
Optimal Broadcast and Summation in the LogP Model

Richard Karp
Abhijit Sahay
Eunice Santos

Computer Science Division,
University of California, Berkeley

Abstract

We consider several natural broadcasting problems for the LogP model of distributed mem-
ory machines recently proposed by Culler et al. For each of these problems, we present
algorithms that yield an optimal communication schedule. Our algorithms are absolutely best
possible in that non even the constant factors can be improved upon. We also devise an (abso-
lutely) optimal algorithm for summing a list of elements (using a non-commutative operation)
using one of the optimal broadcast algorithms.



1 Introduction

Most models of parallel computation reflect the communication bottlenecks of real parallel machines
inadequately. The PRAM [9], for example, allows inter-processor communication at zero cost. Researchers
have proposed several variations on the PRAM [14, 13, 15, 1, 2] that address different communication issues
to different degrees. There have also been a number of studies of communication requirements of algorithms
on specific networks of processors such as the hypercube or the mesh.

Recently, Culler et al [7] have proposed a general purpose model, the LogP model for distributed
memory machines. In this model, processors communicate by point-to-point messages which travel through
a network. The network imposes costs on communication due to its limited bandwidth, the processors’
network interface overhead and the latency that messages incur in traversing paths in the network. The
LogP model treats the network as a black box with specified latency, overhead and bandwidth parameters
and is thus applicable to many distributed memory machines. For a justification of this model and a more
detailed description, we refer the reader to the original paper [7].

In this paper we consider some fundamental problems in parallel computation and describe algorithms
that solve them optimally in the LogP model. The problems we consider are various kinds of broadcast and
summation. While our algorithms for optimal broadcast can be described directly, the proof of optimality for
our summation algorithm requires an “inverted" problem formulation: instead of determining the minimum
time to sum n operands on P processors, we determine the maximum number of operands that can be
summed by P processors in t steps. The solution to both problems involves a generalized Fibonacci
recurrence relation with parameters and initial conditions that depend on the L; o; g and P .

Given the considerable importance of broadcasting problems in parallel and distributed computation,
several variations of it have been well studied in the literature[5, 10]. Much of this work has focused on
the design of efficient algorithms for broadcasting on specific networks such as rings, trees, meshes and
hypercubes [11, 12]. For fully connected systems (such as those modeled by LogP) broadcast problems have
been studied in several communication models, but without latency. Cockayne and Thomason [6] and Farley
[8] gave optimal algorithms for a model where each processor can either send or receive a message in one
time step. Alon, Barak and Manber [3] studied reliable broadcast in a model that allows simultaneous send
and receive. Bar-Noy and Kipnis [4] introduced the postal model which incorporates a latency parameter
and solved the single message broadcast problem in it. The postal model turns out to be a special cast
of LogP (with o=0 and g = 1) and is quite adequate for studying many communication problems. If we
incorporate the send/receive overhead of the LogP model into the latency parameter and normalize the unit
of time so that g = 1, we are essentially reduced to the postal model. In some later sections, we will find it
more convenient to work with the postal model.

The rest of the paper is organized as follows. Section 2 describes the LogP model of parallel computation.
Section 3 defines the P -way broadcast problem and an optimal algorithm for it. We also present a running-
time analysis of our optimal algorithm. Section 4 describes the summing problem, its inversion and our
optimal algorithm for summing. Section 5 returns to other broadcast problems and optimal algorithms for
them. Some concluding remarks are made in Section 6.

2 The LogP Model

LogP is a model for distributed-memory multiprocessors in which processors communicate by point-to-point
messages [7]. The model specifies the performance characteristics of the interconnection network, but does
not describe the structure of the network.

The main parameters of the model are:

P : the number of processor/memory modules. Local operations execute in unit time (a processor cycle).

1



L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception
of each message; during this time, the processor cannot perform other operations.

g: the gap, defined as the minimumtime interval between consecutive message transmissions or consecutive
message receptions at a processor. The reciprocal of g corresponds to the available per-processor
communication bandwidth.

Furthermore, it is assumed that the network has a finite capacity, such that at most dL=ge messages
can be in transit from any processor or to any processor at any time. If a processor attempts to transmit a
message that would exceed this limit, it stalls until the message can be sent without exceeding the capacity
limit.

The parameters L, o and g are measured as multiples of the processor cycle. The model is asynchronous,
i.e., processors work asynchronously and the latency experienced by any message is unpredictable, but is
bounded above by L in the absence of stalls. Because of variations in latency, the messages directed to a
given target module may not arrive in the same order as they are sent. In order to be considered correct, an
algorithm must produce correct results under all interleavings of messages consistent with the upper bound
of L on latency.

In estimating the running time of the algorithms, we assume that that all processors work synchronously
and that each message incurs precisely a latency of L. All algorithms presented in this paper satisfy the
capacity constraint of the LogP model, and we do not mention it henceforth.

3 Optimal Broadcast

3.1 The Broadcast Problem

TheP -way broadcast problem is that of finding a schedule of communication amongP processors (numbered
1; : : : ; P ) so that a datum initially available at processor 1 is made available to allP processors in the shortest
possible time.

Definition 3.1 Let A be an algorithm for P -way broadcast. The delay of processor i inA, denoted tA(i), is
defined as the time at which the datum is first available at processor i in A. The running time of A, denoted
tA, is

tA = max
1�i�P

ftA(i)g

The complexity of P -way broadcast in the LogP model is defined as

B(P ;L; o; g) = min
A

tA

A is optimal for P -way broadcast if tA = B(P ;L; o; g).

Definition 3.2 Given t � 0, the number of time steps available, let

P (t;L; o; g) = maxfi : B(i;L; o; g)� tg

denote the maximum number of processors that can be reached by a broadcast algorithm in t steps.

When there is no danger of confusion, we will omit explicit mention ofL, o and g and write B(P ) and
P (t) instead of B(P ;L; o; g) and P (t;L; o; g). Note that for any broadcast algorithm A; tA(1) = 0.

2



3.2 An Optimal Broadcast Algorithm

In this section, we develop an algorithm for P -way broadcast that takesB(P ) steps. Our algorithm is simple
and intuitive: all informed processors send messages repeatedly to uninformed processors as early and as
frequently as possible. We establish optimality of our algorithm by arguing that among optimal algorithms
for broadcast, there must be one which is minimal in the following senses: there are no redundant messages
and there are no unforced delays in sending messages. We then show a simple rule for finding the (essentially
unique) optimal minimal algorithm. These ideas are made more precise below.

Definition 3.3 A broadcast algorithm is said to be minimal if

1. No processor receives more than one message.

2. If processor p sends messages to processors p0; : : : ; pk (in that order) then tA(pj) = tA(p) + jg +
L+ 2o; 0 � j � k

Lemma 3.1 Given algorithm A for broadcast, there exists a minimal algorithm B which reaches as many
processors as A and for which tB � tA.

Proof: If any processor receives more than one message in A then the algorithm A0 derived from A by
discarding all but the first message to any processor completes no later thanA and reaches as many processors
as A. Also, if in A0, processor p initiates messages to processors p0; : : : ; pk at times T0; : : : ; Tk (in order),
we must have T0 � tA0(p) (since the datum is not available at p earlier than tA0(p)) and Ti+1 � Ti + g
because of the model’s bandwidth constraint. However, if any of these inequalities is strict, consider the
algorithmA00 derived from A0 by having Ti+1 = Ti+ g. Clearly, no processor has a larger information time
in A00 than in A0 (and in fact, at least one processor has a strictly smaller information time.)

It is clear that after a finite sequence of such transformations, all the inequalities will be strict and we
will have a minimal algorithm which completes no later than A and reaches as many processors as A. 2

3.2.1 Broadcast Trees

We shall often find it useful to think of a minimal broadcast algorithm A in terms of its broadcast tree of
processors, TA. TA is a rooted, ordered tree with a node for each processor that participates in the broadcast.
The root of TA is processor 1 (the source of the broadcast) and if processor p sends messages to processors
p0; : : : ; pk (in that order) in A, then in TA node p has p0; : : : ; pk as its (ordered) children. If, in addition,
we label nodes by the information times of the corresponding processors, minimality implies that a parent’s
label is exactly L+2o smaller than its oldest child’s, while the labels of successive siblings differ by exactly
g.

Definition 3.4 The universal minimal broadcast tree, denoted B, is defined to be the infinite labeled ordered
tree in which the root has label 0 and a node with label t has children labeled t+ ig + L+ 2o; i � 0.

Lemma 3.2 For any minimal broadcast algorithm A, the broadcast tree TA is a rooted subtree of B with
the label on a node corresponding to the information time of the corresponding processor.

Proof: Follows from definition of B and minimality. 2
From Lemma 3.1 we know that the optimal minimal broadcast algorithm reaches P processors in time

B(P ). Lemma 3.2 characterizes all minimal broadcast algorithms. We thus have the following simple
algorithm for optimal P -way broadcast.

Definition 3.5 Let B(P ) be the rooted subtree of B consisting of the P nodes with smallest labels (ties
being broken arbitrarily.)

Theorem 3.1 B(P ) is optimal for P -way broadcast.

3



Proof: By construction, every minimal broadcast tree will have a node with information time at least as
large as the largest information time for B(P ). 2

3.3 Running time analysis

We will carry out the analysis in the postal model (by incorporating o into the latency and normalizing so
that g is 1.)

Definition 3.6 Let L > 0 be a fixed integer. Define the sequence ffig by:

1. fi = 1 for 0 � i < L.

2. fi = fi�1 + fi�L otherwise.

Fact 3.1 For each t; 1 + Σi=t
i=0fi = ft+L.

Theorem 3.2 For t � 0 and L > 0, p(t;L; 0; 1) = ft

Proof: Consider the first t steps of our optimal broadcast algorithm with o � 0 and g = 1. Clearly, if
t < L, the theorem holds. Otherwise, the last message is sent at time t � L. We claim that the number of
messages sent at time i is fi. This is clearly true for i < L since only the source can send messages. For
larger t, messages are sent at time t by every processor that sent a message at time t� 1 and by processors
who received their messages at time t. Our claim follows by induction.

Thus the number of processors for t-step optimal broadcast is given by 1 + Σt�L
i=0 fi = ft.2

It is not hard to establish that there is a constant 
 (that depends only on L), 1 < 
 � 2, such that

t�L+1 � ft � 
t. Thus, Theorem 3.2 implies that the broadcast time for P processors is at most
L� 1 + log
 P . Denormalizing to the complete LogP model, we get the following.

Theorem 3.3 The time for optimal broadcast of a single item in the LogP model B(P ;L; o; g) is at most
L + 2o + g log
 P where 
 2 (1; 2] is the only real root of the equation xd � xd�1 � 1 = 0 with
d = d(L+ 2o)=ge.

3.4 Σ-Optimality

In this section, we prove a property of B(P ) that is crucial to our optimal summation algorithm of Section
4.

Definition 3.7 Let A be an algorithm for P -way broadcast. We say that A is Σ-optimal if it minimizes
PP

i=1 tA(i).

Even though the objective in Σ-optimal algorithms is quite different – minimization of the sum of
information times rather than the maximum information time – it turns out that B(P ) is also Σ-optimal for
P -way broadcast.

Theorem 3.4 Algorithm B(P ) is Σ-optimal for P -way broadcast.

4



Proof: The arguments used in the proof of Lemma 3.1 are easily seen to imply that there is a minimal
broadcast algorithm which is Σ-optimal. Let b1 � b2 � : : : � bP denote the information times of
the processors in B(P ) and let A be a minimal algorithm for P -way broadcast with information times
a1 � : : : � aP . By construction, bi � ai for each i and Σ-optimality of B(P ) follows. 2

4 Optimal Summation

In this section, we consider the problem of computing the sum of n operands in the LogP model. The input
to the problem is a set of operands X1; : : : ; Xn and we assume that an algorithm can choose how these
are initially distributed among the P processors. We assume that the addition operation is commutative 1

and that each addition operation takes unit time. Our algorithm to compute X1 + : : :+Xn in the shortest
possible time can be thought of as consisting of a local phase (during which each processor performs local
additions) followed by a ‘reverse broadcast’ or reduction in which the P partial sums are combined. Our
proof of optimality is based on the following inversion of the problem: instead of finding an algorithm to
add n operands in minimum time, find an algorithm that adds the maximum number of operands in t units
of time.

4.1 Summation Trees

Consider an algorithm A that computes X = X1 + : : :+Xn in time t. Let p be a processor at which X is
available at time t. We may assume that p performs an addition step X = YL + YR in the t-th time step,
with YL = X1 + : : :+Xi and YR = Xi+1 + : : :+Xn for some i 2 f1; : : : ; n � 1g. Clearly, each of the
partial sums YL and YR must be available at p by time t � 1, either as a result of local computation or in
the form of a message received from another processor. In each case, we can identify the addition steps that
resulted in the creation of these partial sums.

We can thus think of A’s computation as a binary tree, TA, induced by the order of additions. Each
internal node ofTA represents an addition performed byA in the computation ofX and each leaf corresponds
to some input operand Xi. The root of TA represents the addition X = YL + YR identified above, and the
left and right children of the root represent the additions that resulted in the creation of YL and YR at the
processors from which p received them during A’s computation. (Of course, neither of these processors
need be distinct from p.) In general, if an internal node v in TA represents an addition Yl + Yr at processor
pk its left and right children represent respectively the additions resulting in the partial sums Yl and Yr at
the processors from which pk received them; if such a partial sum is one of the Xi, the corresponding node
is a leaf of TA.

As with broadcast algorithms, Lemma 4.1 below shows that the search for optimal summing algorithms
can be confined to algorithms of a certain canonical form. For the purpose of the following definition,
we will assume that the processor responsible for the final addition in A (at time t) initiates a message
transmission at time t.

Definition 4.1 A summation algorithmA is called busy-lazy if

1. No processor sends more than one message.

2. No processor idles until it sends a message. (A processor is said to idle at time i if it is neither adding
nor receiving a message during the i-th time period.)

1Our optimal algorithm for commutative summation can be used for non-commutative summation with an appropriate renum-
bering of the operands.

5



3. If processor p initiates message receptions at timesRp(1) < : : : < Rp(k) and a message transmission
at time Sp, then Rp(j) = Sp � (o+ 1)� (k � j)g.

Lemma 4.1 Given algorithmA for summation, there exists a busy-lazy algorithmB which sums at least as
many operands as A and takes no longer thanA.

Proof: Suppose that some processor sends messages S1; : : : ; Sk (k > 1) at time steps T1; : : : ; Tk in A.
Identifying these messages with the corresponding nodes in TA, we see that Si and Sj must represent sums
of disjoint sets of input operands. We can modify algorithm A so that for i < k, it adds Si to some leaf
of Sk at time Ti and sends only the (new) message Sk at time Tk. (Processors that receive Si in A ignore
those messages in the modified algorithm.) It is clear that the modified algorithm takes no longer than A
and sums the same number of operands.

Secondly, note that a processor that idles at some time step can always be made to perform an addition
instead (with a fresh input as one of the operands,) yielding an algorithm which sums more operands in the
same number of time steps.

Finally, consider a processor p that initiates receptions at timesRp(1) < : : : < Rp(k) and a transmission
at time Sp. Clearly, Sp � Rp(j) + o + 1 + (k � j)g; j = 1; : : : ; k. But if any of these inequalities is
strict, some message reception at p can be delayed by at least one unit, allowing the processor that sends
this message to send a partial sum of more operands. The modified algorithm again sums more operands
than the original in the same number of time steps.2

Let A be a busy-lazy summation algorithm that runs for t steps and in which the processors initiate their
message transmissions at times S1 � S2 � : : : � SP = t. Consider the P -way broadcast algorithm A0

resulting from the following reversal of each message ofA: if processor i initiates transmission to processor
j at time Si inA, processor i completes reception from processor j at time t�Si in A0. Observe that A0 is a
P -way broadcast algorithm in which sending processors “wait" for one time step before transmissions. (This
corresponds in A to the steps that receiving processors spend just after receptions in adding the received
partial sums.) The algorithm A0 can be viewed as a minimal broadcast algorithm for a machine which has
a send overhead of o + 1 (or equivalently, a latency of L + 1.) Thus, busy-lazy summation algorithms for
a machine with parameters L; o; g; P are in one-to-one correspondence with minimal broadcast algorithms
for a machine with parameters L+ 1; o; g; P:Moreover, if the busy-lazy algorithm runs for t steps and has
message initiation time Si for processor i, the corresponding broadcast algorithm will have information time
t � Si for processor i.

Lemma 4.2 Let A be a busy-lazy summation algorithm that adds n operands in t steps and in which the
processors initiate their message transmissionsat timesS1 � S2 � : : : � SP = t. Then n = ΣP

i=1Si�op+1

Proof: Let ki be the number of messages received by processor i. Then, the number of input operands that
are tackled by processor i is exactly Si � (o+ 1)ki + 1. Summing over the processors yields the result.2

This lemma characterizes optimal t-step busy-lazy summation algorithms as those which maximize
ΣSi. From our correspondence with minimal broadcast algorithms, we see that the corresponding broadcast
algorithms must be those that minimize Σ(t� Si), viz. Σ-optimal broadcast algorithms.

We are thus led to the following algorithm for t-step summation assuming that t � B(P ;L+ 1; o; g):
Algorithm S(t):
1. For processor i, let ti be the information time in optimal P -way broadcast with parameters L + 1; o; g:
2. Processor i adds locally for t � ti steps and then participates in a P -way reduction (for ti steps).

We have proved the following:

Theorem 4.1 For t > B(P ;L+ 1; o; g); S(t) is optimal for t step summation.

6



5 Generalized Broadcast Problems

In this section, we generalize the broadcast problem in two directions and give optimal algorithms for
each generalized problem. The generalizations of P -way broadcast that we consider are based on whether
the broadcast is “one-to-all" or “all-to-all", and whether the data originating at different processors can be
combined. In the rest of this section, we describe these variations in more detail and present our algorithms
for solving them.

5.1 All-to-All Broadcast

In theP -way all-to-all broadcast problem, each ofP processors has a data item that is to be made available to
every processor. Of course, one could solve this problem using P one-to-all broadcasts but a more efficient
(and simpler) solution is possible.

Observe that since each processor must receive (P � 1) items and the first one cannot be received until
timeL+2o, a lower bound on the time forP -way all-to-all broadcast isL+2o+(P�2)g. On the other hand,
if processor i sends out its data item to processors i+1 (modP ); : : : ; i+(P�1) (modP ) (in that order) at time
0; g; : : : ; (P�2)g, each processor would receive messages at timeL+2o; L+2o+g; : : : ; L+2o+(P�2)g.
We thus have a simple optimal algorithm for all-to-all broadcast.

The lower bound argument and our algorithm extends easily to the situation where each of the P
processors has k items to broadcast: since a processor must receive k(P � 1) items and the first one cannot
be received until L+ 2o, we have a lower bound of L+ 2o+ g(k(P � 1)� 1). This bound is matched by
k repetitions of the previous algorithm.

We remark that the order of transmission for processor i does not have to be the one indicated above.
Any collection of permutations of the set S = f1; : : : ; Pg, one for each processor, such that no processor
is the target of two messages at the same time, will yield an optimal algorithm. (For the k-item broadcast,
analogous permutations of the multiset consisting of k copies of S will lead to optimality.)

5.2 Broadcast With Combining

In parallel computation, one frequently encounters situations where each processor holds a value and the P
values are to be combined into one (or reduced) using some simple operation (such as max or +.) Indeed,
we have seen an example of such a situation in Section 4 where we gave an optimal algorithm for summation
based on an optimal algorithm for reduction. As indicated in that context, reduction can be viewed as
“all-to-one" broadcast (with a slight change in model parameters) and is thus solved optimally by simply
reversing the directions of messages in optimal broadcast.

If the reduced value is to be made available to all processors, we get a problem which we may think of
as an all-to-all broadcast with combining. Clearly, this problem can be solved by a reduction followed by
broadcast, which is optimal to within a factor of 2. However, we show below that all-to-all broadcast with
combining takes no longer than all-to-one reduction. Our algorithm is based on the observation that optimal
reduction exhibits a great deal of imbalance in terms of the number of messages received by processors.
We show how a judicious replication of messages (and computation) allows each processor to compute the
reduced value at the same time as the sink processor in all-to-one reduction.

5.2.1 An Optimal Algorithm for Broadcast with Combining

Let xi be a value initially available at processor i; i = 0; : : : ; P �1. The problem is to makex0+ : : :+xP�1

available to each processor in the shortest possible time. The ‘+’ operation is assumed to be commutative.
In the sequel, all arithmetic on processor indices will be modulo P and for indices i; j; x[i : j] will

7



denote the quantity xj + xj�1 + : : :+ xi. Thus, for example, if P = 5, x[1 : 3] = x3 + x2 + x1 while
x[3 : 1] = x1 + x0 + x4 + x3.

We will carry out the analysis in the postal model and with the assumption that the combining operation
takes no time. With these assumptions, it is clear that if a message is initiated to processor i at time t, it can
be received at time t + L, combined with xi and the result transmitted to another processor at time t + L

(arriving at its destination at time t+ 2L.)
Our algorithm will be described in terms of the sequence ffig defined in Section 3.3. Let T , the amount

of time for the algorithm be fixed, and let P = p(T ;L; 0; 1). Our algorithm has the following simple
description: at time j = 0; 1; : : : ; T �L, processor i; i = 0; : : : ; P � 1 sends its current value to processor
i + fj+L�1. (As indicated earlier, the values sent at time j arrive at their destinations at time j + L and
are instantaneously combined into the current value at the destination processor before transmission at time
j + L.)

Theorem 5.1 The algorithm presented above leaves the value x[0 : P � 1] at each of the P = p(T ;L; 0; 1)
processors at time T .

Proof: We observe first that the model constraints on the rate of reception are met since no processor is the
target of more than one message during any time step. Thus, the algorithm terminates at time T . To show
that every processor has x[0 : P � 1] when the algorithm terminates, we inductively prove that at time j
processor i has the value x[i� fj + 1 : i]. Thus, at time T , processor i holds x[i� fT + 1 : i]. By Theorem
3.2, fT = P proving our theorem.

For the basis of the induction, note that by definition fj = 1 for j < L and each processor certainly has
its own value xi. Thus, the inductive claim is true for j < L. Consider now some value t � L and assume
that the claim holds for all j < t. At time step t, processor i would receive a message initiated at time
(t � L) by processor i � f(t�L)+L�1 = i� ft�1. By inductive hypothesis, this message carries the value
x[i� ft�1 � ft�L + 1 : i� ft�1] = x[i� ft + 1 : i� ft�1]. Processor i can combine this with the value it
holds at time t � 1, viz. x[i� ft�1 + 1 : i], to form x[i� ft + 1 : i] at time t. 2

6 Conclusion

We have presented optimal algorithms for a variety of broadcast problems in the LogP model in which the
only communication primitive is point-to-point message passing. Our algorithms for broadcasting an item
from a single source, broadcasting an item (or several items) from all P processors and broadcasting a single
item from all P processors with combining, are all optimal even in the constant factors. In addition, our
broadcast algorithm can be “time-reversed" to yield an optimal algorithm for summing a list of numbers
optimally. Some problems that we are currently engaged in studying are optimal broadcasting of multiple
messages and optimal parallel prefix computation.

8



References

[1] A Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency in PRAM Computation. In
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 11–21. ACM,
June 1989.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication Complexity of PRAMs. In Theoretical
Computer Science, pages 3–28, March 1990.

[3] N. Alon, A. Barak, and U. Manber. On dissiminating infomation reliably without broadcasting. In
Proceedings of the International Conference on Distributed Computing Systems, 1987.

[4] A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms in the Postal Model for Message-
Passing Systems. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
pages 11–22, June 1992.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

[6] E. Cockayne and A. Thomason. Optimal multi-message broadcasting in complete graphs. In Proceed-
ings of the 11th SE Conference on Combinatorics, Graph Theory, and Computing, pages 181–199,
1980.

[7] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, May 1993. (to appear) Also appears
as UCB/CS/92 713 report.

[8] A. M. Farley. Broadcast time in communication networks. SIAM Journal on Applied Mathematics,
39(2):385–390, October 1980.

[9] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the 10th Annual
Symposium on Theory of Computing, pages 114–118, 1978.

[10] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A Survey of Gossiping and Broadcasting in
Communication Networks. Networks, 18(4):319–349, 1988.

[11] C-T. Ho. Optimal Comunication Primitives and Graph Embeddings on Hypercubes. In Ph.D. Thesis,
Yale University, 1990.

[12] C-T. Ho and S.L. Johnsson. Distributed routing algorithms for broadcasting and personalized commu-
nication in hypercubes. In Proceedings of the 1986 International Conference on Parallel Processing,
pages 640–648. IEEE Computer Society, 1986.

[13] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM Simulation on a Distributed
Memory Machine. In Proceedings of the Twenty-Fourth Annual ACM Symposium of the Theory of
Computing, pages 318–326. ACM, ACM, May 1992.

[14] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel memories. Acta Informatica, 21:339–374, 1984.

[15] C. H. Papadimitriou and M. Yannakakis. Towards an Architecture-Independent Analysis of Parallel
Algorithms. In Proceedings of the Twentieth Annual ACM Symposium of the Theory of Computing,
pages 510–513. ACM, 1988.

9


