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Abstract

Circuit simulation is one of the most computationally expensive tasks in circuit de-

sign and optimization. Detailed simulation at the level of precision of SPICE is usually

performed on critical circuit components only. In this paper we present a parallel timing

simulator on a distributed memory multiprocessor, as an attempt to increase the speed

and scale of circuit simulation for digital MOS circuits. The parallel implementation is

based on the event-driven timing simulator SWEC, which outperforms SPICE by one to

two orders of magnitude. Our approach to parallelization exploits runtime parallelism by

scheduling the events optimistically. Trace-driven analysis shows that the optimistic sim-

ulation method exploits more parallelism than the conservative method for circuits with

feedback signal paths. We describe the design tradeo�s in the implementation and report

on its performance for several benchmark circuits. Speedups over SWEC on large realistic

circuits are as high as 60 on a 128-node CM5 multiprocessor. The total speedup over

SPICE can be as high as 1000. These results indicate the feasibility of using distributed

memory multiprocessors to perform large-scale circuit simulation.
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1 Introduction

Circuit simulation is one of the most important tasks in circuit design and optimization.

It is also one of the most computationally expensive. Although programs such as SPICE

have been used on a wide range of circuits to provide accurate simulation results, they are

usually performed on critical circuit components only, due to the limited processing and

memory capacity of conventional computers. Detailed simulation of an entire processor

design at the level of precision of SPICE is virtually impossible. As VLSI technology

advances and circuits become more complex, circuit simulation is likely to become the

bottleneck of the design process, unless simulation speed can be scaled with increases in

circuit size.

Circuit simulators such as SPICE employ direct methods to solve a large, sparse system

of di�erential equations. Less expensive simulation techniques have been proposed for

the class of digital MOS circuits. These techniques are based on the partitioning of a

large circuit into many smaller, loosely coupled subcircuits. Direct methods can then be

applied independently to the individual subcircuits within one time step, which requires

far less computation than solving the entire circuit at once. In relaxation-based methods,

this process may have to be iterated many times until the result converges. In timing

simulation methods, each time step is processed only once by carefully choosing the time

step size and the order of evaluation. Both the relaxation based simulators and the timing

simulators show signi�cant speed improvement over SPICE [5], at the cost of slightly lower

precision.

In this paper we address the parallelization of timing simulators on distributed memory

multiprocessors. Previous work [1, 2, 3] on parallel timing simulation has concentrated on

evaluating multiple subcircuits in parallel within one time step. One approach is to execute

subcircuit tasks in a loosely synchronous manner with synchronization between each time

step, if all the subcircuits use a uniform time step (e.g., the \synchronous" algorithm in

CEMU [2]). A second approach is to execute subcircuit tasks in a data-driven manner

(e.g., the \asynchronous" algorithm in CEMU [2]). The data-driven approach exploits

more parallelism, but incurs higher communication overhead [1]. Low-level parallelism

is also available within the evaluation of each subcircuit. Techniques for exploiting the

low-level parallelism are essentially those for parallelizing the direct methods [4].

Our parallel timing simulator is based on the parallelization of SWEC [5], a sequential,

event-driven timing simulator. SWEC employs a stepwise linear waveform and device

model, and thus the task of evaluating a subcircuit is reduced to solving a linear system of

node voltages. Furthermore, the evaluation of a subcircuit is triggered by events generated

by the state changes of the subcircuit and its fanins. The rate of state change determines

4



the time step size to be used for a given subcircuit at a particular time point. These

features take advantage of the latency and multirate properties in most digital circuits [6].

The latency property states that most digital signals change infrequently; the multirate

property states that di�erent parts of a circuit produce signals at di�erent speeds.

Parallelizing SWEC is a challenging problem of parallel programming, particularly on

distributed memory multiprocessors. The event-driven approach with variable time steps

makes the communication between subcircuits unpredictable, and thus precludes the possi-

bility of a synchronous, low-overhead implementation [2]. Empirical evidence from SWEC

also indicates that the task granularity is usually small (hundreds of microseconds on a

CM5), because the stepwise linear model avoids the costly Newton-Raphson iterations used

for solving non-linear systems. Therefore, we must be careful not to introduce excessive

parallelization overhead that would overwhelm the cost of computation.

Our approach to parallelizing SWEC is as follows. First, we use static data layout to

distribute work among the processors; each processor is responsible only for simulating the

subset of subcircuits stored in its local memory. This static partitioning strategy avoids

the communication overhead of making global scheduling decisions, and of relocating sub-

circuit states for load balancing. These overheads can be signi�cant when compared with

the actual computation cost. Second, we employ optimistic simulation in scheduling the

subcircuit evaluations. Optimistic scheduling exploits the parallelism determined by the

actual signal 
ows at runtime, rather than limiting parallelism to the static interconnec-

tion of the circuit. A previous study [7] shows the lack of parallelism at the switch level

for several benchmark CMOS circuits. Therefore, we choose to trade the memory and

computation overhead of optimistic simulation for the increase in exploitable parallelism,

in order to fully utilize the power of a large scale multiprocessor.

We use the CM5, a distributed memory multiprocessor, as the target machine for paral-

lelization. Our con�guration of the CM5 contains up to 128 33-Mhz SPARC/2 processors,

interconnected by a fat-tree network with 5 to 20 MBytes/sec bandwidth between pairs

of processors. Each processing node has 8 MBytes of local memory, totaling 1 GByte of

memory in the system. Besides the message passing facilities, the CM5 also provides fast

synchronization and global combining primitives. Our implementation takes advantage of

these special hardware features whenever possible.

The rest of this paper is organized as follows. Section 2 introduces the timing simulation

problem and outlines the sequential algorithm. Section 3 reports the measurements on the

parallelism available in the benchmark circuits. These measurements are used to justify

the use of multiprocessors and the optimistic approach of simulation. Section 4 describes

our data layout and load balancing policy. Section 5 introduces approaches to discrete

event simulation. Section 6 describes our optimistic simulation algorithm, and outlines its
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implementation on the CM5. Section 7 reports on the performance of our parallel timing

simulator and gives analysis of the costs. Section 8 compares our approach to previous

work on parallel timing simulation. Finally, we give our conclusions and suggest future

work in Section 9.

2 Problem Statement

This section introduces the timing simulation problem, and in particular, the SWEC ap-

proach to timing simulation. The introduction describes only the parts of circuit simulation

that are relevant to our parallelization problem.

2.1 Introduction to Timing Simulation

Timing simulation is a special form of circuit simulation that is optimized for digital

MOS circuits. A timing simulator performs time-domain transient analysis, which gives

the target circuit's state in response to the input signals. The resolution of the analysis

is roughly the same as that of a general-purpose circuit simulator; it gives the circuit's

response in terms of voltages on the real time axis. The precision of simulation is slightly

lower, but the speed improvement is signi�cant.

The �rst step in a timing simulation is to partition the circuit based on the charge

coupling of transistors. In digital MOS circuits, two transistors are tightly coupled if they

are connected via a source-drain charge path. On the other hand, they are loosely coupled

if they are connected only via the gate terminal of some transistor, implying that the signal


ow is unidirectional. Tightly coupled transistors must be evaluated simultaneously for

precision, while loosely coupled transistors can be evaluated mostly independently with

infrequent propagation of values between transistors. We refer to the clusters of tightly

coupled transistors as subcircuits.

The evaluation of a subcircuit uses the same techniques as those for general purpose

circuit simulators. A circuit is represented as a set of devices such as resistors or transis-

tors interconnected at the nodes. The device behavior and the fundamental voltage and

current laws (KVL and KCL) determine the relations between the node voltages and the

branch currents. These relations are usually in the forms of �rst order ordinary di�erential

equations for circuits containing non-linear devices and capacitance. The simulation then

proceeds as follows:

� Apply a numerical integration step to convert the di�erential equations into a system

of nonlinear algebraic equations.
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� Apply Newton-Raphson iterations to convert the nonlinear algebraic system into a

sequence of linear algebraic systems.

� Solve the linear system at each iteration (possibly using sparse methods for large

systems).

These steps are repeated for each time step to obtain the entire time-domain transient

response. Notice that the values computed at each time step are used by the subsequent

time steps.

2.2 The SWEC Approach to Timing Simulation

SWEC further optimizes the timing simulation algorithm described in Section 2.1. In

SWEC all the voltage waveforms are considered to be piecewise linear. The piecewise lin-

ear waveform model provides an e�cient yet accurate encoding of most digital signals. By

prudently controlling the time steps, the input and output voltage waveform can be approx-

imated by straight line segments, and the devices can be treated as constant conductance

devices. (Hence the name SWEC, which stands for \Step-Wise Equivalent Conductance".)

These approximations result in a system of linear algebraic equations after the numerical

integration step, and thus the Newton-Raphson iterations in step 2 of the direct method

described above is no longer necessary.

In addition to reducing the cost of each evaluation, the piecewise linear waveform

model also reduces the number of evaluations required. First, the time step size used by

a subcircuit at a particular time depends on its activity; arbitrarily long time steps can

be used for a subcircuit as long as its input and output waveforms for the time step are

linear within a small error margin. Second, a subcircuit propagates its output only when

the new output cannot be linearly extrapolated using the old one; several time steps may

elapse before a subcircuit communicates its state. The act of communicating the new state

to fanout subcircuits is called an event.

In summary, SWEC reduces the cost of each subcircuit evaluation by its stepwise

equivalent conductance device model. It also reduces the number of evaluations by using

variable time step control and the event-driven approach. Combining these techniques,

SWEC is shown to outperform SPICE by one to two orders of magnitude on real world

digital circuits [5]. The precision of SWEC is also shown to be very close to that of SPICE;

the cycle time for a ring oscillator with 7 inverters estimated by SWEC is the same as that

by SPICE.
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2.3 The SWEC Simulation Algorithm

2.3.1 Terminology

We now introduce the terminology and algorithms in the SWEC timing simulator. Our

focus will be on the control structure of the program; the reader is referred to the original

paper on SWEC [5] for detailed descriptions of the numerical components in the simulator.

However, they are not essential to the understanding of this presentation.

The basic data structure in SWEC is a region, which stores the data of a subcircuit.

The subcircuits are determined by an automatic partitioning step, which is the �rst step

in the simulation. A region contains the collection of MOS transistors and the nodes (or

nets) they drive. We use N(r) and M(r) to denote the number of nodes and the number

of MOS transistors in region r, respectively.

For the presentation of this paper, it su�ces to think of the circuit as a directed multi-

graph (referred to as G), where a vertex denotes a region, and an edge e1 from vertex r to

vertex r0 denotes a unidirectional signal path from some node in r to the gate terminal of

some MOS transistor in r0. Note that there can be more than one edge between a pair of

vertices. We de�ne In(r) as the set of vertices (regions) incident to r, and Out(r) as the

set of vertices (regions) incident from r. The number of edges emergent from r is denoted

by deg(r). Figure 1 gives an example of the data structure.

The state of a node n at time t is denoted n(t); it consists of its voltage n(t):v and

its voltage derivative n(t):dv. The state of a MOS transistor m at time t, m(t), is its

conductance m(t):g, which is a function of the state of its driving node. The state of a

region r at time t, r(t), is simply the set of the states of the nodes and the MOS transistors

in r. Note that the states are de�ned (evaluated) only at discrete time points in the

simulation. For the rest of this paper, the universal quanti�ers on times refer to these

discrete time points only.

The voltage sources are modeled as regions whose states are completely de�ned by the

input waveforms.

2.3.2 Time Step Control in SWEC

The state of a region is computed at su�ciently many time points to yield piece-wise linear

waveforms of the node voltages. We refer to the computation of a region's state over one

time step as an evaluation. An evaluation of a region may produce a new state value that

has to be conveyed to its fanout regions to ensure accuracy. Speci�cally, a state value of

a region is considered to be new if it cannot be approximated by a linear extrapolation on

the old value. More precisely, r(t) is new with respect to its preceding state r(t0) if for any
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node n in region r,

����1� n(t):dv

n(t0):dv

���� > �

where � is a user-speci�ed parameter to control the precision of the simulation. An eval-

uation that leads to a new state value is called an event. All events must be conveyed to

the fanout regions (via the proper edges in G) to ensure correctness of simulation.

The resolution of the waveforms, or the number of time points in its evaluation, is

controlled carefully to ensure the accuracy of the trapezoidal numerical integration and

the stepwise equivalent conductance device model. Speci�cally, the next evaluation time

for region r after time point t is determined by the minimum of:

� t + hpredict(r(t)): the next time point assuming no new fanin events.

� min8r02In(r0) ft
0 + hadjust(r

0(t0))g, for all t0 � t such that r0(t0) is an event: the bound

on time step in response to new fanin events.

where hpredict predicts the next time step based on the current state, and hadjust adjusts

the next time step based on new events produced by r's fanin regions. All time values are

discrete, and the basic time unit is one picosecond. Both hpredict and hadjust return at least

1 so that progress can be made. For convenience of discussion, we assume all time points

are distinct1.

To summarize, the simulation time step taken by a region varies with its activity. To

advance the state of a region from time t to time t0, we need to know (or to be able to

extrapolate) the states of its fanin regions up to time t0, in order to ensure the consistency

of both control and computation. With this in mind, we proceed to present the SWEC

simulation algorithm.

2.3.3 The SWEC Simulation Algorithm

In SWEC each region r maintains the variables r:time and r:etime, which store the time

of the latest evaluation and the time of the next evaluation, respectively. The algorithm

uses a priority queue Q (ordered by r:etime) to ensure that, when a region r is scheduled

for evaluation at time r:etime, all states (and thus all events) before r:etime have been

evaluated, and thus r:etime can be computed according to the de�nition of next evaluation

time given above.

1Technically the time points can overlap, and the result will be dependent on the way the algorithm breaks

ties. However, the choice has negligible e�ect on precision, and the original SWEC implementation breaks ties

arbitrarily.
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Before the simulation begins, r:etime is initialized to 1 for all regions except the

voltages sources, for which the next evaluation time is set to be the �rst time point of

the input waveform. r:time is initialized to 0 for all regions. Every region r is put on the

priority queue Q based on r:etime.

The algorithm then enters a scheduling loop containing the following steps:

� Remove the region r with the least r:etime from Q.

� If r:etime is greater than the total simulation time, exit.

� Extrapolate the states of the regions in In(r) at r:etime using the linear waveform

model, based on the latest event produced by In(r).

� Evaluate r(r:etime), using r(r:time), which is evaluated at the previous time step for

r, and In(r)(r:etime), which is extrapolated at the previous step. The evaluation is

done in the following two steps:

{ The device models are evaluated to set up the system of linear equations of the

node voltages. This is usually referred to as the model evaluation step.

{ A dense linear solver is applied to solve the system; the current SWEC imple-

mentation switches from a Gaussian elimination solver to a relaxation solver

when the system is large.

� If r(r:etime) is an event, adjust the time steps of all regions in Out(r) using

hadjust(r(r:etime)). This is referred to as the fanout operation. Q is adjusted accord-

ingly to re
ect the new time order.

� Update r:time to be r:etime. Predict the next time step using hpredict(r(r:etime))

and store the value in r:etime. Insert r to Q.

Note that if a region does not receive any signal (embodied in an event), it is never

scheduled. It is easy to see that the algorithm is safe, meaning that all the states it

generates are valid; it is also live, since the number of possible time points is �nite and

each iteration of the algorithm computes a new one.

3 Measurements of Available Parallelism

Previous attempts to parallelize SPICE-like circuit simulators have had limited success.

For example, the parallel circuit simulators implemented by Yang [4] and Sadayappan [8]

exhibited low e�ciency even on a small number of processors, yielding maximum speedups
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of less than 5 on 8-processor shared memory multiprocessors. To explain the lack of

success in parallelizing circuit simulation, Bailey and Snyder [7] instrumented a sequential

switch-level simulator to measure the inherent parallelism in six real circuits. The results

showed surprisingly low parallelism even for very large circuits. For example, the average

parallelism, or the average number of transistors switching at the same time (real time),

is only 6.3 for a 32-bit RISC processor containing over 24,000 transistors; the average

parallelism for a IIR digital �lter containing over 27,000 transistors is 6.4. The highest

parallelism is shown in large arithmetic circuits with regular structures. For example, the

average parallelism is 50 for a 32-bit shifter with 8 stages, and 24 for a 32-bit Baugh-Wooley

multiplier. The lack of simultaneous activities in the circuits gives an indirect explanation

of the low speedups shown by the direct method simulators.

To justify our use of a large-scale multiprocessor, we give the results of a similar study

on the available parallelism under SWEC. Our study is di�erent in that we measure the

optimal parallelism achievable on the simulation time axis, instead of on the real time axis.

The latter metric does not re
ect the fact that multiple time points of the circuit can be

simulated in parallel, as long as their dependency is preserved. Therefore, the real time

metric is only suitable for synchronous parallel implementations. In this section we present

our results on circuit parallelism, which are far more encouraging than the results obtained

by Bailey and Synder.

3.1 Benchmark Circuits

Table 1 lists the benchmark circuits we used for measuring parallelism and for subsequent

performance comparisons. We were not able to produce the parallelism pro�les for all

benchmark circuits, because the time to produce them would be prohibitive.

The ripple adder and the two multipliers are combinational circuits. The register �le

is sequential in nature, but there is no feedback path among the regions because all nodes

on a feedback path are tightly coupled, and are partitioned into the same region. The

4-bit counter consists of 4 T type 
ip
ops. The 4-bit counter, the PLA state machine,

and the SIMD datapath are sequential circuits with many feedback paths among the re-

gions. C1355, C2670, C5315, and C7552 are drawn from the ISCAS benchmark suite; their

functions are unknown to us.

3.2 Instrumentation Method

We instrumented the sequential SWEC program to record the activities of the simulation.

Speci�cally, we assume that an unlimited number of processors is available, and that each

evaluation is assigned to an idle processor as soon as it is \ready" to start.
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Name function mosfets nodes regions running time

ADDER 16-bit ripple adder 442 226 129 59 sec.

MUL 1 16-bit multiplier I 7190 2576 401 293 sec.

MUL 2 16-bit multiplier II 6234 3332 1101 5297 sec.

COUNTER 4-bit counter 170 88 51 22 sec.

PLA PLA state machine 2117 717 507 1423 sec.

REGFILE register �le bit slices 4832 1559 404 538 sec.

SIMD fast processor datapath 37939 18860 7413 64916 sec.

C1355 ISCAS benchmark suite 2306 1196 678 942 sec.

C2670 ISCAS benchmark suite 5364 2917 2033 5919 sec.

C5315 ISCAS benchmark suite 11260 5810 3730 21731 sec.

C7552 ISCAS benchmark suite 15394 7906 5272 43086 sec.

Table 1: Benchmark circuits: the last column is the sequential running

time of SWEC on a Sun/4.

We use the actual running time on the CM5 to obtain a realistic estimate of the available

parallelism. First, the average cost (execution time) of the evaluation of region r, cost(r),

is measured to microsecond precision on the CM5. cost(r) is an estimate of the actual cost,

because the cost may vary for di�erent evaluations of the same region when the relaxation

solver is used. We then augment the sequential data structure for r with the �eld r:start,

which stores the earliest possible time at which the next evaluation can begin. r:start is

initialized to be 0, and is constantly updated as the algorithm proceeds.

We de�ne the parallel running time under our model is the time at which the last

evaluation completes, which is r:start + cost(r) from the last evaluation. A time plot of

the number of processors busy processing some evaluation gives us the parallelism pro�le

over the entire duration of the simulation.

Note that the evaluation cost we measured is the pure computational cost to set up the

device models and to perform the linear system solves; it does not include the scheduling

cost and other overheads required to start the evaluation. Thus, the parallel running

time is a lower-bound on the actual running time of any parallel implementation on the

CM5 using only parallelism between subcircuits. (We do not consider any �ne-grained

parallelism within evaluations.) The optimal speedup, or the average parallelism, is then

sequential running time

parallel running time
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The earliest possible time at which an evaluation is considered \ready" depends on the

scheduling policy of the parallel algorithm. We consider two types of parallelism: static

parallelism and runtime parallelism. These two types of parallelism are discussed and

compared in the next section.

3.3 Circuit Parallelism Pro�les

3.3.1 Static (Conservative) Parallelism

In the outline of the SWEC algorithm we noted that the evaluation of a region cannot

be performed correctly until all the relevant events have taken e�ect. Any region that

has a signal path to another region can contribute such events. The following de�nition

formalizes this relationship:

De�nition: Let Anc be the transitive closure of In, when they are viewed as

binary relations. That is, r1 2 Anc(rn) i� r1 2 In(r2); r2 2 In(r3):::; rn�1 2

In(rn), for some r2; r3:::; rn�1.

Any region r1 2 Anc(r) has a signal path leading to r.

Since events for time t may be generated by any evaluation before t, the evaluation of

r(t) must happen after r0(t0) has been evaluated for all r0 2 Anc(r) and t0 < t. That is,

r(t):start = max
t0<t

(
r(t0):start+ cost(r); max

8r02Anc(r)

�
r0(t0)start + cost(r0)

�)
(1)

We call the average parallelism under this scheduling policy static parallelism, or con-

servative parallelism. It is static because the dependency between regions is determined

by their interconnection in the circuit; it is conservative because at runtime, a pending

evaluation may wait for information that it does not need (e.g., when the evaluation of its

fanin region does not produce an event). The conservative scheduling policy guarantees

that all evaluations performed are correct.

Table 2 shows the conservative parallelism for some of the benchmark circuits. The

parallelism pro�les are shown in Figure 2. Note that there is always a burst of activity

at the beginning of the simulation, when the circuit is converging to a stable (DC) state.

The circuits are simulated long enough so that the start-up e�ect is not signi�cant. The

\tails" of the parallelism pro�les indicate the existence of critical paths that dominate the

computation time.
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Figure 2: Conservative parallelism pro�les: the Y axis denotes the

amount of parallelism, and the X axis denotes the time.
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ADDER MUL 1 MUL 2 COUNTER PLA REGFILE

40.6 67.3 107.7 2.5 1.9 27.6

Table 2: Conservative parallelism of the benchmark circuits

ADDER MUL 1 MUL 2 COUNTER PLA REGFILE

40.9 67.4 109.5 8.3 21.5 27.6

Table 3: Optimistic parallelism of the benchmark circuits

3.3.2 Runtime (Optimistic) Parallelism

The conservative scheduling policy assumes all evaluations generate events. This assump-

tion can be lifted if we can have an oracle that tells the scheduler if all fanin events have

taken e�ect, even before the state of the fanin regions are evaluated. The evaluation of

a region can then take place ahead of its fanin regions, given that the remaining fanin

evaluations will not produce new events. In this scenario, the earliest start time of an

evaluation is

r(t):start = max
t0<t

(
r(t0):start+ cost(r); max

8r02In(r)

�
r0(t0):start + cost(r0)j r0(t0) is an event

�)

(2)

We call the average parallelism under this model runtime parallelism, or optimistic

parallelism. It is a runtime metric because the dependency between regions is determined

by the events generated at runtime; it is optimistic because a region makes optimistic

assumptions on the values of its fanin regions to make progress.

Table 3 shows the optimistic parallelism for some of the benchmark circuits. The

parallelism pro�les are shown in Figure 3.

3.3.3 Comparison and Summary

Our results showed that the amount of parallelism usually grows with the number of

regions in the circuit. In particular, combinational circuits with regular structures exhibit

the highest parallelism among the benchmark circuits. This result is consistent with the

�ndings by Bailey and Synder [7]. The computation in the register �le is dominated by its

32 bit slices, which is re
ected in its average parallelism (close to 32).
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Figure 3: Optimistic parallelism pro�les: the Y axis denotes the amount

of parallelism, and the X axis denotes the time. Note how the paral-

lelism pro�les for COUNTER and PLA change.
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Optimism has only minor e�ect on combinational circuits, as dependent computations

can proceed concurrently in a pipelining fashion. However, optimism has a signi�cant

impact on the parallelism in sequential circuit with feedback paths. In particular, the

PLA state machine receives an 11-fold increase in average parallelism. The dramatic

improvement is best explained by the following observation:

Key Observation: Let Fp be the set of regions on the feedback path p.

r; r0 2 Fp ) r 2 Anc(r0); r0 2 Anc(r). Assume all time points are distinct.

Then no two regions in Fp can be evaluated in parallel under the conservative

scheduling policy.

It is clear that if we evaluate two regions in a feedback path in parallel, the outcome

of one may render the other incorrect, although the latency property of digital circuits

indicates this is not the common case. The assumption of distinct time points is valid

most of the time since the resolution of the time points in SWEC can be as �ne as 1

picosecond, and most of the time steps are much larger than that.

Although we were not able to measure the SIMD processor datapath, the bus structure

of the processor will certainly prevent the circuit from gaining high parallelism with the

conservative scheduling policy. This observation leads us to the conclusion that, for large

sequential circuits, conservative parallelism is not likely to be su�cient to keep a large

scale multiprocessor busy.

On the other hand, we believe there is still a high degree of optimistic parallelism in

large circuits. Consider the SIMD processor datapath as an example. Although the bus-

oriented interconnection makes most parts of the circuit mutually dependent, the actual

signal 
ow is carefully controlled by the timing scheme; most of the time the circuit is

acting as a collection of independent functional units, whose signals are con�ned to its own

latches or registers 2.

In summary, we show that the runtime parallelism in the benchmark circuits is suf-

�ciently high to warrant the use of a large-scale multiprocessor. The rest of the paper

presents our approach to exploiting runtime parallelism.

4 Load Balancing

In SWEC the evaluation of a time point for a region constitutes the unit of parallelization,

and is referred to as a task. In this section we address the issue of load balancing, that is,

2There are other techniques (e.g., unit-delay simulation) that exploit this property in pipelined designs by

handling clock cycles explicitly in the simulator. Our work subsumes these techniques in that we allow arbitrary

feedbacks.

18



how to distribute the tasks among the processors. We start by exploring the alternatives

for load balancing in distributed systems. Measurements from SWEC are used to illustrate

the tradeo�s and to justify our choice of a static load balancing scheme. At the end of this

section we also discuss the load balancing heuristics used in the current implementation.

4.1 Static Load Balancing vs. Dynamic Load Balancing

There are two basic alternatives to load balancing: a static load balancing scheme assigns

tasks to processors in advance; a dynamic load balancing scheme assigns tasks on demand

during the execution. In both cases assignment is done automatically at runtime.

Dynamic load balancing can maintain high processor e�ciency without requiring a

priori knowledge of the circuit's parallelism pro�le. In SWEC the activity of a region is

highly dependent on the input pattern, and thus any static load balancing scheme will

su�er certain loss of e�ciency. However, dynamic load balancing incurs two types of

costs that are particularly expensive in a distributed environment; these overheads are the

synchronization cost and the loss of data locality.

The synchronization cost is incurred when information is managed in a centralized man-

ner. The most straightforward implementation of a dynamic load balancer is a centralized

task queue, from which all idle processors request tasks. The synchronization cost is then

the sum of the communication time required to request a task, to assign a task, and the

queueing delay due to access contention to the centralized queue. Since the synchroniza-

tion overhead grows with the number of processors, dynamic load balancing is not likely

to scale well for large multiprocessors. We are currently investigating a relaxed priority

queue that is physically distributed among the processors. However, there is still some

synchronization required to obtain approximate global load information.

The second kind of overhead, loss of data locality, is the main obstacle for dynamic load

balancing. It would be impossible to replicate the data set of all regions on each processor

for large circuits, as is evident in Table 4. Therefore, with dynamic load balancing, a

processor may have to fetch the region data set from a remote processor. The average

size of a region is above 1 KB, containing both the read-only region description and the

writable states. The cost of transferring 1KB of data on the CM5 is at least several hundred

microseconds, implying that the cost of an evaluation is at least doubled. Caching may be

used to reduce the communication cost; however, it is not clear that the problem exhibits

the working set property for large circuits.

Considering the above, we employ a static load balancing scheme in the parallel timing

simulator. The memory saved by avoiding caching will be useful in implementing opti-

mistic parallelization. Static load balancing also has the additional advantage of program
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Name data set avg. cost max cost std. dev.

ADDER 213 KB 200 us 310 us 40 us

MUL 1 2.264 MB 920 us 2660 us 530 us

MUL 2 2.688 MB 340 us 4810 us 260 us

COUNTER 83 KB 220 us 690 us 90 us

PLA 881 KB 230 us 1850 us 190 us

REGFILE 1.820 MB 640 us 5200 us 1460 us

SIMD 17MB 400 us 10440 us 370 us

C1355 1.137MB 250 us 2060 us 120 us

C2670 3.012MB 240 us 720 us 80 us

C5315 5.805MB 250 us 4290 us 110 us

C7552 8.056MB 250 us 5070 us 70 us

Table 4: Statistics of the benchmark circuits: the data set size is the

amount of memory used to store and process the circuits in SWEC; the

next three columns list the statistics on the evaluation cost per region.

simplicity. The performance results in Section 7 will con�rm that load balancing is not a

major performance obstacle in most cases.

4.2 Static Load Balancing Heuristics

The static load balancing problem is to distribute the regions among the processors, so that

the total running time is minimized. Finding the optimal distribution is a hard problem,

because the activities of the regions can not be predicted prior to the simulation. Therefore,

we assume that all regions are equally active.

By treating all regions equally, the problem becomes the estimation of the task costs,

and the assignment of tasks to even out the total cost on each processor. In theory, the

computational cost of an evaluation is linear in the number of transistors (for the model

evaluation step), and cubic in the number of nodes (for the linear system solve step). This

is not true in practice. First, there is a large �xed cost for each evaluation; second, a region

usually contains only a few nodes and transistors, and the SWEC implementation switches

from Gaussian elimination to a relaxation solver when the region is \large" (containing

more than 8 nodes). Therefore, we use the sum (N(r)+M(r)) to estimate the cost of the

region r, which tracks the actual cost well in practice. The sum also re
ects the spaces
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required for storing the circuits and for implementing optimistic parallelism. The latter

is very important when it comes to �tting a large circuit such as SIMD onto the node

processors, each having less than 8 MBytes of memory available.

Finding the optimal partitioning of tasks is hard (NP-complete), and is not worthwhile

because the task costs are merely estimates. The following approximation algorithm su�ces

in our case:

Assigning regions to processors: put the regions in a list in arbitrary order;

repeatedly remove a region from the list, and assign it to the processor that has

the least amount of work so far.

The above algorithm guarantees a maximum unevenness of

max
8r

(N(r) +M(r))

We use a pseudo random algorithm for task assignment to avoid pathological cases.

For example, one may assume that assigning regions in the same functional block (e.g.,

the regions in the shifter of SIMD) to the same processor would minimize the communi-

cation cost, and thus be the best partitioning scheme. However, it is possible that the

functional blocks are mutually dependent and are never activated at the same time. Such

a partitioning will then lose most of the parallelism.

5 Scheduling Techniques for Discrete Event Sim-

ulations

In this section we introduce the two well-known techniques for distributed event simulation,

namely the conservative approach and the optimistic approach. We also compare the

performance tradeo�s of these two approaches.

5.1 Introduction to Discrete Event Simulation

In discrete event-driven simulation, the world to be simulated is modeled as a collection

of logical processes, each representing a part of the physical system. The logical processes

communicate by sending time-stamped messages. We assume that the messages initiated

by the same sender are always processed in order. The state of the system progresses

forward in time as the processes take appropriate actions in response to the events. For

convenience of discussion, we will use the physical entities in the timing simulator to refer

to these abstract terms; that is, we use regions in place of processes.
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r1.input.time = 200

r2.r1.time = 50 r3.r2.time = 50

   r1.etime = 100        r2.etime = 60          r3.etime = 70

r1.r3.time = 50

r1 r2 r3

Figure 4: Deadlocks in conservative simulation: none of the three re-

gions can proceed based on local information.

5.1.1 The Conservative Approach

The conservative approach is best represented by the Chandy-Misra algorithm [9]. Each

region keeps a logical clock, which is analogous to r:etime in the SWEC algorithm, to

denote the progress of its state. The progress of a region is conveyed to its fanout via the

timestamps of the events. The region r1's perception of the time of its fanin region r2

is denoted by r1:r2:time, and is obtained from the timestamp carried by the latest event

sent by r2 to r1.

The conservative algorithm schedules region r for evaluation when and only when:

r:etime � min
8r02In(r)

r:r0:time

A conservative event based simulation is not guaranteed to make progress, since there

exists situations where none of the regions can proceed, and the simulation algorithm

deadlocks. Figure 4 shows such an example. In the �gure r2 is eligible for evaluation,

but the lack of updated information on r1's progress prevents r2 from being scheduled for

evaluation. Deadlocks occur when there are feedback paths in the system, and can not be

resolved without global information on the progress of the simulation.

The algorithm can be augmented to either avoid deadlock or detect and recover after

its presence. These procedures collect global information to advance the timestamps in the

system so that progress can be made. Both of these methods incur high communication or

synchronization overhead in a distributed environment. Deadlock avoidance is usually done

by sending null messages, which add to the communication overhead of the implementation.

Deadlock detection, on the other hand, requires global communication and runs the risk

of stalling processors while waiting for deadlock to be detected. Previous study [10] shows
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that deadlocks are commonplace in large digital circuits. Therefore, deadlocks can become

the performance bottleneck in conservative simulation.

It is clear that the conservative scheduling algorithm always meets the scheduling cri-

terion of equation 1 in Section 3.3.1. Therefore the conservative algorithm can only exploit

the conservative parallelism in simulation.

5.1.2 The Optimistic Approach

The optimistic approach, or the Time-Warp approach [11], lifts the restriction that the

simulation algorithm perform only correct evaluations. The assumption is that events are

relatively rare. With the optimistic approach any evaluation is eligible for execution; if the

result turns out to be wrong, it is discarded and the evaluation resumes from a previous

time point. This operation is known as rollback, and the event causing a rollback is called

a straggler. The only condition for starting an evaluation is that the time point and the

data used must be consistent with whatever has been seen so far.

To restart correctly after a rollback, each region must maintain a su�ciently long history

of the fanin events. To be able to cancel invalid events, and to prevent from restarting with

the very �rst time point in response to every rollback, each region must also maintain a

su�ciently long history of its own states. These are the space overheads of the optimistic

approach.

Rollbacks also incur some computational overhead. The processor time spent on an

invalid evaluation is wasted if it could have been spent on some other evaluation that would

have produced a correct time point. Additional computation and communication may also

be required to send anti-messages whose sole purpose is to undo the e�ect of invalid events

(caused by stragglers or other anti-messages). Therefore, the evaluations must be properly

prioritized to avoid the rollback overhead.

The main advantage of the optimistic approach is the increase in parallelism. The

scheduling criterion used by the optimistic algorithm is clearly more general than equation

2 in Section 3.3.2. Therefore, the optimistic approach can potentially exploit the maximum

runtime parallelism.

5.2 Summary and Comparison

The tradeo�s of the two approaches are summarized here.

The conservative approach:

� Never performs useless computation

� Needs less memory
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� Exploits less parallelism

� Incurs deadlock avoidance/detection overhead

The optimistic approach:

� May perform useless computation

� Needs more memory

� Exploits more parallelism

� Incurs rollback and cancellation overhead

In Section 3 we showed that conservative parallelism is not su�cient to take full ad-

vantage of a large-scale multiprocessor. Since fast local memory is abundant in distributed

memory multiprocessors, we are willing to trade memory for increases in parallelism.

Therefore, we adopt the optimistic approach in the implementation of the parallel tim-

ing simulator.

6 Algorithms and Implementation

In this section we describe the implementation of the optimistic parallel timing simula-

tor in detail. We start with a nondeterministic speci�cation of the optimistic simulation

algorithm, and then transform it into a e�cient form for parallel execution on the CM5.

6.1 Speci�cation of the Optimistic Simulation Algorithm

Before presenting the algorithm, we discuss three of the more subtle implementation issues:

event messages, the concept of global time, and storage reclamation.

6.1.1 E�ects of Event messages and Anti-messages

For the rest of this paper we assume that all message from the same region are processed

in the order they are generated. The assumption greatly simpli�es the states the algo-

rithm has to keep to handle out-of-order messages (e.g., an anti-message that overruns the

corresponding event message).

An event message carries the new state of a region. The e�ect of an event message is

similar to that of the fanout operation in the SWEC algorithm, except that rollback occurs

when the region produces states with time greater than the time of the event message

received. These states may be inconsistent with the new event and must be thrown away.

The region then backs up to a state with time less than or equal to the event time, and

reschedules the next evaluation.
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The purpose of an anti-message is to undo the e�ect of a previous event message. It

�rst throws away the fanout's copy of the invalid event. It then discards all states with

time greater than the time of the anti-message, which were produced using the invalid

event. More anti-messages may, in turn, be generated to undo the e�ect of these discarded

states.

The event messages and anti-messages do not have to be processed immediately upon

their generation. We use E(r) and A(r) to denote the set of event messages and anti-

messages from r that are yet to be processed. E(r):time and A(r):time denotes the

minimum time of the messages in E(r) and A(r), respectively. Note that it takes deg(r)

event messages (anti-messages) to send (cancel) a state of r to all regions in Out(r). In

a practical implementation, only the parts of the state required by the fanout regions are

sent.

For the presentation of the algorithms, we denote a message by the triple

< Type; Event; T ime >, where Type is the type of the message (\event message" or \anti-

message"), Event is the state to send or cancel, and Time is the timestamp of Event.

6.1.2 Termination Detection

Unlike in conservative simulation, the progress of a region in optimistic simulation cannot

be assessed using local information; a region's view of its progress r:etime, or its local

virtual time (r:LV T ), may actually decrease due to rollbacks by the event messages, or

due to cancellations by the anti-messages. To assess the system's progress we need to

measure the global virtual time (GVT), which is de�ned as:

GV T = min
8r
fr:LV T;A(r):time;E(r):timeg (3)

In other words, the global virtual time represents the minimum time of all entities at

some instant of the simulation.

The correctness of the optimistic simulation algorithm is guaranteed by the following

facts:

Fact 1 GV T never decreases.

This follows from the fact that a straggler or an anti-message for time t can only

decrease LV T to some time greater than t.

Fact 2 GVT eventually increases if all regions and messages are eventually processed.

In particular, GV T increases when all entities with the minimum time are processed.

The program can terminate when GV T increases beyond the total simulation time.
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Fact 3 All valid states with time less than or equal to GV T have been evaluated; all invalid

states with time less than or equal to GV T have been discarded.

In any practical application, the state of the system must be collected after some

duration of simulation. Fact 3 tells us that all states with time less than or equal to GV T

are valid, and they are complete up to GV T . Such states can then be safely collected and

produced as output of the simulation.

6.1.3 Fossil Collection

So far we have assumed unlimited space for storing the histories, whereas in practice, there

is insu�cient memory for storing the complete histories. We refer to the unnecessary states

as fossils, and the reclamation of their space is the fossil collection problem. We know from

the de�nition of GV T that a state will never be re-examined if its timestamp is less than

or equal to GV T . Fossil collection is simply to reclaim the space of all such states. Note

that all fossils are valid states by Fact 3.

In addition to keeping all states with timestamps greater than GV T , at least one state

must be retained for each region, so that extrapolations and rollbacks can proceed correctly.

6.1.4 Nondeterministic Optimistic Simulation Algorithm (OPT)

We now give a nondeterministic speci�cation of the optimistic simulation algorithm (OPT).

The algorithm consists of a set of operations that appear to execute atomically. These

operations can be interleaved in any order.

Each region holds a history of states evaluated so far, referred to as the state history;

it also holds a history of events for each region in In(r), referred to as the event history.

In addition, there is a FIFO message queue for each edge in G, which stores the event

messages and anti-messages that have not yet been processed. The variables r:etime and

r:time are initialized as in SWEC.

The global variable GV T holds a copy (possibly stale) of the global virtual time. GV T

is initialized to 0, and is updated as needed. The algorithm repeatedly selects any of the

following operations:

� Termination. If GV T is greater than the total simulation time, exit.

� Update GVT. Compute the new GV T according to equation 3.

� Collect fossil. Pick a region r containing states with time less than or equal to GV T

(fossils), discard all fossils (except the latest state).

� Schedule. Pick a region r such that r:etime is within the total simulation time.

Evaluate the state of r at r:etime as in SWEC. Append the new state to the state
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history of r. If the new state is an event, generate the event messages and add them

to their corresponding message queues.

� Send. Pick the �rst message < Type; Event; T ime > from any of the nonempty

message queues. Suppose the message is for region r0. Process the message as follows:

{ If Type is \event message", append Event to the event history of r0; otherwise,

remove Event from the event history of r0.

{ Generate the anti-messages for all events of r0 with time greater than Time. Add

the anti-messages to their corresponding message queues.

{ Discard all states of r0 with time greater than Time (rollback).

{ Restore r0:time to the time of the latest state if necessary.

{ Recalculate r0:etime as described in Section 2.3.2.

6.2 The DistributedOptimistic Simulation Algorithm (DOPT)

We now transform OPT into a parallel form that is suitable for execution on a distributed

memory multiprocessor. The correctness of the parallelization is demonstrated by its

serializability with respect to the nondeterministic speci�cation: A parallel execution is

serializable if it is equivalent to some sequential execution.

The operations will execute concurrently, but behave as if they were executed one after

another.

6.2.1 Distributed Implementation of Operations

Recall that the regions are statically partitioned among the processors. To specify the

partitioning we de�ne proc(r) as the processor on which region r resides, and reg(p) as

the set of regions residing on processor p. In a distributed memory environment, accessing

data on processor p by processor q will involve both p and q. The detailed protocol for

remote accesses is dependent on the machine architecture, and will be discussed later.

Algorithm OPT is mapped to a distributed memory multiprocessor as follows. The

histories of r and the message queues storing messages from r reside on proc(r). The

variable GV T is replicated on all processors. Each processor executes the same algorithm

OPT, except that the selection of r in Collect fossil, Schedule, and Send on processor p

must satisfy r 2 reg(p). The computation is always performed on the processors that own

the data to be updated.

Termination detection, Collect fossil and Schedule are all local operations. Send requires

a local update to the message queue, followed by a remote update to process the message,

if the fanout region resides on a di�erent processor.
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Update GVT requires accessing all regions, and is thus a global operation involving

all processors in the system. The computation proceed as the independent local min to

compute the processor virtual time followed by a total min to compute the global virtual

time, since

GV T = min
8p

min
8r2reg(p)

fr:LV T;A(r):time;E(r):timeg

The detailed protocol for calculating GV T is architecture dependent. We will leave the

discussion to Section 6.2.5.

6.2.2 Space Management

The time-warp algorithm is not guaranteed to work if the space for storing the states and

the messages is bounded. For example, the Send operation for an event message may fail

to �nd space to store the new event at the fanout, or a rollback may fail to �nd space in

the message queue to store the anti-messages. A 
ow control protocol was suggested by

Je�erson [11] to solve this problem. The protocol returns a message when space cannot be

allocated, and the returned message causes the sender to rollback and try again.

The cancel back protocol described above complicates the proof of correctness of the

algorithm, and it may add communication overhead to the algorithm. Our approach to

solving the space management problem is to place some restrictions on the scheduling of

the operations.

We require that a Schedule operation for a region r be selected only after the previous

event messages from r have been processed. This requires acknowledgement of all event

messages. Therefore, there can be at most one event message per message queue. Further-

more, the number of anti-messages in each message queue of r is at most the size of the

state history of r plus 1. This is derived as follows. Let the number of events in the state

history of r be e(r). e(r) decreases by one when an old event is invalidated, and increases

by one when a new event is generated. Since messages in the same message queue are

always processed in order, the message queues of r maintains a partial but continuous log

of such activities. It follows that, for each message queue of r, the di�erence between the

number of event messages and the number of antimessages denotes the net increase of e(r)

for some period of time. Since the number of event messages per queue is at most one,

and e(r) is at least zero, we have the desired bound on the number of anti-messages per

queue.

Because messages in the same message queue are processed in order, the maximum

number of states in the state history of r is at least that in the corresponding event history

of Out(r). We assume the sizes of all histories are the same. The Schedule operation can

then proceed as long as there is space left locally. No 
ow control is required to make sure
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there is space at the fanout. Since the number of fanouts for an event can be quite large,

a great deal of 
ow control overhead can be avoided. Some space overhead is incurred

because the event history always store a subset of the states in the corresponding state

history.

Note that the anti-messages need not be stored explicitly; a count of the events to cancel

will do. This is because all event messages are processed and stored at the remote processors

before their anti-messages are processed. The rollback operation can then proceed correctly

using the stored information before it is removed.

6.2.3 Concurrency Among the Operations

The key to parallelization is to exploit the concurrency among the operations, while main-

taining the serializability of the execution.

First note that any set of operations that access disjoint data sets can be performed

concurrently, and the result of the parallel execution is equivalent to some sequential

execution of the operations.

Termination is a local check on GVT, and runs atomically on each processor.

Collect fossil updates the data structure of r, and thus may con
icts with the Send

operations initiated by other processors. We let Collect fossil run atomically, because it is

a fast local operation, and it seldom needs to be invoked.

Schedule is a long running local operation, and its data set may con
ict with a remote

Send operation. We have the Send operation invalidate a running Schedule if they update

the same region and if the Send operation would cause a rollback when executed imme-

diately after the Schedule operation. Therefore, Schedule can be interrupted by a remote

Send without violating serializability.

Send is a long running operation requiring communication to remote processors. Dif-

ferent Send operations can run concurrently as long as the remote update is made atomic.

Update GVT cannot run concurrently with Send, since a global snapshot of the min-

imum time cannot be obtained by examining the local states individually. This is illus-

trated in Figure 5. Therefore, the execution of Update GVT requires all processors to

synchronize { the processors wait until their running Send operations complete, and do

not select Send during the execution of Update GVT. This protocol is more restrictive than

the asynchronous solution proposed in [11], and may stall processors unnecessarily if not

implemented wisely. We will show an e�cient implementation in the next subsection.
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Figure 5: Violation of serializability: the computed GVT is an over-

estimate of the actual GVT.

6.2.4 Scheduling of the Operations

Proper scheduling is essential for performance. The algorithm should not schedule an

operation whose condition for execution is not met at all (in Collect fossil for example).

This is done by adding states to the algorithm to incrementally record the operations

eligible for execution. The following states are added for the Schedule and the Collect

fossil operations:

� Lfossil: the list of all regions which run out of space in some of their state or event

histories. Only the regions on Lfossil are considered for the operation Collect fossil.

� Ldone: the list of all r such that minfr:etime; A(r):time; E(r):timeg is greater than

the total simulation time. There is clearly no point in evaluating r(t) when t is beyond

the range of interest. Such regions become eligible for Schedule when they are roll

backed to within the total simulation time.

� Lready : the list of all other regions. These regions are eligible for the Schedule oper-

ation.

The next improvement is to evaluate the regions on Lready that will most likely lead

to valid states. Application-speci�c information should be utilized as much as possible to

judge the \goodness" of an evaluation to avoid the rollback overhead. In SWEC we can use

the function hpredict to estimate the time of the next event. Speci�cally, we add the �eld

tnext to every event history of r to store this estimate. The estimates can be piggybacked

on the event messages without signi�cant communication overhead. The scheme leads to

the following three priority classes for Lready :

� Conservative. The evaluation for r is conservative if the minimum time of the most

recent states in the event histories of r is greater than or equal to
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minfr:etime; A(r):time;E(r):timeg. That is, r's fanin regions have progressed ahead

of r. Note that a conservative evaluation is not necessarily valid.

� Speculative. The evaluation for r is speculative if it is not conservative, and the min-

imum of all tnext of the event histories in r is greater than or equal to

minfr:etime; A(r):time;E(r):timeg. That is, some of r's fanin regions have not

reached r:etime, but their predicted next evaluation times are past r:etime.

� Unlikely: An evaluation is unlikely if it is neither conservative nor speculative. Un-

likely evaluations are rarely valid.

The regions are scheduled in increasing order of minfr:etime; A(r):time;E(r):timeg

within each class. This corresponds to the traditional Time-Warp scheduling heuristics

that evaluations with smaller virtual times are scheduled �rst.

To quickly propagate the new information generated by Schedule, we start all Send

operations for r immediately after the evaluation of r. We choose to block the processor

until all running Send operations complete, as they can be executed concurrently and the

total latency is not large. This simplies the scheduling of the Update GVT operation. The

Send operation interrupts a running operation whenever the concurrency model allows.

The scheduling of Update GVT must be synchronized to avoid stalling processors un-

necessarily. A processor selects the operation only when some consensus is reached by all

processors. The frequency of Update GVT operations must be balanced between the syn-

chronization overhead of the updates, and the stalls because the valid states are blocked

from evaluation due to the lack of space. The following heuristics seems to work well:

A processor initiates Update GVT when a region is added to Lfossil, when Lready

is empty, or when the highest priority region in Lready is unlikely.

The following is the scheduling loop of the distributed optimistic simulation algorithm

(DOPT):

� Termination. If GV T is greater than the total simulation time, exit.

� Update GVT and Collect fossil. If all processors have initiated Update GVT, do the

following:

{ Wait until all processors select Update GVT

{ Compute GV T = min8pmin8r2reg(p)fr:LV T;A(r):time; E(r):timeg

{ Collect fossil. For all r in Lfossil, discard all fossils except the latest states. Move

r to Lready if some space is reclaimed.
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� Schedule and Send. Pick the highest priority region r in Lready . If no such region can

be found, initiate Update GVT and repeat the scheduling loop. Otherwise, do the

following:

{ Initiate Update GVT if r is Unlikely.

{ Schedule. Evaluate r at r:etime as in OPT, if r:etime is within the total simu-

lation time.

{ Put r in Lready , Ldone, or Lfossil as is appropriate.

{ Send. If a new event is produced, initiate all Send operations as in OPT to

propagate the new event. The unprocessed anti-messages are piggybacked on

these event messages. Wait until all Send operations complete.

Termination is tried �rst because it is inexpensive. Collect fossil is done only when

GV T changes. It is clear that all regions or messages will be processed eventually in

DOPT.

6.2.5 Implementation on the CM5

We now map the architecture dependent components of the DOPT algorithm to the CM5,

which is a distributed memory multiprocessor.

We use the Active Communication Layer CMAM [12] to deliver the event messages and

anti-messages. The current implementation of CMAM requires the programmer to insert

explicit polls to receive incoming messages. Upon receiving the message, the communica-

tion layer invokes a user-speci�ed handler to process the message.

CMAM exposes the two distinct data networks in the CM5 (the left and the right

network) to the programmer. The bursts of communication by the Send operations exceed

the bandwidth of a single network, and we have to alternate between the left and the right

networks when sending the packets. The aggregate bandwidth of the two networks seem to

be adequate for our timing simulator. If only one of them is used, it is seriously congested

and the program exhibits a slow-down between 10% to 500% (30% for most circuits). The

congestion may be caused by contention at the receiving processors, or by insu�cient polls.

Since anti-messages are essentially small integer counts, they are always piggybacked

on the event messages. Instead of processing the event immediately upon reception, the

incoming messages are queued in the region data structure, and scheduled for processing

when the required condition is met. The space needed to queue the messages is bounded,

as each processor can have at most one outstanding message per fanout (i.e., per edge

in G). The queueing of messages guarantees the atomicity of the critical sections in the
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operations, while allowing su�cient polls to rapidly remove messages from the network to

avoid congestion.

The global consensus is done by the asynchronous global-or bit in the CM5 control

network. A processor asserts 0 to the global-or bit when it is ready to synchronize, and

resets the bit to 1 after Update GVT is done. Consensus is detected when the global-

or bit reads 0, at which time the processors enter a global barrier to drain the Send

operations. When all processors reach the barrier, they compute their processor virtual

time and combine the result using the synchronous global-min primitive in the CM5 control

network.

The time a processor stalls in the barrier is bounded by the time for the other processors

to execute one iteration of the algorithm. The frequency of Update GVT is reasonable using

our synchronization heuristics. Therefore, the total loss of e�ciency due to synchronization

is minimal.

7 Performance

In this section we summarize the performance of the parallel timing simulator on the bench-

mark circuits. The most important control parameter in the simulator is the maximum

size of the history. The default con�guration of the simulator allows 100 states per history.

We will show how di�erent settings a�ect the performance of the simulator.

7.1 Experiments and Results

The speedup is calculated as the ratio of the sequential running time on a Sun/4 (given

in Table 1) and the parallel running time on the CM5. The CM5 nodes contain the same

processors as the Sun/4, although the memory hierarchies are di�erent. We were not able

to run the sequential program on a single node of the CM5 because of the lack of space.

All timing numbers are taken after the actual simulation starts. We exclude the I/O and

preprocessing time needed to set up the data structures, to broadcast the required data to

the CM5 backend, and to write the results to the output �les. The I/O and preprocessing

time ranges from a few minutes for ADDER to over 15 minutes for SIMD; it can be reduced

after I/O nodes are installed in our CM5 system.

We �rst ran the timing simulators on all benchmark circuits under the default con�gura-

tion with 100 states per history, varying the number of processors used in the experiments.

The speedup curves are shown in Figure 6. To investigate the e�ect of history size on

performance, we also ran some of the benchmarks on 128 processors using history sizes of

50, 100, 200, 300, and 400 states. The results are given in Table 5.
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Speedups for Short Simulations
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Speedups for Long Simulations
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Figure 6: Speedup curves: short simulations include circuits that took

less than 1000 seconds to simulate on a Sun/4. The 128-processor

timings for some of the benchmark circuits are missing, because our in-

stalled CM5 was scaled down to 64 processors when they was obtained.
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Name 50 100 200 300 400 worst best

ADDER 8.56 9.68 14.92 15.99 13.4 8.56( 50) 15.99(400)

MUL 1 3.89 3.77 4.08 5.56 5.38 3.77(100) 5.56(300)

MUL 2 29.89 41.37 56.55 53.93 62.17 29.89( 50) 62.17(400)

COUNTER 1.34 1.74 1.52 2.48 2.26 1.34( 50) 2.48(300)

PLA 10.20 6.37 5.06 4.04 3.86 3.86(400) 10.20( 50)

REGFILE 20.48 22.81 22.32 22.54 22.75 20.48( 50) 22.81(100)

Table 5: E�ect of history size on performance: the speedups for dif-

ferent history sizes are given in the table, with the worst and the best

among all 5 con�gurations highlighted for each circuit. We were not

able to run SIMD for most of the larger con�gurations due to the lack

of memory space.

7.2 Analysis

We note that the performance of the simulator improves when more processors are used,

except for some minor perturbation for REGFILE. The peak speedups of our simulator

are far greater than those reported for similar timing simulators in [2, 3]. The speedup

for SIMD is particular encouraging, and it shows the feasibility of using large distributed

memory multiprocessors to perform large simulations (optimistically).

However, the speedup is usually below the theoretical parallelism in Section 3.3.2. The

di�erence is due to the overhead of data management, scheduling, and communication that

arise in practice.

One main loss of e�ciency is from the communication overhead incurred by paralleliza-

tion. Table 6 lists the communication overhead for some of the benchmark circuits using

the default con�guration on 64 processors. Note that the wait time is an over-estimate; the

processor can service remote Sends while waiting for its own Sends to complete, but this

overlap is not taken into account. The send time is a useful estimate, as the processors can

only remove and queue packets from the network while they block. It may be possible to

hide the latency of Send by overlapping it with the Schedule for another region. However,

the overlapping scheme complicates the presentation of the algorithm, and its performance

bene�t may not be signi�cant { a large portion of the communication overhead is because

the processor is blocked by the communication layer when shipping messages to the net-

work (the current implementation of CMAM keeps polling the network interface until it
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ADDER MUL 1 MUL 2 COUNTER PLA REGFILE SIMD

send 5.8% 5.4% 9.6% 1.0% 16.7% 1.1% 16.7%

wait 9.2% 9.0% 8.6% 2.6% 9.2% 1.8% 25.0%

Table 6: Communication overhead in the parallel timing simulator.

The table lists the percentage of time spent in sending packets, and in

waiting for Send to complete.

is ready to accept the message). If the communication layer could be made non-blocking,

the overlapping scheme would be worth implementing.

Another loss of e�ciency is due to the static load balancing scheme. The typical bad

case for static load balancing is MUL 1. Post-mortem analysis showed that the activities in

MUL 1 are highly concentrated, which is indicated by the imbalance of time the processors

spent in Schedule for each region. The runtime behavior of MUL 1 is not compatible with

our load balancing assumption, and thus it leads to poor results. The other design of a

16-bit multiplier, MUl 2, showed much better results because the size and activity of the

regions are well balanced. Note that if we were to increase the e�ciency for MUL 1 by

dynamic load balancing, we would introduce much higher communication overhead.

The bene�t of optimistic parallelization is demonstrated by the speedups for the sequen-

tial circuits. Notice that even with the overhead of optimistic parallelization, the actual

speedup achieved with PLA is far greater than the theoretical speedup achievable by the

conservative method. The actual speedup for COUNTER is also close to the theoretical

maximum speedup for conservative simulation. We believe the advantage of optimism

increases for larger sequential circuits.

An interesting side bene�t of optimistic parallelization is the decreases in scheduling

cost. Due to the nature of optimistic parallelization, each processor performs local schedul-

ing using a priority queue that is 1
P
the size of the priority queue Q in SWEC, where P

is the number of processors. Therefore, the cost of each access to the priority queue is

reduced, while the number of accesses increases only slightly if a good scheduling heuris-

tics is used to avoid excessive rollbacks. This contributes to the overall speedup when the

number of regions is large, as we actually observed superlinear speedup for SIMD during

the start-up transient of the simulation 3.

The size of the history impacts the performance of the simulator. Table 5 shows that

3This result indicates that, with a very good scheduling heuristic, we might improve the uniprocessor perfor-

mance by simulating DOPT on one processor!
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the speedup usually grows with the number of states in the history, with PLA as an

exception. The adverse e�ect of increasing history size for PLA probably comes from the

rollback overhead due to excessive speculation, plus the increased cost for managing longer

histories.

In summary, our parallel timing simulators usually shows far more encouraging results

than was previously reported. Limits to further speedup includes the communication

overhead, the speculation penalty, and the load imbalance due to the use of a static load

balancing scheme. The design decisions we made are justi�ed by most circuits.

8 Previous Work on Parallel Circuit Simulation

Previous works on parallel circuit simulation largely fall into the following categories: direct

method simulation, waveform relaxation, and timing simulation.

The parallel direct methods typically consists of two modules: the LOAD module and

the SOLVE module. The LOAD module performs model evaluations, and is more parallel

than the SOLVE module, which solves large sparse matrices. Previous works on parallel

direct method simulators by Sadayappan and Visvanathan[8] and by Yang [4] showed

maximum speedups of 3.6 for circuits containing about 3000 nodes on a 6 processor Alliant

FX/8, and 4.53 for circuits containing about 1000 nodes on a 8 processor Alliant FX/8,

respectively.

Previous Work on parallel waveform relaxation includes those by Wen and Saleh [13],

and by Smart and Trick [14], both showing a maximum speedup of 4 on a 8 processor

Alliant FX/8.

Parallel timing simulators include XPSIM[3] and EMU[2]. XPSIM gives a maximum

speedup of 4.6 for a decrementer circuit with 319 regions on a 11 processor Sequent. EMU

gives the best result so far. Its maximum speedup on a distributed memory hypercube

with 64 nodes is 20 using the synchronous version, and 10 using the asynchronous version,

for a fuzzy controller containing 8620 transistors 4 . The di�erence in performance is due

to the communication overhead incurred by the asynchronous algorithm.

9 Conclusions

Some limitations of our current work suggest topics for future research:

4Lucco [1] shows a maximumspeedup of 33 for EMU on circuits containing more than 20,000 transistors, using

a 64-node hypercube. The speedup is from the \fastest" version of the program and is relative to a VAX/780.
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� The scale of simulation (in terms of circuit size, precision, and duration of simulation)

is constrained by the amount of memory, and by the bandwidth of the communication

network. The former can be solved by adding more memory or processors to the

system; the latter, however, will remain a bottleneck, as we have already consumed

most of the available bandwidth just to communicate the essential data.

� We implemented only a subset of the functionality of SWEC in the parallel timing

simulator. For example, the parallel timing simulator does not handle explicit re-

sistors, 
oating capacitors, and lossy transmission lines. However, it is adequate for

most digital MOS circuits.

� We argued that distributing regions according to their functional blocks is not a good

idea. However, there exist situations where a pseudo-random distribution policy is

a bad idea. For example, regions implementing a 
ip-
op or a ring oscillator should

be placed on the same processor whenever possible, since they are guaranteed to be

mutually dependent. Therefore, we expect the user's intervention in load distribution

to be inevitable in a commercial quality implementation.

� The load balancing scheme and the con�guration of simulation (history size) are

determined statically. However, it may be possible to �ne-tune these parameters

dynamically based on the statistics collected at runtime.

� Accesses to histories, rollbacks, and cancellations are currently implemented in an ad-

hoc manner. These data structures and operations can be generalized to a distributed

object that would be useful for parallelizing other applications.

We summarize our work below:

� We measured the maximum parallelism available in the SWEC simulation algorithm,

showed that the amount of parallelism is su�cient to justify the use of a large mul-

tiprocessor. In particular, we showed that optimism is essential for exploiting paral-

lelism in sequential circuits.

� We gave a design of an optimistic simulation algorithm, and mapped it to a dis-

tributed memory multiprocessor.

� Our parallel timing simulator showed much better results than previous attempts in

parallel circuit simulation. The best speedup for the largest circuit, SIMD, is over 50

on 64 processors; the best speedup for the sequential circuit PLA is over 10, higher

than the theoretical maximum of 1.9 using conservative simulation.

� The parallelization of SWEC also serves as an interesting example of general parallel

programming on a distributed memory multiprocessor.
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In conclusion, our work shows that the time cost of timing simulation for digital MOS

circuits can be signi�cantly reduced by applying optimistic simulation on a large multipro-

cessor. The scalability of some of the larger circuits leaves room for even better results on

larger machines using larger circuits.
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