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Abstract

Suppose we have a undirected graph G = (V;E) where V is the set of vertices and E is the
set of edges. Suppose E consists of red colored edges and blue colored edges. Suppose we have
an in�nite sequence S of characters R and B.

We take a random walk starting at vertex v on G based on the sequence S as follows:
At the ith step, if S has an R at position i the walk traverses a random red edge out of the

current vertex (chosen uniformly from the outgoing edges). If S has a B the walk traverses a
random blue edge out of the current vertex.

We say S covers G starting at vertex v when a random walk using S starting at v covers
every vertex of G.

Theorem 1 If G is a red-blue colored undirected graph which is connected in red and connected

in blue and there exists an RB-sequence S such that starting at some vertex v,

Pr[S covers G] < 1

then G contains a proper subgraph H such that H's vertices can be divided into two sets: U

and W where there are no red edges between U and V �W and no blue edges between U and

V � U .

1 Notation

In this paper, we consider random walks on graphs with undirected edges. The edges are always
one of two colors { red or blue. Furthermore, we will always consider graphs which are connected,
both by blue edges and by red edges.

De�nition 1 Let S be a �xed in�nite sequence of symbols \R" and \B".

Let G be a two colored graph as described above.

Let v be a vertex of G.

A random walk, (W;S) on G starting at v is an in�nite sequence of vertices fvig
1

i=1 of G. If the ith
entry of S is a "B", then at the ith step of the walk traverses an edge chosen uniformly at random
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from those blue edges adjacent to vi�1. vi is the vertex on the other end of this edge. If the ith
entry of S is an "R", then at the ith step of the walk traverses an edge chosen uniformly at random
from those red edges adjacent to vi�1.

In this report, we will refer to �nite continuous subsets of the in�nite R and B sequences as blocks
or substrings. Also, by (RB)k we mean a block of the form RBRB : : : repeated k times.

2 The Proof

Lemma 2 If 9 sequence S, vertex v 2 V such that Pr[S covers G starting at v] < 1 then there is
some start vertex v0 2 V such that for the sequence T = (RB)1 we have :

Pr[T covers G starting at v0] = 0

Proof.

The structure of the proof is as follows:

1. We divide the sequence S up into an in�nite number of blocks, bi; i = 1; : : :1 of length L

where S = b1b2 : : : and L >> n.

2. We argue that, with probability 1, for a random walk (W;S), for an in�nite number of blocks,
bij ; j = 1; : : :1, adjacent R's (and adjacent B's) will e�ectively cancel each other in a way
that allows the walk to be simulated by a walk (W',S') where S0 has long substrings of the
form (RB)M .

3. Because, with probability 1, these substrings (RB)M will occur an in�nite number of times
for a random walk W and because there is no upper bound on M , we know that there
exists a vertex v0 2 V such that 8M;PrW [(RB)M covers G starting at v0] = 0 and hence
PrW [(RB)1 covers G starting at v0] = 0.

We will use a transformation of strings based on cancelling adjacent R's and adjacent B's.

De�nition 2 Let b be a block of R's and B's.

We say b0 is a transform of b if one can obtain b0 by recursively cancelling adjacent R's and B's
in b.

For example, if b = RBBRBRRBB then both B and RRB are tranforms of b.

De�nition 3 For sequence S = b1b2 : : :, we say sequence S0 = b01b
0

2 : : : is a transform of S if, for
all i, b0i is a (possibly trivial) transform of bi.

De�nition 4 Let sequence S0 be a transform of sequence S.

Let (W;S) be a walk on graph G. Suppose that, at every place in S where two R's or two B's can
be compressed in transforming S to S0, the walk W backtracks, �rst transversing an edge in one
direction and then traversing it in the other.



Let W 0 be the walk on G using S0 such that W 0 = W except that all such backtracks are deleted.

We say (W 0; S0) is a transform of (W;S).

Note that the set of vertices covered by a transformation of a walk (W;S) is a subset of the set of
vertices covered by the walk (W;S).

Claim 3 Let S = b1b2 : : : where each block has L symbols.

Let (W;S) be a random walk on G starting at vertex v.

For each i, let b0i be an arbitrary transformation of bi.

Then, with probability 1 over all random walks (W;S) on G, there exists sequence S0 and a walk
(W 0; S0) such that:

1. (W 0; S0) is a transformation of (W;S)

2. S0 = c1c2 : : : where, for an in�nite number of values of i, ci = b0i and for the rest, ci = bi.

3. The probability distribution on the random walk (W 0; S0) is identical to the uniform distribu-
tion on random walks using S0.

That (W 0; S 0) is uniformly distributed is important because we will use the above claim to show
that uniformly distributed random walks using sequences with long (RB)M substrings are unlikely
to cover the graph.

Proof.

Let (W;S) be a random walk on G using S.

For each i > 0, consider one way of cancelling R's and B's to transform bi to b0i.

Let xi denote the number of cancellations needed for this transformation.

If every backtrack implied by this transformation occured in the random walk (W;S), then we
could conceivably include the block b0i in the transformed string S0.

However, in order to achieve a uniform distribution on the walk (W 0; S0), we include the block b0i in
the transformed string S0 with some probability possibly less than 1. We normalize the probability
of including b0i in S0 so that the event that b0i is included in S0 yields no information about the
actual path that (W 0; S0) follows while using block b0i of S

0.

For the jth backtrack needed by the transformation, let dji be the degree of the vertex from which
the walk (W;S) backtracks.

If all the backtracks required by the transformation occur, then we include the block b0i in the

sequence S0 with probability: �xi
j=1

d
j
i

n
.

Therefore, the probability (over random walks (W;S)) that b0i will be included in S0 is:

(�xi
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1
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n
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Because there are an in�nite number of blocks bi, with probability 1, we can transform walk (W;S)
into a walk (W 0; S0) which satis�es conditions (1) and (2) of the claim.

The transformations of the blocks bi to b
0

i yield no information about the walk (W 0; S0) and therefore
condition (3) is satis�ed.

Claim 4 Let S = b1b2 : : : be any sequence of R's and B's such that the length of each block bi is
L.

Then for all i, 9b0i such that b0i is a transform of bi and where b0i contains a substring of the form

(RB)M or of the form Rn4 or of the form Bn4 where M is any number such that L � (4M2n4)
n4

.

Proof.

The transformation of each block goes as follows:

1. We can use cancellation to reduce each block bi to a string of R0s and B0s such that no more
than two R0s or B0s occur in a row. If the block has no consecutive string of more than n4

R's or n4 B's, then this will not reduce the length of the block more than a factor of n4.

2. Cancel all adjacent R0s. This reduces the string by at most a factor of 3.

3. The string now looks like this:

(RB)aB(RB)bB(RB)cB(RB)dB(RB)eB(RB)fB(RB)gB(RB)hB:::

and is of length L0 �
L
3n4

.

We now repeat the following steps.

(a) In iteration j, we start with a string of the form:

(RB)aB(RB)bB2j+1(RB)cB(RB)dB2j+1(RB)eB(RB)fB2j+1(RB)gB(RB)hB2j+1:::

and with length at least L
(4n4)j .

(b) We cancel adjacent groupings to get:

[(RB)a�bB or B(RB)b�a]B2j+1[(RB)c�dB or B(RB)d�c]B2j+1[(RB)e�fB or B(RB)f�e] : : :

We call terms of the form (RB)a�bB type 1 and we call terms of the form B(RB)b�a

type 2. If a = b, then we will call the term B = (RB)a�bB = B(RB)b�a type 3.

(c) We eliminate all terms of type 3 by cancelling them with an adjacent B2j+1 grouping.
We note that this can decrease the length of the string by at most a factor of n4 unless
we have more than n4 adjacent B symbols in a row.



(d) If we have two consecutive terms of type 1 (RB)a�bBB2j+1(RB)c�dB then we cancel
the middle B0s to get a longer term of type 1: (RB)a+c�(b+d)B If we have more than M

consecutive terms which are all of type 1, then we're done because this yields a string of
the form (RB)M .

(e) We do the same for two consecutive terms of type 2. If we have more thanM consecutive
terms which are all of type 2, then we're done because this yields a string of the form
(RB)M . This step, combined with the previous step, decreases the length of the string
by at most a factor of M

(f) Our string now has many alternations between type 1 and type 2.

If we have a term of type 1 followed by a term of type 2 then we have: (RB)a�bBB2j+1B(RB)d�c =
(RB)a

0

B2j+3(RB)c
0

.

If we have a term of type 2 followed by a term of type 1 then we have: B(RB)b�aB2j+1(RB)c�dB =
B(RB)a

0

B2j+1(RB)c
0

B.

In any event (getting rid of the '), our new string looks like this:

:::(RB)aB2j+1(RB)bB2j+3(RB)cB2j+1(RB)dB2j+3(RB)eB2j+1(RB)fB2j+3 : : :

which we can reduce to:

:::(RB)aB(RB)bB2j+3(RB)cB(RB)dB2j+3(RB)eB(RB)fB2j+3 : : :

This new string has length Lj+1 �
Lj

4M2n4
.

Each time we are able to repeat the process, the intervening string of B's becomes longer.

Because we have assumed that L � (4M2n4)
n4

we can repeat the process for at least j
2 steps.

If we repeat the process for j
2 steps, we would have the n4 B0s in a row.

Therefore, we can transform every block into a string which contains Bn4 or Rn4 or (RB)M

as a substring.

We can now complete the proof of Lemma 2.

Let S = b1b2 : : : be a sequence such that PrW [S covers G starting at v] < 1.

Let b01b
0

2 : : : be such that each b0i is a transform of bi and contains a substring of the form Bn4 or
Rn4 or (RB)M .

Let S0 = c1c2 : : : be the sequence and (W 0; S0) be the walk guaranteed to exist by Claim 3 such
that ci = b0i for an in�nite number of values of i and ci = bi for the rest.

By Claim 3, we have PrW [S covers G starting at v] < 1.

Because S0 contains an in�nite number of substrings of the form Bn4 or Rn4 or (RB)M and because
an in�nite number of Bn4 or Rn4 substrings would implied that S0 would cover G with probability
1, we know that S0 has to contain an in�nite number of substrings of the form (RB)M .



Because there is no upper bound on L, there is no upper bound on M and therefore we know that
there exists a vertex v0 2 V such that 8M;PrW [(RB)M covers G starting at v0] = 0 and hence
PrW [T = (RB)1 covers G starting at v0] = 0.

Now we show that G contains a subgraph of the appropriate form.

We will be considering be a graph G which satis�es the conditions of the main theorem and for
which we have proven: 9 vertex v0 of G such that

PrW [T = (RB)1 covers G starting at v0] = 0

We need the following de�nitions and claim:

De�nition 5 Let (W;T ) be a random walk on G starting at vertex v.

Then Wi denotes the ith edge which traversed by the walk (W;T ).

W [1; i] denotes the �rst i edges of the walk.

De�nition 6 Let H be a subgraph of G and let W [1; i] be a path of i edges in G starting at v0.

Pi(H;W [1; i]) = Pr[ we will ever leave H after i steps j the �rst steps of the walk have been
W1 : : :Wi].

Claim 5 If G sati�es the conditions of the theorem, then there exists an path W [1; i] starting at
v0, a subgraph H of G, and a positive integer I0 such that

1. 8i � I0; Pi(H;W [1; i]) = 0

2. 8H 0 proper subgraph of H; 8i; Pi(H
0;W [1; i])> 0.

Proof.

(1): Because Pr[S0 covers G starting at v] < 1, we know that 9H; 8W;P0(H;W [1; 0])< 1.

Note that Pi(H;W ) can have at most 2n di�erent values, depending only on what vertex, vi, we
are visiting and whether S0i is an R or a B.

We will construct W as follows:

Let u1 : : :uk be the neighbors of vi joined to vi by an edge of color S0i. We will leave vi via one
of these edges and possibly exit H in the process. So Pi(H;W [1; i]) is less than or equal to the
weighted average of Pi+1(H;W [1; i]fvi; ujg) for j 2 [1; k].

Choose Wi+1 = fvi; ujg such that Pi+1(H;W [1; i]fvi; ujg) is minimized. If any of the u0js are in H,
the inequality will be strict. If not, we are guaranteed that the quantity Pi+1(H;W [1; i+ 1]) will
not increase. Because it can adopt only a �nite number of values, it must reach 0 eventually.

(2): Let H be a minimal subgraph such that (1) holds.

Note that if Pi(H;W [1; i]) = 0 then 8m > i; Pm(H;W [1; m]) = 0.



Now we classify the vertices of H and the edges between adjacent to them.

Let afterRed = fv 2 H jPr[ we reach v after a blue edge at any step m > I0jW [1; I0]] = 0g .

Let afterBlue = fv 2 H jPr[ we reach v after a red edge at any step m > I0jW [1; I0]] = 0g .

Let afterBoth = H � (afterRed [ afterBlue)

Claim 6 1. There are no blue edges between between afterRed and H. and there are no red
edges between between afterBlue and H.

2. There are no blue edges internal to afterRed and no red edges internal to afterBlue.

3. There are no blue edges between afterRed and afterBoth and no red edges between afterBlue
and afterBoth.

4. There are no edges between afterBoth and H. And therefore both afterRed and afterBlue

are non-empty.

Note this claim implies of Theorem 1 where H0 = afterRed [ afterBlue.

Proof.

(1) If there is a blue edge between between v 2 afterRed and u 2 H then Pr[ we reach v after
step I0] > 0) Pr[ we escape from H after step I0jW [1; I0]] > 0 which is a contradiction.

(2) If there is a blue edge fv; ug internal to afterRed, then Pr[ we reach u after a blue edge at
some step m > I0jW [1; I0]] > 0 { a contradiction.

(3) If there is a blue edge between v 2 afterRed and u 2 afterBoth, then Pr[ we reach v after a
blue edge some step m > I0jW [1; I0]] > 0.

(4) If there is a blue edge between v 2 afterBoth and u 2 H then Pr[ we escape H after step
I0] > 0


