ABSTRACTIONS FOR CONTINUOUS MEDIA
IN A NETWORK WINDOW SYSTEM

David P. Anderson
Ramesh Govindan
George Homsy

Computer Science Division, EECS Department
University of California at Berkeley
Berkeley, CA 94720

September 19, 1990

ABSTRACT

ACME is a set of abstractions for the input and output of *‘continuous media’’
(audio and video) by a network window system. In ACME, continuous media
(CM) data is handled by user-level software in both the client and server, and is
conveyed on network connections. The ACME design has the goals of network
transparency, device independence, support for concurrency, and management
policy independence. The ACME abstractions include strands (streams of au-
dio or video data), ropes (combinations of several strands), logical time systems
(reference frames in which several strands or ropes can be played synchronous-
ly), and logical devices (representing microphones, speakers, video cameras,
and video windows).

Sponsored by the California MICRO program, Digital Equipment Corporation, IBM Corporation, Olivetti S.p.A,
Sun Microsystems, and the National Science Foundation.

“I. INTRODUCTION

Future workstations will support continuous media (digital audio and/or video I/O) as well
as discrete media (bitmap display, mouse and keyboard). Our projected *‘typical workstation”’
has a video camera attached to the workstation and aimed at the user, and perhaps an additional
camera for scanning nearby objects. These cameras are interfaced by video digitizers. The
workstation is able (perhaps using a video DSP coprocessor) to compress and decompress video
data in real time to a data rate that can be accommodated by networks and file systems. display-
ing the result within the bitmap display. The workstation also has conversion hardware for audio
input and output, using external speakers or headset, and a microphone or stereo microphone pair.
The workstation also has audio DSP hardware capable of mixing and sample rate conversion.

The multimedia workstation is part of a distributed system in which the other components
(networks and file servers) also have the capability of handling continuous media (audio and
video) in digital form.

There is a need for a software framework that allows these capabilities to be fully exploited.
We say that a system provides integrated digital continuous media (IDCM) if it has the following
properties:

. Applications can be distributed, allowing continuous media data to be shipped in real time
through digital communication networks.

e The software framework includes the essential elements of existing distributed environ-
ments: network-transparent window systems, network file access, naming and authentica-
tion, and so on.

° All system components can be shared concurrently by clients using continuous media: a
user can run multiple applications, a file server can source or sink multiple streams of data,
and the network can carry multiple streams.

This paper describes Abstractions for Continuous Media (ACME), a proposed set of exten-
sions to a network transparent window system for handling CM. Such an extended window sys-
tem (or *‘I/O server’’) is a component of a proposed IDCM software framework [1]. ACME is
intended to be implemented as an extension to a standard network window system such as X or
NeWS [15, 17]. The proposed software organization for such an *“‘ACME server’’ consists of 1) a
modified version of the base window system; 2) a ‘‘window system extension’’ that handles
ACME-specific client requests and replies; 3) an ACME kemel that implements the ACME
abstractions in a window-system-independent way (see Figure 1). The details of the ACME ker-
nel and its interfaces to the WS and WSE are described in [8]. A discussion of the use of ACME
to implement a variety of applications is given in [18].

The ACME abstractions are presented to clients via a set of request, reply, and event mes-
sages that extend the base window system protocol. In this document we are not concerned with
the exact form of these messages, referring to them simply as ‘‘ACME requests’’, *‘ACME
replies’’, and *’ACME events’’.

The paper is organized as follows. Section 2 lists the goals of the ACME design, and Sec-
tion 3 justifies including CM in a window system. Sections 4 and 5 describe the basic ACME
abstractions and their semantics. Sections 6 and 7 describe the details of audio and video I/O
respectively. Section 8 discusses related work, and Section 9 is the conclusion.

2. DESIGN GOALS OF ACME

We now enumerate and discuss some design goals for the ACME design. Some of these
goals are similar to those of window systems; others are particular to CM.

Compatibility with standard window systems. ACME is intended to be implemented as an
extension of an existing window system such as X11 or NeWS. This extension should be

workstation
clients s brotwcol, ACME server
Q WS protocol extensiops Base Window i | discrete media
h : System (WS) i |7 /O hardware

Window System

O O ~ continuous T
media data :

Extension (WSE)

JJ—J continous media
ACME kemel

* [/O hardware

..

Figure 1: An ACME server consists of a base window system such as X11 or NeWS, a window
system extension (WSE), and the ACME kemel.

backwards compatible, allowing existing applications to be used and to coexist with applications
that use CM.

Window system independence. It must be possible to add ACME to a wide range of window
systems, including at least NeWS and X11.

Concurrency. ACME should support multiple concurrent clients, and multiple I/O streams per
client.

Network transparency. The source of CM data to be displayed, or the sink of input CM data,
should not be constrained to be on the server machine. This can be accomplished by using net-
work communication channels to convey CM data between client and server.

Transport Protocol Independence. The network connections used for CM data should not be
restricted to a particular transport protocol.

WS Protocol Independence. CM data should not be required to be packaged as messages of the
underlying window system. In many cases there is a *‘native’” format for CM data (e.g., DVIfile
or CD sample stream). It would be costly and nonproductive to repackage this data as window
system messages, and would place an unnecessary requirement on sources and sinks of CM data.

Data Representation Independence. Because there are many different CM data representations
(i.e., encodings) in current use, the ACME server should not mandate a particular representation
of CM data. Instead, an extensible range of representations should be defined.

Support for Interleaving. Temporally synchronized CM strands are often interleaved onto a
single data stream for storage and/or transmission purposes. The ACME server should support
/O directly in these interleaved formats, so that the client does not have to independently
separate or merge the strands.

Synchronization. There must be some method of allowing the client (or multiple clients) to
display a number of CM data streams in a synchronized fashion. The streams must be able to be

started synchronously, and must be kept in lockstep by the ACME server.

- Management Functionality. Modem window systems allow a window manager to supervise the
layout and manipulation of windows. They provide mechanisms to support window managers,
but do not dictate any particular management policy. These mechanisms should be extended to
CM, allowing the window manager to control attributes of CM /O (volume levels, input direc-
tion, video properties). For example, possible management policies for audio output include 1)
play only the output of the application that is the input focus; 2) play all output but attenuate the
output of occluded windows; 3) play only the output of the window containing the mouse cursor.
The window manager should be able to implement any of these.

Support for Resource Reservation. CM data has associated performance (throughput, delay)
requirements. To reliably satisfy such requirements, the overall system design may allow clients
to reserve part of the capacity of the hardware resources (network, CPU, DSP, etc.) that handle
CM data [3,6]. An ACME server would govem critical resources (CPU and DSP in the server
machine). Earlier work in the ACME project has defined a CM-resource model for describing
workload and delay, and for distributed negotiated resource reservation [2]. However, work in
this area is at an early stage, and there is no standard method for resource reservation. ACME
should, therefore, be able to participate in a resource reservation protocol, but should not be res-
tricted to a particular protocol.

3. WHY HANDLE CONTINUOUS MEDIA IN A WINDOW SYSTEM?

Given the design goals described in the previous section, we believe that ACME should be
implemented as part of a network window system, rather than in a separate server or library. A
pragmatic argument for this position is that a separate server would have to duplicate many of the
functions (connection management, multiplexing of client requests, event reporting) of a window
system. The implementation of these functions in modem window systems such as X and NeWS
is the result of considerable thought and effort.

Other reasons for handling CM in a window system are discussed in the following sections.
In summary, we argue that the role of *‘window server’’ should be expanded to that of “‘I/O
server’”’. Such an IDCM I/O server provides graphical, textual, video and audio output capabili-
ties and screen and speaker management functions to clients, and provides a method of distribut-
ing keyboard, mouse, microphone, and video camera input to interested clients. In this way, the
client application that makes use of many different media is presented with a fairly uniform I/O
interface across those different media.

3.1. Spatial Coordination of Discrete and Continuous Media

A CM application may generate concurrent and intermixed output of CM data, graphics and
text. It must be possible to freely intermingle these media types on a single screen. Given
display hardware with the ability to display! multiple streams of CM data concurrently, it would
be possible to write a CM /O server disjoint from the window system. However, in order to
change dynamically the areas of the screen in which video is being displayed, and to support
clipped video output to a tree-structured hierarchy of ‘‘video windows”’, the CM /O server
would have to duplicate much of the software already present in the window system.

Moreover, if graphics and text reside in the same framebuffer as the video output, the win-
dow system and the video display system software must interact to resolve screen area conflicts
between overlapping video windows and graphics/text windows. If overlay capability is desired,

! By *‘display’’ we mean whatever method of presentation is appropriate for the medium. For audio this would
be output to a speaker; for video, output to (an area of) the workstation screen.

the situation becomes even more complex: the two servers must exchange arbitrarily shaped
screen areas (for ‘‘chroma-key’’ type overlays) or blendmaps (alpha-channel overlays for translu-
cence). For efficiency, it is clear that at least shared memory is needed.

3.2. Temporal Coordination of Discrete and Continuous Media

Some applications must synchronize text and/or graphics output with video and/or audio
output. For instance, consider an application that associates textual subtitles with given ranges of
frame numbers in a movie, and displays the subtitles as the movie is viewed. This type of syn-
chronization is best provided by an integrated I/O server which can accept requests of the type:
““When CM stream X reaches time T, perform event R”".

Synchronization of CM I/O with discrete 1/O is also important for input. Consider an appli-
cation that uses speech recognition to respond to spoken user requests. Such an application might
want to use the keyboard modifier keys, the mouse position, or the mouse buttons to modify the
meaning of the user request. For example, a window manager might respond to the verbal com-
mand ‘‘move’’ by allowing the user to move the window being pointed to by the mouse. The
single-server approach simplifies event serialization and timestamping.

3.3. Integration of Management Functions

Standard window systems supply management functions such as window moving, resizing,
mapping (‘‘opening’’), and unmapping (*‘closing’’). In addition, they provide mechanisms for
directing keyboard and mouse input to interested client(s). We believe that users and applications
will want to manage video images in the same way as graphic windows. By providing integrated
management functions for windows and video images, the complexity of both client and server
software will be reduced.

Tuming to input management, it may be desirable to implement CM input management
policies that are based on the state of the window system. For instance, one simple management
policy for audio input, paralleling a common keyboard input management policy, would be as
follows: If the pointer is in a top level window, audio input is directed to the client which owns
that window; otherwise, audio input is directed to the window manager. This is done most easily
in the single-server approach.

3.4. Input/Output of Combined CM Streams

Audio and video data that are intended to be temporally synchronized are most often inter-
leaved in a single byte stream. If audio and video output were handled by separate servers, then it
would be necessary for the client to separate the audio from the video and send them on separate
connections. It is simpler and more efficient to have the client send the interleaved stream to a
single server. A similar argument applies to input.

4. BASIC ABSTRACTIONS

This section describes the basic ACME abstractions, which are summarized in the follow-
ing table.

Name Brief Description Created Dynamically
CM Connection Transport-level connection for CM data Yes
Strand type Encoding of single-track CM data on byte stream No
Rope type Interleaved encoding of multiple strands No
PDev Physical CM /O device No
LDev Logical CM /O device Yes
CLDev Set of LDevs as source or sink of rope Yes
LTS Time system for synchronizing 1/O streams Yes

Instances of these abstract types have IDs that are globally unique (strand and rope types) or
unique to a particular server. The mechanism for creating and manipulating instances is WS
dependent. Instances may have attributes that can be read and, in most cases, written.

4.1. Continuous Media Connections

A continuous media connection is a transport-level connection that conveys CM data in a
““native’’ (WS-independent) format. The CM connection establishment mechanism is part of the
WS extension. This extension must at least passively accept connections; it may also provide
operations for actively establishing connections.

For CM data, the features required of transport protocols often differ from those of discrete
media. CM transport protocols need not be reliable if absolute encodings are used, since small
errors will not, in general, affect the perceived quality of the data (this is discussed further
below). Further, if the sending rate is limited, the network connection provides throughput and
delay bounds, and the receive processing has performance guarantees, then CM transport proto-
cols may not need to provide flow control, CM transport protocols must support at least
sequenced delivery.

An ACME server can support any set of transport protocols (the current implementation
supports only TCP). If more than one transport protocol is supported by an ACME server, clients
must be able to determine whether each protocol is reliable, since this may determine what CM
data representations can be used.

4.2. Strands and Ropes

A strand is a single “‘track” of CM data encoded on a byte stream (e.g., a monaural or
stereo audio stream, or a video track). A strand format is a specification of this encoding. Audio
and video have separate sets of strand formats. Each set of strand formats can be divided into
classes where each class corresponds to an algorithmically distinct encoding method. Classes
may have parameters. A strand format is a combination of a class and a set of parameter values.

Several strands of CM data may be linked in a temporally ‘‘parallel’” manner. That is, the
strands are intended to be played in synchrony with each other, whether or not all are used simul-
taneously. Examples include:

e One video strand with one audio strand (e.g., monaural ‘“TV program’’ or *‘movie’’).
e More than one audio strand with one video strand (e.g., stereo or bilingual program).
e Many audio strands (e.g., 24 track audio studio master tape).

e Many audio and video strands (e.g., audio/video postproduction clips).

e Many video strands (e.g., different, simultaneous views of the same real world scene).

Strands associated in this manner are often stored and transmitted on a single byte stream;
sections of the strands are interleaved onto this stream. This allows several parallel strands to
coexist in a single file and to be transmitted over the same network connection. The sequential
nature of the storage or transmission medium guarantees that the ordering of the interleaved

“chunks is preserved over storage, retrieval, and transmission. The data rates of the individual
strands are also matched over the long term. These properties simplify synchronization of the
strands.

In ACME, such a combination of strands is called a rope. The method of combination is
called a rope format. An example of a rope format is DVI AVSS format [11]. A rope format
says nothing about the formats of the individual strands: A given rope format can be used with
different types of strands, and conversely the same set of strands could be combined with dif-
ferent rope formats. Each ACME server can support any set of rope formats. The set of sup-
ported rope formats may be queried by clients.

Strand and rope formats can be partitioned into two classes: error tolerant and error
intolerant. A error tolerant strand has the property that, if the strand is being displayed and data
errors occur, the display will retum to its proper value within finite time. An error intolerant
strand is one that never recovers from data errors.

Error tolerant strand and rope formats have an error intolerance period. the maximum
length of time following a data error during which the display is perceptibly different than what it
would be had the error not occurred. For example, absolute encoded NTSC video has an error
intolerance period of 1/30 of a second, and differentially encoded DVI video with absolutely
encoded keyframes inserted every fifteenth frame has an error intolerance period of 1/2 second.
Differentially encoded video with no keyframes except the first is error intolerant. An error
intolerant strand can be thought of as having an infinite error intolerance period.

Some combinations of transport protocol and strand or rope format (e.g., an unreliable tran-
sport protocol and an error intolerant strand format) are unacceptable to some clients. Clients
must decide what data format(s) and transport protocols to use, based on their needs.

4.3. Physical Devices (PDevs)

A physical CM device (PDev) is a CM hardware device accessed via the ACME server. A
PDev is either a video output device (video-capable display), a video input device (video cam-
era), an audio output device (speaker), or audio input device (microphone). Each PDev has a
physical scope indicating roughly what area of physical space is served by the PDev. The values
for physical scope include the following.

value example

personal a headset or head-mounted display
workstation acamera mounted on the workstation
room a wall-mounted loudspeaker

mobile a hand-held camera

When a stereo speaker pair or microphone pair is most easily accessed as a single entity
(i.e., if it sources or sinks an interleaved sample stream) then it is represented as a single PDev. If
hardware supports it, the separate channels of a stereo PDev may also be available as monaural
PDevs.

Client programs may query the ACME server for the devices supported and their charac-
teristics. The query returns a list with one entry per PDev. The entry for a PDev includes the
PDev ID and a list of strand formats that the PDev is capable of sourcing or sinking. In some
cases the server will have to do work in software or DSP (e.g., sample rate conversion) to handle
a strand format. The list of strand formats for a given PDev is ordered by the amount of work
needed for such conversion.

4.4. Logical Devices (LDevs)

) A logical continuous media device (LDev) represents a virtual CM I/O device. There are
several classes of LDevs: players and listeners for digital audio (see Section 6), and VWins and
VCams for digital video (see Section 7). Players and listeners may be either stereo or monaural.

Multiple LDevs may be multiplexed onto a single PDev. The nature of this multiplexing
depends on the LDev class. VWins are like windows; they spatially share a display. If more than
one player is mapped to a physical speaker, the outputs are mixed (see Section 6) and played
together. On input, if more than one LDev (VCam or listener) share a PDev, separate copies of
the input (perhaps in different encodings) are sent on CM connections associated with each of the
LDevs.

Each LDev has associated with it a set of attributes. LDev attributes are of two types: gen-
eric attributes (associated with every LDev) and specific attributes that depend on the class of the
LDev. Specific attributes vary with the class of the LDev (see Sections 6 and 7). The generic
attributes of an LDev are:

e PDev: The physical device to which the LDev is to be mapped. This attribute cannot be
changed.

e Strand formar. The representation of the data to be input from or output to the LDev. This
must be a format supported by the PDev.

The LDevs of input type (VCam and Listener) have a local echo device attribute. This attri-
bute, if non-null, is the ID of an output LDev with the same strand format. Data gathered from
the input LDev is echoed directly to the local echo device, intemally to the server. This feature
can be used to provide *‘side tone’’ in a headset with microphone, local echo of video input, ezc.
The output LDev must not be a member of any CLDev (see Section 4.5).

The generic operations create, destroy, map and unmap can be performed on LDevs. Map
and unmap are used to start and stop /O to or from the corresponding PDev. They return the log-
ical time at which the transition actually occurs (see Section 4.6). When an input LDev is not
mapped, no data is sent to the corresponding CM connection or local echo LDev. When a player
is not mapped, the output level retumns slowly to zero, avoiding clicks. When a VWin is not
mapped, its visible area continues to display the last complete frame; the window system may
overwrite this area if desired. A refresh operation can be performed on unmapped VWins, caus-
ing the last displayed frame to be redrawn.

Some strand formats embed synchronization points in the data. For these formats, an event
is sent to the client when such a point is encountered during playback of the strand data. The
event includes the time at which the synchronization point was encountered (see Section 4.6), and
optionally some event-specific data, which can be interpreted by the client.

4.5. Composite Logical Devices (CLDevs)

A composite LDev (CLDev) is an abstraction for the source or sink of data on a particular
CM connection. Each CLDev has an ordered list of constituent LDevs, and is associated with a
CM connection. 1f the CM connection carries a rope, each constituent LDev sources or sinks a
strand of the rope. If the CM data is a strand, the list contains only a single LDev. There are two
classes of CLDevs: Input and Outputr. If the type of the CLDev is output, data received on the
CM connection is treated as output to be rendered on the constituent LDevs. Conversely, if the
type of the CLDev is input, any output generated by the constituent LDevs will be combined into
the appropriate rope format and sent over the connection attached to the CLDev.

The generic operations on CLDevs include create, destroy, map, unmap, and clear. The
create operation takes the class of the CLDev and a list of constituent LDevs. The destroy opera-
tion deletes the CLDev; it unmaps the constituent LDevs but does not destroy them. The map

operation takes a bitmask specifying the map state of the constituent LDevs. I/O begins simul-
taneously for all mapped LDevs, and the logical time at which the map operation took effect (see
Section 5) is returned. The unmap operation unmaps all constituent LDevs. The clear operation
flushes all buffered data for an output CLDev. An LDev can only be part of a single CLDev at
any time. An LDev that is part of an existing CLDev cannot be destroyed. The attributes of a
CLDev include:

e Rope formar: The format of data to or from the CLDev. Each LDev in the CLDeyv is asso-
ciated with the corresponding strand in the rope.

° CM connection: The CM connection over which data of the rope is sent or received.
. Logical time system: Each CLDev is associated with a logical time system (see Section 4.6).

Like strand formats, rope formats may contain embedded synchronization points. An event
is sent to the client when such a point is encountered during playback of the strand data.

4.6. Logical Time Systems

An LTS represents a temporal coordinate system in which the timing of I/O is expressed.
An LTS is created by a client, and is started at some later time. The rate of progress of an LTS
may be determined by the I/O devices, rather than by a realtime clock. Each CLDeyv is associated
with exactly one LTS, and all timing information referring to a CLDev is expressed relative to the
start of its LTS. The LTS provides a unified framework for the following functions:

Output synchronization. The strands of a rope are automatically synchronized by the
ACME server. To synchronize output of a set of ropes, a client associates their CLDevs with a
single LTS. The client notifies the ACME server that it is ready for the server to start the LTS,
and begins sending data on the CM connections. When all CLDevs have received enough data to
prevent starvation, and when all LDevs are ready to display data, the servers starts display of all
the LDevs simultaneously. An event containing the start time (in real-time units) of the LTS is
sent to the client when the LTS is started.

Input synchronization. An LTS can also be used to synchronize input. Input data sent on
CLDevs in the same LTS are assigned equal timestamps for input gathered at the same moment.
(Timestamps need not be explicit: The timestamp of a sample in an audio data stream, for exam-
ple, can be inferred by the sample index.) When the client starts the LTS, data collection from the
various input LDevs is started. An event containing the start time of the LTS is sent to the client
when the LTS is started.

Relative timing of discrete input events. Clients (or the WSE) can query the current value
of an LTS. A WSE could use this to generate input events with LTS time-tags. For example, a
video postproduction system might allow the user to set *‘marks’’ in a video clip by clicking a
mouse while it is playing. This feature would allow the application to easily obtain the time posi-
tion of a mouse click within the video clip.

Timed notification. A client can request an event when an LTS reaches a certain value.

Deferred requests. A client can schedule ACME requests (or base window system
requests) for deferred execution at some value of an LTS. The time synchronization of this type
of future scheduling is tighter than that provided by the alarm clock, since no network delay is
incurred.

The last two features might be used for a subtitling application: A video sequence is
displayed by a CLDev, and the client sends WS requests to display the subtitles. The client reads
all the subtitles and their timestamps from a file, and schedules them to be displayed at the
appropriate future times. Suppose, however, that the material to be subtitled is very long, and
that the client does not want to immediately read in all the subtitles and schedule them for
display. The client could instead read in the first five minutes’ worth of subtitles and schedule

them, and then request an alarm event four minutes hence. When the alarm event is received, the
client would read and schedule the next five minutes of subtitles, schedule another alarm, ezc.

4.7. Examples of Continuous Media /O

In a simple scenario (see Figure 2), a client plays a monaural audio stream through a
speaker on the ACME server. To do this, it first establishes a CM connection over which the
audio data is to be sent. It creates a player LDev, associates a PDev with the LDev, and creates
an LTS. It creates a CLDev with the appropriate strand, CM connection, and LTS attributes. The
CLDev includes only the player LDev. The client starts the LTS, maps the CLDev, and begins
sending data over the CM connection. The ACME server converts this data to sound and plays it
through the speaker.

In a slightly more complex case (see Figure 3), CM data is shipped to the ACME server
from a remote ‘‘third party”’, in this case a file server, which need not speak the WS protocol.
This is done to eliminate data handling overhead in the client and to reduce overall delay. The
client establishes a CM connection from the file server to the ACME server. The rest of the steps
are as above. Finally, the client issues a command to the file server to start sending the data on

messages
b) client é%hgz
server apstractions

........... establish CM connection .,

create LDev and set attributes >

create LTS >

CM connection

i atiach create CLDev and set attributes >

LDev CLDev LTS Map CLDev >

i map start LTS >

PDev send data >

v v
time

—>» ACME Protocol Requests
—>» (CMdata
""" ¥ Other

Figure 2: To output a stream of CM data, the client must 1) create a CM connection, a Logical
Device (LDev), a Logical Time System (LTS), and a Compound Logical Device (CLDev); 2)
map the LDev to a Physical Device (PDev); and 3) send data on the CM connection.

10

client ACME server file server

setup

create LDev and set attributes

create LTS

create CLDev and set attributes

map CLDev

start LTS

e mmeesemmememeeeasceceeatesmmmmmmmme=sessm-mmmc-cesssssenn PRSPPI

send data

<

Figure 3: A client can arrange for CM data to be sent to an ACME server from a ‘‘third party’’,
such as a file server, that need not speak the window system protocol.

the CM connection.

In the example shown in Figure 4, the client wants to output a combination of continuous
media streams, say video with stereo audio. This case is similar to the first example, except that
the client creates three LDevs (two for audio, one for video), and the CLDev consists of all three
LDevs. In the first example no rope format was specified (since only one LDev was used), but in
this case the client must specify a rope format when creating the CLDev. When data is received
over the CM connection, it is disassembled into its component strands, which are displayed on
their corresponding output devices.

Figure 5 shows an example in which scveral strands, each coming from a different source,
are played synchronously. This is done by creating CLDevs to handle the different strands , and
associating each of the CLDevs with the a common LTS. The ACME server ensures that the
strands are synchronized as explained above.

4.8. Resource Reservation

As mentioned in Section 2, it may be desirable for ACME to participate in a resource reser-
vation protocol. Such a protocol would allow CM clients to reserve the resources (i.e., network
bandwidth, CPU time, DSP time, etc.) needed to perform their tasks. ACME servers may support
one or more such protocols. If a reservation protocol is present, the client can interpose a
resource reservation request between the creation request for a CLDev and the actual use of the
CLDev. This resource reservation request simply informs the server that the client has set up
whatever CLDevs it needs and that the server should now make appropriate resource reservations
to meet the performance requirements of the LDevs and CLDevs. The exact form of this request

11

server abstractions messages
. . ACME
CM connection client Server
T Tope establish CM connection .
[LTS J—>{CLDev Qi)rmat create LDev }
LDev LDev LDev create LTS >
i I 1 create CLDev and set attributes
PDev PDev PDev map CLDev (map all LDevs) >
start LTS .
send data >

Figure 4: A ‘‘rope’’ interleaves several CM data streams. When a rope is sent to a Compound
Logical Device (CLDev), it is separated into strands, which are played synchronously on several
PDevs.

12

Logical Time System
CM Connection CM Connection CM Connection
CLDev CLDev CLDev
LDev LDev LDev
PDev PDev PDev

Figure 5: A Logical Time System (LTS) can be used to synchronize playback of multiple
streams coming from different sources.

will vary with the resource reservation protocol being used.

As an example, the Session Reservation Protocol (SRP) [3] is a resource reservation proto-
col suitable for making these kinds of reservations. SRP is based on the CM-resource model {2].
In this model, each resource (CPU, DSP, network, etc.) is represented by a resource manager.
The manager allows sessions to be established, each representing a reservation of part of the
capacity of the resource. The session request specifies the workload of the session. Session
requests may be granted or refused. End-to-end sessions (providing end-to-end throughput and
delay guarantees) may be established using a two-phase resource reservation protocol.

To let ACME clients use SRP to reserve server resources, it suffices to introduce two new
requests: One to establish input sessions and another to establish output sessions. To establish an
output session the client sends a session ID and a CM connection ID. When the server receives a
session reservation request, it reserves local resources based on the processing and device require-
ments of the LDevs associated with the CM connection. To establish an input session, the client
sends a CM connection ID and a destination address. The server, upon receipt of this request,
reserves local resources, allocates an SRP scssion ID, and initiates establishment of an end-to-end
session to the remote host (the sink of the CM data).

5. TEMPORAL SEMANTICS OF CM INPUT AND OUTPUT

The semantics of CM 1/O are necessarily more complex than those of discrete media. We
must specify not only the order in which events occur, but also the times and rates at which they
occur. Unlike discrete [/O, CM data may legitimately be discarded by the server, and the server
semantics must specify when this may happen. In this section we give an informal description of
the semantics of an ACME server. We assume that strands have a constant data rate. However,
the semantics can be generalized to variable data rate strands, provided the maximum data rate is

13

bounded?.

ACME output semantics have two main components: the timing/discarding semantics
define the time when a given piece of CM data is displayed (if it displayed at all), and when itis
discarded. The mapping semantics define the time intervals during which display actually occurs.
There are corresponding semantics for input as well. The two components of the semantics are
independent. The display time for a given piece of data is determined by the timing of the data
arriving at the server, not by the map state of the LDev. This is important because the time to
service a map or unmap request is nondeterministic. If map state affected display time, display
time would also be nondeterministic, making synchronization impossible.

We define a conceptual model of an output CLDev, a diagram of which is shown in Figure
6. (This model is not meant to reflect the implementation of a CLDeyv, but to illustrate its
behavior.) Incoming data from a CM connection traverses a counter and flows into a rope buffer.
Data from the rope buffer is split into constituent strands and sent to PDevs. Each PDev has a
display device, a bit bucket (conceptually, a null display device), and an optional private queue.
The private queue is needed in some cases because, for some differentially encoded strands with
non-constant data rates, a certain number of messages must be accumulated before display may
begin.

We define the mapping semantics as follows. The map state of a strand is determined by
the map and unmap operations on the corresponding CLDev and LDev. These take place in the
order requested, but with no timing guarantees. The mapped/unmapped state of each strand
determines whether output is directed to the display device or to the bit bucket; it is completely
independent of the flow of data on the connection and through the rope buffer.

Data Counter

Rope Buffer Private queue
VWin
> [TT1]
Bit bucket
CM A T
Connection
near empty pt.
Bit bucket
near full pt.
VWin
Bit bucket

Figure 6: To define the semantics of output, an abstract model of the CLDev is used.

2 In most cases, this can be done by substituting temporal size for physical size.

14

5.1. Flow Control and Data Discarding

Each CLDev has three attributes relating to the rope buffer, specified by the client when the
CLDev is created:

° Buffer Size: The (conceptual) size of the rope buffer.

e Near empty point: If the amount of data in the buffer falls below the near empty point, the
server sends the client a CLDevStartData event indicating the possibility of buffer
underflow. For most applications, the client should set the near empty point so that it can
ensure that the flow of data is started before the buffer actually underflows.

e Near full point: If the data in the buffer goes above the near full point, the server sends the
client a CLDevStopData event indicating the possibility of buffer overflow. For most
applications, the client should set the near full point low enough to ensure that the flow of
data can be stopped before the buffer actually overflows.

If the rope buffer actually does overflow or underflow, an event is sent to the client informing it
of the rope buffer status. For a given burstiness® and data rate, there is 2 minimum buffer size to
ensure that packets are not lost due to buffer overrun. If the client-supplied buffer size is smaller
than this limit, the server transparently pads the buffer to this size, and the near full point is
adjusted upward accordingly.

5.1.1. Timing Semantics

An output CLDev has two states: Ready and NotReady. A CLDev is Ready if and only
if it is ready to immediately display synchronized output on all its LDevs. This is true when the
following two conditions are met:

e Enough data has arrived on the CM connection to guarantee that the CLDev will not starve
for data at some future time. The amount of data required, display_start_amount, depends

on the parameters of the CM connection®.
° All PDevs have done any initial processing required to fill their private queues.

A CLDev is initially in the NotReady state, the PDev private queues are empty, and the
data counter is at zero. When data arrives on the CM connection, the data counter is incremented
accordingly, data is placed in the rope buffer, and the PDevs start filling their private queues. As
soon as display start_amount of data has been counted and all PDevs associated with the
CLDev have filled their private queues, the CLDev makes the transition to the Ready state.

Data is then displayed or discarded (depending on the map state of the LDevs) by the PDevs
in earliest-first order at a rate determined by the characteristics of the PDevs. If the rope buffer
overflows, data is discarded in earliest-first order. If the rope buffer underflows, device specific
action takes place: For video output, the last frame displayed may be repeated; for audio output,
zero-valued samples may be output.

The private data queues are non-shrinking: They are initially empty, and fill up as data
arrives in the rope buffer. They do not shrink if the buffer underflows after the CLDev has
reached the Ready state. This is so that output of all PDevs will remain synchronized when the
rope buffer recovers from the underflow condition,

3 We use the term loosely. The CM-resource model [2] has a workahead limit parameter that captures our in-
tended meaning.

4 The CM-resource model makes such non-starvation guarantees possible [2].

15

A transition from Ready stale to NotReady state takes place if the client sends a request
to clear the buffer associated with the CLDev. This request instantaneously resets the data
counter to zero, discards all data in the rope buffer and the private data queues, and stops display
on all PDevs.

The semantics for input CLDevs are simpler. Each input PDev has an optional fixed-length
private queue. Conceptually, the private queue starts filling up when the server is started. An
input CLDev transits from the NotReady to the Ready state when all the private queues of
PDeyvs associated with the CLDev are full. When the CLDev is mapped and Ready, the indivi-
dual strands are combined into a rope and placed in the rope buffer. The server simultaneously
starts sending data from the rope buffer over the CM connection. If the CM connection is flow-
controlled and the client does not read the CM data sent on the connection, the rope buffer may
overflow. When the near-full point is reached, the server sends a CLDevReadData event. If the
rope buffer overflows, data is discarded in earliest-first order. When the unmap request is
received, the server stops sending data on the CM connection and stops reading data into the rope
buffer. The near empty point attribute has no significance for input CLDevs.

5.2. Logical Time Systems Semantics

The timing semantics for output CLDevs can be extended to multiple output CLDevs
mapped onto the same LTS by modifying the condition for the transition from NotReady to
Ready for each CLDev as follows. All CLDevs transit to the Ready state only when all their
data counters have counted their respective display_start_amount of data, and all their associated
PDevs are ready to display. This ensures that all the CLDevs are synchronized initially.

However, if one of the CLDevs receives a clear request, synchronization is lost. This is also
true if at some point data is lost due to buffer overflow or underflow. In the current design, we do
not attempt to define mechanisms for re-synchronizing such streams. Such mechanisms may be
provided in the future in any of a number of ways. It may be possible to define more control
operations on LTSs. In particular, we might allow a client to stop and restart an LTS. Thus, to
resynchronize after clearing a buffer, the client would stop the LTS and then restart the LTS.
Restarting the LTS would involve waiting for all CLDevs to become Ready, automatically syn-
chronizing them.

The same effect could be achieved by changing the semantics of clear. For instance, when
the buffer of one of the CLDevs is cleared, so is that of all other CLDevs that are mapped to the
same LTS. Altematively, if the buffer of one of the CLDevs is cleared, it does not return to the
Ready state until all other CLDevs have been cleared also.

6. AUDIO FEATURES OF ACME

The set of audio strand types in our current design includes uncompressed encodings with
constant sampling rate and constant bits per sample. Four parameters suffice to characterize
audio strands in this class:

sampling rate (samples per second)

bits per sample

number of channels (it is assumed that samples from different channels are interleaved)
encoding technique (PCM, u-law, A-law, differential PCM, etc.)

There are two classes of audio LDevs: players (abstract speakers) and listeners (abstract
microphones). The attributes of an audio LDev include a 2x2 matrix representing volume control
for players and recording level for listeners. The matrix encodes a linear transformation from
stereo input to stereo output (see Figure 7). If input is monaural, it is duplicated into both input
channels. If output is monaural, the two output channels are averaged. The identity matrix can
be used as a default since it will work reasonably for any combination of stereo and mono.

16

Stereo input (left channel) Stereo output (left channel)
X
Y
volume
Mono input control + @——)’ Mono output
matrix .
Stereo input (right channel) Stereo output (right channel)

Figure 7: The attributes of an audio LDev include a 2x2 volume control matrix mapping stereo
input to stereo output.

Clients can use other values to vary the sound-stage width and the perceived position. Attributes
for other effects such as distancing, peaking, muffling and thinning [10] may be added in a later
version of the design.

7. VIDEO FEATURES OF ACME

7.1. Video Strands

Video strand classes include px64K, MPEG, DVI SVM (special video mode, 9bpp), and
DVI mono. Each class has an associated set of parameters. For example, DVI SVM is
parameterized by image resolution and total average data rate.

The native image associated with an active video strand is the video image that could be
decoded directly from the strand. The native size is the X and Y sizes, in pixels, of the native
image.

7.2. Video Windows (VWins)

A VWin is a window that displays video from its associated CM connection instead of ser-
vicing graphics requests. A VWin has a size, position, and any other window attributes defined
by the base window system. In addition, it has some VWin-specific attributes. These include the

generic LDev attributes: strand and PDev, as well as the following attributes specific to VWins>:

e Xoffset, Yoffset: the coordinates of the pixel in the native video image that is mapped to the
upper left comer of the VWin when it is fully viewable on the workstation screen.

e Xmagnification, Ymagnification: rational numbers representing the number of screen
(columns, rows) associated with each native video (column, row). If either is not equal to one,
the server must resample the native video image. The client can query the server for the
allowed magnifications for each strand type.

For example, if a VWin has a size of 250x200 workstation pixels, an X magnification of
5/2, and a Y magnification of 4, then the size of the subrectangle of the native image which is
viewable is 100x50 native image pixels, as shown in Figure 8.

5 A more general set of transformations, such as affine or curved mappings, would be desirable for some applica-
tions.

17

YWin

XMagnification = 5/2
YMagnification = 4

230

Figure 8: When a video stream is shown in a VWin, any subrectangle of the ‘‘native image’’
may actually be displayed, and it may be scaled independently in the X and Y directions.

In an alternative design, the client specifies the subrectangle of the native image that is to be
viewable, and the server fits that subrectangle to the VWin. We avoided this approach because
the resulting magnification factors might be impossible or inefficient for the server to provide.

The rectangle actually drawn to in a VWin is aligned with the upper left comer of the
VWin. Let W denote the X magnification times the native image X size. If W exceeds the VWin
X size, display is clipped to the VWin. If W is less than the VWin X size, the right part of the
VWin is undefined (see Figure Figure 9). Similarly for the Y direction.

native image workstation screen
\
displayed :+pped
—
undefined
win

Figure 9: In this example, the magnified subset of the native image exceeds the VWin in the X
direction, and is clipped. It is smaller than the VWin in the Y direction, so the bottom part of the
VWin is undefined.

18

The values for a VWin’s geometrical parameters may involve a negotiation between the
client and a window manager. A possible scenario for the creation of a VWin is as follows.

e The client, knowing the native size of the strand and the allowable set of magnifications, gives
the window manager a hint for the VWin size.

e The window manager chooses VWin size, perhaps using the client’s hint and perhaps using a
user ‘ ‘rubber-banding’’ interaction.

e Given the window manager’s decision on VWin size, the client selects the X and Y
magnifications and creates the VWin.

7.3. VWin Management and Modified Exposure Processing

Window systems typically provide window management requests to support window map-
ping, unmapping, resizing, moving, and restacking. In an ACME implementation, window sys-
tem requests of this type work properly on VWins. Therefore, existing window managers do not
have to be modified to distinguish between VWins and conventional windows.

Window systems also provide some method for repairing the contents of a window which
has become damaged due to obscuration followed by exposure. Usually this is done by providing
backing store for the window contents, or by sending an event to the client informing it of the
exposed area. In the latter case, the client is expected to repaint the exposed areas. ACME does
not modify the base window system’s damage repair mechanism, except when a VWin has
become damaged.

When a VWin has been damaged, the client is not notified. Instead, if all or part of a VWin
is exposed, the server waits for one frame time and then checks to determine whether the next
video frame is available. If so, the frame is processed normally, and the damage is repaired by
default. If not, the server assumes the client is not currently sending video data to the VWin, and
the server repairs the VWin contents from backing store.

7.4. Blending and Overlays

ACME provides rudimentary support for overlays via VWin clipmask manipulation. If the
base window system or another extension has overlay semantics, these can and should be sup-
ported for VWins. However, ACME has no direct support for blending. Commonly available
video coprocessors are not yet fast enough to make blending practical. It is possible that this
functionality will be added to ACME in the future.

8. RELATED WORK

Although several projects have pursued the general goal of adding continuous media to a
computer system, their assumptions and approaches differ from those of ACME. Some systems
use analog storage and communication of CM data, with computer control of the analog devices.
An example is Galatea {12}, in which “‘yisual workstations’’ are connected to a videodisc server
by an analog network. The system provides user access 10 continuous media display functions in
a distributed computing environment. In this case, however, the continuous media data is stored
and transported in analog form over a separate network.

Several systems provide a server-based architecture for controlling ‘‘connections’’ between
CM devices. Examples include the VOX Audio System [4], Pandora [13], IMAL [9], and VEX
[5). These connections may be digital, but in any case data is handled in an external framework,
and cannot be accessed in real time by clients. Some of these systems also do not fully address
issues of sharing and concurrent access to CM I/O devices, and synchronization of CM streams
with discrete media.

Intel’s Digital Video Interactive (DVI) [14] is a combination of 1) hardware for capture and
display of digital audio and compressed video, and 2) an MS-DOS software environment for this

19

hardware. While DVI hardware is very flexible, the DVI software environment is limited. It pro-
vides a platform for standalone, CD-ROM based interactive multimedia applications. Concurrent
applications, network communication of CM data, and application-independent management
functions are not supported directly.

9. CONCLUSION

Abstractions for Continuous Media (ACME) is a set of abstractions for the input and output
of digital continuous media (audio and video). ACME is intended for inclusion in a network win-
dow system such as X11 or NeWS. The ACME design fulfills several important goals. It can
handle multiple data formats, including interleaved data streams. It supports synchronized output
from separate streams. It contains provisions for a resource reservation protocol, used to allocate
and schedule hardware resources to provide the performance guarantees needed by continuous
media.

As of the writing of this report (August 1990), a prototype ACME kemel, supporting audio
only, has been developed, and is being used for experiments. This ACME kemel is being
integrated with NeWS and X11 window systems. An ACME server is only one component of a
software system for continuous media. Other necessary components include the following:

° Facilities for mass storage of continuous-media data. It may be possible to use existing
UNIX-type file systems. For more ambitious goals, such as large-scale distributed hyper-
media, it may be necessary or desirable to start from scratch. Existing work in this area
includes the Sun multimedia file server project [16] as well as various standards for CD-
based storage [7].

° User-interface toolkits for continuous media. Applications will increase in complexity both
in their internal structure (e.g., because of the use of multiple concurrent processes to handle
CM data streams) and in their interface (because of concurrency and mixed-mode interac-
tions). Toolkits, interface specification languages, or other approaches will be useful in
managing this complexity.

° Basic applications. These include editors for continuous media, extensions to mail and
document preparation systems, and two-way conversation systems.

Ultimately, the uses of distributed CM systems will extend beyond the client/server para-
digm. In particular, it will be necessary to support multi-user CM applications, such as n-way
audio/video conferencing and collaboration on CM applications. This raises a host of issues and
problems beyond those discussed here.

ACKNOWLEDGEMENTS

Kyoji Umemura, Y.K. Hui, and Ralf Guido Herrtwich participated in the ACME project.
Greg McLaughlin of Sun Microsystems provided valuable support and input.

10.

11.
12.

13.

14.

15.

16.
17.
18.

20

REFERENCES

D. P. Anderson, R. Govindan, G. Homsy and R. Wahbe, ‘‘Integrated Digital Continuous
Media: a Framework Based on Mach, X11, and TCP/IP"’, Technical Report No. UCB/CSD
90/566, Mar. 1990.

D. Anderson, ‘‘Meta-Scheduling for Distributed Continuous Media'’, UCB Technical
Report, Aug. 1990.

D. P. Anderson, R. G. Herrtwich and C. Schaefer, ‘‘SRP: A Resource Reservation Protocol
for Guaranteed-Performance Communication in the Internet”’, Technical Report 90-006,
International Computer Science Institute, Feb. 1990.

B. Arons, C. Binding, K. Lantz and C. Schmandt, ‘‘The VOX Audio Server’’, Multimedia
'89: 2nd IEEE COMSOC International Multimedia Communications Workshop, Ottawa,
Ontario, April 20-23, 1989.

T. Brunhoff, VEX: Video Extension to X, Version 5.5, Tektronix, Inc., 1989.

S. Casner, K. Seo, W. Edmond and C. Topolcic, ‘‘N-Way Conferencing with Packet
Video'", Third International Workshop on Packet Video, Morristown, NJ, March 22-23,
1990.

K. A. Frenkel, “*The Next Generation of Interactive Technologies’’, Comm. of the ACM 32,
7 (July 1989), 872-881.

G. Homsy, R. Govindan and D. P. Anderson, ‘‘Implementation Issues for a Network
Audio/Vidco Scrver’’, In preparation, July 1990.

L. F. Ludwig and D. F. Dunn, ‘‘Laboratory for Emulation and Study of Integrated and
Coordinated Media Communication”’, Proc. of ACM SIGCOMM 87, Stowe, Vermont,
Aug. 1987, 283-291.

L. F. Ludwig, N. Pincever and M. Cohen, ‘‘Extending the Notion of a Window System to
Audio’’, IEEE Computer 23, 8 , 66-72.

A. C. Luther, Digital Video in the PC Environment, McGraw-Hill, 1989.

W. E. Mackay and G. Davenport, ‘‘Vinual Video Editing in Interactive Multimedia
Applications'’, Comm. of the ACM 32,7 (July 1989), 802-810.

C. Nicolau, **An Architecture for Real-Time Communication Systems'’, IEEE JSAC on
Multimedia Communications, 1990.

G. D. Ripley, “‘DVI - A Digital Multimedia Technology'*, Comm. of the ACM 32,7 (July
1689), 811-822.

R. W. Scheifler and J. Gettys, ‘‘The X Window System'’, ACM Transactions on Graphics
5,2 (Apr. 1986), 79-109.

Multi-Media File System Overview, Sun Microsystems, Aug. 1989.
NeWS Manual, Sun Microsystems, Inc., March 1987.

K. Umemura, Y. K. Hui and D. Anderson, ‘‘Applications of Distributed Continuous
Media’’, In preparation, July 1990.

