Fine-grain Parallelism with Minimal Hardware Support:
A Compiler-Controlled Threaded Abstract Machine!

David E. Culler, Anurag Sah, Klaus Erik Schauser
Thorsten von Eicken, John Wawrzynek

Computer Science Division
Electrical Engineering and Computer Sciences Department
University of California, Berkeley
Berkeley, CA 94720

Abstract: In this paper, we present a relatively primitive execution model for fine-grain par-
allelism, in which all synchronization, scheduling, and storage management is explicit and under
compiler control. This is defined by a threaded abstract machine (TAM) with a multilevel schedul-
ing hierarchy. Considerable temporal locality of logically related threads is demonstrated, providing
an avenue for effective register use under quasi-dynamic scheduling.

A prototype TAM instruction set, TLO, has been developed, along with a translator to a variety
of existing sequential and parallel machines. Compilation of Id, an extended functional language
requiring fine-grain synchronization, under this model yields performance approaching that of con-
ventional languages on current uniprocessors.

Measurements suggest that the net cost of synchronization on conventional multiprocessors can
be reduced to within a small factor of that on machines with elaborate hardware support, such
as proposed dataflow architectures. This brings into question whether tolerance to latency and
inexpensive synchronization require specific hardware support or merely an appropriate compilation
strategy and program representation.

1 Introduction

Multithreading at the instruction level may provide the key to general purpose parallel computing(26],
because it allows the processor to tolerate long, unpredictable communication latency (2,4,17,24,29).
In addition, this level of multithreading is required to support certain modern parallel programming
languages(28], such as Id[20] and Multilisp[18], and extensions of more conventional languages with
synchronizing data structures, e.g. I-structures(6]. On the other hand, asynchronous transfer of
control (context switching) is notoriously expensive on current machines, leading many researchers
to examine asynchronous parallel execution models through the study of real machines[11,13,15,22,
25,27], paper architectures|1,5,14,16,19], and abstract machines[21]. In all of these proposals, the
scheduling of threads is viewed as a property of the machine, invisible to the compiler. While we
share the view that asynchronous events are the rule, not the exception, in large-scale multiproces-
sors, we claim that relieving the compiler of responsibility for scheduling low-level program entities
squanders critical processor resources, such as high-speed register storage, and places unreasonable
demands on the hardware, such as maintaining scheduling queues of arbitrary size. By retaining

LA version of this report is to appear in the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Santa Clara, CA, April 1991.

Work described here was supported in part by the National Science Foundation under Presidential Young Investiga-
tor Awards CCR-905834 and MIP-8958568. Computational resources were provided in part under NSF Infrastructure
Grant CDA-8722788. K. E. Schauser received support from the International Computer Science Institute. T. von
Eicken is supported through the Semiconductor Research Corporation.

some of this control, the compiler can optimize the use of processor resources for the expected
case, rather than the worst case, and exploit considerable inter-thread execution locality. Thus,
tolerance to latency and inexpensive synchronization require that the compiler adopt a suitable
program representation, but this need not be manifest in the processor architecture.

To investigate this view, we have formulated a relatively primitive threaded abstract machine
(TAM) in which processor resources and thread scheduling are explicit at the instruction level and
all storage management is the responsibility of the language system, not the machine. We have
retargeted the compiler for Id, an extended functional language that relies on dynamic scheduling,
to generate TLO (Thread Language Zero), a first-cut instruction set for this machine, rather than
dataflow graphs. Although TAM could be realized directly in hardware, it is intended as a vehicle
for studying what architectural support is most important for full-scale parallel programs on large
parallel machines. To this end, we have developed a versatile translator for TLO to a variety of
existing parallel and sequential machines.

Preliminary measurements indicate that this implementation of Id yields performance between
C and Lisp for comparable programs on the same uniprocessor. This disspells the view that the
implementation of languages with fine-grain synchronization on conventional architectures must
be essentially interpretive. Secondly, dynamic instruction counts under this execution model are
comparable to dataflow models, which support synchronization and generation of parallel threads
as part of every instruction. Third, the locality among execution threads that are not, or cannot be,
statically ordered appears to be substantial. Finally, alarge fraction of the potential synchronization
events can be compiled away or synthesized cheaply with little or no architectural support. The key
architectural challenge is an intimate coupling of processor and network, with much of the message
decode task delegated to the compiler.

The following describes TAM and its current realization in TLO. Section 2 outlines the basic
structure and scheduling mechanism supported by our model and draws comparisons with proposed
and existing threaded execution models. Section 3 provides preliminary performance measurements.
Appendix A describes our threaded machine language.

2 The TAM Execution Model

2.1 Storage model and basic structure

TAM recognizes three major storage resources—code-blocks, frames and structures—and the ex-
istence of critical processor resources, such as registers. A program is represented by a collection
of re-entrant code-blocks, corresponding roughly to individual functions or loop bodies in the high-
level program text. A code-block comprises a collection of threads; each thread is a sequence
of instructions. Invoking a code-block involves allocating a frame—much like a conventional call
frame—depositing argument values into locations within the frame, and enabling threads within
the code-block for execution. Figure 1 illustrates the relationship between the code-block and the
frame. Instructions may refer to registers and to slots in the current frame; the compiler statically
determines the frame size for each code-block and is responsible for correctly using slots and regis-
ters under all possible dynamic thread orderings. (This is somewhat more complex than traditional
register allocation via graph coloring[7].) The compiler also reserves a portion of the frame as a
continuation vector, used at run-time to hold pointers to enabled threads. The continuation vector
must be large enough to describe the concurrently enabled threads for a code-block. The global
scheduling pool is the set of frames that contain enabled threads.

Structures are heap allocated data objects, accessed through split-phase fetches and stores.
That is, the instruction that issues a fetch request does not wait for the data value to be returned,

CODE BLOCK
< Lo
thread; L1
L2 Argument Slots
: -
MOV L7=LO g
e
Local Slots
thread, —
% ~—
Continuation Vector
- %

Figure 1: Basic Storage Resources. A code-block comprises a collec-
tion of threads; each a sequence of instructions. Invoking a code-block
involves allocating a frame for local variables and for the continuation
vector holding the list of enabled threads.

instead the response will initiate a new execution thread(4,6]. This allows the processor to be well
utilized while remote requests are outstanding. In addition, a synchronization event may take place
at the site of the accessed object, so the request latency is unbounded.

2.2 Activations

An executing code-block may invoke several code-blocks concurrently, since the caller is not sus-
pended as in a conventional sequential language. Therefore, the set of frames in existence at any
time form a tree, the activation tree, rather than a stack, reflecting the dynamic call structure
(see Figure 2). We refer to a frame and the set of threads executed relative to the frame as an
activation. The basics of this parallel call scenario are well described in the literature[5,9,21]. To
allow greater parallelism and to support languages with non-strict function call semantics,? the
arguments to a code-block may be delivered asynchronously; each will initiate an execution thread
within the code-block. An activation is enabled if its frame contains any enabled threads. At any
time, a subset of the enabled activations may be resident on processors, as discussed below.

2.3 Threads

Threads come in two forms, synchronizing and non-synchronizing. A synchronizing thread specifies
a frame slot containing the entry count for the thread. Each fork to a synchronizing thread causes
the entry count to be decremented, but the thread executes only when the count reaches zero.3

215 Id and other non-strict languages, it cannot be assumed that all arguments to a function can be computed
before invoking the function. One or more of the arguments may, in fact, depend on a result of the function.

3 An implementation of the abstract machine may elect to associate the decrement with the fork, so a continuation
is created only when the thread is enabled, or to simply create a continuation at the fork and perform the decrement

CODE Memory FRAME Memory I-structure Memory

----- Local CV

----- Registers

% Frame

Figure 2: Basic Structure of an Executing TAM Program. An executing TAM program generates a
tree of frame activations. The set of light-gray frames represent activations that contain no enabled
threads, and thus are not included in the scheduling pool (not shown). The remaining activations are
enabled. A subset of these, indicated by the cross-hatch are the ones that are currently resident on
a processor. Only the resident activations can access processor registers and the local continuation
vector.

Synchronization occurs only at the start of a thread; once successfully initiated, a thread executes
to completion. Fork operations may occur anywhere in a thread, causing additional threads to be
enabled for execution. An enabled thread is identified by a continuation—its instruction pointer
and its frame. Because the continuation vector is contained within the frame, a continuation is
represented simply as a pointer to the first instruction of a thread.* A thread ends with an explicit
stop instruction, which causes another enabled thread to be initiated, i.e., removes an element from
the current continuation vector and transfers control to it.

Conditional flow of execution is supported by switch, which forks one of two threads based on
a boolean input value, and case, an indexed fork based on a small integer input. The compiler
is responsible for establishing correct entry counts for synchronizing threads prior to any fork to
the thread. This is facilitated by allowing a distinguished initialization thread in each code-block,

as the first operation in the thread; the thread is cancelled if the counter is not zero. In either case, the decrement-
and-test must be atomic relative to other threads.

*This means the abstract machine can be easily implemented with the word size equal to the address size. Many
of the proposed threaded architectures require two addresses per word.

4

which is the first thread executed in an activation of the code-block. One of the threads contains a
release instruction that causes the frame to be reclaimed; the compiler ensures that this is the last
instruction executed for the activation.

2.4 Quanta

Given that the execution model supports a tree of activations, many of which may have several
concurrently enabled threads, the fundamental concerns are where frames reside in the storage
hierarchy, how the pool of continuations is represented, and how threads are scheduled. Surprisingly,
these concerns have received little attention in the threaded execution models discussed in the
literature; TAM was developed to address these issues directly. The key observation is that the
activation tree and the continuation pool are typically quite large, except on toy programs. This
has been demonstrated empirically for programs in Id{8], Sisal[23], and Multilisp(18]. Minimizing
the activation tree size while exposing sufficient parallelism is an active area of research, but even
with advances in this area we cannot expect the entire activation tree or the entire continuation
pool to be maintained in high-speed processor storage. Therefore, the scheduling mechanism must
recognize that only a subset of the activation frames are resident on a processor and that a large
number of continuations will exist for non-resident frames.

The storage hierarchy is explicit in TAM. In addition, scheduling is explicit and reflects the
storage hierarchy. In order to execute threads from an activation, the activation must be made
resident. Only a limited number of activations may be resident. When an activation is made
resident on a processor, it has access to processor registers. Furthermore, it remains resident and
executing until no enabled threads for the activation remain. The set of threads executed during a
single residency is called a quantum. Recognition of this intermediate level of scheduling is a major
departure from dataflow oriented execution models, such as ETS[22] and P-Risc[21], and is key to
an efficient implementation on conventional machines.

A non-resident frame may accumulate several continuations, say as arguments are supplied,
and when it becomes active all of these threads are executed, as well as any that they enable.
Processor registers are essentially an extension to the frame with a lifetime of a single quantum.
They may carry values between instructions within a thread or across threads in a quantum.
All threads enabled by fork instructions are guaranteed to execute while the frame is resident.
Therefore, the continuation vector is split into two parts: a remote continuation vector, used to
hold continuations generated external to the activation, and alocal continuation vector, used to hold
internally generated continuations. The remote continuation vector is part of the frame whereas
the local continuation vector should be viewed as a stack of continuation registers. Fork and stop
translate into instruction pointer push and pop-jump respectively.

Quantum boundaries in TAM are visible to the compiler. When an activation is made resident, a
distinguished initialization thread executes before any threads in the remote continuation vector. In
the simplest case, the initialization thread for the first quantum of an activation will establish entry
counts for the synchronizing threads and nullify the initialization thread for later quanta. Similarly,
a distinguished completion thread is executed when the local continuation vector is otherwise empty.
Again in the simplest case, this will extract a new enabled frame from the scheduling pool, make
it resident, and transfer control to the initialization thread for the new quantum. This mechanism
allows the compiler to control the use of processor registers. Frequently referenced frame slots
may be “cached” in registers, with the initialization thread set up to restore them from the frame.
Values judged likely, but not proven, to have a lifetime of a single quantum may be kept in registers,
with the boundary threads configured to save and restore them. (Our compiler does not yet exploit
this capability, but we expect this quasi-dynamic scheduling will prove quite important in the long

run.)

The representation of the scheduling pool is not specified by the model, but determined by
the compiler. Sufficient space is provided in each frame to represent whatever data structure the
compiler uses to organize the pool, e.g., queue, distributed queue, priority tree, etc. The compiler
may even elect to specialize the structure to reflect different scheduling policies in different portions
of the program.

2.5 Inlets and split-phase operations

Thus far, we have focused on the interactions of threads internal to an activation. We now describe
TAM facilities for inter-frame interactions, i.e., passing arguments to an activation, returning re-
sults, allocating a remote resource (a frame or a structure), or accessing a remote structure. In
each of these cases, the external entity needs to transmit one or more values back to the activation,
cause them to be deposited in frame slots and cause a thread to be scheduled to indicate the arrival
of the values. Handling of such a response is usually viewed as a machine primitive. For example,
in P-Risc[21] an I-structure fetch instruction issues a request to the hardware module containing
the location to be read, passing the frame pointer, slot number, and thread pointer. If the loca-
tion is empty, the request is stored in the memory module until the location is written. When
the location is full, the value it contains is sent back to the requesting processor, along with the
frame, thread, and slot information. The hardware is expected to interpret this message, store the
value in the specified slot and schedule the specified thread. On Monsoon[22], only a frame pointer
and instruction pointer need be carried with the request, since the slot number is specified by the
instruction. However, this relies on presence-bits associated with each frame slot.

TAM attempts to minimize the amount of information carried on such messages and to minimize
the interpretation required upon their reception. To this end, each code-block has a set of inlets,
in addition to a collection of threads. The inlets define its external interface. By convention, the
low numbered inlets are used to receive argument values. The compiler generates an additional
inlet for each value returned to the activation from a subordinate activation and for each reply
to a split-phase request. Thus, the I-structure fetch instruction sends the frame pointer and inlet
number (in addition to the address to be read) to the remote memory module. Each inlet is a
simple sequence of instructions that extract components of the corresponding message, store values
into slots of the specified frame and post threads in the corresponding continuation vector. In other
words, an inlet is a specialized message handler for exactly one kind of message. It is like a thread,
but extremely limited in its capability and may interrupt the currently active thread. An inlet can,
however, handle messages of arbitrary length, network interface permitting.’

2.6 Comparison with other models

The basic structure of TAM is similar to several of the multithreaded architectures derived from
dynamic dataflow, with some key differences. Iannucci’s hybrid architecture[16] has a similar storage
hierarchy; instructions may refer to processor registers or to slots in the current frame. However,
the hybrid proposal associates presence bits with frame slots and when a thread attempts to read
an empty slot it is suspended; the continuation for the thread is placed in the empty slot and
rescheduled when the slot is written. Registers vanish at a point of potential suspension. To allow
multiple references to frame slots, the hardware must support lists of suspended continuations.

®Inlets provide a form of message handling similar to Dally’s J-machine[10], but are more limited. The dispatch
is trivial and storage required for the inlet to complete its task is pre-allocated in an activation frame.

Monsoon[22] associates presence bits with frame slots, but, when a thread attempts to read
an empty slot the value carried on the token is written into the slot and further processing of the
instruction is cancelled. The data is picked-up again when the instruction is re-enabled by another
token, at which point the instruction executes and enables one or two further instructions. The
addressing capabilities of Monsoon instructions are rather limited: only one frame slot and the
data value carried on the current token can be referenced. P-Risc, which strongly influenced TAM,
uses frame slots for synchronization, rather than presence bits, and makes the synchronization
operation explicit. However P-Risc does not recognize a storage hierarchy (there are no registers)
or scheduling hierarchy (the next thread may come from any frame).

Recent dataflow machines[12,22,25] allow several instructions, i.e., a thread, to be enabled by
a single dataflow synchronization. Registers are used to hold values with a lifetime of a single such
thread, as these values need never be placed in the frame. However, these machines do not allow
registers to carry values across threads, which severely restricts the usefulness of registers, as shown
in Section 3. Also, the set of enabled threads is maintained in a special hardware token queue.

Several multithreaded architectures have been proposed as generalizations of conventional single-
threaded machines, with registers sets (i.e., frames) multiplexed to hide memory and communi-
cation latency[1,14,17,27,29]. In most cases, only one thread of execution per frame is supported.
Thus, each outstanding reference has an entire register set standing idle behind it. With the ex-
ception of MASA[14], the number of frames per processor is static, thus the mechanism does not
directly support language models with dynamically generated parallelism. By viewing memory as
split-phase transactions, TAM allows multiple outstanding references per register set and mini-
mizes the number of register set switches. Although TAM does not rely on multiple register sets
in hardware, it could directly benefit from them.

2.7 Summary

To summarize the abstract machine, the program is represented by a collection of code-blocks.
The state of the computation is described by the activation tree, the heap of structures, and the
extended “processor state” of the resident activations. The scheduling pool consists of a distributed
data structure containing those frames with non-empty continuation vectors. Processors execute
threads from their resident activations as long as possible. The abstract machine provides four levels
of synchronization of increasing cost and decreasing frequency: simple sequencing of instructions
within a thread, scheduling of threads generated internal to an activation, scheduling of threads
generated external to an activation, and scheduling of quanta. The first two are represented directly
in TLO instructions; the latter two are synthesized in inlets and boundary threads. When an
activation becomes resident, as much work as possible is done on the activation, using the least
expensive form of synchronization wherever possible. Thread-to-thread and activation-to-activation
transitions are explicit in the model, so they can be controlled to a large extent by the compiler. The
compiler produces specialized message handlers as inlets to each code-block. Appendix A describes
TLO, a simple instruction set that embodies this model and provides a basis for comparison with
other execution models.

3 Preliminary Measurements

To validate the TAM paradigm, a prototype back-end was developed for the MIT 1d88 compiler
that generates TLO code, rather than dataflow graphs. A second, rather simple compiler trans-
lates the TLO code to C, and a conventional C compiler is used for final machine code generation.

[Program | MMT 200 QS 5,000 QS 50,000 AS 1,500 AS’ 1,500 |

1d 67 (57,31) 6.0 72 27 23
Lisp 441451 2.4+10 274414 5540 3640
C 15 0.5 8.0 2.6 1.5

Table 1: User Time Comparison (in seconds) of compiled Id, Lisp, and C on a MIPS R3000

This approach provides conservative execution times for a TAM-based implementation of a lan-
guage requiring fine-grained dynamic synchronization. Timing measurements for a collection of
small programs indicate that this implementation of Id is roughly competitive with conventional
languages, i.e., between C and Lisp on a single processor for similar programs. Further improve-
ments will be realized in a more sophisticated version of the compiler, currently under development,
by producing machine code directly and by more sophisticated generation of TLO. High quality
compilation for conventional machines provides a baseline for assessing the performance of novel
architectures with dynamic instruction scheduling.

In expanding the TLO code to C, instrumentation code is inserted to collect TAM-level statistics.
In this section, dynamic instruction mix measurements are compared with measurements of the
MIT Tagged-Token Dataflow Architecture obtained with the Id World instruction-level emulator.
This shows that TLO instructions are essentially at the same level as TTDA instructions and
demonstrates the benefits of compiling graphs into threads. Finally, dynamic TLO instruction
and scheduling data on large Id program runs is presented and used to derive the net cost of
synchronization under this approach and with direct hardware support.

3.1 Performance of Id on stock hardware

Table 1 shows elapsed user time for several small programs written in Id, Lisp, and C and executed
on a MIPS R3000. The Id programs are compiled to TLO, which is translated to C and compiled
with optimization level “-O2”. No inter-thread register usage is exploited. The Lisp programs are
compiled using Allegro CL 3.1.0 (speed 3, safety 0). User time reported for the Lisp program is
partitioned into program execution time and garbage collection time (separated by “+” in the ta-
ble). The C programs are compiled with MIPS CC version 2.11 with optimization level “-O3”. This
data indicates that the net gain anticipated from hardware support for dynamic synchronization is
considerably less than previously believed. Stock implementations need not execute at “interpreter
speeds” if the compiler structures the representation of the program to minimize the cost of the
most frequent forms of synchronization.

The data in Table 1 should be considered in light of the different implementation requirements
of the languages. Id is a strongly typed, polymorphic language; thus no data tagging is required at
run-time. However, the current version of the type system does not distinguish between integers
and reals, so in the Id implementation all numbers are represented as 64-bit IEEE floats. Id version
90.0 remedies this situation. The TLO code is translated into very unusual C, which defeats the
optimization and register allocation heuristics of the C compiler. Direct translation to the host
instruction set could yield considerable improvement. Common Lisp is dynamically typed and the
implementation represents values as 32-bit tagged quantities, thus floats are accessed indirectly.
In C, types are explicit, neither dynamic typing nor dynamic synchronization is required. Data
structures in Id are non-strict, i.e., the structure can be accessed before all its elements are defined,
and require element by element synchronization. The current TLO implementation uses an array

of tag bytes to represent the status of an array of values.

MMT is a simple matrix operation test; it creates two double precision identity matrices, multi-
plies them, and subtracts a third identity matrix. Performance of the Id version is within a factor of
five of the C program and substantially faster than the Lisp program. The C compiler comprehends
the simple inner loop and unrolls it four-fold. These optimizations are not attempted on the C
generated from TLO. The current version of the Id compiler generates many unnecessary moves
that are easily eliminated. To simulate the compiler improvement and the impact of the more
precise type system, we improved the inner loop by hand, bringing the time down to 57 seconds.
Carrying values in registers across threads (at the TLO level) and transforming FORK-STOP to a
simple branch, brings this down to 31 seconds.

The next two columns show the user time for Quick-Sort on a list of random numbers, using
accumulation lists. Here the relative difference with C is greater and Id is faster than Lisp only when
GC time is included. The poorer performance of the Id version is due, in part, to our conservative
thread partitioning in conditionals and the high frequency of calls, which currently involve a request
to the UNIX malloc for activation frame storage.

The final two columns show user time on an array selection sort. The function used to compute
the key is passed as a argument to the sort routine. The Id language system is designed to deal
with higher order functions and is able to perform optimizations that would be difficult in the other
languages. For the final column, we optimized these programs by hand; the Id version improves
only slightly, while the other improve considerably.

3.2 Threads versus dataflow graphs

To demonstrate the impact of compiling to threads, Table 2 presents dynamic instruction frequen-
cies for Id programs compiled to TLO and compiled to graphs for the MIT TTDA(5]. In addition to
the small programs discussed above, this includes two larger programs. Gamteb is a Monte Carlo
neutron transport code. It is highly recursive with many conditionals. Simple is a hydrodynamics
and heat conduction code widely used as an application benchmark, rewritten in Id[3]. The TTDA
numbers were obtained using the Id-World graph interpreter, with the same suite of arithmetic
operators, structure operations, and the same resource management operations as in TLO. In the
instruction counts, the STOP terminating each thread is viewed as part of the FORK, IFETCH, ALLOC,
or RSEND that enabled the thread. Similarly, the SYNC starting each synchronizing thread is not
counted, since the decrement and test of the entry count is performed where the thread is spawned.

The Ops row shows the TLO formulation performs roughly 50% more instructions than the
TTDA. A single TTDA instruction can synchronize two arguments, compute a result, and generate
several copies of the result. The token count measurements indicate that on average an instruction
produces 1.5 output tokens (and consumes 1.5 input tokens). A direct thread-per-node translitera-
tion to TLO would add 1.5 fork operations to each TTDA instruction, resulting in an 150% increase
in instruction count with the accounting scheme used for Table 2. Compilation to threads avoids a
large fraction of this overhead, without compromising the non-strict semantics of the language.

The net reduction of synchronization events can be seen in the row labeled aborts which shows
the number of unsatisfied entry count decrements, for the TLO case, and match failures, for the
TTDA, as a percentage of the total number of TTDA operations. The recent generation dataflow
machines[12,22,25] all support some form of thread, and the graph partitioning and elimination of
redundant arcs used in TLO compilation could be employed with similar benefits.

The lower two sections of Table 2 show the instruction counts broken down into classes as a
percentage of the number of TTDA instructions, i.e., the TLO entries are normalized to the TTDA
counts. The middle section represents the essential computation; the counts should be roughly equal

Dynamic Instruction Mix

Run as 1100 gamteb 128 mmt 50 gs 512 simple 2 10

TLO | TTDA TLO | TTDA TLO | TTDA TLO | TTDA TLO | TTDA
Activations 105 6,653 2,757 3,075 4,619
Ops 368,116 | 256,803 | 611,903 | 383,434 3,363,250 | 2,346,452 | 540,355 | 349,384 677,956 | 563,960
Threads 83,536 174,241 472,506 207,090 165,018
Tokens 386,969 564,030 3,248,537 540,979 719,311
Aborts 15.8 50.7 22.7 47.1 6.4 38.4 21.7 54.8 20.2 27.5
Arith 38.0 30.2 25.3 25.5 51.1 39.9 13.6 13.4 33.5 39.2
Ifetch 10.0 10.0 10.3 9.9 10.9 109 6.7 6.6 11.5 13.4
Istore 0.1 0.1 4.1 4.0 0.4 0.4 3.72 3.71 1.6 1.8
Rsend/Tag 04 0.4 8.7 9.8 1.3 1.4 5.3 6.2 7.3 9.5
Alloc/Resource 0.1 0.1 1.8 3.0 0.2 0.2 3.0 3.8 1.0 2.1
Move/Identity 56.5 13.1 61.4 24.1 65.1 4.5 56.4 21.7 35.1 23.6
Fork&Switch 37.9 21.9 47.2 12.0 143 12.3 66.2 25.4 29.5 3.3
-/D Loop 24.2 10.7 30.0 19.4 5.2
Ratio 143:1 1.59:1 1.43:1 1.55:1 1.20: 1

Table 2: Instruction Frequency comparisons between TLO and the MIT TTDA

under the two execution models. (The difference in arithmetic counts on MMT is due to operations
that convert the index used in structure operations to an integer, which is not required under the
tagged execution model of the TTDA.) The lower section includes the control and data movement
“overhead” operations, which differ in the two models. In the TAM control-flow paradigm, it is
necessary to move values to locations where they will be accessed, for example, at the bottom of
a loop or conditional. The current TLO compiler introduces a large number of unnecessary moves,
which will be remedied in the next version. In the dataflow paradigm, values are delivered directly
to the instructions that access them. Split-phase operations on the TTDA are limited to producing
a single result, so an identity instruction is introduced to fan-out the result where needed. With the
fan-out of nodes in the dataflow graph limited to two, as on Monsoon[22], a much larger number of
identities would be required for fan-out. Identity instructions are also introduced where required
synchronization is not implicit in the data flow, e.g., determining when an activation is complete.

The row labeled fork&switch includes conditional and unconditional forks in the TLO and switch
instructions in the TTDA, used to steer values into conditionals or loop bodies. The D Loop row
reflects instructions that update tag fields and control unfolding in loops. The TLO compilation
uses 1-bounded loops[8] and would incur additional overhead with a more general parallel iteration
strategy.

Compiling to threads compensates to a large measure for the additional instructions introduced
for explicit scheduling in the TAM model. The increase in overall instruction counts is modest
compared to more complex dataflow models. Still, if the remaining scheduling operations carry
the cost of a traditional context switch, the cost of dynamic synchronization would be tremendous.
The recognition of threads alone does not obviate the need for hardware support in implementing
fine-grained synchronization. Rather, it is the use of a program representation that provides a very
inexpensive thread switch.

3.3 Scheduling hierarchy

To demonstrate the impact of the TAM scheduling hierarchy, Table 3 presents instruction frequency
and scheduling frequency measurements for the Id programs discussed above on fairly large problem
sizes. This data provides preliminary estimates of thread size (I/T), threads per quantum (T/Q),
and the net cost of synchronization under various degrees of hardware support.

10

[Dynamic Instruction Mix |

Run simple 250 mmt 100 mmti4 100 gamteb 2048 QS 10,000 AS 500
Tostructions (1) | 18,000,274 25,426,150 14,476,154 __ 9,303,069 14,767,096 8,940,066
Arith 28.6 36.5 50.8 16.1 9.1 26.7
Ifetch 10.2 7.9 14.0 6.5 4.7 7.0
Istore 1.1 0.2 0.3 2.6 2.5 0.0
Move 28.6 45.7 18.0 38.6 35.3 39.5
Fork 12.8 0.2 0.3 11.8 13.4 5.6
Jump 11.8 9.0 15.9 17.9 30.8 21.1
Rsend 5.8 0.5 0.8 5.4 2.4 0.1
Alloc 1.6 0.0 0.1 1.1 1.7 0.0
Other 0.4 0.0 0.0 0.0 0.0 0.0
[% Split-phase | _ 17.8 8.6 15.1 12.4 114 71|
[Dynamic Scheduling Mix |
Activations (A) 122,619 10,507 10,507 69,324 60,003 505
Quanta (Q) 351,202 21,012 21,012 179,060 159,999 1,009
Threads (T) 3,832,724 3,379,906 3,379,806 2,360,911 5,381,855 2,015,924
% Synch 44.6 32.3 32.3 43.8 31.5 25
Ave Fan-in 3.3 2.1 2.1 2.9 2.7 3.0
Q/A 2.9 2.0 2.0 2.6 2.7 2.0
T/A 31.3 321.7 321.7 34.1 94.1 3,992
I/A 146.8 2,420 1,378 134.2 246.1 17,703
T/Q 10.9 160.9 159.4 10.1 52.0 1,997
1/Q 51.3 1,210 688.9 34.1 92.3 8,860
/T 4.7 7.6 4.3 3.9 2.7 4.4

Table 3: TLO Instruction and Scheduling Measurements for Large Programs

Thread Partitioning: Although the partitioner is primitive compared to the theoretical state-of-
the-art[28), thread sizes (I/T') are close to typical branch distances, which provides an upper bound
given that fork is the only form of control transfer. The observed thread sizes are comparable to
run lengths reported for hybrid dataflow machines, where conditionals were treated as strict[16].
Partitioning eliminates more than half of the dynamic synchronization points and, by maintaining
thread-local values in registers, eliminates roughly half of the frame references and reduces the frame
size substantially. There is no fundamental reason to exclude branching in the abstract machine,
although with branching the definition of a thread becomes more subtle. Table 3 separates out the
forks that could be transformed into simple jumps. In the absence of hardware support for multiple
threads, this is a more appropriate accounting.

The non-strict semantics of the Id language place unusual constraints on thread partitioning
that would be absent in less powerful languages. Excluding this factor and the absence of branching,
the primary limit on the size of statically scheduled program entities is the presence of long-latency
operations, represented by split-phase operations in TLO. On average, the distance between split-
phase operations is between 10 and 15 instructions. Replication of data, such as might be achieved
by caching, would reduce the number of these operations that actually experience long latency, but
not the number that potentially do so. Thus, in any execution model that attempts to mask latency
through split-phase operations, thread-local values provide only limited opportunity for exploiting

11

QS(1000) 1 2 4 6 8 10 12
Defered Hetches | 3000 8973 15736 21021 23812 25006 26020

Q/A 3.0 4.0 5.3 6.3 6.9 7.3 7.8
T/Q 23.0 17.2 12.5 10.9 9.9 9.5 9.1
1/Q 63.9 47.6 36.3 30.2 27.6 26.3 25.2

Table 4: Dynamic Scheduling Measurements for 1 to 12 Processors on a Sequent Symmetry

processor registers and the frequency of thread switch is non-trivial.

Quanta: Although individual threads are usually small, the number of logically related threads
that can be scheduled closely together in time is often substantial. This is indicated by the row
of Table 3 labeled T/Q, which gives the average number of threads scheduled per quantum. By
recognizing this level in the scheduling hierarchy, it is possible to carry values in registers across
threads. Observed average quantum size (I/Q) indicates that there is substantial opportunity to
utilize high-speed registers at this level. The completion and initialization threads can be configured
in conjunction with register allocation to save and restore registers when the compiler incorrectly
predicts the quantum boundaries. Register allocation becomes challenging in this quasi-dynamic
setting, as the cost metrics are probabilistic.

The thread enabled by a fork instruction is guaranteed to execute within the same quantum
as the fork. Thus, the fork can be implemented by simply pushing the instruction pointer of the
target thread on the local continuation vector. The thread switch (STOP) is simply a pop-jump.
The cost of this form of thread switch is only a few instructions. The last fork in a thread can
be pulled to the end of the thread and elided with the STOP to produce a jump or a fall-through,
depending on the ordering of threads in the code-block. As indicated by Table 3, a large fraction
of the forks can be transformed into jumps.®

The quantum figures in Table 3 must be interpreted with some caution, since this is scheduling
dependent and the numbers derive from uniprocessor runs. Table 4 provides preliminary scheduling
measurements for the quicksort program on multiple processors. This makes extensive use of non-
strict data structures, yet the average quantum size is roughly halved on multiple processors. We
are developing a fully instrumented implementation of TLO on a 2048-node nCUBE/2 to determine
quantum sizes in a truly parallel setting on large programs.

Net Synchronization Cost: Based on the scheduling data in Table 3, we can make preliminary
estimates of the net cost of synchronization with or without special hardware support. Under a
dataflow execution model, the primary form of synchronization is matching pairs of operands. This
requires one cycle on an ETS dataflow architecture[22] or multiple cycles with a hash-based match-
ing store[15], under the assumption that the matching store and the token queue are maintained
in high-speed processor storage.” We see that 1.5 tokens are processed per instruction, or one
synchronization event for every two instructions, on average. The synchronization cost under a
dataflow model is roughly 0.5I times the match cost.

Since TAM employs a range of synchronization mechanisms, we must account for the possible
relationships of the participants. Suppose that A and B are two portions of the program that

%On the other hand, the ability to separate the fork from the stop provides a generalization of delayed branch and
may be advantageous to support directly.

"The read-modify-write process associated with the match may also stretch the machine cycle, so a small multi-
plicative factor should be employed to account for this and an average miss penalty should be included. Still, the
basic argument is unchanged.

12

must complete before portion C is executed. If A and B are part of the same thread, the cost of
synchronization is zero, since it is implicit in the thread ordering. With an average thread size of
four, roughly half of the dataflow synchronization events (0.257) fall in this category. Thus, even
with extensive hardware support, compiling to threads can reduce the net synchronization cost.
If A and B are in two threads in the same code block, the synchronization cost is the two entry
count decrements and the fork/stop or simple jump, depending on where the fork appears in the
thread. This case is represented by the instructions counted in the rows labeled Fork and Jump in
Table 3. Taking the two large programs, simple and gamteb, as representative, we see 12% of the
TAM instructions are subject to an overhead of roughly five machine instructions and 12% to 18%
subject to an overhead of roughly three instructions. Direct hardware support for this operation
can bring noticeable performance improvement, but is unlikely to provide more than a factor of
two. (The quicksort example indicates a more dramatic improvement, but is also most strongly
influenced by the immature state of our compiler.)

The most costly form of synchronization is the interaction of threads in different code-blocks,
either through parameter and result passing or through structure operations. These are the external
messages handled by inlets. The row labeled split-phase in Table 3 shows the number of these events
as a percentage of the instructions executed; roughly one in eight. We may assume the event is
associated with the arrival of a message, the first word of which identifies the inlet and the second
word specifies the activation frame. To process such a message, the inlet is dispatched; it receives
the rest of the message, stores values into slots in the specified frame, and posts a thread in the
continuation vector. Eventually, the frame will be made resident and its constituent continuations
processed. Thus, the cost of this form of synchronization is net+n+ a/g, where n is the cost of the
inlet, a is the cost associated with scheduling and perhaps copying state for the activation, ¢ is the
number of split-phase operations per quantum, and net is the cost of interacting with the network.
Under TAM, n and a are only a few instructions and dynamic measurements indicate that g can
be fairly large. Thus, by structuring the execution model in a manner that promotes large quanta,
even under dynamic thread scheduling, the cost of this form of synchronization is also reduced. By
making the register level of the storage hierarchy explicit and recognizing quantum boundaries, the
compiler may attempt to minimize a while promoting use of registers.

The most significant synchronization cost is the actual transmission and reception of the mes-
sage from the network. This has been addressed in dataflow machines in the context of elaborate
hardware support for scheduling and synchronization. For example, on Monsoon a single 144-bit
message packet can be transmitted or received in a cycle or two. Upon reception, it is placed
on a large hardware managed scheduling queue. In essentially every commercially available mul-
tiprocessor, a combination of awkward network interface and operating system software places
the cost of this operation on the order of hundreds of cycles. TAM demonstrates that efficient
processor/network interaction and program level scheduling and synchronization can be addressed
independently. Issuing split-phase requests is not unlike issuing instructions to a modern numeric
co-processor. Receiving requests requires little more than dispatching to an inlet sequence; the
message decode is “compiled in” and storage is preallocated.

4 Conclusion

In this paper, we have presented an execution model for fine-grain parallelism, in which synchroniza-
tion, scheduling, and storage management is explicit and under compiler control. This is defined
by a simple abstract machine with a multilevel scheduling hierarchy: instructions within a thread,
threads within a quantum, quanta within an activation. This makes a range of synchronization

13

mechanisms available to the compiler, so it can exploit frequently occuring special cases. Overall,
the net cost of synchronization on conventional processors is shown to be roughly comparable to
that on machines with elaborate hardware support, such as proposed dataflow architectures. An
implementation of the dataflow language 1d is shown to be roughly competitive with conventional
languages on current uniprocessors.

Empirical measurements show that threads are small, but substantial temporal locality exists
among logically related threads, even under dynamic scheduling. With scheduling made explicit, the
compiler can make effective use of high-speed processor state across a sizable collection of threads,
provided that it manages that resource under a quasi-dynamic scheduling paradigm. Implicit
scheduling in hardware is shown to be of questionable value, as it prevents register usage beyond
thread boundaries. Exposing scheduling to the compiler allows it to synthesize particular scheduling
policies in specific portions of the program.

Tolerance to long, unpredictable communication latency and inexpensive synchronization in a
large namespace have been put forward as fundamental architectural issues for general purpose
parallel computing. In this paper, we have argued that these are primarily compilation issues. In
order to generate programs that perform well on large multiprocessors, the compiler must represent
the program in such a way that the most frequent forms of synchronization and context switching are
extremely rapid. This can be achieved without elaborate hardware scheduling. Multiple register
sets provide benefits under this execution model, but are not essential. This suggests that the
fundamental architectural issues are simply: how many cycles does it take to deliver data from the
user program into the network and how many cycles does it take to extract data from the network
and deliver it to a useful place in the user program.

A TLO

TAM is currently represented by TLO, a 3-address instruction set with somewhat unusual control
and memory operations. An overview of TLO is provided in Table 5. Operands indicated by src
may be frame slots, integer registers, floating-point registers, or literals. The usual integer and
floating-point arithmetic and logical operations are provided in a three address form, where dst
may be either a frame slot or a register. The operation code is qualified by type or size: .I for
integer, .F for floating point, .H for half-word, and .W for full-word (64 bits).

In TLO a thread is a sequence of instructions bracketed by THREAD thr and END_THREAD. Syn-
chronizing threads start with a SYNC instruction which specifies a frame slot that holds the thread
entry count. The FORK operation enables a thread for execution. The thread is specified as an
immediate operand. SWITCH is a conditional fork; it enables one of two local threads for execution.
CASE is a conditional fork that enables a thread obtained by indexing into a static table. STOP
causes the current thread to be terminated and an enabled thread from the current activation to
be dispatched. Each fork to a synchronizing thread causes the entry count to be decremented. The
thread executes when the count reaches zero. The decrement and test may be performed at the
sync or as part of the fork, in which case threads are placed on the continuation stack only if they
are guaranteed to execute.

The memory operations support split-phase access to components of structures of various sizes.
Thus, the read operations specify an inlet as a destination. The operation causes a request to be
generated for the memory unit or processor containing the referenced element. The corresponding
inlet places the value contained in the response into a specific frame slot and enables a specific
thread. (Inlets may also process multiple values.) Three read operations are provided: IREAD,
IFETCH, and ITAKE, that operate in tandem with the write operations, IWRITE, ISTORE, and IPUT.

14

Arith/Logic al-op.t dst = srcl src2

Transfer MOVE. s dst = src
Control SYNC src
FORK thr
SWITCH src thrl thr2
CASE src thrl ... thrN
STOP
Structure IALLOC.s inlet= src
IFREE 8re

rd-op.s inlet = src1[src2]}

wr-op.8 src1[src2] = src8
Call/Return RALLOC inlet1-inletN = srcl

RSEND src, inlet = srcl.s ... srcN.s

RETURN res = srcl.s ... srcN.s

RELEASE res = srcl.s... srcN.s

Table 5: Overview of TLO Operations

The operation IREAD simply reads the location; the split phase character is solely to avoid waiting
during a long-latency request. IFETCH is a synchronizing form of read, that checks status bits
associated with the referenced location and waits in the memory unit until an ISTORE fills the
location. ISTORE causes all waiting readers to be serviced. This supports write-once data structures
with element-by-element synchronization. IPUT and ITAKE provide exclusive access to a mutable
location. IPUT stores a value into a locations and if waiters exist, a single waiter is serviced. ITAKE
reads a full location and leaves it empty. If the slot is empty ITAKE waits until it is made full by a
corresponding IPUT. Memory operations are qualified by the size of the value transferred.

The Call/Return operations support an asynchronous remote call mechanism. RALLOC is a split
phase operation that requests a frame for a specified code-block srci, passing a range of inlets to
be used for returning function results and inletl receives the pointer to the allocated frame. The
frame pointer is used in RSEND to transfer values into an inlet of that frame. RETURN sends result
values back to its caller. The res field selects which of the inlets specified in RALLOC to use. In
addition to the operations performed by RETURN, the operation RELEASE also deallocates the frame.
Typically the value returned by RELEASE signals completion to the parent.

Below is a simple Id function that computes the inner-product of the two input vectors A and
B, over the range of subscripts 1 to n.

def inner_prod A B n = {
sum = O;
in {for i <- 1 to n do
next sum = sum + A[iJ*B[i];
finally sum} } ;

The TLO code shown in Figure 3 begins with static declaration of frame slots, registers, and
inlets, followed by the definition of the initialization thread and eight other threads. The initial-
ization thread is executed by the RALLOC operation in the calling activation prior to any of the
other threads.

15

CBLOCK inner_prod
FRAME LOCALS = 20, L_CVECT = 4, R_CVECT = 4
REGS I_REGS = 2, F_REGS = 1

Locals:

& LO A, L2 B,

¢ 14 n, Le 1i, L7 unused,

L8 sum, L10 A offset,

Li2 B offset, L14 A[i],

Li16 B[i], L18 thr3 synch var, L19 thré synch var

Inlet declarations:

INLET inlet0 = thrO trigger

IBLET inlet2 = L4.H thr3 third argument (n)
INLET inlet3 = L2.W thr2 second argument (B)
INLET inlet4 = LO.W thri tirst argument (4)
INLET inlet5 = L10.H thr3 A lower bound offset

INLET inlet6
INLET inlet7
INLET inlet8

INIT_THREAD
MOVE.H Li8 = 4

L14.V thré A[i]
L16.V¥ thré B[i]

Init synch vars

t
t 4

L12.H thr3 # B lower bound offset
t 4
E
trigger R Ak B &k n
t 4

MOVE.H L19 = 2 Ali] & B[i]
STOP
END_THREAD
t
: Threads receiving arguments
THREAD thro0 # Trigger
MOVE.W L8 = 0.0 & sum = 0
MOVE.H L6 = 1 #i=1
FORK thr3
STOP
END_THREAD
THREAD thri # Receive first arg (1)
Igg;CH.H inlet5 = LO[0] # fetch low bound offset
S
END_THREAD
THREAD thr2 # Receive second arg (B)
g;gTCH.H inlet6 = L2[0] # fetch low bound offset
P
END_THREAD
*
Body threads
3
THREAD thr3 # VWait for all arguments
SYNC L18
FORK thr4 # enter loop
STOP
THREAD thr4 # Top of loop - test
MOVE.H IREGO = L6 # load i into register
LE.I IR1 = IREGO L4 # IRl =i<=n
SWITCH IR1 thrb thr7 ¢ if IR1 fork §
STOP # else fork 7
END_THREAD
THREAD thr5 # Loop body - first halt

ADD.I IREG1 = L10 IREGO 2 A low bound offset+i
IFETCH.V inlet7 = LO[IREG1] # fetch A[i]
ADD.I IREG1 = L12 IREGO £ B low bound offset+i
IFETCH.V inlet8 = L2[IREG1] # fetch B[i]

ADD.I L6 = IREGO 1 #i=i+l
STOP

EKD_THREAD

THREAD thré # Loop body - second half
SYNC Li19 # wait for A[i] and B[il
MOVE.H L19 = 2 # re-init synch var
FORK thr4 # enable loop top
MUL.F FREGO = L14 L16 # A[i] * B[il
ADD.F L8 = L8 FREGO # sum = sum + A[i)sB[i]
STOP

END_THREAD

THREAD thx7 # End ~ return result
RETURN resi = L8.W # return result
RELEASE res0 # return signal and dealloc
STOP

END_THREAD

END_BLOCK

Figure 3: Sample TLO code for inner product

16

Acknowledgements: This study grew, in part, out of a collective term project in EECS 294-
2, that included work by Rafael Saavedra-Barrera, M. T. Raghunath, and Tzi-cker Chiueh. We
have drawn heavily on the work of Arvind’s Computation Structures Group at the MIT Lab for
Computer Science, responsible for Id, the compiler front-end, and the basic evolution of dynamic
dataflow architectures. We have profited from many helpful discussions with Greg Papadopoulos,
Ken Traub, Jamey Hicks, Rishiyur Nikhil, and Brad Kuszmaul.

References

(1] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architecture for
Multiprocessing. In Proc. of the 17th Annual Int. Symp. on Comp. Arch., pages 104-114,
Seattle, Washington, May 1990.

[2] Arvind, D. E. Culler, and G. K. Maa. Assessing the Benefits of Fine-Grain Parallelism in
Dataflow Programs. The Int. Journal of Supercomputer Applications, 2(3), November 1988.

[3] Arvind and K. Ekanadham. Future Scientific Programming on Parallel Machines. Journal of
Parallel and Distributed Computing, 5(5):460—493, October 1988.

[4] Arvind and R. A. Jannucci. Two Fundamental Issues in Multiprocessing. In Proc. of DFVLR
- Conf. 1987 on Par. Proc. in Science and Eng., Bonn-Bad Godesberg, W. Germany, June
1987.

[5] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Architec-
ture. IEEE Transactions on Computers, 39(3):300-318, March 1990.

[6] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel Computing.
Technical Report CSG Memo 269, MIT Lab for Comp. Sci., 545 Tech. Square, Cambridge,
MA, February 1987. (Also in Proc. of the Graph Reduction Workshop, Santa Fe, NM. October
1986.).

[7] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. Register
Allocation via Coloring. Computer Languages, 6:47-57, 1981.

[8] D. E. Culler. Managing Parallelism and Resources in Scientific Dataflow Programs. Technical
Report 446, MIT Lab for Comp. Sci., March 1990.

[9] D. E. Culler and Arvind. Resource Requirements of Dataflow Programs. In Proc. of the 15th
Annual Int. Symp. on Comp. Arch., pages 141-150, Hawaii, May 1988.

[10] W Dally and et al. Architecture of a Message-Driven Processor. In Proc. of the 14th Annual
Int. Symp. on Comp. Arch., pages 189-196, June 1987.

[11] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The Epsilon Dataflow Processor.
In Proc. of the 16th Annual Int. Symp. on Comp. Arch., 1989.

[12] V. G. Grafe and J. E. Hoch. The Epsilon-2 Hybrid Dataflow Architecture. In Proc. of Comp-
con90, pages 88-93, March 1990.

[13] J. Gurd, C.C. Kirkham, and I. Watson. The Manchester Prototype Dataflow Computer.
Communications of the Association for Computing Machinery, 28(1):34-52, January 1985.

17

[14] R. H. Halstead, Jr. and T. Fujita. MASA: a Multithreaded Processor Architecture for Parallel
Symbolic Computing. In Proc. of the 15th Int. Symp. on Comp. Arch., pages 443—451, 1988.

[15] K. Hiraki, K. Nishida, S. Sekiguchi, and T. Shimada. Maintainence Architecture and its LSI
Implementation of a Dataflow Computer with a Large Number of Processors. In Proc. of the
1986 Int. Conf. on Par. Proc., pages 584-591, 1986.

[16] R. A. Tannucci. Toward a Dataflow/von Neumann Hybrid Architecture. In Proc. 15th Int.
Symp. on Comp. Arch., pages 131-140, 1988.

[17] H. F. Jordan. Performance Measurement on HEP — A Pipelined MIMD Computer. In Proc.
of the 10th Annual Int. Symp. on Comp. Arch., Stockholm, Sweden, June 1983.

[18] R. H. Halstead Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems, 7(4):501-538, October 1985.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor. In Proc. of the 17th Annual Int.
Symp. on Comp. Arch., pages 148-159, Sealttle, Washington, May 1990.

[20] R. S. Nikhil. Id (Version 88.0) Reference Manual. Technical Report CSG Memo 284, MIT
Lab for Comp. Sci., 545 Tech. Square, Cambridge, MA, March 1988.

[21] R. S. Nikhil and Arvind. Can Dataflow Subsume von Neumann Computing? In Proc. of the
16th Annual Int. Symp. on Comp. Arch., Jerusalem, Israel, May 1989.

[22] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit Token-Store Architecture. In
Proc. of the 17th Annual Int. Symp. on Comp. Arch., 1990.

[23] C. A. Ruggiero. Throttle Mechanisms for the Manchester Dataflow Machine. PhD thesis,
University of Manchester, Manchester M13 9PL, England, July 1987.

[24] R. Saavedra-Barrerra, D. E. Culler, and T. von Eicken. Analysis of Multithreaded Architec-
tures for Parallel Computing. In Proceedings of the 2nd Annual Symp. on Par. Algorithms
and Arch., July 1990.

[25] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An Architecture of a Dataflow
Single Chip Processor. In Proc. of the 16th Annual Int. Symp. on Comp. Arch., pages 46-53,
Jerusalem, Israel, June 1989.

[26] B. Smith. Keynote address. 17th Annual Int. Symp. on Comp. Arch., June 1990.

[27) M. R. Thistle and B. J. Smith. A Processor Architecture for Horizon. In Proc. of Supercom-
puting ’88, pages 35—41, Orlando, FL, 1988.

[28] K. R. Traub. Sequential Implementation of Lenient Programming Languages. Technical Re-
port TR-417, MIT Lab for Comp. Sci., 545 Tech. Square, Cambridge, MA, September 1988.
(PhD Thesis, Dept. of EECS, MIT).

[29] W. Weber and A. Gupta. Exploring the Benefits of Multiple Hardware Contexts in a Multi-
processor Architecture: Preliminary Results. In Proc. of the 16th Int. Symp. on Comp. Arch.,
pages 273-280, Jerusalem, Israel, May 1989.

18

