Analysis of Benchmark Characteristics and Benchmark
Performance Prediction T8

Rafael H. Saavedraj;
Alan Jay Smith ¥

ABSTRACT

Standard benchmarking provides the run times for given programs on
given machines, but fails to provide insight as to why those results were
obtained (either in terms of machine or program characteristics), and fails
to provide run times for that program on some other machine, or some
other programs on that machine. We have developed a machine-
independent model of program execution to characterize both machine
performance and program execution. By merging these machine and pro-
gram characterizations, we can estimate execution time for arbitrary
machine/program combinations. Our technique allows us to identify those
operations, either on the machine or in the programs, which dominate the
benchmark results. This information helps designers in improving the
performance of future machines, and users in tuning their applications to
better utilize the performance of existing machines.

Here we apply our methodology to characterize benchmarks and
predict their execution times. We present extensive run-time statistics for
a large set of benchmarks including the SPEC and Perfect Club suites.
We show how these statistics can be used to identify important shortcom-
ings in the programs. In addition, we give execution time estimates for a
large sample of programs and machines and compare these against bench-
mark results. Finally, we develop a metric for program similarity that
makes it possible to classify benchmarks with respect to a large set of
characteristics.

T The material presented hereis based on research supported principally by NASA under grant NCC2-550, and also in part
by the National Science Foundation under grants MIP-8713274, M1P-9116578 and CCR-9117028, by the State of Califor-
nia under the MICRO program, and by the International Business Machines Corporation, Philips Laboratories/Signetics,
Apple Computer Corporation, Intel Corporation, Mitsubishi Electric, Sun Microsystems, and Digital Equipment Corpora-
tion.

§ This paper is available as Computer Science Technical Report USC-CS-92-524, University of Southern California, and
Computer Science Technical Report UCB/CSD 92/715, UC Berkeley.

$ Computer Science Department, Henry Salvatori Computer Science Center, University of Southern California, Los
Angeles, California 90089-0781 (e-mail: saavedra@pal enque.usc.edu).

1 Computer Science Division, EECS Department, University of California, Berkeley, California 94720.

1. Introduction

Benchmarking is the process of running a specific program or workload on a specific
machine or system, and measuring the resulting performance. This technique clearly pro-
vides an accurate evaluation of the performance of that machine for that workload. These
benchmarks can either be complete applications [UCB87, Dong88, MI1PS89], the most exe-
cuted parts of a program (kernels) [Bail85, McMa86, Dodu89], or synthetic programs
[Curn76, Weic88]. Unfortunately, benchmarking fails to provide insight as to why those
results were obtained (either in terms of machine or program characteristics), and fails to
provide run times for that program on some other machine, or some other program on that
machine [Worl84, Dong87]. This is because benchmarking fails to characterize either the
program or machine. In this paper we show that these limitations can be overcome with the
help of a performance model based on the concept of a high-level abstract machine.

Our machine model consists of a set of abstract operations representing, for some par-
ticular programming language, the basic operators and language constructs present in pro-
grams. A special benchmark called a machine characterizer is used to measure experimen-
tally the time it takes to execute each abstract operation (AbOp). Frequency counts of
AbOps are obtained by instrumenting and running benchmarks. The machine and program
characterizations are then combined to obtain execution time predictions. Our results show
that we can predict with good accuracy the execution time of arbitrary programs on a large
spectrum of machines, thereby demonstrating the validity of our model. As a result of our
methodology, we are able to individually evaluate the machine and the benchmark, and we
can explain the results of individual benchmarking experiments. Further, we can describe a
machine which doesn’t actually exist, and predict with good accuracy its performance for a
given workload.

In a previous paper we discussed our methodology and gave an in-depth presentation on
machine characterization [Saav89]. In this paper we focus on program characterization and
execution time prediction; note that this paper overlaps with [Saav89] to only a small extent,
and only with regard to the discussion of the necessary background and methodology. Here,
we explain how programs are characterized and present extensive statistics for a large set of
programs including the Perfect Club and SPEC benchmarks. We discuss what these bench-
marks measure and evaluate their effectiveness; in some cases, the results are surprising.

We also use the dynamic statistics of the benchmarks to define a metric of similarity
between the programs; similar programs exhibit similar relative performance across many
machines.

The structure of the paper is as follows. In Section 2 we present an overview of our
methodology, explain the main concepts, and discuss how we do program analysis and exe-
cution time prediction. We proceed in Section 3 by describing the set of benchmarks used in
this study. Section 4 deals with execution time prediction. Here, we present predictions for
a large set of machine-program combinations and compare these against real execution
times. In Section 5 we present an extensive analysis of the benchmarks. The concept of pro-
gram similarity is presented in Section 6. Section 7 ends the paper with a summary and some
of our conclusions. The presentation is self-contained and does not assume familiarity with
the previous paper.

2. Abstract Model and System Description

In this section we present an overview of our abstract model and briefly describe the
components of the system. The machine characterizer is described in detail in [Saav89]; this
paper is principally concerned with the execution predictor and program analyzer.

2.1. The Abstract Machine M odel

The abstract model we use is based on the Fortran language, but it equally applies to
other algorithmic languages. Fortran was chosen because it is relatively simple, because the
majority of standard benchmarks are written in Fortran, and because the principal agency
funding this work (NASA) is most interested in that language. We consider each computer
to be a Fortran machine, where the run time of a program is the (linear) sum of the execution
times of the Fortran abstraction operations (AbOps) executed. Thus, the total execution time
of program A on machine M (T,) is just the linear combination of the number of times
each abstract operation is executed (C;), which depends only on the program, multiplied by
the time it takes to execute each operation (P;), which depends only on the machine:

n

Tam =2 Cai Pm,i =Ca'Py (1)
i=1

Pv and C, represent the machine performance vector and program characterization vector

respectively.

Equation (1) decomposes naturally into three components: the machine characterizer,
program analyzer, and execution predictor. The machine characterizer runs experiments to
obtain vector Py,. The dynamic statistics of a program, represented by vector C, are
obtained using the program analyzer. Using these two vectors, the execution predictor com-
putes the total execution time for program A on machine M.

We assume in the rest of this paper that all programs are written in Fortran, are com-
piled with optimization turn off, and executed in scalar mode. All our statistics reflect these
assumptions. In [Saav92a] we show how our model can be extended (very successfully) to
include the effects of compiler optimization and cache misses.

2.2. Linear Models

As noted above, our execution prediction is the linear sum of the execution times of the
AbOps executed; equation (1) shows this linear model. Although linear models have been
used in the past to fit a k-parametric "model” to a set of benchmark results, our approach is
entirely different; we never use curve fitting. All parameter values are the result of direct
measurement, and none are inferred as the solution of some fitted model. We make a
specific point of this because this aspect of our methodology has been misunderstood in the
past.

2.3. Machine Characterizer

The machine characterizer is a program which uses narrow spectrum benchmarking or
microbenchmarking to measure the execution time of each abstract operation. It does this
by, in most cases, timing a loop both with and without the AbOp of interest; the change in
the run time is due to that operation. Some AbOps cannot be so easily isolated and more
complicated methods are used. There are 109 operations in the abstract model, up from 102

in [Saav89]; the benchmark set has been expanded since that time, and additional AbOps
were found to be needed.

The number and type of operations is directly related to the kind of language constructs
present in Fortran. Most of these are associated with arithmetic operations and trigonometric
functions. In addition, there are parameters for procedure call, array index calculation, logi-
cal operations, branches, and do loops. In appendix A (tables 14 and 15), we present the set
of 109 parameters with a small description of what each operation measures.

We note that obtaining accurate measurements of the AbOps is very tricky because the
operations take nanoseconds and the clocks on most machines run at 60 or 100 hertz. To get
accurate measurements, we run our loops large numbers of times and then repeat each such
loop measurement severa times. There are residual errors, however, due to clock resolution,
external events like interrupts, multiprogramming and 1/0 activity, and unreproducible varia-
tions in the hit ratio of the cache, and paging [Clap86]. These issues are discussed in more
detail in [Saav89].

2.4. TheProgram Analyzer

The analysis of programs consists of two phases. the static analysis and the dynamic
analysis. In the static phase, we count the number of occurrences of each AbOp in each line
of source code. In the dynamic phase, we instrument the source code to give us counts for
the number of executions of each line of source code, and then compile and run the instru-
mented version. The instrumented version tends to run about 15% slower than the uninstru-
mented version.

Let A be a program with input data |. Let us number each of the basic blocks of the
program j=1,2,---,m, and lets ; (i=1,2,---,n) designate the number of static occurrences
of operation P; in block B;. Matrix Sy=[s ;] of size n xm represents the complete static
statistics of the program. Let py=<py, Hp, - - -, 4;> be the number of times each basic block is
executed, then matrix Da=[d; j]1=[1;"s ;] gives us the dynamic statistics by basic block.
Vector C, and matrix D, are related by the following equation

m
C=73d;. (2
=1
Obtaining the dynamic statistics in this way makes it possible to compute execution time
predictions for each of the basic blocks, not only for the whole program.

The methodology described above permits us to measure M machines and N programs
and then compute run time predictions for N-M combinations. Note that our methodology
will not apply in two cases. First, if the execution history of a program is precision depen-
dent (asis the case with some numerical analysis programs), then the number of AbOps will
vary from machine to machine. Second, the number of AbOps may vary if the execution his-
tory is real-time dependent; the machine characterizer is an example of areal-time dependent
program, since the number of times aloop is executed is afunction of the machine speed and
the clock resolution. All programs that we consider in this paper have execution histories
that are precision and time independent?.

1 The original version of TRACK found in the Perfect Club benchmarks exhibited several exe-
cution histories due to an inconsistency in the passing of constant parameters. The version that we
used in this paper does not have this problem.

2.5. Execution Prediction

The execution predictor is a program that computes the expected execution time of pro-
gram A on machine M from its corresponding program and machine characterizations. In
addition, it can produce detailed information about the execution time of sets of basic blocks
or how individual abstract operations contribute to the total time.

PROGRAM STATI STI CS FOR THE TRFD BENCHVARK ON THE | BM RS/ 6000 530

Li nes processed -> from1l to 485 [485]
mem operation tinmes-executed fraction execution-tine fraction
[arsl] add (002) exec: 7 (0.0000) tine: 0. 000001 (0.0000)
[sisl] store (015) exec: 6583752 (0.0043) tinme: 0. 000000 (0.0000)
[aisl] add (016) exec: 9497124 (0.0062) tinmne: 1. 292559 (0.0036)
[msl] mlt (017) exec: 196 (0.0000) tinme: 0. 000031 (0.0000)
[disl] divide (018) exec: 210 (0.0000) tine: 0. 000198 (0.0000)
[tisl] trans (021) exec: 101949 (0.0001) tine: 0.012071 (0.0000)
[srdl] store (022) exec: 216205010 (0. 1416) tine: 2.832286 (0.0079)
[ardl] add (023) exec: 215396153 (0.1411) tine: 23. 090467 (0.0642)
[mrdl] rmult (024) exec: 214742010 (0. 1406) tine: 22.504963 (0.0626)
[drdl] divide (025) exec: 735371 (0.0005) tinme: 0. 563588 (0.0016)
[erdl] exp-i (026) exec: 28 (0.0000) tine: 0. 000002 (0.0000)
[trdl] trans (028) exec: 18545814 (0.0121) tinme: 1. 743307 (0.0048)
[sisg] store (043) exec: 175 (0.0000) tinme: 0. 000000 (0.0000)
[aisg] add (044) exec: 730303 (0.0005) tinme: 0.110495 (0.0003)
[msg] mult (045) exec: 35 (0.0000) tine: 0. 000005 (0.0000)
[tisg] trans (049) exec: 9 (0.0000) tine: 0. 000003 (0. 0000)
[andl] and-or (057) exec: 1 (0.0000) time: 0. 000000 (0.0000)
[cisl] i-sin (060) exec: 1514464 (0.0010) tine: 0. 426170 (0.0012)
[crdl] r-dou (061) exec: 6723500 (0.0044) tinme: 2.989268 (0.0083)
[crdg] r-dou (066) exec: 2 (0.0000) tine: 0. 000001 (0.0000)
[proc] proc (067) exec: 5289 (0.0000) tinmne: 0. 001074 (0. 0000)
[argl] arguns (068) exec: 5394 (0.0000) tine: 0. 001101 (0.0000)

[arrl] in:1-s (071) exec: 166300304 (0.1089) tinme: 33. 060501 (0.0919)
[arr2] in:2-s (072) exec: 499858800 (0.3274) time: 204.792156 (0.5696)
[loin] do-ini (076) exec: 7474649 (0.0049) tine: 1. 456062 (0.0040)
[l oov] do-lop (077) exec: 162509732 (0.1064) time: 64.678873 (0.1799)
[loix] do-ini (078) exec: 1 (0.0000) tine: 0. 000002 (0.0000)
[l oox] do-lop (079) exec: 7 (0.0000) tine: 0. 000004 (0.0000)

Predi cted execution time = 359.555187 secs

Figure 1: Execution time estimate for the TRFD benchmark program run on an IBM RS/6000 530.

Figure 1 shows a sample of the output produced by the execution predictor. Each line
gives the number of times that a particular AbOp is executed, and the fraction of the total
that it represents. Next to it is the expected execution time contributed by the AbOp and also
the fraction of the total. The last line reports the expected execution time for the whole pro-
gram.

The statistics from the execution predictor provide information about what factors con-
tribute to the execution time, either at the level of the abstract operations or individual basic
blocks. For example, figure 1 shows that 57% of the time is spent computing the address of
a two-dimensional array element (ar r 2). This operation, however, represents only 33% of
al operations in the program (column six). By comparing the execution predictor outputs of
different machines for the same program, we can see if there is some kind of imbalance in

any of the machines that makes its overall execution time larger than expected [Saav90].

2.6. Related Work

Several papers have proposed different approaches to execution time prediction, with
significant differences in their degrees of accuracy and applicability. These attempts have
ranged from using simple Markov Chain models [Rama65, Beiz70] to more complex
approaches that involve solving a set of recursive performance equations [Hick88]. Here we
mention three proposals that are somewhat related to our concept of an abstract machine
model and the use of static and dynamic program statistics.

One way to compare machinesisto do an analysis similar to ours, but at the level of the
machine instruction set [Peut77]. This approach only permits comparisons between
machines which implement the same instruction set.

In the context of the PTRAN project [Alle87], execution time prediction has been pro-
posed as a technique to help in the automatic partitioning of parallel programsinto tasks. In
[Sark89], execution profiles are obtained indirectly by collecting statistics on all the loops of
a possible unstructured program, and then combining that with analysis of the control depen-
dence graph.

In [Bala9l] a prototype of a static performance estimator which could be used by a
parallel compiler to guide data partitioning decisions is presented. These performance esti-
mates are computed from machine measurements obtained using a set of routines called the
training set. Thetraining set is similar to our machine characterizer. In addition to the basic
CPU measurements, the training set also contains tests to measure the performance of com-
munication primitives in aloosely synchronous distributed memory machine. The compiler
then makes a static analysis of the program and combines this information with data pro-
duced by the training set. A prototype of the performance estimator has been implemented
in the ParaScope interactive parallel programming environment [Bala89]. In contrast to our
execution time predictions, the compiler does not incorporate dynamic program information;
the user must supply the lower and upper bounds of symbolic variables used for do loops,
and branching probabilities for if-then statements (or use the default probabilities provided
by the compiler.)

3. TheBenchmark Programs

For this study, we have assembled and analyzed a large number of scientific programs,
al written in Fortran, representing different application domains. These programs can be
classified in the following three groups: SPEC benchmarks, Perfect Club benchmarks, and
small or generic benchmarks. Table 1 gives a short description of each program. In the list
for the Perfect benchmarks we have omitted the program SPICE, because it isincluded in the
SPEC benchmarks as SPICE2G6. For each benchmark except SPICE2G6, we use only one
input data set. In the case of SPICE2G6, the Perfect Club and SPEC versions use different
data sets and we have characterized both executions and also include other relevant exam-
ples.

SPEC Benchmarks

DODUC double A Monte-Carlo simulation for a nuclear reactor’s component [Dodu89]
FPPPP 8 bytes A computation of atwo electron integral derivate
TOMCATV 8 bytes Mesh generation with Thompson solver
MATRIX300 8 bytes Matrix operations using LINPACK routines
NASA7 double A collection of seven kernels typical of NASA Ames applications.
SPICE2G6 double Analog circuit simulation an analysis program

BENCHMARK double MOS amplifier, Schmitt circuit, tunnel diode, etc

BIPOLE double Schottky TTL edge-triggered register

DIGSR double CMOS digital shift register

GREYCODE double Grey code counter

MOSAMP2 double MOS amplifier (transient phase)

PERFECT double PLA circuit

TORONTO double Differential comparator

Perfect Club Benchmarks

ADM single Pseudospectral air pollution simulation

ARC2D double Two-dimensional fluid solver of Euler equations

FLO52 single Transonic inviscid flow past an airfail

OCEAN single Two dimension ocean simulation

SPEC77 single Weather simulation

BDNA double Molecular dynamic package for the simulation of nucleic acids
MDG double Molecular dynamics for the simulation of liquid water
QCD single Quantum chromodynamics

TRFD double A kernal simulating a two-€lectron integral transformation
DYFESM single Structural dynamics benchmark (finite el ement)

MG3D single Depth migration code

TRACK double Missile tracking

Various Applications and Synthetic Benchmarks

ALAMOS single A set of loops which measure the execution rates of basic vector operations
BASKETT single A backtrack algorithm to solve the Conway-Baskett puzzle [Beel 84]
ERATHOSTENES single Uses asieve algorithm to obtain all the primes less than 60000

LINPACK single Standard benchmark which solves a systems of linear equations [Dong88]
LIVERMORE 8 bytes The twenty four Livermore loops [McMa36]

MANDELBROT single Computes the mapping Z, — Z?2_; + C ona200x100 grid

SHELL single A sort of ten thousand numbers using the Shell algorithm

SMITH 2, 4,8bytes | Seventy-seven loops which measure different aspects of machine performance
WHETSTONE single A synthetic benchmark based on Algol 60 statistics [Curn76]

Table 1: Description of the SPEC, Perfect Club, and small benchmarks. For program SPICE2G6 we include
seven different models. The second column indicates whether the floating point declarations use abso-
lute or relative precision. For those programs that use absolute declarations, we include the number of
bytes used.

3.1. Floating-Point Precision

In Fortran, the precision of a floating point variable can be specified either absolutely
(by the number of bytes used, e.g. rea*4), or relatively, by using the words "single" and
"double." The interpretation of the latter terms is compiler and machine dependent, Most of
the benchmarks we consider (see table 1) use relative declarations; this means that the meas-
urements taken on the Cray machines (see table 2) are not directly comparable with those
taken on the other machines. We chose not to modify any of the source code to avoid this
problem.

3.2. The SPEC Benchmark Suite

The Systems Performance Evaluation Cooperative (SPEC) was formed in 1989 by
several machine manufacturers to make available believable industry standard benchmark
results. The main efforts of SPEC have been in the following areas. 1) selecting a set of non
trivial applications to be used as benchmarks; 2) formulating the rules for the execution of
the benchmarks; and 3) making public performance results obtained using the SPEC suite.

The 1989 SPEC suite consists of six Fortran and four C programs taken from the scien-
tific and systems domains [SPEC89, SPEC90]. (There is asecond set of SPEC benchmarks,
available in 1992, which we do not consider.) For each benchmark, the SPECratio is the
ratio between the execution time on the machine being measured to that on a VAX-11/780.
The SPECmark is the overall performance measure, and is defined as the geometric mean of
all SPECratios. In this study, when we mention the SPEC benchmarks we refer only to the
Fortran programs in the suite, plus six additional input models for SPICE2G6. We now give
abrief explanation of what these programs do:

DODUC is a Monte Carlo simulation of the time evolution of a thermohydraulical modelization ("hydrocode")

for a nuclear reactor’s component. It has very little vectorizable code, but has an abundance of short branches
and loops.

FPPPP is a quantum chemistry benchmark which measures performance on one style of computation (two
electron integral derivative) which occursin the Gaussian series of programs.

TOMCATV isavery smal (lessthan 140 lines) highly vectorizable mesh generation program. It is a double pre-
cision floating-point benchmark.

MATRIX300 is a code that performs various matrix multiplications, including transposes using Linpack routines
SGEMV, SGEMM, and SAXPY, on matrices of order 300. More than 99 percent of the executionisin asingle
basic block inside SAXPY .

NASAY is a collection of seven kernels representing the kind of algorithms used in fluid flow problems at
NASA Ames Research Center. All the kernels are highly vectorizable.

SPICE2G6 is a general-purpose circuit simulation program for nonlinear DC, nonlinear transient, and linear AC
analysis. This program is a very popular CAD tool widely used in industry. We use seven models on this pro-
grams. BENCHMARK, BIPOLE, DIGSR, GREYCODE, MOSAMP2, PERFECT, and TORONTO. GREYCODE
and PERFECT are the examples included in the SPEC and Perfect Club benchmarks.

3.3. ThePerfect Club Suite

The Perfect Club Benchmark Suite is a set of thirteen scientific programs, intended to
represent supercomputer scientific workloads [Cybe90]. Performance in the Perfect Club
approach is defined as the harmonic mean of the MFLOPS (Millions of FLoating-point
Operations per Second) rate for each program on the given machine. The number of FLOPS
in a program is determined by the number of floating-point instructions executed on the
CRAY X-MP, using the CRAY X-MP performance monitor.

The Perfect programs can be classified into four different groups depending on the type
of the problem solved: fluid flow, chemical & physical, engineering design, and signal pro-
cessing.

Programsin the fluid flow group are: ADM, ARC2D, FLO52, OCEAN, and SPEC77.
ADM simulates pollutant concentration and deposition patterns in lakeshore environments by solving the com-
plete system of hydrodynamic equations.

ARC2D is an implicit finite-difference code for analyzing two-dimensional fluid flow problems by solving the
Euler equations.

FLO52 performs an analysis of atransonic inviscid flow past an airfoil by solving the unsteady Euler equations
in atwo-dimensional domain. A multigrid strategy is used and the code vectorizes well.

OCEAN is atwo-dimensional ocean simulation.

SPECT7 provides a globa spectral model to ssimulate atmospheric flow. Weather simulation codes normally
consists of four modules: preprocessing, computing normal mode coefficients, forecasting, and postprocessing.
SPECT77 only includes the forecasting part.

Programs in the chemical and physical group are: BDNA, MDG, QCD, and TRFD.

BDNA is amolecular dynamics package for the simulations of the hydration structure and dynamics of nucleic
acids. Several algorithms are used in solving the tranglational and rotational eguations of motion. The input for
this benchmark is a ssimulation of the hydration structure of 20 potassium counter-ions and 1500 water
moleculesin B-DNA.

MDG is another molecular dynamic simulation of 343 water molecules. Intra and intermolecular interactions
are considered. The Newtonian equations of motion are solved using Gera's sixth-order predictor-corrector
method.

QCD was origina developed at Caltech for the MARK | Hypercube and represents a gauge theory simulation
of the strong interactions which binds quarks and gluons into hadrons which, in turn, make up the constituents
of nuclear matter.

TRFD represents a kernel which simulates the computational aspects of two electron integral transformation.
The integral transformation are formulated as a series of matrix multiplications, so the program vectorizes well.
Given the size of the matrices, these are not kept completely in main memory.

The engineering design programs are. DYFESM and SPICE (described with the SPEC
benchmarks).

DYFESM is afinite element structural dynamics code.
Finally, the signal processing programs are: MG3D and TRACK.

MD3G is a seismic migration code used to investigate the geological structure of the Earth. Signals of different
frequencies measured at the Earth’'s surface are extrapolated backwards in time to get a three-dimensional
image of the structure below the surface.

TRACK isused to determine the course of a set of an unknown number of targets, such as rocket boosters, from
observations of the targets taken by sensors at regular time intervals. Several algorithms are used to estimate
the position, velocity, and acceleration components.

3.4. Small Programs and Synthetic Benchmarks

Our last group of programs consists of small applications and some popular synthetic
benchmarks. The small applications are: BASKETT, ERATHOSTENES, MANDELBROT,
and SHELL. The synthetic benchmarks are: ALAMOS, LINPACK, LIVERMORE, SMITH,
and WHETSTONE. A description of these programs can be found in [Saav88].

4. Predicting Execution Times

We have used the execution predictor to obtain estimates for the programs in table 1,
and for the machines shown in table 2. These results are presented in figure 2. In addition,
in tables 33 through 35 in Appendix D we report the actual execution time, the predicted
execution, and the error ((pred —real)/real) in percent. The minus (plus) sign in the error
corresponds to a prediction which is smaller (greater) than the real time. We aso show the
arithmetic mean and root mean sgquare errors across all machines and programs. From the
results in Appendix D we see that the average error for al programs is less than 2% with a
root mean square of less than 20%.

A subset of programs did not execute correctly on all machines at the time of this
research; some of these problems may have been corrected since that time. Some of the

10

Table 2: Characteristics of the machines
Machine Name/L ocation Operating Compiler Memory | Integer Real
System version single | single | double
CRAY Y-MP/8128 | reynolds.nas.nasa.gov UNICOS5.0.13 CFT773.1.26 128 Mw 46 64 128
CRAY-2 navier.nas.nasa.com UNICOS6.1 CFT 5.0.35 256 Mw 46 64 128
CRAY X-MP/48 NASA Ames COS1.16 CFT 114 8 Mw 46 64 128
NEX SX-2 harc.edu VM/CMS FORT77SX 32 Mw 64 64 128
Convex C-1 convex.riacs.edu UNIX C-1v6 FCv2.2 100 MB 32 32 64
1BM 3090/200 cmsa.berkeley.edu VM/CMSr.4 FORTRAN v2.3 32MB 32 32 64
IBM RS/6000 530 coyote.berkeley.edu AIX V.3 XL Fortranv1.1 16 MB 32 32 64
IBM RT-PC/125 loki.berkeley.edu ACIS4.3 F77 vl 4MB 32 32 64
MIPS M/2000 mammoth.berkeley.edu | RISC/os 4.50B1 F77v2.0 128 MB 32 32 64
MIPS M/1000 cassatt.berkeley.edu UMIPS-BSD 2.1 Fr7v121 16 MB 32 32 64
Decstation 3100 ylem.berkeley.edu Ultrix 2.1 F77v2.1 16 MB 32 32 64
Sparcstation | genesis.berkeley.edu SunOS R4.1 F77v1.3 8MB 32 32 64
Sun 3/50 (68881) venus.berkeley.edu UNIX 4.2r.3.2 F77 vl 4MB 32 32 64
Sun 3/50 baal .berkeley.edu UNIX 4.2r.3.2 F77 vl 4MB 32 32 64
VAX 8600 vangogh.berkeley.edu UNIX 4.3BSD F77v1l1 28 MB 32 32 64
VAX 3200 atlas.berkeley.edu Ultrix 2.3 Fr7vil 8 MB 32 32 64
VAX-11/785 pioneer.arc.nasa.gov Ultrix 3.0 F77vl1 16 MB 32 32 64
VAX-11/780 wilbur.arc.nasa.gov UNIX 43 BSD F77v2 4MB 32 32 64
Motorola M88K rumble.berkeley.edu UNIX R32.V1.1 F77 v2.0b3 32MB 32 32 64
Amdahl 5840 prandtl.nas.nasa.gov UTsSv F77v2.0 32MB 32 32 64

Table 2: Characteristics of the machines. The size of the data type implementations are in number of bits.

reasons for this were internal compiler errors, run time errors, or invalid results. Livermore
Loops is an example of a program which executed in all machines except in the IBM
RS/6000 530 where it gave arun time error. A careful analysis of the program reveals that
the compiler is generating incorrect code. For three programs in the Perfect suite, the prob-
lems were mainly shortcomings in the programs. For example, TRACK gave invalid results
in most of the workstations even after fixing a bug involving passing of a parameter; MG3D
needed 95MB of disk space for a temporary file that few of the workstations had; SPEC77
gave an internal compiler error on machines using MIPS Co. processors, and on the
M otorola 88000 the program never terminated.

Our results show not only accurate predictions in general but also reproduce apparent
‘anomalies’, such as the fact that the CRAY Y-MP is 35% faster than the IBM RS/6000 for
QCD but is slower for MDG. Note that because of the relative declarations used for preci-
sion, the Cray is actually computing results at twice the precision of the RS/6000. On
CRAYSs, the performance of double precision floating-point arithmetic is about ten times
slower than single precision, because the former are emulated in software. Conversely, some
workstations do all arithmetic in double (64-bit) precision. Therefore, the observed differ-
ence in relative performance between QCD and MDG can be easily explained by looking at
their respective dynamic statistics. QCD executes in single precision, while MDG is a dou-
ble precision benchmark.

In table 3 we summarize the accuracy of our run time predictions. The results show
that 51% of all predictions fall within the 10% of the real execution times, and ailmost 79%
are within 20%. Only 15 out of 244 predictions (6.15%) have an error of more than 30%.
The results represent 244 program-machine combinations encompassing 18 machines and 28
programs. These results are very good if we consider that the characterization of machines
and programs is done using a high level model.

CRAY Y-MP/8128 CRAY X-MP/48 IBM 3090/200
10000 - 100 - 100 ——
S SMI 2
(se0) MDG+ (sec) MeTA (se0) P
X X X AFLIN
pe BDN+ pe LI\,//#» pe
¥ 610001 ro 109 +IN tc 10
eu . +TRF eu eu
dt OCEf ope dt at
jii ii i
e TRAKFLO n ’ o
tn Pl tn tn .
1001 DYF 1 MAN+ 1 P
e QCDF e v e 4
dt ADM dt BASgHE dt e
i . i i +BAS
m m WHES m o [A
e e | +Era M
104 0.1 0.1 =ERA
10 100 1000 10000 0.1 1 10 100 0.1 1 0 1
real executiontime real executiontime real executiontime
MIPS M/2000 Motorola M 88k IBM RS/6000 530
10000 10000 - 10000
(=) AL (s wocs | (=0 e
MBEHARC ARG MDG :+NAS
10001 MATOCE €10004 OCE + 10001 SRGHENA
X ADNR#-BDN X MAFTjg:rFL,\AO X FLO+"
pe RiEEM | pe Y ERT | pe ol T
rc DD rc QCD_".. DOD rc QCPE AR
eu 1001 QDS eu 1001 ALAT SMI eu 1009 AR *DOD
‘ij} LIVE ?'I‘ LIV ‘I’I‘
€O 1p4 FLIN co 45 LIN¥ co 40l ALIN
th 10) th 10 th 10
e e e
dt £ dt MANZ dt
i o] MANERQE P14 ZBAS i 14 $EFman
g 7FSHE -
m +WHE m WHE+ m SWHE
e & e X e A
ERA ~+ERA .~ ERA
0.14< 0.14< 0.14
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 = 10000
real executiontime real executiontime real executiontime
Decstation 5400 Decstation 3100 Sparcstation |
10000 - 10000 — 10000 -
NAS+(
(se0) P+ (sec) NAS+ .~ (se0) 'SPl
: +Nas | ¢ MDEW fare| S10004 TOW*%MAT
pe - pe +OCE pe pop+ FPP
rc rc rc SMIJj‘ALA
eu eu eu 1001 o
dt - dt FLOY dt v
i 1 10001 AMAT i i 10001 BDN*(’%’,\:"AT i LINF
co co ADM AT co 104
- 4 S
L PP rom e DYF-rep o
e - e - e MAN+
dt DOD# dt 7 dt +BAS
i i CD+." i 14 SHE}
m ’ m Q . m FWHE
e) e) DoD e FERA
1004 1004+ 0.1
100 10000 100 1000 10000 0.1 1 10 100 1000 10000
real executiontime real executiontime real executiontime
Sun 3/50 (68881) Sun 3/50 VAX-11/785
100000 — 10000 waT] 10000 -
: 2 oo M o e
M < 10007 LI SMI 10000 FI'EO%/ N
pe | pe pe g
o éi%%ﬁ?’\‘ " FMAN S Q% oD
eu g eu 1004 eu 10004
dt AL dt WHEF dt RAZSMI
e Qe i i FLiv
co co 4 co 4 ‘
tn tn 10 +BAS tn 100 Lll/\l,,Jr
e 10007 TRA+ ! SHEH ¢
dt . dt dt AN
1 [19 #ERA I 109 R
m m - m S?—lAEgr#WHE
e e B e
, A+ERA
100 0.1 1
100 1000 0.1 1 10 100 1000 10000 1 10 100 1000 10000 100000

10000 101
real executiontime

real executiontime

real executiontime

Figure 2: Comparison between real and predicted execution times. The predictions were computed using
the program dynamic distributions and the machine characterizations. The vertical distance to the
diagonal represents the predicted error.

12

Table 3: Error distribution for execution time predictions
<5% <10% <15% <20% <30% > 30 %
68(27.9) | 124(55.5) | 171(70.1) | 192(78.7) | 229(93.9) || 15(6.15)

Table 3: Error distribution for the predicted execution times. For each error interval, we indicate the number
of programs, from a tota of 244, having errors that fal inside the interval (percentages inside
parenthesis). The error is computed as the relative distance to the real execution time.

The maximum discrepancy in the predictions occurs for MATRIX300, which has an
average error of —24.51% and a root mean square error of 26.36%. Our predictions for this
program consistently underestimate the execution time on all machines because for this pro-
gram the number of cache and TLB misses is significant; the model used for this paper does
not consider this factor. In [Saav92a,c] we extend our model to include the effects of local-
ity, and show that for programs with high miss ratios, run time predictions improve signifi-
cantly. Because most of the benchmarks in the SPEC and Perfect suite tend to have low
cache and TLB miss ratios [GeeJ91, Geel93], our other prediction errors do not have the
same problem as for MATRIX300.

4.1. Single Number Performance

Although it may be misleading, it is frequently necessary or desirable to describe the
performance of a given machine by a single number. In table 4 we present both the actual
and predicted geometric means of the normalized execution times, and the percentage of
error between them. We can clearly see from the results that our estimates are very accurate;
in al cases the difference is less than 8%. In those cases for which they are available, we
also show the SPECmark numbers; note that our results are for unoptimized code and the
SPEC figures are for the best optimized results.

Cray X-MP/48 | 1BM 3090/200 | Amdahl 5840 | Convex C-1 IBM RS/6000 530 | Sparcstation| | Motorola 88k
SPECmark N.A. N.A. N.A. N.A. 28.90 11.80 15.80
actual mean 26.25 33.79 6.47 7.36 16.29 1113 14.24
prediction 26.07 32.27 6.71 6.99 15.69 10.58 15.34
difference +0.69% -4.50% +3.71% -5.03% -3.68% -4.94 +7.72%

MIPS M/2000 Dec 3100 VAX 8600 VAX-11785 VAX-11/780 Sun 3/50 Average
SPECmark 17.60 11.30 N.A. N.A. 1.00 N.A. N.A.
actual mean 13.88 9.01 5.87 201 1.00 0.69 12.25
prediction 13.70 8.43 5.63 212 1.00 0.72 12.02
difference -1.30% -6.44 -4.09% +5.47% N.A. +4.35% -1.88%

Table 4: Real and predicted geometric means of normalized benchmark results. Execution times are normal-
ized with respect to the VAX-11/780. For some machines we aso show their published SPEC ratios.
The reason why some of the SPECmark numbers are higher than either the real or predicted geometric
means is because in contrast to our measurements the SPEC results are for optimized codes.

5. Program Characterization

There are several reasons why it is important to know in what way a given benchmark
‘uses’ a machine; i.e. which abstract operations the benchmark performs most frequently.
That information alows us to understand the extent to which the benchmark may be

13

considered representative, it shows how the program may be tuned, and indicates the good-
ness of the fit between the program and the machine. With our methodology, this informa-
tion is provided by the dynamic statistics of the program.

5.1. Normalized Dynamic Distributions

The complete normalized dynamic statistics for all benchmarks, including the seven
data sets for SPICE2G6, are presented in tables 16-25 in Appendix B. For each program? we
give the fraction, with respect to the total, that each abstract operation is executed. Those
AbOps that are executed less frequently than .01% are indicated by the entry < 0.0001. We
also identify the five most executed operations of the program with a number in a smaller
point size on the left of the corresponding entry.

The detailed counts of AbOps are too voluminous to provide an easy grasp of the
results, so in figures 3-8 and 10-11, we summarize the results; the numbers on which those
graphs are based are given in tables 26-32 of Appendix C.

5.2. Basic Block and Statement Statistics

Figure 3 shows the distribution of statements, classified into assignments, procedure
calls, IF statements, branches, and DO loop iterations; also see tables 26-28 of Appendix C.
On this and similar figures we cluster the benchmarks according to the similarity of their dis-
tributions. The cluster to which each benchmark belongs is indicated by a roman numeral at
the top of the bar.

The results show that there are several programs in the Perfect suite whose distributions
differ significantly from those of other benchmarks in the suite. In particular, programs
QCD, MDG, and BDNA execute an unusually large fraction of procedure calls. A similar
observation can be made in the case of IF statements for programs QCD, MDG, and TRACK.
TRACK executes an unusually large number of branches.

The SPEC and Perfect suites have similar distributions. SPICE2G6 using model
GREYCODE and DODUC are two programs which execute a large fraction of |F statements
and branches. In GREYCODE, 35% of al its statements are branches, and DODUC has a
large number of IF statements. The distribution of statements also provides additional data.
The distributions for programs FPPPP and BDNA are similar in the sense that both show a
large fraction of assignments and a small fraction of DO loops. Consistent with this is the
observation that the most important basic block in FPPPP contains more than 500 assign-
ments.

In table 5 we give the average distributions of statements for the SPEC, Perfect Club,
and small benchmarks. We also indicate the average over al programs. These numbers
correspond to the average dynamic distributions shown in figure 3. It is worth observing
from this data that although the Perfect Club methodology counts only FLOPS, not all of the
benchmarks are dominated by floating point operations.

2 |n the rest of the paper, the term *‘program’’ refers to both the code and a particular set of
data. Hence the same source code with a different input datais considered a different program.

100

75

50

DQY~+33MD®O =0T

25

100

75

DY ~+3MD®DO =0T

100

75

50

DY ~+~3DODO =0T

25

Figure 3: Distribution of statements Figure 4: Distribution of operations

|:| Assignments @ Procedure Calls @ IF Statements D Branches |:| DO Loops |:| Real (single) @ Real (double) @ Integer [:| Complex |:| Logica
1 v 1l | | 1l 1 1 1 1 1 1 1 1 1 1l \% \Y \%
Fr o= T] — I 100 [~ [
Boys QR 0| l
=) s == [— €
L — [- " 75
freexs I - c
| — e
- - t -
; .
- e x| %
doduc tomcatv nasa’ bipole greycode perfect average doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto fpppp matrix300 benchmark digsr mosamp2 toronto
spice2gp ——————————— f————— spice2gp ——
|:| Assignments Procedure Calls @ IF Statements D Branches |:| DO Loops |:| Real (single) % Real (double) @ Integer D Complex |:| Logical
| \ \ 1] v | | | | | | | Il 1] 1 IX 1 v 11 I 1] 1
Fr 1 1] = 1 1 1111 100 - M]] —
= ‘ b L L —
L w4 e
L] L r 75k
i —| = c
— 1 [e
oo Leed || n
a
g
- e 25 |-
- 0
ADM MDG BDNA DYFESM ARC2D TRFD average ADM MDG BDNA DYFESM ARC2D TRFD average
QCD TRACK OCEAN MG3D FLO52 SPEC77 QCD TRACK OCEAN MG3D FLO52 SPEC77
|:| Assignments % Procedure Calls F Statements D Branches |:| DO Loops |:| Real (single) 7 Real (double) Integer D Complex |:| Logical
| | | | vi Il Il v I I Vil i
- — o 1 s 100 [~ = B
E | | P
! 3 e
- b |oree] ' (I': 75
e
n
I = t 50
a
g
- € 25
! ! 0 !
Alamos Erathostenes Livermore Mandelbrot Smith average average Alamos Erathostenes Livermore Mandelbrot Smith average average
Baskett Linpack Loops Shell Whetstone (al programs) Baskett Linpack Loops Shell Whetstone (al programs)

Figures 3 and 4: Distribution of statement types, and distribution of arithmetic and logical operations according to data type and precision. Bar Loops
represents only the 24 computational kernels of benchmark Livermore, while ignoring the rest of the computation. Each bar is labeled with a roman
numeral identifying those benchmarks with similar distributions. We give average distributions for each suite and for al programs. Of the seven
models for spice2g6, only greycode and perfect are considered in the computation of the averages.

14

15

Distribution of Statements (aver age)
SPEC | Perfect | Various || All Progs

Assignments 66.4% | 645% | 53.9% 61.4 %
Procedure Cadlls 1.1% 2.7% 1.2% 1.8%

IF Statements 55% 29% 7.6% 53%
Branches 7.2% 28% 7.3% 5.0%
DO Loops 198% | 27.1% | 30.0% 26.4 %

Table5: Average dynamic distributions of statements for each of the suites and for all benchmarks.

5.3. Arithmetic and Logical Operations

Figures 4 and 5 depict the distribution of operations according to their type and what
they compute; see also tables 29-31 (Appendix C). Asit is clear from the graphs, for each
program, operations on one or two data types are dominant. In this respect the Perfect
benchmarks can be classified in the following way: ADM, DYFESM, FLO52, and SPEC77
execute mainly floating-point single precision operators, MDG, BDNA, ARC2D, and TRFD
floating-point double precision operators, QCD and MG3D floating-point single precision
and integer operators, TRACK floating-point double precision and integer; and OCEAN
integer and complex operators. These results further suggest the inadequacy of counting
FLOPS as a performance measure. A similar classification can be obtained for the SPEC
and the other benchmarks.

With respect to the distribution of arithmetic operators, figure 5 shows that the largest
fraction correspond to addition and subtraction, followed by multiplication. Other operations
like division, exponentiation and comparison are relatively infrequent.

Distribution of Operations (aver age)

SPEC | Perfect | Various || All Progs
Real (single) 20% | 395% | 51.4% 35.1%
Real (double) 78.0% | 40.1% 0.9% 35.5%
I nteger 179% | 182% | 44.8% 27.0%
Complex 17% 18% 0.1% 12%
Logical 04 % 0.4% 28% 12%

Distribution of Arithmetic Operators (average)

SPEC | Perfect | Various || All Progs
Add/Subtract 526% | 524% | 50.0% 51.7 %
Multiply 387% | 384% | 224% 33.1%
Quotient 19% 24% 13% 19%
Exponentiation 0.1% 0.6 % 0.2% 0.3%
Comparison 6.7 % 6.2% | 25.9% 129%

Table 6: Average dynamic distributions of arithmetic and logical operations for each of the suites and for al
benchmarks.

100

~
[62]

50

PQY 3OO =0T

N
[62]

100

~
(6]

50

DQW~+3SODODO =0T

N
[62]

100

~
a1

DQW~+SDODO—~0T
al
o

25

Figure 5: Distribution of operators

|:| Add/Subtract Multiply @ Quotient D Exponentiation |:| Comparison

v \ \ | \ 1 1 1 1 1 1 1

doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto

f————— spice2gp ——

|:| Add/Subtract @ Multiply @ Quotient D Exponentiation |:| Comparison
v v i i vi v v v Vi Vi

| — | o
ADM MDG BDNA DYFESM ARC2D TRFD average
QCD TRACK OCEAN MG3D FLO52 SPEC77

[] Addrsubtract Multiply

| 1] 1] \Y

uotient DExponentiaIion |:|Comparison

11 1 il

Alamos Erathostenes Livermore Mandelbrot Smith average average
Baskett Linpack Loops Shell Whetstone (all programs)

Figures 5 and 6: Distribution of operators and distribution of operands.

PQ®Y~+35M®O =M DY ~+3D®O =D T

PQ®~+35M®O =M

100

~
[62]

50

N
[62]

100

~
al

50

N
[62]

100

~
[62]

50

N
[63]

Figure 6: Distribution of operands

|:| Scalar @

Array 1-D

@ Array 2-D

D Array 3-D |:| Array 4-D

| 1l | vl Vil | | | | | | ! _
doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto
1 spice2g6 1
|:| Scalar @ Array 1-D @ Array 2-D D Array 3-D |:| Array 4-D

IX

\ \

2

ADM

MDG
QCD

BDNA

TRACK

OCEAN

DYFESM
MG3D

ARC2D TRFD

FLO52 SPEC77

average

|:| Scalar

\

Array 1-D

\

Bl aray3D [| Array4-D

%

Alamos

Erathostenes Livermore

Baskett

Linpack

Loops

Mandelbrot

Shell

Smith average
Whetstone

average
(al programs)

91

17

5.4. Referencesto Array and Scalar Variables

Run time is affected by the need to compute the addresses of array data; no extratimeis
needed to reference scalar data. The frequencies of references to scalar and N-dimensional
arrays are shown in figure 6. We can see that for most of the Perfect benchmarks, the pro-
portion of array references is larger than for scalar references. The Perfect benchmark with
the highest fraction of scalar operands is BDNA, and on the SPEC benchmarks, DODUC,
FPPPP, and all models of SPICE2G6 lean towards scalar processing. The distribution of the
number of dimensions shows that on most programs a large portion of the references are to
1-dimensional arrays with a smaller fraction in the case of two dimensions. However, pro-
grams ADM, ARC2D, and FLO52 contain a large number of references to arrays with 3
dimensions. NASAY isthe only program which contains 4-dimensional array references.

Most compilers compute array addresses by calculating, from the indices, the offset
relative to a base element; the base element (such as X(0,0,...0)) may not actually be a
member of the array. If X(i4,io -+ ,i,) ISan n-dimensional array reference, then its address
(ADDR) is

ADDR[X(i 1,is " *,iy)] = ADDR[X(0,0, - - -, 0)] + Offset [X (i 1,i5 - *,in)], (3)
where

Offset [X(i 1,02 "+ ,in)] =Bgem((- ((indy -1 +in-9)dy o +in_g) - -+)dy+iy), (4)

where {d,,d,, - --,d,} represents the set of dimensions and By, the number of bytes per
element. Most compilers use the above equation when optimization is disabled, and this
requires n—1 adds and n-1 multiplies. In scientific programs, array address computation can
be a significant fraction of the total execution time. For example, in benchmark MATRIX300
this can account, on some machines, for more than 60% of the unoptimized execution time.
When using optimization, most array address computations are strength-reduced to simple
additions; see [Saav92a] for how we handle that case.

The results in figure 6 show that the average number of dimensions in an array refer-
ence for the Perfect and SPEC benchmarks are 1.616 and 1.842 respectively. However, the
probability that an operand is an array reference is greater in the Perfect benchmarks (.5437
vS. .4568).

Distribution of Operands (aver age)

SPEC | Perfect | Various | All Progs
Scalar 540% | 45.7% | 525% 49.8 %
Array 1-D || 134% | 29.6% | 42.6% 30.3%
Array 2-D || 28.1% | 155% 4.8 % 14.7%
Array 3-D 33% 9.2% 0.1% 4.9 %
Array 4-D 12% 0.0% 0.0% 0.2%

Table 7: Average dynamic distributions of operands in arithmetic expressions for each of the suites and for all
benchmarks.

100 [~

~
al

PQY~+3DO =0T
a
o

N
al

100

~
al

PQY~+3D®O =0T
a
o

N
al

100

~
al

DQ®~+3D®O =0T
a
o

N
a1

Figure 7: Distribution of execution time (IBM RS/6000 530)

1 il

|:| Floating Point

[]Aray Access [| Integer
LoV v "

|:| Other Operations

doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto
spice2g6
|:| Floating Point @ Array Access D Integer |:| Other Operations

ADM
QCD

MDG

BDNA DYFESM
OCEAN MG3D

ARC2D TRFD

TRACK FLO52

average
SPECT77

Vv

Alamos
Baskett

Erathostenes Livermore

|:| Other Operations

Mandelbrot
Shell

Smith
Whetstone

Linpack Loops

average

average
(all programs)

PQO~3®O =~ T PQY~3I®O =0T

PQY DO =0T

8

~
gl

3]

25

8

-
ol

8

~
a1

Figure 8: Distribution of execution time (CRAY Y-MP/832)

|:| Floating Point m Array Access D Integer |:| Other Operations
v v e L Vi vie e Vit
= L HHHE HEAEOO
b | | == —
Q 1200001
doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto
1 spice2g6 1
|:| Floating Point @ Array Access D Integer |:| Other Operations
Ao e vl v 1w v
ADM MDG BDNA DYFESM ARC2D TRFD average
QCD TRACK OCEAN MG3D FLO52 SPECT77
|:| Floating Point |:| Other Operations

\ v

Alamos

Erathostenes Livermore
Baskett

Mandelbrot
Shell

Smith

Linpack Loops Whetstone

Figures 7 and 8: Distribution of execution time for the IBM RS/6000 530 and the CRAY Y-MP/832.

average average

(al programs)

8T

19

5.5. Execution Time Distribution

One of our most interesting measurements is the fraction of run time consumed by the
various types of operations; this figure is a function of the program and the machine. As
examples, in figures 7 and 8 we show the distribution of execution time for the IBM RS/6000
530 and CRAY Y-MP/832. We decompose the execution time in four classes: floating-point
arithmetic, array access computation, integer and logical arithmetic, and other operations.
All distributions were obtained using our abstract execution model, the dynamic statistics of
the programs, and the machine characterizations.

Our previous assertion that scientific programs do more than floating-point computation
is evident from figures 7 and 8. For example, programs QCD, OCEAN, and DYFESM spend
more than 60% of their time executing operations that are not floating-point arithmetic or
array address computation. Thisis even more evident for GREYCODE. Here less than 10%
of the total time on the RS/6000 530 is spent doing floating-point arithmetic. The numerical
values for each benchmark suite are given in table 8.

Distribution of Execution Time: IBM RS6000 530 (aver age)
SPEC Perfect | Various || All Progs

Floating Point 26.64% | 21.33% | 16.61% || 20.94%
Array Access 4750% | 51.40% | 31.19% || 43.80%
Integer 10.30 % 826% | 2051% || 12.80%

Other Operations || 15.55% | 19.01% | 31.69% | 22.47%

Distribution of Execution Time: CRAY Y-MP/832 (aver age)
SPEC Perfect | Various || All Progs

Floating Point 65.59% | 56.15% | 18.77% || 45.79%
Array Access 9.36% | 10.42% 9.10 % 9.75 %
Integer 5.98 % 545% | 24.26% || 11.84%

Other Operations || 19.07% | 27.98% | 47.87% | 32.63%

Table 8: Average dynamic distributions of execution time for each of the suites and for all benchmarks on the
IBM RS/6000 530 and the CRAY Y-MP/832.

From the figures, it is evident that the time distributions for the RS/6000-530 and the
CRAY Y-MP are very different even when all programs are executed in scalar mode on both
machines. On the average, the fraction of time that the CRAY Y-MP spends executing
floating-point operations is 46%, which is significantly more than the 21% on the RS/6000.
These results are very surprising, as the CRAY Y-MP has been designed for high perfor-
mance floating point. As noted above, however, most of the benchmarks are double preci-
sion, which on the CRAY is 128-bits, and double precision on the CRAY is about 10 times
slower than 64-bit single precision. This effect is seen clearly in programs. DODUC,
SPICE2G6, MDG, TRACK, BDNA, ARC2D, and TRFD. Using our program statistics, how-
ever, we can easily compute the performance when all programs execute using 64-bit quanti-
ties on all machines. In this case, we compute that the fraction of time represented by
floating-point operations on the CRAY Y-MP decreases to 29%, still higher than for the
RS/6000. Note that thisisan example of the power of our methodology- we are able to com-
pute the performance of something which doesn’t exist.

20

The results also show the large fraction of time spent by the IBM RS/6000 in array
address computation. One example is program FLO52, which makes extensive use of 3-
dimensional arrays. In contrast, the distributions of MANDELBROT and WHETSTONE
clearly show that these are a scalar codes completely dominated by floating-point computa-
tion. Remember, however, that our statistics correspond to unoptimized programs. With
optimization, the fraction of time spent computing array references is smaller, as optimizers
in most cases replace most array address computations with a simple add by precomputing
the offset between two consecutive element of the array. This corresponds to applying
strength reduction and backward code motion.

Motorola 88K
4678 29.38 7.83 16.02 39.17 3378 11.70 15.35

CRAY-2| | L |, | MIPsSM/2000
4816 20.74 7.74 23‘.36 28‘.07 4615 920 16,59

Amdahi 5880 |, | L | | | sparcstation I+
4224 3426 569 17.81 39.1/2 29.19 11.38 20.32

VAX 9000 | |

| | DECstation 3100

27.63 40.42 27.06 4747 9.06 16.40
HP-0000/720| | | I | - |VAX 3200
28.49 32.38 392) 3349 850 1861
IBM RY6000530| |, | | I | | | |vAX-11785
2094 43.80 12.80 22.47 42.5/2 2733 897 2119

Figure 9: Average time distributions. The distributions are computed over all programs. Of the seven models
for spice2g6, only greycode and perfect are considered in the computation of the averages.

In figure 9 we show the overall average time distribution for several of the machines.
In the case of the supercomputers (CRAY Y-MP, NEC SX-2, and CRAY -2), single and dou-
ble precision correspond to 64 and 128 bits. The results show that on the VAX 9000, HP-
9000/720, RS/6000 530, and machines based on the R3000/R3010 processors, the floating-
point contribution is less than 30%. The contribution of address array computation varies
from 8% on the CRAY Y-MP to 47% on the DECstation 3100, DECstation 5500, and MIPS
M/2000. The contribution of integer operations exhibit less variation, ranging from 6 to
13%.

PQ®W~35D®O =M PQ®~3SD®O =0T

P ®~3M®O = ®d® T

100

~
al

al
o

25

100

~
(6]

al
o

N
[62]

100

~
a1

a1
o

25

Figure 10: Distribution of basic blocks

| 1]

N\

[|sblocks []10blocks | |15blocks [|20 blocks
1 | 1]

|:|25 blocks |:|>
I I

25 blocks

3 [1410

337 43 67 258 6
doduc tomcatv nasar bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto

spice2g6
[]5blocks []10blocks []15blocks blocks

=

216

883 616 773

20
[\

|:| 25 blocks |:| > 25 blocks
I I

602

202 985

QCD

MDG

BDNA

TRACK OCEAN

DYFESM

MG3D

ARC2D

FLO52

TRFD average

SPECT77

[|sblocks ZZ)10blocks

5 blocks DZO blocks |:| 25 blocks

v

39

110

771

58 106 13 158 |374 9 2
Alamos Erathostenes Livermore Mandelbrot
Baskett Linpack Loops Shell

Smith
Whetst

average average
one

(all programs)

PQ®~+35D®O =m0 PQ®W~3SD®O =0T

PQe®~+35®d®O = ®d® T

100

~
al

a
o

25

100 |-

-
al

a
o

N
a1

100

75

Figure 11: Distribution of abstract parameters

[|2params [|5params | |10 params [|15 params [|20 params [|> 20 params
v

v

7
53 a7 24 26 51 45
doduc tomcatv nasa’ bipole greycode perfect average
fpppp matrix300 benchmark digsr mosamp2 toronto
1 spice2g6 1

[]2params [|5params [|10 params [_]15 params [|20 params [|> 20 params

57 a7 51 45 54 32 67 51
ADM MDG BDNA DYFESM ARC2D TRFD average
QCD TRACK OCEAN MG3D FLO52 SPEC77
|:| 2 params 5 params 10 params D 15 params |:| 20 params > 20 params

I 11 1 1] 1] 1 \%

29

Alamos Erathostenes Livermore Mandelbrot
Baskett Linpack Loops

Smith average
Whetstone

average

Shell (al programs)

Figures 10 and 11: Portion of all basic block executions accounted for by 5 most frequent, 10 most frequent, etc. Also portion of al AbOp (parm) executions
accounted for by 2 most frequent, 5 most frequent, etc.

Tc

22

Above, we noted that we could compute the running time for a machine that didn’t exist
- a CRAY which did double precision in 64 bits. This is a very simple example of an
extremely powerful application of our evaluation methodology. We can define an arbitrary
synthetic machine, i.e. a "what if" machine, by setting the AbOps to whatever values we
desire, and then determine the performance of that machine for a given workload. For
example, we could estimate the effect of very fast floating point, or slow loads and stores.

5.6. Dynamic Distribution of Basic Blocks

Figure 10 shows the fraction of basic block executions accounted for by the 5, 10, 15,
20, and 25 most frequently executed basic blocks. (A basic block is a segment of code exe-
cuted sequentially with only one entry and one exit point.) There is an implicit assumption
among benchmark users that a large program with a long execution time represents a more
difficult and ‘interesting’ benchmark. This argument has been used to criticize the use of
synthetic and kernel-based benchmarks and has been one of the motivations for using real
applications in the Perfect and SPEC suites. However, as the results of figure 10 show, many
of the programs in the Perfect and SPEC suites have very simple execution patterns, where
only a small number of basic blocks determine the total execution time. The Perfect bench-
mark results show that on programs BDNA and TRFD the 5 most important blocks account
for 95% of all operations, from a total of 8383 and 202 blocks respectively. Moreover, on
seven of the Perfect benchmarks, more than 50% of all operations are found in only 5 blocks.
The same observation can be made for the SPEC benchmarks. In fact, MATRIX300 has one
basic block containing a single statement that amounts for 99.9% of all operations executed.
On the average, five blocks account for 55.45% and 71.85% of the total time on the Perfect
and SPEC benchmarks.

Distribution of Basic Blocks (aver age)
SPEC | Perfect | Various | All Progs

1-5 blocks 721% | 55.0% | 76.8% 66.1 %
6-10 blocks 91% | 146% | 108% 121%
11-15 blocks 3.9% 8.3% 51% 6.3 %
16-20 blocks 27% 49% 29% 37%
21-25 blocks 19% 45% 1.8% 3.0%
> 25 blocks 103% | 12.7% 26% 8.8%

Table 9: Portion of basic block executions accounted for by 5 most frequent, 6-10'th most frequent, etc, for
each of the suites and for all benchmarks.

5.6.1. Quantifying Benchmark Instability Using Skewness

When a large fraction of the execution time of a benchmark is accounted for by a small
amount of code, the relative running time of that benchmark may vary widely between
machines depending on the execution time of the relevant AbOps on each machine; i.e. the
benchmark results may be ‘unstable.” We describe the extent to which the execution time is
concentrated among a small number of basic blocks or AbOps as the degree of skewness of
the benchmark. (Thisis not the same as the statistical coefficient of skewness, but the con-
cept is the same) We define our skewness metric for basic blocks as /X, where

X = > ip(i), where p(j) is the frequency of the j’th most frequently executed basic block.
i=1

23

program Skewness program Skewness

01 Matrix300 0.983 15 Nasa7 0.155
02 Mandelbrot 0.790 16 MDG 0.145
03 Linpack 0.637 17 Smith 0.136
04 BDNA 0.567 18 QCD 0.133
05 Tomcatv 0.535 19 Livermore 0.132
06 Baskett 0.466 20 MG3D 0.108
07 Erathostenes 0.452 21 Spice2g6 0.084
08 TRFD 0.405 22 FLO52 0.078
09 Shell 0.385 23 ARC2D 0.073
10 DYFESM 0.250 24 TRACK 0.073
11 Whetstone 0.229 25 SPEC77 0.065
12 Fpppp 0.201 26 ADM 0.060
13 OCEAN 0.171 27 Doduc 0.049
14 Alamos 0.162

Table 10: Skewness of ordered basic block distribution for the SPEC, Perfect and Small benchmarks. The
skewness is defined to be the inverse of the mean of the distribution.

Table 10 gives the amount of skewness of the basic blocks for all programs. The results
show that MATRIX300, MANDELBROT, and LINPACK are the ones with the largest skew-
Ness.

5.6.2. Optimization and MATRIX300

One of the reasons to detect unstable, or highly skewed, programs, is that optimization
efforts may easily be concentrated on the relevant code. Such focussed optimization efforts
may make a given program unsuitable for benchmarking purposes. Benchmark MATRIX300
is aclear example of this situation; not only is its amount of skewness very high, but recent
SPEC results on this program put in question its effectiveness as a benchmark. For example,
in [SPEC91a], the SPECratio of the CDC 4330 (a machine based on the MIPS 3000
microprocessor) on MATRIX300 was reported as 15.7 with an overall SPECmark of 18.5, but
in [SPEC91b] the SPECratio and SPECmark jumped to 63.9 and 22.4. A similar situation
exists for the new HP-9000 series 700. On the HP-9000/720, the SPECratio of MATRIX300
has been reported at 323.2, which is more than 4 times larger than the second largest
SPECratio [SPEC91b]! Furthermore, if the SPECratio for MATRIX300 is ignored in the
computation of the SPECmark, the overall performance of the machine decreases 21%, from
59.51t049.3.

The reason behind these dramatic performance improvements is that these machines use
a pre-processor to inline three levels of routines and in this way expose the matrix multiply
algorithm, which is the core of the computation in MATRIX300. The same pre-processor
then replaces the algorithm by a library function call which implements matrix multiply
using a blocking (tiling) algorithm. A blocking algorithm is one in which the algorithm is
performed on sub-blocks of the matrices which are smaller than the cache, thus significantly
reducing the number of cache and TLB misses. MATRIX300 uses matrices of size 300x300,
which are much larger than current cache sizes. Non-blocking matrix multiply algorithms
generate O(N®) misses, when the order of the matrices is larger than the data cache size,
while a blocking algorithm generates only O(N?) misses.

24

5.6.3. How Effective Are Benchmarks?

There are two aspects to consider when evaluating the effectiveness of a CPU bench-
mark. The first has to do with how well the program exercises the various functional units
and the pipeline, while the other refers to how the program behaves with respect to the
memory system. A program which executes many different sequences of instructions may
be a good test of the pipeline and functional units, but not necessarily of the memory system
[Koba83, Koba84]. The Livermore Loops is one example. It consists of 24 small kernels.
Each kernel is executed many times in order to obtain a meaningful observation. Since each
kernel does not touch more than 2000 floating-point numbers, all of its data sits comfortably
in most caches. Thus, after the first iteration the memory system is not tested. Furthermore,
the kernels consist of few instructions, so they even fit in very small instruction caches.

SPEC results for the IBM RS/6000 530 clearly show how performance is affected by
the demands of the benchmark on the memory system. For example, benchmark
MATRIX300 is dominated by a single statement that the IBM Fortran compiler can optimize,
by decomposing it into a single multiply-add instruction. The SPECratio of the IBM
RS/6000 530 on this program, however, islower than the overall SPECmark. In contrast, the
SPECratio on program TOMCATV is 2.6 times larger than the SPECmark, athough the prin-
cipal basic blocks are more complex than on MATRIX300. The main difference between the
main basic blocks of these two programs is the number of memory requests per floating-
point operation executed. On MATRIX300 on average there is one read for every floating-
point operation and there is very little re-use of registers; the machine is thus memory speed
limited for this benchmark. Studies on the SPEC benchmarks [Pnev90, Geel91] show that
most of these programs have low miss ratios for cache configurations which are normal on
existing workstations. The effect of the memory system on run times is considered further in
[Saav92b].

Distribution of Abstract Parameter s (aver age)
SPEC | Perfect | Various || All Progs

2 params 463% | 41.3% | 44.0% 43.3%
5 params 31.2% | 31.7% | 325% 31.9%
10 params 123% | 17.7% | 181 % 16.7 %
15 params 6.5% 57% 3.0% 5.0%
20 params 25% 23% 19% 20%
> 20 params 12% 13% 0.5% 1.0%

Table 11: Portion of AbOp executions accounted for by 2 most frequent, 5 most frequent, etc, for each of the
suites and for all benchmarks.

5.7. Distribution of AbOps

Figure 11 shows the cumulative distribution of abstract operations (AbOps) for the dif-
ferent benchmark suites. Each bar indicates at the bottom the number of different AbOps
operations executed by the benchmark. The results show that most programs execute only a
small number of different operations, with MATRIX300 as an extreme example. The aver-
ages for the three suites and for al programs are presented in table 11. We can also compute
the skewness of the ordered distribution of AbOps in the same way as we did with basic
blocks, i.e. as the inverse of the expected value of the distribution; the results are shown in

25

table 12. The programs with the largest values of skewness are MATRI X300, ALAMOS, and
ERATHOSTENES. The results also show that DODUC is the SPEC benchmark with the
lowest amount of skewness both in the distribution of basic blocks and AbOps.

program Skewness program Skewness

01 Matrix300 0.405 15 Smith 0.254
02 Alamos 0.400 16 BDNA 0.251
03 Erathostenes 0.367 17 Spice2gb 0.248
04 Shell 0.353 18 FLO52 0.243
05 Tomcatv 0.341 19 OCEAN 0.217
06 TRFD 0.325 20 SPEC77 0.215
07 Fpppp 0.315 21 Livermore 0.213
08 Linpack 0.309 22 ADM 0.210
09 DYFESM 0.296 23 QCD 0.200
10 ARC2D 0.286 24 TRACK 0.180
11 Mandelbrot 0.279 25 Nasa7 0.169
12 Baskett 0.263 26 Whetstone 0.155
13 MDG 0.256 27 Doduc 0.139
14 MG3D 0.255

Table 12: Skewness of ordered abstract operation distribution for the SPEC, Perfect and Small benchmarks.
The skewness is defined to be the inverse of the mean of the distribution.

5.7.1. Characterizing the Ordered Distribution of Abstract Operations

It has been argued that for an average program the distribution of the most executed
operations (blocks) is geometric [Knut71]. What this means is that the most executed opera-
tion of the program accounts for an a fraction of the total, the second for a of the residual,
that is, a-(1-a), and so on. Therefore, the cumulative distribution can be approximated by
f(n)=1-K (1-a)", where n represents the n-th most executed operations, and K and a are
constants. The n-th residual is given by (1-a)". Thus, the cumulative distribution at point
n isone minus the n-th residual.

In figure 12 we show the fitted and actual average distributions for each suite and for all
programs; as may be seen, the geometric distribution is a good fit. Figure 12 clearly shows
that, on the average, three operations account for 55-60% of all operations and five opera-
tions for almost 75%. Thus, most programs consist of a small number of different opera-
tions, each executed many times. These operations, however, are not the same in al bench-
marks.

5.8. The SPICE2G6 Benchmark

In this section, we discuss in more detail the differences between the seven data sets
used for the SPICE2G6 benchmark. SPICE2G6 is normally considered, for performance
purposes, to be a good example of alarge CPU-bound scalar double precision floating-point
benchmark, with a small fraction of complex arithmetic and negligible vectorization. Given
its large size (its code and data sizes on a VAX-11/785 running ULTRIX are 325 Kbytes and
8 Mbytes respectively), it might be expected to be a good test for the instruction and data
caches. The SPEC suite uses, asinput, atime consuming bipolar circuit model called GREY-
CODE, while the Perfect Club uses a PLA circuit called PERFECT. GREYCODE was

26

1.00 1 1.00 1
d d
i i
s s
t J t J
; 0.75 ; 0.75
i i
b b
u ’ u
t o504 / t 050
i /] 3 —— measured i
. | —— fitted .
0.25 1 SPEC 0.25 - §
‘ programs | programs
OOO i 1 1 1 000 i 1 1 1
0 5 10 15 20 0 5 10 15 20
number of parameters number of parameters
1.00 - e - 1.00 - ERESTEEESE
d d
'S a =.2545 'S a =.2201
t] K =.9938 t | / K =.8990
r 07 r2=.9937 P O ! r2=.9961
i _ i —
b Df =18 b Df =18
u u
0,50 1 0,50 1
i —— measured i —— measured
. J. — - fitted . / —— fitted
3 /
0.25 1 : Small 0.25 4
: programs all programs
0.00 ;] (]] 0.00 ;] (]]
0 5 10 15 20 0 5 10 15 20
number of parameters number of parameters

Figure 12: Fitted and actual cumulative distributions as a function of the n most important abstract operations
executed by each benchmark. Equation 1 — K (1-a)" is used to fit the actual distributions. In addition
to a and K, each graph indicates the values of the coefficient of correlation and the number of degrees
of freedom. All coefficients of correlation are significant at the 0.9995 level.

selected mainly because of its long execution time, but we shall see that its execution
behavior is not typical, nor does it measure what SPICE2G6 is believed to measure.

Table 26 (see Appendix C) gives the genera statistics for the seven data models of
SPICE2G6. The results show that the number of abstract operations executed by GREY-
CODE (2.005x10%) is amost two orders of magnitude larger than the maximum on any of
the other models (3.184x108). For GREYCODE, however, only 33% of all basic blocks are
executed. In contrast, the number of basic blocks touched by BENCHMARK is 52%.
Another abnormal feature of GREYCODE is that it has the lowest fraction of assignments
executed (60%), and of these only 19% are arithmetic expressions; the rest represent simple
memory-to-memory operations. In the other models, assignments amount, on the average, to
70% of al statements, with arithmetic expressions being more than 35% of the total.
Another distinctive feature of GREYCODE is the small fraction of procedure calls (2.8%)

27

and the very large number of branches (36%) that it executes.

More significant are the results in figure 4. The distribution of arithmetic and logical
operations shows that GREYCODE is mainly an integer benchmark; almost 87% of the
operations involve addition and comparison between integers. On the other models the per-
centage of floating-point operations is never less than 26% and it reaches 60% for
MOSAMP2.

The reason why GREYCODE executes so many integer operations and so few basic
blocks can be found in the following basic block.

140 LOCIJ = NODPLC (I RPT + LOCI J)
IF (NODPLC (1 ROWNO + LOCIJ) .EQ 1) GO TO 155
GO TO 140

This and two other similar integer basic blocks account for 50% of all operations. The data
structures used in SPICE2G6 were not designed to handle large circuits, so most of the exe-
cution time is spent traversing them. In contrast, in the case of BENCHMARK, DIGSR, and
PERFECT, the ten most executed blocks account for less than 35% of al operations and
most of these consist of floating-point operations. The three integer blocks on GREYCODE
represent more than 41% of the execution time on a VAX 3200 and 26% on a CRAY Y-
MP/8128. These statistics suggest that GREYCODE is not an adequate benchmark for test-
ing scalar double precision arithmetic. Much better input models for SPICE2G6 are BENCH-
MARK, DIGSR, or PERFECT.

6. Measuring Similarity Between Benchmarks

A good benchmark suite is representative of the ‘real’ workload, but there is little point
to filling a benchmark suite with several programs which provide smilar loads on the
machine. In this section we address the problem of measuring benchmark similarity by
presenting two different metrics for program similarity and comparing them. One is based
on the dynamic statistics that we presented earlier. The rationale behind this metric is that
we expect that programs which execute similar operations will tend to produce similar run-
time results. The other metric works from the other end; benchmarks which yield propor-
tional performance on avariety of machines should be considered to be similar.

Our results show that the two metrics are highly correlated; what is similar by one
measure is generally similar by the other. Note that the first metric is easier to compute (we
only have to measure each benchmark, rather than run it on each machine), and would thus
be preferred.

6.1. Program Similarity Metric Based on Dynamic Statistics

To simplify the benchmark characterization and clustering, we have grouped the 109
AbOps into 13 ‘reduced parameters’, each of which represents some aspect of machine
implementation; these parameters are listed in table 13. Note that the reduced parameters
presented here are not the same as those used in [Saav89]; the ones presented here better
represent the various aspects of machine architecture. As we would expect for a language
like Fortran, most of the parameters correspond to floating-point operations. Others are
integer arithmetic, logical arithmetic, procedure calls, memory bandwidth, and intrinsic func-
tions. Integer and floating-point division are assigned to a single parameter. AbOps that
change the flow of execution, branches and DO loop instructions, are also assigned to a

28

single parameter.

Reduced Parameters

1 memory bandwidth 8 division

2 integer addition 9 logical operations

3 integer multiplication 10 intrinsic functions

4 single precision addition 11 procedurecalls

5 single precision multiplication 12 address computation
6 double precision addition 13 branchesand iteration
7 double precision multiplication

Table 13: The thirteen reduced parameters used in the definition of program similarity. Each parameter
represents a subset of basic operations, and its value is obtained by adding all contributions to the
dynamic distribution. Integer and floating point division are merged in a single parameter.

The formula we use as metric for program similarity is the squared Euclidean distance,
where every dimension is weighted according to the average run time accounted for by that
parameter, averaged over the set of al programs. Let A=<A,---,A,> and
B=<B4, - ",B,> be two vectors containing the reduced statistics for programs A and B,
then the distance between the two programs (d (A, B)) is given by

d(A.B)= 5 W (A -B)? 5)

i=1
where W isthe value of parameter i averaged over all machines.

We computed the similarity distance between al program pairs; see table 36 of the
Appendix E for the 50 pairs with the largest and smallest differences. We included all pro-
grams, but only the GREYCODE and PERFECT input data sets for SPICE2G6. The average
distance between all programs is 1.1990 with a standard deviation of 0.8169. Figure 13
shows the clustering of programs according to their distances. Pairs of programs having dis-
tance less than 0.4500 are joined by a bidirectional arrow. The thickness of the arrow is
related to the magnitude of the distance. The most similar programs are TRFD and
MATRIX300 with a distance of only 0.0172. In the next five distances we find the pairwise
relations between programs DYFESM, LINPACK, and ALAMOS. Programs TRFD,
MATRIX300, DYFESM, and LINPACK have similarities that go beyond their dynamic distri-
butions. These four programs have the property that their most executed basic blocks are
syntactic variations of the same code (SAXPY), which consists in adding a vector to the pro-
duct between a constant and a vector, as shown in the following statement:

X(1,3) = X(1,3) +A* Y(KI).

Note that IBM RS/6000 has a special instruction to speed up the execution of these types of
statements. In that machine, a multiply-add instruction takes four arguments and performs a
multiply on two of them, adds that product to the third argument, and leaves the result in the
fourth argument. By eliminating the normalization and round operations between the multi-
ply and add, the execution time of this operation is significantly reduced compared to a mul-
tiply followed by an add [Olss90].

Three clusters are present in figure 13. One, with eight programs and containing LIN-
PACK as a member, includes those programs that are dominated by single precision

29

floating-point arithmetic. Another cluster, also having eight programs, contains those bench-
marks dominated by double precision floating-point arithmetic. There is a subset of pro-
grams in this cluster containing programs TRFD, MATRIX300, NASA7, ARC2D, and TOM-
CATV, which form a 5-node complete subgraph. All distances between pairs of elements are
smaller than 0.4500. The smallest cluster, with three elements, contains those programs with
significant integer and floating-point arithmetic. We also include in the diagram those pro-
grams whose smallest distance to any other program is larger than 0.4500. These are

represented as isolated nodes with the value of the smallest distance indicated below the
name.

LINPACK
A A ®
/ / \
MANDELBROT ’
1.0841 :
ERATHOSTENES
0.9291
WHETSTONE
05136

SHELL ¢—— SMITH

OCEAN
Vd

7
s
/
/

K
PERFECT <« GREYCODE

BASKETT
0.7917

LIVERMORE
0.4699 R

FPPPP
05322

DODUC ¢————>BDNA_

~

«—> <0150

«—» <0.2500

« — » <0.4500 MDG <~ — — - - + - — -~ — STOMCATV
e

~ | / —~
~ n 4 -7

¥
> TRACK &~

Figure 13: Principal clusters found in the Perfect, SPEC, and Small benchmarks. Distance is represented by
the thickness of the arrow. Programs whose smallest distance to any other program is greater than 0.45
show under their name the magnitude of their smallest distance.

30

6.1.1. Minimizing the Benchmark Set

The purpose of a suite of benchmarks is to represent the target workload. Within that
constraint, we would like to minimize the number of actual benchmarks. Our results thus far
show: (a) Most individual benchmarks are highly skewed with respect to their generation of
abstract operations, (b) but the clusters shown in figure 13 suggest that subsets of the suites
test essentially the same aspects of performance. Thus, an acceptable variety of benchmark
measurements could be obtained with only a subset of the programs analyzed earlier. A still
better approach would be to run only one benchmark, our machine characterizer. Note that
since the machine characterizer measures the run time for all AbOps, it is possible to accu-
rately estimate the performance of any characterized machine for any AbOp distribution,
without having to run any benchmarks. Such an AbOp distribution can be chosen as the
weighted sum of some set of existing benchmarks, as an estimate of some target or existing
workload or in any other manner.

6.2. The Amount of Skewnessin Programs and the Distribution of Errors

Earlier, as discussed in sections 85.6 and 85.7, we noted that many of the benchmarks
concentrate their execution on a small number of AbOps. We would expect that our predic-
tions of running time for benchmarks with highly skewed distributions of AbOp execution
would show greater errors than those with less skewed distributions. This follows directly
from the assumption that our errors in measuring AbOp times are random; there will be less
cancellation of errors when summing over a small number of large values than a larger
number of small values. (This can be explained more rigorously by considering the formula
for the variance of a sum of random variables.)

We tested the hypothesis that prediction errors for programs with a skewed distribution
of either basic blocks or abstract operations will tend to be larger than for those with less
skewed distributions. The scattergrams for both distributions are shown in figure 17 (Appen-
dix E). An examination of that figure shows that there is no correlation between prediction
error and the skewness of the frequency of basic block execution. Thereisasmall amount of
correlation between the skewness of the AbOp execution distribution and the prediction
error. This lack of correlation seems to be due to two factors: (@) those programs with the
most highly skewed distributions emphasize AbOps such as floating point, for which meas-
urement errors are small. (b) prediction errors are mostly due to other factors (e.g. cache
misses), rather than errors in the measurement of AbOp execution times.

6.3. Program Similarity and Benchmark Results

Our motivation in proposing a metric for program similarity in 86.1 was to identify
groups of programs having similar characteristics; such similar programs should show pro-
portional run times on a number of different machines. In this section, we examine this
hypothesis.

First, we introduce the concept of benchmark equivalence.

Definition: If t, \, is the execution time of program A on machine M;, then two programs
are benchmark equivalent if, for any pair of machines M; and M;, the following condition is
true

tam lB,m

(6)

tam M,

31

i.e. the execution times obtained using program A differ from the execution times using pro-
gram B, on all machines, by a multiplicative factor k

ta,m

=k for any machine M; . @)
g m,

It is unlikely that two different programs will exactly satisfy our definition of bench-
mark equivalence. Therefore, we define a weaker concept, that of execution time similarity,
to measure how far two programs are from full equivalence. Given two sets of benchmark
results, we define the execution time similarity of two benchmarks by computing the coeffi-
cient of variation of the variable zy g ; =ta v /ts, v . The coefficient of variation measures

how well the execution times of one program can be inferred from the execution times of the
other program.

FPPPP «------------==--------3» TOMCATV

WHETSTONE
OCEAN
ERATHOSTENES /
SHELL SMITH
/ 7 QCP
BASKETT S <
> DODUC
TRFD MATR|X300 « 5 MANDELBROT
ey
s / \

ALAMOS € P LINPACK

PERFECT «———> GREYCODE \ /

LIVERMORE

—>» <0068
«——> <0.075
<« — » <0100 SPEC77 MG3D TRACK

Figure 14: Principal clusters found in the Perfect, SPEC, and Small benchmarks using the run time similarity
metric. Distance is represented by the thickness of the arrow.

3 Programs that are benchmark equivalent will have zero as their coefficient of variation.

32

As we did in 86.1, we present in table 37 (Appendix E) the 50 most and least similar
programs, using here the coefficient of variation as metric computed from the execution
times (see figure 17, Appendix E). In figure 14 we show a clustering diagram similar to the
one presented in figure 13. The diagram shows three well-defined clusters. One contains
basically the integer programs. SHELL, ERATHOSTENES, BASKETT, and SMITH. Another
cluster is formed by MATRIX300, ALAMOS, LIVERMORE, and LINPACK. The largest
cluster is centered around programs TOMCATV, ADM, DODUC, FLO57, and NASA7, with
most of the other programs connected to these clusters in an unstructured way.

Now that we have defined two different metrics for benchmark similarity, one based on
program characteristics (see 86.1), and the other based on execution time results, we can
compare the two metrics to see if there exists a good correlation in the way they rank pairs of
programs. We measure the level of significance using the Spearman’s rank correlation coef-
ficient (ps), which is defined as

n
65 d;2
P =1-—5—, ®
n"—n
where d; is the difference of ranking of a particular pair on the two metrics. For our two
similarity metrics the coefficient p, indicates that there is a correlation at a level of signifi-
cance which is better than 0.00001.4

A scattergram of the two metrics is given in figure 15; each point. The horizontal axis
corresponds to the metric based on the dispersion of the execution time results while the
vertical axis correspond to the metric based on dynamic program statistics. Each "+" on the
graph represents a pair of benchmark programs. The results indicate that there is a signifi-
cant positive correlation between the two metrics at the level of 0.0001. Visualy, we can see
that the two metrics correlate reasonable well. What this means is that if two benchmarks
differ widely in the AbOps that they use most frequently, the chances are that they will give
inconsistent performance comparisons between pairs of machines (relative to other bench-
marks), and conversely. That is, if benchmarks A and B are quite different, benchmark A
may rate machine X faster than Y, and benchmark B may rate Y faster than X. This suggests
that our measure of program similarity is sufficiently valid that we can use it to eliminate
redundant benchmarks from alarge set.

6.4. Limitations Of Our Model

There are some limitations in our linear high-level model and in using software experi-
ments to characterize machine performance. Here we briefly mention the most important of
them. For amore in-depth discussion see [Saav88,89,92a,b,c].

The main sources of error in the results from our model can be grouped in two classes.
The first corresponds to elements of the machine architecture which have not been captured
by our model. The model described here does not account for cache or TLB misses; an
extension to our model is presented in [Saav92a,c] which adds this factor. We do not

4 In computing the rank correlation coefficient we use the same set of program pairs for both
metrics. The number of pairs for which there was enough benchmark results to compute the coef-
ficient of variation is only half the total number of pairs.

33

Scattergram of Program Similarity Metrics

5
D +
i
S +
4_
t P +
ar 4+ +
no
cg _| i -
er 3 + i
a
+ + +
b m 1 +
es i + + +
w Lo
e T e+
+ I e L R
n _ ++~’ ﬁ—% +
1 +jﬂf nis - 4+
AL AL
" #ﬁaﬁﬁ +
o
0 A
0.00 0.10 0.20 0.30

Coefficient of Variability

Figure 15: Scattergram of the two program similarity metrics. The horizontal axis corresponds to the metric
computed from benchmark execution times, while the one on the vertical axis is computed from
dynamic program statistics. The results exhibit a significant positive correlation.

successfully capture aspects of machine architecture which are manifested only by the per-
formance of certain sequences of AbOps, and not by a single AbOp in isolation - e.g. the
IBM RS6000 multiply-add instruction; we discuss this further below. We are not able to
account for hardware or software interlocks, non-linear interactions between consecutive
machine instructions [Clap86], the effectiveness of branch prediction [Lee84], and the effect
on timing of branch distance and direction. We have also not accounted for specialized
architectural features such as vector operations and vector registers.

Another source of errors corresponds to limitations in our measuring tools and factors
independent from the programs measured: resolution and intrusiveness of the clock, random
noise, and external events (interrupts, page faults, and multiprogramming) [Curr75].

It is also important to mention that the model and the results presented here reflect only
unoptimized code. As shown in [Saav92b], our model can be extended with surprising suc-
cess to the prediction of the running times of optimized codes.

It is worth making specific mention of recent trends in high performance microproces-
sor computer architecture. The newest machines, such as the IBM RS/6000 [Grov9Q], can

34

issue more than one instruction per cycle; such machines are called either Superscalar or
VLIW (very long instruction word), depending on their design. The observed level of per-
formance of such machines is a function of the actual amount of concurrency that is
achieved. The level of concurrency is itself a function of which operations are available to
be executed in paralel, and whether those operations conflict in their use of operands or
functiona units. Our model considers abstract operations individually, and is not currently
able to determine the achieved level of concurrency. Much of this concurrency will aso be
manifested in the execution of our machine characterizer; i.e. on a machine with con-
currency, we will measure faster AbOp times. Thus on the average we should be able to
predict the overall level of speedup. Unfortunately, this accuracy on the average need not
apply to predictions for the running times of individual programs. In fact this is what we
observed in the case on the IBM RS6000 530. In this machine the standard deviation of the
errors is 21 percent, which is the largest for all machines. Furthermore, the results on the
RS/6000 also gives the maximum positive and negative errors (—35.9% and 44.0%). Note
that although these errors are larger than for the other machines, our overall predictions are
still quite accurate.

The other “*new’’ technique, superpipelining, doesn’t introduce any new difficulties.
Superpipelining is a specific type of pipelining in which one or more individua functional
units are pipelined; for example, more than one multiply can be in execution at the same
time. Superpipelining introduces the same problems as ordinary pipelining, in terms of pipe-
line interlocks, and functional unit and operand conflicts. Such interlocks and conflicts can
only be analyzed accurately at the level of amodel of the CPU pipeline.

7. Summary and Conclusions

In this paper we have discussed program characterization and execution time prediction
in the context of our abstract machine model. These two aspects of our methodology allows
us to investigate the characteristics of benchmarks and compute accurate execution time esti-
mates for arbitrary Fortran programs. The same approach could be used for other algebraic
languages with different characteristics than Fortran. In most cases, however, a larger
number of parameters will be needed and some special care should be taken in the character-
ization of library functions whose execution is input-dependent, e.g., string library functions
inC.

There are a number of results from and applications of our research: (1) Our methodol-
ogy alows us to analyze the behavior of individual machines, and identify their strong and
weak points. (2) We can analyze individual benchmark programs, determine what opera-
tions they execute most frequently, and accurately predict their running time on those
machines which we have characterized. (3) We can determine "where the time goes’, which
aids greatly in tuning programs to run faster on specific machines. (4) We can evaluate the
suitability of individual benchmarks, and of sets of benchmarks, as tools for evaluation. We
can identify redundant benchmarks in a set. (5) We can estimate the performance of pro-
posed workloads on real machines, of real workloads on proposed machines, and of proposed
workloads on proposed machines.

As part of our research, we have presented extensive statistics on the SPEC and Perfect
Club benchmark suites, and have illustrated how these can be used to identify deficienciesin
the benchmarks.

35

Related work appears in [Saav92b], in which we extend our methodology to the
analysis of optimized code, and in [Saav92c], in which we extend our methodology to con-
sider cache and TLB misses. See aso [Saav89], which concentrates on machine characteri-

zation.

Acknowledgements

We would like to thank K. Stevens, Jr. and E. Miya for providing access to facilities at
NASA Ames, as well as David E. Culler and Luis Miguel who let us run our programs in
their machines. We aso thank Vicki Scott from MIPS Co. who assisted us with the SPEC
benchmarks, and Oscar Loureiro and Barbara Tockey who made useful suggestions.

Bibliography

[Alle87] Allen, F., Burke, M., Charles, P,
Cytron, R., and Ferrante J., **An Overview of
the PTRAN Analysis System for Multiprocess-
ing.”’, Proc. of the Supercomputing '87 Conf.,
1987.

[Bala89] Balasundaram, V., Kennedy, K, Kre-
mer, U., McKinley, K., and Subhlok, J., “‘The
ParaScope Editor: an Interactive Parallel Pro-
gramming Tool’’, Proc. of the Supercomputing
89 Conf., Reno, Nevada, November 1989.

[Bail85] Bailey, D.H., Barton, J.T., ‘‘The NAS
Kernd Benchmark Program’’, NASA Techni-
cal Memorandum 86711, August 1985.

[Bala9l] Balasundaram, V., Fox, G., Kennedy,
K, and Kremer, U., ‘‘A Static Performance
Estimator to Guide Data Partitioning Deci-
sions’, Third ACM SGPLAN Symp. on Princi-
ples and Practice of Paralle Prog., Willi-
amsburg, Virginia, April 21-24 1991, pp. 213-
223.

[Beiz78] Beizer, B., Micro Analysis of Com+
puter System Performance, Van Nostrand, New
York, 1978.

[Clap86] Clapp, R.M., Duchesneau, L., Volz,
R.A., Mudge, T.N., and Schultze, T., ‘* Toward
Red-Time Performance Benchmarks for
ADA’’, Comm. of the ACM, Vol.29, No.8,
August 1986, pp. 760-778.

[Curn76] Curnow H.J., and Wichmann, B.A.,
““A Synthetic Benchmark’’, The Computer
Journal, Vol.19, No.1, February 1976, pp. 43-
49,

[Curr75] Currah B., **Some Causes of Varia-
bility in CPU Time'’, Computer Measurement

and Evaluation, SHARE project, Vol. 3, 1975,
pp. 389-392.

[CybedQ] Cybenko, G., Kipp, L., Pointer, L.,
and Kuck, D., Supercomputer Performance
Evaluation and the Perfect Benchmarks,
University of Illinois Center for Supercomput-
ing R&D Tech. Rept. 965, March 1990.

[Dodu89] Doduc, N., *‘Fortran Execution Time
Benchmark’’, paper in preparation, Version
29, March 1989.

[Dong87] Dongarra, J.J., Martin, J., and Worl-
ton, J., ‘‘Computer Benchmarking: paths and
pitfalls’, Computer, Vol.24, No.7, July 1987,
pp. 38-43.

[Dong88] Dongarra, J.J., ‘‘Performance of
Various Computers Using Standard Linear
Equations Software in a Fortran Environ-
ment’’, Comp. Arch. News, Vol.16, No.l,
March 1988, pp. 47-69.

[Geelol] Gee, J, Hill, M.D., Pnevmatikatos,
D.N., and Smith A.J., ‘*Cache Performance of
the SPEC Benchmark Suite’’, submitted for
publication, also UC Berkeley, Tech. Rept. No.
UCB/CSD 91/648, October 1991.

[Geel93] Geg, J. and Smith, A.J.,, ““TLB Per-
formance of the SPEC Benchmark Suite'’,
paper in preparation, 1993.

[Grova0] Groves, R.D. and Oehler, R., “‘RISC
System/6000 Processor Architecture’’, 1BM
RISC System/6000 Technology, SA23-2619,
IBM Corp., 1990, pp. 16-23.

[Hick88] Hickey, T., and Cohen, J., ‘* Automat-
ing Program Analysis’, J. of the ACM, Vol.
35, No. 1, January 1988, pp. 185-220.

[Koba83] Kobayashi, M., ** Dynamic Profile of
Instruction Sequences for the IBM Sys
tem/370"", IEEE Trans. on Computers, Vol.
C-32, No. 9, September 1983, pp. 859-861.

[Koba84] Kobayashi, M., **Dynamic Charac-
teristics of Loops’, IEEE Trans. on Comput-
ers, Val. C-33, No. 2, February 1984, pp. 125-
132.

[Knut71] Knuth, D.E., ‘**An Empirical Study of
Fortran Programs’, Software-Practice and
Experience, Vol. 1, pp. 105-133 (1971).

[McMa86] McMahon, F.H., ‘‘The Livermore
Fortran Kernels. A Computer Test of the
Floating-Point Performance Range’’, LLNL,
UCRL-53745, December 1986.

[MIPS89] MIPS Computer Systems, Inc.,
“MIPS UNIX Benchmarks’ Performance
Brief: CPU Benchmarks, Issue 3.8, June 1989.

[Olss90] Olsson, B., Montoye, R., Markstein,
P., and NguyenPhu, M., *‘RISC System/6000
Floating-Point Unit’’, IBM RISC Systenv6000
Technology, SA23-2619, IBM Corp., 1990, pp.
34-43.

[Peut77] Peuto, B.L., and Shustek, L.J., ‘*‘An
Instruction Timing Model of CPU Perfor-
mance’’, The fourth Annual Symp. on Com-
puter Arch., Vol.5 No.7, March 1977, pp.
165-178.

[PnevO0] Pnevmatikatos, D.N. and Hill, M.D.,
“*Cache Performance of the Integer SPEC
Benchmarks on a RISC, Comp. Arch. News,
Vol. 18, No. 2, June 1990, pp. 53-68.

[Pond90] Ponder, C.G., ‘‘An Anaytica Look
a Linear Performance Models’, LLNL, Tech.
Rept. UCRL-JC-106105, September 1990.

[Rama65] Ramamoorthy, C.V., ‘'Discrete
Markov Anaysis of Computer Programs’,
Proc. ACM Nat. Conf., pp. 386-392, 1965.

[Saav88] Saavedra-Barrera, R.H., ‘‘Machine
Characterization and Benchmark Performance
Prediction’’, UC Berkeley, Tech. Rept. No.
UCB/CSD 88/437, June 1988.

[Saav89] Saavedra-Barrera, R.H., Smith, A.J.,
and Miya, E. ‘‘Machine Characterization
Based on an Abstract High-Level Language
Machine'’, |IEEE Trans. on Comp. Vo0l.38,
No.12, December 1989, pp. 1659-1679.

36

[Saav90] Saavedra-Barrera, R.H. and Smith,
A.J., Benchmarking and The Abstract Machine
Characterization Model, UC Berkeley, Tech.
Rept. No. UCB/CSD 90/607, November 1990.

[Seav92a] Saavedra-Barrera, R.H., CPU Per-
formance Evaluation and Execution Time Time
Prediction Using Narrow Spectrum Bench-
marking, Ph.D. Thesis, UC Berkeley, Tech.
Rept. No. UCB/CSD 92/684, February 1992.

[Saav92b] Saavedra, R.H. and Smith, A.J.,
‘“*Benchmarking Optimizing Compilers’, sub-
mitted for publication, USC Tech. Rept. No.
USC-CS-92-525, dso UC Berkeley, Tech.
Rept. No. UCB/CSD 92/699, August 1992.

[Saav92c] Seavedra, R.H., and Smith, A.J,
‘*Measuring Cache and TLB Performance’’, in
preparation, 1992.

[Sark89] Sarkar, V., ‘‘Determining Average
Program Execution Times and their Variance'’,
Proc. of the SGPLAN' 89 Conf. on Prog. Lang.
Design and Impl., Portland, June 21-23, 1989,
pp. 298-312.

[SPEC89] SPEC, ‘‘SPEC Newdetter: Bench-
mark Results'’, Vol.2, Issue 1, Winter 1990.

[SPEC89, 90a,b] SPEC, ‘‘SPEC Newdletter’’,
a Vol.2, Issue 2, Spring 1989. b: Vol.3, Issue
1, Winter 1990. c: Vol.3, Issue 2, Spring 1990.

[UCB87] U.C. Berkeley, CAD/IC group.
“*SPICE2G.6'’, EECS/ERL Industrial Liason
Program, UC Berkeley, March, 1987.

[Weic88] Weicker, R.P., ‘‘Dhrystone Bench-
mark: Rationale for Version 2 and Measure-
ment Rules’, SGPLAN Notices, Val.23, No.8,
August 1988.

[Worl84] Worlton, J., ‘*Understanding Super-
computer Benchmarks’, Datamation, Sep-
tember 1, 1984, pp. 121-130.

Abstract operationsin the system characterizer (part 1 of 2)

1 real operations (single, local)

5real operations(single, global)

Abstract operationsin the system characterizer (part 2 of 2)

01 SRSL
02 ARSL
03 MRSL
04 DRSL
05 ERSL
06 XRSL
07 TRSL

store

addition
multiplication
division
exponential (X')
exponential (XY)
memory transfer

29 SRSG
30 ARSG
31 MRSG
32 DRSG
33 ERSG
34 XRSG
35 TRSG

store

addition
multiplication
division
exponential (X')
exponential (X))
memory transfer

9 logical operations (local)

10 logical operations (global)

57 ANDL
58 CRSL
59 CCSL
60 CISL

61 CRDL

AND & OR

compare, real, single
compare, complex
compare, integer, single
compare, real, double

62 ANDG
63 CRSG
64 CCSG
65 CISG

66 CRDG

AND & OR

compare, red, single
compare, red, double
compare, integer, single
compare, real, double

11 function call and arguments

13 branching operations

2 complex operations, local operands

6 complex operations, global operands

67 PROC procedure call 69 GOTO simple goto
68 ARGL argument load 70 GCOM computed goto

12 referencesto array elements 14 DO loop operations
71ARR1 array 1 dimension 76 LOIN loop initialization (step 1)
72 ARR2 array 2 dimensions 77 LOOV loop overhead (step 1)
73 ARR3 array 3 dimensions 78 LOIX loop initialization (step n)
74 ARR4 array 4 dimensions 79 LOOX loop overhead (step n)
751ADD array index addition

15intrinsic functions (real) 16 intrinsic functions (double)

80 LOGS logarithm 88 LOGD logarithm
81 EXPS exponential 89 EXPD exponential
82 SINS sine 90 SIND sine
83 TANS tangent 91 TAND tangent
84 SQRS square root 92 SQRD square root
85 ABSS absolute value 93 ABSD absolute value
86 MODS | module 94 MODD module
87 MAXS | max. and min. 95 MAXD max. and min.

08 SCSL store 36SCSG | store

09ACSL | addition 37ACSG | addition

10MCSL | multiplication 38MCSG | multiplication

11DCSL | division 39DCSG | division

12ECSL | exponential (X') 40ECSG | exponential (X')

13XCSL | exponential (X¥) 41XCSG | exponential (XY)

14 TCSL memory transfer 42 TCSG memory transfer

3integer operations, local operands 7 integer operations, global operands

15 SISL store 4381SG store

16 AISL addition 44 AISG addition

17MISL multiplication 45 MISG multiplication

18 DISL division 46 DISG division

19EISL | exponential (1?) 47TEISG | exponential (12)

20 XISL exponential (1) 48 XI1SG exponential (17)

21 TISL memory transfer 49 TISG memory transfer
4 real operations (double, local) 8 real operations (double, global)

22 SRDL store 50 SRDG | store

23 ARDL | addition 51 ARDG | addition

24 MRDL | multiplication 52 MRDG | multiplication

25DRDL | division 53DRDG | division

26 ERDL | exponentia (X') 54 ERDG | exponentia (X')

27 XRDL | exponential (X)) 55 XRDG | exponential (X)

28 TRDL | memory transfer 56 TRDG | memory transfer

17 intrinsic functions (integer)

18 intrinsic functions (complex)

Table 14: Abstract operationsin the System Characterizer (part 1 of 2)

9 SQRI
97 ABS|
98 MODI
99 MAXI

square root
absolute value
module

max. and min.

100 LOGC
101 EXPC
102 SINC

103 SQRC
104 ABSC

logarithm
exponential
sine

square root
absolute value

105 MAXC

max. and min.

19 coer cion functions (complex)

106 CLPX
107 REAL
108 IMAG
109 CONJ

real to complex
select real
select imaginary

conjugate function

Table 15: Abstract operationsin the System Characterizer (part 2 of 2)

v Xipuaddy

LE

38

Appendix B

(¢ 10 Z 1ed) sy fewyousg J3dS 8y} Joj suoNNqUIS I JIWeuAq :/T 3|0e L

(2 10 T 1ed) Syfewiyousq O3S auy 10} suoNgLISIP dleuAq 9T a|de L

00000 - T0000 > - - - - CNOD 60T
00000 - - - - - - OVINIS0T
00000 - - - - - - v3ad 20T
00000 - - - - - - XdWO 90T
10000 T0000 > T0000 > - - - TO000> || IXVINSOT
T000'0 10000 > 10000 > 10000 > - 10000 > - IJON ¥0T
00000 T0000 > - T0000 > - - - 1S9V €0T
00000 - - - - - - 140S 20T
00000 - 10000 > - - - - OXVIN TOT
00000 - T0000 > - - - - 2549V 00T
00000 - - - - - - 2U0S 660
00000 - - - - - - ONIS 860
00000 - T000'0 - - - - 2dX3 260
10000 - 60000 - - - - 09071960
#0000 01000 T0000 > - 10000 > - TT000 AXVIN S60
00000 - T000'0 - - - - Ado 60
87000 92000 #0000 - 81200 - 0£00°0 asav €60
20000 T000'0 #0000 - - - 80000 ados 260
00000 T0000 > - - - - - ANVLT60
00000 10000 > 10000 > - - - - aNIS 060
€000°0 #0000 - - - - €1000 adx3 680
T000'0 £000°0 10000 - - - T0000> || @9071880
00000 - - - - - - SXVIN 280
00000 - - - - - - SAOIN 980
20000 - - 10000 > - £1000 - SSAVv 680
10000 - - - - %0000 - SHOS 780
00000 - - - - 10000 > - SNVL €80
00000 - - - - - - SNIS 280
00000 - - - - 20000 - SdX3 180
00000 - - - - - - $907080
00000 - T0000 > - - - - X0016.0
00000 - 10000 > - - - - X10718.L0
68700 Zv00°0 0200 GeyT0 ¢ G200 €2000 | L9v00 AOOT2L0
#1000 S000°0 S #0000 50000 T000'0 10000 | T900'0 NIO1920
97200 GETO0 T/80°0 € - 92800 ¢ | €8000 | 80100 1aav .0
2.00'0 - TEV0'0 - - - - PaAV 20
19100 - 79600 2 - - - - €44V €20
€8/T°0 10000 > Y1220 T ¥92r'0 T 2860 T | TO000> | 8Y90°0 ¢ || 2HHV 2.0
ZvoT'0 9020 ° €570°0 - - 2L9T0 & | TZvT0 T || THYV L0
70000 €000°0 ¢ - T0000 > - 90000 | ZT000 INOD9 020
21200 ¥660°0 10000 > 10000 > 60100 02000 | 6ET00 0109 690
18000 €900°0 12000 82000 10000 G2000 | €880°0 194V 890
12000 #2000 61000 50000 T0000> | 02000 | 06000 20ud 290
#0000 50000 - - - €0000 | 81000 900 990
TE00'0 STT00 - - - TO000 > | 9000 9510 690
00000 - - - - - - 9300 790
00000 - - - - - - 9540 €90
00000 - - - - - - 9ANY 290
€5000 ¥€00°0 - 10000 > 60100 8T000 | 95100 Q40 190
88100 ovoT0 ¥ T0000 > 50000 T0000> | ¥5000 | 82000 TS10 090
00000 - 10000 > - - - - 1800 650
00000 - T0000 > - - - - 1S40 850
80000 GT00°0 - - - #1000 | 11000 TANY 250
afeAY || 3A00ATYD | LVSVYN | 00EXIYLYW | ALVYOWOL | ddddd | ONAoad || uoneido

€2000 01000 90000 - T0000 > w000 9/000 OQy1 950
00000 - - - - - - OayX S50
00000 - - - - T0000 - OQy3 ¥S0
€1000 2000 10000 - - 80000 9v00'0 OQayaeso
6900 T1700 €€50°0 - - 80¢€0 ' | 0TE00 OQYIN ¢s0
L1200 2100 T2E00 - - 85900 ¢ | 66100 OQyVv 150
12200 SCT100 86200 - - 96,00 ¥ | SOTO0 OQys 050
T0000 10000 > 10000 > - - T0000> | ¥000°0 OSI16¥0
00000 - - - - - - OSIX 870
00000 - - - - - - oS3 L¥0
T0000 10000 > - - - - €0000 oS1d 90
T0000 10000 > - - - T0000> | TO000> OSIN S¥0
[4500) TL¥20 ¢ 10000 > - - 70000 T0000 > OSIV 770
20000 60000 - - - T0000> | TO000 > OSIS EV0
00000 - 10000 > - - - - Rleeiy4]
00000 - - - - - - OaOX 0
00000 - - - - - - 9003 00
00000 - - - - - - 900d 60
€0000 - 81000 - - - - OQOIN 880
00000 - 10000 - - - - 9aoVv L0
T0000 - 90000 - - - - 900S 90
00000 - - - - - - OSY1 S€0
00000 - - - - - - OSUX €0
00000 - - - - - - OSY3 €€0
00000 - 70000 > - - - - osdd ¢eo
00000 - 10000 - - - T0000> || OSHIN TE0
70000 - 60000 - - - - OSdY 0e0
00000 - - - - - - OSHS 620
<9100 £/000 Y1700 20000 01700 69000 €650°0 1041820
T000°0 - - - - T0000> | L0000 1ayX £20
0000 - ¥100°0 - - §000°0 €0000 1ay3 920
G/00°0 €000 02000 70000 > §S00°0 90000 GEE00 1aya seo
§E60°0 9000 S0.00 S Yvro v 8v.T0 ¢ TL200 L6ET0 ¢ || TAdN 20
GGET0 er10'0 2600 ¥ YIvTo € 0€TC0 ¢ 19€2°0 ¢ | S82T°0 ¢ || 1adV €20
.00 91700 L9800 YIvTo ¢ 99ET0 ¥ 68700 16900 ¥ 104S ¢20
€8200 VAZAN ¢0000 10000 > T0000 ST000 62700 IS1LT20
00000 10000 > 10000 > - - - - IS1X 020
00000 - 10000 > - - - - ISI3 610
20000 10000 10000 > 10000 > 10000 > 90000 T0000 > 7S1a 810
0000 01000 10000 > S0000 - 80000 T0000 > ISINLT0
0€T00 81700 LEVO0 60000 01700 69000 GE000 TSIV 9T0
L0000 0L000 10000 > S0000 01700 ¢S000 Lv000 SIS ST0
G0000 - 18000 - - - - 1a01v10
00000 - - - - - - 1a0X €10
€0000 - 67000 - - - - 1ao53¢10
00000 - - - - - - 1aoaTtio
Y1000 - 98000 - - - - T1dON 010
2000 70000 > 06700 - - - - 1adV 600
Sv00'0 - - 89¢00 - - - 11a3s 800
12000 - - - - - T9T00 IS4l 200
00000 - - - - - - 1SYX 900
00000 - - - - - - 1543 500
§0000 - 10000 - 70000 > - 62000 1S4d 00
10000 - 10000 > - - - 0000 ISHIN €00
28000 - - - - - ¥6v0'0 1S4V 200
50000 - - - - - 22000 1S4S 100
abeoAY || 3A0DATED | LVSVYN | 00EXIMLYI | ALVOWOL | ddddd | dnaoa uoieiedo

39

(¢ 10 T 1ed) sy rewyousq 96ze01ds By} Joj SUONNGLISIP dIWeuAQ 8T a|ge L

(2 10 2 1red) sy rewiyousq 96z801ds 8y} JojsuonnquUIsIp diurUAQ 6T 8|qe L 68000 | 06000 82100 €1700 £8000 | 87000 20100 QUL 950
00000 - - - - - - 9QYX 550
. . . : . . . 00000 - - - - - - 9Qu3 750
> >

%%.m 10000 10000 TT1o0 05000 | ST100 H%MM N mdn%_ M% 19000 || €9000 15000 88000 08000 | 9v000 2,000 9aYa €50
00000 - - - - - Y 3 0T 98200 || €9200 89200 2I£00 ¥IE00 | €T200 8200 9QYIN 250
00000 B B B - - 10000 dIND 90T 19200 || 26200 €8200 9200 200 | 05200 8200 9aYY 150
o000 1T Tooa55 T o005 | 0000 005 T 000 0000 s €6200 || 02200 €200 82200 91200 | 74200 15200 9QYS 050
0000 | TO000> | T0000> | T0000> | TO000> | T0000> | TOODO> IO ¥0T wm%_m 50000 90000 £0000 | 70000\ T0000 11000 wmm__w mw

10000 || T0000> | 10000> | T0000> | TO00D0> | TOOOO> 10000 > 1S9V £0T _
00000 - - - - - - 1MOS 20T 00000 - - - - - - 953 20
: 70000 | T0000> | 10000> | T0000> | TOODO> | TO0OO> 10000 > 9510 9%0
00000 - - - - - - OXVITOT 70000 || T0000> | T0000> | 10000> | T0000> | T0000> 10000 > 951N PO
00000 - - - - - - owmm 00t ISUTO || O/STO¢ | SEET0¢ | L¥ITO¢ | 90VT0 ¢ | 8¥0Z0 ¢ 26210 9BV 710
PO i} i} i} i} i} i} B TE000 || €2000 | 26000 | 92000 | 21000 | €000 95000 95IS EVD
00000 - - - - - - OdX3 L60 00000 - - - - - - 9doL ero
00000 B B B - - - 3607190 00000 - - - - - - 9Q0X TH0
00000 - - - - - - 9003 0v0
Zv000 || ¥000 09000 87000 ¥6000 | 12000 Zv000 aXVIN 560 00000 _ - - _ _ - 509 620
00000 - - - - - - QQoOW 60 00000 - - - - - - SO 850
8/000 || 89000 Y0T00 8000 Y9000 | S900'0 8000 asav €60 00000 _ _ _ _ _ _ ooV 150
02000 || 0T000 60000 8000 SP000 | 20000 £€2000 Quds 260 00000 _ _ _ _ _ _ 5095 950
70000 || T0000> | T0000> | TO000> | 20000 | TOOOO> 10000 > ANVLT60 30000 - - - - - - o1 560
70000 || T0000> | T0000> | TO0DO> | Z000O | TOODO> 10000 > aNIs 060 5000 B B - B B B o 750
21000 || TT000 21000 97000 Y1000 | 60000 21000 adx3 680 50000 B B - B B B e 250
€1000 || €000 #1000 61000 STO00 | 90000 €1000 a901880 50000 B B - B B B i 260
00000 - - - - - - SXVIN 280 00000 - - - - - - 9SHIN TE0
00000 i} i} i} i} i} i} SAOW 980 00000 - - - - - - 954V 0€0
00000 - - - - - - SSEv 580 00000 _ _ _ _ _ _ OB 620
00000 - - - - - - SH0S 180 7600 || SZ€00 20000 Y00 8TE00 | 99100 £6€0°0 Q41820
00000 - - - - - - SNV.LESD 5000 0 0 0 0 0 0 v
00000 - - - - - - SNIS 280 50000 B B - B B B o o
%%.m - - - - - - mmm%__ m% €ET00 || S6000 08000 98100 £2200 | 5000 LET00 1a4a 520
: 9500 || €€€00 18200 09v0°0 21500 | 65100 ¥8E0°0 QU 720
00000 - - - - - - X0016.0 92,00 || 18900 ¢ | TZ800 ¢ | ¥S6000 ¢ | 0800 ¢ | $0SOD 99,00 & 1a4v €20
m%m.m £6000 PTT00 06000 £8000 | 88000 52100 >M_% w% VOS00 || V9S00 ° | EES00° | BE00 | 09900 " | v00 LS00 7 198 &<
o2000 || 72000 65000 62000 61000 | 57000 87000 NIG19/0 ¥/500 | €¥900 ' | 68200 15€00 16500 5 | £6600 1900 ISILTe0
70000 | T0000> | T0000> | TO000> | TOOOO> | TOOOO> 10000 > ISIX 020
SOV00 || ¥TP00 11900 ¥ | SIS00 ¢ | 96€00 | 62600 11500 S 1dav §20 00000 z - - C C C 3670
00000 - - - - - - vHAV 720 90000 || ¥000°0 50000 90000 20000 | 50000 ST000 510810
00000 - - - - - - EUHVEL0 60000 || 20000 90000 80000 50000 | TT000 61000 TSIN LT0
10000 || T0000> | 10000> | T0000> | T0000> | TO0O0> 10000> cudve/0 S0T00 || 26000 18000 €800°0 17100 | 62100 12100 TSIV 910
19220 || 20620 | 08€Z0 ' | 91020 T | €STZ0 T | 98520 T 82120 * TV T20 100 || zz100 1100 5100 61100 | 08700 26100 SIS 5T0
11000 || 87000 £€2000 12000 ¥1000 | 20000 87000 INOD9 020 00000 - - - - - 70000 0oL 70
0600 || €¥500 €EV00 9TY0'0 SP00 | 09900 ¥ €500 0109 690 00000 _ - - _ _ - 109X £T0
80200 || 0Tc00 22200 65200 18100 | 21100 19200 TOuV 890 00000 - _ _ - - - 1003 210
¥5000 || 8v000 95000 85000 0000 | 0¥000 28000 J0¥ud /90 00000 _ _ _ _ _ _ 1050 110
69000 || 85000 75000 8T100 16000 | 01000 26000 9QHD 990 00000 - - - - - - JAOW 0TO
00200 || 0T200 60200 16100 98100 | 12200 28100 9510 590 70000 | T0000> | T0000> | TO000> | TO00DO> | TOOOO > 10000 > 1a0V 600
00000 - - - - - - 9600 790 00000 - - - - - 10000 > 1005 800
00000 - - - - - - 9OSHO €90 00000 - - - - - - IS41 200
00000 - - - - - - 9ANY 290 00000 - _ _ _ _ _ 54X 900
TT00 || 66000 0£700 Y5100 GET00 | 85000 12100 7Q40 190 00000 - - - - - - 1543 500
LIE00 || 8Er00 6,200 22200 9YE00 | L5900 02€00 1510090 00000 - - - - - - 154a 700
00000 - - - - - - 1520 650 00000 - - - - - - TSHN €00
00000 - - - - - - 1540 850 00000 - - - - - - IS4V 200
19000 || 09000 19000 21000 ¥5000 | 9€00'0 9/000 JANY 250 00000 - - - - - - I5S T00

aBeBAY || OLNOJOL | 103493d | cdINVSOW | d591d | 3710418 | MIVWHONIE || Uomekdo aBeBAY || OLNOYOL | 103343d | ZdWVSOW | 95910 | 310d19 | MUVWHONIE || uoneiedo

40

(7 40 T 1ed) Sy1fewiyousg gnjD 19948d dY} 104 SUOINGLISIP JIURUAQ :0Z 3|de L

(7 40 2 1ed) SxirewiyoURq N D 1994d BU} 104 SUOINGLISIP JIUWRUAQ (TZ 3|qe L
60000 95000 - - - - - NOD 60T
0000 22000 - - - - T0000 > OVINI 80T
10000 22000 - 20000 T000'0> | €1000 T0000 > v3d 0T
97000 €6000 - - - - T0000 > XdINO 90T
T0000 T0000 > - - - T0000> | TOOO0 > IXVIN SOT
11000 T0000> | TOOO0 > - T0000> | 65000 €0000 IAON 0T
00000 - - - T0000 > - - ISav €01
00000 - - - - - - 140S 20T
00000 - - - - - - OXVINTOT
00000 - - - - - T0000 > JS49v 00T
00000 - - - - - - 240S 660
00000 - - - - - - ONIS 860
00000 T000°0 > - - - - - JdX3 260
00000 - - - - - - 09071960
00000 - - - T0000 > - - AXVYIN S60
00000 - - - - - - AdOW 160
79000 - T0000> | LTO00 0SE00 - - asav €60
2000 - /8000 €0000 /5000 - - ay0s 260
00000 - T0000 > - - - - ANVLT60
80000 - T000'0> | 9¥00°0 T0000 > - - ANIS 060
01000 - €1000 - G000 - - ad X3 680
00000 - - - - - - aso1880
20000 T0000 > - - - - 60000 SXVIN 280
00000 T0000 > - - - - - SAOIN 980
T0000 T0000 > - - - TO00'0> | TO000 SSav &80
20000 T0000 > - - - €0000 90000 SHOS 780
00000 - - - - - T0000 > SNVL1 €80
00000 T0000 > - - - - T000°0 > SNIS 280
T0000 T0000 > - - - T0000 T000°0 > SdX3 T80
70000 T000°0 > - - - #0000 T0000 S9071080
S0000 /7000 - - T0000 > - 1000 X0016.0
T0000 T0000 - - T0000 > - 90000 XI018.0
T€90°0 €880°0 € | /8000 Y0010 € | €500 ¥ | S090°0 75700 NOOTLL0
/€000 S0000 T000'0> | TS000 #9000 89000 92000 NIOT9.0
€6200 ZT100 Sv00 ¢ - S6T0°0 ¢T.00 ¥ | 96800 1aav S0
00000 - - - - - - rddv 7.0
8100 - - T0000 - 8¢100 9/600 ¢ €44V €20
0200 €€200 22200 29700 TO000> | €VE00 15200 v 20
17k A1) 8T/Z0 " | ¥W6T°0 ¢ | SOWCO T | ¥90F0 ' | 66¢E0 ¥ | 6E0C0 T TH4V 120
00000 T0000 > - - T0000 > - - INODO9 00
V€100 T0000 5000 96900 L7000 92000 60000 0109 690
10200 20000 LTE00 92100 25€00 18200 €9100 194V 890
96000 TO000> | 9TE00 62000 €T1100 £€6000 T2000 00dd 290
12000 - TO000> | TOOO'0> | 22100 - - 9Q4d 990
91100 T0000 T0000> | 06900 T0000> | TOOO'0> | TOOO0> 9S10 990
00000 - - - - - - 9S00 90
00000 - - - - - T0000 > 9SHD €90
00000 - T000°0 > - - - - OANY 290
2,000 - 82000 GS000 TS€00 - - 1a40 190
€900°0 T0000 82000 GS00°0 1000 2200 65000 IS10 090
00000 - - - - - - 1S00 650
GEO0'0 TO000> | TOO0'0> | /8T00 TO00'0> | S0000 Y1000 1S40 850
22000 T000'0> | TO00'0> | ¥YTTO0 T000'0> | TO00'0> | TTOO0 1ANV /S0

abeseAy || NV3OO | VNA@9 | MOvdl | ©dW aod wav uoresedo

02000 - T0000> | TZI00 | T0000> - - 9QYL 950
00000 - - - - - - 9QYX S50
00000 - 70000 > - - - - 9QY3 ¥50
01000 - 10000 > | GE000 | %2000 - - 9a4a €50
02000 - 65200 | 9000 | 2€T00 - - AN 250
98000 - 92000 | 9ST00 | 98000 - - 9aYV 150
80000 - 92000 | €2000 | T0000> - - OQS 050
90000 || TOOO0> | TO000> | ¥E000 | TO000> | TO0DO > - 9511 6v0
00000 - - - - - - 951X 8Y0
00000 - - - - - - 9513 Lv0
00000 || TO0O0 > - - - - - 951a 9v0
06000 || TES00 | 10000 > - T0000> | S000°0 - 9SIN SH0
/2000 || 85000 | 82000 | 90000 | 98000 | 2€00'0 - 9SIV 710
200000 || TOOO0> | TO000> | 90000 | TO000> | TOODO > - 9SIS €0
00000 - - - - - - 9a0Lzv0
00000 - - - - - - 9A0X Tv0
00000 - - - - - - 9003 0v0
00000 - - - - - - 900d 6£0
00000 - - - - - - 9ADN 880
00000 - - - - - - 9A0V L0
00000 - - - - - - 9A0S 9€0
7000 || #7200 - 70000 > - €0000 | TO000> | ©SHLSE0
00000 - - - - - - 9SUX €0
00000 - - - - - - 9543 €80
£0000 || TO000 > - - - 70000 > | 61000 || 9©S¥A 20
€1000 || ST000 - - - T0000 | #9000 || OSHINTEO
10000 || TO0O0 > - 10000 > - 70000 > | TO00 || 9SYV 00
T0000 || TOOO0 > - 70000 > - T0000 > | TOOD0> || DSYS 620
98000 - ZET00 | 2200 | 90T00 - - 1QL 820
00000 - - - 70000 > - - 1QHX 20
00000 - 10000 > - 10000 > - - 1ax3 920
05000 - 96000 | 0STO0 | #7000 | €1000 - 1a¥a 520
86500 - 299T0 ¥ | G/2T'0 2 | BEY00 S | €T000 - QU 120
9/900 - GO6T0 € | T9800 ¥ | 22210 2 | €T000 - 1QYV €20
19900 - LITZ0 T | 6V200 S | 290T'0 € | €1000 - 1Q¥S 220
65000 || TOOOO | 2000 | 6€000 | TTO0O | 95200 | 1000 ISILT20
00000 - - - 70000 > - - ISIX 020
00000 - - - - - T0000> | ISI36T0
90000 || 20000 - - 70000 > | 82000 | S0000 IS1a 810
69000 || TOOO'0> | 0000 | 9¥00'0 | TO0DO> | 2000 | TTOOO ISIN LTO
80500 || OV2Z0 2 | S8000 | ZST00 | 05000 | 8¥/00 | SETO0 TSIV 9T0
SyTO'0 || 0600 | 85000 | 88000 | 98000 | TETO0 | 9ETO0 SIS STO
6Y000 || 06200 - - - - 10000 > || 1QOL¥T0
00000 - - - - - - 1a0X €10
00000 - - - - - - 1as3 10
£0000 || 81000 - - - - 70000> || 1@0ATIO
GE000 || 21200 - - - - 10000 > || IO OTO
96000 || 92500 S - - - - T0000> | 1AV 600
80100 || G900 ¥ - - - - T0000> || 1A 800
G6T00 || 68200 - 80000 - T/00 | €0S00 IS4L 200
10000 - - - - - #0000 ISUX 900
£0000 || TO000 > - - - - 1000 1543 500
Zv000 || ¥1000 - 70000 > - 01000 | 0€200 ISHA 100
8Iv00 || /8100 - 01000 - GBIT0 ¢ | ¥ZIT0 ¥ || TISHINE00
vZvo0 || S0T00 - 70000 > - T960°0 ¢ | 8/4T0 ¢ | ISV 200
19200 || 8000 - 10000 > - 67800 ¢ | 6/TT0 € || 1SS T00
abeleAy || NV3IOO | YNAS | Movdl | 9dW aosd Wav || uonesdo

41

(7 40 ¥ 1ed) SxirewiyoUB N D 1994d BUY} 104 SUORNGLISIP JIUWRUAQ (€2 3|qe L

(7 40 € 1ed) Sy fewiyousg gnjD 19948d dU} 104 SUOINGLISIP JIUWRUAQ 1ZZ 3|qe L

00000 - - - - - - CNOD 60T
19000 || L9500 - - - - - OVINI 80T
29000 || 0/€0°0 - - - - - Tv3ad 20T
92000 || 8ST00 - - - - - XdINO 90T
00000 - - 10000 > - 10000 > - IXVIN GOT
T0000 || T0000 > - T0000 > | TOOO'0 > | TOOD'0 10000 > IdOW ¥0T
T000'0 - - 10000 > - T0000> | 0000 1S9V €01
00000 - - - T0000 > | T0O000> - 140S 20T
00000 - - - - - - OXVIN TOT
00000 - - - - - - 0S4V 00T
00000 - - - - - - 240S 660
00000 - - - - - - ONIS 860
00000 - - - - 10000 > - OdX3 260
00000 - - - - - - 09071960
€0000 - - - 61000 - - AXVIN S60
00000 - - - - - - QdoW 760
€000°0 - - - 61000 - - asav €60
90000 || T0000 > - - ¥€00°0 - - Qad0s 260
00000 || TO0O0 > - - 10000 > - - ANV1T60
00000 || TO0O0 > - - 10000 > - - aNIs 060
00000 || TO0O0 > - - - - - adx3 680
00000 - - - - - - aso18so
€0000 || TO0O0 > - €1000 - 10000 > - SXVIN 280
00000 - - - - - - SAOW 980
€000°0 || 20000 - 91000 - T0000> | TO000> || SSAVS80
20000 || TO000 > - 90000 | TOOO'O > | TO000> | TOOD0> || SHOS P80
00000 - - T0000 > | TO00O > - - SNVL1 €80
TO000 || TO0O0 > - 10000 > - T0000> | TO000> SNIS 280
TO000 || 20000 - 10000 > - - - SdXd 180
00000 - - 10000 > - - - $907080
65000 || 22200 | TO00'0> | 80000 - 89000 80000 X0016L0
G0000 || 8TOO0 | TOOD'0> | TOOOO > - 90000 10000 > X1071820
06900 || 2LTO0 | ¥90T'0 | /8900 | 09¥00 T2€00 0EYT0 ¢ || AOOTZLL0
62000 || €T000 | 6¥000 | ZIO00 | €000 €000°0 12000 NIO1920
86¥00 || 09TTO ¢ - G90T0 ¢ | EVV00 99100 95100 1aav s.0
6T00°0 - - - - 91700 T0000> || ¥4V ¥.0
¥€60°0 || £0000 - BVEE0 T | BETC0 T | 82000 68000 €49V €20
€G8T°0 || LLYT0 € | ¥/2€0 T | Y0900 | 8¥OT'0 € | 90600 S | 202€0 T || 2ddV 2.0
26600 || T20Z0 T | 680T'0 S | OVOO0 | €000 GEOZ0 T | €2500 YAV T20
00000 - - - TO000 > | TO000 > - INOD9 020
TO000 || #0000 - T000'0 > | TOOO'0 > | TO000> | TO0O0 0109 690
60000 || Y0000 | 20000 | G2000 | 20000 10000 €1000 TOHV 890
€0000 || T0O000 | TOOD'0> | 2I000 | TOOD'O > | TO0O0 £000°0 204d 290
00000 - 10000 > - - - - 9040 990
TO000 || TO0O0 > - TO000 | TOOOO > - 50000 9510 590
00000 - - - - - - 9S00 90
T000'0 - T0000 > | TOOD0> | TOOOO > - TO000> || 9SHO €90
00000 - - - 10000 > - - 9ANY 290
80000 || TOO0'0> | ¥#000 | TOOO0> | TOODO > - - QY0 190
€0000 || TO00'0 | OTOO0 | TOOO'0> | TOODO > | €0000 T0000 > TS10 090
00000 - - - - - - 1800 650
90000 || 50000 - T0000 > | 50000 20000 02000 1S40 850
TO00'0 || TO0O'0> | TO000 > | TO00'0> | TO000 > | TO00'0> | TO0D0> || IANY S0
aberAY |[//03dS | addl | ¢G01d | @zOd¥V | QEDOW | WS3HAQ || uoiesedo

00000 - - - 70000 > - - 9QYL 950
00000 - - - - - - 9QYX 550
00000 - - - 70000 > - - 9QY3 ¥50
00000 - - - 10000 > - - 904a €50
£0000 - - - 1000 - - 9QYIN 250
10000 - - - 50000 - - 9QYV 150
70000 - - - 50000 - - 9QYS 050
70000 || TOOO0> | T0000> | T0000> | T0000 > - T0000> | 9SIL6VO
00000 - - - - - - 951X 870
00000 - - - - - - 9513 Lv0
00000 - - - - 170000 > - 951970
10000 - 70000 > - 70000 > | T0000> | TO000> | SSINGH
10000 - S0000 | TOOO0> | TO000 > | TO000> | €£000 9SIV ¥0
10000 - 70000 > | 20000 | 10000 > - T0000> | 9SISERD
00000 || 20000 - - - - - 9a0Lzv0
00000 - - - - - - 9A0X Tv0
00000 - - - - - - 9003 0v0
00000 - - - - - - 900d 6£0
00000 - - - - - - AN 8E0
00000 || TO000 - - - - - 9a0V L£0
00000 || TO0O0 - - - - - 9a0S 9€0
S0000 || TO0O0 > - 12000 - T0000> | TO000> | OSULGED
00000 || TO0O0 > - 70000 > - - - 9SUX €0
00000 - - 10000 > - - - 9543 €80
70000 || TO0O0 > - 20000 - - T0000> | 9SHAZEo
£9000 || Zv000 - §Z200 - 66000 | €000 OSUIN TEO
85100 || €0000 - GE60°'0 € | TOOD0 > | £0000 | 80000 9S4V 0€0
ZET00 || 20000 - €800 S - T0000> | 60000 9SS 620
Y5000 || 0000 | 12100 - 00200 - - 1QYL 820
00000 || TO0O0 > - - 70000 > - - 1QHX £20
12000 || TO000> | T0000> - 22100 - - 1ax3 920
220000 || 50000 | 0000 - 22100 - - 104 520
65600 || ET000 | 90VTO ¥ - 21610 2 - - QU 120
0/00 || 90000 | TTHTO € - 20070 S - - a8V €20
LP00 || €0000 | 9THTO ¢ - THTO ¥ - - 1Q¥s 220
80000 || 21000 | T0000 | TO000> | €0000 | 90000 | 82000 ISILT20
00000 - - - - - - ISIX 020
00000 - - 10000 > - - - ISIE6T0
70000 || TO000> | T0000> | T0000> - 20000 - 1510810
€0000 || €0000 | T0000> | TO000> | TOO0O > | 0TO00 | TOO0O> | TISIWLIO
£980°0 || ETTO0 | 29000 | TTO0O | TO00O | 69LTO € | T2200 TSIV 910
1000 || 68000 | €000 | TI000 | TO000 | €/200 | €000 SIS STO
S0000 || 82000 - - - - - 1aoL¥10
00000 - - - - - - 1aDX €10
00000 - - - - - - 1as3z10
00000 - - - - - - 1a2aTIo
00000 - - - - 10000 > - 1QoN 010
22000 || SETO0 - - - - - AoV 600
£2000 || SETO0 - - - 70000 > - 1a0s 800
60100 || 55000 - 6£000 - 00 | €2100 ISUL 200
00000 || TO0O0 > - 10000 > - - - ISHX 900
07000 || TO00'0 > - 15000 - - - 543 500
€000 || €T000 - €5T00 | TOO00 > | ZS000 | TOO00> | SHA P00
69800 || TZTTO € - 22800 ¥ | TO000 > | 02610 ¢ | 00STO S | ISHINE00
G9/00 | Z6VT0 ¢ | TO000> | 0200 | TOOOO > | 6VOTO ¥ | LZETO ¥ || TISHVZ00
01500 || 21900 - /200 - 6EL00 | GEETO ¢ | T1SHSTOO
abeloAy || //03dS | 44l | ¢01d | dzodv | QeOW | WSIJAQ || Uomekdo

42

(¢ 402 ed) sy ewjoueq (LS [BRASS 10} SUOINGLISI JIWRUAQ 'Sz B(gR L

(¢ 40 7 1ed) Sy LUYOLBY [PWS BIBASS JOJSUOINGLISID OIURUAQ 12 3]qe L

o000 || - - - - - - - - - - 5041950
00000 | - - - - - - - - - - | oauxaso
w00 || - - - - - - - - - — [oNoogor| | %00) - - - - - - - - - T | a0
0000 || - - - - - - - - - - TR L0T
0000 || - - - - - - - - - - | xamosor %W - - - - - - - - - - wmw_m MMN
0000 || - - - - = Twoos| - - B - IXVINSOT
wao || - - - . = w005 | a0)) 10000 > || 1aoor| | 7000 || 60600 - - = w0 | v1000 - N o) - SIL610
0000 || - - - - - - - - - - 158V 0T %W - - - - - - - - - - wmm__w %
00000 ST || oo | - - - - |10000> | T0000> | - - - - 610970
00000 - - - - - - - - - - T | OXYNTOT | gengo || gten - - - - w0 | - - - - BINGH
00000 - - - - - - - - - - 3S8Y00L || g7 | 105000 - - - |00 | se000 - - | oo | T0800 IV 0
00000 - - - - - - - - - - ROSEE0 | | 77y || ggno - - - |z00 | s0000 - - | mooo | 10000 > || osKSEN
00000 | - - - - - - - - - - INIS 860 .
0000 || - - - - - - - - - - | odxawmo| | 200 - - - - - - - - - T | ddoiao
0000 || - - - - - - - - - - | oo | 0| T - - - - - - - - S eesapii
0000 || - - - - - - - - - = o] | g0 | - .) . .) .) . = |l smaeo
00000) - - - - - - - - - I S I - - - - - - - - - | scowse
00000 - - -)) -) - - - T V0| g | - - - - - - - - - - | scovue
00000 - - - - - - - - - - Q0SB0 | | (000 _ _ _ _ _ _ _ _ _ _ 9005 %60
%N - B - - i} -) -) - ooz_ﬁ me 26000 || 1500 - - - w0 | omoo - - - 70000 > || 954LSED

. 00000 | - - - - - - - - - 10000 > | 95uX¥E0
%W i} B - - - - - - - i} m_m% mmw 0000 | - - - - o000 | 20000 - - - - 9543 60

: . : : £8000 || €6200 - - - oo | TI000 - - - - 9640 280
80000 || - - - - | 1000) 2000 | 8000 - - T || SXYNIO | ey |l giso0s | - - - 800 | L0000 - - - 22107 || 9SUNTED
oot dl I B B 3 = oo | oo B B D || oo | etoo - - - | wao | @00 - - - | 0005 || osuvo

: . ! : 92200 || 0100 - - - |ew00 | 18000 - - - 2ET0E | 955620
$0000 || 82000 - - - | 900 | 20000 - - - - S 180 . :

2000 | exo00 B))) g)))) sNviem| | TO0O | - | emoo - - - - - - - - 1041820
80000 || 92000 - - - - - - - - - sniszeo| | 0000 | - - - - - - - - - - auxLe0
£0000 || 82000 - - - | 5000 | 20000 - - - - sdxateo | | 90000 | - - N - - - - - - - 1043 920
£0000 || 82000 - - - - - - - | 000> - so01080 | | MO0 || - - | 50000 - - - - - - - 1a8a sz
0000 | - | 20000 - - - - - - - R)
65100 | - - - = [e5000 | ¥2000 | T0000 > | TISTOE | 70000 > - X00160| | g | - | aso00 - - - - - - - - Qv
- - - - | 000 | 20000 | 0000 > | 28000 | T0000 > - x0180 | | oo | - | eoroo)) .) .) i}) Qs 720
Y00 9900 | GIG00S | p00 | 61000 | €600 | T900S | WSETOT | TOETOY | TWTOT | BEETOT || AOONLO| | e
61000 || 70000 > | TZ000 | TOODO > | 70000 > | 9TO00 | 80000 | 12000 | 70000 > | 86000 | €6000 | NIOT9L0 : . .

& : : . : : : 0000 | - |00 | - - - - o> | - - - BIX020
15200 | SC100 | €4100 - = [ecs00 | 900 | ov000 N S - 19aYS0| | o0 | - . - - - o wwos |- - oo s | wmeo
a0 | - - - | sowo | a0 - - T wwos | swven| | Q90 |- [OWO M0 | - 00 600 N - - | 00> EIde0
00 | - | oeo00 - - | ewro | 200 | szo0 - | ogroe - zaayzzo| | S0U0 || SO0 BTIO0 L TO000 > -] TO000 > | T0000 > | BE000 I N BINI0
1970 || TOBTOT | SESE0 | OGSO | - | pAOTO | YGTOC | TS0 T | 20T | wEzr0v | 0970 || Teyio| | ol || S000 | BOTTOE | ZEETO T 2rE00) 800) BO00) cd00 | 1000) 6S0L0 | 10000 >) IV 9I0

¥2600 || S2000 | ZS0TO® | ZEETO ® | 4500 | €2T00 | TSO00 | T0000 | T9000 | €5000 | T0000 > || TSISST0
W00 || - | Tmwoo - - = Twwoos | - - - - [[wooomo| oo T < - - - - - - - - - 1L
09200 | 0EC00 | SBYO0 | 9BYO0 | TOS00 ¥ | 22000 | 60000 | 6000 | 89500 | €0T00 - || o960 | oo | - . . i} .) . i})) ~OXETD
97100 || 01800 ¥ | 06000 | T0000> | T0000> | TTT00 | 05000 | STI00 | 10000> | 69000 | €000 || 198v8%0| | oo || -] - } i} - i} -] - 20oa 710
W00 | 2200 | 61000 | T0000 > | TO000 > | $9000 | 0EO00 | 61000 | 0000 > | SE000 | €0000 || 00Md/%0| | oo || - i} - i} i} i} i} - i} i} ~a0d 110
0000 || - - - - - - - - - = [Toawom0| | oo0v0 || - - - - - - - - - - | tconom
52200 || 60800 - - - - |tow0> | - - | eerzot - %090 | | 00000 || - - - - - - - - - - 100V 600
0000 | - - - - Jewwo | - - - - - 56010 | | 00000 | - - - - - - - - - - 1005800
80000 - - - - 85000 | #2000 - - - - OSUOEN | | 48000 || TOOOO > | E¥T00 | T0000 > | G000 | T0000 > | 92000 | #6000 | T000O > | TO000 > | 10000 > || IS¥LL0O
00000 - - - - - - - - - - OAaNVe0 | | 00000 - 10000 > - - - - - - - - TSuX 900
00000 || - | e0000 - - - - - - - - a0t | | g0 | - - - - |aooo | 1000 - - - - 53500
W00 | S2000 | 2100 | TEETOS | ToS00 | 8T000 | 80000 | 1000 | 2107 | 25000 | T0000 > || 10090 | | €1000 | 4000 | 50000 - | 1o000> | oto00 | 9000 | 66000 - - 10000 > | TS840
0000 | - - - - - - - - - - 0650 | | 600 || 67000 | S0000 - |eozoc | G000 | 6600V | TSZTOS | - - 70000 > || TSUNEMD
w000 | - | e0000 - |1es00s | - |zo00 | 26000 - - - 640850 | | €0800 || JS€TO 2 | 0T000 - | ozz0T | #8600 | OZOT | GOETO Y | TOODO > | TOODO > | 00800 | TSuv200
oo | - | zzoo - | o500 - | 10000 > | 61000 - | w00 | To000> || 1anveso| |otooo | - | usiz0cz 10000 > | BBETO € | GZETO € | TO0DO > | T0000 > | 10000 > | 1545700
aeBNy || SISHM | HLINS | 113HS | ONVIN | SdOOT| ¥3AIM | YOVANIT| Svd3 | LI3y6va | SONVTY || Womsdo | |aBemny || SLSHM | HLIAS | T13HS | ONVI | SJOOT | ¥3AIT | YOVdNIT| Svdd | L13yve | SONVTY || omesdo

43

Appendix C

SHRWYILE] GNJD 13048d U} 10} SONS IS sjusWweless pue Wweibold 32z 310e L

'9fize010S 10 SIS BED [2IRASS L SIBWLOLEY DTS B} J0} SONSIIEIS SIBWRIESS L weiBoid ‘9z a[qe L

8TS 1SYT vLTe 09'5 V8'EST 605y 0202 doo| sed R a4 ere 10¢€ ae 8eY 79 a4 doo) kd 511
%0T'EE %0LTE % oY %LL'SE %28TC %USETC %69'Ly suoies)l doo WHEE %60° %00 %60 %8 %88 YET Y suonese)! doo
%Iy 0T %000 %000 9000 %10°€E %268 %000 0106 painduoo %LY'E WHT'E %00'G %Ly %88 %v0'T %6 0j06 painduwoo
%629 9%00°00T %000 9600°00T 9%66'99 98501 %00°00T aj0b %ES'%6 %989 %00'56 %1256 %21 L6 9496'86 9%60'9%6 0j06
%00 %2E0 9000 %200 %100 > %800 %200 Syl %v0'LT %8587 %2097 %00GT %ETIT %ELTZ %6L YT Syl
%S9 %E£6'66 %000 %6 7L %8866 %EZZ9 %60'SS E=INRISTNT] %BT 7L %T0SL %E0'BL %69'LL %8578 %9L°ZL 9%80°09 S3ulnoJ osULUI
75 86 QT 14 9T f741)s 8¢ |0 sedsfire 8¢ €Y g6 Sy 8y 8.7 we |0 sedsbre
%9L Ve %00 9%00°00T %TLST %210 %LLLE %T6Y aupnol jesn %8Y'1e %6672 %.6TC wleew %2y’ 8T %ZLe %26'TE auno Jesn
%10 %500 %100 > %290 %100 > %00 %IT0 s|oainpeooid %E8T %19T %L6'T %66'T %LET %621 %eLT S0 2npsoo.d
%920 %pTT %200 %100 > | %00 > %120 %ST0 SILBWRRESS JI %E80T %TL 0T %806 %LE6 %v0TT %I YT %2901 SIBBE JI
€67 95 86T 052 e 00G S0 1dxa sed siedo 65€ 09¢ e qTe 0L 06 80 1d% sed siedo
%9T'/8 %6768 %8226 YEI VB %TL18 9%BL'89 %LE 06 suossaudxe %06'87 %99 %0675 %L7SS %82 05 9%56'GE %9E'TS suossaiche
%82l %1801 %l 'L %LE'S %6 T %2z TE %E96 Skjsue.) Alowew %0T'TS %9E'ES %0T Ly %EL Y %L 67 %5079 %9’ Ly skstel) Alowsw
9%S'99 %08'99 %9. 65 %8529 %.T'8L 9%8E'8L %2075 sjuswbIsse 9%L6'99 %7099 %€6'89 995°0L 929'89 9456'65 %pL'L9 siewubisse
OTXZLEB || ODXIF9 | (OTXIST | O1%GS8T | O1X62CS | 0TOTVE | OTX7/0T penoexe sdoqy JOTXGYST || QOTXESET | OTXC96T | LOTXGEET | OTXBIE | OTX86T ,0TXG69'G penaexe sdogy
%rETE %10°€E %Er'6e %262 %EBSE %6y %L76C 'sido yie %0ETY %60y 9685 '6¢ %BEEY %LESY %Iz 2y %l Ty skdo e
%09TL 92588 %80Ty %22'€8 %ELEL %26YL %wT'L9 PaINIsxa $Y00(q %10'8E 9%96'7¢ %88°E %2y 9E %IY'SE %68'7E %8Y'TS PaInIexe S00(q
15°€ vTe 14 80 387 187 o7y 01 sod sau| ez e ez ez e e ere 00(g sod sau|
189 ShoT w0z 209 1.5 865 €Ll SYoo(q 9seq 709 7709 7709 709 709 709 709 $X00/ 9158¢]
414 812¢ 1494 G581 i 6572 207E azss welboud 09977 09977 09977 09977 099vT 099vT 09971 azs welboud
abe Ay 1103dS addL %04 acody aeon WS34AQ wesfoud abesny || OLNOYOL | 1034¥3d | ZdWYSOW | ¥S9Ia 370d19 | YYVYWHON3E ueiboid
056 18657 8%6.2 S9'6T SLTD %8 1077 dooj jad ey 16721 128 GL'e9T 00100¢ 00552 gre 91 dooj sad ey
%8017C %GEZE %96 %19'9¢ %9626 %L6'6¢ 9%99'6T suofies) doo| %8L'6T %01’ %9L'8E %06'67 %IZET %97’ %S6'ET suofese)! doo|
%000 %000 %000 %000 %000 %000 %000 0106 peinduwoo YETY %0E0 %000 %990 %000 %08'ST %708 0306 peinduwoo
%00°00T 9%00°00T %00°00T 9600°00T %00°00T 9600°00T %00°00T 0106 %.856 %0L 66 %00°00T 67E 66 9%00°00T %0 8 9%96'76 0j0f
%8LE %200 9%€8'T 9%9r'8T 9%€L0 %62T 9%9€°0 syouelq 9%85'L %2r'ee %100 > %100 > %S %.2T %057 Sk
%IZTY 9498'66 %E0'He %8T0L 9466'6. %66y %IZ Ly S3UIN0J o8ULUI %S5TS %89 9%69'67 %660 9600'00T %09'87 %L Ty SaulINoJ o8sULU]
89 067 00T Yy e e 91 |0 sedsfire 0re 797 00T 1709 00T 9T 1y |0 sedsfire
%6L'8E %L 0 %L6'GL %28'6C %1002 %e0%S %6LTS auInoJ Jasn %G8y %92 TE %IE0S %1066 %100 > | %0r'TS 9%EL'8S auInoJ esn
%.9°€ %100 %9L 0T %9L0 %567 %29t %060 S| @inpeoosd %T0T %180 %.0T %.T0 %100 > %6CT %89C S| @inpeoosd
%919 %10 %8'T 966587 %009 %058 %66'T SIBUBES JI %ET'S %66' %100 %100 > %S UETT %66'+T SIBLLBES JI
8re SLe 6LT Ere S6T 0r9 4 1dxe sed siedo 657 L6 Gee 002 7¥4 6y 1y || dxe edskdo
%000L %196 %EL'E6 %LE Y %0L 06 %I6EY %S9'TL suossaudx %8I TL %vE 6T 9%96'S8 %0566 %706 %6216 986 07 suossaudxe
%.9'8¢ %98°ey %09 9%69'5E %0E6 9%660'95 %GE 02 Skjsuel) Alowew %2E'8C %9908 %S0'HT %050 %969 %TL8 %2065 sRsLel} Alows
%I 905729 %1978 9459'SE %69€'SS %19 %0T'LL SuswbIsse %299 %8E'SS 9%9T°09 %6 67 %2E'9L 9%78'76 9488°€9 SiuswubIsse
OITOE || OTX0/9G | OT4T0T | (0TX9827 | (OTX08L | g0T¥66L6 | GOT*GBET penosxe sdoqy QOIXT00G | 0TXG00T | OTXITLS | (OTXZST | GOIXT6TT | (OIX6768 | GOTXTHZ9 paincexe sdoqy
%GT'SE %807 %E607 %rT'8E %S LT % cE Y%wLTE skdo e %Ly %IZEr %LYTE %LY'8T %S Ty 9666'99 %89y skdo e
9%050L %€ES98 e 6S %.6'GL %0z'8L %69'LL %S S paingexe $00[q %BB'EL %2E'EE %1966 %85°€8 9%20°€6 9%EL'69 %L0%9 paIngexe $00[q
&l ore Ty €L 137 ore 'S¢ 00/ sod saul e e 10¢ 0Lz €Ce €29 ae 00(g sed saul|
v 919 €88 995 91z 0eS g9t Y00/ 2158 (U132 709 85C 19 er 168 60/T Y00/ 9158q]
ewe 8067 6G9€ (144 766 89/T 79Ty azis weiboud 98¢ 099¢T 6L 187 6ET 860¢ 625 azis welboud
abe ey Nv300 vNag MoVl 9an aad wav uejboud afelry || 3000ATID | LVSYN | 00EXIMLYIN | ALVOWOL | ddddd onaod weibod

.wv_‘—mc._coc.mmwm algel
qLisIg

Jo uonn

fiewyLe
iBo| pue o
009e suolesdo feoll
OH m: _Uh

dA) erep

d pue s

010!

841 Joj uo!
J3ds

'gzo|0eL
pue weibold :g¢
SIS SIBUBER Bl
WS 3y} 10§ SIS QS_Eu_Q.%_
eolfol suoneoljdde e iz SuotEssl|
. ue - " . dwiod
%s8T sreduio oUsg RLALAS P oo oomﬁ.o L Rl olob
%580 %9T 0T * Syewy = mﬁ._wm%n % goo.oa SULelg
T ¥ 0 / et o %000 %000
oot %0 209 e&w.m . P %eg 6T 0o A“%m.oa \oo\%_o > LT SBUIU
; " %CE6 %000 %6) 98T %.€'8T " 00T €T - sauf sbe
%697 %eer 0T %000 %80T %9T'TE -pee w, Bl 6€ omm.ma % 9%98'SY %0000 - %6 %150€ [z Eso 1 Jesn
. % o 0 : % 0 % 9%69 . _ aum d
%t : 0 g 53 ey (eianop %00 WSV %000 2N’ ol
; €88 %00 %8Y %8E . . 6T -) aINpeo
%' %658 wwoo.o m o OM 0% Qmﬂv 16l %02 25 SEdWoo Q_u:.wm %00 ﬁwwm 9%9¢ %000 00T 1| e m% 0 m_mwcmcmmm i
" . . ‘I8 Wy %Ti'9Z 14 % %€E8) % 0000 T %0000 % S!
% 9 % ab v %) . . ‘00T 0 > 0 .
| . . T°09 -) 6.0 * %207T 67 900700 %T0 0665 " SUOKSSs.
%286 %99'¢E %8799) %€ 88'GC 000 % : % L) . - e o
ol b Y6996y S ot o %e0T e a2 s 10 %6LS & el N %E%@
£y WTEEY % 0 0 0 %65 TL e %8658 %1 wee | 99 7% Sk
L Gy %LE %00 %Il %s€ %565) %891 Py 0T %9 % aTL 000 S40qY
%€ %G8'/7 %000 %/£0 %eZ0 %T6'0L - . asedu o2 0% VT ﬁmm.mv 04e8'e oz %€ = pain sido "Gue
sl | e s Bt e | oz %000 y i 052 o occtd (VII): | ovow e
%000 %LT0 %EE0 %I YL % | e %000 %000 . 9T %0709 %9795 " Y%y 5| oveo %1095 Bso 1q jod sau|
%0E0 %620 %6€07L. %ie %000 %000 %000 . %ILY oyee 9L 00y Y659 YeEL 06 » p0[q 282q
%910 %L %598y %000 %000 %000 %000 o %62 S Y09 00 Y %£9'9¢ 900007 S0E o upiod
%0L2, %G¢'SS %000 %4000 Qmoo.o o\Moo.o o\ooo.om.u._“ s o du 965589 0TX9/9T %Z9T %00°00T 00y 6T oz
%208 %000 %000 %000 %000 %0000 %100 ardwoo LOT6E86 i %0126 %1 6 vep weioid
oy e rco Qi It 00> | w0 > iotd Y HLEEE or | w2 « % §4001
%000 %000 %000 Qooo.ooH > | %100 %000 o\coo.o %LT'L6 19 {70 34 ANV
%000 %000 %0000T %100 %000 %000 %000 ' e 6e 9% RELS
0 %00°00T %100 > 00 0 0 %000 - pue + ' 6L 281 LINS
Qooo. 0T 4 00 > " %0 . o\ooo. o\ooo. 2000 (e1Bus) . 57 M H Jod Joyl
%0070 0 %T %000 %000 %000 %000 % %000 ox 0 S13H doo| 1 doo|
%10 %000 %000 %000 %000 %000 ECRIT abeony ovop suoieR)!
%000 %000 %000 %000 %000 0 %000 SUVIWHON % %2905 o6 85%%
%000 %000 %000 o\oooO 0 - £ooo 370419 B e %8967 %000 LoUesq
%000 %000 %000 o %0 N1 w0l ! Ay Yoes8y %000 %000 > !
. o " . { .
Qooo.o %000 - %00 d | 2dWYSO : %LE0 ardwm oL %0L9Y %000 %0000 %000 SUIN0I DBUN]
7000 0 o L | 103443 %1c0 %E9Y = 909 %501 %000 900001 %E9 50 o 2050 n
gom< 0LNOYO %100 > %280 Nxﬁ“ 120 | %IS Ty 700 ﬁ“&o.ooﬁ %aT 0T 7000 M\mw aupnos Wo ol
o ‘0 p § y - . - . |
ae - 9400 %0Le %600 %L 0T H %200 92666 %821 %000 02 wr'G6. m_mom:mwm T
- %100 %T00 > %000 %220 %LY'Sy - pue) gl %B66L. %TE0 %oTE8 00T %0000T %010 S
Y90 %000 %000 UGET %9TeG %0S6E (eranop %€ 1215 'S 9400001 eel %000 sdsedo
0 . 0o 0 > ey 9 %078 00 % 065 %0000 > % e)
%9t L it %100 oo | iz L6 | Sredus it s 50 | w0 e 80 1 housn
P %000 %980 O\ooo.om %69 wm.B o\wN wpo'1L tm e woLer g%.o %2867 e %0000 SRISUeN bow_mm%m
%ST0 %5907 %06'TS %000 - % %6'8E %000 WiOEL %E0T %8eT ot %0976 %000 sjl = =
%8¢ %086 s | ok i %9 : %190 %gsT 0z e | o G267 PoreSesIoNY
%92 %biey - %6L'S %6T'ST %000 A %000 _ ucwmm " %rg T w7 w\ 006 goum 76 %269 196869 siado v__o_o q
. ; - ' X X : o . - S
R Y00 0 o oot e % 652 | e o0tz s s
%E8 %1108 %000 %800 %00 o0 £Nw 102 a aredu %0169 o %80°05 016366 W\cmm.mw %40000T ¥0[q qo8eq
%9 %000 %000 gmm_qw 000 . Vo %000) %0E'9E %200, ODOVT L %eew %IT L6 9%E B
%000 %200 %000 %88 mm_o o %000 %000 %95 6E OTXTILT 612 %0000T oz 8 azss
%9T'T c\ﬁm.o %26'66 - £ o\&o.o c\ao.o goo.o H OTBIST w\&v.mv 088 T o1 02 weibo
%eT'S %¥6'89 - %68 %000 %000 %000 %000 - n:mQEoo ﬂ\ 95 %8L'Z6 o7 T vz VY
%E6%9 HLES %100 %000 w00 | o000 e o o s p g1 1 358 | SO
%6T'8T %000 %ET %000 o\%o”o %000 o 900 ardwoo o@ 12 vis vy e 11
W00 %000 %000 Qooo”o %000 o %00 %S0T J Wi GoET OVANI]
%90 %000 %96'2E %000 00 o\.%o %000 %000 %G 43N |
%000 %000 %0609 %0 %000 %000 %L0' : afieony
%Ly'9T %00'00T 5 %866 %000 %000 %000 %8T'L - pue + y
weree. %T00 W20 %000 9%40000T %000 WSLLS 1| @fus) eo
%991 %000 %000 %000 %000 %000 0 | %092 weibo
%eLe %000 %958 Yoo e w.o > e&ou %n_oo
%000 %000 %628 %000 %! dddd
% . 'e8 %000 NOL
%98/ goo.o %GO'E: : W | ALYD
WIS %000 0| %Eo 00EX LY
%2695 %00 IVSYN
%ST'T A0JATYO
abe BAY 3

45

[eo/es au 1o} uossioaud pue adAy erep o} Bulpicode suofesedo a1Bo| pue dlBLIYLe JO UOANGLISIA “TEd(de L

swesBoud |ews

%02E %000 %S L %000 9%05°8 %000 feoiboj
%0EY %000 %2y %000 %000 %000 akedwoo
%000 %000 %000 %000 %000 %000 *
%SE'L %000 %LEL %000 %000 %000 /
%076 %000 %076 %000 %000 %000 "
%06'8L %000 9%06'8L %000 %000 %000 -pe +

%060 %000 %05 %000 %000 %000 || (elanop) o
%08'8C %TL'SC %61 2T %0005 %5806 %6CS akedwio
%000 %000 %000 %000 %000 %000 *x
%080 %000 %990 %000 %000 %580 /
%Sr'8 %LLEE %EY'S %000 %000 %800 x
%Er'29 %2507 %ELL %0005 %ST 67 %656 -pue +

9%S6'67 %2L'SE %8598 | %00°00T %TLIT %L 0T seBaul
%0000T || %000 %000 %000 %000 %0000T || ardwoo
%000 %000 %000 %000 %000 %000 xx
%000 %000 %000 %000 %000 %000 /
%000 %000 %000 %000 %000 %000 '
%000 %000 %000 %000 %000 %000 -pue+

%S00 %000 %000 %000 %000 %920 ¥o[dwioo
%89 %000 %26'€T %000 %9ETT %60C akedwoo
%910 %000 %100 > %000 %000 %990 xx
W16 %S5 YT %90 %000 %000 %S5T /
%SLTE %862 %9v°0C %000 %6y %9L'9€ %
%0T'TS %1955 %ST Sy %000 %0L Yy %685 -pe+

%68'Sy %8279 %01 %000 6L YL %7068 || (IBus) ol

aferny || SITHM HLINS RRELTS ANy Sd001 uesfoid

%6 %000 %.90 %000 WCETE %000 Eoibo|

%000 %000 %000 %000 %000 %000 aredwoo
%000 %000 %000 %000 %000 %000 .
%000 %000 %000 %000 %000 %000 /
%000 %000 %000 %000 %000 %000 *
%000 %000 %000 %000 %000 %000 - pue +

%000 %000 %000 %000 %000 %000 || (elanop) s
%8Sy %EL'S %995 %82 L6 96669 %000 aseduwoo
%000 %000 %000 %000 %000 %100 xx
%970 %€80 %000 %000 %000 %000 /
%09°S %520 %SL'1Z %000 %200 %000 %
%SE '8y %6T°€6 %68'ST %L %6662 966'66 -pee+

%20y %.0°€ %887 %66'66 %89'8L %2581 Bl
%000 %000 %000 %000 %000 %000 areduwioo
%000 %000 %000 %000 %000 %000 “
%000 %000 %000 %000 %000 %000 /
%000 %000 %000 %000 %000 %000 *
%000 %000 %000 %000 %000 %000 -pe +

%000 %000 %000 %000 %000 %000 ¥9|duioo

%.50 %8Y'T %TY'T %000 %000 %000 asedwod
%.00 %60 %000 %000 %000 %000 xx
%IY0 %€E90 %97'T %000 %000 %000 /
%Iv'9e 980°0€ %9Y Ly %000 %000 %S S x
%057L %2v'L9 %9967 %0000T | %0000T | %SY'Sy -pee+

%S TS %2696 %Sr6 | %I00 > | %00 > %By'18 || (Ibus) ol

dIAIT [MOVANIT | SW¥3 | L13XSvE | SOWVY || umibod

‘Syewyoueg anio
1981 8u Joj uosspoaid pue adAy erep o} Buipicode suopesedo [a1Bo| pue dBLILALE JO UOANGLISIA :0E B|de L

%100 %100 %100 > %100 > %100 > %100 > %100 > Eotbo|
%82'SC %100 %NvST %00°00T %000 %000 %000 asedwod
%80 %000 %000 %000 %Ty'e %000 %000 *x
%LT'9 %11 %LT0 %000 %0v'e %000 %000 /
%CT'68 %89°€S %L0'6Y %000 %L8'€S %000 %000 *
%9v'82 %8¢'SC %CC 6y %000 %CE6E %000 %000 -pue +

%00€E %180 %6¢°L6 %T00 > %v8'66 %000 9000 || (lanop) jeas
%L9€ %60 %06CT %82'S %080 %610 %E6'T asedwod
%000 %000 %000 %000 %000 %000 %000 *x
%200 %000 %000 %0T°0 %000 %0T°0 %000 /
%650 %18¢C %000 %ET0 %200 %950 %200 *
%0L'S6 %SC'9%6 %0728 %8Y'76 %L1'66 %ST'66 %3086 -pue +

%L98 %68 %19¢C %6€°0 %c00 %TE9E %88 Rbow!
%000 %000 %000 %000 %000 %000 %000 asedwod
%000 %000 %000 %000 %000 %000 %000 *x
%000 %000 %000 %000 %000 %000 %000 /
%0005 %000 %000 %000 %000 %00°00T %000 *
%0005 %00'00T %000 %000 %000 %000 %000 - pue +

%SL'0 %eS Y %000 %000 %000 %100 > %000 %3 (dwod
%c8'8T %610 %05CT %c00 %CY'66 %900 %9L0 azedwod
%€EE0 %100 %000 %L6'T %000 %000 %000 *x
%9ET %670 %000 %EE'S %L.50 %187 %100 /
%SECe %6y v %000 %06'5e %000 %TSY9 %02 61 *
%CT Ly %E8YS %0928 %LL'9G %T00 %€9°€e %8009 -pre +

%95'LS %SL'06 %T00 > %T9'66 %10 %69°€9 %9T'T6 | (EIBus) e

1/03dS addl ¢S04 acody deon NS34Ad ureibold

%950 %100 %100 > %00°€ %T00 > %100 > %E0 Eoibo|
%TC'S %000 %0L°0 %9T°C %T0'8T %000 %000 asedwod
%000 %000 %100 %000 %000 %000 %000 *x

%NETT %000 %EV'C %0¢°L %T9C %EEEE %000 /
%6y 07 %000 %S¢ 8y %€0'TS %9¢'6¢ %EEEE %000 *
%68 %000 %198y %T9'6E %1009 %EE'EE %000 - pue +

%S9°ey %000 %906 %S€°L9 %5E'96 %617 %000 || (lanop) jeas
%€9'LC %300 %1€ %9L°6L %99°€T %T9'TC %vS'Le asedwoo
%000 %000 %000 %000 %000 %000 %000 *x
%980 %900 %000 %000 %000 %L9C %ir'e /
%C6°€T %SL 8T %€0'SC %E6Y %000 %8v'6¢ %9E'S *
%LG'LS %ST'18 %SLTS %02'ST %vE'98 %ve o %3979 -pee +

%95°€C %eSTL %v6°C %Ly %599°€ %80°CE %TL'9 Rbow
%000 %000 %000 %000 %000 %000 %000 asedwod
%000 %000 %000 %000 %000 %000 %000 *x
%EETT %TC %000 %000 %000 %000 %052C /
%v9'Se %62'9C %000 %000 %000 %000 %00°'Sy *
%6615 %ISTL %000 %000 %000 %000 %05CE -pue+

%6EC %S€'0C %000 %000 %000 %000 %100 > y(dwoo
%LC6Y %100 %0000T %6876 %0000T %S¢0 %L¥'0 aseduwiod
%TT0 %000 %000 %000 %000 %000 %990 *x
%ECT %9 %000 %E00 %000 %90 %58 /
%8T°LC %0629 %000 %90'S %000 %S85 %L20V *
%02'TC %€9Ce %000 %100 %000 Y v %ST'09 -pee +

%€8'82 %078 %T00 > %8T'S %T00 > %v.L'99 %9626 || (eIbus) as

abe oAy Nv300 vNag Hovdl Oan a0 nav ueiboid

program

DODUC

FPPPP

TOMCATV

MATRIX300

NASA7

GREYCODE

Average

simple
arrays

76.34%
23.66%

82.63%
17.37%

54.51%
45.49%

25.19%
74.81%

22.711%
77.01%

64.52%
35.48%

54.31%
45.63%

1dim
2dims
3dims
4 dims

68.69%
31.31%
0.00%
0.00%

99.98%
0.02%
0.00%
0.00%

0.00%
100.00%
0.00%

0.00%

0.00%
100.00%
0.00%
0.00%

10.98%
55.18%
23.39%
10.45%

100.00%
0.00%
0.00%
0.00%

46.60%
47.75%
3.89%
1.74%

program

BENCHMARK

BIPOLE

DIGSR

MOSAMP2

PERFECT

TORONTO

Average

simple
arrays

74.12%
25.88%

67.27%
32.73%

74.80%
25.20%

76.15%
23.85%

69.80%
30.20%

71.90%
28.10%

72.34%
27.66%

1dim

2dims
3dims
4dims

99.99%
0.01%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

100.00%
0.00%
0.00%
0.00%

program

ADM

QCD

MDG

TRACK

BDNA

OCEAN

Average

simple
arrays

50.72%
49.28%

31.27%
68.73%

22.67%
77.33%

55.87%
44.13%

75.79%
24.21%

61.75%
38.25%

49.67%
50.32%

1dim

2dims
3dims
4dims

60.46%
10.60%
28.94%

0.00%

87.50%
9.11%
3.39%
0.00%

100.00%
0.00%
0.00%
0.00%

83.83%
16.12%
0.05%
0.00%

89.76%
10.24%
0.00%
0.00%

92.12%
7.88%
0.00%
0.00%

85.61%
8.99%
5.39%
0.00%

program

DYFESM

MG3D

ARC2D

FLO52

TRFD

SPEC77

Average

simple
arrays

37.02%
62.98%

60.31%
39.69%

44.94%
55.06%

26.01%
73.99%

28.54%
71.46%

28.46%
71.54%

37.54%
62.45%

1dim

2dims
3dims
4dims

13.70%
83.98%
2.32%
0.00%

65.97%
29.37%
0.90%
3.77%

0.08%
43.50%
56.43%

0.00%

1.00%
15.13%
83.87%

0.00%

24.96%
75.04%
0.00%
0.00%

57.72%
42.18%
0.09%
0.00%

27.23%
48.20%
23.93%

0.62%

program

ALAMOS

BASKETT

ERAS

LINPACK

LIVER

Average

simple
arrays

13.21%
86.79%

47.35%
52.65%

29.84%
70.16%

29.02%
70.98%

74.94%
25.06%

38.87%
61.12%

1dim

100.00%

47.19%

100.00%

94.46%

67.40%

81.81%

46

0.00%
0.00%
0.00%

52.81%
0.00%
0.00%

0.00%
0.00%
0.00%

5.54%
0.00%
0.00%

29.06%
3.54%
0.00%

17.48%
0.70%
0.00%

2dims
3dims
4 dims

LOOPS

36.95%
63.05%

54.89%
40.20%
4.91%
0.00%

MAND

100.00%
0.00%

0.00%
0.00%
0.00%
0.00%

SHELL

53.71%
46.29%

100.00%
0.00%
0.00%
0.00%

SMITH

48.86%
51.14%

99.15%
0.85%
0.00%
0.00%

WHETS

77.50%
22.50%

100.00%
0.00%
0.00%
0.00%

program

simple

arrays
1dim
2dims
3dims
4 dims

Average

63.40%
36.59%

88.50%
10.27%
1.23%
0.00%

Table 32: Distribution of simple and array variables for the SPEC, Perfect Club and several small bench-
marks.

Appendix D
DODUC FPPPP TOMCATV
System real pred error real pred error real pred error
(sec) | (sex) (%) (sec) | (sec) (%) (sec) | (sec) (%)

IBM RS/6000 530 135 125 -7.56 93 101 +9.11 196 244 | +24.62

MIPS M/2000 187 208 | +11.69 247 239 -3.21 452 415 -8.14

Motorola M88k 309 271 | -12.42 511 313 | -38.78 556 422 | -24.04

Decstation 5400 330 325 -1.38 625 480 | -23.18 619 583 -5.92

Decstation 3100 352 346 -1.52 664 510 | -23.10 674 648 -3.76

Sparcstation | 344 341 +0.06 361 446 | +23.43 571 603 +5.69

VAX 3200 1232 | 1078 | -12.46 || 1476 | 1272 | -13.82 || 1829 | 1735 -5.13

VAX-11/785 2114 | 2397 | +1341 || 2217 | 2708 | +22.20 || 3272 | 3535 +8.04

Sun 3/50 (68881) 3313 | 3736 | +12.76 || 5396 | 6669 | +23.56 || 6707 | 6734 +0.40

average +0.29 -2.64 -0.92

r.m.s. 9.72 22.25 12,57
MATRI X300 NASA7 SPICE2G6 average | r.ms.
System real pred error real pred error real pred error error error
(sec) | (sec) | (%) (sec) | (se0) (%) (sec) | (se0) (%) (%) (%)
IBM RS/6000 530 630 404 | -35.85 1601 1815 | +13.36 2438 3385 | +38.85 +7.09 | 24.90
MIPS M/2000 816 614 | -24.77 2906 2634 -9.36 4576 4539 -0.81 =577 | 12.35
Motorola M 88k 651 538 | -17.28 - 2964 - - 4237 - -23.13 | 26.17
Decstation 5400 1017 863 | -15.17 3695 3824 +3.49 3994 5462 | +36.76 -0.90 | 19.01
Decstation 3100 1176 922 | -21.64 4103 4207 +2.53 4102 5702 | +38.99 -1.42 | 20.60
Sparcstation | 1300 803 | -38.21 5118 3906 | —23.68 3594 4911 | +36.64 +0.66 | 25.64
VAX 3200 3270 | 2251 | -31.17 || 12891 | 11406 | -11.52 || 12723 | 15289 | +20.16 -8.99 | 17.72
VAX-11/785 5931 | 4171 | -29.68 || 22457 | 20794 —7.41 || 25456 | 30533 | +19.94 +3.49 | 20.11
Sun 3/50 (68881) 7674 | 7149 -6.83 || 36620 | 41310 | +12.81 || 20973 | 27671 | +31.94 || +12.44 | 18.02

average -24.51 -1.77 +28.93 -1.20

r.m.s. 26.36 12.77 31.96 20.63

Table 33: Execution estimates and actual running times for the SPEC benchmarks. All real times and predic-
tions are in seconds; errorsin percentage.

a7

ADM

QCD MDG TRACK BDNA OCEAN
System real pred error real pred error real pred error real pred error real pred error real pred error
(sec) | (sec) (%) (sec) | (sex) (%) (sec) | (seq) (%) (sec) | (sec) | (%) (sec) | (se) (%) (sec) | (sec) (%)
CRAY Y-MP/8128 114 98 | -14.03 0 93 +3.33 4928 4511 -8.46 144 139 -3.47 1357 1338 -1.42 521 524 +0.57
IBM RS/6000 530 208 165 | -20.67 121 134 +9.70 1209 1558 | +28.86 - 49 - 307 288 -6.18 1025 1206 | +17.65
MIPS M/2000 424 426 +0.47 131 176 | +34.48 1796 2254 | +25.50 - 71 - 733 582 | -20.60 1618 1722 +6.47
Motorola 88000 - 407 - 175 205 | +17.41 3005 2989 -0.54 - 82 - - 823 - 1510 1157 | -23.42
Decstation 3100 649 657 +1.29 202 248 | +23.02 3212 3705 | +15.34 - 111 - 1034 929 | -10.12 2524 2682 +0.62
MIPS M/1000 715 723 +1.11 238 328 | +37.82 3026 3979 | +39.49 - 116 - - 978 - - 2968 -
VAX 3200 1865 | 1659 | -11.05 || 1060 909 | -14.24 || 13166 | 12502 -5.04 337 312 +7.41 3988 3162 | -20.71 || 10628 | 11250 +5.85
VAX-11/785 3324 | 2883 | -13.27 || 2141 | 1701 | -20.55 || 26401 | 29037 +9.98 654 667 +1.98 6333 7446 | +17.57 || 13651 | 12230 | -10.41
Sun 3/50 (68881) 5964 | 6353 +6.52 || 2252 | 2966 | +31.71 || 29717 | 30273 +1.87 836 994 | +18.90 || 11986 | 10786 | —10.01 || 39505 | 42015 +6.35
average -6.20 +13.63 +11.81 -6.20 -6.89 +0.46
r.m.s. 10.99 24.01 19.66 10.35 14.73 11.65
DYFESM MG3D ARC2D FLO52 TRFD SPEC77 average | r.ms.
System real pred error real pred error rea pred error real pred error real pred error rea pred error error error
(sec) | (sex) (%) (sex) (sec) (%) (sec) | (se) (%) (sec) | (s=0) (%) (sec) | (s=0) (%) (sec) | (se) (%) (%) (%)
CRAY Y-MP/8128 131 103 | —-21.37 2966 2174 | -26.70 3337 3025 -9.34 158 136 | —-13.92 803 611 | -23.91 516 431 | -16.47 -11.27 | 14.68
IBM RS/6000 530 - 266 - - 6098 - - 1516 - 441 635 | +43.99 403 360 | -10.66 901 1241 | +37.74 || +12.55 | 25.44
MIPS M/2000 407 370 -9.10 - 9041 - 3484 2470 | -29.10 - 853 - 577 566 -1.87 - 2169 - +0.78 | 20.12
Motorola 88000 358 304 | -15.02 - 7606 - 3216 2788 | -13.32 742 847 | +14.17 522 496 -5.07 - 1628 - -3.68 | 14.55
Decstation 3100 604 555 -8.16 - 13752 - 5372 3923 | -26.98 || 1112 | 1310 | +17.84 876 871 -0.56 - 2825 - +5.26 | 11.79
MIPS M/1000 651 610 -6.29 || 19019 15089 | -20.66 - 4126 - 1271 | 1406 | +10.62 965 935 -3.10 - 3717 - +8.43 | 2261
VAX 3200 1136 | 1243 +9.41 - 28850 - - 10017 - 2822 | 3126 | +10.77 || 2047 | 2069 +1.07 || 10628 | 11250 +5.71 -1.08 | 10.52
VAX-11/785 2059 | 1936 -5.97 - 50743 - - 20082 - 4335 | 4928 | +13.67 || 3581 | 4153 | +15.97 || 17846 | 17523 -1.81 -0.72 | 12.65
Sun 3/50 (68881) 4496 | 4986 | +10.89 - 146824 - 33768 | 33556 -0.63 || 8024 | 9710 | +21.01 || 8118 | 7715 -4.96 - 28616 - +8.17 | 14.61
average -5.70 —-23.68 -13.10 +14.33 -3.68 +6.29 +1.46
r.m.s. 11.80 23.87 16.67 21.34 10.57 20.81 16.69

Table 34: Execution estimates and actual running times for the Perfect benchmarks. All real times and predictions are in seconds; errors in per-
centage. The measurement missing couldn’t be obtained due to compiler errors or invalid benchmark results. Benchmark MG3D was not
executed on some system due to insufficient disk space; the program requires a 94 MB file. In some machines, ARC2D, using 64-bit dou-
ble precision numbers, gave arun time error. Results for TRACK were invalid in several machines.

514

ALAMOS BASKETT ERATHOSTENES LINPACK LIVERMORE MANDELBROT
System real pred error real pred error real pred error real pred error real pred error real pred error
(sec) (sec) (%) (sec) | (sec) (%) (sec) (sec) (%) (sec) | (seq) (%) (sec) (sec) (%) (sec) (se) (%)

CRAY X-MP/48 63.8 58.7 -7.99 0.70 0.66 -5.71 0.149 0.161 +8.05 8.05 8.29 +2.98 15.3 16.9 | +10.46 1.002 1.057 +5.49
IBM 3090/200 80.5 734 -8.82 0.66 0.78 | +18.18 0.130 0114 | -12.31 - 9.77 - 195 185 -5.13 0.220 0.226 +2.73
Amdahl 5840 345.9 327.2 -5.41 2.23 267 | +19.73 0.463 0.408 | -11.88 - 44.43 - - 92.6 - 3.344 3.546 +6.04
Convex C-1 236.1 243.6 +3.18 2.75 232 | -15.64 0.650 0.580 | -10.77 354 3148 | -11.07 67.9 69.9 +2.96 3.948 3.380 | -14.39
IBM RS/6000 530 102.2 122.9 +20.25 1.30 1.08 | -16.92 0.300 0.280 -6.67 14.8 13.74 -7.41 - 28.5 - 1.210 1.230 +1.65
MIPS M/2000 118.3 138.6 +16.95 1.00 1.13 | +13.00 0.390 0.307 | -21.28 12.7 1450 | +13.94 30.0 38.6 | +28.80 1.500 1.592 +6.00
Motorola M88k 115.1 131.6 +14.34 1.40 122 | -12.86 0.300 0.210 | -30.00 13.6 16.40 | +20.59 36.9 36.0 -2.44 1.800 1.770 -1.67
Sparcstation | 205.9 192.8 -6.39 1.32 1.36 +3.03 0.370 0.350 -5.41 21.9 21.17 -3.33 50.2 51.3 +2.17 2.400 2970 | +23.75
VAX 8600 265.3 266.7 +0.53 2.82 3.24 | +14.89 0.750 0.603 | -19.64 41.6 3543 | -14.83 88.2 88.7 +0.57 3.490 3.614 +3.55
VAX-11/785 701.7 758.3 +8.07 7.38 8.27 | +12.06 1.733 1.726 -0.40 99.7 | 106.15 +6.47 2233 2559 | +14.60 11.36 12.82 | +12.85
VAX-11/780 1581.7 | 1702.7 +7.65 || 14.85 | 16.17 +8.89 2.766 2462 | -10.99 || 220.1 | 227.53 +3.38 611.0 653.5 +6.96 33.42 32.13 -3.86
Sun 3/50 6273.2 | 5795.8 -7.61 7.06 | 8315 | +17.78 0.900 0.916 +1.78 || 763.7 | 752.96 -1.41 2457.0 | 2583.7 +5.16 || 163.94 | 165.81 +1.14
IBM RT-PC/125 3881.9 | 3810.0 -1.85 6.20 740 | +19.35 1.100 1354 | +23.09 || 473.9 | 448.47 -5.37 1610.1 | 1573.8 -2.25 || 105.43 | 104.09 -1.27
average +2.53 +5.83 -7.42 +0.36 +5.62 +3.23
r.m.s. 10.04 14.58 15.05 10.09 10.78 9.12

SHELL SMITH WHETSTONE average r.m.s

System real pred error real pred error real pred error error error

(sec) | (sec) (%) (sec) (sec) (%) (sec) | (se) (%) (%) (%)

CRAY X-MP/48 0.683 | 0.593 | -13.18 66.7 65.77 -1.39 || 0.302 0.296 -1.99 -0.36 7.37

1BM 3090/200 0.440 | 0.395 | -10.23 53.2 453 | -14.85 || 0.350 0.335 -4.29 -4.34 10.82

Amdahl 5840 1.893 | 1.965 +3.80 198.0 185.4 -6.36 || 1.697 1.942 | +14.44 +2.91 11.08

Convex C-1 1828 | 1.770 -3.17 193.1 197.2 +2.12 || 1111 1.170 +5.31 -4.61 9.14

IBM RS/6000 530 || 0.920 | 0.900 -2.17 90.0 88.1 -2.11 || 0.350 0.390 | +11.43 -0.24 10.83

MIPS M/2000 1.640 | 1.590 -2.44 132.4 1125 | +15.05 || 0.480 0.480 -0.06 +8.72 15.74

Motorola M88k 0.800 | 0.760 -5.00 120.6 944 | -21.72 || 0.620 0.530 | -14.52 -5.92 16.37

Sparcstation | 0.820 | 1.050 | -28.05 145.7 134.1 -7.98 || 0.760 0.710 -6.58 -3.20 13.14

VAX 8600 2.233 | 2.140 -4.16 238.7 230.0 -3.64 || 2.870 2.631 -8.33 -3.45 10.22

VAX-11/785 5.800 | 6.110 +5.34 683.9 691.6 +1.13 || 7.950 7.385 -7.11 +5.89 8.89

VAX-11/780 9.183 | 8.803 -4.14 || 1087.5 | 1018.8 -6.32 || 21.57 21.74 +0.79 +0.26 6.59

Sun 3/50 3.140 | 3522 | +12.17 914.8 877.4 -4.09 || 34.24 39.50 | +15.36 +4.48 9.47

IBM RT-PC/125 4,680 | 4.610 -1.50 545.1 675.3 | +23.89 || 12.05 11.95 -0.82 +5.92 13.00

average -3.41 -2.02 +0.28 +0.47
r.m.s. 10.26 11.35 8.78 11.34

Table 35: Execution estimates and actual running times for the small programs. All real times and predictions in seconds; errorsin percentage. In
the last row r.m.s. is the root mean square error. The LINPACK benchmark was not available when the experiments were run on the IBM
3090 and Amdahl 5840, and Livermore did not run on the Amdahl 5840 or IBM RS/6000 530.

517

50

Distributionof Basic Blocks

(%)
A
m
o +
u 307
n +
t

+t

+

s
f20' +

+
E B+
r + +

+ o+
r + T
15 +
010 ++ 4 + +
r
0

0.0 0.2 0.4 0.6 0.8 1.0
Amountof Skewness

40Distributionof AbstractOper ations

(%)
A
m
o +
u 30
n +
t

+ +

+
[0} ++
f20 +
+

E ++ +
r + +
r £+ 1
o0 10 + F T+
r

0
0.0 0.1 0.2 0.3 0.4 05
Amountof Skewness

Figure 16: Scattergrams of the amount of skewness in the ordered distributions of basic blocks (a) and
abstract operations (b) against the amount of error in the execution prediction.

5l

"PoLI0dB1 316 SAUILIRLL BLUES SU) UO SHNSal

YIRWLYIUBC 210U 10 3AI) Uyim swesBoud jo sired Auo - __mt 1'V) = 1'8'YZgiqe1A J0 UOTRLEA 10 B

~1}{B00 8U} PUB S3WI) LOINoBXa [eal ay) Buisn peindwiod s soueisiq stelBoud usamieq soUeIsIq /€ g8 L

‘30UBISIP Ueap1jon3 pesenbs ayp Bussn painsestu s1aouexsiq stuelfold usamiag soueisiq :9g 3|qe L

L£57°0 NV300 vNag || ot 7100 foedur | Q0EXUBIN | G20 1028 | loljppuey aeody || ¥5e 56220 [eseN | QZOMY | S0
08Y0 | SeuesoyRIg soue|y || TvT 75100 anpoq wNag | #20 vZees anpog NV300 || SG¢ 8720 | WSIHAQ Wav | zo
/870 Bus Ssoue|Y || vl 6EL00 | SeueKsOyRIg exsed | €20 OTECS | 10JgPPUe a4l || 9se Y5720 | 9poofel | NV3ID0 || £20
Seer0 NY300 Oam | &1 L8100 NY300 wav | zzo erec’e | lolppuey AROWOL | /GE 62120 a0 Wav || zzo
6E2H0 YIWS | 10i0epURi | T GEL00 [eseN vNag | 120 7eeEe | OUOBSRUM | J0JgRpURI || 85E 05020 704y 9a | 120
¢€8e0 Pws | 8JoweAIT || ST 67,00 Sowe|y 00EXUBIN || 020 289€°C anpoqd 1103dS || 65E 77020 JeseN 9an || 020
ISE0 | WSTHAQ vyNag | ovT 6690°0 yiuws IBuS | 610 Y80V’ | SUOSBUM AROWOL || 098 0610 | pedur] | 25074 || 610
GIE0 | INSFHAQ oam | 1 76900 | JOJIBPUBN | QOSXURI || 8T0 8oTy'S | 10IqjEPUEIN 00SXUBW || TOE €69T'0 | 00EXUBIN | QZO¥V || 810
£568°0 lloyseg SouR|y || 8vT 8900 [eseN Z%0H | 10 68Z7'S | 10IqBPUEIN anpoq || 29¢ 2810 1epRd | 9pookeI || 10
YOTE0 pws Yoedui || 6T 8900 yIWS | saesoyrs3 || 910 T6Z'E | QUOISBUM L1D3dS || €98 80310 | SOWBlY | ¢S04 || 910
¥90€°0 azody NV300 || 0ST £€/900 [eseN | 00SXUEBW || STO TGS | OUOSRUM | OOEXUBI | t9€ T8/T0 | LL03dS o | s10
000€0 9fizeoids NV300 || TST 9990°0 anpoq Wav | +10 680Y'S | SUOSBUM ad4l || soe 75910 750 | NS3HAQ || ¥T0
0/8¢0 yws souely || ¢<T 6€900 ¢S04 AQY | €70 [Y67'S | Seuslsoyised dddd4 | 9o 0S9T°0 1103dS 250H || €10
£182°0 Bus ddddy || esT GT900 | @JouLeAl] oedurt || 210 GETSE | IOWRAIT ddddy | 298 €/8T0 75074 wav || z1o
¥€92°0 | loigppUep Soue|yY || 5T 80900 | @JOULBAIT souely | T10 €/15€ | 10/qpURIN Oam | 89 0810 anpog vNag | 110
8/GZ0 | loxgppUei lloeeg || 6T 6/50°0 AJROWO | vNag | 010 8865 | l0IqiepUeIN exeeq | 69¢ eWT0 yHws IBus || 010
6950 | 0JPPUBI | DIOWRAIT || 9GT 11500 |PUS | Seuelsoyea | 600 1£99°€ dddd- ason | o €9ET'0 | 00EXUEB 9ai || 600
820 sfoedui dddaq || st #9500 [eseN NEJWOL | 800 9619 lioxseg onpoq@ | T.E WETO Q4L | QeoMv || 800
0872’0 | SeueKSOURI ddddy || sgT 77500 yiws nexseq | 200 €60/ | QUOSBUM | Seuasousess || Z/€ ZEeT0 a1 9aw | 00
1720 Sowe|y ddddy || egT 0£500 AROWO | anpoq || 900 7296 dddd- 103dS || s vezro | sowely | NS3HAQ || 900
08120 | SeueIsoyrq ddddy || oot 86700 [eseN anpo@ | 500 £el6€ Tioxseg ddddy || € €600 | 290 a0 || s00
v8rZ0 foedun ddddy || 191 98700 anpoq Oan | ¥00 8066 dddd NV300 || §€ 65800 | pedury | sowely || $00
65520 | 10IgppUBIN | BIOWBAIT || 29T 00700 sfoedui SouRly || €00 T8TCY | 10IPPUR ddddy || 9s¢ G/J00 | AROWOL | d2OHY | €00
8/GZ0 | loxgppURN nexsed || €91 87800 [eseN Wav | oo TVECY | SUOSBUM neseg | L€ 20500 | pedury | NS3HAQ || 200
¥€92'0 | logppueln souely | 97 19200 Aeowo | Nav | 100 V0L BUOSBUYM dddd4 | g€ 2100 | 00EXUEI a4l || 100

sweJfold fe|iwiS 89 ‘wnu sweJboid fe|iwss SO ‘wnu SWweJfoid fe|lws 1sea ‘wnu SweJbo.d fe|iwis S0\ “wnu

Smith

SPEC77 Baskett Linpack Mandelbrot

FLO52

DYFESM

BDNA

&)
™
O]
=
S
~ o)
5 4 3 T -
— 19
N “““““““ @ ““““““““““““““““““““
4 5 .y =R
Q 10|
O\\\\\\\\\\\\\P‘l\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
N~ —
5 93 —o® [
w ““““““““““““““““““““““““““““
M~
MI rEt —
T“‘—““ ““““ ﬂ‘ “““““““““““““““““““““
< 00
o 1%@@@
— —
N~ AN
wl — < l&o@l
o) — g
cr. = O
S
N~
5 4 3 4 ® [-
© —
> n NOY
O - < npn.mw_m_
O ~ o 1
L2 ____ R
=
59 3 o [©]
m T
™ O,&
< _| ~N <t 9,@3”
= i — et
s o=ae
: 20
~ W
— a 3 <P _m_
I e 0
2 3
M~ 1) ool
ol — a3 L@ [«©]
Y— —
\\\\\\\\\\\\\\\\\\\ 1o
NS EcE
K=2)]
TTT 1 [TTTITTT T 1 [MITTTT T 1 [MITTTT T 1 MTTTTT T 1 [MITTTT T 1
9. -~.9 8 g o o o o o 9 o o 1 N O 1n o~
S S S S o o S & b S| o o S
OWMO % % m S n 4V —
B=& =
o

Whetstone

Erathostenes Livermore Shell

TRFD Alamos

ARC2D

tomcatv nasa’ ADM MDG

doduc

52
L0
2 g
% -~
8 ¥
o o !
nomE
yyw
c Cc
R
N~ 0O O
— — -
8 8
8855
B =
X X X X
<<<<
>>>>
"M < W0 ©
LB B B |
88
—_ o
nmmm
26652
AR
Snvp
500
Hoos
O - N
R e I |
o
B
298
5883
0S¢
aRSm
£sa g
o8ss=s
w [e[®iw
[e0]
5 @
[e0]
wwmm
N
M_M_WL
>xQ I
>>® X
FE=S
co®<
I N M

Figure17: Distribution of execution times. Similar programs seem to produce similar distributions; the corresponding ratios of execution times on all

machines are close to the same constant. ALAMOS, LINPACK, and LIVERMORE are clear examples of program similarity with respect to their execu-

tion time distributions.

