Optimal Broadcast and Summation in the LogP M odel

Richard Karp
Abhijit Sahay
Eunice Santos

Computer Science Division,
University of California, Berkeley

Abstract

We consider several natural broadcasting problems for the LogP model of distributed mem-
ory machines recently proposed by Culler et a. For each of these problems, we present
algorithms that yield an optimal communication schedule. Our agorithms are absolutely best
possiblein that non even the constant factors can be improved upon. We also devise an (abso-
lutely) optimal algorithm for summing a list of elements (using a non-commutative operation)
using one of the optimal broadcast algorithms.

1 Introduction

Most models of paralel computation reflect the communication bottlenecks of real parale machines
inadequately. The PRAM [9], for example, allowsinter-processor communication at zero cost. Researchers
have proposed severa variationson the PRAM [14, 13, 15, 1, 2] that address different communicationissues
to different degrees. There have aso been anumber of studiesof communication requirements of algorithms
on specific networks of processors such as the hypercube or the mesh.

Recently, Culler et a [7] have proposed a general purpose model, the LogP model for distributed
memory machines. Inthismodel, processors communicate by point-to-point messageswhichtravel through
a network. The network imposes costs on communication due to its limited bandwidth, the processors
network interface overhead and the latency that messages incur in traversing paths in the network. The
LogP modd treats the network as a black box with specified latency, overhead and bandwidth parameters
and is thus applicable to many distributed memory machines. For ajustification of this model and a more
detailed description, we refer the reader to the origina paper [7].

In this paper we consider some fundamental problemsin parallel computation and describe agorithms
that solve them optimally in the LogP model. The problemswe consider are various kinds of broadcast and
summation. While our algorithmsfor optimal broadcast can be described directly, the proof of optimality for
our summation algorithm requires an “inverted" problem formulation: instead of determining the minimum
time to sum n operands on P processors, we determine the maximum number of operands that can be
summed by P processors in ¢ steps. The solution to both problems involves a generalized Fibonacci
recurrence relation with parameters and initial conditionsthat depend onthe ., o, g and P.

Given the considerable importance of broadcasting problems in parallel and distributed computation,
severa variations of it have been well studied in the literature5, 10]. Much of this work has focused on
the design of efficient agorithms for broadcasting on specific networks such as rings, trees, meshes and
hypercubes[11, 12]. For fully connected systems (such asthose model ed by L ogP) broadcast problemshave
been studiedin several communi cation models, but without latency. Cockayne and Thomason[6] and Farley
[8] gave optimal algorithmsfor a model where each processor can either send or receive a message in one
time step. Alon, Barak and Manber [3] studied reliable broadcast in amodel that alows simultaneous send
and receive. Bar-Noy and Kipnis[4] introduced the postal model which incorporates a latency parameter
and solved the single message broadcast problem in it. The postal model turns out to be a specia cast
of LogP (with 0=0 and ¢ = 1) and is quite adequate for studying many communication problems. If we
incorporate the send/receive overhead of the LogP model into the latency parameter and normalize the unit
of timeso that ¢ = 1, we are essentially reduced to the postal model. In some later sections, we will find it
more convenient to work with the postal model.

Therest of the paper isorganized asfollows. Section 2 describestheL ogP model of parallel computation.
Section 3 defines the P-way broadcast problem and an optimal agorithm for it. We aso present a running-
time analysis of our optimal agorithm. Section 4 describes the summing problem, its inversion and our
optimal algorithm for summing. Section 5 returns to other broadcast problems and optimal agorithms for
them. Some concluding remarks are made in Section 6.

2 ThelLogP Model

LogPisamodel for distributed-memory multi processorsin which processors communicate by point-to-point
messages [7]. Themodel specifies the performance characteristics of the interconnection network, but does
not describe the structure of the network.

The main parameters of the model are:

P: the number of processor/memory modules. Loca operations execute in unit time (a processor cycle).

L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to itstarget module.

o. the overhead, defined as the length of time that a processor is engaged in the transmission or reception
of each message; during thistime, the processor cannot perform other operations.

¢ thegap, defined as the minimumtimeinterval between consecutive message transmissionsor consecutive
message receptions at a processor. The reciprocal of ¢ corresponds to the available per-processor
communi cation bandwidth.

Furthermore, it is assumed that the network has a finite capacity, such that at most [/g] messages
can bein transit from any processor or to any processor a any time. If a processor attempts to transmit a
message that would exceed thislimit, it stalls until the message can be sent without exceeding the capacity
limit.

The parameters I, o and g are measured as multiplesof the processor cycle. The model isasynchronous,
i.e., processors work asynchronously and the latency experienced by any message is unpredictable, but is
bounded above by I in the absence of stalls. Because of variations in latency, the messages directed to a
given target module may not arrive in the same order as they are sent. In order to be considered correct, an
algorithm must produce correct results under al interleavings of messages consistent with the upper bound
of I on latency.

In estimating the running time of the algorithms, we assumethat that all processorswork synchronously
and that each message incurs precisely a latency of L. All agorithms presented in this paper satisfy the
capacity constraint of the LogP model, and we do not mention it henceforth.

3 Optimal Broadcast

3.1 TheBroadcast Problem

The P-way broadcast problemisthat of finding aschedul e of communication among P processors (numbered
1,..., P)sothatadatuminitially availableat processor 1ismadeavailabletoall P processorsintheshortest
possibletime.

Definition 3.1 Let.A bean algorithmfor P-way broadcast. The delay of processor ¢ in.A, denoted ¢ 4(7), is
defined asthe time at which the datumisfirst availableat processor ¢ in.4. The running time of .4, denoted
ta,is

ta = 12a§xp{tA(z)}

The complexity of P-way broadcast in the LogP model is defined as
B(P;L,o,9)= rrjintA
A isoptimal for P-way broadcastift4 = B(P; L,0,g).
Definition 3.2 Givent > 0, the number of time steps available, let
P(t; L,o,g)=max{i: B(i; L,0,9) <1t}
denote the maximum number of processorsthat can be reached by a broadcast algorithmin ¢ steps.

When there is no danger of confusion, we will omit explicit mention of ., o and ¢ and write B(P) and
P(t)instead of B(P; L,o,g)and P(t; L, 0,¢). Note that for any broadcast algorithm A, ¢ 4(1) = 0.

2

3.2 An Optimal Broadcast Algorithm

Inthissection, we devel op an algorithm for P-way broadcast that takes B(P) steps. Our algorithmissimple
and intuitive: all informed processors send messages repeatedly to uninformed processors as early and as
frequently as possible. We establish optimality of our algorithm by arguing that among optimal algorithms
for broadcast, there must be onewhich isminimal in the following senses. there are no redundant messages
and there are no unforced delaysin sending messages. We then show asimplerulefor finding the (essentially
unique) optimal minimal algorithm. These ideas are made more precise below.

Definition 3.3 A broadcast algorithmis said to be minimal if

1. No processor receives more than one message.

2. If processor p sends messages to processors po, . . ., px, (in that order) thent 4(p;) = ta(p) + jg +
L+20,0<j<k

Lemma 3.1 Given algorithm A for broadcast, there exists a minimal algorithm 55 which reaches as many
processorsas. A and for which ¢z < t 4.

Proof: If any processor receives more than one message in .A then the algorithm A’ derived from A by
discardingal but thefirst messageto any processor completesnolater than.A and reaches as many processors
as A. Also, if in A’, processor p initiates messages to processors po, . . ., pr a times Ty, . .., T) (in order),
we must have Ty > t4/(p) (since the datum is not available at p earlier than t 4/ (p)) and T;41 > T + ¢
because of the model’s bandwidth constraint. However, if any of these inequalitiesis strict, consider the
agorithm A" derived from A’ by having T;.1 = T; + g. Clearly, no processor has alarger information time
in A” thanin A’ (and in fact, at least one processor has a strictly smaller information time.)

It is clear that after a finite sequence of such transformations, all the inequalities will be strict and we
will have aminimal agorithm which completes no later than .4 and reaches as many processorsas . A. O

3.2.1 Broadcast Trees

We shall often find it useful to think of a minimal broadcast algorithm A in terms of its broadcast tree of
processors, T 4. T 4 isarooted, ordered tree with anode for each processor that participatesin the broadcast.
Theroot of T4 isprocessor 1 (the source of the broadcast) and if processor p sends messagesto processors
po, - - -, pr (in that order) in A, thenin T4 node p has po, . . ., pr. asits (ordered) children. If, in addition,
we label nodes by the information times of the corresponding processors, minimality impliesthat a parent’s
label isexactly I + 20 smaler thanitsoldest child’s, while thelabels of successive siblingsdiffer by exactly
g.

Definition 3.4 The universal minimal broadcast tree, denoted 3, is defined to be the infinite labeled ordered
tree in which the root has label 0 and a node with label ¢ has children labeled t + ig + L + 20, © > 0.

Lemma 3.2 For any minimal broadcast algorithm A, the broadcast tree 7 4 is a rooted subtree of 5 with
the label on a node corresponding to the information time of the corresponding processor.

Proof: Follows from definition of 5 and minimality. O

From Lemma 3.1 we know that the optimal minimal broadcast algorithm reaches P processorsin time
B(P). Lemma 3.2 characterizes al minimal broadcast algorithms. We thus have the following simple
algorithm for optimal P-way broadcast.

Definition 3.5 Let B(F) be the rooted subtree of B consisting of the P nodes with smallest labels (ties
being broken arbitrarily.)

Theorem 3.1 B(P) isoptimal for P-way broadcast.

Proof: By construction, every minimal broadcast tree will have a node with information time at least as
large as the largest information time for B(P). O

3.3 Runningtime analysis

We will carry out the analysisin the postal model (by incorporating o into the latency and normalizing so
that g is1.)

Definition 3.6 Let L > 0 be a fixed integer. Define the sequence { f; } by:
1 fi=1for0<i < L.
2. fi = fic1+ fi—r otherwise.

Fact 3.1 Foreacht, 1+ = fi = firr.

Theorem 3.2 Fort > Oand L > 0, p(¢; ,0,1) = f;

Proof: Consider the first ¢ steps of our optimal broadcast algorithm with o — 0 and ¢ = 1. Clearly, if
t < L, the theorem holds. Otherwise, the last messageis sent at timet — 1.. We claim that the number of
messages sent at time ¢ is f;. Thisisclearly true for ¢ < I, since only the source can send messages. For
larger t, messages are sent at time ¢t by every processor that sent amessage at timet — 1 and by processors
who received their messages at timet. Our claim follows by induction.

Thusthe number of processors for ¢-step optimal broadcast isgivenby 1 + Zf;g fi= f.0

It is not hard to establish that there is a constant v (that depends only on 1), 1 < v < 2, such that
yi=l+1 < f, < 4. Thus, Theorem 3.2 implies that the broadcast time for P processors is a most
L —1+log, P. Denormalizing to the complete LogP model, we get the following.

Theorem 3.3 The time for optimal broadcast of a single itemin the LogP model B(P; L, 0, g) is at most
L + 20 + glog, P where 7 € (1,2] is the only real root of the equation 2% — 29~ — 1 = 0 with
d = [(L +20)/g].

34 Z-Optimality

In this section, we prove a property of 5(P) that is crucia to our optimal summation algorithm of Section
4,

Definition 3.7 Let A be an algorithm for P-way broadcast. We say that A is Z-optimal if it minimizes
S ta(i).

Even though the objective in Z-optimal agorithms is quite different — minimization of the sum of
information times rather than the maximum information time— it turns out that 5() is aso Z-optimal for
P-way broadcast.

Theorem 3.4 Algorithm B(P) is Z-optimal for P-way broadcast.

Proof: The arguments used in the proof of Lemma 3.1 are easily seen to imply that there is a minimal
broadcast algorithm which is Z-optimal. Let b1 < b, < ... < bp denote the information times of
the processors in B(P) and let .A be a minima agorithm for P-way broadcast with information times
a1 < ... < ap. By construction, b; < «a; for each ¢ and Z-optimality of B(P) follows. O

4 Optimal Summation

In this section, we consider the problem of computing the sum of » operands in the LogP model. Theinput
to the problem is a set of operands X3, ..., X, and we assume that an algorithm can choose how these
are initially distributed among the P processors. We assume that the addition operation is commutative *
and that each addition operation takes unit time. Our algorithm to compute X; + ...+ X, in the shortest
possible time can be thought of as consisting of aloca phase (during which each processor performs local
additions) followed by a ‘reverse broadcast’ or reduction in which the P partial sums are combined. Our
proof of optimality is based on the following inversion of the problem: instead of finding an agorithm to
add » operands in minimum time, find an agorithm that adds the maximum number of operandsin ¢ units
of time.

41 Summation Trees

Consider an algorithm A that computes X = X; + ...+ X, intimet. Let p be aprocessor at which X is
avalable at timet. We may assume that p performs an addition step X = Y7, + Yr in the ¢-th time step,
withY, = X1+ ...+ X;andYr = X321+ ...+ X, forsomei € {1,...,n — 1}. Clearly, each of the
patia sums Y7, and Yr must be available at p by time¢ — 1, either as aresult of local computation or in
theform of amessage received from another processor. In each case, we can identify the addition steps that
resulted in the creation of these partial sums.

We can thus think of A’s computation as a binary tree, T4, induced by the order of additions. Each
internal node of T 4 represents an addition performed by A inthecomputationof X and each leaf corresponds
to some input operand X;. Theroot of T’y represents the addition X = Y7, + Yr identified above, and the
left and right children of the root represent the additions that resulted in the creation of Y, and Yy at the
processors from which p received them during .4’s computation. (Of course, neither of these processors
need be distinct from p.) In generdl, if an internal node v in T 4 represents an addition Y; + Y, a processor
pz itsleft and right children represent respectively the additions resulting in the partia sumsY; and Y, at
the processors from which p;. received them,; if such a partial sumis one of the X;, the corresponding node
isaleaf of T'4.

Aswith broadcast algorithms, Lemma4.1 below showsthat the search for optimal summing algorithms
can be confined to algorithms of a certain canonical form. For the purpose of the following definition,
we will assume that the processor responsible for the final addition in A (at time ¢) initiates a message
transmission at time+.

Definition 4.1 A summation algorithm A is called busy-lazy if
1. No processor sends more than one message.

2. No processor idlesuntil it sends a message. (A processor issaidtoidleat time: if it is neither adding
nor receiving a message during the :-th time period.)

*Our optimal algorithm for commutative summation can be used for non-commutative summation with an appropriate renum-
bering of the operands.

3. If processor p initiatesmessagereceptionsat times R,,(1) < ... < R,(k) and amessagetransmission
attimeS,, then R,(j) =5, —(o+ 1) — (k- j)g.

Lemma 4.1 Givenalgorithm .4 for summation, there exists a busy-lazy algorithm B which sums at least as
many operands as .4 and takes no longer than A.

Proof: Suppose that some processor sends messages 51, . .., Sk (k > 1) at timesteps 74, ..., 1) in A.
Identifying these messages with the corresponding nodesin 74, we seethat .5; and .5; must represent sums
of digoint sets of input operands. We can modify algorithm A so that for ¢ < k, it adds 5; to some leaf
of 5, at timeT; and sends only the (hew) message .5}, at time T},. (Processors that receive 5; in A ignore
those messages in the modified algorithm.) It is clear that the modified algorithm takes no longer than A
and sums the same number of operands.

Secondly, note that a processor that idles at some time step can always be made to perform an addition
instead (with a fresh input as one of the operands,) yielding an algorithm which sums more operandsin the
same number of time steps.

Finally, consider aprocessor p that initiatesreceptionsat times R, (1) < ... < R,(k) and atransmission
a time S,. Clearly, S, > R,(j)+ o+ 1+ (k—j)g, 7 =1,...,k. Butif any of these inequalitiesis
strict, some message reception at p can be delayed by at least one unit, alowing the processor that sends
this message to send a partia sum of more operands. The modified algorithm again sums more operands
than the original in the same number of time steps.O

Let A beabusy-lazy summation algorithm that runsfor ¢ stepsand in which the processorsinitiatetheir
message transmissions at times 51 < S, < ... < Sp = t. Consider the P-way broadcast algorithm A’
resulting from thefollowing reversal of each message of .A: if processor ¢ initiates transmission to processor
jattimes; in A, processor ¢ completes reception from processor j at timet — 5; in.A’. Observethat A’ isa
P-way broadcast algorithminwhich sending processors*“wait" for onetime step before transmissions. (This
corresponds in A to the steps that receiving processors spend just after receptions in adding the received
partial sums.) The agorithm .4’ can be viewed as a minimal broadcast algorithm for a machine which has
asend overhead of o + 1 (or equivalently, alatency of L + 1.) Thus, busy-lazy summation agorithmsfor
amachine with parameters 1, o, ¢, P are in one-to-one correspondence with minimal broadcast algorithms
for amachine with parameters . + 1, o, g, P. Moreover, if the busy-lazy algorithm runsfor ¢ steps and has
messageinitiationtime S; for processor ¢, the corresponding broadcast algorithm will have information time
t — 5, for processor .

Lemma4.2 Let A be a busy-lazy summation algorithm that adds » operandsin ¢ steps and in which the
processorsinitiatetheir messagetransmissionsattimesS; < S, < ... < Sp =t. Thenn = ijzlsi—ap—l-l

Proof: Let k; bethe number of messagesreceived by processor ;. Then, the number of input operandsthat
are tackled by processor ¢ isexactly S; — (o + 1)k; + 1. Summing over the processors yields the result.0

This lemma characterizes optimal ¢-step busy-lazy summation algorithms as those which maximize
2.5;. From our correspondence with minimal broadcast algorithms, we see that the corresponding broadcast
algorithms must be those that minimize Z(¢ — \5;), viz. Z-optimal broadcast algorithms.

We are thusled to the following a gorithm for ¢-step summation assumingthat ¢ > B(P; L + 1,0,9):
Algorithm S(¢):
1. For processor i, let ¢; be the information timein optimal P-way broadcast with parameters L + 1, 0, g.
2. Processor 7 adds locally for ¢ — ¢; steps and then participatesin a P-way reduction (for ¢; steps).

We have proved the following:

Theorem 4.1 For¢t > B(P; L+ 1,0,9), S(t) isoptimal for ¢ step summation.

5 Generalized Broadcast Problems

In this section, we generalize the broadcast problem in two directions and give optimal agorithms for
each generalized problem. The generaizations of P-way broadcast that we consider are based on whether
the broadcast is “one-to-al" or “all-to-al", and whether the data originating at different processors can be
combined. In therest of this section, we describe these variationsin more detail and present our algorithms
for solving them.

5.1 All-to-All Broadcast

Inthe P-way all-to-all broadcast problem, each of P processors hasadataitem that isto be madeavailableto
every processor. Of course, one could solve this problem using P one-to-all broadcasts but a more efficient
(and simpler) solutionis possible.

Observe that since each processor must receive (P — 1) itemsand thefirst one cannot be received until
time L 4 20, alower bound onthetimefor P-way all-to-all broadcastis L + 20+ (P —2)g. Ontheother hand,
if processor ¢ sendsout itsdataitemto processorsi+1(mod P), . .., i+(P—1) (mod P) (inthat order) at time
0,9,...,(P—2)g,each processor wouldreceive messagesat time . + 20, L.+ 20+g, ..., L+ 20+ (P —2)g.
We thus have asimple optimal agorithm for al-to-al broadcast.

The lower bound argument and our algorithm extends easily to the situation where each of the P
processors has k items to broadcast: since aprocessor must receive k(P — 1) itemsand the first one cannot
be received until L 4+ 20, we have alower bound of L + 20 + ¢g(k(P — 1) — 1). Thisbound is matched by
k repetitions of the previous agorithm.

We remark that the order of transmission for processor 7 does not have to be the one indicated above.
Any collection of permutations of the set S = {1,..., P}, one for each processor, such that no processor
isthe target of two messages at the same time, will yield an optimal algorithm. (For the k-item broadcast,
anal ogous permutations of the multiset consisting of £ copies of 5 will lead to optimality.)

5.2 Broadcast With Combining

In parallel computation, one frequently encounters situations where each processor holds avalue and the P
values are to be combined into one (or reduced) using some simple operation (such as max or +.) Indeed,
we have seen an exampl e of such asituation in Section 4 where we gave an optimal algorithm for summation
based on an optima agorithm for reduction. As indicated in that context, reduction can be viewed as
“all-to-one" broadcast (with a slight change in model parameters) and is thus solved optimally by simply
reversing the directions of messagesin optimal broadcast.

If the reduced value isto be made available to all processors, we get a problem which we may think of
as an dl-to-al broadcast with combining. Clearly, this problem can be solved by a reduction followed by
broadcast, which is optimal to within a factor of 2. However, we show below that all-to-all broadcast with
combining takes no longer than all-to-one reduction. Our algorithm isbased on the observation that optimal
reduction exhibits a great deal of imbalance in terms of the number of messages received by processors.
We show how a judicious replication of messages (and computation) alows each processor to compute the
reduced value at the same time as the sink processor in all-to-one reduction.

52.1 An Optimal Algorithm for Broadcast with Combining

Let z; beavaueinitialy availableat processor ¢, i = 0, ..., P—1. Theproblemistomakezg+...+2p_1
available to each processor in the shortest possibletime. The ‘+' operation is assumed to be commutative.
In the sequel, al arithmetic on processor indices will be modulo P and for indices 4, j, z[i : j] will

denote the quantity z; + ;-1 + ...+ z;. Thus, for example, if P = 5, 2[1: 3] = 23+ 22 + z1 While
2[3:1] =214+ 20+ x4 + 23.

We will carry out the analysisin the postal model and with the assumption that the combining operation
takes no time. With these assumptions, it is clear that if amessage isinitiated to processor @ at timet, it can
be received at time ¢t + I, combined with z; and the result transmitted to another processor at timet + L
(arriving at its destination at time ¢t + 21..)

Our agorithmwill be described in terms of the sequence { f;} defined in Section 3.3. Let 1", the amount
of time for the algorithm be fixed, and let P = p(T’; L,0,1). Our adgorithm has the following simple
description: attimej = 0,1,...,7 — L, processor ¢, : = 0, ..., P — 1 sendsits current value to processor
i+ fi+-1. (Asindicated earlier, the values sent at time j arrive at their destinations at time j + L and
areinstantaneously combined into the current value at the destination processor before transmission at time
Jj+1L)

Theorem 5.1 The algorithmpresented above leavesthevalue z[0: P — 1] at each of the P = p(T'; L,0,1)
processorsattimeT'.

Proof: We observe first that the model constraintson the rate of reception are met since no processor isthe
target of more than one message during any time step. Thus, the agorithm terminates at time 7. To show
that every processor has [0 : P — 1] when the agorithm terminates, we inductively prove that at time j
processor ¢ hasthevalue z[: — f; + 1: ¢]. Thus, a time T, processor ¢ holds z[¢ — f7 + 1: ¢]. By Theorem
3.2, fr = P proving our theorem.

For the basis of the induction, note that by definition f; = 1for j < L and each processor certainly has
itsown value x;. Thus, theinductive claimistruefor j < L. Consider now somevauet > I and assume
that the claim holds for all ;7 < ¢. At time step ¢, processor i would receive a message initiated at time
(t — L) by processor i — f(;_r)+r—-1 = ¢ — fi—1. By inductive hypothesis, this message carries the value
xli— fio1— ficp + 10— fioq] = a[i— fy + 14— f;_1]. Processor i can combine thiswith the value it
holdsat timet — 1, viz. z[i — f;_1+ 1:4],toformz[i — f; + 1: ¢ attime¢. O

6 Conclusion

We have presented optimal agorithms for a variety of broadcast problemsin the LogP model in which the
only communication primitive is point-to-point message passing. Our algorithmsfor broadcasting an item
from asingle source, broadcasting anitem (or severa items) from all P processorsand broadcasting asingle
item from al P processors with combining, are al optimal even in the constant factors. In addition, our
broadcast agorithm can be “time-reversed” to yield an optimal agorithm for summing a list of numbers
optimally. Some problems that we are currently engaged in studying are optimal broadcasting of multiple
messages and optimal paralld prefix computation.

References

[1]

[2]

(3]

[4]

(3]

6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A Aggarwal, A. K. Chandra, and M. Snir. On Communication Latency in PRAM Computation. In
Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 11-21. ACM,
June 1989.

A. Aggarwal, A. K. Chandra, and M. Snir. Communication Complexity of PRAMs. In Theoretical
Computer Science, pages 3—-28, March 1990.

N. Alon, A. Barak, and U. Manber. On dissiminating infomation reliably without broadcasting. In
Proceedings of the International Conference on Distributed Computing Systems, 1987.

A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms in the Postal Model for Message-
Passing Systems. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
pages 11-22, June 1992.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

E. Cockayne and A. Thomason. Optimal multi-message broadcasting in complete graphs. In Proceed-
ings of the 11th SE Conference on Combinatorics, Graph Theory, and Computing, pages 181-199,
1980.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a Redlistic Model of Parallel Computation. In Fourth ACM SGPLAN
Symposiumon Principlesand Practice of Parallel Programming, May 1993. (to appear) Also appears
as UCB/CS/92 713 report.

A. M. Farley. Broadcast time in communication networks. SSAM Journal on Applied Mathematics,
39(2):385-390, October 1980.

S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the 10th Annual
Symposium on Theory of Computing, pages 114-118, 1978.

S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A Survey of Gossiping and Broadcasting in
Communication Networks. Networks, 18(4):319-349, 1988.

C-T. Ho. Optimal Comunication Primitives and Graph Embeddings on Hypercubes. In Ph.D. Thesis,
Yale University, 1990.

C-T. Hoand S.L. Johnsson. Distributed routing algorithmsfor broadcasting and personalized commu-
nication in hypercubes. In Proceedings of the 1986 International Conference on Parallel Processing,
pages 640-648. IEEE Computer Society, 1986.

R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM Simulation on a Distributed
Memory Machine. In Proceedings of the Twenty-Fourth Annual ACM Symposium of the Theory of
Computing, pages 318-326. ACM, ACM, May 1992.

K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallée
machines with restricted granularity of parallel memories. Acta Informatica, 21:339-374, 1984.

C. H. Papadimitriou and M. Yannakakis. Towards an Architecture-Independent Analysis of Pardllel
Algorithms. In Proceedings of the Twentieth Annual ACM Symposium of the Theory of Computing,
pages 510-513. ACM, 1988.

