully with it. Hashing is used to pick that clause. If X is an

unbound variable then no such optimization is possible and all clauses are tried in order.

2.2.3. Specialize unification

Most uses of unification are special cases of the general unification algorithm and can be compiled in
a simpler way using information known at compile-time. For example, consider the following clause

which is part of a queue-handling package:

% queue (X,Q) is true
$ if Q is a queue containing the single element X.

queue (X, g(s (0}, [X|C],C)}.
A queue is represented here as a compound term. The complexity of this term is typical of real programs.
In the WAM, a unification in the source code is compiled into a sequence of high-level instructions. The
compiled code executes as if the original clause had been defined as follows, with the nested term gq/3

completely unraveled:

queue (X, Q) :- Q=q(A,B,C), A=s(0), B=[X|C].

(The notation P=Q means to unify the two terms P and Q.) The compiled code is:

procedure queue/2

get_structure gq/3,r(l) % Q=g (<- Start unification of q/3

unify variable r(2) %

unify variable r(3) %

unify variable r(4) %

get_structure s/1,r(2) % A=s(<~ Start unification of s/1

unify constant O % 0)

get_list r(3) % B= <- Start unification of list

unify value r (0} %

unify_value r(4) %
%

proceed <- Return to caller

(x(0) and r(1) are registers holding the arguments X and Q, and r(2), r(3), .. are iemporary
registers.) Unification of the nested structure is expanded into a sequence of operations that do special
cases of the general algorithm. These operations are encapsulated in the get and unify instructions.

Unification has two modes of operation: it can take apart an existing structure or il can create a new one.

22

In the WAM, the decision which mode to use is made at run-time in the get instructions by checking the
type of the object being unified. A mode flag is set which affects the actions of the following unify
instructions (up to the next get). A more detailed overview of the WAM instruction set is given in sec-

tion 2.3 below.

2.2.4. Map execution to a real machine

The control flow of Prolog is mapped to multiple stacks. The stack representation holds the resol-
vents in a form that makes each resolution step as efficient as a procedure call in an imperative language.
The stack-based structure allows fast recovery of memory on backtracking. As a result, some applications

do not need a garbage collector.

A further optimization maps Prolog variables to registers. The variables in a clause are partitioned
into three classes (temporary, permanent, and void) depending on their lifetimes. Void variables have no
lifetime and need no storage. Temporary variables do not need to survive across procedure calls, so they
can be stored in machine registers. Permanent variables are stored in environments (i.e. stack frames) local

to a clause.

2.3. Description of the WAM

The previous section gave an overview of the ideas in the WAM, with a simple example of generated
code. This section completes that description by presenting the data storage, execution state, and instruc-
tion set of the WAM in full. It also gives a larger examplie of generated code and a scheme to compile Pro-

log into WAM.

2.3.1. Memory areas

Memory of the WAM is divided into six logical areas (Figure 2.6): three stacks for the data objects,
one stack to support unification, one stack to support the interaction of unification and backtracking, and

one area as code space.

(1) The global stack. This stack is also known as the heap, although it follows a stack discipline. This

stack holds terms (lists and structures, the compound data of Prolog).

23

Three kinds of data objects on stacks

A
-~ T
r(e) r(b) r(h)
r(e) . .
environ- choice Prolog
r(a) ment point term
frame) object)
r(h)
r (hb) Support for
unification and
r(tr) backracking
r (pc) /__&
r(cp)
r(s) r(tr)
mode ? ?
r(0)
r(l)
r{2)
execution environment choice point global stack trail push-down
state stack stack (heap) stack stack

Figure 2.6 — Data structures of WAM and BAM

(2) The environment stack. This stack holds environments (i.e. local frames) which contain variables
local 1o a clause. Because of backtracking (control may return to a clause whose environment is
deep inside the stack), this area does not follow a strict stack discipline, however, convention has

kept this naming. (Thc other stacks in the WAM do follow a stack discipline.)

(3) The choice point stack. Also known as the backtrack stack, this stack holds choice points, data

objects similar to closures that encapsulate the execution state for backtracking.

(4) The trail. The trail stack is used to save locations of bound variables that have to be unbound on

backtracking. Saving variables is called trailing, and restoring them to unbound is called derrailing.

24

Not all variables that are bound have to be trailed. A variable must only be trailed if it continues to
exist on backtracking, i.e. if its location on the heap or the environment is older than the most recent

choice point. This is called the trail condition.

(5) The push-down stack. This stack is used as a scratch-pad during the unification of nested com-

pound terms.
(6) The code space. This area holds the compiled code of a program.

It is possible to vary the organization of the memory areas somewhat without changing anything substantial
about the execution. For example, some Prolog systems (including the Aquarius system) combine the
environment and choice point stacks into a single memory area. This area is often called the local stack.

Since the push-down stack is only used during general unification, it can be kept on the top of the heap.

2.3.2. Execution state

The internal state of the WAM and the BAM is given in Table 2.1. The differences between WAM
and BAM are indicated in the table: The BAM adds the register r (tmp_cp) for efficient interfacing of
Prolog predicates with assembly language. The WAM adds the register r (s) and the mode flag mode
for use by the unification instructions. The registers p(I) are not machine registers, but locations in the

current environment, pointed to by r (e).

Tablc 2.1 — Exccution statc of WAM and BAM

Register Description
r(e) Current environment on the environment stack.
r(a) Top of the environment stack (WAM only).
r (b) Top-most choice point on the choice point stack.
r (h) Top of the heap.
r (hb) Top of heap when top-most choice point was created.
r(tr) Top of the trail stack.
r {pc) Program counter.
r{cp) Continuation pointer (return address).
r(tmp_cp) Continuation pointer to interface with assembly (BAM only).
r(s) Structure pointer (WAM only).
mode Unification mode flag (value is read or write, WAM only).
r(0),r(1),.. | Registers for argument passing and temporary storage.
p(0),p(l),.. | Locationsin the current environment (permanent variables).

25

2.3.3. The instruction set

Table 2.2 contains the WAM instruction set, with a brief description of what each instruction does.
The get_(...) and unify_ (...) instructions echo the put instructions, so their listing is abbre-
viated. v (N) is shorthand notation for r(N) or p(N). ‘‘Globalizing”’ a variable (see the
put_unsafe_value instruction) moves an unbound variable from the environment to the heap to avoid

dangling pointers.

Table 2.2 — The WAM instruction set
Loading argument registers (just before a call)

put_variable v(N), r(I) Create a new variable, putin v (N) and r (I).
put_value v(N), r(I) Move v (N) tor(I).
put_unsafe_value v(N), r(I) Move v (N) to r (I) (and globalize).
put_constant C, r(I) Move immediate value C to r (I).
put_nil r(I) Move nil toxr(I).
put_structure F, r(I) Create functor F, putin r (I).
put_list r(I) Create a list pointer, putin r (I).
Unifying with registers and structure arguments (head unification)
get_(...), r(I) Unify (...) withr (I).
unify (...) Unify (. ..) with structure argument.
Procedural control
call Label, N Call a predicate.
execute Label Jump to a predicate.
proceed Return from a predicate.
allocate Create local stack frame.
deallocate Remove local stack frame.
Selecting a clause (conditional branching)
switch_on_term V,C,L,S 4 Four-way branch on r (0) ’s tag.
switch _on_constant N, Tbl Hash table lookup of an atomic term in ¢ (0).
switch on_structure N, Tbl Hash table lookup of a functor in x (0) .
Backtracking (choice point management)
try me_else Label try Label Create a choice point.
retry _me_else Label retry Label Change retry address.
trust_me_else fail trust Label Remove top-mostchoice point.

2.3.4. An example of WAM code

Figure 2.7 gives the Prolog definition and the WAM instructions for the predicate append/3. The
mapping between Prolog and WAM instructions is straightforward: the switch instruction branches to
the right clause depending on the type of the first argument, the choice point (t ry) instructions link the

clauses together, the get instructions unify with the head arguments, and the unify instructions unify

26

_with the arguments of structures.

The same instruction sequence is used to take apart an existing structure (read mode) or to build a
new structure (write mode). The decision which mode to use is made in the get instructions, which seta
mode flag. For example, if get_list r(0) sees an unbound variable argument, it sets the flag to
write mode. If it sees a list argument, it sets the flag to read mode. If it sees any other type, it fails, i.e. it

backtracks by restoring state from the most recent choice point.

Choice point handling is done by the try instructions. The try me_else L instruction
creates a choice point, i.e. it saves all the machine registers on a stack in memory. It is compiled before the
first clause in a predicate. It continues execution with the next instruction and backtracks to label L. (The
try L instruction is identical to try_me_else, except that it continues execution at L and backtracks
to the next instruction.) The retry me else L instruction modifies a choice point that already exists
by changing the address that it jumps to on backtracking. It is compiled before all clauses after the first but
not including the last. The trust_me_else fail instruction removes the top-most choice point from

the stack. It is compiled before the last clause in a predicate.

2.3.5. Compiling into WAM

Compiling Prolog into WAM is straightforward because there is almost a one-to-one mapping
between items in the Prolog source code and WAM instructions. Figure 2.8 gives a scheme for compiling
Prolog to WAM. This compilation scheme generates suboptimal code. One can optimize it by generating

switch instructions to avoid choice point creation in some cases 731

The clauses of predicate p/3 are compiled into blocks of code that are linked together with try
instructions to manage choice points. Each block consists of a sequence of get instructions to do the
unification of the head arguments, followed by a sequence of put instructions to set up the arguments for
each goal in the body, and a call instruction to execute the goal. The block is surrounded by allo-

cate and deallocate instructions to create an environment for permanent variables.

The last call optimization, or LCO (also called tail recursion optimization, although it is applicable to

all predicates, not just recursive ones) converts a call instruction followed by a return into a jump, i.e. it

27

append((], L, L).
append ([X|L1]}, L2, [XIL3]) :- append (L1, L2, L3).

Prolog definition of append/ 3

append/3:
switch _on_term V1, Cl, C2, fail ;GotoV1ifr(0) isavariable.
:Go1oClif r (0) isaconstant.
:GotoC2if r (0) isalist.
; Fail if r (0) is a structure.

Vl: try me_else V2 ; Create a choice point.

Cl: get_nil r{0) ; Unify r (0) withnil.
get_value r(l),r(2) ; Unify r (1) and r (2).
proceed ; Return to caller.

Vv2: trust_me_else fail ; Remove choice point.

C2: get_list r(0) ; Start unification of r (0) with a list.
unify variable r(3) ; Load head of listinto r (3).
unify_variable r(0) ; Load tail of listinto r (0) .
get_list r(2) ; Start unification of r (2) with a list.
unify value r(3) ; Unify head of list with r (3).
unify variable r(2) ; Load tail of listinto r (2) .
execute append/3 ; Jump to append/3 (last call optimization).

WAM code for append/3

Figure 2.7 — Compiling append/ 3 into WAM code

reduces memory usage on the environment stack. For recursive predicates, the LCO converts recursion
into iteration, since the jump is to the first instruction of the predicate. The WAM implements a generaliza-
tion of last call optimization called environment trimming that allows the environment to become smaller

after each call.

3. Going beyond the WAM

Prolog implementations have made great progress in execution efficiency with the development of
the WAM [82]. However, these systems are still an order of magnitude slower than implementations of
popular imperative languages such as C. To improve the execution speed it is necessary to go beyond the
WAM. This section discusses the limits of the WAM and how the four principles of the Aquarius compiler

build on the WAM to achieve higher performance.

P(E/F;G) Hd k(xIFIP)I m(slT)l e

choi p(A:B,C) i Q(A,Z,W), r(W,T,B), ce ey Z(A,x).
1CE
point

p(QIRIS) T e e

Original Prolog predicate
Compiled WAM code
1l: try _me else L2
code fo; allocate Create environment.
clause (get arguments) Unify with caller arguments.
ut arguments
L2: retry me else L3 ®) Load arguments and call.
- - call q/3
code for (put arguments) Load arguments and call
clause 2 call r/3 gum ’
(put arguments)
deallocate Remove environment.
\ execute z/2 Lastcallisa jump.
Ln: trust_me_else fail

A single compiled clause

code of
last clause

Figure 2.8 — Compiling Prolog into WAM

3.1. Reduce instruction granularity

The WAM is an elegant mapping of Prolog to a sequential machine. Its instructions encapsulate
parts of the general unification algorithm. However, these parts are quite large, so that many optimizations
are not possible. For examplc, consider the predicate:

p(bar).

This is compiled as:

29

get_constant bar, r(0)
proceed

The get constant instruction encapsulates a series of operations: dereference r(0) (follow the
pointer chain to its end), test its type, and do either read mode unification (check that the value of r (0) is
bar) or write mode unification (trail r(0) and store bar in its cell). All this generality is often
unnecessary. For example, if the predicate p(X) is always called with a dereferenced atom, then

unification reduces to a simple check that the value is correct. The other operations are superfiuous.

The Aquarius compiler’s execution model, the BAM, is designed to retain the good features of the
WAM while allowing optimizations such as this one. It retains data structures and an execution flow simi-
lar to the WAM, but it has an instruction set of finer granularity (Chapter 3). The compiler does not use the
WAM during compilation, but directly compiles to the BAM. It is of fine enough grain to allow extensive
optimization, but it also encodes compactly the operations common in Prolog. For example, it includes an
explicit dereferencing instruction, which makes it possible to reduce the amount of dereferencing

significantly by only doing it when it is necessary and not in every instruction.

3.2. Exploit determinism

The majority of predicates written by human programmers are intended to give only one solution, i.e.
they are deterministic. However, too often they are compiled in an inefficient manner using shallow back-
tracking (backtracking within a predicate to choose the correct clause), when they are really just case state-

ments. This is inefficient since backtracking requires saving the machine state and restoring it repeatedly.

3.2.1. Measurement of determinism

Measurements of Prolog applications support these assertions:
(1) Tick shows that choice point references constitute about half (45-60%) of all data references [69].

(2) Touati and Despain show that at least 40% of all choice point and fail operations can be removed

through optimization [70].

The latter result is especially interesting because it attempts to quantify how often shallow backtracking is

30

optimizable. It considers a choice point to be avoidable if between the access of a choice point and its
removal by a cut there are no calls to non-built-in predicates, no returns, and only binding of variables that
do not have to be restored on backtracking. Avoidable choice points do not have to be created because
they are removed immediately. For a set of medium-sized programs, on average the following percentages
of choice point creations are avoidable: 57% of the ones removed by cut, 43% of the ones removed by
trust, and 48% of the ones restored by fail. The variance of these numbers is large, but the potential for
optimization when these situations do occur is significant. The Aquarius compiler is able to take advantage
of these optimizations and more, €.g. due to the factoring wansformation (Chapter 4) it is able to compile
the partition/4 predicate in Warren’s quicksort benchmark [30] into deterministic code. The optimi-

zations are synergistic, that is, doing them makes other improvements possible:

(1) Less stack space is needed on the environment/choice point stack. Choice points and environments
are both stored on this stack, which means that often a clause’s environment is hidden undemeath a
more recently created choice point. When this happens the last call optimization is not able to

recover space. If fewer choice points are created, then last call optimization is effective more often.

(2) There are fewer memory references to the heap because binding a variable is postponed until a

clause is chosen.
(3) There is less trailing because it is only needed for bindings that cross a choice point.

(4) Garbage collection is more efficient, since the creation of fewer choice points means that there are

fewer starting points for marking.

3.2.2. Ramifications of exploiting determinism

The goal of compiling deterministic predicates into efficient conditional branches affects a large part
of the compiler. Many of ;he transformations done in the compiler are intended to increase the amount of
determinism that is easily accessible. This includes formula manipulation, factoring, head unraveling, the
determinism transformation (all in Chapter 4), the determinism compiler (Chapter 5), and the determinism

optimization (Chapter 6).

31

Through these transformations the compiler creates a decision graph to index the arguments of a
predicate. Type information derived by dataflow analysis is exploited to simplify the graph. The graph is
created in an architecture-independent way through the concept of the test set (Chapter 4). Intuitively, a
test set is a set of Prolog predicates that are mutually disjoint (only one can succeed at any given time) and

that correspond to a multi-way branch in the architecture.

3.3. Specialize unification

The WAM unification instructions (get and unify) are complex. They operate in two modes
(read mode and write mode) depending on the type of the object being unified, they dereference their argu-

ments, and they trail variable bindings. It is better to compile unification direcily into simpler instructions.

In the Aquarius compiler, unification is compiled into the simplest possible BAM code taking the
type information into account (Chapter 5). Often it is possible to reduce a unification 10 a single load or
store. The use of uninitialized variables (see below) to simplify variable binding greatly improves the gen-

erated code.

registers memory

Ummxt-leaglil:tee(: \\\\ | NN\ value ignored
(:] value important

Unlﬂ::::;i: tvar '———D\\\\\\\\

Initialized
. = t
variable |V2F ver D

Figure 2.9 — Threc categories of unbound variables

32
3.3.1. Simplifying variable binding

A major source of inefficiency in WAM implementations is that logical variables are often created as
unbound (i.e. as self-referential pointers) and then unified soon afterwards. Creating and unifying does
much unnecessary work; it would be faster just to reserve a memory location and then write to it. The
Aquarius compiler defines such a representation, called uninitialized variables. Conceptually, uninitialized

variables are defined at two levels:

(1) At the logical level, an uninitialized variable is an unbound variable that is not aliased, i.e. there are
no other variables bound to it. The dataflow analyzer (Chapter 4) uses this definition to derive unini-

tialized variable types.

(2) At the implementation level, an uninitialized variable is a location that is allocated to contain an
unbound variable, but the location is not given a value. The kemel Prolog compiler (Chapters 4, 5,

and 6) uses this definition to compile uninitialized variables efficiently.

The location containing an uninitialized variable can either be a register or a memory word, resulting in
two kinds of uninitialized variables, namely uninitialized register and uninitialized memory variables. The
first are registers whose contents are ignored. The second are pointers to memory locations whose contents
are ignored. Standard unbound variables are called initialized variables; they are pointers to locations

pointing to themselves. Figure 2.9 illustrates the three categories of unbound variables.

Table 2.3 — The cost of uninitialized variables
Type of variable Cost (VLSI-BAM cycles)
For Unification For Backtracking
Creation | Binding || Trailing | Detrailing |
Uninitialized Register 0 0 0 0
Uninitialized Memory 1 1 0 0
Initialized Variable 2 5 2 Oor4

The dataflow analyzer derives both uninitialized register and uninitialized memory types. It is often
able to determine that an argument is uninitialized; for a representative set of programs it finds that 23% of
all predicate arguments are uninitialized. Of these, two thirds have uninitialized memory type and one

third have uninitialized register type.

33

Table 2.3 gives the minimum run-time costs on the VLSI-BAM processor for the three categories of
unbound variables. Costs are given for unification support (creation and binding) and for backtracking sup-
port (trailing and detrailing). Binding an initialized variable is expensive because the variable must be
dereferenced before the new value can be stored in the memory cell. Binding an uninitialized memory
variable reduces 1o a single memory store operation. Binding an uninitialized register variable is free if it
is created in the register that needs it. The cost of detrailing (restoring a variable to an unbound state on
backtracking) is zero for uninitialized variables. For initialized variables it depends strongly on the effec-
tiveness of the compiler in generating deterministic code. It is O cycles if the variable does not have to be

unbound on backtracking, and 4 cycles otherwise.

3.4. Dataflow analysis

The Aquarius compiler implements a dataflow analyzer that is based on abstract interpretation. It
translates the program to one in which predicate arguments range over a finite set of values. Each of the
values corresponds to an infinite set of values (i.e. a type) in the original program. The analyzer derives a
small set of types—uninitialized, ground (the argument contains no unbound variables), nonvariable (the
argument is not an unbound variable) and recursively dereferenced (the argument is dereferenced, i.e. it is
accessible without pointer chasing, and if it is compound, then all its arguments are recursively derefer-

enced). These types have been chosen carefully to be useful during compilation.

Dataflow analysis by itself is not enough. The rest of the system must be able to use the information
derived by the analysis. The techniques to exploit determinism and specialize unification in the Aquarius
compiler have been developed in tandem with the analyzer for this purpose. In addition, the fine instruc-

tion granularity of the BAM is designed to support these optimizations.

4, Related work

First a survey is given of work that is related to the four principles of the Aquarius compiler. Then

an overview is given of Prolog implementations that are interesting in some way.

4.1. Reduce instruction granularity

Tamura et al [39, 65] have done fundamental work at IBM Japan in reducing the grain size of com-
piled operations for Prolog. Their compilation is done in three steps. The first step is to compile Prolog
into WAM. In the second step the intermediate code is translated into a directed graph. Each WAM
instruction becomes a subgraph containing simple operations such as case selection on tags, jumps, assign-
ments, and dereferencing. The graph is optimized through rewrite rules. Case selections based on a tag
value, never-selected cases, redundant tests, case statements with only one branch, and unreachable
instructions are eliminated. Known values are propagated. These rewrites are applied several times and
the resulting graph is then translated back into intermediate code. In the third step the intermediate code is
translated into a PL.8 program which is sent to a high-quality PL.8 optimizing compiler [3]. Performance
results are given for a few small programs and are quite good. There are several problems in their
approach. They still use the WAM as an intermediate language, and compiling is prohibitively slow

because their system is experimental. Without compile-time hints their performance drops significantly.

4.2. Exploit determinism

Significant improvements over the WAM are possible to avoid choice point creation in deterministic
predicates. The WAM indexes on only the first argument and saves all registers in choice points. Turk
[72] describes several optimizations that reduce the time necessary to restore machine state when back-
tracking. In [74], I describe a compilation scheme that attempts to take advantage of the fact that most Pro-
log predicates are deterministic. Choice point creation and moves to and from choice points are minim-
ized. Clauses are compiled with multiple entry points and predicates are compiled as decision trees. The
techniques used in the Aquarius system are inspirc~ by this work. Carlsson {15] measures the performance
improvement of a scheme for creating choice points in two parts, saving only a small part of the machine
state first, and postponing saving the remainder until later in the clause when it can be determined that the
head unification and any simple tests have succeeded. Implemented in the SICSws Prolog system, this

reduces execution time by 7-15% on four large programs.

Recently there have appeared several commercial Prolog-like languages (Trilogy and Turbo Prolog)

35

that generate efficient code for programs annotated with type and determinism declarations. In this regard
Trilogy [79] is noteworthy because it gives a logical semantics to programs written in a Pascal-like nota-
tion. Typed predicates that are annotated as being deterministic are compiled into efficient native code.
The achievement of Trilogy is reassuring; since many predicates in standard Prolog are intended to be exe-
cuted in a deterministic way, with some analysis it should be possible to obtain the same efficiency for

standard Prolog.

Several systems have generalized the first argument indexing of the WAM. BIM_Prolog [4] can
index on any argument when given appropriate declarations. SEPIA [29] incorporates heuristics to decide
which predicate arguments are important for deterministic selection. It uses the first **indexable’’ argu-
ment of a predicate. If there are several possibilities it first uses the argument where it is more likely that

fewer clauses will be selected.

Several papers describe fast implementations of the cut operation. Bowen et al [9] implement cut by
adding a register that holds the address of the most recent choice point before entering the predicate. This
register is updated by each call and execute instruction. Cut is implemented by moving this regis-
ter to the WAM’s choice point register r (b). Marién and Demoen [46] implement cut in a similar
fashion. These schemes suffer from having to do an additional register move for each procedure call,
unless a different call instruction is used for predicates with and without cut. The scheme implemented in

the Aquarius compiler does not slow down procedure calls and does not need an additional register.

4.3. Specialize unification

Significant improvements over the WAM are possible for unification. Turk [72] describes several
optimizations related to compilation of unification, to reduce the overhead of explicitly maintaining a
read/write mode bit and remove some superfluous dereferencing and tag checking. Marién [44] describes a
method to compile wﬁte mode unification that uses a minimal number of memory operations and avoids all
superfluous dereferencing and tag checking. In [75]), 1 build on this work by introducing a simplified nota-
tion and extending it for read mode unification, but my scheme suffers from a large code size expansion.

The Aquarius sysiem modifies this technique to limit the code size expansion at a slight execution time

36

cost. Meier [48] has developed a technique that generalizes Marién’s idea for both read and write mode
and achieves a linear code size, also with a slight execution time cost. This technique is implemented in

the SEPIA system [29].

Beer [5] has suggested the use of a simplified representation of Prolog variables for which binding is
much faster. He introduces several new tags for this representation, which he calls uninitialized variables
and keeps track of them at run-time. He shows that both dereferencing and trailing are reduced
significantly. This idea was a strong influence on the Aquarius compiler. At the Prolog level, logical
semantics are preserved, but at the code level there is now a coherent integrated use of destructive assign-
ment for values that fit in a register. My scheme is different from Beer’s—it uses the same tag for both
uninitialized and standard Prolog variables. The analyzer finds uninitialized variables at compile-time and

the compiler determines when it is safe to use destructive assignment to bind them.

4.4. Dataflow analysis

R. Warren et al [84] have done the most comprehensive work measuring the practicality of global
datafiow analysis in logic programming. Their paper describes two dataflow analyzers: (1) MA3, the MCC
And-parallel Analyzer and Annotator, and (2) Ms, an experimental analysis scheme developed for SB-
Prolog. MA3 derives aliasing and ground types and keeps track of the structure of compound terms, while
Ms derives ground and nonvariable types. The paper concludes that both dataflow analyzers are effective
in deriving types and do not increase compilation time by too much. My dataflow analyzer differs from
both MA? and Ms in three ways. First, the analyzer works over a different domain. Second, it avoids
problems with aliased variables by deriving only limited type information for them. Third, it is integrated

into a compiler which has been developed to take full advantage of the types it derives.

For correctness, it is imperative to consider the effects of variable aliasing on dataflow analysis.
Aliasing occurs when two variables are bound to terms that have variables in common. Finding accurate
aliasing information is an important topic in current research [18,36]. However, aliasing complicates the
implementation of dataflow analysis. My analyzer considers only unaliased variables as candidates for

unbound variable types. Measurements of the analyzer show that unaliased variables occur often enough

37

to make the analysis worthwhile. This conservative treatment of aliasing simplifies the implementation,
since it is not necessary to explicitly represent and propagate aliasing information. Of course, it also

reduces the effectiveness of the analysis. Thus aliasing needs to be studied further.

Marién et al [45) have performed an interesting experiment in which several small Prolog predicates
(recursive list operations) were hand-compiled with several levels of optimization based on information
derivable from a dataflow analysis. The analysis was done by hand at four levels: The first level derives
unbound variable and ground modes. The second level also derives recursively defined types. The third
level also derives lengths of dereference chains (pointer chains that must be followed at ru;l-time). The
fourth level also derives liveness information for compound data structures and is used to determine when
they are last used so that their memory may be recovered (compile-time garbage collection). Execution
time measurements show that each analysis level improves speed over the previous level. This experiment

shows that a simple analysis can achieve good results on small programs.

4.5. Other implementations

This section gives an overview of interesting Prolog implementations that are related to this disserta-
tion in some way. Most existing implemémations of Prolog, both on general-purpose and special-purpose
machines, are based on the Warren Abstract Machine (WAM) or are derived from it. The general-purpose
and special-purpose approaches are presented separately. The first subsection describes some important
software implementations and their ideas. Thé second subsection summarizes some important architec-

tures and their innovations.

4.5.1. Implementing Prolog on general-purpose machines

As far as 1 know, the earliest WAM compiler was my PLM compiler, completed and published in
August 1984 [73].1 The compiler was interesting as it was itself written in Prolog, unlike many later Prolog
compilers. The first commercial implcmentation of the WAM was Quintus Prolog, announced in

November 1984,

4 The PLM compiler is still available from us, but is now obsolete and not recommended for current research work. Our
research group expects 1o release soon a complete Prolog system based on the Aquarius compiler.

38

Among the highest performance commercial implementations available today are IBM Prolog,
Quintus Prolog [58], BIM_Prolog {4], and ALS Prolog [2]. There are three significant implementations of
Prolog available today that were developed at research institutions: SICStus Prolog {63], SEPIA [29], and
SB-Prolog [83]. All of these systems are based on extensions of the WAM (except possibly IBM Prolog,
of which I have little information) and compile to WAM-like instructions which are either emulated on the
target machine or macro-expanded to native code. Some of these systems (e.g. SB-Prolog and IBM Pro-

log) are able to compile special cases of deterministic programs into efficient code.

4.5.1.1. Taylor’s system

Independently of this research, Andrew Taylor is implementing a high performance Prolog compiler
fér the MIPS processor [67]. The compiler includes a dataflow analyzer that explicitly represents type,
aliasing, dereference chain lengths, and trailing information [66]. His preliminary results indicate that it is
of comparable performance to the compiler presented in this dissertation. Running a set of small bench-
mark programs on the MIPS R2030 processor, the system is 24 times faster than compiled SICStus Prolog

version 0.6 and the code size is similar to that of the KCM.

4.5.1.2. 1BM Prolog

IBM Prolog accepts mode declarations, implements more general indexing than the WAM, does a
limited global analysis (however, it does not derive any types), and generates high performance native

code. It is able to compile some kinds of deterministic programs with conditional branches.

4.5.1.3. SICStus Prolog

SICStus Prolog was developed at the Swedish Institute of Computer Science in Stockholm. A back-
end module was writien for it by Mats Carlsson which generates native code avoiding the superfluous
memory references of a naive WAM translation {14,44]. It is comparable in performance to Quintus Pro-

log when no built-in predicates are used.

39
4.5.1.4. SB-Prolog

SB-Prolog was developed at SUNY in Stony Brook. It recognizes a special case of the general tech-
niques for extracting determinism discussed in this dissertation: it recognizes when arithmetic tests that are
each other’s opposites appear, and compiles a conditional branch. It also incorporates a simple partial
evaluator which is used for macro expansion and a simple dataflow analysis scheme has recently been

developed for it [84].

4.5.2. Implementing Prolog on special-purpose machines

In the past, because the WAM was regarded as the best way to implement Prolog, the performance
gap between special-purpose architectures and general-purpose architectures was large. Much of the effort
in high performance Prolog implementation was put into architecture design, and in particular in hardware
support for the WAM instructions. This dissertation shows that a better understanding of Prolog execution
narrows the performance gap. The implications of this development for the future of special-purpose

architectures are discussed in the VLSI-BAM paper [34] and summarized in this section.

4.5.2.1. PLM

The first spccial-purpose Prolog architecture that was built is the PLM (Programmed Logic
Machine), duc to Dobry et al [26-28]. Its design was inspired by a proposal of Tick & Warren [68]. The
PLM implements the WAM in microcodc with a 100 ns clock cycle. It was built on wire-wrap boards and
ran a few small programs in 1985. Spin-offs of this project included the VLSI-PLM single-chip implemen-

tation [60] and the Xenologic X-1, a commercial coprocessor for Sun workstations.

Several papers have compared the number of cycles needed by the PLM to that of general-purpose
architectures. These ratios are valid measurements of the effect of the PLM’s architectural support for
WAM implementation. Mulder & Tick [51] and Patt & Chen [54] have compared the performance of the
PLM [28], a microcoded implementation of the WAM, to a macro-expanded WAM on the MC68020 pro-
cessor. They find that the MC68020 needs 3 to 4 times the number of cycles as the PLM to execute the

WAM. Patt and Chen find that static code size on the MC68020 is about 20 times the PLM.

40
4.5.2.2. SPUR

Borriello et al [8] have implemented a macro-expanded WAM on the SPUR processor (Symbolic
Processing Using RISCs). They find that the SPUR takes about 2.0 times the number of cycles as the PLM
and that static code size is about 14 times the PLM. These numbers include local optimizations imple-

mented by Chen and Nguyen [20] that improve the original numbers by about 10%.

4.5.2.3. PSI-II and PIM/p

In the context of the FGCS (Fifth Generation Computer System) project, researchers of ICOT (the
Japanese Institute for New Generation Computer Technology) have designed and built several sequential
and parallel architectures for logic programming [64,71]. One of the more interesting sequential machines
is the PSI-II (Personal Sequential Inference machine II) {52] a microcoded implementation of the WAM
which executes at speeds similar to the PLM. The processing elements of the PIM/p (Parallel Inference
Machine) architecture are currently the highest performance sequential logic machines at ICOT. They exe-

cute at two to three times the speed of the PLM.

4.5.24. KCM

Benker et al [6] describe a special-purpose Prolog machine, the KCM (Knowledge Crunching
Machine), which is based on an extended WAM. Its instruction set consists of two parts: a general-purpose
instruction set, and a microcoded Prolog-specific instruction set. It has a cycle time of 80 ns and executes
in about 1/3 the number of cycles of the PLM. Its code size is about three times greater. The KCM project
was done together with the development of a Prolog system and environment called SEPIA (see previous

section). About 60 KCM machines were constructed and delivered to the ECRC member companies.

4.5.2.5. VLSI-BAM

Holmer et al [34] describe a single-chip microprocessor with extensions for Prolog, the VLSI-BAM
(VLSI Berkeley Abstract Machine). It is a pipelined load-store processor with a cycle time of 33 ns. It

takes about 1/3 the number of cycles to run programs as the PLM and its code size is about three times

41

greater, results similar to the KCM. However, they are achieved largely through the effort of the compiler.
The goal of the BAM project is to find the minimal extensions to a general-purpose architecture to support
a high performance Prolog implementation. The rationale for the VLSI-BAM architecture is that existing
general-purpose architectures are designed to execute imperative languages like C and do not have ade-
quate support for Prolog. The compiler described in this dissertation was developed simultaneously with

the architecture, and interaction between the two designs has significantly improved both.

The BAM project has determined that a small amount of architectural support (5% increase in chip
area) gives a large performance boost (50% performance increase) for programs that use Prolog-specific
features. The support does not interfere with the general-purpose architecture, so it is possible for future
general-purpose machines to incorporate this support for high performance symbolic computing. The sup-
port is designed specifically to support the logical variable, dynamic typing, unification, and backtracking.

A language that uses any of these features can benefit from it.

Chapter 3

The Two Representation Languages

1. Introduction

This chapter defines the two languages used by the compiler to represent programs: kernel Prolog, a
simplified form of Prolog, and the Berkeley Abstract Machine (BAM), a low-level instruction set and exe-
cution model that is close to a standard sequential processor. Kernel Prolog is an internal language that is

not accessible to the user. BAM is the output language of the compiler.

2. Kernel Prolog

The first representation language in the compiler is kemel Prolog, a simplified, canonical form of
Prolog. The syntax of kernel Prolog is given in Figure 3.1. This should be compared with the definition of
full Prolog syntax given in Chapter 2. The control flow of kernel Prolog is simpler, a set of internal primi-
tives is defined that are only used inside the compiler, and a case statement is defined. Kernel Prolog does
not have nested disjunctions, if-then-else, cut, negation, or arithmetic expressions. Each predicate is
represented as a single term (H:-D) containing a head H with distinct variable arguments and a body D
that is a single disjunction (an OR choice). Each alternative of the disjunction is a conjunction, i.e. an
AND sequence of goals. Unifications in the head of the original predicate are represented as explicit
unifications in the arms of the disjunction. Disjunctions, negations, and if-then-else forms in the original
predicate are converted into dummy predicates. Cut and arithmetic expressions are converied into simpler

internal built-in predicates.

For example, the predicate:

a(b).
a(X) :- (0 is X mod 2 -> e(X) ; £(X)).

is represented as follows in kernel Prolog:

42

43

predicate((H:-D)) :- head(H), disjunction(D).
head (H) :- goal_term(H}.

disjunction(fail).
disjunction((C;D)) :- conjunction(C), disjunction (D).

conjunction(true).

conjunction((G,C)) :- goal(G), conjunction(C).
goal (G) :- case_goal (G) .

goal (G) :- internal _goal (G).

goal (G) :- external_goal (G).

case_goal (' $case’ (Name, Ident, CB)) :- test set (Name, Ident), case_body (CB) .

case_body (' Selse’ (D)) :- disjunction(D).

case_body(('Stest’(T,D);CB)) .- test(T), disjunction(D), case_body (CB).

external goal(G) :~ goal_term(G), \+case_goal (G), \+internal_goal (G} .

term(T) :- var(T).

term(T) :=- goal_term(T).

goal_term(T) :- nonvar(T), functor(T, _, &), term_args (1, A, T) .

term_args (I, A,) - I>A.

term_args(I, A, T) :- I=<A, arg(I, T, X), term(X), Il is I+l, term_args(Il, A, T).

4 Predicates defined in tables:
internal_goal(G) :- (Defined in Table 3.1).
test_set (Name, Ident) :- (Defined in Table 4.11).
test (T) :~- (Defined in Table 4.11).

$ Built-in predicates needed in the definition:
functor (T, F, A) :- (Term T has functor F and arity A).
arg(I, T, X) :- (Argument I of compound term T is X).
var(T) :- (ArgumentT is an unbound variable).

nonvar (T) :- (Argument T is a nonvariable).

Figure 3.1 - Syntax of kernel Prolog

a(X) :=- (X=b, true
; *8d’ (X), true
; fail
).
*8d’' (X) :~- (*S$cut_load’ (Z), '$d2' (X, Z), true
; fail
).
78d2’ (X, Z) :-= (’'Smod’ (X,2,0), ‘Scut’ (Z), e(X), true
; £(X), true
; fail

).
All predicates that start with the character ‘$’ are created intemally. Cut is implemented with the two
built-ins *Scut_load’ (X) and ‘S$cut’ (X). The arithmetic expression 0 is X mod 2 is
replaced by a call to an explicit arithmetic built-in ’ $mod’ (X, 2, 0). The if-then-else is replaced by a

call to the dummy predicate ’ $d’ (X). All dummy predicates are given unique names.

Kemel Prolog has many advantages over standard Prolog. The scope of variables is not limited to a
single clause, but is extended over the whole predicate. Many optimizations are easier to do—for example,
dataflow analysis and determinism extraction. Compilation to BAM code and register allocation are
simplified.

The following two sections describe the internal predicates of kemel Prolog and how standard Prolog

is converted to kerel Prolog.

2.1. Internal predicates of kernel Prolog

The kernel Prolog form of a program contains predicates that are not part of standard Prolog and that are

invisible to the user. The internal predicates always begin with the character ’$’. They are of three

kinds:

(1) Internal built-in predicates (Tablc 3.1). These are classified into three categories depending on
their use: (1) implementation of cut, (2) type checking, and (3) arithmetic. They are expanded into

BAM instructions before being output, so the user never sees them.

(2) A case statement. This control structure is designed to express deterministic selection in Prolog.

Chapter 4 describes how the case statement is created. It is translated directly into conditional

A3)

45

Table 3.1 - Internal built-ins of kemel Prolog

Built-in Description
! $cut_load’ (X) Load the choice point register r (b) into X.
*Scut’ (X) Make the choice point pointed to by X the new top of the
choice point stack.

*$name_arity’ (X,Na,Ar) |Test that X has functor Na and arity Ar. This only does a
check; it never binds X.

rStest’ (X, T) General type-checking predicate that tests whether the type of
X is in the set T, where T — {unbound variable, nil, non-nil
atom, negative integer, nonnegative integer, float, cons, struc-

ture}.
' Sequal’ (X,Y) Test that X and Y are identical simple terms.
* $add’ (s1,S2,D) Integer addition D « S1+S2.
’$sub’ (81,52,D) Integer subtraction D « S1-S2.
f$mul’ (S1,S2,D) Integer multiplication D « S1*S2.
r$div’ (81,52,D) Integer division D « S1/82.
’ $mod’ (S1,82,D) Integer remainder D «'S1 mod S2.
*$and’ (81,82,D) Bitwise integer ‘‘and’’ D « S1 A S2.
*Sor’ (S1,82,D) Bitwise integer ‘‘or”” D « S1v S2.
' $xor' (S1,S2,D) Bitwise integer exclusive-or D « S1 @ S2.
’$s11’ (S81,82,D) Logical left shift D « S1<<S2.
"$sra’ (S1,582,D) Arithmetic right shift D « S1>>S2.
" $not’ (8,D) Bitwise integer negation D « not S.

branches in the BAM code and has the following syntax:

' Scase’ (Name, Ident,CaseBody)

where:

CaseBody = ('S$test’ (Test,Code)
: ’Selse’ (Code)
).

CaseBody is a disjunction of *$test’ goals, terminated with an ' Selse’ goal. Code is
any valid kernel Prolog disjunction. Name and Ident identify the test set, and Test isaPro-
log predicate (Table 4.11). Test is the test that is valid along the branch. For example, for the

hashing function it will be the goal X=a where a is the atom or structure used in that direction.

“Dummy’’ predicates. Kemel Prolog does not allow control structures (i.e. disjunctions, if-then-
else, and negation) in clauses, but only calls. The control structures are ransformed into calls to
dummy predicates, which are predicates that exist only inside the original predicate. Dummy predi-

cates are created with unique names that are derived from the predicate they are contained in.

2.2. Converting standard Prolog to kernel Prolog

The first stage of compilation is a sequence of five source transformations that converts raw input
clauses into kemel Prolog. An input predicate in standard Prolog is transformed into a tree that contains a
kernel Prolog form of the original predicate and a set of dummy predicates in kernel form created during
the transformation. Care is taken to put the predicate in a form that maximizes opportunities for determin-

ism extraction. The five transformations are:

(1) Standard form transformation. Convert the raw Prolog input to a convenient standard notation.
This does several housekeeping tasks: it properly terminates conjunctions (with true) and disjunc-

tions (with fail), and it converts negation-as-failure into if-then-else.

(2) Head unraveling. Rewrite the head of each clause as a new head and a list of unification goals such
that all the arguments of the new head are distinct variables and the head unifications are unification

goals.
(3) Arithmetic transformation. Compile arithmetic expressions to internal arithmetic built-ins.

(4) Cut transformation. Implement cut by converting all uses of cut and if-then-else to internal cut

built-ins.

(5) Flattening. At this point all complex control has been converted to disjunctions. Convert nested

disjunctions to dummy predicates.

2.2.1. Standard form transformation

The standard form of a clause is intended to simplify its syntax so that traversing it is as simple as
possible. The standard form satisfies the rules in Table 3.2. These rules are ignored in the presentation of
most of the examples in this dissertation because they make the examples less readable (although they are

always satisfied in the compiler).

2.2.2. Head unraveling

Unraveling the head of a clause consists of rewriting it as a new head and putting a series of

unification goals in the clause’s body so that all the head’s arguments are distinct variables and all the head

47

Table 3.2 - Standard form of a clause
Rule Description

Conjunctions and disjunctions are right associative.

Conjunctions have no internal t rue and are terminated by t rue.

Disjunctions have no internal fail and are terminated by fail.

Single goals inside disjunctions are considered as conjunctions (and therefore rule 2 applies).
There is no negation (it is converted to if-then-else).

Arguments of if-then-else are considered as conjunctions (and therefore rule 2 applies).
(A->B) as a goal in a conjunction is converted to (A->B;fail).

The first argument of all unify goals is a variable.

00 ~I N b WwWN -

unifications are unification goals in the body.

If this is not done correctly then much opportunity for later optimization is lost. From the predicate’s
type formula, the compiler knows which head arguments are nonvariable and which head arguments are

unbound. Unification goals are created that satisfy two constraints:
(1) Maximize the number of nonvariable arguments that are unified together. Put these unifications first
in the unraveled clause.
(2) Minimize the number of unification goals that contain unbound variables. Put these unifications last
in the unraveled clause.
For example, consider the clause:
:-mode { (a (A, B, C) : -nonvar (A) ,nonvar (B) ,var(C)}).
a(A,A,A) :- atomic (A),

The type declaration says that the first two arguments are nonvariables and the third argument is an
unbound variable. The argument A appears three times in the head. Therefore there are three ways to
unravel this clause: (a(X,Y,2):-X=Y,X=2), (a (X,Y,Z) :=Y=X,¥=2), aﬁd (a(X,Y,2):-
z=X, z=Y). Considering the mode declaration, the head is transformed into the first of the three unraveled

versions:
a(A,B,C) :- A=B, A=C, atomic(A),

The first unification A=B is of two nonvariables. The second unification A=C is of a nonvariable and an

unbound variable. This satisfies both constraints.

48

expression ((X is Expr), Code) :- expr(Expr, X, Ccde, n.

expr(V, V) --> {var(V)}, !.

expr (A, A) --> {integer(A)}, !.

expr (A+B, C) --> expr (A, Ta), expr(B, Tb), [’ $add’ (Ta,Tb,C)].
expr (A-B, C) --> expr(A, Ta), expr(B, Tb), [’S$sub’(Ta,Tb,C)].
expr (A*B, C) --> expr(A, Ta), expr(B, Tb), [’ $mul’ (Ta,Tb,C)].
expr (A/B, C) --> expr(A, Ta), expr(B, Tb), [*$div’ (Ta,Tb,C)].

Figure 3.2 — Compiling an arithmetic expression

2.2.3. Arithmetic transformation

The is/2 predicate is translated into internal three-argument arithmetic built-ins (Table 3.1). Fig-
ure 3.2 gives a simplified but fully functional version of the algorithm used to compile expressions. It han-

dles arbitrary expressions containing the four basic arithmetic operations. For example, the call:
expression(X is 23*(Y+2), Code)

gives the code:
Code = [’S$add’ (Y,2,T), ’'S$mul’ (23,T,X)]

The full algorithm handles all the arithmetic primitives of Table 3.1 and does partial constant folding.

2.2.4. Cut transformation

The cut operation modifies control flow by removing all choice points created since entering the
predicate containing the cut, including the choice point of the predicate itself. Cut is implemented by
means of a source transformation. It requires no support from the architecture except the ability to access

and modify the register r (b) , which points to the most recent choice point.

The cut transformation is given in Figure 3.3. A call to the built-in ’ $cut_load’ (X) 1is put at
the entry of a predicate containing a cut. This built-in moves the r (b) register to X, which marks the top
of the choice point stack on entry to the predicate. The argument X is passed to the predicate’s body. Each

occurrence of cut in the body is replaced by a call to the built-in * $cut’ (X). This built-in loads r (b)

49

procedure cut_transformation;
var P’:list of clause;
begin
for each predicate P in the program do begin
if P contains a cut then begin
/* At this point P ={C}, ..., Ca] (list of clauses) and C; = (H, :- B;)} */
Add the argument X to all H; in P;
Replace each occurrence of “!”” in P by * Scut’ (X);
P’ =P,
Add the predicate P’ to the program;
H = (new head with same functor and arity as all H;);
H’ := (H with the additional argument X);
P :=[(H :-*Scut_load’ (X),H")]
end
end
end;
Figure 3.3 - The cut transformation

from X, which restores the original top of the choice point stack. For example, consider the predicate:

p -4, !, r.
P - s.

This is transformed into:

p :— ’'Scut_load’ (X}, p’ (X).
p' (X) := g, "$cut’ (X}, r.
p’ (X) = s.

Compilation then continues in the usual manner. This method is simple and efficient. Variations of it have
been implemented in other Prolog systems [4,13,45). This method differs from these variations in that the
compiler does not always store the value of r (b) on the environment stack, but puts it in a predicate

argument X. It is stored in an environment only if the clause is compiled with an environment.

2.2.5. Flattening

At this point, all the complex control in a predicate (disjunctions, if-then-else, and negation-as-
failure) has been translatcd to disjunctions. Flattening replaces the disjunctions by calls to dummy predi-

cates. For example, the definition:

50

a(X,Y) :- (bl1(X,A) : b2(X,B),t(B)), d(Y,A).

is transformed into:

a(X,Y) :- r$flatten_a/2_1' (X,A), d(Y,A}.
*$flatten_a/2_1’ (X,A) :- bl(X,A).
*$flatten_a/2_1' (X,A) :- b2(X,B), t(B).

Compilation then continues in the usual manner and the dummy predicate ' $flatten_a/2_1' (X,A)
is compiled as in-line code. The dummy predicate is created with a unique name derived from the name of
the original predicate. The argument list of the dummy predicate is the intersection of the set of variables
used inside the disjunction and the set of variables used outside it. In this example the argument list is the

intersection of {X,Y,A} and {X,A,B},whichis {X,A}.

51
3. The Berkeley Abstract Machine (BAM)

The foundation of the efficiency of the compiler is its execution model, the BAM. The BAM has

been designed to support all compiler optimizations and to make the system easily retargetable to the

VLSI-BAM and general-purpose machines. The design evolved by interaction with the development of the

_compiler, the architecture design of the VLSI-BAM processor, and the requirement of portability to other
architectures. The BAM was developed in tandem with the VLSI-BAM processor, but the two instruction

sets are quite different. The VLSI-BAM is constrained by its hardware implementation; the BAM evolved

by looking at the requirements of Prolog and is designed to allow a great deal of low-level optimization.

The Aquarius compiler uses a simple output language and not an existing high-level language such
as C or an existing low-level language such as an assembly for a particular machine. There are several rea-

sons for this:

(1) Choosing an existing language requires choosing representations for tags and data structures, and
writing frequently used Prolog-specific operations as subroutines. This is undesirable for two rea-
sons: First, the VLSI-BAM is one of the target machines and its architecture has a more abstract
representation for tags and Prolog-specific operations than general-purpose processors. Second,

these representations are not necessarily the best for all machines.

(2) Choosing an existing high-level language is unsatisfactory for the VLSI-BAM processor since the

only compiler for it is currently thc Aquarius compiler.

(3) An unpredictable factor is introduced when doing performance evaluations. The performance on dif-
ferent machines varies depending on the sophistication of the implementation of the existing
language. It is not always easy to determine the performance of the existing language from inspec-

tion of its source code.

The syntax and semantics of the BAM is presented at several levels of detail, from a discussion of its
features in English down to a detailed formal specification of its semantics in Prolog. The body of the
dissertation defines the data types of the BAM, gives an overview of its instruction set, and justifies the

choice of instructions. Appendices B and C give formal specifications of BAM syntax and semantics, and

52

.Appendix D gives a concise but complete English description of BAM semantics.

This section has four parts. The first part presents the data types of the BAM. The second part sum-
marizes the BAM instruction set. The instruction set consists of four parts: simple instructions (tagged
load-store architecture), complex instructions (Prolog-specific operations), pragmas (embedded informa-
tion to allow better translation to a real machine), and user instructions (intended to allow the complete
run-time system to be written in BAM). The third part justifies the complex instructions. The fourth part
justifies the instructions needed to implement unification by showing how they are constructed from a

unification algorithm given a few simple assumptions about the architecture.

3.1. Data types in the BAM

The data types of the BAM are classified into two groups: the types used during execution and the
types used to represent instructions (Table 3.3). The BAM has four data types that are used during execu-
tion: words, natural numbers, symbolic labels, and mappings. These are denoted as the set of all words W,
the set of natural numbers N, the set of mappings M, and the set of symbolic labels L. A word is a pair
T~N where T is the fag and N is the value. A natural number is a nonnegative integer. A mapping (not
shown in Table 3.3) is a correspondence between a set of objects and their values (which are often words).

A symbolic label marks a position in the program.

Several definitions in Table 3.3 require some clarification. Sets are denoted by bold capital letters,
variables by capital letters, and constants by lower case letters. Addressing modes are defined recursively,
with a base case consisting of registers and atomic terms, and a recursive case consisting of three parts: tag
insertion (T ~ X), indirection ([X]), and offset ((X+N)). The BAM uses only a subset of the infinite set of
addressing modes defined here. Of all the intemal registers of the BAM, only the argument registers
r (I), the heap pointer r (h), and the backtrack pointer r (b) are visible in the instruction set. Appen-
dix B gives a precise definition of instruction syntax including the addressing modes that are actually used.

The meaning of the instructions is defined informally in section 3.2 and formally in Appendix C.

A term can be of arbitrary size. A term that fits completely in a register is called simple. All other

terms are called compound. A register cannot store all possible terms, but it can contain encoded informa-

53

Table 3.3 — Types in the BAM =]
Types used during execution

Name Definition
Word W = (T"N I TeT, AnawralN)] U A
Symbolic label L ={fail) u (F/N,1(F/N,I) | atom(F) A naturalN) A natural(l))
Natural number N
Atomic term A = {tatm"V | atom(V) v (V=(F/N) A atom(F) A natural(N))} v

{v!integer(V)) U {t£1t"V | floay(V))
Types used 10 represent instructions

Name Definition
Tag T = [tvar, tlst,tstr,tatm tint,tpos,tneg, tflt) =T, UT,
Pointer tag T, = {tvar,tlst, tstr)
Atomic tag T, = {tatm, tint,tpos,tneg,tflt}
Condition C = {eq,ne,lts, les,gts,ges}
Equality condition C, = {eqg, ne)
Arithmetic operation E = {add, sub, mul, div,mod, and, or, xor, sll, sra)
State register R, = (r(h),r(b),r(e), r(hb),r(pc),r(cp), ritmp_cp),r(tr) }
Argument register R, = { £ (I) | natural(l))
Permanent register R, = { p(I) | natural(l) }
Addressing mode X =AUR,UR, U {r(h),r(®} v {T°X! TeT, nXeX]) U

{(X] 1 XeX)} U {x+N | XeX A nawral(N) }

Instruction 1 (The set of BAM instructions is defined in section 3.2 and Appendix B)

tion about a term. The tag of a term stored in a register is the information about the term that is indepen-
dent of the term’s location in memory and can be obtained without doing a memory reference. The value
of a term in a register tells where to find the rest of the term. A register is partitioned into two fields which

contain the tag and the value of a term.

The encoding of information in tags is designed to simplify common operations. It is similar to the
encoding used in the WAM (Figurc 2.5). Atoms are represented as immediate values witha tatm tag.
Integers are represented as themsclves, and are considered to have tint, tneg, or tpos tags for the
conditional branches that look at tags. Unbound variables are represented as pointers with a. tvar tag
that point to themselves or another unbound variable. Structures and lists are represented as pointers with
tags tstr or tlst. They point to a contiguous block of their arguments on the heap. The main functor
and arity of a structure are stored there encoded in a single word. The main functor and arity of a list (cons

cell) are not stored since they are known implicitly.

The BAM defines five mappings to represent and access all data structures used during execution
(Table 3.4). These mappings are the Register Set, the Heap, the Trail, the Code Space, and the Label Map.

An infinite number of argument and permanent registers is assumed (o exisL. Of all registers, only the heap

Table 3.4 - Run-time data structures of the BAM
Name Definition

Register Set R: VR, UR,)) > W

Heap W-o W

Trail N-o W

Code Space N> 1

Label Map L - N

pointer r (h) and the backtrack pointer r (b) are made explicit in the instruction set. The others are
implicit in its execution. Environments and choice points are represented as register sets that are stored in
registers r(e) and r (b), respectively. Prolog terms are stored in registers, on the heap, and on the
trail. Compound terms are stored on the heap as sequences of words in the same manner as is done in the
WAM (Figure 2.5). For all types except atoms, the value field of a word is a natural number that indexes
into the heap, and therefore points to terms on the heap. For atoms, the value field is the symbolic atom

itself. The correspondence between tags and Prolog data types is given in Table 3.5.

Table 3.5 — Correspondence of tags with Prolog data types

Tag Data type
tvar | Anunbound variable or a general pointer.
tstr | Pointer to a structure—a compound term with a functor and fixed number of arguments.
tlst | Pointer to a cons cell—a compound term consisting of two parts, a head and a tail.
tatm | Anatom.
tpos | A nonnegative integer.
tneg | A negative integer.
tint | Aninteger.
tf1lt | A floating point number.

The following descriptions clarify the correspondence between BAM types and Prolog types:

(1) The value corresponding to a pointer tag is an index into an array of words. This is normally imple-

mented as an address.

(2) The value corresponding to a tatm tag is a symbol that uniquely identifies an atom or the main
functor of a structure. It is a Prolog atom or a Prolog structure of the form F/N where F is a Prolog
atom representing the functor and N is a nonnegative integer representing the arity. For correctness,
the assembler and run-time system must guarantee an exact correspondence between this symbol and
the contents of the run-time symbol table, so that the built-ins name/2, functor/3, arg/3,

and =../2 all work correctly.

55

(3) The value corresponding toa tpos or tneg tag is a nonnegative integer that represents the abso-

lute value of the integer represented by the word.

(4) The value cormresponding to a tint tag is an integer that represents the value of the integer

represented by the word.

(5) The value corresponding to @ tflt tag is a floating point number that represents the value of the

number represented by the word.

Nothing is assumed about how these types are represented on a real machine. When the BAM is targeted
to a real machine then the representation of types on the machine must be defined. The representation of
types changes with different target machines, different versions of the system, and even different programs.
The Implementation Manual [31] discusses how to port the BAM. Symbolic labels are pointers to code.
Since mappings can be of any size, they are pointers to data stacks in memory. The representation of a
word depends on the encoding used to represent tags on the machine, the word size of the machine, and on
the encoding of Prolog atoms into unique bit pattemns. For the VLSI-BAM processor, all four types are

mapped into 32 bits and words consist of 4 bit tags and 28 bit values.

Table 3.6 — Notation for arguments of BAM instructions |
Argument Type
X, Y, Z Addressing modes, elements of X. Most instructions use a subset of all possible
addressing modes.
L, L1, L2, L3 | Branch destinations, elements of L.
N A natural number, element of N.
A A Prolog atom, element of A.
Tag A tag value, element of T.
Eg An equality condition, element of C, .
Cond A condition, element of C.
Oop An arithmetic operation, element of E.
RegList A list of registers used in choice point management.
Reglist € { {00, 0,,0,) 1neN, o€ {i,no)).

3.2. An overview of the BAM

The BAM uses types and data structures similar to the WAM. It has registers and stacks similar to
the WAM and uses a similar execution strategy. However, the instruction set is completely different. The
BAM has a load-store instruction set that is extended with tagged addressing modes and a few primiﬁve

Prolog-specific instructions. A summary of the addressing modes and instructions is given in Tables 3.6

56

through 3.10. All instructions use only a subset of the addressing modes given in Table 3.3. The instruc-

tion set includes:

o Simple instructions (Table 3.7). These are simple register-transfer level operations for a tagged
architecture. They include move, push, conditional branch, and arithmetic. These instructions are

used to implement many cases of unification and many built-in predicates.

] Complex instructions (Table 3.8). There are five frequently-used operations defined as single
instructions: dereferencing (following a pointer chain to its end), trailing (saving a variable’s address
so it can be restored on backtracking), general unification (when the compiler cannot simplify the
general case), choice point handling (saving and restoring state for backtracking), and environment

handling (creating and removing local stack frames).

. Embedded information (Table 3.9). This allows a better translation to the assembly language of the
target machine. This information is expressed in two ways: (1) with pragmas, which resemble
instructions but are not executable, and (2) by extending instructions with additional arguments. An

example of (1) is the tag pragma, which gives the tag of a load or a store, €.8.:

pragma (tag(r{l),tvar)). % Register r(l) contains a tvar tag.
move ([(r(1)],x(0})). % Load register r(0) from register r(l).

By giving the tag at compile-time, this avoids tag masking on a general-purpose processor and

allows the load to be done in a single cycle. An example of (2) is:

unify(r(0),r(l),?,nonvar, fail). % Register r(l) is nonvariable.

This gives no information about r (0) but says that r(1) is nonvariable. This allows the

unification to be done more efficiently because no check has to be done whether r (1) is unbound.

o User instructions (Table 3.10). The BAM language is extended with several instructions, registers,
and tags that are never output by the compiler, but are intended for use only by a BAM assembly
programmer. This allows the non-Prolog component of the run-time system to be written completely

in BAM assembly. These instructions are described in Appendix D.

57

L __Table 3.7 - Simple instructions _ =J

Instruction Meaning

equal (X,Y,L) Branch to L if X and Y are not equal.

move (X, Y) Move X0 Y.

push (X, Y,N) Push X on stack with stack pointer Y and post-increment N.

op(X,Y,2) Perform the arithmetic operation Op on X and Y and store the

result in Z. Trap if an operand or the result is not integer.
adda (X,Y,2) Full-word non-trapping add of a word X and an offset Y, giving

pad (N)

aword Z,
Add N to the heap pointer.

switch(Tag,X,L1,L2,L3)

test (Eq, Tag, X, L)
hash(T,X,N,L)

Three-way branch; branch to L1, L2, L3 depending on whether
the tag of X is tvar, Tag, or any other value.

Branch to L if the tag of X is equal or not equal to Tag.

Look up X in a hash table of length N located at L. If X is in
the table then branch to the label in the table, else fall through.
Te {atomic, structurel.

return
simple call(Name/Arity)

simple_return

pair(E, L) A hash table entry. E is either an atom or a pair functor/arity.

jump (Cond, X, Y, L) Jump to L if the arithmetic comparison of X and Y is true. Trap
if an operand is not integer.

jump (L) Jump unconditionally to L.

label (L) L is a branch destination.

procedure (Name/Arity) Mark the beginning of a procedure.

call (Name/Arity) Call the procedure Name/Arity.

jump (Name/Arity) Jump to the procedure Name/Arity.

Return from a procedure call.

Non-nestable call used to interface with routines written in
BAM assembly.

Non-nestable return used for routines written in BAM assembly.

3.3. Justification of the complex instructions

The execution of Prolog requires five complex operations: dereferencing, trailing, unification, back-

tracking, and environment management. These operations are represented as single instructions in the

BAM. In the WAM, dereferencing, trailing, and unification are done implicitly by many instructions even

when they are not needed. Making them explicit allows the compiler 0 minimize their use as much as pos-

sible by doing them only when they are really needed.

The complex instructions could be expanded into sequences of simple instructions; however, this

expansion is not done at the BAM level but is delayed to the machine level. There are two reasons for this:

(1) Some machines may implement part or all of a complex instruction directly. Expanding it into sim-

ple instructions is therefore premature since it would make this harder to detect. For example, the

VLSI-BAM processor has support for some complex instructions (e.g. dereferencing, trailing, and

unification).

58

Table 3.8 — Complex instructions

Instruction

Meaning

deref (X,Y)
trail (X)

Dereference X and store resultin Y.
Push X on the trail stack if the trail condition is satisfied.

unify(X,Y,Tx,Ty,L)

unify atomic(X,A,L)

General unification of X and Y, branch to L if fail. Trailing is
done by this instruction. The extra parameters Tx, Ty € {?,
var, nonvar) give information to improve the translation.
They are not needed for correctness.

Unify X with the atom A and branch to L if fail. No trailing is
done by this instruction.

allocate (N)
deallocate (N)

Create an environment of size N on the local stack.
Remove the top-most environment from the local stack.

choice(1/N,Reglist, L)
choice (I/N,ReglList,L)

(1<I<N)
choice (N/N,ReglList, fail)

fail

move (r (b) , X)

cut (X)

Create a choice point containing the registers listed in
RegList and set the retry address to L.

Restore the argument registers listed in RegList from the
current choice point, and modify the retry address to L.
Restore the argument registers listed in RegList from the
current choice point, and pop the current choice point from the
choice point stack.

Restore the machine state (except the argument registers) from
the most recent choice point, restore to unbound all variables
on the trail that were bound and trailed since the creation of
this choice point, and transfer control to the retry address.
Move the backtrack pointer to X. This must be done at the en-
try of any predicate containing a cut.

Make the choice point pointed to by X the new top of the
choice point stack.

Table 3.9 - Embedded information (pragmas)

Instruction

Meaning

pragma (align(X,N))
pragma (tag (X, Tag))

pragma (push(term(N)))
pragma (push (cons))

pragma (push (structure (N)))
pragma (push (variable))
pragma (hash length(N))

The contents of location X are a multiple of N.

The contents of location X have tag Tag.

A term of size N is about to be created on the heap.

A cons cell is about to be created on the heap.

A structure of arity N is about to be created on the heap.
An unbound variable is about to be created on the heap.
A hash table of length N is about to be created.

(2) For best performance, optimizations should be done at all levels. The BAM level makes certain

optimizations easy, e.g. the determinism optimization in Chapter 6. Keeping the complex operations

as single instructions allows them 10

be optimized directly. For example, if a variable is derefer-

enced twice then the second dereference can be removed. This is much harder to detect if the

dereference instruction is expanded into a loop.

It is best to avoid assumptions about the characteristics of the target machine. In the cases where such

assumptions would be useful, the BAM uses pragmas to give the information without compromising the

59

Table 3.10 — User instructions
Instruction Meaning

ord(X,Y) Extract the value of X and moveitto Y.

val(T,X,Y) Create the word Y from the tag T and the value X.

jump_regq (R) Jump to address stored in register R.

jump_nt (Cond, X, ¥, L) Jump to L if the full word comparison of X and Y is true.
Never trap.

Op_nt (X,Y,2) Perform the full word arithmetic operation Op (except multi-
ply and divide) on X and Y and store the result in Z. Never
rap.

trail_bda (X) Push address X and the value stored there on the trail stack if
the trail condition is satisfied. This is a special trail instruction
for backtrackable destructive assignment.

machine independence. The translator is free to use or ignore this information.

3.4. Justification of the instructions needed for unification

This section constructs the BAM instructions that contain the required instructions and addressing
modes to support unification. It turns out that both simple and complex instructions are necessary to sup-
port unification. The instructions are constructed starting from an algorithm for unification and a very gen-
eral intermediate language. The algorithm is decomposed into specialized instructions depending on the

form of the data known at compile-time.

The two starting points are (1) an algorithm for unification (a specification of a unification algorithm
is given in Appendix C), and (2) a very general instruction set. The method proceeds in a top-down
manner by decomposing the unification algorithm into specialized instructions depending on information

about the form of the data known at compile-time (Figure 3.4).

This method is inspired by Kursawe [41] and Holmer [32]. Kursawe applies partial evaluation and
specialization in a top-down manner starting from a Prolog program and obtains an instruction set resem-
bling the WAM. Holmer describes several techniques for the automatic design of instruction sets, of which
decomposition is one. To go beyond the WAM it is necessary to make assumptions about the architecture,
a step that Kursawe does not take. The design of the BAM starts with a general instruction set that does

make these assumptions.

The choice of what general instruction set to start with is important. It is not useful to start with an

instruction set that has too little expressive power, for example one with a limited set of addressing modes,

Unification
Algorithm
General Specific
Intermediate Intermediate
Language Language
Decomposition

Figure 3.4 — Decomposition of unification

because the required addressing modes are not yet known. Prematurely decomposing complex instructions

into simple ones side-steps the results.
The following assumptions are made:
(1) The architecture is sequential and of Von Neumann design with multiple registers.

(2) The basic data elcment is a word, which is large enough to contain an address. A register holds one

word.
(3) The instructions have three parts:

) An action. Some sample actions are data movement (move, push), conditional branching
(equal), and general unification (unify). Other important actions are multi-way branching
(switch) and several Prolog-specific operations (deref, trail).

. A set of arguments. Unification acts on two operands, so typically two argumenis are
sufficient.

° A set of destination addresses. Depending on the outcome of the action, control continues at

one of the destinations. The size of the set and the meaning of its members depends on the

action. The address of the next instruction in the instruction stream is an implicit member of

61

the set.

(4) Arguments are referenced with multiple addressing modes. An infinite set of addressing modes are
defined in Table 3.3. The instructions derived in this section will need only finite subset. For clarity,

Table 3.11 gives some abbreviations useful for this subset.

Table 3.11 — Useful abbreviations
Notation Meaning
Disp a positive heap displacement (bounded by the size of a term).
Offset | anonnegative offset into a structure (bounded by the arity).
Imm an immediate value; an atom oOr a numeric constant. '
Var a variable local to a clause, i.e. r (I) orp(J).
Arg denotes Var or [Var+Offset].

Construction of the instruction set proceeds in the following steps. The data representation has already
been fixed (section 3.1). The existence of two forms of unification (read mode and write mode) and the
need for dereferencing and a three-way branch is shown. The instructions required for read mode and
write mode are constructed. Finally, the effects of variable representation (in registers or on the environ-

ment) on the instruction set are discussed.

3.4.1. The existence of read mode and write mode

The compilation of the unification T1=T>, where T; and T, are two arbitrary terms, is reduced to
the compilation of V = T where at compile-time V is a variable and 7 is any term. At run-time there are

two values of V that result in different actions of the unification algorithm:

(1) V is an unbound variable, in which case T is constructed on the fly and bound to V' (this is called
write mode). To satisfy the standard definition of unification, when T is bound to V a check needs to
be done (the occur check) that T does not contain V. Following Prolog implementation convention,

this check is ignored for efficiency reasons.

(2) V is a nonvariable term, in which case it is checked that the form of V matches T, and the algorithm

is invoked recursively for the term’s arguments (this is called read mode).

62

~ 3.4.2. The need for dereferencing

Unifying two unbound variables makes one point to the other. Doing this several times leads to
pointer chains, with the common value of all the variables in a single location at the end of the chain. To
get a variable's value, the pointer chain is followed to its end, an operation known as dereferencing. It can
be provided as an addressing mode or as a separate instruction. Making it an instruction avoids repeated

dereferencing. Therefore the following instruction is added:

deref (Varl,Var2)

First varl is moved to Var2. Then the tag of Var2 ischecked. If it is an unbound variable (tvar)
it reads memory and a loop is entered replacing Var2 by the referenced value while its tag is tvar and
its pointer part is different from Var2. A two-argument dereference is chosen over a single-argument

dereference because it allows a more compact representation of write-once variables (Chapter 5).

It is assumed in what follows that V and T are dereferenced when necessary, in particular that both

the trail and unify instructions are always given dereferenced arguments.

3.4.3. The need for a three-way branch

The code for a unification V = T consists of three parts: (1) a check whether V is an unbound vari-
able or a nonvariable for choosing between write mode and read mode unification, (2) the instructions for

read mode unification, and (3) the instructions for writc mode unification.

The tag field is available directly for the check of (1). The check has three possible results: the tag of
V matches a known tag (read mode), the tag is an unbound variable tag (write mode), or the tag is neither

(failure). This implies the following three-way branch:
switch (Tag, Var, Varlbl, Taglbl, Faillbl)

If the tag of Var is tvar (an unbound variablc) then jump to VarLbl. If the tag of var maiches
Tag then jump to TagLbl. Otherwise jump to Faillbl. The failure address is explicit insiead of

implicit to allow the implementation of fast incremental shallow backiracking.

63

3.4.4. Constructing the read mode instructions

The general case of read mode unification is V =T, where at compile-time V is a variable or an
argument of a compound term, and T is a term. The first argument of each instruction is the value of V.

Two locations are possible for its value:

Var V is a variable
[Var+Offset] V is an argument of a compound term

The abbreviation Arg is used to denote one of these two addressing modes (Table 3.11). The second

argument and the action are determined by the compile-time knowledge of T. The possibilities are:

(1) T is partially or wholly known at compile-time. The possible information known about 7 is:

T is an unbound variable that has not yet been initialized, e.g. because it is the first occurrence

in the clause. V ismoved directlyto 7.
° T is an unbound variable. V is stored to T s location in memory.

® T is atomic. Unification reduces to a check that 7 and V have the same atomic value. If the

values do not maich the unification fails.

. T is compound. Unification reduces to a check that V has the comrect functor and arity, fol-
lowed by a unification of its arguments with T’s arguments. If V’s arguments are loaded into
registers then the unification can be compiled recursively. It follows that arbitrarily deep nest-

ing of addressing modes is not necessary if one instruction is added:

move (([Var+Offset)], Var)

(2) Nothing is known about 7 at compile-time. The unification of V and T requires a general

unification.

The following table of primitive instructions summarizes the action and both arguments:

Action ArgumentV Argument T Explanation

move Arg var T is an unbound variable that has not yet
been initialized.

move Arg [Var] T is an unbound variable that has been
initialized.

equal Arg var T is atomic or compound and its main
functor is not known at compile-time.

equal Arg Tag"Imm T is atomic or compound and its main
functor is known at compile-time.

unify Arg Var Nothing is known about T at compile-
time.

The instructions equal and unify both can fail, so they have a failure address as third argument. The

equal instruction compares its arguments and jumps to Faillbl if they are not equal.

General unification (unify) is the most complex instruction. If the unification fails it jumps to
FailLbl. This instruction can be implemented using only the other instructions. However, it seems that
one additional instruction is useful: a multi-way branch with a different destination for each possible tag
value. If there are many possible tags this implies the existence of a jump table in memory, so that the
instruction must do a memory reference before it can branch. Instead of using this instruction, another
approach is to use a multilevel tree based on the three-way branch. Both approaches are viable since gen-
eral unification is used rarely in real programs. According to measurements done by Holmer for several
large programs [33], general unification takes about 4% of the total execution time of the VLSI-PLM [61].
More than 95% of these calls have arguments that are not compound terms of the same type and therefore

do not need the recursive algorithm,

3.4.5. Constructing the write mode instructions

The general case of write mode unification is V =T, where V is known to be an unbound variable at
run-time and T is a term. Assume that the term T is created on a stack (called the heap) with a minimal
number of move instructions. This assumption forces us to derive the form that a compound term has on

the heap. The following are the possible values of words of a compound term:

Var a variable (assumed initialized)
Tag” Imm a simple subterm of T
Tag” (r (h)-Disp) a pecinter to a compound subterm of T

These are the source addressing modes for the move instructions. A variable var does not have to be

65

dereferenced when it is stored on the heap because its value is not read. The destination of the move
instruction is a location on the heap. This location can be addressed either by a displacement addressing
mode offset from the heap pointer r (h),ie. [r(h)-Disp],or by an auto-increment addressing mode,

i.e. a push instruction. The BAM uses the auto-increment addressing mode, for these reasons:

(1) Preliminary studies using exhaustive search {32] show that with the VLSI-BAM microarchitecture
the optimal way to create structures in write mode is by means of the idiom “load register, load

register, double-word push’’, i.e. two registers are loaded and then pushed in a single instruction.
(2) Instruction encoding is compacter, i.e. a push does not need a displacement field.

(3) In the VLSI-BAM architecture the push instruction is given a displacement field anyway. This
allows efficient implementation of uninitialized variables. For example, a cons cell whose cdr is

uninitialized can be created with a single push that has a displacement of 2.

(4) Inthe VLSI-BAM architecture the use of a push instruction allows a cache optimization: when push-
ing a dirty line it is not necessary to flush the line first [17]. This optimization was first done in the

PSI-II architecture [52].
To summarize, to create a term on the heap it is sufficient to choose from the following set of three instruc-

tions (where r (h) is the stack pointer and 1 is the increment):

push (Var, r(h), 1)
push(Tag"Imm, r(h), 1)
push(Tag” (x{(h)-Disp), r(h), 1)

It is also necessary to bind the term to V. This requires us to consider the form an unbound variable can
take. There are two possibilities:

(1) V has not yet been initialized, e.g. because it is the first occurrence in the clause. The term is moved

directly to V..
(2) V has been initialized; it points to a location in memory. The term is stored in this location.

These two possibilities result in the following two instructions:

move (A, Var) store directly to a variable
(variable is not initialized)

move (A, [Var]) store to variable’s location
(variable is initialized)

The addressing mode of the argument A depends on whether the term is compound or simple, and if it is

simple, whether it is an atom or a variable. This results in three possible values for A:

Var a simple term (variable)
Tag™ Imm a simple term (nonvariable)
Tag~r (h) a compound term (on the heap)

In addition to the above instructions, it is also necessary to initialize the first occurrence of a variable. One

way to do this is:

move (tvar” (r (h) -Disp), Var)
push (Var, r(h)y, 1)

With these instructions it is possible to create a term of size n on the heap in n pushes, a great improve-
ment over the WAM, which requires n +f -1 stores, f—1 dereference operations, and f -1 trail checks,

where f is the number of functors in the term. This idea was first proposed by André Marién [44].

3.4.6. Representation of variables

Assume that the execution model represents variables local to a clause in an environment, or stack
frame. There is a dedicated register r (e), called the environment pointer, that points to the current
environment in the environment stack. Variables local o a clause are stored either in registers or in an

environment, so the notation Var denotes one of the following two addressing modes:

r(I) a variable in a register
p(J) a variable on the environment stack

where p(J) is implemented as an offset into the environment, i.e. as [r (e)+J’] forsome J’. This
implies that double indirection is possible: the addressing mode [Var+Offset] is [p(J)+Cffset]

when Var isan environment variablc. The double indirection is avoided by including one instruction:

move (p(J), r(l}))

Table 3.12 — Data movement instructions for unification

Read mode

Write mode

move (Arg, Var)
move (Arg, [Var])

equal (Arg, Var, F)
equal (Arg, Tag”Imm,

unify(Arg, Var, F)

F)

push(var, r¢h), 1)
push(Tag”Imm, r(h), 1)
push (Tag” (r (h) -Displ), rt(h), 1)

move (Varl, Var2)

move (Tag™ Imm, Var)

move (Tag~ (x (h) -Disp), Var)
move (Tag~r(h), Var)

move (Varl, [Var2})
move (Tag~Imm, ([Var])
move (Tag"r (h), [Var])

Table 3.13 — Control flow and other instructions for unification

jump (Lb1)
deref (Varl, Var2)

switch(Tag, Var, Varlbl, Taglbl, F) three-way branch

join read and write mode paths
dereference a pointer chain

3.4.7. Summary of the unification instructions

67

This section summarizes the BAM instructions necessary to support unification. Tables 3.12 and

3.13 present the instructions. They use only a small finite subset of the addressing modes of Table 3.3.

The following typical instructions illustrate the meaning of the notation:

move (tatm - axe, r{3))

move ([r(3)+5],r(4))

equal(r(2),tatm"cat,F)

unify(P(Z),p(3),F)

switch(tatm,r(3),V,T,F)

Move the atom axe into register r (3).

Move the word located at address r (3)+5 into
r(4).

If r(2) is equal to the atom cat then fall
through, else jump to label F.

Unify the term located in p (2) with the term locat-
ed in p(3). Jump to label F if the unification
fails.

If r(3)’stagis tvar then jump to label V. If
r(3)’stag is tatm then jump to label T. Other-
wise, jump to label F.

Chapter 4

Kernel transformations

1. Introduction

Four optimizing transformations are done on the kernel Prolog representation of programs: formula

manipulation, factoring, global dataflow analysis, and determinism extraction. The goal of the transforma-

tions is to reduce a single metric: The total execution time of all unifications in the program. This metric is

approximated by the number of unifications and by the size of the terms being unified. The chapter first

describes the representation of types as logical formulas in the compiler. This is followed by a description

of each of the four transformations:

)

@

3)

@

Formula manipulation. The compiler implements a set of primitive transformations to replace Pro-
log code and types (both are represented as logical formulas) with simpler versions that have ident-
cal semantics. The simplicity of a formula is defined as the number of goals in the formula. These
wransformations are done whenever there is a possibility that the code is too complex, i.e. upon read-

ing in a program and after other transformations such as the determinism transformation (see below).

Factoring. This transformation groups sets of clauses in a predicate together if they have head
unifications in common. This reduces the number of head unifications and shallow backtracking

steps.

Global dataflow analysis. This stage analyzes the program, annotates it with types, and restructures

it. The analyzer uses abstract interpretation to determine the types of predicate arguments.

Determinism transformation. This stage rewrites the program to make its determinism explicit, i.e.
it replaces shallow backtracking by conditional branching. Many of the other transformations in this
chapter are chosen to make this transformation possible more often. The transformation converts the
predicate into a series of nested case statements. Sometimes this is only partially successful; certain
branches of the case statements may still retain disjunctions (OR choices) that could not be converted

into deterministic code.

68

69

To improve readability, the examples in this chapter are given in standard Prolog notation. It is understood

that they are represented internally in kenel Prolog.

2. Types as logical formulas

Throughout the compiler, type information about variables is represented with logical formulas.
During compilation, any information learned is added to the formula, and deduction based on the formula
simplifies the generated code. It is a simple and powerful approach to avoid doing redundant operations at
run-time. For example, if a variable is dereferenced once, then it should never be dereferenced again.

Types in the compiler are defined as follows:

Definition T: Given a predicate f /n with main functorf and arity n,atype of f /n isaterm
(f(Ay,Az2, -+ ,A,) - Formula) where the A;,A,, -+ ,A, are n distinct variables and
Formula isa logical formula (i.e. a Prolog term).

For example, the type (range (A,B,C) :-integer (A),var(B), integer (C)) says that the first
and third arguments of range/3 are integers and the second argument is an unbound variable. The com-
piler recognizes all Prolog type-checking predicates in the type formula. Appendix A gives a table of the
types recognized by the compiler. In addition to these types, several other types are recognized that do not
correspond to Prolog predicates. These types introduce distinctions between objects that depend on the
implementation and are indistinguishable in the language, for example, the difference between an integer
and a dereferenced intcger, and the difference between an unbound variable that is not aliased to any other
and an unbound variable that may be aliased. The following types are recognized that do not exist as Pro-

log predicates:

Internal Type Description
uninit (X) X is an uninitialized memory argument.
uninit_mem(X) | Xisan uninitialized memory argument.
uninit_reg(X) | Xisan uninitialized register argument.
unbound (X) X is of one of the types uninit_mem(X),
uninit_reg(X),0r var (X).

deref (X) X is dereferenced, i.e. it is accessible without follow-
ing any pointers.
rderef (X) X is recursively dereferenced, i.e. it is dereferenced,

and if it is compound then all its arguments are recur-
sively dereferenced.

70

These types should not be given by the programmer since incorrect code or a significant loss of
efficiency may result if they are used incorrectly. For example, declaring an argument of a predicate to be
of uninitialized register type, i.c. the argument is an output that is passed in a register, may cause a large
increase in stack space used by the program if that predicate is the last goal in a clause, because last call
optimization is not possible in that instance. The safe approach is to leave the use of these types up to the

compiler.

The use of logical formulas to hold information during compilation can be contrasted with the use of
a symbol table in a compiler for an imperative language.t Representing types as logical formulas has two
advantages over a symbol table: (1) They are more flexible during compiler development. The kind of
information stored in a symbol table must be known when the compiler is designed. Formulas can contain
kinds of information that are not known during the compiler’s design. (2) They lend themselves to power-
ful symbolic manipulation such as deduction. Improving the deductive abilities leads to better code
without having to change any other part of the compiler. The disadvantage of this representation is that its
manipulation is slow. Future versions of the compiler could use a representation that is faster in the com-

mon cases.
Type formulas are used in the following ways in the compiler:

(1) Representing type information known about a set of varables. For example, the formula
(var (X),atom(Y)) means that X is an unbound variable and Y is an atom. The user manual

(Appendix A) lists the types recognized by the compiler.

(2) Using a primitive form of deduction to simplify the generated code. For example, assume the for-
mulais (list (X),var(Y),deref(z),...). To compile a run-time check that X is a non-
variable, the compiler first checks whether this formula implies nonvar (X) . This is true because

list (X) implies nonvar (X),s0no run-time check is necessary.

(3) Updating the type formula when new information is leamned. After compiling a goal, the formula is

updated to represent the new knowledge that is gained. For example, after executing the arithmetic

+ Of course, both the assembler and the run-time system use standard symbol tables.

71

expression X is A+B it is known that X is an integer, so the formula is extended with

integer (X) .

In most cases, logical formulas are immutable, e.g. when a variable X is known to be a list (represented as
1ist (X)), that fact remains true forever. This is not true for all types. The types used to denote unbound
variables (e.g. var(X) and uninit (X)) become false as a result of an instantiation. This is also true
of the standard order comparisons (e.g. X@<y, X@>Y, and so forth) and the types deref (X) and

rderef (X). The compiler is careful 10 take this into account when updating the type formula.

Table 4.1 — Primitives to manipulate logical formulas and Prolog formulas
Primitive Description
F, implies F, Implication: Succeeds if it can determine that there
does not exist an assignment to variables in F, and
F, that causes both F, and no(F) to succeed.

F 5 := simplify(F) F 1 is a simplification of F ;.

F = subsume(F , F) F, is a simplification of F, given that F is true.

F, :=update_formula(F ,F;) | Faisthe result of removing information contradicted
by F from F and adding F t0 F;.

3. Formula manipulation

The compiler implements a set of primitive transformations to manipulate formulas. They are sum-
marized in Table 4.1, where F, Fy, and F ; are logical formulas. Each of these primitives has two versions:
a pure logical and a Prolog version. The logical version is used to manipulate types (see previous section).
It assumes the formula has a purely logical meaning, i.e. that the opcrational concepts of execution order of
goals, number of solutions, and backtracking behavior are not important. The Prolog version is used to

manipulate kernel Prolog code. It assumes the formula must keep Prolog’s operational semantics.

Implication is implemented to work well with most combinations of Prolog predicates that are used

in type declarations. The following examples all return with success:

72

Table 4.2 - Examples of simplification

Formula Simplified formula Comments
logical Prolog
(true ; true) true (true ; true) | The Prolog version is unchanged

unless the compiler option
same number_solutions is
disabled.

(p,fail) fail (p,fail) The Prolog version is unchanged
unless the compiler can deduce that
p has no side effects (read / write
or assert / retract).

(!,p ;7 Q) (p ; 9 (!,p) Cut is logically identical to true,
but it must be retained since it
modifies backtrack behavior in the
entire clause containing it.

atom(X) implies nonvar (X)

X<Y implies integer (X)

X<5 implies X<10

uninit (X) implies deref (X)

functor (X, _, 0) implies atomic (X)

(X==a; X==b) implies atom(X)
Simplification is done on standard Prolog, on kemel Prolog, and on type formulas. Table 4.2 gives some
examples to illustrate the difference between logical and Prolog semantics. A single function simplify(F)
handles both logical and Prolog semantics (Figure 4.1). For conciseness, the definition of simplify(F) uses
the compound terms (A, B), (A;B), (A->B), and (\+(A)) both as selectors (to choose the branch
of the case statement) and constructors (in the calls to simp_step(F)). Tables 4.3 and 4.4 define part of the

definition of simp_step(F), the primitive simplification step. The complete definition contains about 50

rules. The functions subsume(F , F 1) and update_formula(F , F \) are implemented in a similar way.

function simplify(F : formula) : formula;
begin
case /* decompose the formula */
F = (a,B) :return simp_step((simplify(a), simplify(8))); /* and */
F = (A;B) :return simp_step((simplify(a); simplify(B))); f*or*/
F = (A->B) : return simp_step((simplify(a)->simplify(B))); /* implies */
F =\+(A) :return simp_step(\+ (simplify(a))); /* negation */
otherwise :return simp_step(F),
end
end;

Figure 4.1 — Simplification of a formula

73

Table 4.3 - Simplification rules (part of simp_step’s definition)
Rule Condition to apply this rule
Input formula Output formula
(true,A) A (none)
(A, true) A (none)
(true;d) true semantics(prolog) A no_side_effects(A) A diff_sol A no_bind(A)
(true;d) true semantics(logical)
(A, fail) fail semantics(prolog) A no_side_effects(A)
(A, fail) fail semantics(logical)
(fail, A) fail (none)
(fail;R) A (none)
(A->true;B) A semantics(prolog) A succeeds(A) A deterministic(A)
(A->true;B) A semantics(logical) A succeeds(A)
A fail semantics(prolog) A fails(A) A no_side_effects(A)
A fail semantics(logical) A fails(A)
Table 4.4 — The conditions for applying simplification rules
Condition Description
semantics(S) Simplify according to semantics S where S € {prolog logical}.
no_side_effects(A) | Formula A does not have side effects when executed.
deterministic(A) Formula A gives only one solution when executed.
no_bind(A) Formula A does not bind any variables.
diff_sol Relax semantics of Prolog to allow a different number of solutions.
succeeds(A) Formula A always succeeds when executed.
fails(A) Formula A always fails when executed.

4. Factoring

Factoring is based on the operation of finding the most-specific-generalization, or MSG, of two
terms. Factoring collects groups of clauses whose heads can be combined in nontrivial fashion using the
MSG operation. The advantage of factoring is Lhal it reduces the number of unifications performed during
execution. Figure 4.2 defines the MSG in terms of unification. Given two terms 7 and 72, qonsider the
set M of all terms that unify with both of them. The MSG of T, and T is the unique element T,, of M
which unified with any other element U of M gives T, Intuitively, this says that T,, contains the maximal

common information of Ty and T».

The MSG (also called anti-unification) is the dual operation to unification. Given two terms,
unification finds a term that is a more instantiated case of each of the two, i.e. the most general common
instance of the two. The MSG is a term of which each of the two is a more instantiated case. For example,
consider the two compound terms s(A,x,C) and s(A,B,y). Unifying these two terms results in

s (A, x,y). The MSG of the two terms is s (A, B,C). Unification may fail, i.e. the most general unifier

74

function msg(T, , T2 : term) : term;

var
M :setof term;
Tn ,U :term;

begin
M := { T | T unifies with Ty and T unifies with T I
Find T,eM suchthat VU € M :unify(U,Tpn) = Tm;
return T,

end;

Figure 4.2 — The most specific generalization

is the empty set. Finding the MSG never fails. In the worst case, the generalization of the two terms is an
unbound variable, which represents the set of all terms. For example, consider the two atomic terms x

and y. Unifying these two results in failure, whereas the MSG is an unbound vaniable.

Another way of viewing the MSG operation is as an approximation to the union of two sets. Every
term corresponds to a set by instantiating the variables in the term to all possible ground values. In general,
the union of two of these sets does not correspond to any term. The MSG finds the smallest superset of the
union that is represented by a term. A similar property holds of unification: it finds the largest subset of the

intersection that is represented by a term.

For all arguments of the predicate, the factoring transformation finds the largest contiguous set of
clauses whose MSG is a compound term. This set is used to define a dummy predicate and the definition of
the original predicate is modified to call the dummy predicate. The algorithm is given in Figure 43. Asan

example of factoring, consider the predicate:

h(lxI_]).
h(lyl_1).
h((]).

The lists in the heads of the first two clauses are combined: the MSG of [x|_] and [yl_] is [_I_].

The result after factoring is:

75

procedure factoring;
var
M :term;
C: ,C’ : clause;
7, Py : list of clause;
a,i,p,q :integer;
begin
for each predicate P in the program do begin
/* Atthispoint P =[Cy,C32,..,C,] (listof n clauses) */
/* and C; = (H; :- B;) (Each clause has head H; and body B)*/
for a := 1 to arity(P) do begin
Partition P such that each contiguous groupt=[Cp ,Cp41,...,Cq] (1Sp<q <n)
satisfies exactly one of the two properties:
1. Either p =¢ (r contains only one claus%), or

2. mis the largest group for which M = MSG (argument a of H;) is compound.
i=p

for each contiguous group ® do if p < g then begin

/* Create the dummy predicate Py */
for i :=p to g do begin

C’i:=C;

Remove M from H';;

Add all variables in M as arguments to H’;
end;
Pr=[C’p,...C']
/* Create the call to the dummy predicate */
H := (new head with same functor and arity as P and M in argument a);
H x := (new head with same functor and arity as P x);
for i := 1 to arity(P) do if i #a then begin

Make argument i of H and H » identical

end;
Replace in P by the single clause Cr=(H :- H)
end
end
end
end;
Figure 4.3 — The factoring transformation
h([AIB]) :- h' (B, A).
h({l]}.
h’ (B, x).
h’ (B, y).

Factoring reduces the number of unifications done at run-time in two ways: (1) compound terms are only
created once during predicate execution, instead of being repeated for each clause (¢.g. the list [A[B] in

the example), and (2) the arguments of compound terms become predicate arguments, which more often

76

- allows the determinism transformation to convert shallow backtracking into deterministic selection (e.g. the
value of the second argument of the predicate h’ determines the correct clause directly without any

superfluous unifications). The following heuristic is used:

Factoring Heuristic: For each argument in a predicate, factor the largest set of contiguous
clauses whose MSG is a compound term. Repeat this operation until no more factoring is pos-
sible.

This heuristic needs refinement in some cases to avoid superfluous choice point creation which may slow
down execution. The savings of multiple structure creation (how many fewer unifications are done) should

be weighed against how much deterministic selection is possible in the dummy predicates.

If the compiler option same_order_solutions is enabled (the default) then the operational
semantics is that of standard Prolog, i.e. the order of solutions returned on backtracking is identical to that
of standard Prolog. Disabling the option relaxes the semantics of standard Prolog by also factoring non-
contiguous clauses whose MSG is a compound term. This may change the ordering of solutions on back-

tracking. This option allows experimentation with variations of standard Prolog semantics.

To illustrate how factoring can reduce the amount of shallow backtracking, consider the following predi-

cate, which is part of a definition of quicksort:

partition({YIL),X, (Y|L1],L2) :- Y=<X, partition(L,X,L1,L2).
partition(([Y|L},X,L1,[Y|L2]) := ¥>X, partition(L,X,L1,L2).
partitiOn([] r__r (1.01).

The first argument of the first two clauses can be factored, resulting in:

partition((Y|L}),X,L1,L2) :- partition’ (L,X,L1,L2,Y}.
partition((},_, [1,(1).

partition’ (L, X, [YIL1],L2,Y) :- Y=<X, partition({(L,X,L1,L2).
partition’ (L,X,L1, [YIL2],Y} :- Y>X, partition(L,X,L1,L2).

(In the compound term (Y |L] the rightmost variable L is kept in the same argument position and the
other variable Y is put at the end of the goal.) The transformation results in only a single unification of
[Y|L] insfead of two in the original definition. In the dummy predicate the comparisons Y¥=<X and
Y>X use arguments of the predicate, not arguments of a compound term. This makes it possible to compile

partition/4 witha conditional branch instead of with shallow backtracking.

7

$. Global datafiow analysis

It is difficult to obtain information about a program by executing it in its original form, since the
range of possible behaviors is potentially infinite, and even simple properties of programs may be undecid-
able. To get around this problem, the idea of abstract interpretation is to transform the program into a
simpler form which allows practical analysis. After the analysis the inverse transformation gives informa-
tion about the original program. The fundamentals of a general method based on this approach and its
mathematical underpinning are explained by Kildall [37] and Cousot & Cousot [23]. Marriott and Sonder-
gaard [47] give a lucid explanation of the basic ideas. This method has been studied extensively and

developed into a practical tool for Prolog [18,21,24,25,49,50, 53,66, 67,76,84].

The four sections that follow summarize the relevant parts of the theory of abstract interpretation,
present my application of it to Prolog, describe the analysis algorithm in detail, and discuss the integration
of the algorithm into the body of the compiler. In Chapter 7 an evaluation is done of the effectiveness of

the algorithm.

5.1. The theory of abstract interpretation

The transformed program should mimic the original faithfully. This is made rigorous by introducing
the concept of descriptions of data objects. Let E be the powerset, i.e. the set of all subsets, of a set of data
objects, and D be a partially ordered set of descriptions. Then an abstract interpretation is defined by the

following conditions:
(1) Ep:E—>E, Dp:D-D
(2) o:E-D,y:D->SE
(3) aand vy are monotonic.
@4 VdeD:d=a(yd))
(5) VeeE :e <y(afe))

(6) VdeD :Ep(y(d))<v(Dp(d))

78

" The operator Ep in the first condition describes a single step of the execution of the program P as a state
transformation. Symbolic execution of the transformed program is described by the operator Dp. Except
for the conditions given above, the choice of Ep and Dp is completely free. The choice is guided by
several trade-offs, for example: (1) speed versus precision of the analysis, (2) complexity versus confidence

in the correctness of the analysis.

As an example of Ep (from Cousot & Cousot [23]), consider a program in an imperative language
represented as a graph where each node is a simple statement such as an assignment or a conditional. Let
an environment be defined as a correspondence between each variable in the program and a possible value.
Then for each edge of the graph a set of possible environments (called a context) is given. Initially they are
all unknown. An application of £p transforms all contexts to their new values reached after one execution

step.

For Prolog, a natural choice is to identify Ep with the standard operator Tp : 2%, _528 which
describes its procedural semantics. In this case E is 2% where Bp is the Herbrand universe of the program
P, i.e. the set of all ground goalst that can be constructed using predicates, functors, and constants of the
program. Tp does a single “forward chaining”’ step to find the conclusions that can be inferred from a
given set of ground goals. Formally, Tp maps any / C Bp into Tp (I)=(A€Bp:A = A, ", An isa
ground instance of a clause inP and {A,, " ,As }c1). Inother words, an application of Tp transforms
a subset of Bp into a new subset containing the new goals inferred from the program’s clauses given the
old goals. The meaning of a program P is defined as Ifp(7p) (where Ifp = the least fixpoint operator).
This is the set of all ground goals that can be derived from the program clauses. For example, consider the

foliowing program:

nat (0) .
nat {s (X)) :- nat(X).

which states that nat (X) is truc if X is zero or X is the successor of a natural number. The program’s

meaning is:

+ These are called “‘atoms” in mathematical logic. To avoid confusion with the atom data type in Prolog, this disserta-
tion uses the Prolog terminology.

79

{ nat (0}, nat(s(0)), nat(s(s(0))), nat(s(s(s(0})})), ... }
which represents the set of natural numbers.

The second and third conditions introduce the operators o (the abstraction function) and y (the con-
cretization function). The operator a: E — D determines the description corresponding to a particular set
of data objects. The operator Y:D — E determines the set of data objects corresponding to a particular

description.

The fourth and fifth conditions ensure that o and y behave correctly with respect to each other. Con-
dition four means that in going from descriptions to data objects and back no information is lost. Condition
five means that in going from a data object to a description and back that the resulting set of data objects
includes the original data object. The sixth condition is known as the safeness criterion. It is necessary to
ensure that the symbolic execution (through Dp) mimics the execution of P accurately (through Ep). In
other words, the abstract interpretation gives descriptions that include all the data objects that the execution
of the original program gives.

To illustrate what the conditions mean consider the abstract domain of signs of real numbers. The
data objects are real numbers. Let there be three possible signs for numbers: + (positive), — (negative), and
0 (zero). The set of descriptions D describes the possible states of a set of reals, so it contains all combina-

tions of the three signs:

D= { {}v [0}7 {+]a {-}’ {+v—'}v {-,0]’ {+70}» {+a—’0} }

According to the second condition o maps a set of reals onto its signs, and Y maps a set of signs onto a set

of reals. For example:

a((-5)=1{(-}

a((-3.5))={+-)

Y({+})={re R,r>0)}

The fourth condition says that going from a sign to a sct of reals and back will give the same sign. The

fifth condition says that going from a set of reals to a sign and back will give a set of reals that includes the

80

. original set. So for example:

(+} =a(y({+})

since Y({+)) = the set of positive reals, whose sign is {+}, and:

(5) © ¥(a((5))
since a({5)) = {+}, and Y({+}) is the set of positive reals, which contains 5. In order to explain condi-
tion six, consider the equation 27x37. Here Ep is multiplication of reals, and Dp is the corresponding
operation in the abstract domain of signs. The multiplication corresponds to {+] X (+) in the abstract
domain. The result of the abstract multiplication should be {+}, since 27x37 =999, which is positive.

Condition six is a formalization of this requirement.

Dataflow analysis is done by transforming the original program over the domain E described by Ep
to a new version over the domain D described by Dp. Then y(1fp (Dp)) (Ifp = the least fixpoint operator)
gives a conservative estimate of the required information. Much work has been done in discovering useful

domains D for particular applications and efficient algorithms for finding fixpoints of Dp [10,53].

5.2. A practical application of abstract interpretation to Prolog

The implementation of abstract interpretation presented in this dissertation uses a very different Ep
from the one suggested in the previous section by the formal definition of Prolog’s procedural semantics.
The choice of Ep used in the Aquarius compilér closely follows execution on a machine. Consider a pro-
gram with n predicates P;. The data objects are the n -tuples (T,,T3, - - - ,T,) where each T; is a functor
of same name and arity as P; and the arguments of 7; are terms constructed using data functors and atomic
terms in the program and possibly containing unbound variables. E is the powerset of these data objects.
The descriptions are the n-tuples (L,L,, - -+ ,L,) where each L; is a functor of same name and arity as
P; and the arguments of L; are constrained to be on a given finite lattice. D is the set of these descriptions.
A lattice is a partially ordered set in which every nonempty subset has a least upper bound (denoted as the
lub) and a greatest lower bound (denoted as the gib). Each of the elements of the lattice corresponds 1o a
set of possible values in the original program. This lattice is called an argument lattice, since it is used to

represent the possible values of a predicate argument. A predicate lattice (such as L;) is the Cartesian

81

product of the lattices of all the predicate’s arguments.

The operator Ep that mirrors execution of the program corresponds to a single resolution step. Itisa
transformation of a set of data objects and an execution state to another set of data objects and a new exe-
cution state, following Prolog’s depth-first execution semantics, that is, its left-to-right execution of goals
in a clause, and its top-to-bottom selection of clauses in a predicate. The operator Dp that mirrors execu-

tion of the program over the descriptions is similar, except that the arguments are lattice values.

If the conditions of abstract interpretation hold, then the least fixpoint of the symbolic execution over
the lattice is a conservative approximation to the global information, in other words the set of values that a

variable can have during execution is a subset of what is derived in the analysis.

The three sections that follow describe the lattice used by the analysis algorithm. The first section
introduces and defines the lattice elements and the types with which they comrespond. The next section
gives an example to show how to derive the types. The last section summarizes the properties of the types

that are used by the algorithm.

5.2.1. The program lattice

Dataflow analysis for Prolog differs from that of statically typed languages because it does not check
types, but it infers them. The most important information that can be deduced about an argument is
whether it is used as an input or an output argument of a predicate, i.e. the mode of the argument. After the
mode is determined, it is uscful 1o find its rype, i.e. the set of values that it can have. The remainder of this
chapter refers only to lfle type of an argument, in the assumption that this implies the mode as well.] have
experimented with four lattices of varying complexity in the analyzer, and the lattice that is currently

implemented has been chosen to give the most information while keeping analysis fast.

During the analysis the algorithm maintains two lattices for each predicate in the program. These
lattices correspond to the entry and exit types of the predicate, i.e. the value of the variable valid upon
entering the predicate and upon successful exit from the predicate. The lattice describing the entire pro-

gram is the Cartesian product of the predicate lattices.

82

__ any value is possible

-
any -
/ \ _ recursively dereferenced
nonvar rderef
/ \ / \ __ uninitialized
‘ -
ground nrodnevraerf+ uninit
ground+
rderef
\ __ the empty set of values
- (unreachable argument)

impossible

Figure 4.4 — The argument lattice

The argument lattice of the entry and exit types in the current analyzer is shown in Figure 4.4. In this
lattice, any (the top element) denotes the set of all values, impossible (the bottom element) denotes
the empty set (i.e. this predicate is unrecachable during execution), uninit denotes the set of uninitial-
ized variablcs (unbound variables that are not aliased; see Chapter 2), ground denotes the set of values
that are ground (i.e. the term contains no unbound variables), nonvar denotes the set of nonvariables,
rderef denotes the set of values that are recursively dereferenced (i.e. the term is dereferenced, which
means that it is accessiblc without any pointer chasing, and if it is compound then all its arguments arc
recursively dereferenced), and ground+rderef denotes the set of valucs that are both ground and

recursively dereferenced.

5.2.2. An example of generating an uninitialized variable type

This section gives a simple example of the generation of uninitialized variable types to give an idea
of what abstract interpretation does and to illustrate the argument lattice. Uninitialized variables are gen-
erated whenever the analyzer deduces that an unbound variable cannot be aliased 1o another. For example,

consider the following program fragment:

83

pred(...) :- ..., goal(Z),

goal (X) :- X=s(Y), goallY).
If Z is the first occurrence of that variable in the pred(...) clause then it is considered a candidate
uninitialized variable. This is possible because it is certainly not aliased to any other variable. In the
definition of goal (X), if X is uninitialized then the argument Y of the structure s (Y) may be con-
sidered uninitialized as well. This Y is passed on as an argument to goal (Y). Therefore both calls of
goal (X) are with an uninitialized argument, so it is consistent to give the argument X an uninitialized

variable type.

It may happen that elsewhere in the program there is a call of goal (X) where X is not uninitial-
ized (for example it may be a compound term, or it may be aliased). In that case, the assumption that X is
uninitialized is invalidated. This may invalidate assumptions about other arguments of other predicates, so
it is necessary to propagate this information. For correctness, it is necessary to iterate until the least

fixpoint is reached. At that point symbolic execution of the program does not change any of the derived

types.
5.2.3. Properties of the lattice elements

The example given above already gives an inkling of the relevant properties of ground, uninitialized,
and recursively dereferenced variables that simplify the analysis. Here is a more complete list of these pro-
pertics:

] The property of being ground, uninitialized, or recursively dereferenced propagates thrbugh explicit

unifications. The propagation is bidirectional:

(1) If X is ground, uninitialized, or recursively dereferenced, then after executing an explicit
unification with a compound term (e.g. X=s (A,B)), all of its variables (e.g. A and B) are
ground, all of the new variables (e.g. A and B) are uninitialized, or all of the new variables are

recursively dereferenced.

(2) In the other direction, if all the variables in the compound term are ground, then X is ground.

If all the variables are recursively dereferenced, then X is recursively dereferenced if it was

previously uninitialized.
. The property of being ground is independent of aliasing. For example, if X is ground, then it remains
ground after executing the unification X=Y. This is not true of recursively dereferenced or uninitial-

ized variabies.

. An uninitialized variable is not aliased to any other variable. Lattice calculations for uninitialized

variables do not affect each other.

5.3. Implementation of the analysis algorithm

Previous sections have introduced the ideas underlying the algorithm, the program lattice used by the
algorithm, an example of how types are derived, and the properties of the lattice elements. This section
gives a more complete explanation of the algorithm. The presentation starts with an overview of the data

representation. It then describes the algorithm, and finally it gives a detailed example of analysis.

Table 4.5 — The components of the variable set VS

Name Description

S The set of variables encountered so far in the clause. This set
is important because any variable encountered in a goal that is
not in this set is known not to be aliased to any other, i.e. itisa
new variable, and therefore it is both uninitialized and derefer-

enced.

G The set of variables that are ground. These variables are
bound io terms that contain no unbound variables.

N The set of variables bound to a nonvariable term. This set is a
superset of G.

U The set of variables that are uninitialized. A variable becomes

uninitialized if it is unbound and known not to be aliased to
any other variable. The symbolic execution enforces this con-
straint. This set is disjoint with N.

D The set of variables that are recursively dereferenced. A vari-
able is recursively dereferenced if it is bound to a term that is
dereferenced, i.e. it is accessible without any pointer chasing,
and if it is compound then all its arguments are recursively
dereferenced. This set is a superset of U.

5.3.1. Data representation

During analysis the types are represented in two ways:

(1) As lattice elements. For each predicate, there are two structures containing a lattice element in each

85

argument. These structures represent the entry and exit types of the predicate. For example, the

predicate concat/3 has two structures which could have the values:

entry: concat (any,ground,uninit)
exit: concat (ground, ground, any)

This says that upon entering concat/3 the second argument is ground and the third argument is

uninitialized. When the predicate is exited the first two arguments are ground.

(2) As sets of variables. Type information can also be stored as a set for each type that contains the

variables of that type.

These two different representations each have their advantages. The lattice representation makes it easy to ‘
calculate the lub (least upper bound). The variable set representation makes it easy to symbolically execute
a clause, i.e. to propagate and update information about variables’ types through the clause. Functions are
provided to convert between the two representations (Figure 4.7). For the lattice in Figure 4.4, there are
five sets of variables which are updated during the symbolic execution of a predicate. Conceptually they

are part of a 5-tuple VS = (S, G, N, U, D) that holds the current type information (Table 4.5).
5.3.2. Evolution of the analyzer

The current analyzer was preceded by three simpler versions. The lattice of the first analyzer
represented only entry types and had three elements: impossible, uninit, and any. The second
analyzer added the ground type in the entry lattice and an exit lattice of the same structure. The third
analyzer added the rderef type to these lattices. The current (fourth) analyzer added the nonvar
type. Despite not using a representation for variable aliasing, the third and fourth analyzers are able to
derive many nontrivial rderef and nonvar types. The added types are independent, i.e. each version

of the analyzer does no better than previous versions on types that previous versions also derive.

The choice of what lattice types to add was done by inspecting the compiled code of programs and
by deciding what types were easy to derive in the context of the structure of the existing analyzers. Types
were added that are present in many programs. Measurements show that having an exit lattice and doing

back propagation (see below) are essential features to derive good ground, rderef, and nonvar

86

types. A numerical evaluation of the efficiency of the analysis (the percentage of arguments for which

types are derived) and the effect of analysis on execution time and code size is given in Chapter 7.

For the next version of the analyzer the added types rlist (recursive list, i.e. the term is either nil
or a cons cell whose tail is a recursive list), integer, and ((nonvar+deref) or uninit) (the

term is either a dereferenced nonvariable or uninitialized) are contemplated.

type varset = (set, set, set, set, set); /* 5-tuple */

var Program : set of predicate;
Lenry : mapping predicate — lattice;
L.»i; : mapping predicate — lattice;
P : predicate;

procedure analysis;
var E :setof predicate;
VS : varset;
begin
E = { P larity(P) = 0} U (declared entry points);
Initialize Lenr, With the types of the declared entry points;
Initialize L.y to impossible for all predicate arguments;
while £ # @ do begin
for each predicate P € E do begin
VS := lattice_to_varset(Leany [P 1, P);
VS := update_exi(Vs, predicate_analyze(P, VS), P)
end;
= (P | Lenry[P]1 haschangedor3G P : Lexit |G] has changed}
end
end;

Figure 4.5 — The analysis algorithm: top level

5.3.3. The analysis algorithm

The analysis algorithm is presented at three levels of detail. An English-language description is
given of the basic ideas. A detailed pseudocode definition (Figures 4.5 through 4.7) describes the complete

algorithm at a high level of abstraction. Appendix G gives the implementation in the compiler.

The algorithm maintains entry and exit lattice elements for each predicate argument in the program.
Analysis proceeds by traversing the call graph starting from a set of entry points that have known types.
The entry points include all predicates of arity 0 and any entry declarations given by the programmer

(Appendix A). The traversal is repeated until there are no more changes in the lattice values, that is, until 2

87

function predicate_analyze(P : predicate; VS : varset) : varset,
var F :formula;
VS; : array {1 .. n] of varset;
G, : goal;
i, j :integer,
begin
/* Atthispoint? =[Cy, ..., C, 1 (listof n clauses) */
for each non-active clause C; € P do begin /* Symbolic execution of clause C; */
/* At this point C; = (Gi1 , ... , Gin) (conjunction of n; goals) */
VS,' = VS;
for j := 1to n; do begin /* Symbolic execution of goal Gi; */
if (G,; is a unification) then begin
VS; := symbolic_unify(VS;, Gi;) /* Figure 4.8*/
end else if G;; € Program then begin /* G; is defined in the program */
L,,.,ry [G: j] = lub(L.,.,,, [G,’j 1, varset__(o_lanice(VS; , G,‘j »;
if non-exponentiality constraint then begin
VS, := update_exit(VS;, predicate_analyze(G;;, VSi), Gij)
end
end else begin /* G;; is not defined in the program */
F := varset_to_type(VS;, Gi;);
G, := entry_specialize(G;;, F);
VS, := update_exit(VS,, exit_varset(G.), Gi;)
end
end;
VS, := back_propagate(VS;, C;) /* To obtain more precision */
end;

return ‘Ql VS; /* Merge the exit values of all VS; */

end;

Figure 4.6 — The analysis algorithm: analyzing a predicate

fixpoint is reached. With suitable conditions (i.e. all type updating is monotonic and types are propagated
correctly) this fixpoint is the lcast fixpoint and the resulting types give accurate information about the origi-
nal program. When a goal is encountered during a traversal three things are done: (1) the goal’s entry lat-
tice type is updated using the current value of VS, (2) if the goal’s definition is part of the program then the
definition is entered, and (3) upon return, the new value of VS is used to update the goal’s exit lattice type.

A correct value of VS is maintained at all times during the traversal of a goal’s definition.

The definition of the algorithm in Figures 4.5 through 4.7 leaves out some details but is a faithful
description of the analysis. The two conditions non-active and non-exponentiality are explained in the next
section. The following sections describe what happens in symbolic execution of a predicate (including

back propagation) and symbolic execution of a goal.

88

function update_exit(VS, , VS, : varset; G : goal) : varset;
var VS :varset,
begin
/* Calculate new VS from old VS, and exit VS, */
VS .nonvar := VS.nonvar v VSa.nonvar,
VS .ground := VS§.ground U V§,.ground;
VS .rderef := (VS,.rderef n VS;.ground) U VSa.rderef;
VS .sofar := VSy.sofar v vars(G);
VS .uninit := VS .uninit ~ vars(G),
/* Calculate new exit lattice */
Lexit [G) := Wub(Lexi [G], varset_to_lattice(VS, G));
return V§
end;

function lub(L, , L, : lattice) : lattice;
return (least upper bound of L and L»);

function lattice_to_varset(L : lattice; G : goal) : varset;
return (varset corresponding to L using variables of G);

function varset_to_lattice(VS : varset; G : goal) : lattice;
return (lattice corresponding o VS using variables of G);

function back_propagate(VS : varset; C : clause) : varset;
return (improved exit varset from VS using unification goals of C);

function varset_to_type(VS : varset; G : goal) : formula;
return (type formula corresponding to VS using variables of G);

function entry_specialize(G : goal; F : formula) : goal;
return (specialized entry pointof G when called with type F);

function exit_varset(G : goal) : varset;
return (exit varset stored for the known goal G);

Figure 4.7 - Utility functions needed in the analysis algorithm

5.3.4. Execution time of analysis

This section shows that the average analysis time for programs that contain only linearly recursive
predicates (i.e. no clauses contain more than one recursive call) and that have bounded arity is proportional
to the size of the program. The analysis time Tanalysis 1S proportional to the time of each iteration T, and
the number of iterations N, needed to reach the least fixpoint:

Tamlysis = O (Tiuer *Nuter)

For programs that contain only linearly recursive predicates, the time of each iteration is:

Tuer =0(S-A)

89

where S is the total number of goals in the program and A is the maximum number of times a predicate is
traversed. (Programs with non-linearly recursive predicates are discussed below.) This is true because the
algorithm traverses each clause at most once in an iteration. It assumes that the symbolic execution of a
goal whose definition is not traversed is a constant time operation. A predicate is traversed only if the
current entry type is worse than the previous worst entry type. The number of times this situation can
occur is bounded by the depth of the entry lattice of the predicate, which is proportional to the maximal

arity in the program. Therefore:

2 length(Cij)
J=1

S =

n
i=

A =0 (max arity (P:))

where the program contains n predicates, and each predicate P; contains n; clauses C;;. The arity of a
predicate is denoted by arity (P;) and the number of goals in a clause is denoted by length(C;;). The

number of iterations is trivially bounded by the depth of the program lattice:

Nier = 0 (Dloml)

where Dy 18 given by:
Dyotal = Z 2'4’07'1'1)’(1’,‘)
s=1

In this equation, 2 counts the cntry and exit lattces, arity (P;) is the number of arguments in the predicate
lattice, and 4 is the depth of each argument lattice. This bound on N, is wildly pessimistic. For most real
programs Nj., is bounded by a small constant. All the benchmark programs satisfy Ny, <7 (Chapter 7).

However, there exist pathological predicates P, for which N,,, = 0 (arity(P;)). For example, consider the

program:
malin - a(glal_l_l_l__l__l_l__l_l_)
a(ol_l__l_l_l__l__l_l__l_'__)
a(N,A,A,C,D,E,F,G,H,I,J) :- Nl is N-1, a(N1,A,C,D,E,F,G,H,I,J,A).

The analyzer requires 10 passes to determine that all arguments of a/11 arc ground and dereferenced

upon exit.

90

- To summarize these results, the worst-case and average case total execution times of analysis for programs

without non-linearly recursive predicates are:
Tualysi.v,warsl = O(A ‘S D)

Tamly:i.r.ave = O(A N)
If the arity is bounded, then the average execution time of analysis is proportional to the program’s size.

For programs that contain non-linearly recursive predicates this resuit needs to be amended. There is
a trade-off between precision and execution time of the analysis. If not enough predicates are traversed
then analysis information is lost. If too many predicates are traversed then analysis time becomes 100 long.

Two constraints are used to prune the traversal of the call graph:

(1) The non-active constraint. A clause that is in the process of being traversed is called an active
clause. During recursive calls of predicate_analyze, the algorithm maintains a set of the active

clauses and will not traverse an active clause twice.

(2) The non-exponentiality constraint. Traverse a predicate (i.c. call predicate_analyze) only if one of
two conditions hold: (a) The entry type has changed since the last traversal of the predicate, or (b) At

least one of the predicate’s clauses is active.

Condition (a) is understandable: it is needed to ensure that an updated type is propagated correctly. The
rationale for co/l/idilion (b) is more subtle. If it did not hold, then the exit types derived by the analysis
would be significantly worse because the base case of a recursive predicate may not be reached during the
traversal. Running the analyzer both with and without this condition shows this to be true for most pro-
grams.

The problem with condition (b) is that it leads to an analysis time that is exponential in the number of
non-linearly recursive clauses in a predicate. For many programs this is not serious. However, it occurs
often enough that it should be solved. One of the benchmark programs, the nand benchmark, has this prob-
lem. A betier condition is needed to replace condition (b). It must (1) ensure that the basc case of all
recursive predicates is reached (for good exit types), and (2) not result in time exponential in the number of

-

non-linearly recursive predicates.

91

5.3.5. Symbolic execution of a predicate

The heart of the dataflow analysis algorithm is the symbolic execution of a predicate (Figure 4.6).
Each clause of the predicate is traversed from left to right. During the traversal the type information is kept
in the variable set VS. Symbolic execution of the predicate consists of four steps:
(1) For each clause of the predicate, translate the lattice entry type of the predicate into the variable set

VS, and start traversing the clause.
(2) Symbolically execute each goal in the clause and update VS.
(3) At the end of each clause, back propagation improves VS by deducing information that only
becomes available at the end of the clause. For example, consider the clause:
a(X) :- X=[YIL], b(Y¥, L).

If both Y and L are in the ground set G of VS at the end of the clause then this is also true of X
because of the unification X=[Y|L]. Back propagation is used to improve the exit types for
ground, recursive dereference, and nonvariable types. Measurements show that it is a necessary step
to get good exit types.

(4) At the end of the predicate, combine the variable sets of all clauses by intersecting their correspond-
ing components. Convert the result back to the lauice representation and update the exit type for the

predicate.

5.3.6. Symbolic execution of a goal

Symbolic execution of a goal is done in three ways, depending on whether the goal is a unification, the goal

is defined in the program, or the goal is not defined in the program.

§.3.6.1. Unification goals

Symbolic execution of unification is defined by the function symbolic_unify(VS, X=T) in Figure 4.8,
which converts VS = (S, G, N, U, D) into VS’ =(S’,G",N", U", D"). These equations use the utility func-

tions of Table 4.6. For each component of VS, any equation in Figure 4.8 with a true condition can be

92

Table 4.6 - Utility functionsof aterm T

Notation

Definition

vars(T)
dups(T)
new(T)=vars(T) - S
old(T)=vars(T) N S

deref(T)=vars(T) - (§ - U)

The set of variables in the term T,

The set of variables that occur at least twice in the term T'.
The set of all variables in 7 that have not occurred before.
The set of all variables in T that have occurred before.

The set of all variables in T that are candidates to be recursively
dereferenced. This is the same as new(T) U (vars(T) n U), ie.
new(T) supplemented with the variables in T that are uninitialized.

U - vars (X=T)

if XeG
otherwise

if nonvar(T) or (var(T) and TeN)
otherwise

otherwise

D u deref (T) U {X]} if (XeSorXeU) and old(T)c (DU U)

D U deref (T)
DnG

U’ {Uunew(T)—old(T)—{X}—dups(T) if (Xe S or XeU)

if (XeSorXeU) or Xe(DNG)

D u deref (T) - {X]) if dups(T)=© and XeD and 0ld(T) cU

otherwise

Figure 4.8 — Symbolic unification VS * := symbolic_unify(VS, X=T)

used. In practice, if more than one condition is satisfied, an equation giving more information (i.e. the

resulting set is larger) is used first. These equations are listed first. For example, the first equation of D’

gives a larger set, so it is preferred over the others. If both X and T are variables, then the algorithm

switches X and T is to see if one of the more desirable equations is satisfied before attempting one of the

lesser equations.

Table 4.7 — Conditions for the lattice entry type

Name Condition
Cround vars(X) ¢ G
Crar var(X)
Cow X € (dups®) U S - U)
Creref (varsX) n S) <« D
Cronvar (X € N)

Table 4.8 — Caiculation of the lattice entry type
Cgrouud Cvar Cold Criere / Chonvar Lattice value

yes - - yes - ground+rderef
yes - - no - ground

no no - yes - nonvar+rderef
no no - no - nonvar

no yes no - - uninit

no yes yes yes yes nonvar+rderef
no yes yes yes no rderef

no yes yes no yes nonvar

no yes yes no no any

53.6.2. Goals defined in the program

93

Symbolic execution of a goal with a definition is done by symbolically executing the definition.

Information is kept about the part of the call graph that has already been traversed, so that analysis will not

go into an infinite loop. The function varset_to_lattice(VS, P) is defined by Tables 4.7 and 4.8. For each

argument X of P, first determine the values of the five conditions in Table 4.7. Then use these conditions to

look up the lattice value for the argument in Table 4.38.

5.3.6.3. Goals not defined in the program

Examples of goals that are not defined in the program being analyzed are built-ins and library predi-

cates. Symbolic execution of these goals is done in two parts. First, entry specialization replaces the goal

by a faster entry (section 5.4.1). Second, the type declarations that the programmer has given for the entry

are used 1o continue the analysis. If there are none, then worst-case assumptions are made.

5.3.7. An example of analysi

S

The following program is interesting because it is mutually recursive:

Table 4.9 — Analysis of an example program ﬁ:]
incl_2(a,B,C) incl_3(a,B,C,D)
A B C A B C D
Start
entry [impossible impossible impossible|impossible impossible impossible impossible
exit|impossible impossible impossible impossible impossible impossible impossible
After pass 1
entry rderef uninit wninit uninit rderef rderef uninit
exit nonvar rderef nonvar rderef any _ground nonvar
After pass 2
entry| rderef uninit uninit uninit rderef rderef uninit
exit{ nonvar rderef nonvar rderef any nonvar nonvar
After pass 3
entry! rderef uninit uninit uninit rderef rderef uninit
exit| nonvar rderef nonvar rderef any nonvar nonvar
main :- incl_2([A,B}, C, D}.
incl_2((}, ¢, (CD).
inecl 2([A|E], C, D) :- incl_3(C, A, E, D).
inecl_3(C, A, E, [A|D]) :- incl_2(E, C, D).

The predicates incl 2/3 and incl_3/4 are extracted from a definition of set inclusion. Three
analysis passes are necessary to reach the fixpoint (Table 4.9). The entries that have changed with respect
to the previous pass are in italics. The final types are given in Table 4.10. Most of the correct types are
determined after the first pass. A single exit type of incl_3/4 is corrected in the second pass. This is

necessary because the third argument of incl_3/4 is the same as the first argument of incl_2/3.

Table 4.10 — Final rcsults of analysis
incl 2(A,B,C)
entry type: rderef (A) ,uninit (B) ,uninit (C)
exittype: nonvar (A) ,rderef (B),nonvar (C)
incl_3(A,B,C,D)
entry type: uninit (A),rderef (B), rderef (C), uninit (D)
exittype: rderef (A) ,nonvar (C),nonvar (D)

5.4. Integrating analysis into the compiler

Deriving type information is only the beginning. The analyzer must be integrated into the compiler
to take advantage of the type information. The dataflow analysis module itself does four source transfor-

mations (Figure 4.9) before passing the result to the next stage, which does determinism extraction. The

95

kernel entry
Prolog declarations types
fputs- - -~ - - -----c--s-e-o---ssssoococfes T oo T oo m T
entry dataflow
* specialization [™1 analysis
entry specialized entries ?;;le";ed
specialization [
(replace goals)
kemel Prolog PR
. <ot : uninitialized
with specialized entries register
conversion +
derived types with
uninitialized register modes > type
g updating
Y updated
head types
unraveling
kemnel Prolog
with unraveled heads
QUIPULS- - - F - - === <-<-- === - -°----------Sc-oSoSooSSSsomooofne s
kemnel
Prolog types Y

Figurc 4.9 - Integrating analysis into the compiler

following source transformations are done in the dataflow analysis module:

8)]

2

3

Entry specialization. Determine a fast entry point for each occurrence of a call whose definition is

not in the program being analyzed and continue analysis with this entry point.

Uninitialized register conversion. Convert uninitialized memory types to uninitialized register
types when it results in a speedup. It is done when an argument can be retumed in a register without

giving up last call optimization.

Head unraveling. Unravel the heads of all clauses again in the light of the derived type information.

For examplc, the hcad a(A,A,A) can be unraveled in three different ways, namely

96

(a(aA,B,C):-A=B,C=B) or (a(A,B,C) :-A=C,B=C) or (a(A,B,C):-B=A,C=A). If
both A and B are nonvariables and C is unbound, then the first or third possibilities allow the com-
piler to do argument selection. Unraveling is already done during the conversion to kemel Prolog,

but it must be done again after dataflow analysis since the new types may allow it to be done better.

(4) Type updating. Supplement the type declarations given by the programmer (if any) by the derived

types. All inconsistencies are reported and compilation continues with the corrected types.

The first three of these transformations are discussed in more detail in the following sections.

5.4.1. Entry specialization

During analysis, a fast entry point is determined for each call whose definition is not in the program
being analyzed (i.e. each dangling call). For example, the call sort (A, B) is replaced by the entry point
*$sort *2’ (A,B) if B is uninitialized. Analysis continues with the types of the fast entry point. The
program is unchanged until the end of analysis, so the determination of the fast entry point is repeated in
each analysis iteration whenever a dangling call is encountered. This mechanism is intended to speed up

execution of built-in predicates and library routines, but it is also available to the programmer.

The fast entry point is determined by calculating the type formula corresponding 1o the variable set
VS with the function varset_to_type(VS, G) (Figures 4.6 and 4.7). This type formula is used to traverse
the modal entry tree for the goal. The modal entry tree is a data structure that contains a set of entry points
and the types that each requires (Appendix A). Entry specialization is also done in the clause compiler,

and a detailed example of the use of the modal entry tree is given in Chapter 5 (section 3.4).

5.4.2. Uninitialized register conversion

Often an uninitialized memory type can be converted to an uninitialized register type. The compiler
uses four conditions to guide the conversion process. Define a survive goal as one that does not alter any
temporary registers (except for arguments with uninitialized register type, which are outputs). A goal that
potentially alters temporary regisicrs is a non-survive goal. The compiler maintains a table of survive

goals. With these definitions the four conditions for a predicate P are:

(1

2

©)

@

97

All arguments of P with uninitialized memory type are candidates 10 be converted.

A candidate argument of P must occur at most once in the body of each clause of P. In each clause

where it occurs, the argument must be in the last non-survive goal or any survive goal beyond it.

For each clause of P, if the last goal G is a non-survive goal, then the candidate argument of P must
be in the same argument position in G as in the head of P. This is necessary to avoid losing the
opportunity for last call optimization (LCO): if the argument positions are different then a move
instruction is needed between the last call and the return. If the last goal is a survive goal then the
condition is unnecessary because it is not as important to retain LCO: a survive goal can never be

mutually recursive with the predicate it is part of.

Often the last goal G has candidate arguments that are not candidate arguments of P, so they have to
be initialized when returning from G. This has two disadvantages: P loses LCO and P must allo-
cate an environment (which may not exist otherwise). The solution to this problem involves a trade-
off: is it better to have LCO in P and fewer uninitialized register arguments in G, or to have no LCO
in P and more uninitialized register arguments in G? The compiler recognizes a class of predicates
G for which the first is true: Define a fast predicate as one whose definition contains only built-ins
and survive goals. If G is fast then reduce the setof G’s candidate arguments to include only those

that are candidate arguments of P .

A transitive closure is done until all four conditions arc satisfied. These conditions can be relaxed slightly

in several ways. However, even with the existing conditions it is possible to convert about one third of all

uninitialized types into uninitialized register types (Chapter 7). The third and fourth conditions are not

needed for correctness, but only for execution speed. The third condition ensures that LCO is not lost. The

fourth condition speeds up the chat_parser benchmark by 1% and was added after code inspection

discovered cases where the use of uninitialized registers siows down execution.

5.4.3. Head unraveling

This transformation repeats the head unraveling transformation (Chapter 3) with the information

gained from dataflow analysis. This increases the opportunities for determinism extraction. For example,

98

before analysis the clause:
a(X, X, X).

is transformed to the following kernel Prolog by making the head unifications explicit (i.e. ‘‘unraveling’’

the head unifications):

a(X,Y,2) :- X=Y, X=2.

If analysis derives that X is unbound and both Y and Z are nonvariable, then the above expansion hides the
determinism by twice unifying an unbound variable with a nonvariable. Unraveling the head unifications

again after analysis results in:
a(X,Y,2) :- ¥Y=2Z, X=Y.

In this version, the nonvariables Y and Z are unified together, better exposing the deterministic check that

is done, and the unbound variable X is only unified once.

6. Determinism transformation

This section groups four transformations that expose the determinism inherent in a predicate. The
purpose of the first three transformations is to make the determinism in the predicate easily visible, so that
the fourth transformation, determinism extraction, is as successful as possible in generating case state-

ments. The following transformations are done in order:

(1) Head-body segmentation. By separating the heads of clauses from the clause bodies, this reduces

the code expansion caused by type enrichment and determinism extraction.

(2) Type enrichment. This adds types to predicates for which global analysis is not able to determine
the type. The compiler creates different versions of the predicate assuming different input types.
This increases code size, but improves performance since often a predicate is deterministic at run-

time even though this could not be detected at compile-time.

(3) Goal reordering. This reorders goals in a clause to expose more determinism. Tests (such as arith-
metic relations) are moved to the left and predicates guaranteed to succeed (such as unifications with

uninitialized variables) are moved to the right.

9

(4) Determinism extraction with test sets. This transformation converts the predicate into a nested
case statement that makes its determinism explicit, so that a straightforward compilation to BAM

code is possible.

6.1. Head-body segmentation

This transformation reduces the code expansion resulting from enrichment and determinism extrac-
tion. A predicate is split into a new predicate and a set of clause bodies. The new predicate contains only
the goals of the original predicate that are useful for determinism extraction, i.. all explicit unifications and
tests (including type checking and arithmetic comparisons, see Table 4.11) in each clause starting from the
head up to the first goal that is not in this category. The rest of the clause bodies are separated from the
predicate. This is done to avoid code duplication in determinism extraction, since the same clause may

occur in several leaves of the decision tree.

For example, the predicate:

p(A,B) :-
(var(A), p(A), q(A,C), t(C,D), u(D,B)
; A=b, r(d), s(d)
).

is transformed into:

p(A,B) :-

{ var(a), '$d1’ (A,B)

;s A=b, ’'5d2’ (A)

).
'$d1’ (A,B) :- p(d), g(A,C), t(C,D), u(D,B).
#8d2’ (A) :- r(A), s(A).

The new predicate consists only of those parts of the original predicate that are useful for extracting deter-
minism. The determinism extraction is free to create a decision tree from the new predicate without worry-
ing about duplicating the clause bodies at the leaves of the tree. The separated clause bodies are compiled
once only, and the BAM transformation stage (Chapter 6) merges them with the decision tree, thus creating

a decision graph.

100

The decision exactly where to split the clause bodies depends on several factors. All goals in the
body are classified into two kinds: goals that are useful for extracting determinism (called “‘tests’’), and
other goals. Then the split follows these rules: (1) Only those tests all of whose variables are in the head
become part of the new predicate. (2) If the length of the clause body is less than a given threshold, then

all of it becomes part of the new predicate.

Head-body segmentation interacts with type propagation. It often occurs that a clause body is called
from several leaves in the decision tree with different types. In that case, it is compiled with a type that is
the intersection of the types of the entry points. A complication arises when one of the leaves considers a
variable to be uninitialized, and another leaf does not. In that case, the first leaf jumps to a piece of code to

initialize the variable, and only afterwards jumps to the clause body.

6.2. Type enrichment

By looking at the type or the value of one or more arguments it is possible to reduce the set of
clauses that have to be tried. Often the dataflow analysis is able to derive sufficiently strong types so that a
good selection can be done, i.e. a deterministic predicate can be compiled efficiently. However, if the
types given for the predicate are weak then a source transformation is done to enrich them. The enrich-
ment consists of adding a test to check at run-time whether an argument is a variable or a nonvariable, and

to branch to different copies of the predicate in each case.

The number of arguments that are enriched is given by thc argument S of the compiler option
select_limit (S). Define a good predicate argument as one that is an argument of a unification not
known o succeed always, i.e. in the unification neither argument is known to be unbound. An argument is
known 10 be of a given type if the type is implied by the type formula. Whether or not enrichment is done

is based on the following heuristic:

Enrichment Heuristic 1: If the numbcr of good arguments known to be nonvariable is less
than the selection limit S, then choose the lowest numbered good argument that is not known
to be nonvariablc. Otherwisc choose only the first argument, if it is a good argument and it is
not known to be nonvariable.

This heuristic is applied recursively on enriched predicates. The default selection limit is always S=1.

This default is justified given that (1) a selection limit S=1 already gencralizes the first argument selection

101

of the WAM, and (2) compilation time and object code size increase rapidly with the selection limit. Even
with S=1, the source transformation occasionally results in some duplicate code being generated. This is

removed by the BAM transformation stage. When S=1 the heuristic is simpler:

Enrichment Heuristic 2: If there exist no good arguments known to be nonvariable, then
choose the lowest numbered good argument that is not known to be nonvariable. Otherwise
choose the first argument, if it is a good argument and it is not known to be nonvariable.

This heuristic generalizes the first-argument selection of the WAM, i.e. it always does at least a first argu-
ment selection, but depending on the types that the predicate has (often derived from dataflow analysis) and
the predicate itself (what kinds of head unifications it does), the amount of selection can be vastly greater.

The heuristic may seem complex, but it is a natural way to make a predicate deterministic.

To show how enrichment works, consider the following predicate without type declarations:

a(a).
a(b).

It is transformed into:

a(h) :- var(A), a_v{A). % If A is unbound.
a(A) :- nonvar(A), a_n(d). % If A is nonvariable.
a_via). a n(a).

a_v(b). a_n(b).

The predicate a/1 has been enriched with an unbound type (in a_v/1) and with a nonvariable type (in

a_n/1). Asanother example, consider the definition without any type declarations:

member (X, [X|_J]).
member (X, [_IL]).

In this case the heuristic picks the second argument, since the first one does no useful unifications. After

enrichment, the predicate becomes:

member (X, L) :- var (L), member v(X, L).
member (X, L) :- nonvar(L), member n(X, L).
member v (...) :=- (same as original definition)
member n(...) :- (same as original definition)

The two tests var (L) and nonvar (L) determine which of the two dummy predicates to execute,

member v/2 or member_n/2, and are compiled into a single conditional branch. This is a

102

_consequence of the fact that the two tests are mutually exclusive, i.e. if one succeeds then the other fails
and vice versa. Both member v/2 and member_n/2 have the same definition as the original predi-
cate, but they have different types for the second argument. The predicate member_v/2 is compiled
assuming the second argument is a variable. The predicate member_n/2 is compiled assuming the
second argument is a nonvariable. Both member_v/2 and member_n/2 are also targets of the factor-

ing transformation (section 4).

Type enrichment can introduce a significant increase in code size if it is not handled carefully. In
practice, the code size is kept small because: (1) the added types result in significanty smaller code for
clause selection in each of the two dummy predicates, (2) before doing enrichment, head-body segmenta-
tion separates clause heads from the bodies, so that long clause bodies are not duplicated, and (3) the BAM
transformation stage (Chapter 6) removes any remaining duplicate code. In a sense, the definitions are first
““Joosened up’’ by head-body segmentation and type enrichment to allow more optimization, and then later

“‘tightened up.”

6.3. Goal reordering

This transformation reorders goals in a clause to increase determinism and to reduce the number of
superfluous unifications that are done. Goals that are useful in determinism extraction are put as early as
possible, and goals that are certain to succeed (such as unifications with uninitialized variables) are put

later.

The goals in a clause are classified in four categories: tests (Table 4.11), uniﬁgau'ons with unbound
variables, unifications with uninitialized variables, and other goals. The goals are reordered so that tests
are first (for deterministic selection), followed by unifications with unbound variables (may be affected by
aliasing), unifications with uninitialized variables (unaffected by aliasing, so they can safely be put last),
and the other goals. The reordering takes into account the fact that unification is commutative, i.e. that
unification goals can be permuted in any way without changing the semantics. Some reorderings are better
than others becausc aliasing can worsen the type formula, e.g. if X is unbound (var (X)) then after per-

forming the unification Y=2 it may not be unbound any more, if it is aliased 10 Y or Z. The reordering is

103

constrained so that aliasing does not change the operational semantics.

For example, consider a predicate that has an uninitialized argument:

:-~ mode((a(A,B,C) :- uninit(C))).

a(X, Y, 2) :- 2=[X|L}, X<Y,
The transformation knows that the unification 2=[X|L] does not instantiate X or L because Z is unbound
and unaliased. Therefore the unificauon is moved back:

a(X, Y, 2Z) :- X<Y, Z=[X|L],

This has two advantages: (1) the test X<Y is brought forward so that it can be used by determinism extrac-

tion, and (2) the unification 2=([X|[L] is not done if the test X<Y fails.

This transformation compensates for the popular programming style which puts all unifications in the

head and all tests in the body, e.g. people prefer to write:

a([XIL], [XIM]) := var(X),
instead of:
a([XIL}, 2} := var(X), 2=[X{M],

The first version does not imply anything about the instantiation pattern of the arguments, whereas the

transformed version does.

6.4. Determinism extraction with test sets

The majority of predicates written by human programmers are intended o be executed.in a deter-
ministic way. These predicates are in effect case statements, yet they are too often compiled in an
inefficient manner, by means of shallow backiracking (i.e. saving the machine state, unification with the
clause heads, and repeated failure and state restoration). This section describes the general technique used

in the compiler to convert shallow backtracking into conditional branching.

104

Test set Instruction

branch if less than

{ A<B, A2B }

four-way branch on type

{var (a),atomic (A),cons (A), structure (A)}

" look up in hash table

{A=a,A=b,A=c,A=d,A=e, A=f, A=q}

Figure 4.10 - Some examples of test sets

6.4.1. Definitions

Predicates are compiled into code which is as deterministic as possible through the concept of the

test sei . Two definitions are useful:

Definition ST: A goal G is a simple test with respect to the kernel Prolog predicate P and the
type formula F if it satisfies the following conditions:

oG uses only variables that occur in the hcad of P.

e The implementation of G docs not change any state in the excoution model, ic. G
docs not causc side-cffects (/O or database operations), G does not create choice points,
and G does not bind any variables.

o G does not always succeed.

Definition TS: A set of goals is a test set with respect to the kemel Prolog predicate P and the
type formula F if it satisfies the following conditions:

e Each goal in the set is a simple test according to definition ST.
e With a given set of variable values, at most one goal in the set can succeed.

e A multi-way branch in which each destination corresponds to the success of one of the
goals in the set can be implemented in the target architecture.

The tests in the set need not actually be present in the definition of P. Whether or not a given set of goals is

a test set depends on the architecture and the predicate P.

105

6.4.2. Some examples

Most conditional branches in an architecture correspond to a test set. For example, a branch-if-less-
than instruction corresponds to the test set {A<B, A2B}. More complex conditions such as an n-way
branch implemented by hashing can also be represented as test sets. Figure 4.10 shows some examples of

test sets. The second and third examples correspond to WAM instructions.

To illustrate the use of test sets, consider the predicate:

max (A, B, C) :- A<B, C=B.
max (A, B, C) :- A2B, C=A.

which is one way to calculate the maximum of A and B. Itis compiled as:

max (A, B, C) :— if A>B then C=A
else if A<B then C=B
else (C=B or C=A)

(The Prolog notation is simplified for readability.) The predicate is executed completely deterministically if
A>B or A<B; a choice point is created only when A=B. The choice point maintains the operational
semantics: since both clauses of the original predicate succeed when A=B, there are two identical solu-

tions.

type testset = testset(testset_name, testset_ident, set of goal);

function determinism(D : disjunction; H : goal; F : formula; Previous : set of testset) : disjunction;
var TS : testset;
TSset : Set of testset;
begin
if length(D) < 1 then return D;
TSse := find_testsets(D , H , F , Previous);
if TS, = @ then return D;
TS := pick_testset(TSser);
return code_testset(7S, D, H , F, Previous)
end; :

Figure 4.11 — The determinism extraction algorithm

106

function find_testsets(D : disjunction, H : goal; F : formula; Previous : set of testset) : set of testset;
var TS : testset;
TSse: - set of testset;
i ,j :integer,
begin
/* Atthis point D = (C; ; ... ; C,) where D has n choices */
TSser = D,
for i :=1to n do begin
/* Ci =(Gi1 , ..., Gin) where C; has n; goals */
for j :==1ton; do
if G;; = "!" then exit inner loop
else for all testsets 7S from table do begin
/* TS = testset(Name , Ident , Tests) from Table 4.11 */
if TS e Previous and vars(G;;) < vars(H) and bindse(G;, F) = @ then
if 3T e Tests : (G,j implies T and not(F implies T)) then
TSser = TSser W {TS)
end
end;
return 75,
end;

Figure 4.12 — Finding ali test sets in a predicate

function pick_testset(TS,,, : set of testset) : testset;
var TS :testset;
begin
pick TS € TS,,, such that
Y U € TS, : goodness(TS) 2 goodness(U); /* From Equation (G) */
return 7S
end;

Figure 4.13 - Picking the best test set

6.4.3. The algorithm

Given a predicate, the compiler proceeds by first finding all test sets that contain tests that are
implied by goals in the predicate. This depends on the type formula that is known for the predicate; for
example, the unification X=a is only a test if X is nonvariable, i.e. if the type formula implies
nonvar (X)b . Then a *‘goodness”’ measure is calculated for each test set, and the test set with the largest
goodness is used first. The goodness measure is calculated heuristically; in the current implementation

each test set is weighted by an architecture-dependent goodness (which depends on how efficiently it is

107

function code_testset(TS : testset; D : disjunction; H : goal; F : formula; Previous : set of testset) : disjunction;
var T :goal;
Choices : disjunction;
begin
Choices =11,
/* At this point TS = testset(Name , Ident , Tests) */
for all T € Tests do begin
Dy = subsume(T ,D);
Doy = determinism(D .« , H , update_formula(T, F), Previous © {TS
append ‘ Stest’ (T, Dy) to Choices;
D :=subsume(noy(T), D)
end;
D := determinism(D , H, F , Previous U (TS });
append ‘ Selse’ (D) to Choices;
return ' Scase’ (Name , Ident, Choices)
end;

Figure 4.14 — Converting a disjunction into a case statement

implemented in the architecture) and by the number of possible outcomes (e.g. hashing with a large number
of cases is considered better than a two-way branch). The predicate is converted into a case statement
using the best test set. The algorithm is called recursively for each arm of the case statement to build a

decision tree. This tree is collapsed into a graph by the BAM transformation stage.

Figures 4.11 through 4.14 give a pseudocode definition of this algorithm. The figures define the
function determinism(D, H, F, Previous) that performs the determinism extraction. Given a predicate
written as a head H and a disjunction D, along with the type formula F that is true for that predicate, the
function finds as many test sets as possible in the disjunction and converts them into case statements. It
returns a new disjunction that contains these case statements. The parameter Previous is used to avoid
infinite recursion. It contains all test sets that have already been used to make sure each test set is only

used once.

The function find_testsets(D , H , F, Previous) returns a list of all test sets in the disjunction (Figure
4.12). It picks a test set if there is a goal in the predicate which implies a test in the test set. It lifnits the
goals to those that do not bind any variables (bindset(G;;, F) = @) and those that use only variables that
occur in the head (vars(G,;) c vars(H)). The function pick_testset(TS;,,) retums the test set with the

greatest measure of goodness, as given by Equation (G) (Figure 4.13). The function code_testse(7S, D,

108

"H, F, Previous) converts the disjunction D into a case statement when given a test set TS (Figure 4.14).

It uses the functions subsume(F , F) and update_formula(F , F 1), which are defined in section 3.

Table 4.11 — Test sets

Name Example Test Example BAM transiation

equal == equal (X, Y,Lbl)
(X or Y is simple at run-time)

equal(atomic,A) X==A equal (X,A,Lbl)
(A is an atom)
equal(structure F/N) ‘ $name_arity’ (X,F,N) equal ([X],F/N,Lbl)
(F/N is name/arity)
hash(atomic) X=A (A is atomic) hash (tatm, X,N,Lbl)
hash(structure) X=S (S is a structure) hash(tstr,X,N,Lbl)
comparison(Class,Kind) X<Y jump (1ts,X,Y,Lbl)
(Class € {eq, lts, gts})
(Kind € {arith, unify, stand})
Type var (X) test (eq,tvar,X,Lbl)
(Type € AllTypes)
switch(Type) atom(X) switch(tatm,X,L1,L2,L3)
(Type € TagTypes — (var})

Table 4.11 lists the test sets currently recognized by the compiler. This includes unification goals, all
type checking predicates, and all arithmetic comparisons. For each test set it gives the name, a representa-
tive test in the test set (only one is given, although usually there are several others), and the translation of
that test into a conditional branch of the BAM instruction set. For the test sets hash(atomic) and
hash(structure) the BAM code includes a hash table (not shown) in addition to the hash instruction. The

following definitions simplify the table:

TagTypes = {var, atom, structure, cons, negative, nonnegative, float}, i.e. all types that
correspond to one tag in the VLSI-BAM architecture.

AllTypes = TagTypes U {atomic, integer, simple, compound}, i.e. it includes types that
correspond to more than one tag.

The goodness measure for a test set in a predicate is calculated using the following rule:

Goodness = 1000-D + G G)

where D is the number of directions of the test set that occur in the predicate and G is the raw goodness
measure of the test set. This rule ensures that the number of useful directions in the testset is most impor-
tant. The raw goodness is used only when the number of directions is the same. Table 4.12 gives the raw

goodness of all test sets in the VLSI-BAM architecture [34], with a brief justification of the ranking. The

109

Table 4.12 - Raw goodness measure of test sets in the VLSI-BAM
Test set Rank Comments

switch(cons) 131 | Switch is best because it is fast and it is a three-way branch, so it

switch(structure) gives the most information. Switch of compound terms is beuer
than other switches because it makes traversing a recursive term
(like a list or a tree) fast.

switch(negative) 130 | Switch of atomic terms is worse because it penalizes the case of

switch(nonnegative) traversing a recursive term.

switch(atom)

switch(integer) 129 | Switch of integer is worse because the VLSI-BAM has separate
negative and nonnegative (tpos and tneg) tags, requiring two
branches.

var 120 | These test sets are types that correspond directly to tags, and there

atom exist fast two-way branches on tags.

cons

structure

negative

nonnegative

equal 85 | This test set requires two instructions—a compare and branch, and
also possibly loading its arguments into registers.

equal(atomic,_) 80 | These test sets each require two instructions—a compare and

comparison(_,_) branch.

integer 79 | These test sets are types that each correspond to two tags, so they

atomic need two tag checks.

compound

equal(structure,_) 60 | Equality comparison of a structure’s functor & arity needs a
memory reference.

simple 50 | This test set corresponds to a type that needs five tag checks (four
without floating point).

hash(atomic) 41 | Hashing is the slowest because it needs to calculate the hash ad-
dress.

hash(structure) 40 | Hashing on a structure is slightly slower than hashing on an atomic
term because a memory load is needed to access the main functor
of the structurc, whereas the atomic term is directly available in
the register.

value of the rank is not important; only the relative order is important. Architectures rank the test sets
according to how efficiently they are implemented in the architecture. To compile for a different architec-
ture, only the ranking is changed in the compiler. The ranking is modified for other processors by a com-
piler option. For example, for the MIPS processor, the option mips changes the ranking to make the test
sel equal (atomic, []) best, i.e. a comparison with the atom [] (nil), because it can be implemented
with a single-cycle conditional branch instruction. The MIPS does not have separate tags for negative and
nonnegative integers, so the test sets negative and nonnegative are not implemented as efficiently as on the

VLSI-BAM. These two test sets have lower ranks.

Chapter 5§
Compiling Kernel Prolog to BAM Code

1. Introduction

The previous chapters described the conversion of standard Prolog to kernel Prolog and the optimiz-
ing kernel transformations. This chapter shows how the optimized kernel Prolog is compiled to BAM
code. The compilation to BAM is performed in two steps for each predicate. In the first step, the control
instructions that make up the framework of the predicate are compiled by the predicate co;npiler. This
includes compiling the deterministic case statements into conditional branches and the disjunctions with

choice point instructions.

In the second step, the clauses that make up the body of the predicate are compiled by the clause
compiler. The clause compiler uses two primitives, the goal compiler and the unification compiler, to com-
pile goals and explicit unifications. The clause compiler also does register allocation, entry specialization
(replacing built-in predicates by faster entry points), and performs the write-once transformation (for fast
trailing), and the dereference chain transformation (to maintain consistency with the dataflow analysis).

These transformations are explained in detail in the sections below.

2. The predicate compiler

In the kemel transformation stage (Chapter 4), determinism extraction attempts to convert each
predicate into a series of nested case statements. This is not always successful; sometimes the case state-
ments still retain disjunctions (OR choices) that could not be converted into deterministic code. The predi-
cate compiler compiles both the case statements and the disjunctions into BAM code. The case statements
are compiled into conditional branches. The disjunctions are compiled into choice point instructions. The
predicate compiler uses two primitives, the determinism compiler and the disjunction compiler, to compile

the predicate’s case statements and disjunctions.

110

111

2.1. The determinism compiler

Compiling a kernel Prolog predicate into deterministic BAM code is done in two steps. First, the
determinism transformation (a kernel Prolog transformation, Chapter 4) converts a kernel Prolog predicate
into a series of nested case statements. Then the determinism compiler compiles the nested case statements
into BAM code. A case statement may contain any test set, and each test set is mapped to a conditional

branch. The test sets and their corresponding conditional branches are given in Table 4.11.

2.2. The disjunction compiler

A disjunction (an OR formula) is a list of clauses that encapsulates a choice. The first clause is exe-
cuted the first time the disjunction is encountered. The remaining clauses are executed in order on
backiracking—each time backtracking retumns to the disjunction the next clause is tried. This is imple-
mented by code which generates choice points. A choice point encapsulates the state of the abstract
machine at the time it is created. Backtracking restores machine state from a choice point to let execution

continue from the point at which the choice point was created.

Creating and restoring machine state in choice points is time-consuming. To minimize the size of the
choice points (and hence the time required to create them), the choice point management instructions in the
BAM are streamlined to perform the least amount of data movement. They save only those registers that
are needed in the clauses of the disjunction after the first, and for each clause of the disjunction they restore
only those registers that are needed in that clause. Argument registers are restored in the clause itself and
notin the £ail instruction. Therefore the size of the choice point does not have to be stored in the choice
point and decoded in the fail instruction. A disadvantage is a slightly larger code size.t Consider the

following kemel Prolog for a predicate P with n clauses:
Head := (C; : C2 ; ... 1 Cqp ; fail).

A single choice point is created for each invocation of P. The set of registers saved in the choice point is

the set of all head arguments that are used in clauses after the first, i.e. C; through C,. Arguments that

+ This is less of a problem in the VLSI-BAM since the instruction reorderer merges pairs of single-word loads into
double-word loads.

112

occur only in clause C; do not have to be stored in the choice point. The set of registers that is restored for

each clause is the set of arguments used in that clause.

Before creating the choice point, the compiler dereferences those arguments that it can deduce will
be dereferenced later. This avoids dereferencing the same argument more than once. The set of arguments
to be dereferenced is derived by checking the type formula corresponding to each goal in the body of the
predicate’s definition, and noting whether its arguments have to be dereferenced. For example, arithmetic

operations and relational tests are goals that require their arguments to be dereferenced.

To illustrate the compilation scheme, consider the following predicate:

p(A,B,C,D) :- (a(A)
; c(C)
; d(D)
; fail
).
It is compiled as:

procedure (p/4) .
choice(1/3,[2,31,1(p/4,2)}). ; Save registers r(2) and r(3).
jump (a/1) .

label (1(p/4,2)).
choice(2/3,(2,n0],1(p/4,3)). : Restore only register r(2).
move (r(2),r(0)).

jump (c¢/1) .
label (1(p/4,3)).
choice(3/3, [no, 3], fail). ; Restore only register r(3).
move (r (3),r{0)).
jump (d/1) .

The choice instructions do all the choice point manipulation: choice(1/3,...) creates the choice
point, choice(2/3,...) modifies the address to return to on backtracking, and
choice(3/3,...) removes the choice point. Register r (0) isnot saved in the choice point because
it is not needed in clauses beyond the first. The second and third clauses restore only the registers they

need. Register r (1) isnot saved because it is not needed at all.

Each choice instruction contains a list of the registers that it used. The length of the list is the same
for all choice instructions in a predicatc. For choices after the first, the alom no is put in the positions of
registers that do not have to be restored. For example, the list [0,nc, 5] means that registers r (0)

and r(5) are restored from the first and third locations in the choice point, and the second location is not

113

accessed.

In this example a further optimization can be done by merging the move instructions with the choice

instructions, i.e.:

choice (3/3, (no, 3}, fail).
move (r(3),r(0)).

becomes:
choice(3/3, [no,0],fail).

This is possible becausc the value loaded in a register is determined by its position in the list, not by its

number, and because register r (3) isonly usedtoload r(0).

clause
+ type ‘
compile a single goal
eny in the clause body
specialization
write-once
clause body transformation
compiler Y
dereference c_hain
varlist skeleton transformation
BAM code
register
allocator e
passing
unification goal
compiler compiler
in-line
expansion
BAM code
+ new type

Y

Figure 5.1 - Structure of the clause compiler

114
-3. The clause compiler

The clause compiler converts a clause from kernel Prolog form (with type annotations) 1o BAM
code. The structure of the clause compiler is given in Figure 5.1. After compiling the goals in the body
there are two intermediate results: (1) BAM code in which variables have not yet been allocated to registers
(skeleton code) and (2) a variable occurrence list (the varlist), that contains all unallocated variables in the

skeleton code. The final BAM code is obtained by passing the varlist to the register allocator.

Each goal in the clause body is compiled in four steps. First, three transformations are performed on
the goal: entry specialization, the write-once transformation, and the dereference chain transformation.
Then the goal is compiled into BAM code by one of two routines, the unification compiler or the goal com-

piler, depending on whether the goal is a unification or not.
These are the important blocks in the clause compiler:

(1) The goal compiler. Its main task is to handle argument passing. Because of the interaction between
the different kinds of unbound variables, initialized and uninitialized, this results in a case analysis.
In addition, the goal compiler compiles in-line some built-in predicates and the dummy predicates

that were created in the transformation to kernel Prolog.

(2) The unification compiler. Its task is, given a type, to compile an explicit unification into the sim-

plest possible code.

(3) The register allocator. Its task is to allocate variables to registers in such a way that the number of
superfluous move instructions is minimized. It uses a data structure called the varlist which is gen-

erated by the clause body compiler.

(4) Entry specialization. This attempts to replace each goal in the clause by a faster entry point,
depending on the types known at the call.

(5) Write-once transformation. This transformation is part of a technique for reducing the overhead of
trailing.

(6) Dereference chain transformation. This transformation is necessary to keep the dataflow analysis

and the clause compiler consistent.

115

The following sections give more details about these each of these blocks. First, an example of a clause
compilation is given, with emphasis on the skeleton code, the varlist, and a specification of the register
allocator. This is followed by discussions of the goal compiler, the unification compiler, entry specializa-

tion, the write-once transformation, and the dereference chain transformation.

3.1. Overview of clause compilation and register allocation

This section gives an example of how a clause is compiled. Consider the following clause with no types:
a(A,B) :- b(A,C), d(C,B).

Compilation of this clause proceeds in three steps: First the kemnel Prolog is compiled to BAM code and a
variable occurrence list, or varlist. In this example, most of the work in this step is done in the goal com-
piler. The resulting BAM code is referred to as skeleton code since variables have not yet been allocated 10
registers. The varlist is derived from the skeleton code and contains the list of variables and registers in it.
Second, the register allocator uses the varlist to allocate variables to registers. Third, after all predicates
and all clauses are compiled, the BAM optimization stage improves the code (Chapter 6). The skeleton

code for this clause is:

allocate (X) . ; Create an environment (its size is still unknown).
move (r(0),A). ; Load the head arguments into variables A and B.
move (r(l),B).

move (tvar“r(h),C). : Create an unbound variable and put it in C and D.
move (tvar”“r{(h),D). ; C may exist beyond a call, D exists between calls.

pragma (push(variable)).

push(D,r(h),1).

move (A, x (0)). ; Load the parameters of the first call.
move (D, r (1)) .

call(b/2).

pragma (tag (C,tvar)) . ; C has an extra link, with a tvar tag.

move ({C],r(0)). ; Extra indirection to remove the extra link.
move (B, r (1)) .

call(d/2).

deallocate (X) . : No last call optimization in the skeleton code.
return.

The varlist for this clause is;

116

[pref, r(0),A,
pref,r(l},B,
c,pref,C,D,D, ; Corresponds to the unbound variable in C and D.
pref,A, r(0),

pref,D, (1),

fence, ; Corresponds to call(b/2).

C,r(0),

pref,B,r(l),

fence] ; Corresponds to call(d/2).

Corresponds to move (r(0),A).

~e

3.1.1. Construction of the varlist

The varlist is constructed to satisfy these conditions:

8]

@

(©)

G

)

©

The only contents of the varlist are unbound variables, temporary registers, and the atoms fence

and pref.
The order of variable occurrences is the same in the skeleton code and the varlist.

The atom fence is inserted as a marker at each point where temporary variables do not survive.

This corresponds to each call(..) instruction in the skeleton code.

Two variables that are preferably allocated to the same register are preceded by the atom pref and
£

called a pref pair. A pref pair is created when allocating the variables to the same regisier allows an

instruction to be removed. For example, the move (A, r (0)) instruction can be removed if the

variable A is allocated to register x (0).

A variablc occurs exactly once in the varlist if and only if it occurs exactly once in the skelcton code.

Such a variable is called a void variable. An instruction containing a void variable may be removed.

A variable occurs more than once in the varlist if and only if it occurs more than once in the skeleton

code.

3.1.2. The register allocator

The register allocator assigns a register to each variable in the varlist such that there are no conflicts,

i.e. a single register never holds two values at the same time. The allocator also calculates the size of the

environment (the number of permanent registers) for the allocate and deallocate instructions.

The algorithm is defined in Figure 5.2. It assumes that variables are represented as logical variables, i.e.

117

procedure register_allocator(VL : varlist);
var Viid, Viemp, Voref s Vperm : S€L of vanable;
begin
Vyeia = { variable Y |'Y occurs exactly once in VL };
V X € V,oia d0 Allocate each X to r (void);
Vperm = { variable Y | The sequence {Y,.. fence,.., Y] occurs in VL };
V X € Vperm do Allocate each X 1o a different p (I);
Environment size := number of elements in Vperm;
Viemp = { variable Y |'Y occurs more than once inVL};
Vores = prefer(VL);
while V.., # & do begin
while 3X € Vs : X isallocatable to r (I) without conflict do begin
Allocate X to its preferred register r (I);
Vpre/ = Vpr,f - [X);
Vum,p = anp - (X]’
Vores = prefer(VL)
end;
if 3X € Vi.mp then begin
Allocate X to the lowest r (I) possible without conflict;
Vpref = Vpnj - {X];
Vump = Vump - {X];
Vores = prefer(VL)
end
end
end;

function prefer(VL : varlist) : set of variable;
begin
return { variable Y | The sequence [pref,Y,_]or [pref,_, Y] occurs in VL}
end;
Figure 5.2 — The register allocator

that allocating a variable to a register binds that variable in all sets that contain it. It assumes that there are
an infinile number of temporary and permanent registers. It uses the following correspondence between

variable lifetimes and registers:
(1) A variable that occurs exactly once is allocated 0 r (void).

(2) A variable occurring on both sides of a fence marker (it crosses a fence) is allocated 10 a per-

manent register p (I) (alocation in the environment).

(3) A variable that does not cross a fence and that occurs more than once is allocated to a temporary

register r (I).

The algorithm is independent of the write-once transformation and the dereference chain transformation.

118

“This is possible because the clause compiler is careful to feed the allocator a varlist that takes the two

transformations into account.

In the example of the previous section, the allocator assigns the following values to the variables:

r(0)
p (0}
p(l)
r(l)
= 2

xXoaow»
]

Since both B and C cross a fence, they are allocated to permanent registers. Both A and D are allocated to

their preferred registers. The number of permanent variables, X, is 2.

3.1.3. The final result

The final BAM code output by the compiler after all transformations and optimizations (including the

BAM transformations of chapter 6) is:

allocate(2). ; Allocate space for two permanent variables.
move (r(l),p(0)).
move (tvar“r(h),r(l)). ; Create an unbound variable and put it in r(l) and p(1l).

move (r (1),p(1l)).
pragma (push (variable)) .
push(r(l),r(h),1).

call(b/2).
pragma (tag(p(l),tvar)).
move ([(p(1)],.x(0)). : Indirection due to dereference chain transformation.

move (p(0),r(1)).
deallocate(2).
jump (d/2) . ; Last call optimization converts ‘call’ to ‘jump’.

3.2. The goal compiler

Given a goal and type information about the goal, this module sets up the arguments to call the goal,
does the call, and sets up the return arguments. The main task of the goal compiler is to handle the com-
plexities that arise when supporting combinations of uninitialized and initialized parameters. The follow-

ing situations are also handled:

(1) Duplicate variables. An uninitalized variable that occurs twice in a goal must be initialized before

calling the goal.

119

(2) Uninitialized register variables. Passing arguments as uninitialized register variables requires

some care. These variables are not passed into a predicate, but are outputs returned in registers.

(3) Dummy predicates. Several compiler transformations create new predicates as part of the transfor-

mation. These predicates are only called once, so they are compiled in-line.

(4) Built-in predicates. Some built-in predicates are translated into in-line code (Table 5.5).

function compile_goal(G : goal; F : formula; Vs, : set) : return (Code : list; Fo : formula; Vs ow : set);
var Viwn: . Vi - Setof variable;
Initcode , Precode , Call, Postcode : list of instruction;
A :term;
gi.ri : {ini, mem, reg};
i : integer;
begin
/* Initialize all uninitialized variables that are duplicated */
Vininis := { X | F implies (uninit_mem(X) or uninit_reg(X)) };
Vinie = ((vars(G)= Vss) U Viinis) N dups(G), /* Table 4.6 */
Initcode = list of (V X € Vi : Code to initialize the variable X);

/* Pass arguments to the goal and clean up afterwards */
Precode =1[1;
Postcode =),
for i := 1 to arity(G) do begin
A :=(argument i of goal G);
g =given_flag(A, F, V). /* Table5.1*/
r; :=require_flag(A, G); /* Table 52%*/
Append precode(g; ,7:] to Precode; /* Table 53%*/
Append postcode[g; , ri] to Postcode [* Table 5.4 */
end;

/* Call the goal */
if (G can be expanded in-line) then
Call := (in-linc expansion of G) /* Table 5.5%
else if (G is a dummy predicate) then
Call = (in-line compilation of G 's definition)
else if (G does not alter temporary registers) then
Call = (asimple_call instruction for G) /* Table 3.7*/
else
Call = (acall instruction for G);
Code := append(Initcode , Precode , Call , Postcode)
end;
Figure 5.3 - The goal compiler

The function compile_goal(G , F , V) defines the goal compiler (Figure 5.3). Its inputs are the goal (G), a
type formula (F), and the set of variables that have a value on input (V). Its outputs are a list of BAM

instructions (Code), the type formula true on output (Fou), and the set of variables that have a value on

120

output (Vss o)-

Each goal has three type formulas associated with it: a Require type, a Before type, and an After type.
These types are optionally given by programmer input and are supplemented by dataflow analysis. The
compiler maintains a table of these types for all predicates including built-ins and internals. The Require
type gives the types that the arguments being passed to the goal must have, i.e. the goal compiler is
required to make them true in all cases. The Before type gives the types that are true before the call. The
After type gives the types that are true after the call returns. No special action is needed by the goal com-

piler to ensure the validity of the Before and After types.

Compiling a goal is made more complex because the kind of argument needed by the goal may not
be the same as the one that is given to it. The goal’s Given type (which is valid before the goal and given
by F in Figure 5.3) must be reconciled with the goal’s Require type. The most common Require and
Given types are the three varieties of unbound variables: uninitialized memory and register variables and
initialized variables. This requires a case analysis with 3x 3 cases for each argument of the goal to prop-

erly match the Require and Given types.

Table 5.1 - Calculating the Given flag of an argument

Condition on argument A ;

nonvar(A) ini
var(A) A (F implies uninit_mem(A)) mem
var(A) A ((A € Vi) v (F implies uninit_reg(4))) | reg
var(A) A (A € V) ini

Table 5.2 - Calculating the Require flag of an argument

Condition on argument A ri
require(G) implies uninit_mem(A) mem
require(G) implies uninit_reg(A) reg
otherwise ini

121

Table 5.3 - Calculating the precode from the flags
8i ri precode[g ,7i |
reg reg (1
mem reg [1
ini reg []
reg mem {move (tvar“r(h),B),adda(r(h),1,r(h))]
mem mem (]
ini mem {move (tvar"r (h),B),adda(r(h),1,r(h))]
reg ini [move (tvar~“r(h),B),push(B,r(h),1)}]
mem ini [move (A, [A]) ,move (A,B)]

ini ini | [}
Table 5.4 — Calculating the postcode from the flags
&i ri posicode(g; ,7i]

reg reg (]
mem reg [move (B, [A])]
ini reg unify(A, B)
reg mem (move (B,A)]
mem mem [l
ini mem unify(A, B)
reg ini [move (B,A)]
mem ini (]
ini ini (1

Require and Given flags ; and g; (with values in {ini, mem, reg)) are associated with each goal
argument for the Require and Given types. Tables 5.1 and 5.2 define how the Require and Given flags are
calculated. The function require(G) in Table 5.2 is a defined predicate in the compiler that returns the
Require type for any goal. It knows all about built-in and internal predicates and the results of dataflow
analysis.

Duplicate arguments (e.g. A in the call p(4, A)) are treated specially. An argument that is duplicate
cannot be uninitialized—it occurs in more than one place, so it is not unaliased any more. The goal com-

piler initializes these arguments before doing the case analysis.

Table 5.3 gives the precode, i.e. the code that is generated before the call to set up, and Table 5.4
gives the postcode, i.e. the code that cleans up after the call. To enforce the Require type, in seven of the
nine cases a different argument B is passed to the call instead of the goal’s original argument A. For
example, if the Given flag is mem and the Require type is reg, then the compiler must create a new vari-
able B of type uninit_reg(B) 10 pass to the goal. After the goal returns, the original argument A and the

returned argument B are unified together. The new variable B is created for all combinations of Given and

122

Require flags except (reg , reg)and (mem, mem). In these two cases no precode or postcode is needed.

To simplify the presentation, Figure 5.3 only does part of what the algorithm implemented in the
compiler does. The definition of compile _goal in the figure only handles Require and Given types that are
all uninitialized variables. The actual algorithm handles any types. The type formula F and the variable
set Vs are updated continuously during the execution of compile_goal. A variable occurrence list is calcu-
lated for the register allocator. The actual algorithm handles 12 cases for parameter passing instead of 9—

as an oplimization, two varieties of Given uninitialized register types are recognized.

Table 5.5 - BAM expansion of internal built-ins
Kernel Prolog BAM instruction
' Scut_load’ (X) move (r (b) ,X)
’ Scut’ (X) cut (X)
’$name_arity'(x,’.',2) test (ne,tlst,X,fail)
*$name_arity’ {X,Na,Ar) equal([X],tatm‘(Na/Ar),fail)
'$name_arity’(X,Na,O) equal(X,tatm“Na,fail)
rStest’ (X, Types) (a sequence of test instructions)
" Sequal’ (X,Y) equal(X,Y,fail)
' $Sadd’ (&,B,C) add (A, B, C)
"S$Ssub’ (A,B,C) sub(a,B,C)
’* Smod’ (A,B,C) mod (A,B,C)
" $mul’ (A,B,C) mul (A,B,C)
r$div’ (A,B,C) div(A,B,C)
*Sand’ (A,B,C) and(A,B,C)
'$or’ (A,B,C) or(A,B,C)
*$xor’ (A,B,C) xor (A,B,C)
*$sll’ (A,B,C) sll(A,B,C)
r$sra’ (A,B,C) sra(A,B,C)
*Snot’ (A,C) 1 not (A,C)

3.2.1. An example of goal compilation
This section gives a simple example of compilation to show how the goal compiler works in practice.
Consider the following predicate in standard Prolog:
a(X, Y) :- Y is X+1.
This is converted to kemel Prolog:
a({X, Y) :- ‘$add’' (X, 1, Y).

To compile the call to * $add’ /3 itis necessary to pass parameters in the right way. In particular, it is

necessary to pass the output of the addition into variable Y. The built-in ’ $add’ (A,B,C) has the

123

following types associated with it:

Require = (deref (A) ,deref (B) ,uninit_reg(C)).
After = (integer (A) ,integer (B) ,integer (C), rderef (a), rderef (B) , rderef (C)).

From the Require type, the first two arguments X and 1 of ‘ $add’ /3 must be dereferenced and the third
argument Y must be an uninitialized register. The Given types of X and Y depend on the type formula for
a(X,Y). Assume first that no type is given for a (X,Y). From Tables 5.1 and 5.2, the Given flag for Y
is ini and the Require flag for Y is reg. From Tables 5.3 and 5.4, the precode in this case is empty and

the postcode is a call to unify(4 , B) to generate unification code. The compiled BAM code is:

procedure(a/2) .

deref (r(0),r(0)). ; Dereference X.

add(r(0),1,r{0)). ; Perform the addition.

deref (r(l1),r(1)). ; Dereference Y.
unify(r(0),r(l),nonvar,?,fail). ; Unify Y with the result of the addition.
return.

If a(X,Y) has a type then the code can often be simplified. For example, assume that its type is
(deref (X),uninit_mem(Y)), i.e. X is dereferenced and Y is an uninitialized memory variable.

Then the Given flag for Y is mem. The compiled BAM code is:

procedure (a/2) .

add (r(0),1,r(0})). ; Perform the addition (X is dereferenced).
pragma (tag(r(l),tvar)).

move (r (0), [r(1)]). ; Bind Y to the result of the addition.
return.

3.3. The unification compiler

This section gives an overview of the compilation of unification, the optimizations that are done, and

several examples.

3.3.1. The unification algorithm

Given a unification goal and type information about its arguments, this algorithm generates the sim-
plest possible code to implement the unification. In the general case, the algorithm builds a tree of instruc-
tions. Each node of the tree has three branches—one each for read mode and write mode unification, and

one for failurc. The algorithm generates dereference instructions if necessary and trail instructions to undo

124

variable bindings when backtracking. It does other optimizations including optimal write mode unification,

type propagation, and depth limiting.

Write mode unification of a term generates a block of push instructions that builds the term on the
heap. Read mode unification of a term is done sequentially for each of the term’s arguments. First it
checks the name and arity of the term. Then the arguments are unified. For arguments that are simple
terms this consists of a single move, equal,or unify instruction. For arguments that are compound

terms the unification algorithm is called recursively.

The function unify(X, Y, F, V) defines the unification algorithm (Figure 5.4 and 5.5). Its inputs
are the two terms to be unified (X and Y), the type formula true on input (F), and the set of variables that
have a value on input (V). Its outputs are a list of BAM instructions (Code), the type formula true on

output (F,.), and the set of variables that have a value on output Vss om)-

The algorithm does several tasks that are not shown in the figure since they would unnecessarily
complicate the presentation. The instruction list, the type formula, and the variable set are updated con-
tinuously during the compilation. Before using the value of a variable, it is dereferenced if necessary.
Before binding a value to a variable, it is trailed if necessary. A variable occurrence list (varlist) is calcu-

lated for the register allocator (Figure 5.2).

3.3.2. Optimizations

The actual implementation does four optimizations not shown in Figure 5.4 and 5.5. 1t does optimal
write mode unification. It keeps track of terms that are ground and recursively dereferenced to avoid com-
piling superfluous write mode unifications and dereferences. To reduce code size, it performs the last argu-

ment optimization and the depth limiting transformation.

3.3.2.1. Optimal write mode unification

The algorithm is modified to build a compound term in write mode with the least number of move
instructions. First the code for building the main functor with empty slots for its arguments is generated.

This is followed by the code for building the arguments and filling in the slots with the correct heap offsets.

125

function unify(X , Y: term; F : formula; Vs : set) return (Code : list; Fou : formula; Vs o : Set);
begin
Code =1];
if (var(X) and var(Y)) then begin
if (F implies (unbound(X) or unbound(Y))) then
Compile a store instruction
else
Compile a call to a general unification subroutine;
return
end else if (nonvar(X) and nonvar(Y)) then begin
Compile a check that X and Y have the same functor and arity a;
for i := 1 to a do begin
Append unify(X,, Y, F, Vi) 1o Code
end;
return
end if (nonvar(X) and var(Y)) then Swap X and Y
else if (var(X) and nonvar(Y)) then Do nothing;

if (X g V¢) then return unify_write(X, Y, F, Vy Y
else begin /* At this point X € Vs */
if (F implies nonvar(X)) then return unify_read(X,Y,F, Vi)
else if (F implies var(X)) then return unify_write(X,Y, F.Vyg)
else begin
Compile a three-way conditional branch comparing the tags of X and Y;
Call unify_read and unify_write to compile the read and write mode branches
end
end
end;
Figure 5.4 — The unification compiler: the main routine

This technique was proposed as an optimization over the WAM by André Marién [44]. The examples of
unification given later use this technique. The justification of the BAM instructions needed for unification

was done with this technique (Chapter 3).

3.3.2.2. Last argument optimization

This is an important optimization that significantly reduces the code size. It can be performed when-
ever a compound term has a compound term in its last argument. Without this optimization, the tree gen-
erated by the algorithm has the same depth as the term that is compiled. For each level in the tree a new
block of write mode code is generated. For lists of n elements this results in O (n?) move instructions.
The optimization reduces the code size to O (n) by creating only a single write mode block, and letting all

depths of the tree jump into it. This optimization was proposed by Mats Carlsson {14]. The code for write

126

function unify_write(X , Y : term; F : formula; Vyf : set) return (Code : list; Fou : formula; Vs ou : set);
begin

/* At this point X is an unbound variable */

Generate a block of instructions to create the term Y on the heap;

Bind X to this block (i.e. generate code to dereference X if necessary,

store a pointer to this block in X, and trail X if necessary)
end;

function unify_read(X , Y: term; F : formula; Vs : set) return (Code : list; Foy, : formula; Vi ou : set);
begin

/* At this point Y is a nonvariable and F implies nonvar(X) */

Code =[];

Compile a check that X contains a structure of same functor and arity as ¥';

for i := 1 to arity(Y) do begin

Append unify(X.- Y, F, V,/) to Code

end

end;
Figure 5.5 - The unification compiler: read and write mode unification

mode unification of a nested term is replaced by a single jump instruction to the write mode code block of

the outermost term. An example of unification given below uses this optimization.

3.3.2.3. Type propagation

There are two ways in which propagating type information during the compilation of unification
improves the code. First, during the unification, the algorithm keeps track of the variabies that are ground,
uninitialized, and recursively dereferenced. This information is propagated into the arguments of com-
pound terms. The propagation of ground and recursively dereferenced types was added after measurc-

ments of the dataflow analyzer showed that these types are numerous.

Second, when a new variable is encountered in a term, then the unification compiler has the choice
whether to create it as an initialized variable or as an uninitialized variable. It is not always best to create
new variables as uninitialized, since this often makes it impossible 1o apply last call optimization. To solve
this problem it is necessary to look ahead in the clause. The variable is created as uninitialized only if there

is a goal later in the clausc with this variable in an argument position that must be uninitialized.

127

3.3.2.4. Depth limiting

Because the unification compiler generates a separate read and write mode branch for each functor in
the term that is unified, deeply nested terms result in a code size explosion. The last argument optimization
(see above) reduces the code size when the nesting occurs in the last argument. For other cases, a different
technique is necessary. The unification compiler replaces a deeply nested subterm by a variable, creates
the subterm with write mode unification and does a general unification with the variable. The depth limit is
set by the compiler option depth_limit (N), and the default depth is N=2. For example, consider the

following unification where the complicated term z (. . .) is nested deeply:
X=s(t(u(...z2(...)...)))

It is replaced by a sequence of three unifications:
X=s(t(u(...A...))), B=z(...), A=B

The variable B does not yet have a value, so the unification B=z (. ..) is executed in write mode. A gen-
eral unification is performed for A=B. Since the size of a write mode unification is linear in the size of the
compound term, this considerably shortens the code for deeply nested terms. Measurements were done o
determine the effect of this transformation on execution time. In most cases it is insignificant, e.g. for the
nand benchmark (Chapter 7), a program that contains deeply nested structures, the difference in execution
time between depth limits of two and three is insignificant (i.e. only a few cycles out of several hundred

thousand).

3.3.3. Examples of unification

Consider the following sample clause:
a(A, s(A, [X]X])).

The WAM code for this clause is (assuming the two arguments of the clause are in registers r (0) and

r(l))

128

procedure a/2 ;:; the clause has two arguments.
get_structure s/2,r(1) ;: unify r(l) with s (A, [X{X]).
unify value r(0) ;: unify the first argument with r(0).
unify variable r(3) ;: load the second argument into r(3).
get_list r(3) ;; unify r(3) with [X|X].
unify variable 1x(2) ;: load the first argument into r(2).
unify value r(2) ;; unify the second argument with r(2).
proceed ;; return to caller.

Temporary values are stored in registers r(2) and r(3). The execution time of this code averaged
over read and write mode is 63 cycles on the Xenologic X-1 processor [85], an implementation of the PLM
architecture [28]. The BAM code generated for the same clause is (the pragmas have been left out for clar-

ity):

procedure (a/2) .

deref(r(l),r(l)). ;; dereference r(l).

switch (tstr,r(1),1(a/2,3),1(a/2,4),fail). ;; three-way branch.
label(l(a/2,3)). ;; write mode for s(a, [X|X]).

trail({r(l)}. ; conditionally push r(l) on trail stack.

move (tstr h, (r(1)]). ; bind s(A, [XIX]) to second argument.

push(tatm® (s/2),h,1). ; create the term s (A, [X|X]).

push(r(0),h,1).
push (tlst” (h+2),h,1).

pad(l).
label(l(a/2,1)). ; common code for last arg. opt.
move (tvar~h,r(2)). ; create the two arguments of [X|X].

push(r(2),h,1).
push(r(2),h,1).

return.

label(l(a/2,4)). ;; read mode for s(A, [XI|X]).
equal([r{(l)),tatm" (s/2),fail).; check functor & arity of s/2.
move ([r(l)+1),r(3)). ; load first argument intec r(3).

deref (r(3),r(3)).
deref (xr (0),r{(0)).

unify(r(3),r(0),?,?,£fail). ; unify first argument with r(0).

move ({r(l)+2],r(0)). ; load second argument into r(0).

deref (r(0),r{(0)).

switch(tlst,r(0),1(a/2,6),1(a/2,7),fail). ;; three-way branch.
label(l(a/2,6)). ;: write mode for [XI|X].

trail(r(0)).

move (t1lst“h, [(r(0)]).

jump(l(a/2,1)). ; jump to common code (last arg. opt.).
label(l(a/2,7)). ;; read mode for ([X|X].

move ({r(0)},xr(2)).

move ({r(0)+1],r(0)).

deref(r(0),r(0)).

deref(r(2),r(2)).

unify(r(0),r(2),?,?, fail). ; unify arguments of (XI|X].
return.

Again, the two arguments of the clause are in registers r (0) and r (1) andtemporary values are stored

in registers r(2) and r(3). To reduce the code size, the write mode code for [X1X] jumps into the

129

middle of the code for s (A, [X|X)). With this optimization the code is 29 BAM instructions long (after
translation and instruction reordering, this is 264 bytes on the VLSI-BAM). The WAM code is only 7
instructions long (17 bytes on the PLM) because each instruction encapsulates a choice. WAM instructions
for unification assume the existence of a read/write mode bit in the implementation, which collapses the

execution tree onto itself.

The code size ratio VLSI-BAM/PLM is large for this example. It was hoped during development
that (1) code expansion would be less for other kinds of Prolog code (e.g. calls, parameter passing, back-
tracking), and (2) dataflow analysis would reduce the complexity of unifications. These intuitions have
been bome out (Chapter 7): the static code size in VLSI-BAM bytes measured for large programs is only

three times that of the PLM, a microcoded WAM with a byte-coded instruction set.

The execution time of the above code on the VLSI-BAM is 25 cycles (measured with a simulator
taking pipeline delays into account and averaged over read and write mode). This is about 40% of the
cycles needed for the X-1. This time can be estimated by taking the average execution times of BAM
instructions when translated to the VLSI-BAM architecture: unify takes 5 cycles, equal takes 3
cycles, switch, deref, trail, and move from memory take 2 cycles each, push, adda, and all
other move instructions take 1 cycle each, and pad instructions take O cycles because they are collapsed
into the pushes. These estimates are only approximately correct because of instruction reordering optimi-

zations performed on VLSI-BAM code.

Through programmer annotation or dataflow analysis it is sometimes possible to know the type of an
argument at compile-time. For example, sometimes it is known whether an argument is unbound or bound.

Consider the same sample clause again:

a{A, s(A, [XIX])).

Assume it is known that the second argument is an uninitialized memory variable. This is expressed with

the following type declaration:

:— mode ((a(A,B) :- uninit_mem(B))) .

With this type the clause’s code is only 9 BAM instructions long (36 bytes on the VLSI-BAM):

procedure (a/2)
move (tstr~h, [r(1}}).

push(tatm” (s/2),h,1).

push(r(0),h,1).

push(tlst” (h+2),h,1).

pad(1).
move (tvar~h,r(0)).
push(r(0),h,1).
push(r(0),h,1).
return.

The execution time of this example is 11 cycles.

3.4. Entry specialization

130

; bind s (A, [(X|X)) to second argument.
; create the term s (A, [XIX]).

; create the two arguments of [X[X].

return to caller.

For each goal in the clause, the clause compiler attempts to replace it with a faster entry point,

depending on the types existing at that point. For example, if it is known that the arguments N and A of the

predicate functor (X,N,A) are atomic then a faster version can be compiled.

Entry specialization is done in both the clause compiler and the dataflow analysis. Doing it in both

places is complementary since the analysis only keeps track of a limited set of types: ground, nonvariable,

uninitialized, and recursively dereferenced. During clause compilation more information is known, for

example, if the goal X<Y occurs in a clause, then afterwards it is known that X<Y is true. Analysis does

not have a representation for this information, but it could be useful for entry specialization.

131

atomic(A)?

uninit (A)?

no yes
uninit (B) ? '$_name_<_*1'(A,B) uninit (B) ?
no yes no yes
name (A, B) '$ name > *2'(A,B) '$_name_>_1'(A,B) ' $_name_>_1_ *2'(A,B)

Figurc 5.6: Example of a modal entry trce for entry specialization

Entry specialization can be done for any predicate whose definition is not in the program. The sys-
tem has implemented this for the built-in predicates, but it can be used by the programmer for any library
predicate. For each predicate that has faster entry points, a modal_entry declaration is given, along
with type declarations for the fast entry points. These declaration are used in the dataflow analysis and the
clausc compiler to replace any call to the predicate with a faster entry point. For example, here is the

modal entry declaration for the name (A, B) built-in predicate:

:- modal_entry(name (A,B),
mode (atomic (A),
mode (uninit (B),
entry (‘S name > 1 *2' (A,B}),
entry (‘'S name > 1’ (A,B))
) ’
mode (uninit (RA),
entry(’'$ name < *1' (A,B}),
mode (uninit (B),
entry ('S name > *2' (A,B)),
entry (name (A,B))
)
M.

This declaration defines a binary tree, depicted in Figure 5.6. The nodes of the trec are decision points con-
w@ining a type. If the type is valid then the left subtree is chosen, otherwise the right subtree is chosen. The

Jeaves of the tree are the entry points. If nonc of the types are valid then the leftmost leaf is chosen, which

132

“usually is the same predicate as the original one. Each of the four fast entry points also has a type declara-

tion:

:= mode ('$ name > 1’ (A,B), (deref (A),deref (B)), atomic(A),
(list (B) ,ground(B)), n).

:= mode ('S name < *1' (A,B), (uninit (A) ,deref (B)), true,
(atomic (A) ,deref (A),list (B),ground(B)), n).

:~ mode (‘S name > *2' (A,B), (deref (A) ,uninit (B)), true,
(atomic (A),list (B) ,ground (B),rderef (B)), n).

:~- mode ('S name > 1 *2’ (A,B), (deref(A),uninit(B)), atomic(A),
(list (B) ,ground(B) ,rderef (B)), n).

These declarations are writien in a five-argument form that is more general than a standard type declaration
(Appendix A): it gives the entry types (both Require and Before) and the exit (After) types for the predi-

cate.

3.5. The write-once transformation

In the BAM all unbound variables are kept on the heap. This makes trail checking significantly fas-
ter. However, when combined with the ability to destructively modify the value of permanent variables
(e.g. to dereference them and save the dereferenced value in the permanent) it leads to several problems.

These problems are all neatly resolved by the write-once transformation.

Putting all unbound variables on the heap means that there are no pointers to the environment/choice
point stack; all pointers point to the heap. This reduces trail checking to a single comparison with the heap
backtrack pointer r (hb) and a conditional push to the trail stack. It is not necessary to do another com-
parison to decide whether the variable is on the heap or in an environment. In addition, since all unbound
variables are created on the heap there are no ‘‘unsafe variables’” as in the WAM. An unsafe variable is an
unbound variable that is created on the environment and that must be moved to the heap (*‘globalized’’)

before last call optimization deallocates its memory.

Modifying the value of a permanent variable (e.g. by dereferencing or binding it) cannot be done
without a trail operation. Indeed, consider the case where a permanent dereferences to a nonvariable term.
If the dereferenced value overwrites the original value, then both the original value and its address have to

be trailed since backiracking has to restore the original value. This is expensive, since it has o be done

133

every time a permanent is bound or dereferenced.

One solution to this problem is never to store a dereferenced permanent back in the environment.
This solves the problem but it is inefficient since a permanent may have to be dereferenced several times in

a clause.

A better solution is to allocate a new permanent on the environment whenever the value of an old
one needs to be changed. The new permanent gets the new value and the old permanent is unchanged. As
a result, all permanent variables are only given values once, so they are called ‘‘write-once’’ permanents.
Because it is not changed, the old permanent does not have to be trailed. At the cost of a slightly bigger
environment, this completely eliminates the need to trail permanent variables. This allocation scheme is

implemented in the clause compiler.
To summarize:

(1) All unbound variables are created on the heap, and unbound permanent variables in an environment

always point to the heap.

(2) The trail check is a single comparison with r (hb) and a conditional push to the trail stack (2 cycles

on the VLSI-BAM).

(3) Permanent variables are only given a single value in a clause. Whenever a permanent would be

changed, a new one is allocated and given the modified value.

(4) Register allocation must allocate a different permanent register for each permanent variable in the

clause. It is not allowed to use the same register for two variables whose lifetimes do not overlap.

This solution is implemented in the clause compiler by mapping a permanent variable onto a new variable
whenever its value would change. The register allocator treats the new variables just like any other, and

allocates them to temporary Or permanent registers.

The main disadvantage of this technique is that environments are larger. For example, consider a

clause of the form:

e(A,E) :- a(A,B), b(B,C), c(C,D), d(D,E).

where variables are chained from one predicate to the next. In the WAM, it is allowed to allocate

134

permanent variables such that vaniables whose lifetimes do not overlap are allocated to the same permanent
register. For the above example, this requires just two permanent registers, so the total environment size is
four words (it also includes registers r(e) and r(cp)). Only two permanents are needed no matter
how long the chain of body goals is. This method requires trailing of the permanent’s values, because
backtracking must see the original values. This scheme is consistent with the original implementation of
the WAM, i.e. binding permanent variables on the environment and globalizing unsafe variables to ensure

correcmess.

In contrast, the number of permanent variables needed by the write-once technique increases linearly
with the length of the chain. For the above example, this requires four permanent variables, so the total
environment size is six words. The total memory usage is increased by less than this amount because no

trailing of permanents is needed.

This is an example of a trade-off between memory space and execution time. The extra memory
space needed is comparable to the increased size of the trail stack if there is no trail check for permanent
variables. Since this is small, I have opted to decrease execution time at the expense of larger environ-
ments. By keepi.ng all unbound variables on the heap and by implementing permanent variables as write-
once variables, permanent variables can be dereferenced and bound without trailing, and the cost of trailing

heap vanables is reduced to a single comparison and conditional push.
3.6. The dereference chain transformation

This transformation is needed to maintain consistency between the dataflow analysis and the clause
compiler. A new unbound variable (of either initialized type or uninitialized memory type) is created as a
pointer to a memory location. Binding the variable stores the new value in the location. However, the
register(s) that originally contained the unbound variable still have pointers to the location. One level of

indirection is needed to access the value.

135

Just before the call 10 a(A)

argument A: | tvar ! tvar 1
ND)

Just after the call to a(A)

argument A: | tvar < - tstr —
7
/
Extra link

Figure 5.7 - The need for the dereference chain transformation

To sec why this is nccessary and what it implics, consider the exccution of the clause main (Figure 5.7):

main :- (i) a(A), (i) write(A).

a(A) :- A=s(t(a),u(b),v{c)).
The relevant situation can be seen in the transition from (i) (just before the call 10 a (A)) to (ii) (just after
the call to a (A)). At (i) a new unbound variable A is created on the heap. At (ii) the variable A has been
bound 10 a value. The important point is that A still hasa tvar tag, and that one indirection is needed to
access the tstr pointer. The extra link exists because the creation of A and its binding are done in

separate steps. This is true for both initialized unbound variables and uninitialized memory variables.

136

This situation is not a problem unless dataflow analysis determines that A is returned as a derefer-
enced value. In that case there is a conflict between what the analysis deduces and what the clause com-
piler thinks is true. There are two ways to solve this problem: either weaken the analysis so that it will not
deduce a dereference type in this case, or modify the clause compiler to ensure that the variable is derefer-
enced by doing an extra indirection whenever the variable is accessed after it is bound. The compiler
implements the second solution since dereferencing is a time-consuming operation and it is important to
derive as many dereference types as possible. The trade-off between doing an extra indirection for a value

that may not be accessed later and doing an extra dereference loop seemed to be a fair one.

The compiler inserts code to do this indirection whenever the variable is accessed after it is bound.
In addition to maintaining consistency with the analysis, this speeds up later dereferencing. There is a
minor interaction with the register allocator—for correctness, variables that get an extra indirection are not

allowed to be pref pairs.

Chapter 6

BAM Transformations

1. Introduction

After compiling the program from kemel Prolog into BAM code, a series of optimizing transforma-
tions is performed. The transformations performed are: (1) duplicate code elimination, (2) dead code elim-
ination, (3) jump elimination, (4) label elimination, (5) synonym optimization, (6) peephole optimization,
and (7) determinism optimization. This chapter first gives two definitions and then presents the transforma-

tions.

2. Definitions

The following two definitions are useful:

Definition DB: A distant branch is a branch that always transfers control to an instruction
other than the next in the instruction stream.

According to this definition, there are exactly four distant branches in the BAM: fail, return, jump, and

switch. All other branches do not satisfy the definition since they can fall through to the next instruction.

Definition BB: A contiguous block is any sequence of instructions that terminates with a dis-
tant branch.

According to this definition, a contiguous block can start with any instruction and can contain conditional
branches with a fall through case. Therefore the code contains a large number of overlapping contiguous
blocks. This is useful to get maximum optimization when looking for contiguous blocks that satisfy some
property. The individual transformations mentioned in this chapter will usually only look at contiguous

blocks satisfying certain constraints, for example, the contiguous blocks that begin with a label.

3. The transformations

Seven transformations (Figure 6.1) are done on the BAM code generated for each predicate by the
kernel to BAM compilation stage. A transitive closure is performed on the sequence of seven transforma-

tions, i.e. they are applied repeatedly until there are no more changes. Each transformation is carefully

137

138

coded to result in code that is better (i.e. faster or shorter) than its input, so the closure operation ter-

minates.

BAM code

FDuplicatz code climination J

[Dead code elimination _|

'

f Jump elimination J

'

[Label climination |

r Synonym optimization J

r Peephole optimization l

[Determinism optimization]

Optimized BAM code

Figure 6.1 - BAM Transformations

3.1. Duplicate code elimination

All duplicate contiguous blocks except the last occurrence are replaced by a jump to the last one.
This optimization is also known as cross-jumping. Tt tightens up loose code generated by the type enrich-
ment transformation (Chapter 4). It is implemented by first creating an table indexed by all contiguous
blocks that (1) begin with a label, (2) do not contain any other labels (but they are allowed to contain
branches), and (3) are not degenerate blocks that consist of only a single jump, return, or fail instruction

(but a single switch is allowed). The table contains the label of the last occurrence of the block. All con-

139

tiguous blocks in the code, including those that do not begin with labels, are looked up in the table and
replaced by jumps if they are not the last occurrence. The result of this optimization is to reduce code size

at the price of slightly slowing down execution.

3.2. Dead code elimination

All code that is not reachable from the entry point of a predicate is removed. This is done in two
steps: First, all the labels that are reachable through any number of branches are calculated by doing a tran-
sitive closure. Second, a linear traversal of the code is done and the instructions following a distant branch

up to the next reachable label are eliminated.

3.3. Jump elimination

Rearrange contiguous blocks to minimize the number of jump, call, and rewmn instructions. This
optimization is a variant of the jump chaining optimization. A transitive closure is done on the following

replacements:

(1) Replace a jump by the contiguous block it points to if the block is only pointed to by one branch or if
the block is shorter than a preset threshold. The threshold can be changed by a compiler directive.
The replacement is not done if the block is part of write mode unification or unification with an atom,

since these two cases are hurt by the transformation.

(2) Replace a call 10 a dummy predicate by the code for the predicate if it is straightline code, ie. its
code consists only of non-branches, call instructions, and branches all of whose destinations are

fail. The predicate’s code must be terminated by a returnor fail instrucuon.
(3) Replace a conditional branch to a conditional branch by a new conditional branch if possible. The

only case currently recognized is:

test (ne,tvar,V,L).
label (L) .
switch(Tag,V,fail,L2,L3).

which causes the test instruction to be replaced by:

140

switch(Tag,V,L1,L2,L3).
label (L1) .

(4) Replace a branch one of whose destinations is a jump or fail instruction by a new branch identical o
the original one except that the destination label is replaced by the destination label of the jump or by

fail.
3.4. Label elimination

Remove all labels that are not jumped to by any branch in the code. This is done in two steps: First,
the set of all destinations of all branch instructions is collected. Second, the labels not in this set are

removed from the code.

3.5. Synonym optimization

This transformation is similar to strength reduction. It does a linear traversal of the code and
replaces every addressing mode by the cheapest addressing mode that contains the same value. For exam-
ple, if p(1) and r(0) comtain the same value, then an occurrence of p(1) can be replaced by
r (0). The following cost order (from cheapest to most expensive) is used by default and is based on the

cost in the VLSI-BAM architecture:

Addressing modc . Reason for cost Overhead
(cycles)
r (b) Promotes creation of cut (r (b)) which is a no-op 0
r(I) Usable without overhead 0
Atom Requires Idi (load immediate) instruction 1
Tag~"X Tagged pointer creation needs lea (load effective address) instruction 1
p(I) Permanent variable needs 1d (load) instruction 1
[r(I)] Indirection needs Id (load) instruction 1
[r(I)+N)] Offset indirect needs Id (load) instruction 1
[p(I)] Indirect permanent needs 2 Id (load) instructions 2
[p(I)+N] Offset indirect permanent needs 2 1d (load) instructions 2
r(void) Most expensive because it must not be changed -

The reason given for the cost describes the instructions necessary to implement the addressing mode
for the VLSI-BAM. More information on the instruction set of the VLSI-BAM is given in [34]. The
addressing mode r(void) is created by the register allocator. It corresponds 0 a void variable, i.e. a

variable that occurs only once in a clause and whose value may therefore be ignored. It is made the most

141

expensive because it must remain unchanged so that peephole optimization can remove the instruction con-
taining it.

The synonym optimization is implemented by maintaining a set of equivalence classes at all points of
the program, where each equivalence class is a set of addressing modes whose values are identical. Labels
in the code cause the set of equivalence classes to be reset to empty. A future extension of this module
could eliminate this reﬁtriclion by following the labels and performing a transitive closure, resulting in a

slight performance gain.

3.6. Peephole optimization

A transitive closure is performed on a peephole transformation with a window of three instructions.
The set of patterns was determined empirically by looking at the compiler’s output and adding patterns to
fix obvious inefficiencies. Each pattern is implemented as a single clause in the optimizer. The patterns
are one, two, and three instructions long. However, the window is extended to arbitrary size for one pat-

tern, a generalized last call optimization:

»

call (N/A).
deallocate(I). % Arbitrary number of deallocate instructions.

deallocate (J) .
return.

which is transformed to:

deallocate(I). % Same sequence as above.

deallocate(J).
jump (N/A) .

3.7. Determinism optimization

A choice instruction is removed if it is followed by a sequence of instructions that cannot fail and a
cut instruction. This simple-looking optimization significantly increases determinism—many predicates
(e.g. Warren’s quicksort benchmark) containing a cut become deterministic that would otherwise be com-

piled with a choice point.

142

A similar optimization is performed by the simplification transformation of kernel Prolog (Chapter
4). For example, it transforms (!,p ; q) into (!,p). The determinism optimization extends
simplification—if the goal s compiles into instructions that cannot fail then it is able to successfully
optimize the BAM code of (s, !,p ; q) even when simplification cannot determine that s always

succeeds.

Consider this predicate, which contains no cut:

:- mode ((max (A,B,C) :- uninit(C))). % C is unbound and unaliased.
max (A, B, C) :- A<B, B=C. % No cut here.
max (A, B, C) :- A=C.

It is compiled into the following BAM code (slightly simplified for readability):

procedure (max/3) .
deref (r(0),r(0)).
deref(r(l),r(l)).
jump (1ts, r(0),r(l),l(max/3,1)). % Conditional branch A<B.

move (r{0),[r(2)1]). % A<B is false.
return.

label (1 (max/3,1)).
choice(1/2,(0,21,1(max/3,4)). % A<B is true.
move (r(l),[xr(2)]).
return.

label (1 (max/3,4)).
choice(2/2,1{0,2],fail) .
move (r(0), [r(2)]}.
return.

When A<B is true, a choice point is created to try both clauses. If a cut is inserted into the first clause:

.- mode ((max(A,B,C) :- uninit(C))). % C is unbound and unaliased.
max{A, B, C) :- A<B, !, B=C. % Cut is added here.
max(A, B, C) :- A=C. ‘

then the code becomes deterministic:

143

procedure (max/3) .
move (b, r{3})).
deref (x(0),x(0)).
deref(r(l),r(1)).
jump (its,r(0),r(1),1(max/3,4)). % Conditional branch A<B.
move (r (0), {r(2)1).
return.

label (1 (max/3,4)).
cut (r(3)).
move (r(l), [r(2)]).
return.

Measurements done by Touati [70] justify this optimization. He finds that it makes about half of all choice

point operations avoidable.

Chapter 7

Evaluation of the Aquarius system
1. Introduction

This chapter attempts to quantify some of the ideas that were introduced in previous chapters. The
evaluation process is as important as any other part of the implementation of a large software system. Dur-
ing the design phase it guides the design decisions. After the design is complete, it shows what features of
the design contributed most to its effectiveness and it gives a foundation for starting the next design. Quan-
titative measurements are the most reliable guideposts one has during the design. For example, it is easy 0
imagine many possible compiler optimizations, but most of these have an insignificant effect on perfor-
mance. It is more difficult to discover optimizations that are widely applicable.

Five evaluations are performed in this chapter:

(1) The absolute performance of the system.

(2) The effectiveness of the dawaflow analysis.

(3) The effectiveness of the determinism transformaton.

(4) A bnef comparison with a high performance implementation of the C language.

(5) A bug analysis, summarizing the number and types of bugs encouniered during development.

Table 7.1 describes the benchmarks used in this chapter and their size in lines of code (not including com-
ments). The benchmarks were chosen as examples of realistic programs doing computations representative
of Prolog. This includes benchmarks that spend much of their time executing bm'lt-iﬁ predicates because
this behavior is common in real-world programs. The benchmarks are divided into two classes, smail and
large, depending on whether the compiled code with analysis is smaller or larger than 1000 words. The
benchmarks log10, ops8, times10, and divide10 are grouped together and referred (o as deriv because they

are closely relaied. The benchmarks are available by anonymous ftp io arpa.berkeley.edu.

All VLSI-BAM numbers in this chapter were obtained from the VLSI-BAM instruction-level simu-

lator and include cache effects [17]. The simulated system has 128 KB instruction and data caches. The

145

Table 7.1 - The benchmarks
Benchmark Lines Description
nreverse 10 | Naive reverse of a 30-clement list.
tak 15 |Recursive integer arithmetic.
gsort 19 | Quicksort of a 50-element list.
log10 27 | Symbolic differentiation.
ops8 27 | Symbolic differentiation.
times10 27 | Symbolic differentiation.
divide10 27 | Symbolic differentiation.
serialise 29 |Calculate serial numbers of a list.
queens_8 31 | Solve the eight queens puzzle.
mu 33 | Prove a theorem of Hofstadter’s ‘‘mu-math.’’
zebra 36 | A logical puzzle based on constraints.
sendmore 43 | The SEND+MORE=MONEY puzzle.
fast_mu 54 | An optimized version of the mu-math prover.
query 68 | Query a static database (with integer arithmetic).
poly_10 86 | Symbolically raise a polynomial to the tenth power.
crypt 64 | Solve a simple cryptarithmetic puzzle.
meta_gsort 74 | A meta-interpreter running gsort.
prover 81 | A simple theorem prover.
browse 92 | Build and query a database.
unify 125 | A compiler code generator for unification.
flatten 158 | Source transformation to remove disjunctions.
sdda 273 | A dataflow analyzer that represents aliasing.
reducer_nowrite| 298 | A graph reducer based on combinators.
reducer 301 | Same as above but writes its answer.
boyer 377 | An extract from a Boyer-Moore theorem prover.
simple_analyzer| 443 |A dataflow analyzer analyzing qsort.
nand 493 | A logic synthesis program based on heuristic search.
chat_parser 1138 | Parse a set of English sentences.
chat 4801 |Natural language query of a geographical database.

caches are direct mapped and use a write-back policy. They are run in warm start: each benchmark is run
twice and the results of the first run are ignored. The cache overhead is greatest for tak compiled without
analysis, and for poly_10, simple_analyzcr, chat, and boyer. For these programs it ranges from 9% to 24%.
For meta_gsort, reducer, and chat_parser the overhead ranges from 2% to 3%. For all other programs the

overhead is less than 0.5%.

2. Absolute performance

This section compares the performance of Aquarius Prolog with Quintus Prolog. Tables 7.2 and 73
compare the performance of Quintus Prolog version 2.5 running on a Sun 4/65 (25 MHz SPARC) with that
of Aquarius Prolog running on the VLSI-BAM (30 MHz). The *‘Raw Speedup’’ column gives the ratio of

the speeds. The ‘‘Normalized Speedup’” column divides this ratio by 1.8. Our group is in the process of

146

porting the Aquarius system to the MIPS, MC68020, and SPARC processors. It was not possible to get

numbers for these systems in time for the final version of this dissertation.

The normalization factor of 1.8 takes into account the Prolog-specific extensions of the VLSI-BAM
(a factor of 1.5) and the clock ratio (a factor of 30/25 = 1.2). The general-purpose base architecture of the
VLSI-BAM is very similar to the SPARC. The effect of the architectural extensions of the VLSI-BAM
[34] has been carefully measured to be about 1.5 for large programs. However, for the small programs the
compiler is able to remove many Prolog-specific features, so that the normalized speedup numbers in Table

7.2 are an underestimate.

Table 7.2 — Performance results for small programs (in ms)
Benchmark Size Quintus v2.5 Aquarius Normalized Raw
(lines) (Sun 4/65) (VLSI-BAM) Speedup Speedup

deriv 1.143 0.0913 7.0 12.5

log10 27 0.153 0.0168

ops8 27 0.239 0.0189

times10 27 0.345 0.0257

divide10 27 0.406 0.0299
nreverse 10 1.62 0.136 6.6 119
gsort 19 4,820 0.173 15.5 278
serialise 29 3.10 0.447 39 6.9
query 68 23.7 3.57 37 6.6
mu 33 7.04 0.808 48 8.7
fast_mu 54 9.08 0.932 5.4 9.7
queens_8 31 21.2 1.13 104 18.7
tak 15 1120. 254 24.5 4.1
poly_10 86 417. 35.5 6.5 11.7
sendmore 43 490. , 38.4 71 12.8
zebra 36 423. 84.1 2.8 5.0
geometric mean 6.7 12.1
standard deviation of mean 1.9 3.3

For the small benchmarks, the normalized speedup is somewhere between 6.7 and 12.1 (Table 7.2).
The normalized speedup of the large benchmarks without built-in predicates is about 5.2 (Table 7.3).
Speedup is better for the small benchmarks because dataflow analysis is able to derive better types for
many of them. For some of them (such as tak and nreverse) it derives essentially perfect types. The small
programs show a large variation in speedups. The tak benchmark does well because it relies on integer
arithmetic, which is compiled efficiently using uninitialized register types. The zebra benchmark does
poorly for two reasons. First, it does a large amount of backtracking, which is inherently limited by

memory bandwidth. Second, it works by successively instantiating arguments of a compound data

147

Table 7.3 - Performance results for large programs (in ms)
Benchmark Size Quintus v2.5 Aquarius Normalized Raw
(lines) (Sun 4/65) (VLSI-BAM) Speedup Speedup
No built-ins
prover 81 8.67 0.921 52 94
meta_gsort 74 496 471 58 10.5
nand 493 1733 13.7 7.0 12.7
reducer_nowrite 298 312. 372 46 84
chat_parser 1138 1157. 129.5 50 89
browse 92 5450. 741. 4.1 74
geometric mean 52 94
standard deviation of mean 0.5 0.8
Including built-ins
unify 125 18.3 1.40 72 13.0
flatten 158 13.6 1.42 53 9.6
sdda 273 29.5 294 56 100
crypt 64 21.7 4.00 30 54
simple_analyzer 443 180. 334 30 54
reducer 301 405. 49 5.0 9.0
chat 4801 3100. 699. 25 44
boyer 377 4870. 1360. 2.0 3.6
geometric mean 38 6.9
standard deviation of mean 0.7 13
geometric mean (all large programs) 44 1.9
Table 7.4 — Time spent in built-in predicates

Benchmark Time (%) Most used built-ins

prover o |-

meta_gsort 0 -

chat_parser 0 -

nand <1 -

browse 1 length/2

reducer 40 |write/1, compare/3, arg/3

unify 40 |args3, funcior/3, compare/3

crypt 50 |div/2, mod/2, */2

boyer 60 [arg/3, functor/3

simple_analyzer| 70 |compare/3, sory2, arg/3

sdda 70 |write/1, =../2, compare/3

flatten 80 |write/1, sort/2, compare/3, name/2, functor/3, arg/3

structure. The analysis algorithm does not have a representation for this operation, so it cannot be optim-
ized.

The built-in predicates in Aquarius Prolog are not greatly faster than those in Quintus Prolog, since
many of the Quintus built-ins are not written in Prolog, but in hand-crafted assembly. The Aquarius system
shows better speedup over Quintus built-ins written in Prolog (such as read/1 and write/1) and the

entry specialization transformation also speeds up the built-ins. Table 7.4 gives the percentage of time that

148

the benchmarks spend executing inside built-in predicates. This number does not take into account built-
ins that are implemented as in-line code (arithmetic test, addition and subtraction, and type checking). The

table also gives the most often used built-in predicates for each benchmark in decreasing order of usage.

Several benchmarks use built-in predicates significantly. The normalized speedup for these pro-
grams is 3.8, somewhat less than programs without built-ins (Table 7.3). The normalized speedup for all
large programs is 4.4 (the reducer benchmark is counted only once in this average). The boyer benchmark
does poorly because it relies heavily on the arg/3 and functor/3 built-in predicates. The chat
benchmark uses these built-ins as well as others including setof/3, but it was not possible to measure
the fraction of execution time spent in them. The sdda and flatten benchmarks do well partly because the

write/1 built-in is much faster in Aquarius than in Quintus.

3. The effectiveness of the dataflow analysis

This section evaluates the effectiveness of the dataflow analysis with three kinds of measurements.
Tables 7.5, 7.6, and 7.7 give the effect of the dataflow analyzer on performance and code size, and the
efficiency of the analyzer both in terms of its execution time and the fraction of arguments for which types

can be deduced.

For a representative set of realistic Prolog programs of various sizes up to 1,100 lines, the analyzer is
able 10 derive type information for 56% of all predicate arguments. It finds that on average 23% of all
predicate arguments are uninitialized, 21% of arguments are ground, 10% of arguments are nonvariables,
and 17% of arguments are recursively dereferenced. The sum of these three numbers is greater than 56%
since it is possible for an argument to have multiple types, €.g. it can be ground and recursively derefer-
enced at the same time. Doing analysis reduces execution time on the VLSI-BAM by 18% for programs

without built-ins and static code size by 43% for all programs.

Table 7.5 gives the execution time in microseconds of the benchmarks for the VLSI-BAM compiled
without analysis (No Modes) and with analysis (Auto Modes). The last three columns give the ratios of the
auto modes to the no modes times. To give an idea how built-ins affect the results of analysis, Table 7.5

gives two performance ratios for the large benchmarks: the first for all programs, and the second for

149

Table 7.5 — The effect of dataflow analysis on performance
Benchmark No Modes (Hs) Auto Modes (s) Auto/No Modes
Time Deref Trail Time Deref Trail Time Deref Trail
deriv 146 18.2 5.5 913 03 0.11063 002 0.02
log10 259 23 0.7 168 O 0
ops8 285 33 1.0 189 03 0.1
times 10 39.7 5.1 1.3 25.7 0 0
divide10 51.7 1.5 25 299 0 0
nreverse 308 797 311 136 0 0 |044 000 0.00
gsort 378 109 25.1 173 0 0 {046 0.00 0.00
serialise 512 758 123 447 449 0.7/10.87 059 005
mu 992 154 48.0 783 139 3471079 090 0.72
fast_mu 1120 148 38.0 932 64.4 79(083 044 0.21
queens_8 1700 271 679 1090 334 0 {064 012 0.00
query 5180 560 174 3570 0 0 {069 000 0.00
tak 71700 13800 3180 25400 0 0 [035 0.00 0.00
poly_10 60400 6280 1740 35600 1080 209 [0.59 0.17 0.12
zebra 84600 11400 86| 84100 11400 841099 1.00 098
average 066 029 0.19
prover 1070 110 294 820 51.2 591076 047 020
unify 1600 198 339 1400 138 193/ 0.88 0.69 0.57
flatten 1460 149 99 1420 133 6.5/097 090 0.66
sdda 3180 368 36.9 2940 296 21.3(092 081 0.58
crypt 4090 319 104 4000 262 104 {098 0.82 1.00
meta_gsort 5330 674 182 4450 417 63.0/0.83 0.62 0.35
nand 18700 2290 542 13400 902 229/0.72 039 0.04
simple_analyzer| 35400 3880 316 31900 3080 7621090 079 0.24
reducer 48800 6680 1210 44900 5580 731 {092 084 0.61
chat_parser 151000 19400 6990 | 131000 11200 4360 |0.87 0.58 0.62
browse 820000 117000 28600 | 741000 96700 20400 |0.90 0.82 0.71
boyer 1410000 73900 6340 {1360000 75000 6270 {097 1.02 0.99
average 089 0.73 0.55
average (no built-ins) 0.82 0.58 0.39

programs that do not use built-ins significantly (the first five of Table 7.4). Data initialization times are
subtracted from deriv, nreverse, qsort, serialise, and prover. The table also gives the time each benchmark

spends performing dereferencing (Deref) and trailing (Trail).

The time spent in dereferencing and trailing, two of the most common Prolog-specific operations, is
significantly reduced by analysis. For the small benchmarks analysis reduces dereferencing from 17% to
5% of execution time, and trailing from 4% to 0.6% of execution time. This is because they are simple
enough that analysis is able to deduce most relevant modes. For the large benchmarks dereferencing is
reduced from 11% 10 9% and trailing is reduced from 2.3% to 1.3%. These results are less extreme for two

reasons: the large benchmarks use built-ins, which are unaffected by analysis, and the analyzer loses infor-

150

Table 7.6 — The effect of dataflow analysis on static code size

Benchmark NoModes Auto Modes Auto/No Modes
(instructions) (instructions)

tak 80 4 042
nreverse 287 139 048
queens_8 472 146 0.31
gsort 485 215 044
deriv 5891 1123 0.19

log10 1464 272

ops8 1469 271

times10 1479 287

dividelQ 1479 287
query 1425 403 0.28
serialise 860 520 0.60
mu 1169 731 0.63
fast_mu 1165 718 0.62
zebra 1271 814 0.64
poly_10 3023 893 0.30
average 045
crypt 1239 1027 0.83
browse 1863 1150 0.62
prover 4395 1318 0.30
meta_gsort 2484 1424 0.57
flatten 4267 2335 0.55
unify 6326 4210 0.67
sdda 6526 5031 0.77
simple_analyzer 9057 5836 0.64
nand 23406 6654 0.28
reducer 11726 7682 0.66
boyer 24862 9136 0.37
chat_parscr 33557 20516 0.61
average 0.57

mation duc 1o its inability to handle aliasing and its limited type domain.

Table 7.6 gives the static code size (in VLSI-BAM instructions) for the benchmarks compiled
without analysis (No Modes) and with analysis (Auto Modes). The effect of analysis on code size is
greater than the effect on performance. This follows from the compiler’s implementation of argument
selection: when no modes are given, the compiler generates more code 10 handle arguments of different
types. If analysis derives the type then the code becomes much smaller. The code size compares favorably
with other symbolic processors, and is low enough that there is no disadvaniage o having a simple instruc-
tion set. With the analyzer, code size on the VLSI-BAM is similar to the KCM [6], about three times the

PLM, a micro-coded WAM [28], and about one fourth the SPUR using macro-expanded WAM [8].

151

Table 7.7 - The efficiency of dataflow analysis
Benchmark Args Preds Time Modes (fraction of arguments)
(sec) uninit ground nonvar rderef any
deriv 12 8 119 033 067 000 067 100
log10 3 2 29
ops8 3 2 3.0
times10 3 2 30
dividel0 3 2 29
tak 4 2 23 025 075 000 075 1.00
nreverse 5 3 22 040 060 000 060 1.00
gsort 7 3 34 043 057 000 057 100
query 7 5 42 086 0.14 000 014 1.00
zebra 10 6 35 010 000 050 0.00 0.60
serialise 16 7 42 038 019 006 0.19 063
queens_8 16 7 60 031 069 000 069 100
mu 17 8 96 0.12 047 000 0.12 065
poly_10 27 11 16 033 067 000 067 1.00
fast_mu 35 7 21 029 055 005 055 0.89
average 0.35 048 006 045 0.89
meta_qsort 10 7 il 030 000 0.10 0.00 040
crypt 18 9 12 000 061 011 056 0.72
prover 22 9 13 027 009 027 0.14 068
browse 42 14 20 024 045 0.05 040 0.74
boyer 62 25 31 027 000 006 000 034
flatten 83 28 34 027 008 0.16 0.11 052
sdda 87 32 45 0.18 007 017 0.08 044
reducer 134 41 50 013 0.10 005 012 0.29
unify 141 29 84 0.18 0.19 014 021 0.56
nand 180 43 5900 026 067 000 0.28 093
simple_analyzer; 270 71 77 023 010 008 0.10 041
chat_parser 744 156 263 044 019 002 0.09 067
average 023 021 010 017 0.56

Table 7.7 presents data about the efﬁciehcy of the dataflow analyzer. For each benchmark it gives
the number of predicate arguments (Args) where a predicate of arity N is counted as N, the number of
predicates (Preds), the analysis time (Time), the fraction of arguments that are uninitialized (uninit), ground
(ground), nonvariable (nonvar), or recursively dereferenced (rderef), and the fraction of arguments that
have any of these types (any). Analysis time is measured under Quintus release 2.0 on a Sun 3/60. It is
roughly proportional to the number of arguments in the program, except for the nand benchmark. The sum
of the individual modes columns is usually greater than the any modes column. This is because arguments
can have multiple modes—they can be both recursively dereferenced and ground or nonvariable. Unini-
tialized arguments are present in great quantities, even in large programs such as chat_parser and

simple_analyzer. Comparing the small and large benchmarks, the fraction of derived modes decreases for

152

the large programs for each type except nonvariable. For both the small and large benchmarks the analyzer

transforms one third of the uninitialized modes into uninitialized register modes.
4. The effectiveness of the determinism transformation

To show what parts of the determinism transformation of Chapter 4 are the most effective, it is useful
to define a spectrum of determinism extraction algorithms ranging from pure WAM to the full mechanism
of the Aquarius compiler. To do this, the Aquarius mechanism for extracting determinism is divided into

three orthogonal axes:

(1) The kind of tests used to extract determinism. These iests are separated into three classes: explicit
unifications (e.g. X=a, X=s(Y)), arithmetic tests (e.g. X<Y, X>1), and type checks (e.g.
var (X), atomic (X)). Pure WAM uses only explicit unifications with nonvariables. Aquarius

uses all three kinds.

(2) Which argument(s) are used to exwmact determinism. Pure WAM uses only the first argument of a
predicate. Aquarius uses any argument that it can determine is effective. It uses enrichment heuris-

tic 2 (Chapter 4 section 6.2).

(3) Whether the factoring transformation is performed (Chapter 4). Factoring significantly increases
determinism for predicates that contain many identical compound terms in the head. Pure WAM

does not assume factoring. Aquarius does factoring by defaulit.

These three parameters define a three-dimensional space of determinism extraction algorithms. Each algo-
rithm is characterized by a 3-tuple depending on its position on each of the axes (Table 7.8). This results in
3 x 2 x 2 = 12 data points. Pure WAM selection corresponds to the first element in each column, denoted
by the 3-tuple (U, ONE, NF). The Aquarius compiler’s selection corresponds to the last element in each

column, denoted by the 3-tuple (UAT, ANY, F).

For each of these 12 points three parameters were measured: execution time, static code size, and compile
time. All programs are compiied with dataflow analysis and executed on the VLSI-BAM. All averages are
geometric means. It was only possible to do measurements for nine benchmarks: nreverse, gsor, query,

mu, fast_mu, queens_8, flatten, meta_gsort, and nand. Therefore the variance of the results is large and

153

Table 7.8 - Three dimensions of determinism extraction

Kind of test Which argument Factoring
Explicit unifications only (U)). First argument only (ONE). No factoring (NF).
Explicit unifications and arithmetic | Any argument (ANY). Do factoring (F).

tests (UA).
Explicit unifications, arithmetic
tests, and type checks (UAT).

they can be relied upon only to indicate trends. The benchmarks were written for the WAM. The meas-
urements comparc only the relative powers of different kinds of determinism extraction in the BAM. They

do not compare the WAM and BAM directly.

- — —percent slowdown

Aquarius selection | UAT, ANY, F| 0 relative to Aquarius

_difference between
two vertices

UAT, ANY, NF UA, ANY,F|2

4 0 2 8 0 10 11

UAT, ONE, NF| 12 UA,ONE, F

13

1

WAM selccuon U,ONE 16

Figure 7.1 - The effectiveness of determinism extraction

Figure 7.1 depicts the 12 points as a lattice. Each vertex denotes one particular combination of deter-
minism extraction. The top element corresponds to Aquarius selection and the bottom element corresponds

1o WAM selection. Each edge connects two points that differ by one step in one coordinatc. The vertices

154

- are marked with the percent slowdown compared to Aquarius selection. The edges are marked with the

percent difference in execution time between their two endpoints.

The mean speedup for the nine benchmarks when going from WAM selection (U, ONE, NF) to
Aquarius selection (UAT, ANY, F) is 16%. There is no significant change in mean code size for any of the

twelve data points. The variance of the compile time is too large to make any conclusions about it.

The mean speedup of factoring is 8%. However, factoring is the only transformation that sometimes
slows down execution. The factoring heuristic should be refined to look inside compound arguments to see

whether there is any potential determinism there. If there is none, it should not factor that argument.

One way of finding a set of effective extensions for determinism extraction is by traversing the lattice
from bottom to top, and picking the edge with the greatest performance increase at each vertex. Starting at
WAM selection (U, ONE, NF), the first extension is the ability to use arithmetic tests in selection. This
speeds up execution by 3%. The second extension is the ability to select on any argument. This speeds up
execution by another 3%. The third extension is the factoring transformation. This speeds up execution by

8%. At this point, the resulting performance is within 2% of Aquarius selection.

The resulting vertex (UA, ANY, F) seems to be a particularly good one, i.e. the ability to select on
arithmetic tests in any argument works well together with factoring. Leaving out any one of these three
extensions reduces performance by at least 8%. A plausible reason for this resuit is that the benchmarks do
many arithmeltic tests on the arguments of compound tcrms and it is only the combination of the three

extensions that is able to compile this deterministically.

5. Prologand C

The performance of Aquarius Prolog is significantly better than previous Prolog systems. A question
one can pose is how the system compares with an implementation of an imperative language. This section
presents a comparison of Prolog and the C language on several small programs. The comparison is not
exhaustive—there are so many factors involved that 1 do not attempt to address this issue in its entirety. 1
intend only to dispel the notion that implementations of Prolog are inherently slow because of its expres-

sive power. A serious comparison of two languages requires answering the following questions:

M

2

©)

@)

155

How can implementations of different languages be compared fairly? This comparison concentrates
exclusively on the language and ignores features external to the language itself, such as user inter-
face, development time, and debugging abilities. One method is to pick problems to be solved, and
then to write the ‘‘best’’ programs in each language to solve the problems, choosing the algorithms
appropriate for each language. The disadvantages of this approach are (a) different languages are
appropriate for different problems, (b) how does one decide when one has written the “‘best’’ pro-

gram? To avoid these problems I have chosen to compare algorithms, not programs.

Which algorithms will be implemented in both languages? Ideally one should select a range of algo-
rithms, from those most suited to imperative computations (e.g. array computations) to those most -
suited to symbolic computation (e.g. large dynamic data objects, pattern matching). Prolog is at an
advantage at the symbolic end of the spectrum because to implement symbolic computations in an
imperative language we effectively have to implement more and more of a Prolog-like system in that
language. The programmer does the work of a compiler. At the imperative end of the spectrum, the

efficiency of Prolog depends strongly on the ability of the compiler to simplify its general features.

What programming style will be used in coding the algorithms? I have made an attempt (0 program
in a style which is acceptable for both languages. This includes choosing data types in both
languages that are natural for each language. For example, in Prolog dynamic data accessed by
pointers is easiest to express, whereas in C static arrays are easiest to express. It is possible to use

dynamic data in C, but it requires more effort and is used only for those tasks that need it specifically.

How are architectural features taken into account? For faimess both implementations should run on
the same machine. The measurements use the same processor, the MIPS, for both implementations.
However, a general-purpose architecture favors the execution of imperative languages, since it has
been designed o execute such languages well. This shows up for algorithms whose Prolog imple-
mentation makes heavy use of Prolog-specific features. To allow the reader to make an informed
judgment, the table does not correct for this fact. It is important to bear in mind that by adding addi-
tional architectural features comprising 5% of the chip area to the VLSI-BAM (a pipelined processor

similar in many ways to the MIPS), the performance increases by 50% for programs that use

156

Prolog-specific features (compiled with the current version of the Aquarius compiler). Architectural
studies done by our research group suggest that these features could be added to a future MIPS pro-

CEssor.

Table 7.9 compares the execution time of small algorithms coded in both C and Prolog on a 25 MHz MIPS
processor. Measurements are given for tak, fib, and hanoi, which are recursion-intensive integer functions;
and for quicksort, which sorts a 50 element list 10000 times. Prolog and C source code is available by
anonymous ftp to arpa.berkeley.edu. In all cases the user time is measured with the Unix ‘‘time’” utility.
The C versions are compiled with the standard MIPS C compiler using both no optimization and the optim-
ization level that produces the fastest code (usually level 4). The Prolog versions are compiled with
dataflow analysis and translated into MIPS assembly by a partial translator. The same algorithms were
encoded for both Prolog and C, in a natural style for each. The natural style in C is to use static data,

whereas in Prolog all data is allocated dynamically.

Table 7.9 — Comparing Prolog and C (in sec)
Benchmark Aquarius MIPS C
Prolog Unoptimized Optimized
tak(24,16,8) 12 2.1 1.6
fib(30) 1.5 2.0 1.6
hanoi(20,1,2,3) 1.3 1.6 1.5
quicksort 2.8 33 14

Recursive functions are fast in Prolog for three reasons: last call optimization converts recursion into
iteration, environments (stack frames) are allocated per clause and not per procedure as in C, and outputs
are returned in registers (they are of uninitialized register type). Last call optimization allows functions
with a single recursive call to execute with constant stack space. This is essential for Prolog because recur-
sion is its only looping construct. The MIPS C compiler does not do last call optimization. C has con-
structs to denote iteration explicitly (e.g. “‘for”” and ‘‘while’’ loops) so it does not need this optimization as
strongly. The time for £ib(30), the only recursive integer function that is not able to use last call
optimization in Prolog, is closest to C.

The two gquicksort implementations are careful to use the same pivot elements. The C implementa-

tion uses an array of integers and does in-place sorting. The Prolog implementation uses lists and creates a

new sorted list. The list representation needs two words to store each data element. Coincidentally, the

Prolog version is twice as slow as the C version, the same as the ratio of the data sizes.

157

Table 7.10 - Classification of bug types

Kind

Description

Mistake

e Local

e Global

A part of the compiler that is incorrect due to an oversight. When many mis-
takes occur related to one particular area, then they become hotspot bugs.

A problem that can be fixed by changing just a few predicates. For example, it
may be due to a typographical error or a simple oversight in a predicate
definition.

A problem that can be fixed only with many changes throughout the compiler.
This kind of mistake is more fundamental. For example, avoiding the genera-
tion of BAM instructions with double indirections requires many small
changes.

39

G

&)

Incomplete

A part of the compiler whose first implementation is incomplete because of in-
complete understanding of its purpose. Later use stretches it beyond what it
was intended to do, so that it needs to be extended and/or cleaned up. For ex-
ample, the updating of type formulas when new information is given.

19

Hotspot

o Conceptual

o Physical

A critical area of the compiler that requires much thinking to get correct. Its
importance is much greater than its size would indicate. Such an area gets
more than its share of mistakes.

A concept in the compiler design whose implementation is prone to many mis-
takes. For example, the concept of uninitialized variables.

A part of the compiler’s text. For example, symbolic unification in the
dataflow analyzer and parameter passing in the clause compiler both resulted
in many bugs.

16

13)

(14)

Mixture

An undesired interaction between separate parts of the compiler. Despite
careful design, often the separate transformations and optimizations are not
completely orthogonal, but interact in some (usually limited) way. For exam-
ple, maintaining consistency between the dataflow analyzer and the clause
compiler. This leads to the dereference chain transformation, which in its turn
leads to the problem of interaction between it and the preferred register alloca-
tion.

16

Improvement

A possible improvement in the compiler. This is not strictly a bug, but it may
point to an important optimization that could be added to the compiler. For
example, a possible code optimization or reduction in compilation time.

Understanding

A problem due to the programmer misunderstanding the required input to the
compiler. This is not strictly a bug, but it may point to difficulties in the
compiler’s user interface or in the language. For example, the difference
between the terms _is_ and _<_ in Prolog. The first is a variable and the
second is a structure.

6. Bug analysis

This section gives an overview of the number and types of bugs encountered during compiler

development. A bug in a program is a problem that leads to incorrect or undesired behavior of the pro-

gram. In the compiler, this means incorrect or slow compilation, or slow execution of compiled code.

158

Table 7.10 classifies the bugs found during development [76]. (The percentages do not add up to 100%

because bugs can be of more than one type.)

The development of the compiler started early 1988 and proceeded until late 1990. An extensive
suite of test programs was maintained to validate versions of the compiler. The test suite was continually
extended with programs that resulted in bugs and with programs from external sources. Records were kept
of all bugs reported by users of the compiler other than the developer. A total of 79 bug reports were sent
from January 1989 to August 1990 by five users. The frequency of bug reports stayed constant near four
per month. Statistical analysis is consistent with the distribution being random with no time dependence,
i.e. the number of bug reports fluctuates, but there is no increasing or decreasing trend. Therefore the
development introduced bugs at about the same rate as they wére reported and fixed. This coincidence can
be explained by postulating that the ime spent developing was limited by the necessity of having to spend
time debugging to maintain a minimum level of robustness in the compiler. This is consistent with my per-

sonal experience during the development process.

Chapter 8

Concluding Remarks and Future Work

**So many things are possible just as long
as you don’t know they're impossible.”’
— Norton Juster, The Phantom Tollbooth

1. Introduction

In this chapter I recapitulate the main result of this dissertation, distill some practical lessons leamed

in the design process, talk about the caveats of language design, and give directions for future research.

2. Main result

My thesis is that logic programming can execute as fast as imperative programming. For this pur-
pose 1 have implemented a new optimizing Prolog compiler, the Aquarius compiler. The driving force in
the compiler is to specialize the general mechanisms of Prolog (i.e. the logical variable, unification,
dynamic typing, and backtracking) as much as possible. The main ideas in the compiler are: the develop-
ment of a new abstract machine that allows more optimization, a mechanism to generate efficient code for
deterministic predicates (converting backtracking to conditional branching), specialization of unification
(encoding each occurrence of unification in the simplest possible way), and the use of global dataflow

analysis 10 derive types.

The resulting system is significantly faster than previous implementations and is competitive with C
on programs for which dataflow analysis is able to do sufficiently well. It is about five times faster than

Quintus Prolog, a popular commercial implementation.

3. Practical lessons

During the design of this compiler I have found four principles useful.

(1) Simplicity is common. Most of the time, only simple cases of the general mechanisms of the
language are used. For example, most uses of unification arc memory loads and stores. Many of

these simple cases arc easily detected at compile-time.

159

160

_(2) Use the design time wisely. There are many possible optimizations that one can implement in a
compiler of this sort. To get the best results, rank them according to their estimated performance
gain relative to their implementation effort, and only implement the best ones. Do not be distracted

by clever ideas unless you can prove that they are effective.

(3) Keep the design simple. For each optimization or transformation, implement the simplest version
that will do the job. Do not attempt to implement a more general version unless it can be done
without any extra effort. It is easy to become entangled in the mechanics of implementing a complex
optimization. Often a simple version of this optimization achieves most of the benefits in a fraction

of the time.

(4) Document everything, including bugs. Documentation is an extension to one’s memory and it pays
for itself quickly. The mental effort spent in writing down what one has done results in a beuter
recollection of what happened. In this design, I have maintained two logs. The first is a file in chro-
nological order that documents each change and the reason for it. The second is a directory contain-

ing bug reports contributed by the users of the compiler and brief discussions of the fixes.

The first three of these principles are corollaries of what is sometimes called the *‘80-20 rule’’: 80% of the
results are obtained with 20% of the effort. Using this principle consistently was very important for my

work and for the BAM project as a whole.
4. Language design

The Prolog language is only an approximation to the ideal of logic programming. During this
research, our group has grappled with some of the deficiencies of Prolog. There are deficiencies in the area
of logic: Prolog’s approximation to negation (i.e. negation-as-failure) is unsound (i.e. it gives incorrect
results) when used in the wrong way. Prolog’s implementation of unification can go into infinite loops

when creating circular terms. The default contro! flow is too rigid for data-driven programming.

There are deficiencies in the arca of programming: The correspondence between a program and its
execution efficiency is not always obvious. Unification is only able to access the surface of a complex data

structure. Because the clauses of a predicate are written separately, many conditions have to be repeated or

161

extra predicates have 10 be defined. There is a sense in which Prolog is a kind of assembly language.

All of the above problems have solutions, some of which have been implemented in existing systems
and in the Aquarius system. However, for three reasons I have resisted the impulse to change the language
more than just a little. First, of all logic languages, the Prolog language has the largest and most vigorous
user community, and this is a resource I wanted to tap. There are many programs written in Prolog, in vari-
ous styles, and I wanted to see if this existing pool of ingenuity could be made to run faster. Second, it is
unwise to change more than one component of a system at the same time, especially if they can interact in
unpredictable ways. That is, one should not design a new language and a compiler for it at the same time.
Third, I do not deem myself competent yet to design a language. I believe in the rule of bootstrapped com-
petence: Before writing a compiler, write programs. Before designing a language, write compilers. Com-

petence in each task is limited by competence in its prerequisite.

The best languages are those which distill great power in a small set of features. This makes such
languages useful as tools for thought as well as for implementation. Practical aspects such as how efficient
it can be implemented are as important in a good language design as theoretical aspects. A good language
is theoretically clean (i.e. easily understood) as well as being efficiently implementable. Examples of such
languages are Pascal (many algorithms are specified in an Pascal-like pseudo-code), Scheme, and Prolog.
To create such a language, a person must have completely digested a set of ideas as well as have a large
amount of practical experiencc. This is a difficult combination—it is easy to gloss over the areas one does

not know wecll.

5. Future work

The goal of achieving parity with imperative languages has been achieved for the class of programs
for which dataflow analysis is ablc to provide sufficient information, and for which the determinism is

accessible through built-in predicates. To further improve performance these limits must be addressed.

To guide the removal of these limits it is important 10 build large applications and study the interac-
tion between programming style and the implementation. This is a problem of successive refinement. A

more sophisticated implementation catalyzes a new style of programming, which in its tum catalyzes a new

162

implementation, and so forth. The first step in this process was the development of the first Prolog com-
piler and the WAM. The Aquarius system is only the second step. It is able to generate efficient code from
programs written in a more logical style than standard Prolog. However, the limits of this style are not yet
understood as they are in the WAM. Further work in this area will lead to a successor to Prolog that is

closer to logic and also efficiently implementable.

§.1. Dataftow analysis

When writing a program, a programmer commonly has a definite intention about the data’s type
(intending predicates to be called only in certain ways) and about the data’s lifetime (intending data to be
used only for a limited period). Because of this consistency, I postulate that a datafiow analyzer should be

able to derive this information and a compiler should be able to take advantage of it.

There has been much good theoretical work on global analysis for Prolog, but few implementations,
and fewer still that are part of a compiler that takes advantage of the information. Measurements of the
Aquarius system show that a simple dataflow analysis scheme integrated into a compiler is already quite
useful. However, the implementation has been restricted in several ways to make it practical. As programs
become larger, these restrictions limit the quality of the results. I hope the success of this experiment

encourages others to relax these restrictions. For example, it would not be too difficult to:

° Extend the domain to represent common types such as integers, proper lists, and nested compound

terms. This is especially important for general-purpose processors.

. Extend the domain to represent variable aliasing explicitly. This avoids the loss of information that

affects the analyzer.

) Extend the domain to represent data lifetimes. This is useful to replace copying of compound terms
by in-place destructive assignment. In this way dynamically allocated data becomes static. The term
“‘compile-time garbage collcction’’ that has been used to describe this process is a misnomer; what
is desired is not just memory recovery, but 1o preserve as much as possible of the old value of the
compound term. Often a new compound term similar to the old one is created at the same time the

old one becomes inaccessible. Destructive assignment is used to modify only those parts that are

163

changed.

] Extend the domain to represent types for each invocation of a predicate. For example, the analyzer
could keep track not only of argument types for predicate definitions, but of argument types for goals
inside the definitions. This is useful to implement multiple specialization, i.e. 0 make separate
copies of a predicate called in several places with different types. For the chat_parser benchmark,
making a separate copy of the most-used predicate for each invocation results in a performance

improvement of 14%.

5.2. Determinism

The second area in which significant improvement is possible is determinism extraction. The
Aquarius compiler only recognizes determinism in built-in predicates of three kinds (unification, arithmetic
tests, and type checking). Often this is not enough. In many programs, user-defined predicates are used to

choose a clause.

10.

11.

12.

References

H. Ait-Kaci, The WAM: A (Real) Tutorial, DEC PRL Report Number 5, January 1990.

ALS Prolog. Version 1.0, Applied Logic Systems, Inc, 1988.

M. Auslander and M. Hopkins, An Overview of the PL.8 Compiler, SIGPLAN Notices ‘82
Symposium on Compiler Construction Vol. 17,6 (1982).

BIM Prolog Version 2.5 , BIM, Everberg Belgium, Feb. 1990.

J. Beer, The Occur-Check Problem Revisited, Journal of Logic Programming Vol. S, 3 (Sept. 1988),
pp. 243-261, North-Holland.

H. Benker, J. M. Beacco, S. Bescos, M. Dorochevskyb, T. Jeffrc, A. Pohimann, J. Noye, B. Poterie,
A. Sexton, J. C. Syre, O. Thibault and G. Watzlawik, KCM: A Knowledge Crunching Machine, 16th
International Symposium on Computer Architecture, May 1989, pp. 186-194.

W. Bledsoe and R. Hodges, A Survey of Automated Deduction, Exploring Artificial Intelligence:
Survey Talks from the National Conferences on Artificial Intelligence, 1988, pp. 483-543.

G. Borriello, A. Cherenson, P. Danzig and M. Nelson, RISCs vs. CISCs for Prolog: A Case Swudy,
2nd International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS I1), October 1987, pp. 136-145.

K. A. Bowen, K. A. Buetmner, . Cicekli and A. K. Turk, The Design and Implementation of a High-
Speed Incremental Portable Prolog Compiler, 3rd International Conference on Logic Programming,
July 1986, pp. 650-656.

M. Bruynooghe and G. Janssens, An Instance of Abstract Interpretation Integrating Type and Mode
Inferencing (Extended Abstract), Sth International Conference and Symposium, 1988, pp. 669-683.
W. R. Bush, G. Cheng, P. C. McGeer and A. M. Despain, An Advanced Silicon Compiler in Prolog,
1987 IEEE International Conference on Computer Design: VLSI in Compuiers and Processors,

October 1987, pp. 27-31.

R. Carlson, The Bottom-Up Design of a Prolog Architecture, Report No. UCB/CSD 89/536, Master’s

Report, UC Berkeley, June 1989.

164

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

165

M. Carlsson, Freeze, Indexing, and Other Implementation Issues in the WAM, 4th International

Conference on Logic Programming Vol. 1 (May 1987), pp. 40-58, MIT Press.

M. Carlsson, Private Communication, Logic Programming 88, August 1988.

M. Carlsson, On the Efficiency of Optimising Shallow Backtracking in Compiled Prolog, 6th
International Conference on Logic Programming, June 1989, pp. 3-16.

M. Cariton, B. Holmer and P. Van Roy, The Implementation of a Graph Reducer in VAX 8600
Microcode, CS255 Final Project, Prof. Y. Patt, UC Berkeley, December 1986.

M. Carlton, J. Pendleton, B. Sano, B. K. Holmer and A. M. Despain, Cache & Multiprocessor
Support in the BAM Microprocessor, 4th Annual Parallel Processing Conference, April 1990.

J. Chang and A. M. Despain, Semi-Inielligent Backtracking of Prolog Based on A Static Data
Dependency Analysis, 2nd Symposium on Logic Programming, July 1985.

J. Chang, High Performance Execution of Prolog Programs Based on A Static Data Dependency
Analysis, Report UCB/CSD No. 86/263, Ph. D. Thesis, UC Berkeley, October 1985.

D. Chen and H. Nguyen, Prolog on SPUR: Upper Bound To Performance Of Macro-Expansion
Method, CS252 Final Project, UC Berkeley, May 1987.

W. V. Citrin, Parallel Unification Scheduling in Prolog, Report UCB/CSD No. 88/415, Ph. D. Thesis,
UC Berkeley, April 1988.

J. Cohen and T. J. Hickey, Parsing and Compiling Using Prolog, Transactions on Programming

Languages and Systems Vol. 9 (April 1987), pp. 125-163.

P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints, 4th ACM Symposium on Principles of
Programming Languages, January 1977, pp. 238-252.

S. K. Debray and D. S. Warren, Automatic Mode Inference for Prolog Programs, 3rd Symposium on

Logic Programming, September 1986, pp. 78-87.

S. K. Debray, Static Analysis of Parallel Logic Programs, Sth International Conference on Logic

Programming, August 1988, pp. 711-732.

26,

27.

28.

29.

30.

3L

32

33

34.

35.

36.

37.

38.

166

T. P. Dobry, Y. N. Patt and A. M. Despain, Design Decisions Influencing the Microarchitecture for a

Prolog Machine, Micro 17, October 1984.

T. P. Dobry, A. M. Despain and Y. N. Patt, Performance Studies of a Prolog Machine Architecture,
12th International Symposium on Computer Architecture, June 1985.

T. P. Dobry, A High Performance Architecture for Prolog, Kluwer Academic Publishers, 1990.
SEPIA (Standard ECRC Prolog Integrating Advanced Features) Version 3.0, ECRC (European
Computer-Industry Research Centre), Munich Germany, 1990.

R. Haygood, A Prolog Benchmark Suite for Aquarius, Report No. UCB/CSD 89/509, UC Berkeley,
April 1989.

R. Haygood, Aquarius Prolog User Manual and Aquarius Prolog Implementation Manual, UC
Berkeley, Spring 1991 (to appear).

B. K. Holmer, The Design of Instruction Set Architectures for High Performance Prolog Execution,
Thesis Proposal, October 4, 1988.

B. K. Holmer, Measurements of General Unification, Computer Science Division, UC Berkeley,
March 1989.

B. K. Holmer, B. Sano, M. Carlton, P. Van Roy, R. Haygood, J. M. Pendleton, T. Dobry, W. R.
Bush and A. M. Despain, Fast Prolog with an Extended General Purposc Architecture, 17th
International Symposium on Computer Architecture, May 1990, pp. 282-291.

B. K. Holmer, Automatic Design of Prolog Instruction Sets, Ph.D. Thesis (in preparation), Expected
May 1991.

D. Jacobs and A. Langen, Accurate and Efficient Approximation of Variable Aliasing in Logic
Programs, North American Conference on Logic Programming '89, October 1989, pp. 154-165.

G. Kildall, A Unified Approach to Global Program Optimization, ACM Symposium on Principles of
Programming Languages, January 1973, pp. 194-206.

F. Kluzniak, The ‘‘Marseille Interpreter’’—a personal perspective, Implementations of Prolog, 1984,

pp. 65-70.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

5L

167

H. Komatsu, N. Tamura, Y. Asakawa and T. Kurokawa, An Optimizing Prolog Compiler, Logic
Programming '86, June 1986, pp. 104-115.

R. Kowalski, Logic for Problem Solving, Elsevier North-Holland, 1979.

P. Kursawe, How to Invent a Prolog Machine, 3rd International Conference on Logic Programming,
July 1986, pp. 134-148.

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.

D. Maier and D. S. Warren, Computing with Logic — Logic Programming with Prolog,
Benjamin/Cummings, 1988.

A. Marien, An Optimal Intermediate Code for Structure Creation in a WAM-based Prolog

Implemeniation, Katholicke Universiteit Leuven, May 1988.

A. Marien and B. Demoen, On the Management of Choicepoint and Environment Frames in the

WAM. North American Conference on Logic Programming, October 1989, pp. 1030-1047.

A. Marien, G. Janssens, A. Mulkers and M. Bruyncoghe, The Impact of Abstract Interpretation: an
Experiment in Code Generation, 6th International Conference on Logic Programming, June 1989,
pp. 33-47.

K. Marriott and H. Sondergaard, Bottom-Up Abstract Interpretation of Logic Programs, Sth
International Conference on Logic Programming, August 1988, pp. 733-748.

M. Meicr, Compilation of Compound Terms in Prolog, North American Conference on Logic
Programming, October 1990, pp. 63-79.

C. S. Mellish, Automatic Generation of Mode Declarations for Prolog Programs (Draft),
Department of Artificial Intelligence, University of Edinburgh, August 1981.

C. S. Mellish, Some Global Optimizations for a Prolog Compiler, Journal of Logic Programming
Vol. 1 (1985), pp. 43-66, North-Holland.

H. Mulder and E. Tick, A Performance Comparison Between the PLM and an MC68020 Prolog
Processor, 4th International Conference on Logic Programming Vol. 1 (May 1987), pp. 59-73, MIT

Press.

52.

53.

54.

5s.

56.

57.

58.

59.

61.

62.

63.

65.

168

H. Nakashima and K. Nakajima, Hardware Architecture of the Sequential Inference Machine: PSI-1I,

Symposium on Logic Programming, August 1987, pp. 104-113.

R. A. O’Keefe, Finite Fixed-Point Problems, 4th International Conference on Logic Programming

Vol. 2 (May 1987), pp. 729-743, MIT Press.

Y. N. Patt and C. Chen, A Comparison Between the PLM and the MC68020 as Prolog Processors,

Report UCB/CSD No. 87/397, UC Berkeley, January 1988.

F. C. N. Pereira and D. H. D. Warren, Definite Clause Grammars for Language Analysis—A Survey
of the Formalism and a Comparison with Augmented Transition Networks, International Journal of

Artificial Intelligence Vol. 13,3 (May 1980), pp. 231-278, North-Holland.

E. C. N. Pereira and S. M. Shieber, Prolog and Natural-Language Analysis, Center for the Study of

Language and Information (CSLI), Lecture Notes Number 10, 1987.

D. A. Plaisted, A Simplified Problem Reduction Format, Artificial Intelligence Vol. 18 (1982), pp.

227-261.
Quintus Prolog Version 2.5, Quintus Computer Systems, Inc, January 1990.

P. B. Reintjes, A VLSI Design Environment in Prolog, Sth International Conference on Logic

Programming, August 1988, pp. 70-81.

V. P. Srini et al, VLSI Implementation of a Prolog Processor, Stanford VLS Conference, March

1987.

V. P. Srini et al, Design and Implementation of a CMOS Chip for Prolog, Report UCB/CSD No.

88/412, UC Berkeley, March 1988.
L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, 1986.
Sicstus Prolog version 0.5, Swedish Institute of Computer Science (SICS), August 1987.

K. Taki, Parallel Logic Programming and Execution on the Multi-PSI—A Progress Report of

Parallel Inference Systems and Parallel Processing (presentation), ICOT, March 1990.

N. Tamura, Knowledge-Bascd Optimization in Prolog Compiler, ACM/IEEE Computer Society Fall

Joint Conference, November 1986.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

169

A. Taylor, Removal of Dereferencing and Trailing in Prolog Compilation, 6th International

Conference on Logic Programming, June 1989, pp. 48-60.

A. Taylor, LIPS on a MIPS: Results from a Prolog Compiler for a RISC, 7th International

Conference on Logic Programming, June 1990.

E. Tick and D. H. D. Warren, Towards a Pipelined Prolog Processor, Symposium on Logic

Programming, February 1984, pp. 29-40.

E. Tick, Studies in Prolog Architectures, Technical Report No. CSL-TR-87-329, Computer Systems
Laboratory, Stanford University, June 1987.

H. Touati and A. Despain, An Empirical Study of the Warren Abstract Machine, Symposium on
Logic Programming, August 1987, pp. 114-124.

H. Touali, A Report on FGCS'88, UC Berkeley, January 1989.

A. K. Turk, Compiler Optimizations for the WAM, 3rd International Conference on Logic
Programming, July 1986, pp. 657-662.

P. Van Roy, A Prolog Compiler for the PLM, Report UCB/CSD No. 84/203, Master’s Report, UC

Berkeley, November 1984.

P. Van Roy, B. Demoen and Y. D. Willems, Improving the Execution Speed of Compiled Prolog
with Modes, Clause Selection, and Determinism, TAPSOFT '87 — Springer-Verlag Lecture Notes on
Computer Science Vol. 250, March 1987, pp. 111-125.

P. Van Roy, An Intermediatc Language to Support Prolog’s Unification, North American
Conference on Logic Programming ' 89, October 1989, pp. 1148-1164.

P. Van Roy, Can Logic Programming Execute as Fast as Imperative Programming?, Ph.D. Thesis,
Expected December 1990.

P. Van Roy, Detailed Chronological Log of Bugs, Fixes, and Improvements in the Aquarius

Compiler, UC Berkeley, 1990.

P. Van Roy and A. M. Despain, The Benefits of Global Dataflow Analysis for an Optimizing Prolog

Compiler, North American Conference on Logic Programming '90, October 1990.

9.

80.

81.

82.

83.

84.

85.

170

P. Voda, Trilogy version 1.0, Complete Logic Systems, Inc, September 1987.
D. H. D. Warren, Applied Logic - Its Use and Implementation as a Programming Tool, Ph.D. Thesis,

University of Edinburgh, also SRI Technical Report 290, 1977.

D. H. D. Warren and F. C. N. Pereira, An Efficient Easily Adaptable System for Interpreting Natural
Language Queries, American Jowrnal of Computational Linguistics Vol. 8, 34 (July-December
1982), pp. 110-122.

D. H. D. Warren, An Abstract Prolog Instruction Set, Technical Note 309, SRI Intemnational
Artificial Intelligence Center, October 1983.

D. S. Warren, S. Dietrich and F. Pereira, The SB-Prolog System, Version 2.2, SUNY at Stony Brook

(presently contact S. K. Debray, University of Arizona, Dept. of Computer Science), March 1987.

R. Warren, M. Hermenegildo and S. K. Debray, On the Practicality of Global Flow Analysis of
Logic Programs, 5th International Conference and Symposium on Logic Programming, August 1988,

pp- 684-699.

Xenologic Reasoning System Manual, Xenologic, Inc., 1988.

171

Appendix A

User manual for the Aquarius Prolog compiler

1. Introduction

The Aquarius Prolog compiler reads clauses and directives from stdin and outputs Prolog-readable
compiled code to stdout as one fact per instruction. The output is assembly code for the Berkeley Abstract
Machine (BAM). Directives hold starting from the next predicate that is input. Clauses do not have to be
contiguous in the input stream, however, the whole stream is read before compilation starts.

This manual is organized into ten sections. Section 2 documents the compiler’s directives. Section 3
gives the compiler’s options. Section 4 gives a short overview of the dataflow analysis done by the com-
piler. Section S gives the type declarations accepted by the compiler. Section 6 summarizes the differ-
ences between Aquarius Prolog and the Edinburgh standard. Section 7 gives an example showing how to
use the compiler. Section 8 describes the method used to compile specialized entry points to increase the
efficiency of built-ins. Section 9 describes the assembly language interface. Section 10 describes how to
define BAM assembly macros.

2. Directives
The directives recognized by the Aquarius compiler are given in Table 1.

3. Options

The Aquarius compiler’s options are given in three categories: high-level (these options control
actions of the compiler at the Prolog level), architecture-dependent (these options are constant for a partic-
ular architecture), and low-level (mainly useful for debugging purposes). The default options are set for
the VLSI-BAM processor. The options are given in Tables 2, 3, and 4.

4. Dataflow analysis

Dataflow analysis is enabled with the analyze option. It generates ground, nonvar, recursively
dereferenced and uninitialized variable types which are merged with the programmer’s types. Both unini-
tialized memory and uninitialized register types are generaicd. Entry declarations (given by entry
directives) are used to drive the analysis. Predicates of arity zero are always used as entry declarations.
The quality of the generated types is such that compilation time, execution time, and code size are all
significantly reduced. Therefore it is recommended always to compile with analysis. The whole program
is kept in memory during the analysis.

All mode, entry,and op directives are executed before the analysis starts. Other directives are

executed after the analysis and before compilation. The directives default and clear interfere with
datafiow analysis, so they should be given only when the analyze option is disabled.

4.1. Dataflow analysis and dynamic code

The compiler makes the distinction between static and dynamic code. Static code is completely
known at compile-time and is subject to analysis. Dynamic code is created at run-time by the built-in
predicates assert/1, retract/1, and their cousins. It is not analyzed. There are two cases to con-
sider:

(1) A dynamic predicate calls a static predicate. In this case, there must be an entry declaration giving
the worst-case type of the call for each static predicate that might be called by a dynamic predicate.

172

Leaving out this declaration may result in incorrect compilation.

‘ (2) A static predicate calls a dynamic predicate. The analyzer will assume worst-case types for the
dynamic predicate unless it has a type declaration.

The most common uses of dynamic code are as databases of facts, or as rules that only call a limited set of
static predicates. For these uses, there is no problem in integrating analyzed static code with dynamic code.

4.2. Dataflow analysis and the call/l built-in

The call/1 built-in predicate can call any predicate in the program with any modes, and it is not
possible in general to determine these predicates and their modes at compile-time. However, most pro-
grams that use call/1 will call one of a known set of predicates or will call a dynamic predicate. There
are three cases to consider:

(1) If the set of predicates that may be arguments of call/1l is known by the programmer, then these
predicates should be given entry declarations with worst-case modes. (This case can be written more
efficiently by writing a new predicate that directly calls one of the set, and avoids calling call/1.)

(2) If the predicates that may be arguments of call/1 are dynamic, then analysis is correct without
entry declarations. This is true because dynamic predicates are not analyzed.

(3) If any predicate in the program may be an argument of call/1l and nothing is known about the
modes then analysis is useless and it should not be done.

5. Types

The Aquarius compiler accepts type declarations for a predicate. Using types results in a significant
improvement in code quality. Types are represented as (Head:-Formula) where Head contains
only variables and Formula is a logical conjunction. Almost any Prolog test can be used in a type for-
mula. Possible type formulas are given in Table 5. This representation for types is simple, yet powerful
enough to represent much important information in a compact way. The representation generalizes the
declarations of Dec-10 Prolog. For example, the Dec-10 declaration:

:- mode (concat (+,+,-))
is expressed here as:

.- mode ((concat (A,B,C) :-nonvar (A) ,nonvar (B) ,var (C))) .

6. Differences with Edinburgh Prolog

Aquarius Prolog recognizcs new type-checking built-ins which are not part of the Edinburgh Prolog
standard as embodied by C-Prolog. The new buili-ins and their definitions in standard Prolog are given in
Table 6.

7. An example of the compiler’s use
The following example shows how the compiler is used:

173

% /hprg2/Bam/Compiler/compiler % Run the compiler.

% Code is entered directly.
:-mode ((a (A) :-nonvar(a))). % Enter the type.
a(a). % Enter a simple two-fact predicate.
a(b).
“D % End-of-file.

L4

The output follows:
$ Cputime between start and finish is 1.383

procedure(a/l).
deref (r(0),xr(0)).
hash (atomic,r(0),2,1(a/1,1)).
fail.
label(l(a/1,1)).
pragma (hash_length(2)) .
pair(a,l(a/1,3)).
pair(b,1l(a/1,4)).
label(l(a/1,3)).
label(l(a/1,4)).
return.

8. Entry specialization for more efficient built-ins

The directive modal_entry(Head,EntryTree) adds a discrimination tree of entry points for
the predicate Head. This directive is used by the system to implement more efficient built-ins. It is not
normally needed by programmers, although they can take advantage of it for other predicates. The com-
piler uses the discrimination tree 10 choose the most efficient entry point for each call of a predicate
depending on the type formula that is true at the predicate’s call. The syntax of the discrimination tree in
modal_entry is:

tree (entry{(EntryHead)).
tree (mode (Formula, TrueTree,FalseTree)) :-
tree (TrueTree), tree(FalseTree).

Ent ryHead is the entry point that replaces Head and Formula is a type formula. Compilation of a
the predicate Head proceeds by following a path down the discrimination tree. If the formula valid when
Head is called implies Formula thenthe TrueTree is followed. Otherwise the FalseTree is fol-
lowed. Tree traversal stops when an entry point entry (EntryHead) is encountered. At that point the
original call is replaced by EntryHead.

9. Interfacing with BAM assembly language routines

Prolog predicates can efficiently call routines written in BAM assembly code (the compiler’s output)
or in the target machine’s assembly language (for example, VLSI-BAM, MIPS, or MC68020 assembly
code). The interface with both low-level languages is provided through the five-argument type declaration.
This declaration has the following form:

.- mode (Head, Require, Before, After, Survive) .

Head is the head of the predicate. Require is the required type formula, i.c. the formula made true by
the compiler. All uninitialized variable types (both uninitialized memory and uninitialized register) must
be pan of the required formula. Before is the type formula known to be valid before the call.
After is the type formula known 1o be valid after the call. Survive is the register survive flag. If the
flag is y then the predicate must not alter the values of any argument registers (except those used to retum
a result). It must save and restore any argument regisiers it needs. The predicate is called with a
simple_call instruction and must return with a simple_ return instruction (Or its equivalent in

174

'VLSI-BAM processor assembly). A simple call may not be nested. It is more efficient than a standard call
because it does not need an environment frame around it in the calling routine.

If the survive flag is n then the predicate is assumed to invalidate all argument register values. In
this case the argument registers are available as scratch registers and the calling routine will create an
environment frame.

Efficient parameter passing is implemented by using uninitialized variables. These are of two kinds:
uninitialized memory and uninitialized register variables. An uninitialized memory variable is a pointer to
an empty memory cell. Binding to it is a store to memory. An uninitialized register variable is an empty
register. Binding to it is a move to the register. No trailing or dereferencing is needed in either case.

Declaring an argument to have a uninitialized register type means that the output of the routine is
stored in the corresponding argument register. Similarly, an uninitialized memory type requires the output
10 be stored to the location pointed to by the argument register. Inputs and outputs must be put in separate
registers.

10. Defining BAM assembly language macros

It is possible to define macros in the Prolog source that are expanded into BAM assembly instruc-
tions. The advantages of macros are that they do not have call-return overhead, that unnecessary shuffling
of data between registers is avoided, and that the full range of low-level compiler optimizations is per-
formed on them. A macro definition has the following form:

:- macro((Head :- Body)).

where Head is the head of the predicate that will be expanded and Body is a series of BAM instruc-
tions. For example:

.- mode (quad (A,B), uninit_reg(B), true, deref(B), V).
:- macro((quad(A,B) :- add(A,A,X), add(X,X,B))).

The macro definition is preceded by a mode declaration telling that the second argument is the output.
Macro definitions must obey the following rules:

(1) Al legal BAM instructions and addressing modes are allowed in the macro definition including user
instructions, except as noted below. User instructions are never generated by the compiler, but they
are recognized and optimized in macro definitions. Labels are given as ground terms or as Prolog
variables. The latter are given unique ground values by the compiler. Registers are given as user
registers (e.g. r(h) and r(t2)) or as Prolog variables (¢.g. X and Y). The latter are allocated
by the compiler. Do not use numbered registers (r (0), r (1),)

(2) The macro definition must be preceded by a mode declaration. The exit modes must be valid upon
exiting the macro. All head arguments that return results must be of uninitialized register type.
(3) The macro may not alter any of the head arguments except those returning a result.

(4) The second argument of the deref (X, Y) instruction must be a new variable, i.e. it must not have
a value upon entering the macro. Failing to obey this constraint will lead to incorrect behavior on
backtracking.

(5) Itis not recommended to create choice points inside macros since it is not known how many registers
are live.

175

Table 1 - Compiler directives

Directive

Action

help.
defaulr.

mips.

vlsi_plm.

clear.
option(Options) .

notoption (Options) .

printoption.

mode ((Head:-Formula)) .

entry ((Head:-Formula)) .

mode (H,R,B,A,S) .

entry(H,R,B,A,S).

modal_entry(H,T).

macro ((Head:-Body)) .
include (FileName) .
pass (Anything) .

version.
op(A,B,C).

Print a summary of these directives.

Set the default options for the VLSI-BAM processor and clear all
type declarations and modal entries.

Ensure compatibility with the MIPS processor. This directive
should occur only once in a file. It sets the option align(1), dis-
ables the option split_integer, and sets all other options to their
default values. It clears all type declarations and modal entries.
Ensure compatibility with the re-microcoded VLSI-PLM. This
directive should occur only once in a file. It sets the options
high_reg(6) and align(1), disables the option split_integer, and
sets all other options to their default values. It clears all type de-
clarations and modal entries. Trail checks and shifts are com-
piled differently.

Clear all type declarations and modal entries. v
Add the options in Options to the current options. Op-
tions may be a single option or a list of options.

Remove the options in Options from the current options.
Opt ions may be a single option or a list of options.

Print a list of the currently active options.

Type declaration for a predicate. The type information is
remembered until new types are given for that predicate or until
all type information is cleared. This declaration is not used as a
starting point for dataflow analysis. However, the types generat-
ed by dataflow analysis are used to supplement the declaration,
and an error message is given if there is a contradiction.

Type declaration for a predicate—same as above. This declara-
tion is also used as a starting point in dataflow analysis.

Detailed type declaration for a predicate. This declaration is use-
ful for interfacing with assembly language. H is the head, R is
the required type formula (made true by the compiler before each
call), B is the before type formula (assumed true before each
call), A is the after type formula (assumed true after each call), S
is the survive flag (y/n depending on whether the call lets regis-
ters survive). The after type formula is used by dataflow analysis
to improve the generated types.

Detailed type declaration for a predicate—same as above. This
declaration is also used as a starting point in dataflow analysis.
Optional discrimination tree of efficient entry points for the
predicate H. The tree T contains type formulas used to replace
each call of the predicate by a more efficient entry point.

Macro definition. The head is expanded into a sequence of BAM
assembly instructions.

Insert the text of the file FileName. This directive may be
nested up to the system limit of simultaneous open files.

Pass the input *‘ : - pass (Anything) .’’ unaltered o the out-
put in Prolog-readable form.

Print the creation date of this version of the compiler.

Declare an operator in Prolog. Pass the input tie
op (A, B,C) .” unaltered to the output in Prolog-readable form.

176

Table 2 — High-level compiler options

Option

Defauit

Description

select _limit (L)

analyze

compile

factor

comment

L=1

off

on

on

on

Perform selection for up to L arguments. Selection is done
according to the enrichment heuristic. See Chapter 4 section
6.2.

Perform datafiow analysis for all predicates in the input
stream. This option enables analysis of the entire input
stream, no matter where it occurs in the stream. The starting
points for analysis are the entry declarations and all predi-
cates of arity zero. The types obtained from the analysis are
merged with the programmer’s types. The predicates are
then compiled with the merged types.

Compile the input. When this option is disabled, the entry
types generated by the dataflow analyzer for the source predi-
cates are output as valid Prolog-readable type declarations.
Do factoring source transformation. With this transformation
similar compound terms in adjacent heads are only unified
once. Often this gives faster code.

Give information about what the compiler is doing.

same_number solutions

same_order_solutions

depth_limit (D)

short_block(3)

on

on

D=2

S=6

Keep the same number of solutions on backtracking as stan-
dard Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

Keep the same order of solutions on backtracking as standard
Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

Nesting depth limit on unification goals. Unifications deeper
than this limit are transformed to remain within this limit.
This transformation is used because compilation time and
code size for deeply nested unifications would otherwise in-
crease as the square of the size of the unification.

Threshold on basic block length for shuffie optimization.

Table 3 — Architecture-dependent compiler options

Option Default Description

low_reg (L) L=0 Lowest numbered machine register.

high_reg (H) H=100 | Highest numbered machine register. In the VLSI-BAM pro-
cessor, registers higher than r(15) are mapped into
memory.

low_perm(P) P=0 Lowest numbered permanent variable.

hash_size (H) =5 Minimum size of a hash table.

align (K) K=2 Align all compound terms to start on a multiple of K.

uni on Generate unify_atomic instruction to unify with an atomic
term.

split_integer on Use separale tags for negative and nonnegative integers.

177

Table 4 — Low-level compiler options

Option Default Description

system({X) quintus | The system running the compiler (other value: cproiog).

write on Write the object code when compilation is complete.

peep on Do peephole optimization.

stats(S) off Print timing statistics during compilation. S is one of the fol-
lowing atoms, or a list of them: t (top level of compilation),
¢ (compilation of a single procedure), p (peephole optimi-
zation), s (selection algorithm—extraction of determinism),
d (deterministic code generation).

debug off Print debugging messages during compilation.

Table 5 - Type formulas
Type Meaning
nonvar (A) A is a nonvariable term, i.e. its main functor is instantiated. Nothing is implied
about its arguments.

ground (A7) A is a ground term, i.e. it contains no unbound variables.

var (A) A is an unbound variable.

uninit (a) A is an uninitialized memory variable. At the Prolog level, this means that A is an

uninit_reg(A)

deref (A)
rderef (A)

unbound variable known not to be aliased to another variable. In the implementa-
tion, A is a pointer to an empty memory cell. Binding to this variable is a simple
store, without dereferencing or trailing.

A is an uninitialized register variable. At the Prolog level, this has the same mean-
ing as an uninitialized memory variable. In the implementation, A is an empty
machine register. This type increases the efficiency of parameter passing by re-
turning a value directly in a register. It is useful for interfacing with assembly
language.

A is dereferenced.

A is recursively dereferenced, i.e. A is dereferenced and all subterms of A are re-
cursively dereferenced.

structure (A)
list (A)

cons (A)
compound (A)
functor (A,F,N)

A is a structure.

A is a list, i.e. a cons cell or nil.
A is a cons cell, i.e. a non-nil list.
A is a structure or a cons cell.

A is the structure F with arity N.

atom(A)

atomic (A)
simple (A)
integer (A)
float (A)
number (A)
negative (A)
nonnegative (A)
A>0

A is an atom.

A is atomic, i.e. a number or an atom.
A is atomic or an unbound variable.
A is an integer.

A is a floating point number.

A is an integer or a float.

A is a negative integer.

A is a nonnegative integer.

A is a positive integer.

A is the atom x.

true
fail
(F1,F2)
(F1;F2)
not (F)

Nothing is known about the type.

This means *‘execution can never reach this point.”’

This means ‘‘F1 and F2,”’ where F1 and F2 are type formulas.
This means ‘‘F1 or F2,”” where F1 and F2 are type formulas.
This means ‘‘not F,”’ where F is a type formula.

178

Table 6 - New type-checking predicates in Aquarius Prolog

Predicate Prolog Definition
nil (a) :~ nonvar (A), A=[].
cons (A) :- nonvar(A), A=[_|_1].
list (A) :- nonvar(A), (A=[] ; A=[_I_1).
compound (A) :- nonvar (A), \+atomic(A).
structure () :- nonvar (A), \+atomic(A), \+A=[_|_].
ground (A) :- nonvar (8), functor(a, _, N), ground(N, A).
simple (A) :- (var(a) ; atomic(A)).
negative (&) :~ integer (A), A<O.
nonnegative (A) :- integer(A), A>=0.
is_list (A) - (var(A), ' ; A=[] ; A={_|B}, is_list(B)).
is _partial_list (A) - (var(A), ! ; A=[_|B], is_partial_list(B)).
is_proper_list (A) - (var(A),',fail;A=[];A=[_IB],is_proper_list (B)).

The following clauses are part of the definition:

ground (N,) :- N=:=0.
ground (N, A) :- N=\=0, arg(N, A, X), ground(X), Nl is N-1, ground(N1l, A).

179

Appendix B

Formal specification of the Berkeley Abstract Machine syntax

%%

Formal specification of the Berkeley Abstract Machine (BAM) syntax
Copyright (C) 1989 Peter Van Roy and Regents of the University of California
May be used and modified for non-commercial purposes if this notice is kept.
Written by Peter Van Roy.

d@ 00 dP oP

This file is an executable Prolog program that checks the syntactic
correctness of BAM instructions. The predicate instr(I) is true if I is

a legal BAM instruction. In addition to instructions output by the Aquarius
compiler, this predicate also accepts the user instructions of the BAM,
which allow the run-time system to be written completely in BAM assembly.

o0 P P OP oP

%%
4 ***x Check correctness of a sequence of BAM instructions **x

% Create saved state:

% Note: In C-Prolog this must be started up in a system

% equal to in size or larger than the one which created it.

main :- save (check, 1), prompt(_, '‘), read{Instr), pipe (Instr, 0, 0), halt.
main :- halt.

% Pipe working loop:

pipe (end_of_file, M, N) :- !,
T is M+N,
write (' *** Checked '),write(T),write(’ instructions; ‘).,
write (M),write (' correct and '),write(N),write(’ incorrect.’),nl.

pipe (Instr, M, N) :-
(instr (Instr)
-> M1 is M+1, N1=N
; Mi=M, N1 is N+i,
write(’ ***x Incorrect: ’'),write(Instr),nl

),
!, read(NewlInstr), pipe(NewInstr, M1, N1l).
%%

& ***x BAM Instructions ***

% 1. Unification support instructiocns:

instr (deref (V,W)) :- var_1i(V), var_i(W).

instr(equal (EA,A,L)) :~ ea_e(EA), arg_i(A), 1lbl(L).
instr(unify(V,%W,F,G,L)) - var_i(Vv), var_i(W), nv_flag(F),nv_flag(G),lbl(L).
instr(trail(V)) - var_i(V).

instr (move (EA,VI)) i~ ea_m{(EA), var_i(VvI).

instr (push(EA,R,N)) :- ea_p(EA), hreg(R), pos (N) .

instr(adda(R,S,T)) ;- numreg(R), numreg(S), hreg(T) .

180

in;tr(pad(N)) :— pos(N).
instr(unify atomic(Vv,I,L)) :- var_i(V), an_atomic(I), l1bl(L).
instr{fail).

% 2. Conditional control flow instructions:

instr(switch(T,V,A,B,C)) a_tag(T), var_i(V), 1lbl(A), 1bl(B), 1bl(C).
instr(choice(I/N,Rs,L)) pos(I), pos(N), I=<N, 1lbl(L), regs(Rs).
instr(test (Eq,T,V,L)) eq_ne(Eq), var_i(V), a_tag(T), 1bl(L).

instr(jump(C,A,B,L)) :- cond(C), numarg_i(A), numarg_i(B), 1lbl(L).
instr (move (CH,V)) :- a_var(V), choice_ptr(CH).

instr(cut(Vv)) :- a_var (V).

instr(hash(T,R,N,L)) :- hash_type(T), reg(R), pos (N), 1lbl(L).
instr(pair(E,L)) :- an_atomic(E), 1lbl(L).

% 3. Arithmetic instructions:

instr(add(A,B,V)) :- numarg_1i(A), numarg_i(B), a_var(V).
instr(sub(A,B,V)) :- numarg _i(A), numarg_i(B), a_var(V).
instr{mul (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(div(A,B,V)) :=- numarg_i(A), numarg_i(B), a_var(V).
instr (mod(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(and(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(or(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(xor (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr{(not (A,V)) :- numarg_i(a), a_var (V).
instr(sll(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
instr(sra(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(Vj.

instr(sll). /* vlsi_plm only */
instr(sra). /* vlsi plm only */

% 4. Procedural instructions:

instr{procedure (N/A)) .- atom(N), natural(A).
instr(call(N/A)) :— atom(N), natural(A).
instr(return).
instr(simple _call(N/A))
instr(simple_return).

atom(N), natural(A).

instr(label(L)) 1= 1bl(L).
instr (jump (L)) ;- 1bl(L).
instr(allocate (Perms)) :- natural (Perms) .
instr(deallocate (Perms)) :- natural (Perms).

instr (nop) .

% 5. Pragma information for translator and reorderer:
instr(pragma(P)) :- pragma(P).

% 6. Additions to BAM for the assembly language programmer:
instr(I) , :- user_instr(I).

%%
$ ***x Additions to BAM for the assembly language programmer * %%
% This section describes the parts of the BAM language that are never output

% by the compiler, but only used by the BAM assembly programmer. This is used
$ to write the run-time system in BAM code, so that it is as portable as

181

$ possible. Additional instructions are jump to register address, convert
% tagged atom or integer to untagged integer (ord), its inverse (val), and
% non-trapping full-word unsigned comparison, non-trapping full-word
% arithmetic, and trailing for backtrackable destructive assignment.

user_instr(jump_reg(R)) :- reg(R).
user_instr(jump_nt(C,A,B,L)) :- cond (C), numarg_i(A), numarg_i(B), 1lbl(L).
user_instr(ord(A,B)) :- arg(A), a_var(B).
user_instr(val(T,A,V)) :~- a_tag(T), numarg_i(A), a_var (V).
user_instr(add_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(sub_nt (A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(and_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(or_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(Vv}).
user_instr(xor_nt (A,B,V)) :- numarg_i(A), numarg_i(B), a_var (V).
user_instr(not_nt(A,V)) :- numarg_i(a), a_var(V).
user_instr(sll_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(sra_nt(A,B,V)) :- numarg_i(A), numarg_1i(B), a_var (V).
user_instr(trail_bda(X)) :- a_var(X).

% Additional registers:
$ See Implementation Manual for l1ist of existing registers.
user_reg(r(A)) :- atom(A) .

%%
§ ***x Pragmas * Kk *

% A variable is a multiple of N.

% Inserted just before loads in readmode unification.

pragma (align(V,N)) :- a_var(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes may be interleaved with non-memory moves.)

pragma(push(term(size))) :- pos{Size).
pragma (push (cons)) .
pragma(push(structure(A))) 1= pos(A).

pragma (push (variable)) .

$ Specify the tag of a variable.
% (This is useful for processors without explicit tag support.)
pragma (tag(V,T)) :- a_var(V), a_tag(T).

$ Length of a hash table.
pragma(hash_length(Len)) :- pos(Len).

%%
§ xx% Tags * % %

a_tag(tatm). /* atom */

a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag(tpos). /* nonnegative integer */
a_tag(tstr). /* structure */

182
a_tag(tlst). /* cons cell */
a_tag(tvar). /* variable */
atom_tag(tatm).
pointer_tag(tstr).
pointer_tag(tlst).
pointer_tag(tvar).
SHEEIHHELILLELTLILILALLILLLHILELELAHLELTLEBLLHILILTLLILLLLILLLLDBLH2LI89%4%%

% *** Addressing modes ***

heap ptr(r(h)).
choice_ptr(r(b)).

reg(r(I)) = int (I).

reg (U) :- user_reg(U).

hreg (R) := reg(R).

hreg (R) :~ heap ptr(R).

perm(p (1)) ;= natural(I).

an_atomic (I) t- int(I).

an_atomic (T"A) :- atom(A), atom_tag(T).
an_atomic(T" (F/N)) :- atom(F), pos(N), atom_tag(T).
a_var (Reg) :- reg(Reg).

a_var (Perm) :- perm(Perm) .

arg (Arg) :- a_var (Arg).

arg (Arg) :=- an_atomic (Arg) .
var_i(Var) :- a_var(Var).
var_i([Var]) :- a_var(Var).
arg_i(Arg) :- var_i(Arg).
arg_i(Arg) :- an_atomic (Arg) .
numreq (Arg) :- reg(Arg).

numreg (Arg) := int (Arg).

numarg_i (Arg) 1= var_i(Arg).
numarg_i(Arg) :- int (Arg) .

var_off ([Var))
var_off ([Var+I])

a_var(Var) .
a_var (vVar), pos(I).

% Effective address for equal:
ea_e(Var) :- a_var(Var).
ea_e(VarOff) 1~ var_off (VarOff).

% Effective address for move:

183

ea m(Arg) :~- arg(Arqg).
" ea_m(VarOff) :- var_off (VarOff) .
ea_m(Tag~H) :- pointer_tag(Tag), heap_ptr(H).

% Effective address for push:

ea_p (Arg) :- arg_i(Arg).
ea_p(Tag™H) :- pointer_tag(Tag), heap ptr(H).
ea_p(Tag” (H+D)) :- pointer_tag(Tag), pos(D), heap_ptr(H).

FEEEEBEEEEEEELEELLEIILHIIELFELLLEILLLTEEBLIELIILLILBLILILLLLLLLLLLLLLLLILHH%%%
§ *** Miscellaneous **x

eq_ne(eq). /* Equal */
eq_ne(ne). /* Not equal */

cond(lts). /* Signed less than */

cond(les). /* Signed less than or equal */
cond(gts). /* Signed greater than */
cond(ges). /* Signed greater than or equal */
cond(eq). /* Equal */

cond(ne). /* Not equal */

hash_type(atomic) .
hash_type (structure).

1bl(fail).
1bl (N/A) :— atom(N), natural(a).
1bl (1(N/A,I)) :- atom(N), natural(Ad), natural(I).

nv_flag(nonvar) .
nv_flag(var).
nv_flag('?2').

% A list of register numbers:

% (May contain the value 'no’ as well)

regs([]).

regs ([R|Set]) :- (int(R):; R=no), regs(Set).
%%

§ *x* Utilities ***

ground(X) :- nonvar(X), functor (X, _, N), ground (N, X).

ground (N, _) :- N=:=0.

ground (N, X) :- N=\=0, arg(N, X, A), ground(A), Nl is N-1, ground(N1l, X).
int (N) :~ integer (N).

natural (N) :- integer(N), N>=0.

pos (N) :- integer(N), N>O.

EEEELEIIEEIBLLEELLILLEBLEIBLEILLLALEILLILLLIFHLLLLEILLLILLILTELBELRBLIBEIRS

184

Appendix C

Formal specification of the Berkeley Abstract Machine semantics

FEEEEEELEEHILEILETILELALEILELLELELILIBILTHHELHLELLTLILLLIDILLHLLBLILLB39%%%

dP oP oP oe

9P oe

%

Formal specification of the Berkeley Abstract Machine (BAM) semantics
Copyright (C) 1990 Peter Van Roy and Regents of the University of California
May be used and modified for non-commercial purposes if this notice is kept.
Written by Peter Van Roy.

The specification is a Prolog program that defines the meaning of BAM in
terms of its execution in a simple memory model. It runs BAM code directly

from the output of the Aquarius compiler.

The specification does not include the user instructions of the BAM since
their behavior depends on the target machine.

The specification is written in the Extended DCG notation.

%%

0P Jd0 I OP dP OP P dO IP O oP P

dP dP JP JP 0P OP OP dP OP dP df Of

of JdP P o°

Meaning of registers:

r(b) Index to most recent choice point.

r(e) Index to current environment.

r(tr) Top of trail stack.

r(h) Top of heap stack.

r (hb) value of r(h) at last choice point creation.
r(pc) Code address.

r(cp) Continuation pointer for code.

r(tmp_cp) Temporary continuation pointer for code, used only in simple_call.
r(retry) Retry address for backtracking, only exists inside choice points.
r(I) Argument and temporary register.

p(I) Location on current environment.

Types stored in registers:

r(e) Contains values of registers {r(e),r(cp)} U {fp(0Yy, ..., P(N-1)},
where N is the size of the environment.

r{b) Contains values of registers {r(e),r(cp),r(tr),r(b),r(h),r(retry)} U RS,
where RS is a subset of {r(0), r(l), ...}.

r(tr) Contains a natural number.

r(h), r(hb) Contain words with a pointer tag.

r(pc), r(cp) Contain natural numbers or symbolic labels.

r (tmp_cp) Contains a symbolic label.
r(retry) Contains a symbolic label.
r(I) Contains a word.

p(I) Contains a word.

Comments:

A word is either an integer or a structure of the form Tag"Value where Value
is a natural number except if Tag=tatm, in which case Value is an atom or a
structure (F/N) where F is an atom and N is a natural number.

185

% A symbolic label is either the atom rfail’, or the structure F/N, or the
% structure 1(F/N,I), where F is an atom and N and I are natural numbers.

% r(cp) is stored in environments, allowing nested calls.

$ r(tmp_cp) is not stored in environments, allowing only one level of call.
% However, no environment is needed in a predicate containing a simple_call.
% There are no explicit stacks for environments or choice points; registers
$ r(e) and r(b) each contain a set of register values.

%%
% Accumulator declarations:

% Accumulators:

acc_info (code, T, In, Out, table_command(T,In,Out)).

acc_info(lblmap, T, In, Out, table_command(T,In,Out)).

acc_info (regs, T, In, Out, table_command(T,In,Out)).

acc_info(trail, T, In, Out, table_command (T, In,Out)).

acc_info (heap, T, In, Out, heap_table_command(T,In,Out)).

acc_info (count, T, In, Out, (Out is T+In)).

% Predicate declarations:

$ Top level:

pred_infol execute, 0, [regs,heap,trail,code,lblmap,count]).
pred_info(instr_loop, O, [regs,heap,trail,code,lblmap,count]).
pred_infol instr_loop_end, 1, [regs,heap,trail,code,lblmap,count]).
pred_info(instr, 1, [regs,heap,trail,code,lblmap]).
pred_info(numeric_pc, 2, [lblmap]).

$ Addressing modes:

pred info(heap, 3, | heap]) .
pred info(reg, 3, [regs .
pred_info(perm, 3, [regs 1).
pred_info(a_var, 3, [regs .
pred_info var_i, 3, [regs,heap]).
pred_infol arg, 2, [regs 1).
pred_info(arg_i, 2, [regs,heapl) .
pred_info(numreg, 2, [regs 1).
pred_info(numarg, 2, l[regs,heapl).
pred_info(var_off, 2, [regs,heapl).
pred_info(imm tag, 2, [regs 1).
pred_info(ea_e, 2, [regs,heapl) .
pred_infol(ea_m, 2, [regs,heap]).
pred_info(ea p, 2, [regs, heapl).

% Instruction utilities:

pred_info(deref_ rtn, 2, [regs,heap,traill) .
pred_infol deref_rtn_cont, 3, [regs,heap,trail]).
pred_info(equal_rtn, 3, [regs,heap,trail]).
pred_info(switch rtn, S5, [regs,heap,trail]).
pred_info (test_rtn, 4, [regs,heap,trail]).
pred_info(jump_cond_rtn, 4, {regs,heap,traill).

pred_infol(hash lookup, 3, [regs,heap,trail,lblmap,code]).

pred_info(
pred_info(
pred_info(

hash_lookup_Z,
hash_indirect,
save_choice_regs,

pred_info(restore_ choice_regs,

pred_info
pred_info(
pred_info(
pred_info(
pred_info(
pred_info(
pred_info(
pred_info(
pred_info(
pred_info(
pred_info{
pred_info(
pred_info(

pred_info
pred_info({
pred_info(
pred_info(

detrail_rtn,
trail_rtn,
cmp_trail,

unify rtn,

unify rtn_2,
unify_rtn_2,
unify rtn_args_2,
unify rtn_args_3,
unify atm,

unify end,

unify varvar,

get size,

arith,

write_rtn,
write_rtn,
write arg,
write_args,

[regs,heap,trail, lblmap,codel]) .

[heap 1.
{regs,heap,traill).
[regs, heap,traill) .
[regs,heap,traill) .
{regs,heap,traill).
[regs,heap,traill).
[regs,heap,traill).
[regs,heap,traill) .
[regs,heap,traill).
[regs,heap,traill).
[regs,heap,traill).
{regs,heap,traill).
[regs,heap,traill).
[regs,heap,traill).
{ heap 1).
[regs, heap .

{regs, heap,traill).
(regs,heap,traill).
[regs, heap,traill).
[regs, heap,traill).

% Implement the accumulator commands :

table command(ins(I,val), In, In) :- ins(In, I, Val).
table_command(get(I,Val), In, In) :- get(In, I, Val).
table_command(set(I,Val), In, Out) :- set(In, I, val, Out).

% Mask off tag before looking up heap entry:
heap_table_command(ins(_"I,Val), In, In) :- ins{(In, I, Val).
heap_table_command(get (_"I,Val), In, in) :- get(In, I, Val).
heap_table_command(set(_‘I,Val), In, Out) :- set(In, I, Val, Out).

%%
§ *** Initialization and runtime options ***
:- dynamic (bamspec_option/1).

main :-
save (bamspec,
prompt(_, "').,
{ copyright,

execute

; error(['Sorry, the executable BAM specification has failed.’])
),
halt.

main :-
halt.

1),

copyright :-
write (' Berkeley Abstract Machine (BAM) Executable Specification’), nl,
write (' Copyright (C) 1990 Peter Van Roy and ‘),

write (' Regents of the University of California’), nl, nl.

187

flag_print (I) :- bamspec_option(print), !, write(’'Executing ‘), write(I), nl.
flag_print(_).

% Look up symbolic label to get a numeric PC:
numeric_pc (PC, PC) -->> {integer(PC)}, !.
numeric_pc (PC, NPC) -->> [get (PC,NPC)]:lblmap.

% Read in the instructions and create the code array and label map:
$ The code array gives the instruction corresponding to each PC value.
$ The label map gives the PC value corresponding to each symbolic label.
read code (Code, LblMap) :~
read (Instr),
read_code (Instr, 0, Code, LblMap).

read_code (end_of_file, _, Code, LblMap) :- ', seal(Code), seal(LblMap).
read_code((:-Option), PC, Code, LblMap) :- !,

asserta (bamspec_option (Option)),

read (NextInstr),

read code (NextInstr, PC, Code, LblMap).
read code (Instr, PC, Code, LblMap) :-

ins (Code, PC, Instr),

insert lblmap(Instr, LblMap, PC),

PCl is PC+1,

read (NextInstr),

read code (NextInstr, PCl, Code, LblMap).

% Add an entry to the label map:

insert_lblmap(lakel (L), LblMap, PC) :- !, ins(LblMap, L, PC).
insert_lblmap(procedure(P), LblMap, PC) :- !, ins(LblMap, P, PC).
insert_lblmap(_, _, _)-

%%
g **x* Top level execution ***

execute :-
write (' Reading BAM code’), nl,
read_code (Code, LblMap),
write (' Starting execution’), nl, ;
execute (leaf, Regs, leaf, _, leaf, _, Code, _, LblMap, _, 0, N),
write (' Executed '), write(N), write(’ instructions.’), nl,
print_array{Regs).

execute (File) :-
seeing(0ldFile),
see (File),
read_code (Code, LblMap),

seen,

see (OldFile),

execute (leaf, Regs, leaf, , leaf, _, Code, _, lblMap, _, 0, N),
write ('Executed '), write(N), write(' instructions.’), nl,

print_array (Regs) .

188

execute -->>

" [set (r(e),leaf)]:regs,

[set (r(b),leaf)] :regs,

[set (xr(h),tvar~0)]:regs,

(set (r(tr),0)]:regs,

[set (r(pc),0)] :regs,

[set (r{cp),global_success/0)]:regs,
instr(choice(1/2,{],global failure/0)),
instr_loop.

$ Instruction execution loop:
instr_loop -->>
[get (r(pc),PC)] :regs,
L
instr_loop_end(PC).
instr_loop -->>
error {[’Attempt to execute beyond existing code.’]).

instr_loop_end(write/1l) -->> !, write_rtn, instr(return), instr_loop.
instr loop_end(nl/0) -=->> !, nl, instr(return), instr_loop.
instr_loop_end(global_success/0) -->> !,

write (/ *** Global success ***’), nl.
instr_loop_end(global_ failure/0) -->> !,

write (' *** Global failure ***'), nl.
instr_loop_end(fail) =-->>

instr(fail),

)
-

instr_loop.

instr_loop_end(PC) -->>
numeric_pc{(PC, NPC),
% Fetch:

[get (NPC, Instr)] :code,

NPC1l is NPC+1,

[set (r (pc),NPCl)] :regs,

% Execute:

{1] :count,

flag_print (Instr),

instr{(Instr),

'y

instr_loop.
instr_loop_end(PC) -->>

error([’Program counter is ',PC]}).

SEEETLELELILEILIILAELLFLSILLILLILLIELELLLBLLAELRELLLILLTIBLHTLLILLILEIILTLLB4%

§ **x BAM Instructions ***

% 1. Unification support instructions:
instr(deref (V,W)) =-->>

var_i(get, V, X),

deref rtn(X, Y),

var_i(set, W, Y).
instr{(equal (EA,A,L)) =-->>

ea_e (EA, X),

arg_i(a, Y),
{1bl (L)},

equal_rtn(X, ¥, L).

var_i(get, V,
var_i(get, W,
{nv_flag(F)},
{nv_£flag(G)},

instr{(unify(Vv,w,F,G,L)) =-->>

X),
Y),

{lbl (L)},

unify rtn(X, Y, L).
instr(unify atomic(Vv,I,L)) -->>

var_i(get, V, X),

{an_atomic(I)},

{l1bl (L)},

unify_rtn(X, I, L).
instr(trail (V)) =-=->>
var_i(get, V, X),
trail rtn(X).
instr (move (EA,VI)) =-=->>
ea_m(EA, X),
var_i(set, VI, X), v,

instr (push(EA,R,N})

ea_p(EA, X),

{hreg(R) },

[get (R,Y)] :regs,
[set (Y,X)] :heap,

{pos(N) },

add_word(Y, N, YN},
[set (R, ¥N)] :regs.
instr(adda(R,S,T)) —-->>

{hreg(R) |,

[get (R, X)) :regs,

numreg (S,

off),

add_word (X, Off, NX),

{hreg(T) },

[set (T,NX)] :regs.

instr(pad(N))

-—2>>

[get (r(h),H)]:regs,

{pos (N) },

add_word(H, N, NewH) ,
[set {(r (h),NewH)] :regs.

% 2. Conditional control
instr(choice(1/N,Rs,L))
save_choice_regs(Rs, NewB),

{ins (NewB,

r(retry),

(get (r(tr),TR)]:regs,

[get (r(e),

E)]:regs,

[get (r(cp),CP)]:regs,

[get (r(b),
[get (r(h),

B)] : regs,
H)) :regs,

{seal (NewB) },

[set (r (hb),

H)] :regs,

-=>>

flow instructions:

-->> {pos(N), N>1,

L)},
{ins (NewB,
{ins (NewB,
{ins (NewB,
{ins (NewB,
{ins (NewB,

[set (r (b) ,NewB)] :regs.

r(tr), TR)},
r(e), E)},
r(cp). CP) },
r(b), B)},
r(h), H) },

regs (Rs),

189

190

instr(choice(I/N,Rs,L)) -->> {pos(N}, pos(I), 1<I, I<N, regs(Rs), 1lbl(L)}, !,
{get (r(b),B)]:regs,
restore_choice_regs (Rs, B),
{set (B, r{(retry),L,NewB)},
{set (r (b) ,NewB)] :regs.
instr (choice (N/N,Rs,L)) -=->> {pos(N), regs(Rs), 1lbl(L)}, !,
[get (r(b),B)]:regs,
restore_choice_regs (Rs, B),
(get(B,r(b),NewB)),
[set (r (b) ,NewB)] : regs,
{get (NewB,r(h),H) }o
[set (r (hb),H)]:regs.
instr(fail) -->>
{get (r(b),B)]:regs,
{get (B, r(h),H) },
{set (r(h),H)]:regs,
{get (Blr(e)IB))y
(set(r(e),E)]:regs,
{get (Brr(cp)rcp) Yo
[set (r (cp) ,CP)]:regs,
[get (x (tr),CurTR)]:regs,
{get (B, r(tr),01dTR) },
detrail rtn(CurTR, 01dTR),
{get (B, r(retry),L) },
[set (r(pc),L)]:regs.
instr(switch(T,V,3,B,C)) -=>>
{a_tag(T)},
var_i(get, V, X),
extract_tag (X, TX),
{1bl(a), 1lbl(B), 1bl(C)},
switch_rtn(T, TX, A, B, C).
instr(test (Eq,T,V,L)) -->>
{a_tag(T)},
var_i(get, V, X),
extract_tag (X, TX),
{eq_ne(EqQ) 1},
{1bl (L)},
test_rtn(Eq, T, TX, L).
instr (jump(C,A,B,L)) -->>
{cond(C) },
numarg (a, XA), {extract _value (XA, VA), check_int (XA)},
numarg (B, XB), {extract_value (XB, VB), check_int (XB)},
{ibl (L)},
jump_cond rtn(C, VA, vB, L).
instr (move(r(b),V)) =->>
{get (r (b) ,B)] :regs,
a_var(set, V, B).
instr(cut (V)) =-=->>
a_var(get, V, X),
{set (r(b),X)]:regs,
(get (X,r(h),H) Yo
[set (r (hb) ,H)] :regs.
instr(hash(T,R,N,L)) -->> hash_type(T), pos(N), 1bl(L),
reg(get, R, X},

191

hash_indirect (T, X, Y),
{get (L,PC)]:1lblmap,
hash_lookup (PC, Y, N) .
instr(pair(_,_)) -->>
{error{['Attempt to execute inside a hash table.’])}.

% 3. Arithmetic instructions:

instr(add(A,B,V)) -->> arith(add, A, B, V).
instr(sub(a,B,V)) -->> arith(sub, A, B, V).
instr(mul{(A,B,V)) -->> arith(mul, A, B, V).
instr(div(a,B,V)) -->> arith(div, A, B, V).

instr (mod(A,B,V)) -->> arith(mod, A, B, V).
instr(and(A,B,V)) -->> arith(and, A, B, V).
instr(or(a,B,V)) -->> arith(or, A, B, V).
instr (xor (A,B,V)) -->> arith(xor, A, B, V).
instr(not (A,V)) -->> arith(not, &, 0, V).
instr(sll(a,B,V)) -->> arith(sll, A, B, V).
instr(sra(A,B,V)) -->> arith(sra, A, B, V).

% 4. Procedural instructions:
instr(procedure (N/A)) -->> {atom(N), natural (A)}.
instr(call (N/A)) -->> (atom(N), natural(A)}l,
(get (r (pc) ,PC)] :regs,
[set (xr (cp),PC)]:regs,
[set (r(pc),N/A)] :regs.
instr(return) -->>
[get (r(cp) ,PC)] :regs,
[set (r(pc),PC)]:regs.
instr(simple_call(N/A)) -=->> {atom(N), natural(d)},
[get (r(pc) ,PC)]:regs,
[set (r(tmp_cp),PC)]:regs,
[set (r(pc),N/A)]:regs.
instr(simple_return) -->>
[get (r(tmp_cp),PC)]:regs,
[set (r(pc),PC)]:regs.
instr(label(L)) -->> {lbl(L)}.

instr(jump(L)) -->> {1lbl(L)},
[set (r(pc),L)]:regs.
instr(allocate(N)) ==>>

{natural(N) },
{get (r (e),E)] :regs,
{ins (NewE, r(e), E) }e
(get (r (cp) ,CP)] :regs,
{ins (NewE, r(cp). CP)},
{seal (NewE) },
(set (r(e),NewE)] :regs.
instr{(deallocate(N)) =-->>
{natural (N) },
[get (r(e),E)]:regs,
{get (E, r(e) ,NewE) },
{get (E, I(Cp) s NewCP) }s
[set (r (e),NewE)] :regs,
[set (r (cp) ,NewCP)] :regs.
instr(nop) ~-->> {].

192

% 5. Pragma information for translator and reorderer:
% Pragmas are no-ops in the execution.
instr(pragma(P)) -->> {pragma(P)}, !.

% 6. Additions to BAM for the assembly language programmer:

% The meaning of these instructions depends on the underlying architecture,
% so they are not included in this specification. See the Implementation
$ Manual for a discussion of their use.

%%
§ *** Pragmas ***

% A variable is a multiple of N.

% Inserted just before loads in readmode unification.

pragma(align(V,N)) :- a_var(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes may be interleaved with non-memory moves.)

pragma (push (term(Size))) :- pos{Size).
pragma (push{cons)) .
pragma (push (structure(&))) :- pos(A).

pragma (push(variable)).

% Specify the tag of a variable.
$ (This is useful for processors without explicit tag support.)
pragma (tag(V,T)) :- a_var(V), a_tag(T).

% Length of a hash table.
pragma (hash_length(Len)) := pos (Len).

%%
% * k% Tags * k%

a_tag(tatm). /* atom */

a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag(tpos). /* nonnegative integer x/
a_tag(tstr). /* structure */
a_tag(tlst). /* cons cell */
a_tag(tvar). /* variable */

atom_tag(tatm).

atomic_tag(tatm).
atomic_tag(tint).
atomic_tag(tneg) .
atomic_tag(tpos).

pointer_tag(tstr).
pointer tag(tlst).
pointer_tag(tvar).

193

‘%%
g *** Addressing modes ***
% Both read and write access:

heap(get, W, X) -->> {ptr_word (W)}, [get (W,X)] :heap.
heap (set, W, X) -->> {ptr_word(W)}, [set (W,X)]:heap.

ptr word(T"_) :- pointer_tag(T).

reg(get, R, X) -->> {reg(R)}, [get(R,X)]:regs.
reg{set, R, X) -->> {reg(R) }, (set (R, X)] :regs.

reg(r(I)) :- int(I), !.

hreg(R) :- reg(R), !.
hreg(r(h)).

perm(get, P, X) -->> {perm(P) }, [get (r(e) ,E)]:regs, {get (E,P,X) }.
perm(set, P, X) -->> {perm(P) }, [get (r(e),E)]:regs, {set (E,P,X,NewE) },
[set (r(e) ,NewE)] :regs.

perm{p(I)) :- natural (I).

a_var (WR, V, X) -->> reg{(WrR, V, X), !.
a_var (WR, v, X) -=>> perm(WR, v, X).

a_var (Reg) :- reg{(Reg), !.
a var(Perm) :- perm(Perm) .

var_i(wWR, [V], X) -=->> a_var(get, V, W), heap (WR, W, X), !.
var_1i (WR, v, X) -=->> a_var(WR, V, X).

% Read access only:

% An int is its own value:
int (N) :- integer(N).

% An atomic is its own value:

an_atomic (I) := int(I), !.
an_atomic(T‘A) :- atom{(A), atom_tag(T), r,
an_atomic(T"(F/N)) :- atom(F), pos(N), atom_tag(T).

arg{Arg, Arg) -->> {an_atomic (Arg) }, '.
arg(Arg, X) -->> a_var(get, Arg, X) .

arg_1i(Arg, Arg) -->> {an_atomic(Arg)}, !.
arg_i (Arg, X) -->> var_i{get, Arg, X).

numreg (Arg, Arg) -->> (int (Arg)}, !.
numreg (Arg, X) =-->> reg(get, Arg, X).

194

numarg (Arg, Arg) -->> {int(Arg)}, !'.
numdarg (Arg, X) -->> var_i(get, Arg, X).

var_off ([Var+I], X) -->> a_var(get, Var, T), 'y
{pos(I)}, add_word(T, I, T2), [get(T2,X)]:heap.
var_off ([Var], X) =-->> a_var(get, Var, T}, [get (T, X)] :heap.

% Creating immediate tagged pointer objects:
imm_tag(Tag” (r(h)+D), W) -—->> {pointer_tag(Tag)}, !,
{get (r(h),T)]:regs,
{pos (D)}, add_word(T, D, X),
insert tag(Tag, X, W).
imm_tag(Tag~r(h), W) -~>> {pointer_tag(Tag)}, !,
[get {r (h),X)]:regs,
insert tag(Tag, X, W).

% Effective address for equal:
ea_e(Var, X) =-->> a_var(get, Var, X)), !'.
ea_e(VarOff, X) -->> var off(VarOff, X).

§ Effective address for move:

ea_m(Arg, X) =-->> arg(Arg, X), '.
ea_m(VarOff, X) -->> var_off (VarOff, X), !'.
ea m(T r(h), X) =-->> imm _tag(T"r(h), X).

% Effective address for push:
ea p(Arg, X) =-->> arg_i{(arg, X), !.
ea p(T~Y, X) =->> imm _tag(T"Y, X).

%%
§ ***x Miscellaneous ***

eq ne(eq). /* Equal */
eg_ne(ne). /* Not equal */

cond(lts). /* Signed less than */

cond(les). /* Signed less than or equal */
cond(gts). /* Signed greater than */
cond(ges). /* Signed greater than or equal */
cond(eq). /* Equal */

cond(ne). /* Not eqgual */

hash_type (atomic) .
hash_type (structure).

1bl (fail).
1bl (N/A) := atom(N), natural(A).
1bl (1 (N/A,I)) :- atom(N), natural(A), natural(I).

nv_flag(nonvar) .
nv_flag(var).
nv_£flag('?').

195

% A list of register numbers:
% (May contain the value ’'no’ as well)
regs([]).
regs ([RiSet]) :- (int(R); R=no), !, regs(Set).
FEEEEBEEEELIEFIHHHILELLLITEELLLIILLLLLLIHLALILEELIILBLLELLLLLLLELIBRLLEITI94%%
% Dereference utilities:
deref_rtn(X, X) -->> {nonvartag(X)}, !.
deref_rtn(X, Y) -->>
[get (X,X2)] :heap,
deref_rtn_cont (X, X2, Y).

deref_rtn_cont (X, X, Y) =-=->> v, {Y=X}.
deref rtn _cont(_, X, Y) =-->> deref rtn(X, Y).

FEEEEEEEEIEIIHEEEHILLELLLTFELELILIELELLILLEEPELLELRHLLLBLLLLLBLEBLBBLLHB4R4%
% Equal routine:

equal_rtn(X, X, _) =->>!.
equal rtn(_, _, L) -->> [set(r(pc),L)]:regs.

S EEEEEEEEEEEEIEIEEEHILIRHEIEELALLELELIEILILALLELEILEILLLLLLLLILILRLLLBLLHR4EY

% Switch and test routines:

switch_rtn(_, tvar, A,_,_) -->> !, [set(r(pc),A)]:regs.

switch rtn(T, TX, _,B,_) -->> {equivalent_tag(T,TX)},!, [set (r(pc),B)]:regs.
switch_rtn(_, _+ _r_sC) =-—>> [set(r(pc),C)]:regs.

test_rtn(Eq, T, TX, L) -->> {test_true(Eq, T, TX)}, !, [set (r(pc),L)]:regs.
test_rtn(_, _, _, _) =-=>> [].

test_true(eq, T, TX) :- equivalent_tag(T, TX).

test_true(ne, T, TX) :- \+equivalent_tag (T, TX).

%%
% Arithmetic utilities:

arith(Op, A, B, V) -=>>
numarg (A, XA), {extract_value(XA, VA), check_int(XA)},
numarg (B, XB), {extract_value(XB, VB), check _int (XB) },
arith operation(Op, VA, VB, VC),
a_var (set, v, VC).

arith_operation(add, VA, VB, VC) :- VC is VA+VB.
arith_operation(sub, VA, VB, VC) :- VC is VA-VB.
arith_operation(mul, VA, VB, VC) :- VC is VA*VB.
arith_operation(div, VA, VB, VC) :- VC is VA//VB.
arith_operation(med, VA, VB, VC) :- VvC is VA mod VB.

arith_operation(and, VA, VB, VC) :- VC is VA /\ VB.

arith_operation(or, VA, VB, VC) :- VC
arith operation(xor, VA, VB, VC) :- VC
arith_operation(not, VA, _, VC) :- VC
arith operation(sll, VA, VB, VC) :- VC
arith_operation(sra, VA, VB, VC) :- VC

is
is
is
is
is

196

VA \/ VB.

(VA /\ \(VB)) \/ (VB /\ \(VAa)).
\(VA).

VA<<VB.

VA>>VB.

FEEEEEBLEETTLEELLLEILLEILBLTELIIHLLIETLLIEISETLLLLLVLILILELBLLLTBLLBLLLB259%%%

% Conditional jump:

jump_cond_rtn(C, VA, VB, L) -->>

jump_cond_rtn(_, _, _, _) ==>> [].
jump_true(lts, VA, VB) :- VAQ<VB.
jump_true(gts, VA, VB) :- VAG>VB.
jump_true(les, VA, VB) :- VAR=<VB.
jump_true(ges, VA, VB) :- VA@>=VB.
jump_true(eq, VA, VB) :~ VA==VB,.
jump true(ne, VA, VB) :- VA\==VB.

{jump true(C, VA, VB)}, !, [set (r(pc),L)]:regs.

FEEEEEEEFILEILIILEEILTLLELLIELLELIELIELFLLELLHLILLLLITLETLILTLLLLLILLLLHBL%%%%

$ Hash table utilities:

hash_lookup (PC, X, N} -->>
{PCl is PC+1l},

[get (PCl,pragma (hash_length(N)))]:ccde,

{PC2 is PCl+1l},
{PCN is PCl+N},
hash_lookup_2(PC2, PCN, X).

hash_lookup_ 2(PC, PCN, _) =-->>

hash_lookup 2(PC, PCN, X) -->>
[get (PC,pair (E,L))]:code,
{E=X},

!
14

[set {r(pc),L)] :regs.

hash lookup_2(PC, PCN, X) -->>
{PC1 is PC+l},
hash_lookup_2 (PCl, PCN, X).

$ Indirection needed for structures
-=>> [}
{get (X,Y)] :heap.

hash_indirect (atomic, X, X)

hash_indirect (structure, X, Y) -->>

{PC>PCN},
{PC=<PCN},

{PC=<PCN},

because main functor is in memory:

SEEHELLIEELILILEILALLLILLILHLLILILLLILLIBELILALBLTLTLLILLLLLELEIBLHILIBHHE94%%

% Choice point and fail utilities:

save_choice_regs([]), _) -->> [].
save_choice_regs{([no(Rs], B) -=->> !,

save_choice_regs(Rs, B).

save_choice_regs([I|Rs], B) =-->>

{get (r(I),R)]:regs,

197

{ins(B, r(I), R)},
save_choice_regs(Rs, B).

restore_choice_regs([]l, _) -->> [].
restore_choice_regs([nol|Rs], B) -->> !,
restore_choice_regs(Rs, B).
restore_choice_regs([Ile], B) -->>
{get (B, r(I), R)},
[set (r(I),R)]:regs,
restore_choice_regs(Rs, BJ).

B EEEEIFEHHEIELEEHILELLILLEHLEILLHLLLILILTLLLLABELLILLITLLTLLBLLBLILBEILR4Y
% Trailing and detrailing:

trail rtn(X) -->>
[get (r (hb),HB)] :regs,
cmp_trail (X, HB).

cmp_trail(X, HB) -->> {less_trail(X, HB)}, !,
{get (r(tr),TR)] :regs,
[set (TR,X)]:trail,
{TR1 is TR+1l},
[set (r(tr),TR1)]:regs.
cmp_trail(_, _) -->> [].

less_trail (_"X, _"Y) :- X<Y.

% Restore to unbound the variables on the trail between OldTR and CurTR.
detrail rtn(CurTR, OldTR) -->> {CurTR=<01ldTR}, !.
detrail_ rtn(CurTR, OldTR) -->> {CurTR>01dTR},

{CurTRl is CurTR-1},

[get (CurTR1l,V)]:trail,

[set (V,V)]:heap,

detrail rtn(CurTRl, 01dTR) .

%%
% General unification routine:

unify_ rtn (Wi, w2, L) -->>
unify rtn 2(Wl, W2, Flag),
unify end(Flag, L).

unify end(success, _) -->> [].
$ For later: detrailing if L\fail.
unify end(fail, L) -->> [set (r(pc),L)]:regs.

unify rtn 2(Wl, W2, Flag) -->>
{extract_tag_value(Wl, T1l, V1) 1},
{extract_tag_value(WZ, T2, V2)1},
unify rtn_2(T1l, V1, T2, v2, Flag).

unify rtn_2(tvar, V1, NTag, V2, success) -->> {NTag\==tvar}, !,

198

trail_rtn(tvar-vl),
{make_word(NTag, v2, Word)},
[set (tvar“V1,Word)] :heap.

unify rtn_2(NTag, v2, tvar, V1, success) -->> (NTag\==tvarj, ',
trail rtn(tvar~Vvi),
{make_word(NTag, v2, Word)},
[set (tvar“Vl1l,Word)] :heap.

unify rtn_2(tvar, V1, tvar, V2, success) -->> !,
unify_varvar(Vl, v2).

% Matching atomic tags:

unify_rtn_2(ATag, V1, BTag, v2, Flag) -->>
{atomic_tag (ATag) },
{atomic_tag(BTag) },
{equivalent_tag(ATag, BTag)},
'
L 4
unify atm(vl, V2, Flag).

% Non-matching nonvariable tags:

unify rtn_2(ATag, _, BTag, _, fail) -->>
{ATag\==tvar, BTag\==tvar},
{\+equivalent_tag(ATag, BTag)},
1

% Matching pointer tags (recursive case):
unify rtn_2(ATag, V1, ATag, v2, Flag) -=->>
{pointer_tag (ATag) }.
get_size(ATag, v1l, Sz),
unify rtn_args_2(0, Sz, ATag, v1l, V2, Flag).

% The term’s Size is the maximum offset needed to traverse the term in memory.
get_size(tlst, _, 1) —-->> [1.
get_size(tstr, V, N} ==->>

[get (tstr"V,Func)]:heap,

{Func=(tatm” (_/N))}

unify rtn_args_2(N, Sz, _s _+ _r success) -->> {N>Sz}, !.
unify_rtn_args_ 2(N, Sz, T, V, W, Flag) -->> |(N= <5z}, !,
(VN is V+N},
{WN is W+N},

[get (T"VN, VX)] :heap, deref rtn(VX, DVX),
[get (T"WN,WX)] :heap, deref_rtn (WX, DWX),
unify_rtn 2(DVX, DWX, F),

(N1 is N+1},

unify rtn_args_3(F, NI, sz, T, V, W, Flag).

% Continue with other arguments if argument unification succeeded:
unify_rtn_args_ 3(fail, _,+ _+ _¢ _r _» fail) -=->> [1.
unify_rtn_args_ 3 (success, N1, Sz, T, V, W, Flag) -->>

unify rtn_args_2(N1l, Sz, T, V, W, Flag).

% Unifying value parts of two atomic terms with equivalent tag:
unify atm(V, V, success) =-=->> 1!.
unify atm(_, _, fail) -->> [].

% Unifying two variables: bind youngest to oldest, trail youngest.
unify varvar(vl, VvZ) -->> (vi>vzay}, !,

199

trail_rtn(tvar-vl),
[set (tvar“Vl,tvar~V2)]:heap.
unify varvar(Vl, V2) =-->> {Vi=<v2}, !,
trail_rtn(tvar-vz),
[set (tvar~V2,tvar~Vl)] :heap.

%%

% Simple type utilities:

ground(X) :- nonvar(X), functor (X, _, N), ground (N, X).

ground(N,) :- N=:=0, !.

ground (N, X) :- N=\=0, arg(N, X, A}, ground(A), N1 is N-1, ground(Nl, X).
natural (N) :- integer(N), N>=0.

pos (N) :- integer(N), N>0.

%%
% Word, tag, and value manipulation utilities:

This takes into account the relationship between tpos, tneg and tint.
For integers it extracts tpos or tneg tags and the absolute value

of the integer. It creates the correct integer, given the tpos, tneg
or tint tags.

de odP do IP

equivalent_tag(T, Ty = !,
equivalent tag(tint, tpos) :- !.
eguivalent tag(tint, tneg).

extract_tag(N, tpos) :- integer(N), N>=0, !.
extract_tag(N, tneg) :- integer (N), N<O, !.
extract _tag(T"_, T).

extract_value (N, N) :- int(N), N>=0, !.
extract_value (N, M) :- int (N), N<O, !, M is -N.
extract_value(_"V, V).

extract_tag value(W, T, V) :-
extract_tag(w, T),
extract_value (W, V).

nonvartag(I) :- int(I), !.
nonvartag (T _) :- \+T=tvar.

% Only used for pointer tags:
insert _tag(T, _"V, T"V).

make_word(tint, I, I) :- !'.

make word(tpos, I, I) :- !.

make word(tneg, N, I) :- !, I is -N.
make_word(T, V, T°V).

add_word(T I, J, T"K) :- K is I+J.
% Eventually, print out value of PC:
check_int(I) :- int (I), !.
check_int(_) :-
error (['Operand of conditional is not an integer.’]).

%%

% Table utilities:
% This code implements a mutable array, represented as a binary tree.
% Insert a value in logarithmic time and constant space:

% This predicate is used in this program only to create the array,
% although it can alsc be used to access array elements.

ins(T, I, V) :- hash(I, H), ins_2(T, H, V).
ins_2(node (N,W,L,R), I, V) :- ins_2(N, W, L, R, I, V).
ins 2(N, V, _, _, I, V) := I=N, !.

ins_2 (N, _r L, R, I, V) :-
compare (Order, I, N),
ins_2(Order, I, V, L, R) .

ins_2(<, I, Vv, L, _) :- ins_2(L, I, V).
ins_2(>, I, V, _, R) := ins_2(R, I, V).

% Access a value in logarithmic time and constant space:

% This predicate cannot be used to create the array incrementally,
% but it is faster than ins/3.

get (T, I, V) :- hash(I, H), get_2(T, H, V).

get_2(node(N,W,L,R), I, V) :=
compare (Order, I, N),
get_3(0Order, I, V, W, L, R).

get _3(<, I, V, _, L,) :- get_2(L, I, V).
get _3(=, _, V, W, _, _) = V=W.
get 3(>, I, V, _, _ R) :- get_2(R, I, V).

% Update an array in logarithmic time and space:
set (T, I, V, U) :- hash(I, H), set_2(T, H, V, U).

set_2{(leaf, I, V, node(I,V,leaf,leaf)).
set_2(node (N,W,L,R), I, V, nocde(N,NW,NL,NR)) :-
compare (Order, I, N),
set_3(0rder, I, V, W, L, R, NW, NL, NR) .

set_3(<, 1, V, W, L, R, W, NL, R) :- set_2(L, I, V, NL).
set 3(=, , V, _, L, R, V, L, R).
set 3(>, I, V, W, L, R, W, L, NR) :- set 2(R, I, V, NR).

% Prevent any further insertions in the array:

201

seal (leaf) .
seal(node(_,_,L,R)) :- seal(L), seal(R).

% Print values of array in sorted order:
print_array(Term) :-
flat_array(Term, 2, Flat),
print_list (Flat).

print_list([]).

print_list ([(A->B) IL]} :-
write (A), put(9), write{('= '), write(B), nl,
print_list (L).

flat_array(Term, N, Sort) :-

N>0, N1 is N-1,

flat_array(Term, N1, Flat, []), !,

sort (Flat, Sort).
flat_array(leaf, N, [1) := N=:=0, !.
flat_array(node(_,_,_,_), N, "...") = N=:=0, !.
flat_array(Term, _, Term).

flat_array(leaf, _) --> [].
flat_array(node(H,T,L,R), N) =->
flat _array(L, N),
{hash(H, I)},
{flat_array(T, N,)y},
[(I‘>F)] ’
flat_array(R, N).

% Invertible hash function:

% Bit inversion of the integer components of a ground term. Other parts are

% unchanged. This one inverts the low 16 bits. It can be changed by changing
% the last argument of bit_invert/3.

hash(I, H) :- integer(I), !, bit_invert (I, H, 16).

hash(T, H) :- functor(T, Na, Ar), functor(H, Na, Ar), hash_2(Ar, T, H).

hash_2(0, _, _) :- !'.
hash_2(N, T, H) :- N>0,
arg(N, T, X),
arg(N, H, Y),
hash(X, Y),
N1l is N-1,
hash_2(N1, T, H).

bit_invert (0, 0, _) := !.
bit_invert (N, I, B) :- N>0,
L is N>>1,
R is N/\1,
Bl is B-1,
bit_invert (L, LI, Bl),
I is R*(1<<B) + LI.

FEEEEEEELILLIBLLLLLLLELLLLLLLLLEELLLIHLLELILILLLHLETIIHTPLBLIIBLBLLLLLEBB93%%%

202

$ Error handling:

error(L) :-
write (' *** Error: '),

error_loop (L),
write(’ ***'), nl.

error_loop([]).
error_loop([MIL]) :- write(M), error_loop(L) .

%%
% Primitive version of write:
write_rtn -->>

[get (r(0),X)]:regs,
write_rtn(X).

write_rtn(tvar’Vv) -->> ', {write(’_'"), write(V)].

write_rtn{(I) =-->> {int (I)), !, {write(I)}.

write_rtn(tatm” (F/N)) -->> !, {write(’’""), write (F/N), write('’’’)}.
write rtn(tatm"A) -->> !, {write(A)}.

write_rtn(tlst”V) -->> ',
(W is V+1},
{get (t1st~V,Head)] :heap,
[get (tlst"W,Tail)] :heap,
deref rtn(Head, DHead) ,
deref_rtn(Tail, DTail),
{write (' [") },
write_rtn (DHead),
{write (" |')},
write_rtn(DTail),
{write(’'17)}.

write_rtn(tstr-v) =-->> 1!,
{get (tstr"V,tatm” (F/N))]:heap,
{write (F), write(’' (‘)1},
write arg(Vv, 1),
write_args(2, N, V),
{write(’)’)}.

write_args(I, N, _) -->> {I>N}, !.
write_args(I, N, V) -->> {I=<N}, !,
{I1 is I+1},
{write(’,’) },
write_arg(Vv, I),
write_args(Il, N, V).

write_arg(Vv, I) -->>
{W is V+I},
{get (tstr”"W,X)] :heap,
deref_rtn (X, DX),
write_rtn(DX).

%%

203

Appendix D

Semantics of the Berkeley Abstract Machine

1. Introduction

This appendix gives an English-language description of the semantics of the Berkeley Abstract
Machine (BAM) as comments attached to a Prolog specification of its syntax. The BAM is intended to
operate on the same data structures as the Warren Abstract Machine (WAM), therefore some familiarity
with the WAM is an advantage. The semantics are represented by short descriptions supplemented by
pseudo-code and examples where necessary.

The BAM is designed to be simple and easily translated to most general-purpose processors. Many
of its optimizations apply to any processor, for example the streamlined choice point management and the
use of write-once permanent variables to simplify trailing. Although the first target is the VLSI-BAM pro-
cessor, we have built transiators for other processors including the MIPS and the MC68020. Pragmas give
information that is used to obtain the best translation for different processors.

The instruction set is divided in six categories, each in a different section. Each section starts with a
box giving the syntax of the instructions presented in that section. This is followed by a description of the
instructions’ actions. Section 2 gives the unification instructions. Section 3 gives the conditional control
flow instructions. Section 4 gives the arithmetic instructions. Section 5 gives the procedural control flow
instructions. Section 6 gives the pragmas, which contain information that allows better translation. Section
7 gives the user instructions, additions to the BAM that are never output by the compiler but are intended
for the BAM assembly programmer. The last section defines the syntax and semantics of the addressing
modes used in the instructions.

In explaining the semantics, a few assumptions are made about the data representation. An infinite
number of registers is assumed; the translator should map registers of sufficiently large index to memory.
A tagged architecture is assumed; ie. each word contains a tag and a value field which are treated as
separale entities in some instructions and as a unit in other instructions. A load-store architecture is
assumed; almost any architecture has a subset of instructions that satisfy this assumption. The acual
details of the translation 1o the target architecturc are not given since they depend on the characteristics of
the architecture. These characteristics include the number of registers, the addressing modes, hardware
support for certain features (tagging, dereferencing, trailing, etc.), the precise format of choice points and
environments, and so forth.

2 Unification instructions

Unification syntax

instr (deref (V,W))
instr(equal (EA,A,L))

instr(trail(V))
instr (move (EA,VI))
instr (push(EA,R,N))
instr(adda(R,S,T))
instr (pad(N))

instr(fail).

instr(unify_atomic(V,I,L)):

1- var_i(V), var_i(W).
:- ea_e(EA), arg_i(A), 1lbl(L).

instr(unify(v,w,F,G,L)) 1= var_i(V),var_i(W),nv_flag(F),nv_flag(G),lbl(L).

:- var_i(V).

:- ea_m(EA), var_i(VI).

:- ea_p(EA), hreg(R), pos(N).

:- numreg (R), numreg(S), hreg(T).
:= pos(N).

var_i(V), an_atomic(I), lbl(L).

deref (V, W)

equal(X,Y,L)

unify(X,Y,T,U,L)

trail(X)

move (X, Y)

push (X, R,N)

adda (X, ¥,R)

Dereference the argument V and store the result in W. The argument
V is unchanged. This is the only instruction which dereferences its
argument. All other instructions assume that their arguments are
dereferenced. Giving the dereference instruction two arguments
simplifies the implementation of write-once permanent variables and
makes a fast implementation of trailing possible.

Compare X to Y and branch to L if they are not equal. The comparison
is a full word operation, equivalent to *‘eq’’ in Lisp. It is assumed that
X and Y are dereferenced.

Perform a general unification of X and Y, and branch to L if it fails.
Always binds oldest variables to the youngest. In the failure case all
bindings are undone. It is assumed that X and Y are dereferenced. The
two parameters T and U are added as an optimization, and may be
safely ignored. They are flags (with values ’?’, var, or nonva r)
that say whether it is known if X and Y are variables or nonvariables.
With this information a better translation to the target processor can be
done.

Push the address of X on the trail stack if the trail condition X<r (hb)
is satisfied. It is assumed that X is a dereferenced unbound variable,
ie.ithasa tvar tag. Only one comparison is necessary for the trail
check. The state register r (hb) points to the heap location which
was the top of the heap when the most recent choice point was created.

Move X to Y. Depending on the addressing mode, this instruction does
a load or store or creates a tagged value.

Push X on the stack with stack pointer R, then increment R by N. This
instruction is used for write mode unification.

Add X and Y into R. This is a full word operation which never traps,
unlike the arithmetic instructions in section 4. This instruction is used
to allocate space for uninitialized variables. The second argument Y is
an offsct which is scaled properly by the translator (i.e. it is unchanged
for the VLSI-BAM since it is word-addressed, and it is multiplied by 4
for the MIPS, since it is byte-addressed).

205

pad (N) Add N words to the heap pointer r (h). This is a full word operation
which never traps, unlike the arithmetic instructions in section 4. It is
used to ensure the correct alignment of compound terms. The space
reserved by pad will never be stored to. If the increment is a multiple
of the alignment then the pad disappears. The increment is scaled
properly by the translator (see previous description of adda).

unify atomic (X,Y,L) Unify the variable X with the atomic term Y, and branch to L if it fails.
It is assumed that X is dereferenced. The unify atomic instruc-
tion is a special case of general unification that is added to reduce code
size in the VLSI-BAM processor. There is a compiler option to enable
or disable the generation of this instruction.

fail Untrail all variable bindings and jump to the retry address. Do not
restore argument registers. Argument registers are restored by the
choice point management instructions.

3. Conditional control flow instructions

Clause selection syntax

a_tag(T), var_i(V), 1bl(a),1lbl (B},1bl(C).
pos(I), pos(N), I=<N, 1lbl(L), regs (Rs) .
eq_ne(Eq), var_i(V), a_tag(T), 1lbl(L).

instr(switch(T,V,A,B,C))
instr{choice(I/N,Rs,L))
instr(test (Eq,T,V,L))

instr (jump(C,A,B,L)) :- cond(C), numarg_i(A), numarg_i(B),1bl (L) .
instr (move (CH,V)) :- a_var(V), choice_ptr(CH).

instr (cut (V)) - a_var (V).

instr (hash(T,R,N,L}) :- hash_type(T), reg(R), pos (N), lbl(L).
instr(pair(E, L)) :- an_atomic(E), 1lbl(L).

switch(T,R,A,B,C) A three-way branch: branch to the label A, B, C depending on whether
the tag of R is tvar, T, or any other value. The label fail isnot
an address, but denotes a branch to the giobal failure routine. It is
assumed that R is dereferenced.

choice (I/N,RS,L) The choice point management instruction for choosing clause I out of
N clauses. Choice points are of variable size. The semantics of choice
depends on | as follows:

I=1 Create a choice point with retry address L. Save in it the
registers listed in RS.

1<I<N Restore the registers mentioned in RS from the choice point,
ignoring no terms. The no terms make it possible to
know the position of the registers in the choice point without
an explicit size field in the choice point. Update the retry
addressto L.

I=N Restore the registers mentioned in RS, ignoring no terms.
Remove the choice point. (L will always be fail when
I=N.)

206

The above notation is consistent with three possible implementations
(in order of decreasing efficiency): (1) The implementation given
above, in which only those registers listed in RS are saved and restored,
and the choice point does not have a size field. Restoring registers is
done by the choice instructions, not by the fail instruction. The com-
piler does an effort to minimize the set of registers mentioned in RS.
(2) Saving all registers up to the maximum register listed in RS. In this
case the choice points are of variable size, and the no terms in RS are
ignored. The notation is consistent with choice points containing a size
field. (3) Always saving and restoring all registers. In this case the
choice points are of fixed size, the RS argument is ignored, and the fail
instruction restores the registers. In this case the semantics correspond
10 the try, retry, and trust instructions of the WAM.

test (E,T,%X, L) Branch t label L if the tag of X is equal/not equal o T.
Equality/nonequality is selected by the value of E. The label fail is
not an address, but denotes a branch to the global failure routine. It is
assumed that X is dereferenced.

jump (C, X, Y, L) Compare X and Y and jump to L if the comparison is true. The kind of
comparison is given by C. This instruction traps if either argument is
not an integer. The label fail is not an address, but denotes a
branch to the global failure routine.

cut (X) Implement the cut operation. Move X into the r (b) register; also
move the value of r (h) in this choice point into the r (hb) regis-
ter. The latier move is an optimization that reduces the number of
trailed variables, but is not needed for correctness. The compiler
ensures that X contains a pointer to the choice point which was most
recent when the current predicate was entered.

hash(T,R,N,L) Look up register R in a hash table located at label L. The hash table
contains atomic terms (when T=atomic) or the main functors of
structures (when T=structure). If R is not in the hash table, then
execution falls through to the next instruction. Otherwise execution
continues at the label contained in the hash table. When
T=structure the compiler guarantees that R points to a structure.
The following is an example of hash table code:

hash (Type, Reg,N,Lbl) . ; Hash Reg into table at Lbl
; Fall through if not present

label(Lbl). ; The hash table
hash_length(N). ; Length of the hash table
pair(E1l,Ll). ; N entries
pair (E2,L2).
pair (Ei,Li). ; Jump to Li if Reg = Ei
pair (EN,LN).
pair(gE,L) A hash table entry. E is either an atom or the main functor of a struc-

wre. The label L is the address where execution continues if the sup-
plied value matches E.

4. Arithmetic instructions

Arithmetic syntax

instr(add(A,B,V))
instr(sub(A,B,V))
instr(mul(A,B,V))
instr(div(A,B,V))
instr(and(A,B,V))
instr(or(A,B,V))
instr(xor(A,B,V))
instr(not (A,V))

instr(sll(a,B,V))
instr(sra(A,B,V))

:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var (V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).
:—- numarg_i(A), a_var (V).
:- numarg_i(A), numarg_i(B), a_var(V).
:- numarg_i(A), numarg_i(B), a_var(V).

207

All arithmetic instructions assume that their operands are dereferenced and destructively overwrite
the result register. All perform operations on integers with cormrect tag and return a result with correct tag,
trapping if either operand or the result is not a integer. Arithmetic semantics are:

add(X,Y,2)
sub (X, Y, 2)
mul (X,Y,2)
div(X,Y,2)
and (X, Y,2)
or(X,Y,2)
xor(X,Y,2)
sll(X,Y,2)
sra(X,Y,2)
not (X,2)

Z« X+Y
Z« XY
Z X*Y
Z< XY

Z « X and Y (bitwise and)

Z e« XorY (bitwise or)

Z « X xor Y (bitwise exclusive or)

Z « X << Y (logicat shift of X left Y places)

Z « X >>Y (arithmetic shift of X right Y places)
Z « not X (bitwise invert X into Z)

5. Procedural control flow instructions

Procedural syntax

instr (procedure (N/A)) i-
instr(call(N/A)) the
instr(return).
instr(simple_call(N/A))
instr{simple_return).
instr(label (L)) 1=
instr(jump (L)) 1=
instr(allocate (Perms)) 1=
instr(deallocate (Perms)) -

atom(N), natural(A).
atom(N), natural(A).

atom(N), natural(h).

1bl (L) .
1bl (L) .
natural (Perms) .
natural (Perms) .

procedure (P)

call(N/a)

return

The entry point of procedure P.

Call the procedure N/A, assuming a fixed location for the arguments.
The arguments of N/A are sequentially loaded into argument regis-
ters. By default the registers used are numbered from zero, i.e. r(0),
r(1), .. This call is used for all user-defined predicates. It may be
nested, but must be surrounded by an aliocate-deallocate pair when
used in the body of a predicate.

Return from a call.

208

simple_call(N/A) Simple call of the procedure N/A, assuming the same argument pass-
ing as call (N/A). This is a one-level call; it may not be nested. It
does not require a surrounding allocate-deallocate pair. It can be
implemented by saving the return address in a fixed register. This
instruction is useful for interfacing with assembly routines.

simple_return Return from a simple call.

label (L) Denotes a branch destination. The label fail is not an address, but
denotes a branch to the global failure routine.

jump (L) Jump unconditionally to label L. The label may be to the first instruc-
tion of another procedure N/A or it may be intemal to the current pro-
cedure. The label fail is not an address, but denotes a branch to the
global failure routine.

allocate (N) Create an environment of size N on the local stack, i.e. a new set of N
permanent variables which are denoted by p (I). Typically, the only
state registers stored in the environment are r (e) and r(cp). The
environment must NOT contain the r (b) register.

deallocate (N) Remove the top-most environment (which is of size N) from the local
stack.
. Pragmas
Pragma syntax
instr(pragma (Pragma)) :- pragma (Pragma) .

pragma (align(V,N))
pragma (push (term(Size)))
pragma (push (cons)) .
pragma (push (structure (A))) :- pos(A).
pragma (push (variable)) .
pragma (tag(V,T))

pragma (hash_length (Len))

a_var(V), pos(N).
pos (Size).

a_var(Vv), a_tag(T).
pos (Len} .

align(V,N) Al this point the contents of register or permancnt V are a multipic of
N. This information helps the reordcring stage to generaic double-
word load instructions for the VLSI-BAM processor.

hash_length (N) N is the length of the hash table starting at this point.

push (term(S)) At this point a block of push instructions is about to create a term of
size S on the heap.

push (cons) At this point a cons cell (of size two words) is about to be created on

the heap. This information helps the reordering stage to generate
double-word push instructions for the VLSI-BAM processor.

push (structure(A)) At this point a structure of arity A is about to be created on the heap.
This information helps the reordering stage to generate double-word
push instructions for the BAM processor.

push (variable) At this point an unbound, initialized variable is about to be created on
the heap.

hash_length (N) This is the start of a hash table of length N.

209

tag(v,T) The contents of variable V have tag T. This pragma precedes a load or
a store with address V. It is used to make loads and stores efficient for
processors which do not have explicit tag support.

7. User instructions

This section describes the parts of the BAM language that are never output by the compiler, but only
used by the BAM assembly programmer. This is used to write the run-time system in BAM code, so that it
is as portable as possible. Additional instructions are jump to register address, creating and decomposing
tagged words, non-trapping full-word arithmetic, non-trapping full-word unsigned comparison, and trailing
for backtrackable destructive assignment. Additional registers are used in implementing the run-time sys-
tem, and can be mapped to memory locations.

Additional instructions

instr(I) :- user_instr(I).
user_instr (jump_reg(R)) :- reg(R).
user_instr (jump_nt (C,A,B,L)) 1~ cond (C) ,numarg_i (A) ,numarg_i (B),1bl(L).
user_instr(ord(A,B)) :- arg(d), a_var(B).
user_instr(val(T,A,V)) :- a_tag(T), numarg_1i(a), a_var(V).
user_instr(add_nt(&,B,V)) :- numarg_i(A), numarg_i(B), a_var (V).
user_instr(sub_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_instr(and_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var (V).
user_instr(or_nt(A,B,V)) :- numarg_i(A), numarg_i(B), a_var(V).
user_ instr(xor_nt(&,B,V)) :- numarg_i(A), numarg_i(B), a_var (V).
user_instr(not_nt(A,V)) :- numarg_i(A), a_var (V).
user_instr(sll_nt(&,B,V)) :- numarg_i(A), numarg_i(B), a_var (V).
user_instr(sra_nt(A,B,V)) :~- numarg_i(A), numarg_i(B), a_var (V).
user_instr(trail bda(X)) :=- a_var(X).
user_reg (r(A)) :- atom(A).

jump_reg (R) Jump unconditionally to the address stored in register R.

jump_nt (C,A,B,L) Compare A and B and jump to L if the comparison is true. The kind of

comparison is given by C. This instruction does a full word com-
parison and ncver traps. The label fail is not an address, but
denotes a branch 1o the global failure routine.

ord (A, B) Store in B the machine integer that corresponds to the atom or integer
in A. This function strips the tag from A, and therefore depends on the
target machine and the program that is compiled. It is used to convert
atoms and integers into table indices.

val(T,A,V) Create a tagged word in B by combining the tag T and the machine
integer in A. This function is the inverse of ord(a,B): In the
sequence ord(Al,B), val(T,B,A2) the argument A2 will
receive an identical value to Al if T isthetagof Al.

210

add_nt (A,B,V) These arithmetic instructions destructively overwrite the result register

sub_nt (A,B,V) All perform operations on full words, return a full word, and never

and_nt (A,B,V) trap. See the previous section on arithmetic for a description of the
or_nt (A,B,V) operations performed.

xor_nt (A, B,V)
not_nt (A,B,V)
sll nt(A,B,V)
sra_nt (A,B,V)

trail bda (X) Push the address and value of X on the trail stack if the trail condition
X<r (hb) is satisfied. It is assumed that X is dereferenced. When
detrailing, the old value of X is restored. This is used to implement
backtrackable destructive assignment. Only one comparison is neces-
sary for the trail check. The state register r (hb) points to the heap
location which was the top of the heap when the most recent choice
point was created.

8. Instruction arguments

This section defines the syntax of the instructions’ arguments.

Addressing modes for equal, move and push

% Effective address
ea_e(Var) =
ea_e(VarOff) foe

% Effective address
ea_m(Arg) 5=
ea_m(VarOff) i
ea m(Tag™H) &=

% Effective address
ea p(Arg) . 1=
ea p(Tag™H) S
ea p(Tag” (H+D)) 3 -

for equal:
a_var(Var) .
var_off (VarOff) .

for move:

arg (Azg) .

var_off (VarOff) .
pointer_tag(Taqg), heap_ptr (H) .

for push:
arg_i(Arg).
pointer_tag(Tag), heap ptr(H).

pointer_ tag(Tag), pos (D), heap ptr(H).

Other addressing modes
heap ptr(r(h)).
choice_ptr(r(b)).
reg(r(I)) - int(I).
reg(T) - user_reg(T).
hreg (R) - reg(R).
hreg (R) - heap ptr(R).
perm(p (1)) - natural(I).

an_atomic (I)
an_atomic (T A)
an_atomic (T" (F/N))

a_var (Reg)
a_var (Perm)

arg (Arg)
arg (Arg)

var_i(Var)
var_i([Var])

int (I).
atom(A), atom_tag(T).
atom(F), pos(N), atom tag(T).

reg (Reqg) .
perm(Perm) .

a_var (Arg) .
an_atomic (Arg) .

a_var (Var) .
a_var (Var).

arg_i(Arg) - var_i(Arqg).
arg_i(Arg) - an_atomic (Arg).
numreg (Arg) - reg(Arg).
numreg (Arg) - int (Arg) .
numarg_1i (Arg) - var_i(Arg).
numarg_ i (Arg) - int (Arzg).

var_off ([Varl)
var cff ([Var+I})

~a_var(Var).

a_var({Var), pos(I).

a_tag(tvar).

Tag syntax
a_tag(tatm). /* atom */
a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag(tpos). /* nonnegative integer */
a_tag(tstr). /* structure */
a_tag(tlst). /* cons cell */

/*

atom_tag(tatm).

variable */

pointer_tag(tstr).
pointer_tag(tlst).
pointer_tag(tvar).

211

Conditionals syntax
eq_nefeq) .
eq_ne (ne) .
cond(eq). /* Equal */
cond(ne). /* Not equal * /
cond(lts). /* Signed less than */
cond(les). /* Signed less than or equal */
cond(gts) . /* Signed greater than */
cond (ges) . /* Signed greater than or equal */

Miscellaneous syntax

hash_type(atomic).
hash_type(structure).

lbl(fail).
1bl{N/A)
1bl(1(N/A,I))

.- atom(N), natural(A).
.- atom(N), natural(A), int (1) .
nv_flag (nonvar) .

nv_flag(var).

nv_flag('?").

$ A list of register numbers:
% (May contain the value 'no’
regs([1).

regs ([R]Set])

as well)

.~ (int (R); R=no), regs (Set) .

212

Utility predicates

ground (X)

ground(N, _)
ground (N, X)

int (N)
natural (N)
pos (N)

.- nonvar(X),

functor (X, _, N}, ground (N, X).

:- N=:=0.
N=\=0, arg(N,X,R), ground(A), N1 is N-1, gr

.- integer (N).
.- integer (N), N>=0.
.- integer (N), N>0O.

ound (N1,X) .

213

Appendix E

Extended DCG notation:
A tool for applicative programming in Prolog

1. Introduction

This appendix describes a preprocessor that simplifies purely applicative programming in Prolog.
The preprocessor generalizes Prolog’s Definite Clause Grammar (DCG) notation to allow programming
with multiple accumulators. It has been an indispensable tool in the development of the Aquarius Prolog
compiler. Its use is transparent in versions of Prolog that conform to the Edinburgh standard. The prepro-
cessor and a user manual are available by anonymous fip to arpa.berkeley.edu.

It is desirable to program in a purely applicative style, i.e. within the pure logical subset of Prolog.
In that case a predicate’s meaning depends only on its definition, and not on any outside information. This
has two important advantages. First, it greatly simplifies verifying correctness. Simple inspection is often
sufficient. Second, since all information is passed locally, it makes the program more amenable to parallel
execution. However, in practice the number of arguments of predicates written in this style is large, which
makes writing and maintaining them difficult. Two ways of getting around this problem are (1) to encapsu-
late information in compound structures which are passed in single arguments, and (2) to use global instead
of local information. Both of these techniques are commonly used in imperative languages such as C, but
neither is a satisfying way to program in Prolog, for the following reasons:

. Because Prolog is a single-assignment language, modifying encapsulated information requires a
time-consuming copy of the entire structure. Sophisticated optimizations could make this efficient,
but compilers implementing them do not yet exist.

° Using global information destroys the advantages of programming in an applicative style, such as the
ease of mathematical analysis and the suitability for parallel execution.

A third approach with neither of the above disadvantages is extending Prolog to allow an arbitrary number
of arguments without increasing the size of the source code. The extended Prolog is translated into stan-
dard Prolog by a preprocessor. This report describes an extension 1 Prolog’s Definite Clause Grammar
notation that implements this idea.

2. Definite Clause Grammar (DCG) notation

DCG notation was developed as the result of research in natural language parsing and understanding
[Pereira & Warren 1980]. It allows the specification of a class of attributed unification grammars with
semantic actions. These grammars are strictly more powerful than context-free grammars. Prologs that
conform to the Edinburgh standard [Clocksin & Mellish 1981] provide a built-in preprocessor that
translates clauses written in DCG notation into standard Prolog.

An important Prolog programming technique is the accumulator [Sterling & Shapiro 1986]. The
DCG notation implements a single implicit accumulator. For example, the DCG clause: :

term(S) --> factor(A), [+], factor(B), (S is A+B}.
is translated internally into the Prolog clause:
term(S,X1,X4) :- factor(A,X1,X2), X2=[+|X3], factor (B,X3,X4), S is A+B.

Each predicate is given two additional arguments. Chaining together these arguments implements the
accumulator.

214

3. Extending the DCG notation

The DCG notation is a concise and clear way to express the use of a single accumulator. However,
in the development of large Prolog programs I have found it useful to carry more than one accumulator. If
written explicitly, each accumulator requires two additional arguments, and these arguments must be
chained together. This requires the invention of many arbitrary variable names, and the chance of intro-
ducing errors is large. Modifying or extending this code, for example to add another accumulator, is tedi-
ous.

One way 1o solve this problem is to extend the DCG notation. The extension described here allows
for an unlimited number of named accumulators, and handles all the tedium of parameter passing. Each
accumulator requires a single Prolog fact as its declaration. The bulk of the program source does not
depend on the number of accumulators, so maintaining and extending it is simplified. For single accumula-
tors the notation defaults to the standard DCG notation.

Other extensions to the DCG notation have been proposed, for example Extraposition Grammars
[Pereira 1981] and Definite Clause Translation Grammars [Abramson 1984]. The motivation for these
extensions is natural-language analysis, and they are not directly useful as aids in program construction.

4. An example

To illustrate the extended notation, consider the following Prolog predicate which converts infix
expressions containing identifiers, integers, and addition (+) into machine code for a simple stack machine,
and also calculates the size of the code:

expr_code (A+B, S1, S84, C1, C4) :-

expr_code (A, S1, s2, Cl, C2),

expr_code (B, S$2, 83, C2, C3),

C3={plus|C4], /* Explicitly accumulate ‘plus’ */

S4 is S3+1. /* Explicitly add 1 to the size */
expr_code(I, S1, S2, Cl, C2) :-

atomic (I),

Cl=[push(I)|[C2],

S2 is S1+l.

This predicate has two accumulators: the machine code and its size. A sample call is
expr_code (a+3+b, 0, Size,Code, []), which returns the result:

Size = 5
Code = [push(a),push(3),plus,push(b),plus]

With DCG notation it is possible to hide the code accumulator, although the size is still calculated expli-
ciy:
expr_ code (A+B, S1, S4) -->
expr_code (A, S1, S52),
expr_code (B, S2, S83),
[plus], /* Accumulate ‘plus’ in a hidden accumulator */
(S4 is S3+1}. /* Explicitly add 1 to the size */
expr_code (I, S1, S2) -->
{atomic (1)},
[push(I)},
{S2 is S1+1}.

The extended notation hides both accumulators:

215

expr_code (A+B) -->>
expr_code (A),
expr_code (B),
[plus] :code, /* Accumulate ‘plus’ in the code accumulator */
(1) :size. /* Accumulate 1 in the size accumulator */
expr code(I) -->>
{atomic(I)},
[push(I)]:code,
[1}:size.

The translation of this version is identical to the original definition. The preprocessor needs the following
declarations:

acc_info(code, T, Out, In, (Out=[T{In)))./* Accumulator declarations */
acc_info(size, T, In, Out, (Out is In+T)).

pred_info(expr_code, 1, [size,code]). /* Predicate declaration */

For each accumulator this declares the accumulating function, and for each predicate this declares the
name, arity (number of arguments), and accumulators it uses. The order of the In and Out arguments
determines whether accumulation proceeds in the forward direction (see size) or in the reverse direction
(see code). Choosing the proper direction is important if the accumulating function requires some of its
arguments to be instantiated.

5. Concluding remarks

An extension to Prolog’s DCG notation that implements an unlimited number of named accumula-
tors was developed to simplify purely applicative Prolog programming. Comments and suggestions for
improvements are welcome.

6. References
[Abramson 1984]

H. Abramson, ‘‘Definite Clause Translation Grammars,’* Proc. 1984 International Symposium on
Logic Programming, 1984, pp 233-240.

{Clocksin & Mellish 1981]
W.F. Clocksin and C.S. Mellish, ‘‘Programming in Prolog,”” Springer-Verlag, 1981.
[O’Keefe 1988]

R. A. O’Keefe, ‘‘Practical Prolog for Real Programmers,’’ Tutorial 8, Fifth International Conference
Symposium on Logic Programming, Aug. 1988.

[Percira 1981]

F. Pereira, ‘‘Extraposition Grammars,”’ American Journal of Computational Linguistics, 1981, vol.
7,n0. 4, pp 243-255.

[Pereira & Shieber 1981]
F. Pereira and S. Shieber, ‘‘Prolog and Natural-Language Analysis,”” CSLI Lecture Notes 10, 1987.
[Pereira & Warren 1980]

F. Pereira and D.H.D. Warren, ‘*Definite Clause Grammars for Language Analysis—A Survey of the
Formalism and a Comparison with Augmented Transition Networks,”” Journal of Artificial Intelli-
gence, 1980, vol. 13, no. 3, pp 231-278.

[Sterling & Shapiro 1986}
L. Sterling and E. Shapiro, ‘‘Thc Art of Prolog,”” MIT Press. 1986.

216

Extended DCG notation:
A tool for applicative programming in Prolog

User Manual

1. Introduction

This manual describes a preprocessor for Prolog that adds an arbitrary number of arguments 10 a
predicate without increasing the size of the source code. The hidden arguments are of two kinds:

(1) Accumulators, useful for results that are calculated incrementally in many predicates. An accumula-
tor expands into two additional arguments per predicate.

(2) Passed arguments, used to pass global information 0 many predicates. A passed argument expands
into a single additional argument per predicate.

The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by the author in pro-
gram development, and is believed to be relatively bug-free. However, it is still being refined and
extended. The most recent version is available by anonymous ftp to arpa.berkeley.edu or by contacting the
author. Please let me know if you find any bugs. Comments and suggestions for improvements are wel-
come.

2. Using the preprocessor

The preprocessor is implemented in the file accumulator. pl. It must be consulted or compiled
before the programs that use it. In Prologs that conform to the Edinburgh standard, such as C-Prolog or
Quintus Prolog, the user-defined predicate term_expansion /2 is called when consulting or compiling
each clause that is read. With this hook the use of the preprocessor is transparent.

Clauses to be expanded are of the form (Head-->>Body) where Head and Body are the
head and body of the clause. The head is always expanded with all of its hidden arguments. Table 1 sum-
marizes the expansion rules for body goals. In the table, Goal denotes any goal in a clause body, Acc
denotes an accumulator, Pass denotes a passed argument, and Arg denotes either an accumulator or a
passed argument. Hidden arguments of body goals that are not in the head have default values which can
be overridden. For compatibility with DCG notation the accumulator dcg is available by default. If-
then-else is not handled in this version.

The preprocessor assumes the existence of a database of information about the hidden parameters
and the predicates to be expanded. Three relations are recognized: a declaration for each predicate, each
accumulator, and each passed argument. These relations can be put at the beginning of each file (in which
case their scope is the file) or stored in a separate file that is consulted first (in which case their scope is the
whole program).

A short example gives a flavor of what the preprocessor does:

% Declare the accumulator ‘castor’:
acc_info(castor, _, _, _: true).

% Declare the passed argument ‘'pollux’:
pass_info(pollux).

% Declare three predicates using these hidden arguments:
pred_info(p, 1, [castor,pollux]).
pred_info(q, 1, (castor,pollux]).

217

Table 1 — Expansion rules for the preprocessor q
Body goal Action

{Goall} Don’t expand any hidden arguments of Goal.

Goal Expand all of the hidden parameters of Goal that are also in the
head. Those hidden parameters not in the head are given default
values.

Goal:L If Goal has no hidden arguments then force the expansion of all

arguments in L in the order given. If Goal has hidden argu-
ments then expand all of them, using the contents of L to override
the expansion. L is either a term of the form Acc,
Acc (Left,Right), Pass, Pass(Value), or a list of such
terms. When present, the arguments Left, Right,and Value
override the default values of arguments not in the head.)

List ;Acc Accumulate a list of terms in the accumulator Acc.

List Accumulate a list of terms in the accumulator dcg.

X/Arg Unify X with the left term for the accumulator or passed argument
Arg.

Acc/X Unify X with the right term for accumulator Acc.

X/Acc/Y Unify X with the left and ¥ with the right term for the accumula-
or Acc.

insert (X, Y) :Acc Inser the arguments X and Y into the chain implementing the ac-
cumulator Acc. This is useful when the value of the accumulator
changes radically because X and Y may be the arguments of an
arbitrary relation.

insert (X, Y) Insert the arguments X and Y into the chain implementing the ac-

cumulator dcg . This inserts the difference list X-Y into the ac-
cumulated list.

pred_info(r, 1, [castor,pollux]).
% The program:
p(X) ==>> Y is X+1, q(Y¥), r(Y).

This example declares one accumulator, one passed argument, and three predicates using them. The pro-
gram consists of a singlc clause. The preprocessor is used as follows: (bold-face denotes user input)

% cprolog

C-Proleog version 1.5

| ?= ['accumulator.pl’].

accumulator.pl consulted 8780 bytes 1.7 sec.

yes

| ?=- ['example.pl’].
example.pl consulted 668 bytes 0.25 sec.

yes
| 2=

Now the predicate p(X) has been expanded. We can see what it looks like with the listing com-
mand:

| ?= listing(p).

p(X, S1, 83, P) :- Y is X+1, q(Y, S1, S2, P), r(Y¥, S2, S$3, P).
(Variable names have been changed for clarity.) The arguments S1, $2,and S3, which implement the

218

accumulator castor, are chained together. The argument P implements the passed argument. It is
added as an extra argument to each predicate.

In object-oriented terminology the declarations of hidden parameters correspond to classes with a
single method defined for each. Declarations of predicates specify the inheritance of the predicate from
multiple classes, namely each hidden parameter.

3. Declarations

3.1. Declaration of the predicates
Predicates are declared with facts of the following form:

pred_info (Name, Arity, List)

The predicate Name/Arity has the hidden parameters givenin List. The parameters are added in the
order given by List and their names must be atoms.

3.2. Declaration of the accumulators
Accumulators are declared with facts in one of two forms. The short form is:

acc_info (Acc, Term, Left, Right, Joiner)
The long form is:

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart)

In most cases the short form gives sufficient information. It declares the accumulator Acc, which must be
an atom, along with the accumulating function, Joiner, and its arguments Term, the term to be accu-
mulated, and Left & Right, the variables used in chaining.

The long form of acc_info is useful in more complex programs. It contains two additional argu-
ments, LStart and RStart, that are used to give default starting values for an accumulator occurring
in a body goal that does not occur in the head. The starting values are given to the unused accumulator to
ensure that it will execute correctly even though its value is not used. Care is needed to give correct values
for LStart and RStart. For DCG-like list accumulation both may remain unbound.

Two conventions are used for the two variables used in chaining depending on which direction the
accumulation is done. For forward accumulation, Left is the input and Right is the output. For
reverse accumulation, Right isthe inputand Left is the output.

To see how these declarations work, consider the following program:

$ Example illustrating the difference between
% forward and reverse accumulation:

% Declare the accumulators:
acc_info(fwd, T, In, Out, Out=[TiIn]}). % Forward accumulator.
acc_info(rev, T, Out, In, Out=[T|In]). % Reverse accumulator.

% Declare the predicates using them:
pred_info(flist, 1, [fwd]) .
pred_info(rlist, 1, [rev]).

% flist(N, (], List) creates the list [1, 2, ..., N]
flist (0) ==>> [].
flist (N) -->> N>0, [N]:fwd, Nl is N-1, flist (N1l).

% rlist (N, List, []) creates the list (N, ..., 2, 1]
rlist (0) -->> [].
rlist (N} -->> N>0, [N]:rev, N1 is N-1, rlist (N1l).

This defines two accumulators fwd and rev that both accumulate lists, but in different directions. The

219

joiner of both accumulators is the unification Out={[T|In], which adds T to the head of the list In
and creates the list Out. Inaccumulator fwd the output Out is the left argument and the input In is
the right argument. This builds the list in ascending order. Switching the arguments, as in the accumulator
rev, builds the list in reverse. A sample execution gives these results:

| ?- flist (10, [], List).
List = [1,2,3,4,5,6,7,8,9,10]

yes
{ ?=- rlist (10, List, []).

List = [10, 91 8, 71 6151413; 21 1]

yes
fo?2=-

If the joining function is not reversible then the accumulator can only be used in one direction. For exam-
ple, the accumulator add with declaration:
acc_info(add, I, In, Out, Out is I+In).

It can only be used as a forward accumulator. Attempting (o use it in reverse results in an error because the
argument In of the joiner is uninstantiated. The reason for this is that the predicate is/2 is not pure
logic: it requires the expression in its right-hand side to be ground.

3.3. Declaration of the passed arguments
Passed arguments are declared as facts in one of two forms. The short form is:
pass_info(Pass)
The long form is:
pass_info(Pass, PStart)
In most cases the short form is sufficient. It declares a passed argument Pass, that must be an atom. The

long form also contains the starting value PStart that is used to give a default value for a passed argu-
ment in a body goal that does not occur in the head. Most of the time this situation does not occur.

4. Tips and techniques

Usually there will be one clause of pred_info for each predicate in the program. If the program
becomes very large, the number of clauscs of pred_info grows accordingly and can become difficult
to keep consistent. In that case it is useful to remember that a single pred_info clause can summarize
many facts. For example, the following declaration: '

pred_info(_, _, List).

gives all predicates the hidden parameters in List. This keeps programming simple regardless of the
number of hidden parameters.

220

Appendix F

Source code of the C and Prolog benchmarks

%%
/* C version of tak benchmark */
#include <stdio.h>

int tak(x,vy,z)
int X, y, 2;
{
int al, a2, a3:
if (x <= y) return z;
al = tak{(x-1,y,2):
a2 = tak(y-1,z,%);
a3 tak(z-1,x,y);
return tak(al,a2,a3);
}

main()

{
printf ("$d\n", tak(24, 16, 8));

/* Prolog version of tak benchmark */
main :- tak(24,16,8,X), write(X), nl.

tak (X,Y,Z,A) := X =< Y, Z = A.
tak(X,Y¥,Z,A) - X >,

X1l is X 1, tak(X1l,Y,2,Al),
Yl is Y 1, tak(Y1,Z,X,A2),
21 is 2 - 1, tak(zl,X%,Y,A3),
tak (Al,A2,A3,A).

%%
/* C version of fib benchmark */
#include <stdio.h>

int fib(x)

int x;

{
if (x <= 1) return 1:;
return (fib(x-1)+£fib(x-2));

221

main ()
|
printf ("$d\n", £ib(30));

/* Prolog version of fib benchmark */
main :- fib(30,N), write(N), nl.

fib(N,F) :- N =<1, F = 1.
fib(N,F) :- N > 1,
Nl is N - 1, fib(N1,F1),
N2 is N - 2, fib(N2,F2),
F is F1 + F2.

%%
/* C version of hanoi benchmark */
#include <stdio.h>

han(n,a,b,c)
{

int nl;

if (n<=0) return;
nl = n-1;
han(nl,a,c,b);
han(nl,c,b,a):

}
main ()

{
han(20,1,2,3);

/* Prolog version of hanoi benchmark */
main :- han(20,1,2,3).
han(N, , ,) :- N=<0.
han(N,A,B,C) :- N?O,
Nl is N - 1,
han (N1,A,C,B),
han(N1,C,B,3).
%%

/* C version of quicksort benchmark */

222

#include <stdio.h>

int ilist([50) = {27,74,17,33,94,18,46,83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
55,29,39,81,90,37,10, 0,66,51,

7,21,85,27,31,63,75, 4,95,99,
11,28,61,74,18,92,40,53,59, 8};

int list({501;

gsort (1, r)
int 1, s
{

int v, t, i, 3;

if (1<r) {
v=1list[1l]; i=1; J=r+1l;
do {
do i++; while (list[i]l<v);
do j--; while (list[jl>v);

t=list[j]; list(jl=1list[i]; list[i]=t;
} while (3>i);
list[i]=list (3]~ list[j]=1list[1l]; list{1l]}=t;
gsort (1,3-1);
gsort (3+1,r);

}

main ()

{

int i, 3;

for (3=0; 3j<10000; Jj++)
for (i=0;i<50;i++) list([i]=ilist([i];
gsort (0,49);
}
for (i=0; i<50; i++) printf("sd ",listli]);
printf("\n");

/* Prolog version of quicksort benchmark */

main :- range(l,I,9999), gsort (), fail.
main :- gsort(S), write(S), nl.

range(L,L,H) .
range(L,I,H) :- L<H, L1 is L+1, range(Ll,I,H).

gsort (S) :- qsort([27,74,17,33,94,18,46,83,65, 2,
32,53,28,85,99,47,28,82, 6,11,
55,29,39,81,90,37,10, 0,66,51,

7,21,85,27,31,63,75, 4,95,99,

223

11,28,61,74,18,92,40,53,59, 8],S,11]).

gsort ([XIL],R,RO) :-
partition(L,X,L1,L2),
gsort (L2,R1,R0),
gsort (L1,R, {X|R1]).
qsort([]:R:R) .

partition([YIL],X, [Y|L1],L2) :- Y¥Y=<X, partition(L,X,Ll,L2).
partition([Y|{L],X,L1l,{YIL2]) :- Y>X, partition(L,X,L1,L2).
partition([],_, [, [1).

%%

Appendix G

Source code of the Aquarius Prolog compiler

224

Due 1o the size of the source code, it has not been included here. The complete Aquarius system
including source code will be distributed in Spring 1991. The source code of the compiler may also be

obtained from the author.

Files in the compiler

File

Description

accumulator.pl
accumulator cleanup.pl
analyze.pl
clause_code.pl
conditions.pl
compiler.pl
expression.pl
factor.pl
flatten.pl
inline.pl
mutex.pl
peephole.pl
preamble.pl
proc_code.pl
regalloc.pl
segment .pl
selection.pl
standard.pl
synonym.pl
tables.pl
testset.pl
transform_cut.pl
unify.pl
utility.pl

Extended DCG preprocessor
Cleanup file needed for preprocessor
Dataflow analyzer

Clause compiler

Formula manipulation utilities

Top level of compiler, includes type enrichment

Compile arithmetic expressions

Factoring transformation

Flattening transformation

In-line replacement

Mutual exclusion and implication of formulas
BAM transformations (except synonym)
Part of standard form transformation
Predicate compiler

Register allocator

Head-body segmentation and goal reordering
Determinism extraction

Standard form transformation

Synonym optimization

Compilation tables

List of test sets

Cut transformation

Unification compiler

Utility predicates

