Coherent User Interfaces for
Language-Based Editing Systems

Michael L. Van De Vanter
Robert A. Ballance
Susan L. Graham

Computer Science Division (EECS)
University of California, Berkeley
Berkeley, California 94720

July 1990

Report No. UCB/CSD 90/591

Research sponsored in part by the Defense Advanced Research Projects Agency (DoD),
monitored by Space and Naval Warfare Systems Command under Contracts N00039-84-C-
0089 and N00039-88-C-0292, by IBM under IBM Research Contract No. 564516, by a gift
from Apple Computer, Inc., and by the State of California MICRO Fellowship Program.

Abstract

Many kinds of complex documents, including programs, are based on underlying for-
mal languages. Language-based editing systems exploit knowledge of these languages
to provide services beyond the scope of traditional text editors. To be effective, these
services must use the power of language-based information to broaden the options avail-
able to the user, but without revealing complex linguistic and implementation models.
Users understand complex documents in terms of many overlapping structures, only
some of which are related to linguistic structure. Communications with the user con-
cerning document structures must be based on models of document structure that are
natural, convenient, and coherent to the user.

Pan is a language-based editing and browsing system designed to support develop-
ment and maintenance of complex software documents. Pan uses a variety of mecha-
nisms to help users understand and manipulate complex documents effectively, in terms
of underlying language when necessary, but always in the framework of a coherent, user-
oriented interface. A fully functional prototype is in regular use. It serves as a testbed
for ongoing research on a wide variety of tools to aid document comprehension, as well
as on language-based analysis methods.

CONTENTS

Contents

1 Introduction
The project .

The user-centered VIEW v v v v v v vt e e e e e e e e e

The prototype

Major accomplishments o o e

Retrospective
Overview . .

2 Goals for the Pan

System

2.1 THE WORKING ENVIRONMENT . v v v v v v ettt e e e e e e e e e e e e e

Understanding

is the primary activity o

There are many languages e
Usersare fluent o i i i e e e e

2.2 THE ROLE OF
Gathering and

THE SYSTEM e v o i e et e et it e e e e e
presenting information

Maintaining and sharing information

2.3 THE STRUCTU
Tezxtual display

RE OF DOCUMENTS . . v & o i v e e e e e e e e e e e e e e

..................................

Text-ortented editing e e
Language-Specific Structures e e
Other SEructures o v v v v vt e e e e e e e e e

2.4 PRAGMATICS
Open Architect
Customization
Performance
Integration . .

2.5 PRECURSORS

...................................

UTC o v e e e e e e e e e e e e e e e e
and Eztension e e e e e e e e

Tezt-Oriented Editors« o« i i i it i e e
Structure and Syntaz-Directed Editors
Syntar-Recognizing Editors oo

3 The Pan System

Technical challenges e

User-Interface

Goals e e e e e e e e e

Systern Organizationo it

Customization
Language Desc

4 Text Editing

and Eztension v v v i i e e e e e e e e e e e
TIPLION . . . o o o o e e e e e e e e e e

Models of text editing e
The text editing interface L oo

The tezt model

W N N

O W W W< WOOo=I=J~]ODNDOD UL O b

[e el
= O O O

11
12
13
13
14
15

16
18
18
19

ii

Displaying other information

5 Structure vs. Presentation

Document presentation

Displaying language-based information

Open 1SSUes . . . « o v v oo e

6 User Models of Document Structure

Internal representation
Names for components
A separate model for users.
Operand classes
The operand level

7 Inconsistency

Inaccurate information
Analysis strategies
Analysis policites

8 Ill-Formed Documents

Variance
Announcement
Highlighting
Navigation
Open issues v v v v oo ...

9 Mixed-mode Editing

Shifting perspectives
Mizing commands
A dual aspect cursor
The operand level revisited
Simpleediting
Other language-based operations
Other open issues

10 Future Directions

11 Acknowledgements

CONTENTS

..................... 19

19
..................... 20
..................... 20
..................... 21

22
..................... 22

e e e e e e e e e e e e 23

..................... 23
..................... 24
..................... 24

24
..................... 26
..................... 27
..................... 27

28
..................... 28
..................... 29
..................... 29
..................... 30
..................... 30

30

LIST OF FIGURES

List of Figures

1 Editing interface and system services in relation to the environment

2 The Pan system« .t v v v it e e e e e e e
3 Editing Text using Pan I 0o i
4 Parse vs. Abstract Tree Representations
5 Editing a Program using Pan I

1 Introduction

Interactive language-based editing and browsing systems will be a central and crucial com-
ponent in software development environments of the future, serving as the primary interface
among expert practitioners, expert systems, and the complex software being managed. They
will provide access to a wealth of information created both by human developers and by
increasingly powerful and sophisticated tools. A successful system of this kind must exploit
the power of language-based technology in ways that enhance its users’ abilities to carry
out their tasks, but do not hinder their flexibility of action. In particular,the multiplicity
of structures inherent in a document (or collection of documents) must be made compre-
hensible to the user. Since the various structures in a document overlap meaningfully, it is
essential that the system provide a coherent user interface-—one that clarifies and augments
understanding without hindering the user.

Pan! [8] is an interactive editing and browsing system that addresses this challenge.
Pan operates on documents—traditional natural language texts as well as objects with
formalized structure, such as formal designs and program components. Such documents
have both textual and structural aspects. Every document is encoded in one or more
languages, simple text being the universal base language.

The project

Pan grew out of our research into how language-based technology can be made useful in
interactive computing environments. This investigation led us to the design and construc-
tion of a prototype editing/browsing system to serve as a platform for that research. The
fundamental characteristics of the prototype system demanded a number of advances in
language-based technology, reported elsewhere, and some new approaches to designing the
user interface. The current prototype is fully functional and is in use for our ongoing
research. We are designing a successor based on our experience.

The user-centered view

We view the design of Pan as a user interface design problem in a deeper sense than is
usually construed for this kind of system. Although it is important for the system itself to
have a well-designed user interface that makes its behavior easily understood and controlled,
we feel it is just as important to think of the entire system as an interface between people and
documents, an interface whose purpose is to help make documents more easily understood
and modified.

Thus, the design begins with consideration of intended users: their tasks, expectations,
knowledge, expertise, and working environments. We developed a vision of the role to
be played by language-based systems in future software development environments. The

IWhy “Pan”? In the Greek pantheon, Pan is the god of trees and forests. Also, the prefix “pan-” connotes
“applying to all”—in this instance referring to the multilingual text- and structure-oriented approach adopted
by this project. Finally, since an editor is one of the most frequently used tools in the software professional’s
tool box, the allusion to the lowly, ubiquitous kitchen utensil is apt.

2 1 INTRODUCTION

primary users are seen to be software professionals fluent with their languages and tools who
manage documents written in many different languages and who spend more time reading
and trying to understand documents than they do authoring. The general design for Pan
describes the kind of support we feel can be provided using language-based technology. This
design involves rethinking many of the functional aspects usually associated with browsers
and editors.

The prototype

Pan I [9, 10] is a fully functional prototype now in use for ongoing research in language
description and processing techniques, user-interface design, advanced document viewing
methods, and related areas. The prototype is a multi-window, multiple-font, mouse-based
editing system that is fully customizable and extensible. It incorporates two new language
description and analysis techniques: grammatical abstraction [7, 14] and logical constraint
grammars [6].

Pan I addresses the combination of four fundamental characteristics: unrestricted text
editing, multiple languages per editing session, an accessible language description mech-
anism, and a description-driven incremental analyzer that maintains information derived
from each document, even in the presence of editing changes. We believe that these char-
acteristics provide considerable leverage for developing more advanced editing and viewing
capabilities that can be used to enhancea user’s understanding. The system was constructed
both to be usable and to provide a flexible, extensible platform for ongoing research.

With respect to our long range vision, this prototype has some limitations: current de-
scription techniques are aimed at a particular class of formal languages; the implementation
supports only one language per document; a single analysis may span multiple documents,
but only within one language; the system provides only part of the desired flexibility in
generating visual presentations. Related issues, including support for novice programmers
and learning environments, support for program execution, graphical display and editing,
and the actual design and implementation of a persistent software development database,
were deferred. The Ensemble project, which will create a successor to Pan I, is addressing
some of them.

Within this framework, aside from addressing the technical challenges of making such
a system work at all, we have been developing a number of services for users based on
the kind of information the prototype can derive and maintain. These begin with our own
version of services traditionally provided by language-based editors, but without many of
the restrictions they impose. These services have been produced using a number of general
mechanisms, whose potential for extension to new services we are now exploring.

Major accomplishments

The prototype has enabled us to realize many of the features important to achieving our
goals. Those characteristics are summarized here and discussed in more detail in subsequent
sectiomns.

Pan I provides the user with unrestricted text editing, requiring none of the limitations
or compromises traditionally imposed by systems that perform language-based analysis.
The user need not switch editors when moving from formally specified documents to sim-
ple text, nor follow a system-prescribed discipline for authoring or modifying structured
documents such as program components. ,

When structural information exists the system provides structure-oriented operations,
but without interfering with text editing. For example, the user can smoothly mix structural
browsing with textual editing. The user can also move from one language to another during
a session.

Description-driven document analyzers maintain incrementally for each document a
repository of information that is used to provide language-oriented editing operations and
other language-based services. Information derived from other analysis tools can be incor-
porated as well.

Document analysis includes, but is not limited to, checking for well-formedness with
respect to the underlying language. For example, one might extend a language description
to check for violations of site-specific naming or stylistic conventions.

The system can be extended by the addition of language descriptions. These can have
varying degrees of completeness, permitting quick prototyping and gradual enhancement.

In Pan I what have traditionally been called “language errors” are simply another
kind of analysis-derived information, available to the user upon request. We attempt to
place no more restrictions on the user in their presence than a standard text editor does
in the presence of spelling errors. Analysis never “fails,” and documents are never “illegal”
(although they may be incomplete or ill-formed in some way).

A guiding principle has been to design and present services based on a conceptual model
of document structure that is appropriate to the user. Our intent is to hide the internal
complexity that supports those services. The user should be unaware of the underlying
representations, such as the form of a syntax tree, and even of some of the implementation-
oriented distinctions between “syntax” and “static semantics”.

The author of a Pan I language description can use a variety of mechanisms to specify
and tune aspects of the user interface for the language, such as appearance attributes and
conceptual components. There may be more than one description for a given language,
each suited for different tasks or classes of users.

Retrospective

One of the major challenges in designing and implementing Pan has been the integration
and delivery of the envisioned features in a practical, usable system. We now understand
how some of our early and important implementation decisions can be improved. We have
made some implementation changes over time and others will be made in the successor
systeim.

We are pleased with our success so far in presenting users with a document model
that isn’t visibly rooted in underlying language technology and is not subject to the same
technical constraints. More and more we’ve been able to hide language technology, providing

4 2 GOALS FOR THE PAN SYSTEM

“services” instead. We believe this will continue to be a workable approach.

We have been struck by the importance of adjusting the user interface for each lan-
guage. Careful choices of appearance make a difference, as does consideration of the major
conceptual notions appropriate to each language.

A major problem with the design and implementation of systems like Pan is the de-
gree to which different aspects interact. For instance, the goal of presenting conceptual
models of documents to users while hiding internal complexity has tangibly affected our
language description techniques, document analysis algorithms, and the design of internal
data structures. One theme of this paper concerns these interactions and their affect on
interface design.

Overview

This document describes our approach to the design of Pan and reports on our experience
with the current prototype. Section 2 reviews the analysis that drove the design and shows
how it moves beyond previous systems. Section 3 introduces the prototype, its organization
and fundamental mechanisms. The remaining sections introduce services for users that
we've developed, in each case discussing historical precedent, special design problems, and
the actual implementation adopted in the prototype.

2 Goals for the Pan System

The Pan project was motivated by a particular vision of the role to be played by language-
based browsing and editing systems. This section describes that vision and shows how it
defines the fundamental requirements for Pan’s design.

The term language-based indicates that one or more of the facilities provided by
the system makes use of language-specific information derived from the documents known
to the system. In the context of this paper, the term system (or editing/browsing
system) encompasses the entire collection of services that are used to browse, manipulate,
and modify one or more documents interactively. The term editing interface refers to
the fact that those services are provided to the user through a generalization of the services
of a traditional interactive editor. Fraser has pointed out that the user interface to many
interactive services can be modeled as a form of editing activity [26]. His examples include
editors for simple tables, file system directories, and general data structures. In that sense
editing is a fundamental part of an integrated software development environment.

2.1 THE WORKING ENVIRONMENT

Pan is intended to support experienced professionals who manage large collections of inter-
related documents. Many common assumptions about traditional language-based editors
do not hold in this domain. In particular, the kind of support most helpful to experienced
users is different from the support needed for beginners. In addition, the primary task for
experienced professionals is comprehension and modification of existing documents, rather
than authoring of new ones.

2.1 THE WORKING ENVIRONMENT 5

Neal [47] distinguishes three dimensions of expertise in users of program editors: com-
puter, language, and programming expertise, in addition to expertise with a particular tool.
When designing Pan, we assumed a high level of expertise with computers (and eventually
with Pan) and a relatively high (but not uniform) level of expertise with languages and
with programming. _

Yet even experienced users are confronted with unfamiliar languages or novel situations
when they need the support normally provided for novices. We believe that the kinds of
analysis and support necessary to support experienced users can be adapted to support
novices. The converse—supporting the experienced practitioner using tools tuned to the
novice—is far more difficult.

Understanding is the primary activity

Editors tuned for authoring fail to address today’s problems. Software systems have become
so large and complex that developers spend far more time trying to read, understand, mod-
ify, and adapt documents than they do creating them in the first place [29, 66]. A successful
interactive development environment must support understanding by recognizing, exploit-
ing, and making visible complex relationships within and among related documents [63]. At
the same time, the system should provide related, but different support tuned for authoring
and modifying documents.

There are many languages

Software developers typically use several formal languages daily: design languages, specifi-
cation languages, structured-documentation languages, programming languages, and small
languages for scripts, schemas, mail messages, and the like. Even a program written in a
single programming language may contain embedded “little languages” that impose their
own conventions. For example, many subroutine packages such as libraries for developing
window-based applications effectively define mini-languages that determine how subrou-
tine calls, and in particular long sequences of arguments, must be used. A language-based
system must support all these different languages as smoothly and uniformly as possible.

Further, it must be convenient to add support for new languages using natural, declar-
ative, language-description mechanisms. New languages, or extensions or modifications to
existing languages, arise frequently. Declarative descriptive mechanisms allow a description
writer to focus on what is being described rather than on how document analysis proceeds.

Finally, since the services that the system can provide are based on the data it derives
from a document, a language description may include elements beyond the scope of the
basic definition of a language. Thus, someone adding a new service to the system may
need to extend some existing language descriptions to derive new data or maintain new
annotations.

6 2 GOALS FOR THE PAN SYSTEM

Update
Retrieve

Analysis
Q _ Understand F] > Other
= Tools

Manipulate K4 % L Execution
/.. Modification
’ Editing
. System .
Editing Interface System Services

Figure 1: Editing interface and system services in relation to the environment

Users are fluent

Users know their primary languages and tools well. An editing interface must augment
productivity, without any sacrifice of flexibility and power in the name of safety or learn-
ability. For example, experienced developers will not trade away the flexibility of unlimited
text editing for the safety of enforced syntactic correctness. Finer grained support should
be available in situations where the user is dealing with an unfamiliar language.

2.2 THE ROLE OF THE SYSTEM

A language-based editing/browsing system provides the primary interface between people
and integrated environments containing the documents they manage. Positioned this way,
between user and documents, the system is uniquely situated to share information about
documents that may be provided by both user and tools, as shown in Figure 1. In this
model, users interact with documents through the editing interface; tools interact with
documents through the system services; they communicate with one another via an active
data repository. The editing interface and the system services provide alternate projections
(views) of the document as well as analysis for the user.

Gathering and presenting information

Users opportunistically exploit many forms of information to help them understand and
modify complex documents [42]. “Information gathering” is the primary task associated
with important activities like program maintenance [34]. The system can support these
activities by gathering and presenting many kinds of information.

For example, many language-based systems check that a document is well-formed. The
same analysis can enable a user both to edit the document in terms of its underlying lan-

2.3 THE STRUCTURE OF DOCUMENTS 7

guage and to locate document components that violate restrictions in the formal language
definition. Other kinds of interaction may require more elaborate analysis. For example,
language-based formatting (sometimes called prettyprinting), traditionally based only on
surface syntax, should exploit information about scopes, types, local usage, or even dis-
tinctions such as “main-line” vs. “error-handling” code. These kinds of analysis move
far beyond simple error-checking: they involve knowledge of particular organizations, tech-
niques, and systems, not just languages. Although this kind of information must be broad
in subject domain, it need not be deep (in the sense of program plans [43, 57] or clichés [53])
to be useful.

Maintaining and sharing information

Complex, expensive analyses to support an editing interface make sense only in an envi-
ronment in which many tools share the information maintained by the system. The same
type checking that is used to tell the user that a document is type-correct can provide type
information to a compiler, an interface consistency service, or an auditing tool. In some
cases information produced by other tools should be made available to the editing interface.
For example, the results of performance analysis or information derived from version control
can be used to produce helpful views of programs or prototypes.

2.3 THE STRUCTURE OF DOCUMENTS

Documents represent richly connected, overlapping webs of information having many struc-
tural aspects. Each aspect is more relevant for some kinds of users than for others and for
some tasks more than for others. An editing interface in the role we envision must support
many kinds of users, many tasks, many structural aspects.

The multiplicity of structural aspects has the potential to confuse the user, but it need
not if the system supports structures already understood by users. People routinely think
about complex objects from different perspectives and are remarkably adept at shifting
perspective. An effective editing interface need only support these shifts without imposing
any extra overhead on the user.

This discussion reviews the document aspects most important to users who are the
experienced professionals in Pan’s intended audience.

Teztual display

Text remains the display medium of choice for documents in most languages, since most
languages are by definition textual. Graphical presentations of such documents have some
potential value for overviews and summaries, but it is very unusual for a graphical display to
carry all the information present in a textual rendering and it is usually not a comfortable
visual field in which users can specify editing operations?.

2This remark does not apply, of course, to those languages which are by definition graphical. For those
languages, graphical display is the medium of choice.

8 2 GOALS FOR THE PAN SYSTEM

An effective editing interface should exploit the full power of the textual medium. The
value of high-quality typography for natural language documents is well established. Recent
studies suggest the same potential benefits for programs [3, 50]; these studies involved
printed versions of programs typeset from source code by language-specific formatters.

Tezt-oriented editing

An effective editing interface must support text-oriented editing with as few restrictions as
possible.

The history of language-based editors is marked with controversy over text-oriented
editing. In practice, people will not do without it. It fits naturally with the textual display
medium, and people are accustomed to it. Furthermore, most kinds of documents contain
textual chunks that have no structural properties beyond the textual. Examples include
sentences or paragraphs in most natural language documents, labels in spreadsheets, and
comments in programs.

Despite arguments to the contrary [63, 67] many language-based editors imposed varying
degrees of restrictions. Some of these projects have since concluded that text-oriented
editing should not be limited (5, 15].

Language-Specific Structures

Language-specific structures represent relationships among the parts of a document, or even
among documents, that are defined by the underlying formal languages in which the docu-
ments are encoded. For example, consider the relationships in a natural language document
defined by the connection between a figure and references to it, the relationships between
declarations (definitions) and uses of variables in a computer program, the structures rep-
resented by a call graph in a program, or the relationships among grammatical units as
specified by a formal syntax for the language being edited. Although the syntax of a lan-
guage has often been taken to be the primary (and most interesting) decomposition, other
language-oriented structures are at least as important to the user.

One useful aspect of syntactic structure is that it defines a hierarchical decomposition
of each document into structural components (sections and paragraphs, for example, or
blocks and statements). The formal definition of the syntax of a language is an artifact of
language-description techniques and may not always produce structural components that
are consistent with the way people think about document structure. In particular, there are
aspects of structure that the user may wish to ignore. An effective language-based system
must present and allow manipulations of syntactic components when appropriate, but must
do so in terms of a conceptual model of documents that is natural and convenient for users.

For the implementor of a language-based system, the distinction between the formally-
defined syntax and other derived structures is quite convenient. For users, it is useful to
blur that distinction since their understanding of “the syntax” of a language may be far
removed from the formal definition used by the system for internal processing.

2.4 PRAGMATICS 9

Other Structures

A variety of other decompositions can induce structures within or among documents. For
instance, editors like ED3 [59] and the Cedar editor (Tioga) [62] allow users to specify
explicitly a hierarchical decomposition for each document, where the structure may or may
not be correlated with structures in the underlying formal language. Outline processors are
editors for precisely this kind of structure where the underlying language is simple text.

Another interesting structure arises when a single document is encoded in more than
one language. In this case, the relationships across languages and their appearances within
the document become interesting. The programming environment Mentor [22, 24] supports
such nesting of languages.

Finally, relationships within and among documents such as those generated by hyper-
links provide a third example of document structures that are neither textual nor language-
induced.

2.4 PRAGMATICS

Other issues must be addressed for an editing interface to be practical and usable in Pan’s
intended tole. Some of these issues have been complicated in Pan by the necessity for an
early implementation to serve as a research platform.

Open Architecture

An effective system, especially one used for research, must be built on a flexible framework
designed to accommodate many kinds of variation and evolution [30, 40].

Customization and Extension

A usable editing interface must be customizable and extensible to accommodate the enor-
mous variations among individual users, among projects (group behavior), and among
sites [40, 58].

Performance

Experience has shown repeatedly that an editing interface must be “acceptably” fast. Users
are seldom willing to compromise, even in the name of additional or improved functionality.

Integration

In the modern workplace potential users often view a new tool from the perspective of a rich,
well-established working environment. An editing/browsing system whose user interface
departs dramatically from those to which users are accustomed suffers the handicap of
perceived “isolation”. An effective editing interface must provide an easy transition path
for those who have used other systems and for those who will continue doing so.

10 2 GOALS FOR THE PAN SYSTEM

An automatic way to import data into the system is required so that existing documents
can be incorporated. Ways to export data from the system are also necessary to make use
of facilities not provided by the system.

2.5 PRECURSORS

Development of Pan began in 1984. At that time, a number of language-based editing
systems had already been implemented or designed. The systems that influenced Pan can
be roughly classified into three categories based on underlying models of editing: display-
oriented text editors, syntax-directed structure editors, and syntax-recognizing editors.

As important as the underlying model is the choice of how to delineate and maintain
structural information. It can be done explicitly, by interpreting the sequence of user
interactions as a document is constructed, or the structures can be derived by a compo-
nent of the editing system that examines some representation of the document after it has
been constructed. Both approaches can coexist in the same editing system. For instance,
Mentor [22, 24| can derive structure initially from a textually represented document, but
structure may only be edited using explicit structure-oriented operations.

The two choices, explicit maintenance of structure versus derivation from some other
representation, are matters of implementation but they affect the design of the user interface.
For example, syntax-directed editors rely on the user to explicitly construct the structures
that they are then allowed to edit while syntax-recognizing editors attempt to derive a
structural representation for the document being edited. A purely text-oriented editor
makes no real use of linguistic structures at all; its language-based operations are based
entirely on examining the surface representation of a document, perhaps inferring a very
simple syntactic decomposition.

Text-Oriented Editors

A text-oriented editor operates on a document modeled both as a stream of characters
and as a two-dimensional plane of characters. (The coordinates in this plane are commonly
called “lines” and “characters within a line”.) Users are free to operate on any character
at any time.

While groups of characters such as words or lines might be accorded special status and
operations, no special structural constraints are imposed on the document and few well-
formedness constraints are enforced. Bravo [39], EMACS (58], MacWrite (2], and Z [67],
are examples of text-oriented editors. Both EMACS and Z provide some language-specific
editing operations.

Language-based text editors provide commands that operate on easily recognizable ele-
ments of a language, but they do not provide syntax-oriented commands or deeper analysis
of linguistic structures, thus limiting the kinds of services provided.

Structure and Syntaz-Directed Editors

Structure editors present a document as having a definite internal structure, with editing

11

operations modeled as operations upon that structure. Most often, the document is tree-
structured, with operations defined on subtrees. Outline processors are structure editors for
tree structures; spreadsheet editors are structure editors for tables. Structure editors may
or may not interpret the structures that they edit. When they do attribute language-specific
meanings to the structures, they are often called syntax-directed editors.

A syntax-directed editord is a structure editor that requires that the document be
syntactically correct at all times: editing operations must “follow” the syntax of the lan-
guage. As in a pure structure editor, the user can add new material to a document only
at those points where it can be successfully grafted onto the existing structure. ALOE [45]
and the Gandalf editors [49], Centaur {12], the Cornell Program Synthesizer [60] and the
Synthesizer Generator [52], Emily [31, 32], Mentor [23] and PSG [4] are all syntax-directed
editors.

The syntax-directed approach greatly simplifies editor design by restricting (“narrow-
ing”) the changes users can make. However, some syntax-directed editors provide limited
forms of text-editing beyond that strictly required for program entry. For instance, in the
Gandalf editors and the Cornell Program Synthesizer, expressions may be entered as text
and then parsed for correctness [37]. While the syntax-directed development style is use-
ful in some cases, (e.g., in environments for novice programmers or in environments for
constructing mathematical proofs [19]) the practicing programmer has more general needs.

Syntaz- Recognizing Editors

A syntax-recognizing editor [13] derives structural information from text, in order to
check for correctness without necessarily demanding the consistency constraints of a syntax-
directed editor. Syntax-recognizing editors can provide structural operations as well as
text-oriented editing. Babel [35], the Saga editor [38], SRE [13], and Syned [27] are all
syntax-recognizing editors, as is Pan.

The syntax-recognizing approach? permits text-oriented editing by users at any time
in any context, but at the cost of considerable complication in document representation,
incremental analysis algorithms, and user-interface design. A common problem in early
syntax-recognizing editors was failure to hide this complexity from the user.

3 The Pan System

From our conception of the role to be played by Pan we created a vision of what Pan should
be. To its users it should appear to be a fast, convenient, fully-functioned text editor that
happens to be extremely knowledgeable about the local working environment: the many
languages in use, local conventions, and perhaps the user’s own personal working habits.
One might use Pan for editing text all day, without ever giving a thought to its other
capabilities. But at any time one might choose to broaden the dialogue with Pan to draw

3The term “structure-oriented” [48] is sometimes used in place of “syntax-directed”.
+The syntax-recognizing approach does not preclude a user-interface that simulates syntax-directed edit-
ing. In fact, syntax-directed editing can be provided easily in a syntax-recognizing editor.

12 3 THE PAN SYSTEM

on many kinds of information (maintained by Pan) about the document. Pan could then
be directed to use this information to guide editing actions, to configure and selectively
highlight the textual display, to present answers to queries, and more.

Technical challenges

Implementing this vision required solving three significant technical problems in combina-
tion:

e Supporting full featured text- and structure-oriented editing;

e Performing incremental analysis to maintain a database of information about each
document;

e Supporting multiple languages, preferably using declarative language descriptions.

To preserve the appearance of being a “smart text editor” while providing the benefits
of language-based editing, Pan I is a syntax-recognizing editing system. All language-
oriented structures, including the primary syntax used to drive other analyses, are derived
from analysis (parsing) of a textual representation. Structure-oriented (and even syntax-
directed) editing are implemented on this base.

Adoption of syntax-recognition did not solve all of the problems. One major problem in
syntax-recognizing editors was their need to keep large and unwieldy internal representations
of the syntax in order to provide incremental (local) reanalysis. No such problem occurs in
purely syntax-directed editors. The theory of grammatical abstraction (7, 14] was developed
to resolve this problem in Pan.

Maintaining derived information in the presence of change was a second technical hurdle.
Structure-oriented and syntax-directed editors localize the extent and impact of changes by
localizing the user’s editing actions, an approach that is antithetical to Pan’s goals. To
solve this problem, the notion of logical constraint grammars [6] was developed.

In a logical constraint grammar, goals expressed in a logic programming language are as-
sociated with structures in the formal abstract syntax. Goals express contextual constraints
on the language or design of the document being edited, and can be used to establish link-
ages between non-local components in a document or between documents. Constraints
express the well-formedness requirements of the language definition, but may also describe
extra-lingual constraints, such as site or pro ject-specific naming conventions.

During editing, the satisfaction of all goals associated with instances of structures ap-
pearing in the document is attempted. Instances of structures are represented by subtrees
of the internal tree. The document is considered “semantically” well-formed whenever all
of its associated goals are satisfiable. Information gathered during constraint enforcement
is retained in a logic database. A consistency maintenance mechanism revises the database
and reattempts goals as documents are altered. The information retained in the database
is used by other languace-based services in Pan, such as the user-centered viewing tools.

13

User-Interface Goals

As important as the implementation challenge, however, was the design and delivery of
user-oriented services of the kind suggested by the discussion in Section 2. This presented
a double-edged problem in user-interface design.

First, the design of an effective user interface for any interactive system is challenging,
especially for one with conflicting goals. For example, Pan’s design called for a model of
text editing that is familiar to a wide variety of potential users, but it also demanded the
integration of rich new functionality at all levels of the system®.

Second, we view the the entire system as an interface between user and document,
subject to some of the same considerations but at a different level. Pan’s ultimate goals
depend on the quality of its user interface at both levels.

As Pan’s design proceeded, common themes emerged that shaped the user-interface.

e Provide full-featured text editing based on familiar models.

e Don’t try to “do too much” [47]. Derive information from document text, but present
it only upon request.

e Use Pan’s rich repository of derived information to build specific user-oriented ser-
vices, but don’t expect users to know much about the repository or analysis methods.

e Communicate with the user in terms of a useful conceptual model of documents rather
than Pan’s representation model, particularly when communicating about structures
other than visible text.

e Provide generic services and a uniform interface for all languages, but make it possible
to tune the interface for each particular language and for each class of users.

e In the spirit of user-centered system design, treat ill-formed documents not in terms of
user “errors” but in terms of successive approximations of what the user intends [44].
Maintain full service in the presence of “errors,” including but not limited to the
presentation of diagnostics.

e Allow Pan’s users to customize the user interface and control important policies.
Provide for experimentation with new services defined upon existing infrastructure.

Many of these embody diSessa’s principle of continuous incremental advantage: do not
confront the user with steep learning thresholds, but provide a steady learning progression
in which each quantum of learning offers immediate benefits [21].

System Organization

Figure 2 shows how the Pan system is organized from the perspective of its users. This

5For example, complex low-level data representations that could efficiently support incremental document
analysis had to be implemented and refined. Support for document analysis was one major reason that we
were unable to build directly on top of an existing editing system.

14 3 THE PAN SYSTEM

Document
Database
T ~—
Document
User ———
ensio
- N\ Customiz
= " Pan Libraries
e~ |, Editor
Documrent

Language

Descriptions

Figure 2: The Pan system

organization supports three different kinds of users: clients, customizers, and language-
description authors.

Clients use Pan to edit documents: formal designs, programs, and manuscripts. For
clients Pan is the interface to a document database, as shown at the top of Figure 2. Clients
may use libraries and language descriptions but need to know little about them. All but
the most naive clients, however, customize their environments in some way, blurring the
boundary with the next category.

Customizers provide new services by adding to the extension and customization li-
braries, shown at the right of Figure 2. The expertise required ranges from the shallow
(adding new groups of key bindings, for example) to the deep (adding a new kind of direc-
tory editor, for example).

Language description authors add languages to Pan’s collection, shown at the bot-
tom of Figure 2. They need some expertise in language processing and with the specific
techniques used by Pan’s document analyzer.

The next two subsections briefly describe Pan’s facilities for customization and for
language description.

Customization and Ertension

Although language definition is Pan’s most technically intricate form of extension, other
facilities support user customization, simple extension, and rapid prototvping of new editing
environments.

15

e Bindings for keystrokes, mouse buttons, and menus® as well as generalized option
variables permit extensive personal customization using simple declarations. In fact,
the standard behavior of the editor is determined entirely by a configuration file using
the same declarative mechanisms.

e Pan’s configuration variables and bindings are scoped. Values may be assigned at one
of three nested levels (buffer instance, buffer class, and global), and are dereferenced
dynamically to support runtime reconfiguration.

e Simplified command definition facilities in Pan’s extension language (a superset of
the underlying CoMMON LisP language) make it possible to add new layers of func-
tionality in straightforward ways. These facilities automatically integrate extension
programs with a generalized undo facility, with generic exception detection and re-
covery mechanisms [64], and with Pan’s elaborate help system.

o A run-time library permits special editor environments and extensions to be loaded
dynamically.

These facilities, combined with Pan’s rich infrastructure, comprise a toolkit for editor con-
struction and for experimentation with user-interface designs.

Language Description

Adding new languages is the most important extension mechanism in Pan, supported
throughout by description-driven system components. All aspects of language description
are declarative for readability and convenient modification.

A Pan language description supplies information for several aspects of document
analysis and user-interface configuration: lexical and grammatical information describes the
syntax of the language as used by Pan, contextual constraints describe extra-grammatical
well-formedneéss constraints (commonly called the static-semantics of the language) and
other language-oriented structures, and user-interface definitions are used to tune the user
interface.

Of particular interest is the distinction between syntax and contextual constraints’
inherent in Pan’s language description techniques. The description of syntax underlies both
the definition of contextual constraints and some of the user-interface definitions. Services
built upon derived information may rely upon data derived during satisfaction of contextual
constraints.

One portion of these descriptions configures the user interface for the language. This
information can include a categorization of the structures appearing in the abstract syntax
(corresponding roughly to the phyla of operator-phylum trees [36], but potentially overlap-
ping) as well as templates for structural elaboration.

8Keyboard bindings are crucial, since expert users seldom use the inherently slower menu systems [40].
7 Almost all language description techniques similarly distinguish syntax and semantics. Section 10 dis-
cusses some of the shortcomings resulting from this distinction.

16 4 TEXT EDITING

The language description facilities developed for Pan are presented in detail elsewhere (6,
7, 14]. For this discussion, the following features are noteworthy:

e Different formalisms, each suited for different aspects of language descriptions, are
used.

e Different language descriptions for the same base language can coexist. When the
same base syntax is used, this can correspond to a “layering” of language descrip-
tions. When a different base syntax or different user-interface description is used, this
corresponds to a slightly different language as seen by a user.

e The language description techniques and associated document analysis algorithms
support the ability to edit documents composed from multiple languages (but the
current implementation, Pan I, does not).

e Default definition and handling of “errors” in ill-formed documents is automatic. How-
ever, the error-handling mechanisms can be tuned for each specific language descrip-
tion.

e Language descriptions can be loaded dynamically during an editor session, although
standard language descriptions are often preloaded.

e Language descriptions are written in two formal languages (Ladle and Colander) for
which Pan also offers language-based support. Pan’s document analyzer is used as
the preprocessor for one of these, and it may be run as a batch program.

To date, syntax descriptions have been written for Modula-2, ASPLE, “C” (except
preprocessor macros), FIDIL [33], and for Pan’s language description languages. A com-
plete language description for Modula-2 (including the language’s contextual constraints)
is available; other complete descriptions are being developed. Finally, like other aspects of
the prototype, improvements to our language description mechanisms are underway. These
are discussed in Section 10.

4 Text Editing

One of the first commitments in Pan’s design was to provide full-functioned text editing
services that people would be willing to use. A closely associated commitment was to
prevent Pan’s rich language-based features from ever interfering.

Figure 3 shows how Pan I appears during ordinary text editing. The same text-oriented
services are available in every document buffer, whether or not language-based analysis is
taking place. As a matter of policy derived information is never used to hinder text-oriented
services, so it is possible to consider the Pan text editing interface independently of any
language-based features.

17

HelpInfo
10.def
abstract .tex

Fila: austract.tex B <
PAN Language: Text : Character

\begin{abstractNaemall

{Many kinds of complex documents, including programs, ars based on
underlying formal languages. Langusge-based editing systems exploit
knowledge of thase languages to provide services beyond the scope of
traditional text wditors. To be sffective, these sarvices must use
the power of language-based information to broaden the cptions
available tg the user, but without revealing camplex 1inguistic and
tmplementation models. Users understand complex documents in terms of
meny overlapping structures, only some of which are related to
tinguistic structure. Communications with the user concerning

t_gtryctur: 2. models of dogument struct
h re ngtyral nvenient cherent to the user.

M \Per\ fs a lunguage-based sditing and browsing system designed to
support development and maintsmance of compiex softuare documents.
\Par\ uses a variety of mechanisms to help users understand and
manipulats complex docusents effectively, in terms of underlying
1snguage when necessary, but sleays in the fremewcrk of a coherent,

B user—oriented interface. A fully functional prototyps is in regular
use. It serves as a testbed for ongoing resesrch on a wice variety of
tools to aid document comprehension, as Mell as on language-based
analysis methods.

\end{abstract}

Figure 3: Editing Text using Pan [

18 ¢ TEXT EDITING

Models of tezt editing

Designing a usable text editor is by itself a significant undertaking. Among the many
challenges is the need to exhibit a coherent conceptual model of what is being edited, a
model reflected by both visual presentation and editing operations. Pan must also present
an effective model of language-oriented editing, subject to the requirement that it not
clash with the textual model (see Section 6). Models clash when they suggest conflicting
interpretations of how the editor is behaving or should be expected to behave.

Although seldom explicit, the design of effective conceptual models for text editors has
always been a problem. For example, some of the earliest interactive editors operated on
a virtual deck of punch cards; users could think of these editors as card punches with an
erasing backspace key. Two important historical improvements added support for lines
of varying length and eventually replaced the line-oriented model with a stream model.
Meyrowitz and van Dam argue that the long term significance of these changes was that

displayed text was no longer considered to be a one-to-one mapping of the
internal representation, but rather a tailored, more abstract view of the editable
elements [46].

The conceptual distinction between a one-dimensional text stream (the “editable el-
ements”) and a virtual two-dimensional page (the “displayed text”) usually makes itself
evident in the mysterious and idiosyncratic behavior associated with “whitespace” charac-
ters (spaces, newlines, and especially tabs). For example, many text editors require that
space characters be inserted explicitly at the end of a line before the cursor can be po-
sitioned in the right margin. This kind of behavior contributes greatly to the difficulty
novices encounter when learning text editors, especially when misled by the “typewriter”
and “blank page” metaphors [25, 55].

This bit of historical reflection offers two lessons for the design of Pan. The first is that
a well designed user-interface can compensate for an apparently inconsistent underlying
model. People become quite proficient with text editors, presumably building something
like diSessa’s distributed models [20] of the editing domain. The effect is so powerful
that experienced users of text editors are often tempted to instruct novices with obviously
inaccurate metaphors like “blank page”. The second lesson is that learning to use any text
editor is a difficult task, one that should be expected of users as seldom as possible.

The tezt editing interface

The Pan text editing interface appears to the user as a bit-mapped, multiple-font, mouse-
based text editor with multiple windows, in the spirit of Bravo [39] and its many successors.
A Pan user may open any number of windows onto each buffer’s virtual two-dimensional
text display. All windows on a buffer share a single, visible selection that appears as
underscored text in any window in which it happens to be visible. Each window has its
own scroll position and text cursor, both of which persist when the window is made invis-
ible. Some text-oriented commands operate exclusively on the selection; others, including
ordinary character insertion, operate at the cursor. All editing commands are undoable.

19

The text model

Pan’s text editing model is a hybrid based on two familiar models: the Macintosh [56] and
EMAGCS [58]. Like both of those and many other editors, Pan treats text as both a stream
and a two-dimensional page. Like Macintosh editors, Pan distinguishes the insertion point
from the selection®, a global clipboard, and supports the menu-driven commands Cut,
Copy, and Paste. Like EMACS, Pan offers a rich set of text-oriented editing commands and
EMACS-compatible key-bindings [9].

The hybrid text model was developed to ease the cognitive burden on users, the intention
being that Pan would behave like a familiar text editor until the user began to request
additional language-based services. The combination has succeeded in some ways, but has
revealed model clashes in others. For example, the model of Undo supported by Pan I

.+ and by the Macintosh editors differs from the EMACS Undo. Pan doesn’t support pending
" delete selection, but could at the cost of confusion to EMACS users. Both Pan and EMACS
have text cursors but their behaviors differ in minor ways, as do the semantics of the kill ring
and the correspondence between buffers and windows. A user can ameliorate somewhat the
effects of these clashes through customization, in particular by hiding features that cause
confusion.

Displaying other information

Fach Pan window may display optional panel flags, modeled on physical control panels.
In Figure 3 the flag “*”? is on, meaning that the document has been changed since last
saved. The flag “<” is also on, meaning that automatic text-filling (line-wrapping) is in
effect.

Pan’s text display, in addition to its conventional role for text-oriented editing, plays an
important role as a medium for displaying derived information about documents. Pan as-
sociates with each character a font code, mapped indirectly to fonts via a user-configurable
font map. Fonts of differing heights and widths can be mixed freely. Like other options
in the Pan editor, font maps are scoped by buffer, by buffer class, or globally. Additional
facilities are available for superimposing more information upon the textual display: un-
derlining, stipple patterns, colored inks, and color background shading (in the manner of
“highlighter” pens). Background shading may be selected orthogonally to ink color.

5 Structure vs. Presentation

A central problem in the design of any interactive editor is that the structure of an object
being edited seldom maps nicely to the object’s presentation, the visual display of the
object created by the system. The previous section described how this discrepancy makes
ordinary text editors difficult to learn.

8This conflicts with the EMACS model where the insertion point defines one boundary of the selection.
9The character “*" is actually the default visual appearance of the flag whose internal name is Object-
Modified?. Like much of Pan’s user interface, both the presence and appearance of flags is configurable.

20 5 STRUCTURE VS. PRESENTATION

For documents with the kind of rich structure we described in Section 2.3 the problem is
potentially much more troublesome. For example, syntax-directed editors present a model in
which the user manipulates a tree; every operation carries the additional cognitive overhead
of understanding the complex relationship between the tree and its two-dimensional textual
presentation. This creates a serious clash between the editing model (what the user can do)
and the presentation model (what the user sees).

Document presentation

One of Pan’s goals for document presentation (as distinct from editing, which will be
described in more detail in Sections 7 and 9) is to guarantee the presence of an editing model
(possibly in addition to other language-oriented editing models) that is structurally similar
to the textual presentation. In other words, if a document appears textually, than it can
be treated that way independent of any other language-oriented information derived from
it. Even as we explore more elaborate methods for transforming language-based structure
into text (for example program unparsing [28]), we would like the user to be able to think
of the display as just the text it appears to be.

In Pan I that consistency has been a natural side effect of our first implementation
strategy and our deferral of more interesting presentation services. The textual presen-
tation in the current prototype is based on a text stream in the usual way, and the only
whitespace is that which the user inserts explicitly. Pan’s recently added prettyprinting
mode complicates this a bit by rearranging user-supplied whitespace, but it does so in the
context of a familiar and predictable service similar to indenting modes in language-based
text editors like EMACS.

Pan’s use of fonts, point size, and color does not undercut this consistency because these
visual attributes are independent of the text-editing interface and are not controlled directly
by the user. New text created by the user typically has default attributes (standard font,
no enhancements); the system changes the attributes to display information as requested
by the user.

Displaying language-based information

So complete is the reliance on the textual presentation, that it might not be apparent
at all when language-based information is present. Rather than hide the fact completely,
Pan’s default configuration adds the panel flag “T" (shown in Figure 5) when structural
information is being maintained.

Although a user might edit a document textually without thinking of language-based
information at all, a number of useful services are available that display language-oriented
information about documents. This information may be communicated to the user using a
number of typographical presentation enhancements, which usually do not change the
contents of the text.

For example, Pan supports two familiar enhancements for program documents:

o Following established custom [3], font shifts reveal the lexical category of text: lan-
guage keywords, identifiers, and comments. It has been our experience that font shifts

21

contribute significantly to program readability, but that font maps must be tuned for
individual languages.

o When prettyprinting is in effect, Pan rearranges document whitespace after each
analysis (Section 7 describes Pan’s analysis strategies), using indentation in familiar
ways to reveal syntactic nesting levels. More advanced forms of prettyprinting for
program documents, including semantically-driven elision, are under development [11].

A general form of structural highlighting supports other enhancements. Arbitrary
groups of structural components may have their associated text rendered with one of several
(generally independent) special effects: background color, stipple patterns, and ink color.
For example, the user might see the answer to a particular query presented as a shift to
blue ink for some text, independent of yellow background shading that might be continu-
ously highlighting components of interest for other reasons (for example, those described in
Section 8).

Pan’s use of color in document presentations is consistent with the general recommen-
dations for program typesetting suggested by Baecker and Marcus [3]. However we have
found one of the options they describe, the use of color to reveal lexical status, to be in-
appropriate. We believe that documents in ordinary states should be rendered entirely in
black and white, with color reserved for exceptional situations, under user control as always.

Open issues

As we extend Pan’s presentation model to include more elaborate display mechanisms, the
natural consistency between presentation and editing model enjoyed by the prototype be-
comes more difficult to support. For example, as blank areas in the presentation become less
coupled to whitespace characters inserted explicitly by the user, it becomes less clear how
to support smooth text-oriented editing in those blank areas. We expect simple heuristics
to suffice for this situation.

A related but slightly more interesting problem arises when certain text has special
properties, such as the “placeholders” displayed at unexpanded structural sites by syntax-
directed editors. Those editors typically do not permit the user to edit text that represents
placeholders. Preliminary experiments with an emulator for this style of editing suggest
that the restriction is not necessary in Pan. Textual placeholders can be added implicitly
to a language description, following some simple spelling convention such as “@statement”
for an unexpanded component of class “statement.” The system may add these when
inserting “templates,” but the the user is also free to type them literally. A mistyped or
misplaced placeholder becomes just another variance relative to the language description
(see Section 8).

Elision is more problematic yet, since some characters, the conventional ‘...’ for example,
can represent hidden information. Here it is harder to define a natural model for text-
oriented editing, since the characters are artifacts of the presentation only. In this case an
attempt to edit the elision symbol might trigger expansion of the elided portion, perhaps
preceded by a query to the user.

22 6 USER MODELS OF DOCUMENT STRUCTURE

A related situation arises when the keywords in a language may be treated as just
another aspect of language presentation, for example if keywords are presented visually
in the user’s choice of natural language (perhaps French instead of English). In this case
the editing/presentation correspondence can be preserved, but the implementation becomes
more complex.

Structure-oriented editors encounter many of these problems, but they typically lack
Pan’s commitment to smooth integration with the textual presentation model. Our follow-
on project is exploring these issues, both with implementation strategies and with experi-
mentation to discover what presentation models “feel natural.”

6 User Models of Document Structure

User and editor must be able to communicate about what is being edited. When presenta-
tion and structure are similar enough, as they are for familiar text-oriented editing, simple
kinds of navigation like pointing are obvious and effective. In contrast, language-based doc-
ument structure is both less familiar to users and less evident from textual presentations.

Making language-based structure intelligible requires that the system present it in terms
of coherent conceptual models. The design of such models is a user interface problem,
applied here to the structure of formal languages. This section describes Pan’s models for
the simplest kind of language-based structure, decomposition into syntactic components.
Examples of more complex structure arise later, for example in the discussion of ill-formed
documents in Section 8.

Ignoring for the moment problems that arise from the mixture of textual and structural
models (see Sections 7 and 9), there are two important aspects of this user model: how
documents decompose into components and how those components are named.

Internal representation

Most language-based editors present a document model that is based on the way they
represent documents internally, typically as a tree. For example, many early editors that
provided unrestricted text editing maintained a complete parse tree (35, 38|, whereas syntax-
directed editors usually maintain a reduced or abstract syntax tree (an example of each
appears in Figure 4). Arguments for the latter representation include the observation that
it is a more “natural” model for user interaction, since the extra information in the parse
tree is only an artifact of parsing technology. Pan’s internal representation is based on an
abstract treel®, and Pan’s language description mechanism permits considerable flexibility
in the design of this representation for each language.

Experience with language descriptions for Pan suggests that criticism of the parse tree
representation as a user model applies to the abstract tree as well. The design of tree repre-
sentations is typically driven by many issues concerning language description and analysis.

19Combining incremental parsing with an abstract tree representation demanded novel specification and
implementation techniques [7].

23

(ezpr)
(term) /*\
(factor) (mulop) (term) idy id;
id, * (factor)

idg

Figure 4: Parse vs. Abstract Tree Representations

Few of these issues address the need for a coherent conceptual model for documents in the
language.

Names for components

Related to structural decomposition is the choice of terminology by which document com-
ponents can be named. Simple structure editors (especially when designed to support
multiple languages) may not name components at all, requiring the user to think in terms
of representation-oriented commands (for example Left, Right, In, Out, and Delete-Subtree).
A single-language editor can provide more natural language-oriented commands (e.g., Next-
Function, Previous-Declaration, or Delete-Statement), but this approach doesn’t generalize
across languages. In some cases appropriate names overlap and depend on context; for
example a structural component internally called “variable” in a programming language
representation might be conceptually both a “variable” and an “expression” in some con-
texts but only a “variable” in others.

A separate model for users

Pan decouples conceptual models of document structure from internal representations. The
language description mechanism provides a loose framework in which the author of each
language description is expected to design a model. This framework is based on two as-
sumptions about how people understand syntactic structure.

The first assumption is that people generally think not in terms of trees but in terms of
familiar structural components, the ones that might be described in an informal language
description: procedures, declarations, statements, and the like. People understand nest-
ing but only as a secondary concept; for example, even though natural language permits
arbitrary nesting, people find sentences with even three nested levels difficult to understand.

The second assumption is that people think of structural components in the specific
terms and concepts of the language being edited, “statements” for example, and not in
generic structural terms like “subtree.” This is an instance of the observation that users’
perceptions of systems are much more sensitive to surface representations than to underlying

structure!l.

11 For example, the subjects in an evaluation of command languages for text editors failed to detect the

24 7 INCONSISTENCY

Operand classes

Pan’s document model for each language is driven by a separate layer in the language
description. Structural aspects of each language that will be revealed to the user are specified
in terms of operand classes: arbitrary, possibly overlapping!?, collections of structural
components in the abstract representation. Each operand class has a name by which it is
known to the user. Our standard Modula-2 description includes classes named “Expression”,
“Statement”, “Declaration”, and “Procedure”; some correspond to more than one kind of
internal structural component. The operand class “Syntax Error” (Section 8) overlaps any
of those classes; for example, a single structure represent both a “Statement” and a “Syntax
Error”.

The operand level

Fach Pan window has a current operand level, which the user selects from a menu of
classes defined by the underlying language description. The operand level is a very weak
input mode that modulates the operation of five generic commands: Next, Previous, Select,
Extend Selection, and Delete. The operand level affects no other commands, and a user may
choose not to use the level-sensitive versions at all. In particular, the operand level neither
inhibits nor modulates text-oriented editing at any time.

When the operand level is “Statement”, for example, the user may press the left mouse
button anywhere and the “nearest” (heuristically speaking) structural component that
meets the definition of operand class “Statement” will be selected (see Figure 5). In terms
of implementation, the Next and Previous commands perform a tree walk, stopping only at
subtrees of the appropriate operand class.

The menu of operand levels available while editing a Modula-2 document using the stan-
dard description include “Character”, “Word”, “Line", “Lexeme”, “Expression”, “Statement”,
“Declaration”, “Procedure”, “Syntax Error”, “Unsatisfied Constraint”. The first three levels
are built-in, corresponding to textual concepts; we find that these aren’t much used, since
most users prefer familiar key bindings that are specific to words and lines. The last two
are also predefined and are described in Section 8.

We have found the operand level a very useful mechanism, but we have yet to explore its
full potential. We are now extending the implementation to permit more general definitions
in terms of arbitrary predicates on structural components, drawing on language-oriented
data in the database.

7 Inconsistency

Any situation where one kind of information is derived from another invites inconsistency
between the two. The syntax-recognizing approach, where language-based information may

equivalence of two editors that differed only in details of their command languages {41].

12The possibility of overlapping separates Pan’s classes from operator-phyla [36]. This becomes important
with more complex kinds of operand classes (see Section 8 for example). Furthermore, operand classes need
not be defined for all possible internal structures.

25

T
B Lavel: Character

n
DEFINITION MODULE IQ;
EXPORT WriteCard, ReadCard;

File: fact.sod . T
PAN Langusge: mcdulaz @ @ Lovei: Statment

d(x : CARDINAL);
(VAR num : CARDINAL);

» ModulaZ Program to compute the factorial function *
(* a(n)fact.mod 25.1 3/15/90 12:47:26%)

MODULE Factorital;
FROM I0 IMPORT ReadCard, WriteCard;

VAR

X, (* toput)
Fact, (* result ¥)

(% 1teration counter *)
: INTEGER;

space = { \t\nm*L} => IG

comment = (®" ~ “e)* =

BEGIN (* factorial ¥)
ReadCard(X); (* read X *)
act ;

integer = {@-9}+ | {08-7}

N :=1;
IF(XO8)

THEN
WHILE (N O X) 00
Nz ;

END;
writeCard(Fact);
END Factorial.

Figure 5: Editing a Program using Pan I

26 7 INCONSISTENCY

be derived from text, is no exception. During text-oriented editing derived information
maintained by the system will sometimes disagree with what the user sees, for example font
shifts that reveal lexical categories may be out of date after a statement is transformed
textually into a comment. Resolving inconsistency requires reanalysis, a potentially time
consuming task. Yet inconsistency has the potential to detract from the goals of the system
by confusing or misleading the user, by degrading performance, or by distracting the user
with unpredictable behavior.

Inconsistency between text and derived information should not be confused with a re-
lated but different issue: the well-formedness of a document with respect to its underlying
language. Unfortunately, many language-based editors that permit text-oriented editing
are able to resolve inconsistency only for well-formed documents. In practice, a user who
chooses to modify part of a document textually may do no other kind of editing until that
part of the document is well-formed again. Pan removes this restriction, using mechanisms
for document analysis that never fail. It is possible for the text of a document in Pan to be
well-formed but inconsistent with respect to derived information; it is also possible for it to
be ill-formed but consistent, in which case the derived data includes diagnoses. Section 8
treats well-formedness in more detail, and it will not be discussed further here.

Inaccurate information

Of the potential problems with inconsistency, the most serious would be to mislead the user
with obsolete derived data.

Pan’s first defense against this prospect is the policy that structural interaction may
take place only when text and structure are consistent. This policy is implemented by
automatic reanalysis: every command that requires derived information first ensures
consistency, triggering reanalysis if needed, before proceeding. Since analysis always suc-
ceeds, this policy cannot restrict the user, although it may cause delay.

This policy is compromised when presentation enhancements (font shifts, highlighting,
and the like) depend on derived information but persist visually during periods of incon-
sistency. A conservative policy would prohibit all such enhancements in the presence of
inconsistency, since any or all of them could be incorrect. In practice such a policy would
lead to unpleasant visual effects after the first text-oriented change following an analysis,
as the system removed all visual enhancements. Even more important, it would result in
the loss of information that most of the time is almost correct.

Pan’s compromise rests on the assumption that the user can judge the implications of
inconsistency!® as long as it is visible, hence the policy to make visible both the presence
and the extent of inconsistency. The presence of inconsistency is revealed by the panel flag
“T". this flag, otherwise displayed in boldface, appears gray during periods of inconsistency.
The extent of any current inconsistency is revealed partially with a special font distinct from
those used for lexical categories in the underlying language; this special font is used only
for newly entered text that has no structural properties. To reveal completely the extent of
inconsistency would require that recently deleted text be somehow visible, but the potential

13 After all, the user is responsible for the changes that introduced it.

27

benefit of that extreme approach does not seem to justify the cost in implementation and
display confusion.

Analysis strategies

How often and under what circumstances to attempt reanalysis is the most challenging
aspect of inconsistency. A good policy involves interactions among user behavior and ex-
pectations, analysis strategies and implementations, and the speed with which analysis can
be performed. Two of Pan’s pervasive implementation strategies help minimize analysis
time.

The first implementation strategy is complete reliance on incremental analysis. Pan
only recomputes information that might change, based on a record of what text has changed
since prior analysis. For many kinds of textual changes, especially simple localized changes,
analysis time is roughly proportional to the extent of the changes. Unfortunately, the non-
local nature of document analysis means that any change creates the potential for extensive
reanalysis. We expect, and have so far confirmed, that Pan users will develop an intuition
about the kinds of textual changes that have extensive implications and will not perceive
variations in analysis time as caprice on the part of the system.

The second implementation strategy includes several techniques and heuristics to help
“reuse” language-based information during analysis. This strategy helps prevent informa-
tion loss (and analysis time when the information is computable at all) caused by the
transient appearance of minor language violations [8].

Analysis policies

Even with careful implementation, analysis time can be noticeable with present-day work-
stations. A careful approach to setting policy for reanalysis is important for an optimal
user-interface.

An overly ambitious policy, attempting reanalysis after every character insertion or
deletion, encounters two serious problems. First, analysis at this granularity would find
documents nearly always ill-formed. There is little to be gained by insisting that the system
perform useful analysis on documents that are in intentionally meaningless states. Second,
this drain of resources degrades performance in ways beyond the user’s control. Third,
over-eager update of the display is visually distracting

There are two intermediate policies. The system might guess when the document is
reasonably well-formed. This strategy has some of the same drawbacks as the ambitious
strategy, for example even more potential for unpredictable and uncontrollable behavior. A
second intermediate approach would restrict text editing to a bounded context (often called
a “focus”), performing analysis when the user attempts to leave the context in some way.
This approach is incompatible with Pan’s general insistence on unrestricted text editing
with no overhead on shifts of perspective.

Pan’s current policy relies upon the assumption that the user understands the general
state of the document and can judge the tradeoffs involved. Incremental analysis is only
performed when requested by the user, either implicitly by invoking an operation that

28 8 ILL-FORMED DOCUMENTS

triggers automatic reanalysis (described earlier in this section) or explicitly by invoking the
command Analyze-Changes. Nothing prevents a Pan user from typing an entire document
without once invoking analysis. The Pan approach is to encourage frequent analysis by
making it cost-effective to the user: both efficient and useful.

8 TIll-Formed Documents

Inherent in the syntax-recognizing approach is a certainty that documents being modified
are more often than not ill-formed: at variance with an underlying language definition'*.

Many language-based editors that permit text-oriented editing inherit this bias. Unable
to analyze ill-formed documents, these editors insist that the user correct any newly intro-
duced “errors” before proceeding. Often justified as a service, because it limits the extent

and duration of “errors,” this treatment has unpleasant side effects.

1. It “narrows” options available to the user, who may prefer to delay trivial repairs while
dealing with more important issues. An “error” may often be part of an elaborate
textual transformation.

2. It implies that derived information is only available and accurate when documents are
well-formed, again constraining the user.

3. It implies that the user has done something wrong, when in fact the system is simply
unable to understand what the user is doing [44].

Pan’s approach to the treatment of ill-formed documents pervades the system. It is an
entirely normal state in Pan for documents to be ill-formed, and every attempt is made to
provide all services in the presence of any such variances with respect to the constraints
imposed by the language description. In fact, information about variances is an important
and useful kind of derived information, available when the user wants it.

Pan’s approach decouples ill-formedness from inconsistency between the textual and
language-based aspects of a document, discussed in Section 7. An inconsistent document
may or may not be well-formed (the system can't know in this case), and a consistent
document likewise may or may not be well-formed.

Varitance

A central part of each Pan language description defines what it means for a document in the
language to be well-formed. Pan uses that information to diagnose any variances between
document and language definition. To the user, such variances are “errors,” this being the
familiar term, but there is nothing exceptional about them internally.

Pan’s design includes two special mechanisms for handling variances, reflecting the two
aspects in which the author of a language description defines well-formedness: a context-free

147])-formed documents are usually said to contain “errors,” a pejorative term reflecting the limitations of
many analysis methods.

29

grammar and contextual constraints. These layers are reflected in turn by separate analysis
techniques, reflecting the traditional division of analysis in compilers into “syntactic” and
“static-semantic” analysis.

Pan builds internal tree representations defined by information supplied with each lan-
guage’s context-free grammar. Pan implicitly extends the definition of each language to
include special document components presented to the user as “syntactic errors.” When a
variance of syntax is encountered during incremental syntactic analysis, a new structural
component is created to represent that variance. The new component is named after the
specific kind of variance found, such as “malformed statement”. A component representing
a variance may include well-formed subcomponents produced during prior analysis. For
example, a “syntactic error” named “malformed block” might contains well-formed “state-
ments,” still accessible to the user as “statements.” As much derived information as possible
is retained along with these subcomponents for later analysis. This is an important imple-
mentation strategy for bounding the effects of minor or ephemeral syntactic variances.

Pan’s semantic analyzer attempts to prove that every description-defined constraint
on each document component is satisfied!®; failures are represented using constraint vari-
ances, presented to the user as “unsatisfied constraints.” For example, many programming
languages require that all variables be declared. In a Pan language description, this re-
quirement is enforced by placing a constraint on each document component where a use
can appear. If an undeclared variable appears in the document, a constraint variance is
tagged onto the relevant component as one of many properties that may be recorded there.

Well-formed documents in Pan differ from ill-formed documents only by the absence
of variances. In particular, both text- and language-based operations may proceed in the
presence of variances. Pan offers the user three different ways to communicate about vari-
ances: announcement, navigation, and highlighting. As with most of Pan’s interface, these
mechanisms are generally optional and under user control.

Announcement

At the conclusion of each incremental analysis, an ephemeral and unobtrusive message notes
the number of variances present. In addition, the panel flag “!” appears when the internal
tree representation contains any “syntactic error” components and the flag “#" appears
when the document contains any “unsatisfied constraints.” When neither flag is present
(assuming consistency), the document is by definition well-formed.

Highlighting

A user may request that the text associated with all “syntactic errors” be rendered continu-
ously with characters in a special color (red at present). This form of highlighting, adjusted
after each analysis, is designed to maintain document legibility but to give rapid feedback
about the location of variances. Experienced programmers often identify specific problems
at a glance, once their attention is drawn to them.

15A Pan language description may include useful additional constraints that do not derive from the
language definition, but rather from local and possibly personal conventions for the use of each language.

30 9 MIXED-MODE EDITING

An independent option requests that document components with any “unsatisfied con-
straints” have their text highlighted. Since the location and extent of these is is generally
orthogonal to “syntactic error” components, this highlighting is rendered as a pale yellow
background shading that is independent of character color. The effect is similar to marking
with a “highlighter” pen.

Navigation

The user may investigate specific variances and their diagnoses by navigation. After se-
lecting the built-in operand level “Syntax Error”, the user presses the left mouse button
anywhere in the display. As with other operand levels, this action sets the edit cursor at
the nearest component of the appropriate class, selects (underlines) associated text, and
sets the text cursor at its beginning. Unlike ordinary operand levels, this command also
presents in the panel a diagnosis, “malformed statement” for example'®, While the operand
level remains at “Syntax Error”, commands Next and Previous traverse “syntactic errors,”
announcing the diagnosis at each.

The built-in operand level “Unsatisfied Constraint” works analogously, even though it is
defined in terms of information in Pan’s database instead of in terms of syntactic structure.
This operand level is the prototype of a new class of operand levels, defined according to
arbitrary database predicates.

Open issues

Like most language-based systems, the distinction between syntactic analysis (incremental
parsing) and contextual constraint checking is a fundamental organizing principle for Pan’s
language descriptions and analysis mechanisms. It has become clear that the current user
interface for variances exposes this distinction inappropriately.

To the naive user any variance is simply an “error.” For such users we might redefine the
user interface to treat them that way. But more experienced users seem to place variances
into categories according to various criteria, for example severity, non-locality, or perhaps
even level of surprise. The present categorization approximates some of these but doesn’t
present a user-oriented model of the kind described in Section 6. As we experiment with
extra-lingual constraints, for example the imposition of locally-defined stylistic conventions,
we find the current distinction even less appropriate.

A more general mechanism would permit the author of each language description to
specify named categories for variances, in the same spirit that “operand classes” present a
user model of language-based structure.

9 Mixed-mode Editing

Pan’s fundamental approach to language-based editing is that it should broaden the user’s

16 A “malformed statement” is in both the “Statement” and “Syntax Error” operand levels. Recall that
operand levels are defined as potentially overlapping classes of structural components.

31

options without affecting the user’s text-oriented options any more than absolutely neces-
sary. The user should be able edit textually any time, any place in the document presen-
tation; it should be equally possible to edit in terms of the language any time, any place.
This section introduces Pan’s simple language-oriented mechanisms, with special attention
to their coexistence with text-oriented editing.

Shifting perspectives

A text-oriented operation followed by a structure-oriented operation implies a shift of per-
spective about the document, on the part of both user and system. Humans are adept at
shifting perspective, and do so frequently to suit the cognitive task of the moment. For ex-
ample, studies of experienced programmers reveal that both reading and authoring activities
involve a variety of fine-grained cognitive tasks, with rapid switching among them [42, 54].
Pan supports these activities by always being ready to operate in either perspective.

In contrast, many language-based editors that provide mixed text- and structure-oriented
operations require user activity, both mental and physical, to shift the system’s perspec-
tive. This can distract, slow down, and possibly confuse the user. For example, some editors
require that a structural component be specially selected for text-oriented editing; the tex-
tual content of the component then becomes the “focus” until the user wishes to resort to
structure-oriented editing, at which time some other overt action may be required. Some
editors provide a textual focus only in a separate window, preventing the user from editing
textually in the natural visual context.

Mizing commands

Any Pan editing command, text- or structure-oriented, may be invoked without prereq-
uisite. Two mechanisms make this work. The first, automatic reanalysis (introduced in
Section 7) ensures that derived information is consistent with the text before performing
any operations that require it. In many editors a similar transition can by interrupted by
analysis that encounters ill-formed text. Section 8 describes how Pan avoids this problem.
The second mechanism is the dual nature of Pan’s edit cursor.

A dual aspect cursor

Pan’s edit cursor has two aspects. It always has a textual location, displayed as an inverted
box (Figure 5, page 25). It may also have a location corresponding to some structural com-
ponent. At present, the cursor’s structural location is revealed by turning the component’s
textual presentation into the current text selection. Any operation that sets the struc-
tural cursor also positions the text cursor at the first character in the structure’s textual
presentation. Figure 5 shows a structural unit, a ““Statement””, having just been selected.

Any editing operation that requires a cursor location simply uses the appropriate as-
pect: text or structure. If the cursor has no structural aspect, then one is inferred from the
text cursor’s location by the same mechanism used when the user selects a structural com-
ponent by pointing with the mouse. This design resolves the “point vs. extended cursor”

32 9 MIXED-MODE EDITING

problem [61] by providing both behaviors simultaneously.

People seem to have little difficulty with the implied ambiguity, presumably for the same
reasons that they can shift perspectives themselves so effectively and can manage complex,
possibly ambiguous domains [20]. Raskin reports that a dual-aspect text cursor, where the
behavior depends on the next user action, solved a particular user-interface problem [51};
the important thing seems to be that the both aspects are visible and predictable.

The operand level revisited

One challenge for Pan’s user interface is to make structure-oriented commands available
as conveniently as the familiar text-oriented omes, via bindings to keyboard sequences,
mouse buttons, and menus. Other than a few generic structure-oriented commands (such
as Analyze-Changes) most such commands are defined in terms of language-specific operand
classes, as defined by the author of the underlying language description (see Section 6).
For example, the command Select-Declaration should be available when editing languages
for which the concept of “declaration”’ has been defined, and not available for languages in
which it is not. However, this approach does not generalize, since a confusing proliferation
of commands would result from Pan’s support for many languages.

Pan’s solution is a second level of indirection added to the basic command binding
mechanisms, used by generic versions of five basic commands: Next, Previous, Select, Extend
Selection, and Delete!”. The user may specify the current “operand level” in each window
by menu selection (or key binding), where the language-specific options derive from the
language description (e.g. “Expression”, “Statement”, “Declaration”, and “Procedure”). For
example, when the left mouse button is bound to the generic version of Select and when
the current operand level is “Statement”, a left mouse button press invokes a structural
command that selects the statement nearest the mouse location.

The operand level mechanism for command dispatch is a very weak input mode. It
modulates the effect of the five basic commands, but has no other effects and in particular
implies no restrictions on user actions. For example, the user may edit textually independent
of the current operand level.

We sometimes find it convenient to violate the model presented above by strengthening
slightly the effect of the operand level. With this adjustment, any change to the operand
level causes an implicit Select operation at the new level. This has the visible effect of
moving the edit cursor in some cases. It isn’t clear yet whether the convenience justifies the
possible confusion.

Simple editing

The prototype implementation supports no user commands that modify internal document
structure directly. A Delete command, invoked with a structural selection, achieves the
same effect by removing the text associated with the selected component. The structure
corresponding to the deleted component persists until the next reanalysis, but it is invisible

17The generic versions of these commands are called Next-@Level etc. and are bindable just like any other
Pan command.

33

to the user because automatic reanalysis will delete it before any commands can use it. Cut
simply places text in the clipboard.

The command Paste simply inserts text from the clipboard. If the context is appropriate,
subsequent incremental analysis derives the equivalent structural information quickly.

This implementation costs a small amount of analysis time by discarding derived infor-
mation when the user moves structural components. On the other hand, it guarantees the
integrity and well-formedness of the document’s internal representation, since the language
definition is already built into Pan’s parser.

Complex mechanisms for direct structural editing can be a source of confusion to the
user, since those editing operations may “fail,” something Pan commands rarely do. Worse,
they may fail for the kinds of reasons we attempt to hide from the user. For example, it
seems reasonable to copy the list of identifiers appearing in the formal parameter list of a
procedure definition and paste it into a call to that procedure. Although the two lists of
identifiers might appear identically and be closely related conceptually, there may be sound
implementation reasons for different internal representations in the two contexts. We prefer
to avoid strategies that involve guessing the user’s intent.

When a structurally inspired Cut and Paste sequence in Pan violates the underlying
language definition, the operations succeed and the problem is diagnosed by precisely the
same mechanism that handles other language violations (discussed in Section 8).

The cost at present of this text-based implementation is the loss of any non-derivable
annotations on document components during Cut and Paste sequences. We have developed,
but not yet added, a strategy that avoids this information loss and provides functionality
that is equivalent to direct structural operations. The successor to Pan I addresses the
problem in more fundamental ways.

Other language-based operations

The ultimate advantage of language-oriented editing lies in a rich and open-ended collection
of “services” that draw upon a rich repository of information to assist users in commonly
performed tasks. The best developed collection of these services in Pan at present deals with
the location and diagnosis of variances, as described in Section 8. This section describes a
few other examples that either have been prototyped or will be soon.

One of the few forms of query supported by ordinary text editors is textual search.
Searching in Pan can draw on any information in the repository. For example, one search
command locates in a document the declaration and all uses of a programming language
variable, which the user identifies by pointing. The results of this and other language-based
queries are made available by an interface similar to the one used for variances (described
in Section 8). Text associated with all components of the current query result appears with
different color characters, blue at present. The user may choose the operand level “Query
Result” and navigate through the components. A closely related command allows the user
to point at a variable and move the cursor to the corresponding declaration; this is only one
example of a command that follows hypertext-like links defined by the underlying language.

Like all full-functioned text editors, Pan also supports textual replacement based on

34 10 FUTURE DIRECTIONS

regular expression matching. However, one often intends that the replacement depend on
the language structure, not on the textual structure, even when the two are similar. For
example, word replacement in natural language documents is tricky using regular expres-
sions. One wants to avoid replacing occurrences embedded in other words, so a simple
specification of the search string does not suffice; at the same time, it is difficult to describe
all characters (including beginning and end of line) that might mark word boundaries. The
answer involves specific commands that use Pan’s derived information to replace only whole
components. Even more powerful versions replace only those occurrences of a name that
are related according to the rules of the language, for example when renaming a variable in
a program.

Other open issues

At present, during text-oriented editing, both a cursor and selection are used, but dur-
ing structure-oriented editing only a cursor is available. Some prototyping experiments
have suggested possible uses for a structural selection, but the addition threatens the user
interface with extra complexity.

Setting the structure cursor implies both a text cursor location and a text selection. In
one sense the linkage is limiting, but it is also simplifying. We rely upon to get the effect
of structure-oriented editing in the current implementation (see above). This is an example
of wrapping general mechanisms in specific services that are easy to understand.

One of the reasons for both decisions, linking the structure cursor to the text cur-
sor/selection and the omission of a tree selection, is a shortage of presentation enhancements
on a monochrome monitor that can display all of them intelligibly at the same time. It
can be done with color. Even so, we suspect that these four separate mechanisms should
never be revealed to the user as four independent interface concepts; rather, they should
be driven by various specialized services that use them in concert in predictable and useful
ways.

10 Future Directions

In addition to the general language-based services already described, we have built a number
of special-purpose services that add to Pan’s general utility. These include a browsing
interface to the file system in the form of a “directory editor,” an integral help system for
both naive users and developers that provides access to documentation and system source
code, and a hypertext-like browser for UNIX!® online manual pages. We expect to see more
of these practical additions.

We are currently working with prototypes for general language-based queries, a syntax-
directed style of editing, and other new language-based services. Architectural revisions in
progress include support for multiple views (or projections) per buffer, graphical views for
tree- or graph-structured data, and the application of language-based techniques to provide

18UNIX is a trademark of AT&T Bell Laboratories.

35

visual access to internal data structures. New language description techniques are also
under development.

Ongoing research projects use the leverage gained from the Pan system. Projects near
completion include a study of program presentation that uses derived information to provide
elision, alternate textual representations, and mappings to hardcopy using typesetting [11];
the development of advanced document analysis techniques to specify and control user-
centered program viewing [63]; and integration with a persistent database.

An important group of issues concerns extensions to Pan’s language description mech-
anisms. First, we wish to add new descriptive layers for various purposes. For example,
we intend to build browsers suitable for program call graphs and inheritance hierarchies
(lattices) for languages where this is meaningful. A new description layer might define how
the information is to be derived from the database and supplied to a graphical viewer.
Although the present language-description facilities provide simple support for description
layers, the problem of layering language descriptions requires further work.

Second, while the current implementation supports sharing among documents written
in a common base language, it should be extended to deal with both documents written in
multiple languages and with sharing among documents written in different languages.

Finally, we hope to move beyond the limitations in our language-description techniques
that restrict Pan to “classical” computer languages—languages having a well-defined (and
simple) syntax together with some set of well-formedness constraints. This would require
adaptation of our techniques to other classes of languages: those with non-standard context-
sensitive syntactic aspects, graphical languages, and even natural languages.

Continuing work at UC Berkeley, part of the Ensemble project, is generalizing Pan’s
approach in three ways:

1. Much richer mappings among document structure, presentations, and specification of
appearance, building heavily on the experience gained from the VORTEX document
system [16, 17].

2. The extension of editing and viewing to a wide range of media—text, graphics, sound,
and video.

3. Integrated support for compound documents, where different languages and document
types may be composed.

11 Acknowledgements

Pan is the work of many individuals besides the authors. Christina Black, J acob Butcher,
Bruce Forstall, Mark Hastings, and Darrin Lane have all made substantial contributions.
The encouragement, suggestions, and support of Bill Scherlis have played a major role as
well.

36

REFERENCES

References

(1]

[2]
(3]

[4]

(5]

[6]

[7]

ACM. Proc. of the ACM SIGPLAN SIGOA Symposium on Tezt Manipulation (Port-
land, Oregon, June 8-10, 1981). Appeared as SIGPLAN Notices, 16(6), June 1981.

ApPLE COMPUTERS, INC. MacWrite Manual. Cupertino, California, 1984.

BAECKER, R. M., AND MARcUS, A. Human Factors and Typography for More Read-
able Programs. ACM Press, New York, New York, 1990.

BAHLKE, R., AND SNELTING, G. The PSG system: From formal language definitions
to interactive programming environments. ACM Trans. on Programming Languages
and Systems 8, 4 (1986), 547-576.

BAHLKE, R., AND SNELTING, G. We don’t need structure editors — we need smart
text editors. Presented at the CHI 90 Workshop on Structure Editors (Apr. 1990).

BALLANCE, R. A. Syntactic and Semantic Checking in Language-Based Editing Sys-
tems. Ph.D. dissertation, Computer Science Division (EECS), University of California,
Berkeley, California, 94720, Dec. 1989. Available as Technical Report No. UCB/CSD
89/548.

BALLANCE, R. A., BUTCHER, J., AND GRAHAM, S. L. Grammatical abstraction and
incremental syntax analysis in a language-based editor. In Proc. of the SIGPLAN ’88
Conference on Programming Language Design and Implementation (Atlanta, Georgia,
June 22-24, 1988), ACM, pp. 185-198. Appeared as Sigplan Notices, 23(7), July 1988.

BALLANCE, R. A., GRAHAM, S. L., AND VAN DE VANTER, M. L. The Pan language-
based editing system for integrated development environments. In ACM SIGSOFT ’90:
Fourth Symposium on Software Development Environments (1990). To appear.

BALLANCE, R. A., AND VAN DE VANTER, M. L. Pan I: An introduction for users.
Technical Report No. UCB/CSD 88/410, Computer Science Division (EECS), Univer-
sity of California, Berkeley, California, 94720, Mar. 1988.

BALLANCE, R. A., VAN DE VANTER, M. L., AND GRAHAM, S. L. The architecture
of Pan I. Technical Report No. UCB/CSD 88/409, Computer Science Division (EECS),
University of California, Berkeley, California, 94720, Mar. 1988.

Brack, C. L. PPP: The Pan program presenter. Technical Report No. UCB/CSD
90/589, Computer Science Division (EECS), University of California, Berkeley, Cali-
fornia, 94720, Sept. 1990.

Borras, P., CLEMENT, D., DESPEYROUX, T., INCERPI, J., Kann, G., Laxng, B.,
AND PascuaL, V. CENTAUR: the system. In ACM SIGSOFT ’88: Third Symposium
on Software Development Environments (1988), P. Henderson, Ed., pp. 14-24.

REFERENCES 37

[13) BuDINSKY, F. J., Hort, R. C., AND ZAKY, S. G. SRE—a syntax-recognizing editor.
Software—Practice & Ezperience 15, 5 (May 1985), 489-497.

[14] BUTCHER, J. Ladle. Master’s thesis, Computer Science Division (EECS), University
of California, Berkeley, California, 94720, Nov. 1989. Available as Technical Report
No. UCB/CSD 89/519.

[15] CuanDHOK, R., MILLER, P., PANE, J., AND METER, G. Structure editing: Evolu-
tion towards appropriate use. Presented at the CHI ’90 Workshop on Structure Editors
(Apr. 1990).

[16] CHEN, P., COKER, J., HARRISON, M. A., McCARRELL, J. W., AND PROCTER, S.
The VORTEX document preparation environment. In Proc. of the 2nd European Con-
ference on TgX for Scientific Documentation (Strasbourg, France, June 19-21 1986),
vol. 236 of Lecture Notes in Computer Science, Springer-Verlag, pp. 32-24.

[17] CHEN, P., AND HARRISON, M. A. Multiple representation document development.
IEEE Computer 21,1 (Jan. 1988), 15-31.

[18] CoNraDI, R., DIDRIKSEN, T. M., AND WaNVIK, D., Eds. Advanced Programming
Environments (Berlin, Heidelberg, New York, 1986), no. 244 in Lecture Notes in Com-
puter Science, Springer-Verlag.

[19] ConsTABLE, R. L., ALLEN, S. F., BRoMLEY, H. M., CLEAVELAND, W. R., CRE-
MER, J. F., HarPER, R. W., Howg, D. J., KNnoBLOCK, T. B., MENDLER, N. P,
PANANGADEN, P., Sasaki, J. T., AND SMITH, S. F. Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall, 1986.

[20] DISESsA, A. A. Models of computation. In User Centered System Design: New
Perspectives on Human-Computer Interaction, D. A. Norman and S. W. Draper, Eds.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 210-218.

[21] DISESsA, A. A. Notes on the future of programming: Breaking the utility barrier.
In User Centered System Design: New Perspectives on Human-Computer Interaction,
D. A. Norman and S. W. Draper, Eds. Lawrence Erlbaum Associates, Hillsdale, NJ,
1986, pp. 125-152.

[22] DoNzEAU-GOUGE, V., HUET, G., KAHN, G., AND LANG, B. Programming environ-
ments based on structure editors: the MENTOR experience. Research Report No. 26,
INRIA, July 1980.

(23] DoNnzEAU-GOUGE, V., HUET, G., KAHN, G., AND LaANG, B. Programming en-
vironments based on structured editors: the MENTOR experience. In Interactive
Programming Environments, D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds.
McGraw-Hill, New York, NY, 1984.

38 REFERENCES

[24] DonzEAU-GOUGE, V., HUET, G., KAEN, G., LANG, B., AND LEVY, J. J. A struc-
ture oriented program editor: a first step towards computer assisted programming.
In International Computing Symposium 1975 (1975), E. Gelenbe and D. Poiter, Eds.,
North-Holland Publishing Company, pp. 113-120.

[25] DouGLAS, S. A., AND MoRraN, T. P. Learning text editor semantics by analogy.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, MA, Dec. 1983), ACM, pp. 207-211.

[26] Fraser, C. W., aND LoPEz, A. A. Editing data structures. ACM Transactions on
Programming Languages and Systems 3, 2 (Apr. 1981), 115-125.

[27] GANSNER, E. R., HORGAN, J. R., Moorg, D. J., Surko, P. T., SWARTWOUT,
D. E., AND REPPY, J. H. SYNED—a language-based editor for an interactive pro-
gramming environment. In JEEE Spring Compcon ’83 (1983).

[28] GARLAN, D. Flexible unparsing in a structure editing environment. Tech. Rep. CMU-
CS-85-129, Computer Science Department, Carnegie-Mellon University, Pittsburgh,
PA, Apr. 1985.

[20] GOLDBERG, A. Programmer as reader. IEEE Software 4, 5 (Sept. 1987), 62-T70.

[30] HALME, H., AND HEINNAN, J. GNU emacs as a dynamically extensible programming
environment. Software—Practice & Ezperience 18, 10 (Oct. 1988), 999-1009.

[31] HaNSEN, W. J. Creation of Hierarchic Tezt with a Computer Display. Ph.D. disser-
tation, Stanford University, June 1971.

[32] HANSEN, W. J. User engineering principles for interactive systems. In Interactive
Programming Environments, D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds.
McGraw-Hill, 1984, ch. 8, pp. 217-231.

[33] HILFINGER, P. N., AND COLELLA, P. Fidil: A language for scientific programming.
In Symbolic Computation: Applications to Scientific Computing, R. Grossman, Ed.
SIAM, 1989, pp. 97-138.

[34] Hort, R. W, BoeuM-Davis, D. A., AND ScHuLTZ, A. C. Mental representations
of programs for student and professional programmers. In Empirical Studies of Pro-
grammers: Second Workshop, G. M. Olson, S. Sheppard, and E. Soloway, Eds. Ablex
Publishing, Norwood, NJ, 1987, p. 33.

[35] HorTON, M. R. Design of a multi-language editor with static error detection capabil-
ities. Ph.D. dissertation, Computer Science Division (EECS), University of California,
Berkeley, California, 94720, 1981.

[36] KagN, G., LANG, B., MELESE, B., AND MoRrcos, E. Metal: A formalism to specify
formalisms. Science of Computer Programming 3 (1983), 152-188.

REFERENCES 39

[37] KaIsEr, G. E., AND KaNT, E. Incremental parsing without a parser. Journal of
Systems and Software 5, 2 (May 1985), 121-144.

[38] KirsLis, P. A. C. The SAGA editor: A Language-Oriented Editor Based on an Incre-
mental LR(1) Parser. Ph.D. dissertation, University of Illinois at Urbana-Champaign,
Urbana, Illinois, 1986.

[39] LampsoN, B. W. Bravo users manual. Palo Alto, 1978.

[40] LANG, B. On the usefulness of syntax directed editors. In Conradi et al. [18], pp. 47~
51.

[41] LEDGARD, H., SINGER, A., AND WHITESIDE, J. Directions in Human Factors for
Interactive Systems. Springer-Verlag, Berlin, Heidelberg, New York, 1981.

[42] LETOVSKY, S. Cognitive processes in program comprehension. In Empirical Studies of
Programmers, E. Soloway and S. Iyengar, Eds. Ablex Publishing, Norwood, NJ, 1986,
pp- 58-79.

[43] LETOVSKY, S., AND SOLOWAY, E. Delocalized plans and program comprehension.
IEEE Software 8, 3 (May 1986), 41-49.

[44] LEwis, C., aND NORMAN, D. A. Designing for error. In User Centered System
Design: New Perspectives on Human-Computer Interaction, D. A. Norman and S. W.
Draper, Eds. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986, pp. 411-432.

[45] MEDINA-MORA, R., AND FEILER, P. H. An incremental programming environment.
IEEE Trans. on Software Engineering SE-7, 5 (1981), 472-481.

[46] MEYROWITZ, N., AND VAN DaM, A. Interactive editing systems: parts Iand II. ACM
Computing Surveys 14, 3 (1982), 321-416.

[47] NEAL, L. R. Cognition-sensitive design and user modelling for syntax-directed editors.
In CHI+GI (1987), pp. 99-102.

(48] NoTKIN, D. Interactive Structure-Oriented Computing. Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 15213, Feb. 1984.

[49] NoTkIN, D. The GANDALF project. Journal of Systems and Software 5, 2 (May
1985), 91-106.

[50] OmAN, P., aND COOK, C. R. Typographic style is more than cosmetic. Communi-
cations of the ACM 33, 5 (May 1990), 506-520.

[51] RaskIN, J. Systemic implications of leap and an improved two-part cursor: a case
study. In Proceedings SIGCHI Conference on Human Factors in Computing Systems
(Austin, TX, May 1989), pp. 167-170.

40 REFERENCES

[52] REPS, T., AND TEITELBAUM, T. The synthesizer generator. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments (1984), P. Henderson, Ed., pp. 42-48.

[53] RicH, C., AND WATERS, R. C. The Programmers Apprentice: A research overview.
IEEE Computer 21, 11 (Nov. 1988), 10-25.

[54] RisT, R. S. Plans in programming: Definition, demonstration, and development. In
Empirical Studies of Programmers, E. Soloway and S. Iyengar, Eds. Ablex Publishing,
Norwood, NJ, 1986, pp. 28-45.

[55] ROBERT L. Mack, C. H. L., AND CARROLL, J. M. Learning to use word processors:
Problems and prospects. ACM Transactions on Office Information Systems 1, 3 (July
1983), 254-271.

[56] Rosk, C. Inside Macintosh. Addison-Wesley, Reading, Massachusetts, 1985.

[57] SoLoway, E., aND ErrLICH, K. Empirical studies of programming knowledge. JEEE
Transactions on Software Engineering SE-10, 5 (Sept. 1984), 595-609.

[58] STALLMAN, R. M. EMACS: the extensible, customizable, self-documenting display
editor. In Proc. of the ACM SIGPLAN SIGOA Symposium on Tezt Manipulation [1],
pp. 147-156. Appeared as SIGPLAN Notices, 16(6), June 1981.

(59] STROMFORS, O. Editing large programs using a structure-oriented text editor. In
Conradi et al. [18], pp. 39-46.

[60] TerTELBAUM, T., AND REPS, T. The Cornell Program Synthesizer: a syntax-directed
programming environment. Communications of the ACM 24,9 (1981), 563-573.

[61] TeiTELBAUM, T., REPS, T., AND HORWITZ, S. The why and wherefore of the Cornell
Program Synthesizer. SIGPLAN 16, 6 (June 1981).

[62] TEITELMAN, W. A tour through cedar. JEEE Trans. on Software Engineering SE-11,
3 (Mar. 1985).

63] VaN DE VANTER, M. L. User-centered program viewing. Research Proposal, Com-
g
puter Science Division—EECS, University of California, Berkeley, California, 94720,
Nov. 1987.

[64] VAN DE VANTER, M. L. Error management and debugging in Pan I. Technical Report
No. UCB/CSD 89/554, Computer Science Division (EECS), University of California,
Berkeley, California, 94720, Dec. 1989.

[65] WaATERS, R. C. Program editors should not abandon text oriented commands. SIG-
PLAN Notices 17, 7 (1982), 39—46.

[66] WINOGRAD, T. Beyond programming languages. Communications of the ACM 22,7
(July 1979), 391-401.

REFERENCES 41

[67] Woob, S. R. Z—the 95% program editor. In Proc. of the ACM SIGPLAN SIGOA
Symposium on Tert Manipulation [1], pp. 1-7. Appeared as SIGPLAN Notices, 16(6),
June 1981.

