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ABSTRACT

The potential usefulness of Prolog has motivated attempts to achieve higher perfor-
mance than the fastest sequential Prolog systems currently available. Several researchers
have attempted to do this by exploiting parallelism. The fundamental tradeoff is exposing
more parallelism versus reducing the overhead incurred by parallel execution. The high
execution overhead of the complex memory management and task management schemes
used in current parallel Prolog systems leads to the following questions: (1) What forms of
parallelism can be effectively exploited with memory management and task management
schemes that have low overhead? (2) How much speedup can be obtained by exploiting
these forms of parallelism? (3) What architectural support is required to exploit these
forms of parallelism?

The goals of this research are to provide answers to these questions, to design a Pro-
log system that automatically exploits parallelism in Prolog with low overhead memory
management and task management schemes, and to demonstrate by means of detailed
simulations that such a Prolog system can indeed achieve a significant speedup over the

fastest sequential Prolog systems.

We achieve these goals by first identifying the large sources of overhead in parallel
Prolog execution: side-effects caused by parallel tasks, choicepoints created by parallel

tasks, task creation, task scheduling, task suspension and context switching.

We then identify a form of parallelism, called flow parallelism, that can be exploited
with low overhead because parallel execution is restricted to goals that do not cause side-
effects and do not create choicepoints. We develop a master-slave model of parallel exe-
cution that eliminates task suspension and context switching. The model uses program
partitioning and task scheduling techniques that do not require task suspension and context

switching to prevent deadlock. We identify architectural techniques to support the parallel



execution model and develop the Flow Parallel Prolog Machine (FPPM) architecture and

implementation.

Finally, we evaluate the performance of FPPM and investigate the design tradeoffs
using measurements on a detailed, register-transfer level simulator. FPPM achieves an
average speedup of about a factor of 2 (as much as a factor of 5 for some programs) over
the current highest performance sequential Prolog implementation, the VLSI-BAM. The

speedups over other parallel Prolog systems are much larger.
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1. Introduction

Due to the potential usefulness of Prolog [14], a logic programming language, there is great
interest in developing high performance Prolog systems. Since its invention by Colmerauer in 1973
[15]. the execution speed of sequential Prolog has increased by more than a factor of 1000 due to
improvements in compiler and processor technology. Many researchers believe that further perfor-
mance improvements can be achieved by exploiting parallelism in Prolog. In fact, the declaranve
nature of the language makes it easier for the compiler to expose parallelism in Prolog programs
than in programs written in imperative languages such as C or Pascal. Unfortunately, current paral-
lel Prolog systems rarely perform better than the fastest sequential Prolog systems. The disappoint -
ing performance of these parallel systems is due to (1) inefficient sequental Prolog execution of
each parallel task and (2) large overhead inherent in complex models of parallel execution. It is
tempting to assume that the performance of these parallel systems can be improved significantly by
addressing problem (1) alone. However, improving the sequential execution speed of each task
would result in a larger fraction of the total execution tirﬁe being spent on parallel execution over-
bead. Therefore it is necessary to address problem (2) as well. Since the overhead depends on the
model of parallel execution, one way to reduce the overhead is to change the model of parallel exe-

cution.

The approach that we take in this dissertation is to develop a model of parallel execution that
can be exploited with low overhead and few changes to the efficient sequential execution of each
parallel task. We then develop an architecture, called the Flow Parallel Prolog Machine (FPPM),
with suppont for this model of execution as well as support for sequential execution of each parallel
task. We refer to the type of parallelism exploited by FPPM as fine grain parallelism because the
parallel tasks may be small (roughly 20 instructions) and share data frequently with other tasks.
Although our model of parallel execution cannot exploit all forms of parallelism that are available
to the more complex models, it achieves better performance in most instances and rarely performs
worse than sequential execution. Further improvements in performance may be achieved by

exploiting other forms of parallelism.
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In this chapter, we describe in greater detail the significance of our research problem as well
as our research goals. Chapter 2 is a survey of previous work in sequential and parallel execution of
logic programs. Chapter 3 describes the type of parallelism that we exploit and explains the over-
head associated with the more complex forms of parallelism. Chapter 4 describes the FPPM archi-
tecture. Chapter 5 describes an implementation of FPPM. We evaluate the performance of the
FPPM implementation and the design tradeoffs in chapter 6. We conclude in chapter 7 with a sum-

mary of results and contributions.

1.1. Parallelism in Prolog

There are many forms of parallelism in Prolog [61]. We describe the main forms below (they are

discussed in greater detail in chapter 2).

. AND-parallelism is exploited when two or more goals of a clause are executed in parallel.
For example, in figure 1.1 if the two goals goall (Argl, Arg3) and goal2(Arg2,

Arg3) are executed in parallel then AND-parallelism is exploited.

predicate (Argl, Arg2) :- goal3(Argl), goal4d (Arg2Z).
?- predicatefl2, (1, 2]).

Figure 1.1: Example of a predicate and a query.

predicate (Argl, Arg2) :- goall(Argl, Arg3), goal2(Arg2, Arg3).

. OR-parallelism is exploited when multiple clauses of a predicate are executed in parallel. For
example, in figure 1.1 if the clauses for predicate/2 are tried in parallel then OR-
parallelism is exploited. |

. Unification parallelism is exploited when a goal is unified with a clause head by two or more
unification operations executing simultaneously. For example, in figure 1.1 unification of the
query, predicate (12, [1, 2]),with a clause head, predicate (Argl, Arg2)
can be done with two parallel operations, one for each argument. We show in chapter 3 that

unification parallelism is a special form of AND-parallelism.



Stream parallelism is exploited when goals pass a “stream"” of alternative variable bindings to
other goals; goals that produce the bindings are called producers and goals that operate on
these bindings are called consumers. Stream parallelism may appear to be a new type of con-
currency, but it is subsumed by OR-parallelism [29].

Procedure pipelining is exploited when the execution of consecutive procedures is overlapped
(see [4] for an example).

Prolog execution also involves executing a number of bookkeeping tasks (e.g., choicepoint
creation, backtracking). Bookkeeping parallelism is exp!oited when these tasks are executed
in parallel with each other and with unification. Unification and bookkeeping parallelism are

finer grain forms of parallelism than either AND- or OR-parallelism.

Most research efforts so far have concentrated on exploiting coarse grain forms of AND-

parallelism and OR-parallelism. Unfortunately, none of these projects have shown speedup over the

fastest sequential systems without explicit control of parallel execution by the programmer. From

the published performance results of parallel Prolog systems [3, 10,29, 39, 44, 45,57], we make the

following observatons:

(1

()

The bepefits of parallel execution are quickly lost due to process creation and bookkeeping
overhead. Paralle]l execution may achieve good speedup over ap inefficient sequential imple-
mentation because the overhead of parallel execution is small in comparison with the longer
sequential execution times. Speedups over good sequential implementations are much harder

to achieve. We discuss this issue in greater detail in chapter 2.

Memory management is a hard problem. The parallel processes are usually allocated their
own stacks. When the number of processes increases the address space is quickly filled up if
the stack space allocated to each process is large. If the stack space allocated to each process
is small, stack overflow must be handled. OR-parallelism has the additional complication of
having to maintain separate binding environments. Allocating a stack per processor rather
than a stack per process alleviates the problem to some extent, but creates new problems due

to the fact that stack frames of different processes can be interleaved on a stack. Garbage



collection for such systems is yet another hard problem.

We hypothesize that by exploiting only those forms of fine grain parallelism in Prolog that do
not require complex memory management and task management schemes with large overhead we

can achieve good speedup over the fastest sequential implementanions.

1.2. Research Goals

The high execution overhead of the complex memory management and task management

schemes used in exploiting AND- and OR-parallelism leads to the following questons:

(1) What forms of parallelism can be effectively exploited with memory management and task

management schemes that have low overbead?
(2) How much speedup can be obtained by exploiting these forms of parallelism?
(3) What architectural support is required to exploit these forms of parallelism?

The goals of this research are to provide answers to these questions, to design a Prolog system
that exploits parallelism in Prolog with low overhead memory management and task management
schemes, and to demonstrate by means of detailed simulations that such a Prolog system can indeed

achieve a significant speedup over the fastest sequential Prolog systems.

We achieve these goals by nrst wientifying iue large sources of overhead in parallel Prolog
execution: side-effectst caused by ﬁamllel tasks, choicepoints created by parallel tasks, task crea-

tion, task scheduling, task suspension and context switching.

We then develop a mode! of parallel execution that eliminates or reduces much of this over-
bead. Our model of parallel execution restricts parallelism to goals that do not cause side-effects
and do not create choicepoints. We refer to this form of parallelism as flow parallelism. We elim-
inate the overbead due to task suspension and context switching by developing program partitioning
and task scheduling techniques that exploit flow parallelism without the need for task suspension

and context switching. We provide special architectural support to reduce the overhead of task

+ Side-effects are actions whose effects remain should backiracking occur. Examples of side-effects are input/output,
asserts and retracts.
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' ABSTRACT MACHINE (YEAR, REL. PERFORMANCE)
LANGUAGE IMPLEMENTATION
PLM (1985, 1.0

VLSI-PLM (1987, 1.2)

(1987, 1.2)
WAM (1983)
PSI-I (1989, 1.2)
KCM (1989, 3.0)
S
PLUM (1989, 4.0
Prolog (1972)

VLSI-BAM (1990, 10)

BAM (1990)
Seq-FPPM (1990, 13)

AP/

FPPM (1990, 22)

Figure 1.2: Relationship of FPPM to other high performance Prolog machines
[5,22,24,25,40,49,59,60]. The performance of various machines are relative to the performance
of the PLM. Cycle time for PLUM is assumed to be the same as the PLM (100 ns.). FPPM's cycle
time is assumed to be the same as the VLSI-BAM (33 ns.) and the sequential FPPM code is hand-
optimized to include optimizations that could reasonably be expected of a good compiler. Several
such optimizations are currently being added to the BAM compiler and VLSI-BAM performance
should approach sequential FPPM performance. Parallel code for FPPM generated by hand.

creation and scheduling.

Finally, we demonstrate that our model of parallel execution can be implemented with low
overbead memory management and task management schemes by designing and simulating the
Flow Parallel Prolog Machine (FPPM). Measurements on a detailed, register-transfer level simula-
tor of FPPM demoanstrate that FPPM achieves an average speedup of about a factor of 2 (as much as
a factor of 5 for some programs) over the current highest performance sequental Prolog implemen-

tation, the VLSI-BAM [40]. The speedups over other Prolog systems are much larger. Figure 1.2



illustrates the relationship of FPPM to high performance Prolog systems based on WAM and BAM.
The figure includes the year of introduction for each processor along with its approximate perfor-

mance relative to the Berkeley PLM [22,25]. More discussion on these systems is presented in

chapter 2.

1.3. Thesis Statement

This dissertation examines the following thesis:

Thesis Statement:

Fine grain forms of parallelism in Prolog can be exploited with low overhead memory management
and sk management to achieve a speedup of about a factor of 2 over the most efficient sequential
implementations.

1.4. Contributions
In the process of proving the thesis statement, this dissertaton makes the following contribu-

tions:

(1) The identification of sources of large overhead in parallel Prolog execution. These include
side-effects, choicepoints and context switching.

(2) A model of parallel execution that restricts paralle] execution to those forms of fine grain
parallelism that avoid this overhead. This model can be implemented with low overhead
memory management and task management schemes.

(3) The design of an architecture, FPPM, with a Main Processor and multiple tightly-coupled
Slave Processors that implements this model.

(4) A detailed register transfer level simulator for FPPM. The simulator takes into account execu-
tion overbead including pipeline delays and memory 1aicncy due to cache misses and cache
coherence traffic.

(5) An evaluation of the architecture including the speedups that can be achieved and the invest-

gation of the tradeoffs in the design of the processor.



2. Survey of Previous Research

We survey previous research on high performance sequential Prolog execution in section 2.1.
Such a study is important because we want to use the most efficient sequenual system as a com-
ponent of our parallel system. Since the main purpose of parallel execution is to achieve high per-
formance, it is necessary to compare the performance of a parallel system to the most efficient
sequential system.

Several parallel Prolog systems have been designed. Section 2.2 is a critique of these sys-

tems.

Prolog predicates are often type polymorphic (i.e., they work on arguments of different
types). However, in practice many predicates are called with arguments instantiated to terms of the
same type each time. Therefore, if one can determine the instantiation of a predicate’s arguments at
compile time, then the generated code for the predicate can be optimized for those argument instan-
tiations. In section 2.3, we discuss the compile time flow analysis techniques that can be used for

compiler optimization. The results of flow analysis are also helpful for parallel execution.

2.1. Sequential Prolog Execution

Early Prolog implementations were interpreters. Prolog compilers provide more than an
order of magnitude improvement in performance over the interpreters. David Warren wrote ihe first
Prolog compiler using an intermediate language suitable for Prolog. Later, be refined the intermedi-
ate language to the well-known Warren Abstract Machine (WAM) [71], which has since become
the basis for the intermediate language of many compilers as well as the basis for the instruction
sets of several specialized Prolog architectures. Pipelined special purpose Prolog machines are
currently the highest performance Prolog systems available. Until recently, these were based
mostly on the WAM. However, a processor based on the new Berkeley Abstract Machine (BAM)
[40), together with a new optimizing compiler, has demonstrated much higher performance. The
BAM's data structures and memory organization are strongly influenced by the WAM, but its

instruction set is simpler and more amenable to compiler optimization. The FPPM'’s processor



instruction set is based on the BAM, but includes some enhancements.

We describe the WAM in greater detail in section 2.1.1. We survey varnous Prolog systems,
both special purpose and geperal purpose, that are based on the WAM in section 2.1.2. The BAM
and an implementation of BAM are described in section 2.1.3. The optimizing compiler for BAM
uses flow analysis based on abstract interpretation to obtain staric information, such as types and

variable instantiation. We describe compiler and fiow analysis techniques in section 2.1.4.

2.1.1. The Warren Abstract Machine (WAM)

The WAM specifies data types, data storage areas znd an instruction set that is specialized for
Prolog execution. Data words contain a type tag field as well as a value field. Since logical van-
ables in Prolog can be bound to data of any type this organization of data words is useful because it
allows the type and the value to be determined by examining a single word. This is not a new idea;

it has long been used in implementations of Lisp.

The WAM has five data storage areas: choicepoint stack, trail stack, environment stack, heap
(atso called the global stack) and push down list. The environment stack is similar to the local stack
in conventional procedural languages. An environment is used to save register values that must sur-
vive a procedure call (each predicate is executed as a procedure). Prolog requires the choicepoint
stack and trail stack to implement bahacbng. Choicepoints contain copies of the various stack
pointers and argument registers at the time the choicepoint was created. These registers are restored
from the choicepoint during backtracking. In some implementations, the choicepoints and environ-
ments are created on a single stack (also called the local stack). The trail stack is used to record the
variables that are bound so that they can be unbound during backtracking. Tbe push down list is a
stack used during the unification of nested lists and structurest. The beap is used to store data struc-
tures during execution. The beap is managed like a stack; heap space is allocated from the top of
the heap. This method is used because beap space can be automatically recovered during back-

tracking, thus reducing the peed for garbage collecion. The heap pointer is saved in the

+ The push down list is not really required: the eavironment stack can be used instcad.



choicepoint and restored on fatlure.

WAM consists of six instruction classes: clause indexing, clause control, procedure control,
get, put and unifv. The clause indexing class contains instructions that filter a set of candidate
clause based on an input argument (usually the first). An example is a mult-way branch based on
tbe type tag of the argument. The clause control class includes instructions to allocate and deallo-
cate environments and to call and return from procedures. The procedure control class contains
instructions to create and modify choicepoints. The ger class includes instructions to perform head
unification of simple argument terms and to initiate head unification of complex terms (lists and
structures). The pur class contains instructions to load argument registers of clause goals for simple
arguments and 10 initiate the creation of complex argument terms. The unify class contains instruc-

tions to unify the elements of complex terms initiated by get and puz instructions.

Dobry er al constructed a processor, the PLM [22], that implements a modified version of the
WAM instruction set. They also studied the memory access characteristics of the WAM and
designed a write buffer and a choicepoint buffer that together improve average performance by
21%. Tick [64] bas also compiled extensive measurements on memory access behavior of WAM.
Since Prolog processors usually have high memory bandwidth requirements these measurements are

particularly useful. Among his results are:

(1) Cheiccpoint memory traffic dominates the data memory accesses accounting for more than

50% of the total traffic. Most of this is due to shaliow backtracking.
(2) Environment accesses account for about 20% of the total data memory traffic.
(3) Heap accesses account for a little less than 20% of the total data memory traffic.

(4) The Trail and Push Down List areas each account for less than 5% of the total data memory

traffic.

Tick also studied various caching schemes to reduce the memory traffic. He found that
choicepoint memory references could be easily cached with a small, top-of-stack cache because

most of the references were due to shallow backtracking. Environment references showed less

DR BT S
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locality, but could also be cached quite effectively. The heap was least amenable to caching.

Touati and Despain [66] have also studied the dynamic charactenstics of the WAM. Among

their results are:
(1) Dereference chains are usually short, but dereferencing occurs often.

(2) A large fraction of the choicepoints created by programs can be avoided by compiler optimi-

zatons.
(3) Cdr-coding is generally ineffective for Prolog programs.

Although these empirical evaluations of the WAM may lead to some optimizations in com-
pilers and memory system design, WAM based systems are generally slower than implementations
based on a new abstract machine, the BAM, which is described in section 2.1.3. The primary prob-
lem with the WAM is that its high-level instructions do not allow optimizing compilers to optimize
for special cases. A second disadvantage is that the WAM does not contain instructions for com-
mon operations such as arithmetc. If an implementation does not provide efficient instructions for
such operations, serious performance degradation results. Onpe or both of these disadvantages is

apparent in the various styles of WAM implementations described below.

2.12. WAM-Based Prolog Systems

Undl recently, most high performance Prolog systems were based on the WAM. The three
most common implementation methods are (1) macro-coded WAM, (2) threaded WAM code and

(3) Micro-coded WAM. These three approaches are discussed in the following sub-sections.

Macro-coded WAM

Prolog programs are compiled into WAM code which is then macro-expanded into the
instruction set of the processor. Borriello er al [7] have used this approach for the SPUR processor.
Mills {46] has suggested a new Prolog architecture to support this technique. Mulder and Tick {48],
and Chen and Patt [51] have separately compared execution of the PLM with macro-coded execu-

ton of WAM on the Motorola 68020. Macro-expansion of WAM is a useful implementation tech-
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nique for general purpose processors. The resulting code is quite fast, but with most processors the
code size increases dramatically. For example, the static code size for the SPUR was 14 times
larger than the equivalent program for the PLM (geometric mean for a set of 15 small benchmarks).
Macro expanded WAM on SPUR executes 16 times more instructions than the PLM and requires
2.3 times as many cycles to execute (assuming an ideal memory system). To have the same cache

miss ratio, the SPUR implementation requires a cache that is 4 to 8 times size of the PLM’s cache.

Threaded WAM code

Thbe Prolog program is compiled into WAM-like code which is then executed by a threaded
code interpreter. At least one well-known commercial system, Quintus Prolog [53], uses this
vapproach. The code size for this method is the same as that of the WAM, but the execution speed is
slightly slower, in general, than macro-expanded WAM implementations. As with the macro-coded

WAM, this method is applicable across a wide range of processor architectures.

Micro-coded WAM

WAM has been implemented through microcode on general-purpose microprogrammable
hosts. For example, Gee et al [34] added the WAM instructions to the VAX-8600 processor with
additional micro-code. This approach is faster than either threadcd WAM code w1 macre-coded
WAM. However, it is only applicable to microprogrammable hosts ana requires aetailed under-

standing of host microarchitecture.

The highest performance WAM processors are micro-coded implementations with data and
control paths designed specifically for WAM. The Berkeley Programmed Logic Machine (PLM)
[22,23,25] was the first such architecture. The first implementation of the PLM used off-the-shelf
TTL components and was the precursor to the Xenologic X-1, as well as a VLSI version built at the
University of California, Berkeley [60]. Although the PLM achieves between 100 and 300 K1LIPS
(Kilo Logical Inferences per Second) on some benchmarks, it relies on a general purpose host pro-
cessor to execute built-in functions. This seriously degrades performance in most programs. The

ECRC Knowledge Crunching Machine (KCM) [5] and the Japanese PSI-I [49] are other examples
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of WAM-based processors that have been constructed. The KCM achieves about 3 times the per-
formance of the PLM with a 64-bit instruction format that is capable of two register transfers per
cycle, support for anithmetic operations unification and backtracking, and a faster cycle time (80
nsec.). The PSI-H achieves slightly higher performance than the PLM and is designed as part of a

multiprocessor to execute the KIL1 language.

2.13. The Berkeley Abstract Machine (BAM)

The WAM has been instrumental in the development of Prolog compiler technology. How-
ever, although the data structures and memory organization of the WAM are very well suited to
Prolog, its 1nstrucdon set precludes many compiler optimizations. The Berkeley Abstract Machine
(BAM) [40] employs many aspects of the data structures and memory organizations of the WAM,
but BAM’s instruction set is more general-purpose, consists of more primitive operations and has
additional optimized operations. This permits greater optimization and flexibility in code genera-
tion. The BAM has some support for Prolog operations such as mult-way branches, type tags and
dereference instructions. Extensive simulation results show that a processor based on the BAM, the
VLSI-BAM achieves a speedup of about a factor of 10 over the PLM. This factor of 10 speedup
consists of a factor of about 3 due to increased clock frequency (30MHz for VLSI-BAM versus 10
MEHz for the VLSI-PLM), and 4 factor of about 2 due o compiler and architecture optimizations.
The special features of the VLSI-BAM for Prolog execution use about 11% of the VLSI-BAM's

chip area, but result in about 70% speedup [40].

The instruction set of FPPM processors and Prolog compilation for sequential execution bor-

rows extensively from the BAM.

22, Parallel Prolog Execution

Although the fastest Prolog systems currently available are sequential, there is potental for
higher performance through paraliel executon. Prolog was originally designed for sequential exe-
cution and its semantics often imposes sequentiality on program execution. In an effort to simplify

the task of parallel execution of logic programs several researchers designed new languages called
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concurrent (or committed choice) logic programming languages. We review these languages in sec-
ton 2.2.1. Although these languages simplify the probiem of exploiting parallelism, they do so at
the expense of a degradation of the logic programming paradigm. There bave been several efforts
to exploit parallelism in Prolog while maintaining its sequential semantics. Most of these efforts
have concentrated on AND-parallelism (parallel execution of goals in a clause) and OR-parallelism
(parallel execution of the clauses in a predicate). We survey AND- and OR-parallel systems in sec-
tion 2.2.2. There have also been efforts to exploit parallelism in Prolog at a finer granulanty than
AND- or OR-parallel processes. In section 2.2.3 we survey attempts to exploit fine grain forms of

parallelism in Prolog.

In our reviews of several models of parallel execution, we consider the following questions
carefully:

(1) How are the parallel tasks created? Since there is an overhead for parallel task creaton,
only tasks that are large enough should be executed in parallel. In geperal, it is hard to
automatically determine which tasks are large enough to execute in parallel. The system can
use heuristics to estimate the size of a task, but since such estimates are often inaccurate, it is
essential for such a system to have low overhead for parallel execution so that the perfor-
mance pecaity for crearrg +oo small a task is acceptable. The overhead is less crucial (but is
stll t:uporant if the programmer explicitly controls parallel task creation in his/ber program.

(2) How is the mode.J of parallel execution evaluated? Designers often use inefficient sequen-
tal systems (hardware or software) as components in their parallel system (usually because
these are easier to obtain or to modify for parallel execution). Although these systems obtain
good speedups over the inefficient sequential components, they are often slower than the most
efficient sequential systems. There is then a temptation to extrapolate their speedup to esti-
mate what it would have been had more efficient sequential components been used instead.
Unfortunately, the interactions among the various aspects of a parallel computer system are so
complex that it is almost impossible to obtain accurate extrapolations. This is especially true

if the two sequental components differ in performance by more than an order of magnitude.
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The overhead of parallel execution is particularly important in this regard. If the overhead is
mainly a function of the model of parallel execution. rather than the particular sequential
component used to implement the model, then the overhead will not change if the sequential
component is replaced by a more efficient one. As the performance of sequental component

is increased, the speedup is limited by the fixed overhead of the parallel execution model.

2.2.1. Concurreat (Committed Choice) Logic Programming Languages

A number of concurrent logic programming languages (also called committed choice logic
programming languages) have been designed specifically for parallel execution. In these languages
each goal is executed by a separate process and shared varnables represent streams for inter-process
communication. The the three principle committed choice languages are Concurrent Prolog [27],
Parlog [36] and Guarded Hom Clauses (GHC) [41]. The differences between these languages is not
pertinent to this research. We discuss only the most important characteristics of these languages 1n
this section (see [56] for a more complete survey). A concurrent logic program is a coliection of
guarded clauses. A guarded clause differs from a Prolog clause in that the goals in the body of the
clause that appear before the commit operator, " | ", constitute the guard and are treated differently
from the remaining goals. All the candidate clauses for a goal may execute in parallel until the
commit operator. At the commit operator only one clause may continue execution and all others are
discarded. Committing to one clause simplifies parallel execution, but degrades the logic program-
ming paradigm.

The guards of concurrent logic programming languages could be user defined predicates that
invoke the execution of other clauses. Thus, execution of the guards could result in large numbers
of clauses being simultaneously executed. This is difficult to implement efficientdy. In the flat ver-
sions of each of the languages the guards may not be arbitrary goals, but rather must belong to a
predefined set of deterministic predicates. Currently, most research on concurrent logic program-

ming languages concentrates oo the flat languages because they are simpler to implement.

The essental difference between Prolog and the concurrent logic programming languages is

that Prolog is non-deterministic (also called don’t know non-deterministic) whereas the concurrent
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logic programming languages are in-deterministic (also called don’t care non-deterministic). In
simpler terms, Prolog searches the space of solutions without discarding alternate paths to solutons,
whereas concurrent logic programming languages discard alternate paths after selecting one path to
explore. Although committed choice languages may simplify the task of parallel execution, they do

s at the expense of a significant degradation of the logic programming paradigm.

There are a number of implementations of committed choice languages. Ginosar and Harsat
[37] describe Carmel, a sequential processor for a variant of Flat Concurrent Prolog. Alkalaj and
Shapiro {1] describe an architecture that consists of several specialized processing units that exploit
internal (fine grain) concurrency and a specialized memory hierarchy. Both the processors above
are uniprocessors. There are also a number of parallel processor implementations, both shared
memory and distibuted. Taylor er al [62] describe a distributed implementation of Flat Concurrent
Prolog (FCP), Ichiyoshi er al [41] describe a distributed implementation of Flat Guarded Hom
Clauses (FGHC), Foster [30] describes a distributed implementation of Flat Parlog. Crammond [18]
describes a shared memory implementation of Parlog. Strand, [31] a new language that uses simple
assignment instead of general unification to instantiate shared variables, has commercial implemen-
tations on a pumber of parallel architectures including both distributed and shared memory architec-

tures.

The performance of concurrent logic programming language implementations has been disai)-
pointing and there are few performance comparisons with efficient sequential systems. The over-
head of process management and memory management for parallel execution are quite high com-
pared to the amount of useful computation. Systems are also ofien swamped by large numbers of

processes, resulting in large overhead for context switching and scheduling.

In FPPM, we use shared variables to represent flow of data from one task to the next. How-
ever, instead of suspending a process and switching contexts to another process when no data is
available, FPPM’s task busy-waits for data. We explain bow this is achieved without the danger of

deadlock in chapter 3.
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2.2.2. AND-parallelism and OR-parallelism

Rather than define new languages specifically for parallel execution there has been consider-
able effort in trying to exploit parallelism in Prolog while maintaining the semantcs of sequential
Prolog. Most of this research has concentrated on AND- and OR-parallelism. Some systems, such
as the RAP-WAM [19] and APEX {44], exploit only AND-parallelism. Other systems, such as the
Aurora system [45], exploit only OR-parallelism. Yet other systems, such as PPP {29], PEPSys [72]

and Conery’s work {16], exploit both AND- and OR-paralielism.

Unfortunately, none of these systems outperform the fastest sequential implementatons,
although many have demonstrated speedups over single processor implementations of their own
system. The main reasons for this are (1) the overhead associated with paralle] execution is too
high, especially :when the granularity of the parallel task is small, and (2) sequential execution on
each processor is inefficient. With improving Prolog compiler technology, such as Vao Roy's [69],
the speed of the sequential Prolog execution component of these systems can be expected to
increase by at least a factor of 5 over the current highest performance sequential systems, whereas
it is unlikely that the execution overhead will decrease significantly unless the model of execution is
changed. Therefore the fraction of execution time spent on overhead for parallel execution will
increase rapidly. It is essential, therefore, to reduce the overiead associated with parallel execution
if significant performance improvements are to be achieved. In this section, we review parallel Pro-

log systems and identify sources of overhead in each of them.

Types of AND-parallel Systems and their Overhead

One of the important issues when exploiting AND-parallelism is dealing with shared vari-
ables. Shared variables are unbound variables that occur (at run time) in the arguments of more
than one goal in the body of a clause. Goals that share variables cannot, in general, be executed in
paralle! because they may bind the shared variable to different terms. Almost all AND-parallel sys-
tems execute goals in parallel only if they do not share uninstantiated variables. A few systems,
such as Conery’s, determine at run time whether a variable is instantiated. The overbead involved

in such tests is likely to be quite substantial (Conery does not provide estimates of the overhead).
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Some systems rely on static analysis of the program to identify independent goals. An example of
such a system is the PPP [29] which uses Statuc Data Dependency Analysis (SDDA) proposed by
Chang, Despain and DeGroot [11] to identify independent goals that may be executed in parallel.
SDDA is an instance of a more general technique called abstract interpretation. Static analysis
using abstract interpretation plays a very important role in this dissertabon and we discuss it in
greater detail in section 2.3. DeGroot's Restricted AND-Parallel WAM (RAP-WAM) {19] uses
simple run-time tests called conditional graph expressions (CGEs) to identfy independent goals. If
parallelism is exploited for independent goals only then the amount of parallelism is limited.
AND-parallel systems that allow paralle] tasks to create choicepoints incur overhead due to a

number of reasons that are described in chapter 3.

Types of OR-parallel Systems and their Overhead
There are several variations in OR-parallelism:

. Single-solution OR-parallelism executes multiple clauses in the search for alternauve solu-
tions, but only one solution is produced. The time spent computing other solutions is wasted.
The execution time depends on the Prolog semantics that the system must follow. For con-
ventional Prolog semantics the solutions must be presented in the order of the clauses in the
program. Faster execution is possible when the semantics allow the solutions to be presented
in any order.

. All-solutions OR-parallelism produces all the solutions to a query. This type of system
wastes computing resources if all the solutions are not required.

. In OR-parallelism with continuations, a process is created for each alternative éath that the
computation can take; each process solves ot only the goal, but also the remaining goals to
be executed (i.e., the continuation). It bas been shown [29] that an OR-parallelism with con-
tinuations subsumes stream parallelism.

. In OR-parallelism without continuations, a process is created for each alternatve solution to a

goal. This form of OR-parallelism cannot exploit stream parallelism.
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An important issue with OR-parallelism is bow to maintain independent binding environ-
ments so that the bindings for variables made by one clause do not affect the execution of other
clauses that are tried in parallel. A simple solution is to create separate copies of the arguments for
each clause that is tried in parallel. This method is used by Kale er a/ in the Reduce-OR system
[57]. This method is particularly artractive for distributed memory architectures. However, the
overhead of making copies of arguments can dominate the execution time. Some of this overbead
can be eliminated by copying only the unbound varables into separate binding environments. The
PPP [29] uses hash windows of variables to maintain separate binding environments. The hash win-
dows are linked to form a tree. One problem with the scheme is that an OR-parallel process may
have to traverse a chain from a node to the root of the tree of hash windows to look for a binding for
a variable. Another problem is the inherent overbead of maintaining the hash tables. The Aurora
system [45] uses binding arrays instead of hash windows to maintain multiple binding environ-
ments. A binding array contains copies of all potentially shared variables. The advantage of bind-
ing arrays over hash windows is that there is 0o need to traverse a chain of binding arrays. The
disadvantage of binding arrays is that a new binding array has to be created and initialized for each
new process, thus increasing the cost of process creation. The PEPSys [3] system uses a combina-
tion of time stamps and hash windows. All but one of the OR-branches have hash windows. When
a variable is bound, the OR-branch "level” is used as a time stamp for the binding. When a
choicepoint is created, the OR-branch "level” is incremented. OR-processes can trust bindings with
time stamps earlier than the process time stamp (the "level” when the process was created). This
method allows relatively low-cost process creation, but binding and dereferencing have additional

overhead due to time stamps.

The various parallel Prolog systems also differ in the techniques that they use for process
management, memory management and inter-process communication. Process management
includes creation, scheduling and termination of processes. A detailed analysis of the complex
tradeoffs with each of these activities is outside the scope of this dissertation, but some of the issues

that must be considered are as follows. The overhead of process creation is quite high and may
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dominate the total execution time if the processes created perform only small computatons. Paral-
lel execution in Prolog is ofien speculauve; if speculative processes are scheduled ahead of non-
speculative processes, then the processors could be performing unnecessary computations. In
search-intensive applications, the number of processes created increases combinatorially and could
swamp the system. When a speculative process is terminated because it has been determined that
its results are no longer relevant to the final result, the descendants of the process must also be ter-
minated. However, the descendants also create processes, possibly faster than the processes are

killed. Thus unnecessary processes could proliferate on the system.

There are essentially two approaches to memorv management for AND- and OR-parallel Pro-
log architectures. One allocates stacks for each process and the otber allocates stacks for each pro-
cessor. The PPP is an example of a system that uses the former and the RAP-WAM is an example
of a system that uses the latter. The disadvantage of allocating separate stacks for each process is
that the address space becomes fragmented. If the size of the allocated stacks is large then the
address space could be completely used up. On the other hand, if the size of the allocated stacks is
small, then frequent stack overflows must be handled. The disadvantage of allocating stacks for
each processor is that each stack contains frames corresponding to different processes. These
frames could be interleaved on the stack. Consequently, it is hard to resume rrocesses that peed to
add frames to the stack, and the space for stack frames that are deallocated by 2 prucess iniay Lot be

reclaimed.

Processes in parallel Prolog systems communicate by messages. Since most of these mes-
sages must obtain locks to manipulate global data structures, they may have a substantial overhead

that eliminates some of the benefits of parallel execution.

Performance of AND- and OR-parallel systems

There are only a few examples of performance measurements of paraliel Prolog in which per-
formance is compared with a fast, sequential Prolog system, such as Quintus Prolog. Most articles
on parallel Prolog execution present speedups over single processor systems executing their model

of parallel execution. The sequential code that is executed on each processor is also often very
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inefficient. It almost impossible to accurately extrapolate from these measurements to obtain speed-
ups over a good sequential implementation if the processors used efficient sequential code. A few
examples where the parallel execution speed has been compared to good sequential Prolog imple-
mentations are: the Aurora OR-parallel system [45], PEPSys {3], APEX {44] and Reduce-OR [57].
In each of these cases, the parallel performance is rarely better than Quintus Prolog on a Sun 3/50.
It is also important to note that all of the systems, except for Aurora, rely on programmer annota-
tions to create tasks only for computations that are large enough. Without these annotations the per-
formance would be worse. We believe that such compiler annotations undermine the benefits of
using Prolog for parallel execution. Automatic generation of such annotations is as yet an unsolved

problem.

We illustrate the poor performance of parallel Prolog systems in comparison with the fastest

current sequential Prolog systems by considering the following examples:

(1) The Aurora [45] OR-parallel system is, to the best of our knowledge, among the most suc-
cessful parallel Prolog systems in terms of performance. Aurora has modified Sicstus Prolog
(a sequential Prolog system) for parallel execution. Executing on an Encore Multimax mul-
tiprocessor they report a speedup (over their own system running on a single processor of the
Multimax) of between 5.8 and 14.2 with 16 processors. The overhead of parallel execution is
approximately 25%. This overbead is causes mainly by (1) task switching (including updat-
ing binding arrays) and (2) synchronization and locking. Neither of these causes of overhead
is likely to improve significantly if the sequential component (Sicstus Prolog) is replaced by a
more efficient Prolog system. Quintus Prolog, for example, is approximately 2 times faster
than Sicstus. More recently, Taylor's compiler has demonstrated approximately 24 times
(geometric mean) the performance of Sicstus on the same processor [63]', Unless the over-
head of Aurora’s parallel execution model is reduced significantly, its performance will not
improve by much if Sicstus is replaced by Taylor’s compiler, in fact, parallel execution may

be slower than sequential execution.

(2) The APEX [44] system exploits AND parallelism on a Sequent Balance 21000. The system
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achieves speedups of up to 17.9 (over one of their own processors) using 20 processors. The
sequential execution component, a byte code WAM interpreter, is approximately 5 tumes
slower than Quintus Prolog on the same processor (or roughly 60 times slower than Taylor’s
compiler on the same processor). The overhead for parallel execution is small, only between
1% and 2% of sequential execution time. However, the overhead is so small primarly
because the programs chosen explicitly control the granulanty of parallel tasks; a task is not
executed in parallel if it is small compared to the overhead of parallel execution. Without
such explicit control, the overhead is much greater and the speedup is smaller. For a bench-
mark for which no granularity control was dope (quicksort of a 511 element list chosen so

that the execution tree is balanced), the overhead was 12% and the speedup was oaly 3.2.

2.23. Fine Grain Parallelism in Prolog

The granularity and execution overhead of parallel processes in AND- and OR-parallel sys-
tems is quite large. There are other forms of parallelism with finer grain size and lower overhead.

In this section we review techniques and architectures to exploit fine grain parallelism in Prolog.

2.2.3.1. Wide Instruction Word Architectures

One approach is to exploit is to exploit parallelism at the level of micro-operations using wide
instruction word that can issue multiple operations per cycle. Very Long Instruction Word (VLIW)
architectures combined with trace scheduling compilers have been able to schedule several opera-
tions per cycle for numerical codes that have regular structures [28]. The Cydra directed data flow
architecture [54] was also able to statically schedule multiple operations per cycle for numerical
codes. However, static scheduling of multiple operations per cycle in a single instruction word is
more difficult for Prolog programs that tend to be less regular. Carison [9] has been able to achieve
a speedup of about a factor of 2 with loop unrolling and trace scheduling on an idealized wide
instruction word architecture. He plots performance as a function of the available resources for a
number of benchmarks and concludes that the processor could achieve most of the speedup with 2

data memory ports and 3 ALUs. It is important to note that Carlson’s speedup measures are based
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on an idealized machine model in which all instructions complete in one cycle, including indexed
memory loads and conditional branches. Since code sequences that include memory loads followed
by conditional branches are common in Prolog programs, it is very likely that the speedup will be

much lower with more realistic assumptions about instruction latencies.

2.2.3.2. Unification Parallelism and Bookkeeping Parallelism

Another approach to exploiting fine grain paralielism in Prolog is to identfy special types of
tasks that can be executed in parallel on separate processors or function units. Bookkeeping tasks
(creating and restoring choicepoints and environments, trailing variables and clause indexing) are
examples. Another example is unification. Unification is the process of making two terms identi-
cal, if possible, by finding substitutions for some or all of the variables in the terms. If the terms are
complex (i.e. lists or stuctures) then each pair of the corresponding arguments of the term are
unified recursively. In Prolog, unification is a basic operation that is done at each goal invocation
(which corresponds to a procedure call in an imperative language) to match goals with clause heads.
Parallelism in the unification of two complex terms can be exploited by unifying the corresponding
arguments of the terms in parallel. However, if a variable occurs in two parallel unifications then a
data dependency exists between them because the two unifications must bind the variable to the
same term. Such data dependencies limit the amount of parallelism in unification. In fact, the
theoretical results on paralle] unification described below imply that in the worst case unification is
not amenable to parallelism. Dwork er al [26] and Yasuura [73] have independently shown that
unifiability is log space complete for P, where P is the class of problems that can be solved sequen-
tially in time bounded by a polynomial of the input size. This means that unification is in the class
NC (NC is the class of problems that can be solved in O (log*!) tume for some constant & where /
is the input size and the number of processors, P, is bounded by a polynomial of /') only if P = NC,
which is considered highly unlikely. This implies that it is highly unlikely that unification can be
computed in O (log* n) parallel time using polynomial number of processors. Prolog’s uanification is
a special case of general unification because the goal and the clause head being unified do not share

variables. However, Citrin [13] has shown that Prolog head unification is also log space complete
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for P by constructng a log space, linear time reduction from general unification to Prolog head

urufication.
The results above indicate that general unification cannot achieve good speedup due to paral-
lelism. However, Vitter and Simmons [70] showed that unification can run in O ( —ﬁ-+V10gP ) where

P is the number of processors, E the number of edges in the term graph and V the pumber of ver-
tices. Thus, although general unification is not amenable to parallelism, there are many instances of
unification that can benefit from parallel execution. Indeed, it is easy to see that unification of two
complex terms whose arguments do not contain shared vanables can benefit from parallelism. The

corresponding arguments can be unified in parallel.

Any architecture that attempts to exploit unification parallelism must address the problems of
identifying and haodling shared variables. The problem of identifving shared variables in
unification is almost identical to that of identifying shared variables in Prolog goals for AND-
parallelism described earlier. One approach, proposed by Citrin [13], is to generate a schedule of
unifications at compile time such that all the unifications that execute in parallel are independent.
The schedule is generated using a static data dependency analysis (SDDA)} derived from that of
Chang er al [11). As mentioned earlier, SDDA is an instance of abstract interpretation (see section
2.3.). In Citrin's scheme, a schedule consists of one or more sets, each set consisting of urifcacons
that may execute in parallel. A set is allowed to execute only after all the unificatiois 10 i previ-
ous set are complete. This scheme has the advantage of simplicity because the parallel unifications
are always independent. However, the amount of speedup is limited because (1) the unifications
belonging to different sets may not overiap, (2) the execution time of a set is the execution time of
the longest unification in the set, (3) unifications belonging to different goal executions may not
overlap, and (4) static schedules refiect the worst-case assumptions about shared vanables. Citrin
observed that on an average each set of unifications contain 3 unifications. However, this measure
is not very useful for estimating performance improvement due to unification parallelism because
execution time of unifications, overhead associated with parallel execution and time taken for book-

keeping operations are not considered.
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In the Parallel Unification Processor (PUP), we took a different approach to exploiting
unification and bookkeeping parallelism [12]. Run time synchronizaton was used to handle data
dependencies (including shared variables) and restricted data flow techniques of HPS [50] were
used to allow out-of-order execution. The write-once property of logical variables was used to han-

dle shared variables. Two cases of shared variables were considered:

(1) The variable appears as explicitly shared in the code. In this case a write-once register was
allocated to the variable. Only one unification is allowed to bind the variable by wrting to
the register. Once the register is written a valid bit associated with the register is set and no
other writes to the register are allowed. If other unifications attempt to unify with the variable

they read the value of the register instead of attempting to bind it.

(2) The variable does not appear in the code. Ib this case unifications must obtain a dereference
lock before binding any variable. Any unification that attempts to dereference a variable that

has been locked must wait until the variable is bound.

PUP executed bookkeeping operations in parallel with unification. Experience with PUP
showed that exploiting unification parallelism alone cannot result in significant speedup; bookkeep-
ing tasks must also be executed in parallel. PUP also showed that dynamic scheduling is effective
for parallel unification and bookkeeping. The problems witk PLI? were egr!ly instructive: (1) run
time synchronization for all variable bindings contributed .. large oveilicad and (2) latencies associ-

ated with dispatching unifications for parallel execution limited parallelism in short loops.

Beer's POPE processor [4] took a novel approach to exploiting fine grain parallelism in Pro-
log. Rather than exploit parallelism within each goal, POPE pipelines execution of consecutive
goals by executing each goal on a separate processor that is part of a circular pipeline as shown in
figure 2.1. We term this form of parallelism procedure pipelining. Consecutive processors in the
pipeline share a register file that acts as the pipeline buffer. Each processor has access to two regis-
ter sets; the processor obtains its inputs from one and writes its outputs to the other. The outputs of
one processor become the inputs for the next processor in the circular pipeline. Each processor exe-

cutes the code corresponding to the head of a Prolog clause and creates arguments for the pext goal
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Figure 2.1: Overview of the POPE Processor.

in its output registers (which are the inputs for the subsequent processor in the pipeline). It supplies
the address of the code for the next goal to the subsequent processor before writing the the output
arguments so that the subsequent processor can begin fetching the code for the procedure and exe-
cute bookkeeping operations while waiting for the argument registers to be written. Each register
has a "hardware semaphore” that causes a processor to stall if it tries to read it before it has been
written. The hardware semaphores are reset when the execution "wraps around" the circular pipe-
line of processors. The registers in each register set contain all the information required for a
choicepoint and form a choicepoint buffer. Conflicts due to variables that could be bound by
unifications in multiple procedures are handled by disallowing bindings in a procedure until the trail
pointer is valid in its input register set and ensuring that the trail pointer is written to the next regis-
ter set only after all the bindings in the current procedure are complete. Similarly, conflicts between
procedures for heap allocation are handled by allowing beap space allocation only with a valid heap
pointer and writing out the heap pointer only when all the required heap space for the current pro-

cessor has been allocated.
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The POPE contributed several important ideas to the design of FPPM, including the multiple
register sets to eliminate output dependencies between consecutive goal executions. However, the

POPE exploits paralielism only among different procedures; each procedure is executed sequen-

tially.
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Figure 2.2: Overview of PLUM

In an earlier experiment we explored the speedup due to unification and bookkeeping parallel-
ism in a WAM-based system by designing and simulating tbe Parallel Unification Machine
(PLUM). Figure 2.2 is an overview of this processor. It consists of a Prefetch Unit, an Enviroo-
ment Unit, a Choicepoint Unit, a Trail Unit and muldple Unification Units. The Prefetch Unit
fetches instructions from memory and dispatches unification and bookkeeping operations to the

appropriate function units. The architecture achieves a speedup of between 3 and 4 over the VLSI-
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PLM. Measurements for the processor are described in [58, 59].

" benchmark | PLUM | VLSI-PLM | Speedup

‘ cycles cycles

; fib 12397 30180 24

| banoi 8324 | 24788 3.0

1 areverse 7431 21160 2.9

| gsort 9720 | 40322 42
queens 2682 6649 2.5

i tak 6423 27848 4.3

| arith. mean - - |32

| geom. mean - - I 3.1

Table 2.1: Comparison of PLUM with Berkeley VLSI-PLM
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Figure 2.3: Relative performance versus number of Unification Units for PLUM

PLUM achieves a speedup of approximately a factor of 3.2 over a sequential WAM-based
processor, the Berkeley VLSI-PLM (60]. The speedup of PLUM over the Berkeley VLSI-PLM is
shown in table 2.1 for a set of 6 benchmarks. The effects of multiple Unification Units on relative

performance of PLUM is plotted in figure 2.3 (performance is relative to PLUM with 1 Unificaton
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Unat).

22.3.3. Data Flow Architectures

Another approach to exploiting fine grain parallelism in Prolog is to use data flow architec-
tures [2,21]. We discuss data flow processors because we use several techniques that are inspired
by data flow in the design of the FPPM. There have also been proposals to construct data flow pro-
cessors specialized for Prolog execution [38,42]. To the best of our knowledge, nope have actually

been built.

Data flow processors can, at least in principle, exploit all the available parallelism in pro-
grams. However, they require e;cpensive hardware and substantial communication overhead during
program execution {32]. The macro data fiow model of computation eliminates some of the com-
munication overhead of data flow at the expense of some parallelism. In a macro data flow proces-
sor a node of the data flow graph is not a primitive operation (instruction), but rather a collection of
such operations called a task. The tasks should be chosen such that the operations within the task
have closely-knit dependencies and there are relatively few dependencies between operations of dif-
ferent tasks. Each task is executed on a processor with efficient local communication to handle the
dependencies within the task. The expensive global communication is used only for the dependen-
cies between tasks. The Cedar multiprocessor being developed at the University of Illinois,
Urbana-Champaign [33] is an example of a system that uses a macro data flow model of computa-
tion. In Cedar each collection of operations is called a Compound Function (CF) and 1s executed on
a cluster of tightly coupled processors. A CF is dispatched for execution on a processor cluster only

when all its input operands are available.

A major drawback of the data flow model of computation is its inability to perform computa-
tions that involve changing large data structures efficienty [32]. In the classical von Neumann
model of computation data structures are manipulated in memory by a sequence of instructions and
the simple storage model for data structures is possible only because of the implied sequence of
operations. The restricted data flow model proposed by Pant er al for the High Performance Sub-

strate processor (HPS) [50] exploits parallelism within a sequential instruction stream. Ic HPS a
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data flow graph representing the instructions within a window in the sequential instruction stream is
dynamically constructed and executed. The program executes by sliding the window along the
sequental instruction stream, adding nodes representing new instructions to the data flow graph and
retiring instructions when the nodes have been executed. Thus, parallelism within a data fiow graph
restricted to a window of instructions is exploited using data flow techniques. This approach is,
among other things, a generalization of the Tomasulo algorithm used in the floating point processor

of the IBM 360/91 [65].

The FPPM architecture is a synthesis of macro data flow and restricted data flow. As in
macro data flow, the nodes in the program data flow grapb are tasks rather than individual instruc-
tions. As in restricted data flow, only a restricted set of nodes in this data flow graph can be
scheduled for execution at any time. Consequently, we call the model of computation restricted

macro daw flow.

2.3. Flow Analysis and Optimizing Proiog Compilers

Flow analysis plays an important role in exploiting parallelism and in sequential code optimi-
zations. Prolog predicates are often polymorphic. Without compile time knowledge of the actual
instantiations for the predicate’s arguments the compiler must generate code that executes the predi-
cate correctly for all possible argument instantiations. In practice, many predicates are called with
their arguments instantiated in the same way each time. If the types of the arguments for a predicate
are known at compile time, then the generated code can be optimized to handle those types of argu-

ments. Flow analysis is used to obtain this information about predicate arguments at compile time.

We explain in chapter 3 that goals that do not create choicepoints or execute side-effects can
be executed as paraliel tasks without complex memory management or task management schemes. .
With flow analysis the compiler can often detect such goals. For example, consider the program

below which reverses a list.
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?~- reverse([1,2,3],R).

reverse ({],[]).
reverse ([X|L1],L):- reverse(Ll,L2}, append (L2, [X],L).

append ([],X,X).
append ([X{L1]),L2, [X|L3]):~- append(L1,L2,L3).

Flow analysis programs, such as those written by Van Roy [68), Chang er al [11] and Citmn
[13], can determine that the first arguments of both the reverse/2 and append/2 predicates
are non-variable terms. Therefore, only one of the two clauses in each predicate can ever succeed
and a simple test of the first argument can identify this clause. No choicepoint is ever created for
either of the predicates and FPPM could execute them as paralle] tasks. Other examples of abstract
interpretation for mode and type inferencing are (8, 20].

Automatic flow analysis programs for Prolog are based on a general flow analysis technique
called abstract interpretarion. The mathematical basis for abstract interpretation was first described
by Cousot and Cousot [17]. The basic idea in abstract interpretation for mode analysis in Prolog is
to transform the program so that the arguments of the predicates in the new program are restricted
to a finite larrice (i.e., it is partially ordered and every subset has a least upper bound and a greatest
Jower bound). Each argument in the transformed program represents a superset of the actual values
of the corrzsponding argument of the original program. Each latuce element represents an infinite
set of values. Since the lattice is finite, the transformed program can be executed symbolically (in
finite time) untl a fixed-point is reached. If the conditions of abstract interpretation hold, then the
least fixed-point of the program’s symbolic execution over the lattice is a conservative approxima-

tion to the actual set of values the predicates’ arguments can take at run time.



3. Fine Grain Parallelism
In order to exploit parallelism in a program, three problems must be solved:

(1) Data flow analysis. This step identifies the operations that may be executed in parallel and

determines the total amount of parallelism available.

(2) Program partitioning. This step selects the sizes of tasks as well as the amount of commun-

ication and synchronization required to satisfy dependencies between tasks.
(3) Task scheduling. This step attempts to allocate processors to minimize total execution time.

This chapter describes our approach to each of these problems. In section 3.1, we explain
how we use data flow analysis to simplify handling of data dependencies. There are several solu-
tions to the program partitioning and task scheduling problems. In keeping with the goals of this
dissertation, we choose low overhead program partitioning and task scheduling techniques, even
though they restrict the amount of parallelism that can be exploited. Although more complex tech-
niques can expose additional parallelism, they also incur greater overhead that reduces the perfor-
mance benefits. We describe our program partitioning and task scheduling methods in section 3.2.
An alternative scheme for program partitioning and task task scheduling is described in section 3.3.
This alternative exposes more parallelism, but also incurs greater scheduling overhead. We com-

pare the two methods in chapter 6.

Each of the three problems above can be solved statically (at compile time) or dynamically (at
run time). The advantage of compile time solutions is that there is no run time overhead. On the
other hand, more specific run time information can result in more accurate run time solutions. Data
flow analysis and program partitioning are almost always done at compile time because they require

a sophisticated analysis that would be too slow at run time. We do the same in this dissertation.

Task scheduling is done either statically or dynamically. If sufficiently detailed information
about the task execution times and dependencies is available, then static task scheduling is prefer-
able to dynamic task scheduling. Sarkar {55) has quantified the benefits of static scheduling over

dynamic scheduling for predominantly numerical benchmarks written in the single assignment

31
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language SISAL. His static scheduling requires complete information about the data flow between
tasks as well as detailed profile information such as execution frequencies of tasks. It remains to be
seen if his static scheduling methods will be as successful for non-numerical benchmarks in Prolog.
In our opinion, dynamic task scheduling has greater promise for non-numerical problems in Prolog
because complete profile and data flow information may be harder 1o obtain due to greater dynamic
variability in computation paths, dynamic typing and non-deterministic execution. Consequently,

we choose o investigate dynamic task scheduling.

3.1. Handling Data Dependencies with Data Flow Analysis

Information is transferred from one Prolog goal to another through shared variables. In the
example below, suppose that computel/3 binds S1 to a value that it computes using A and B.

This value is then transferred to compute2/3 through the shared variable S1.

?2- goall((1,2,3], Y).
goall({A, B, C], S) :-

computel (A, B, S1),
compute2(S1, C, S).

Variables may be shared even though they appear as different variables in the text of the
predicate definition. This is because a variable may be cliuscd (i.c., bound ) to other variables
when the predicate is actually called. In the exampie be:ow, uie variables X and Y appear to be
different logical variables. However, the goal a/2 binds the two variables to each other so that X

and Y are aliased to each other when b/2 is called.

?2- goal2(a, B).
goal2 (X, Y) :- a(X, Y), b(X, Y).
a(C, C).
The purpose of data flow analysis [11, 13, 68] for FPPM is to obtain type and aliasing infor-
mation for the variables in predicate arguments to simplify handling of data dependencies between

parallel taskst. We do not need a complete data flow information because Prolog’s single

+ Type information is also useful for sequential code optimization.
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assignment semantics} simplifies the task of handling data dependencies as explained below.

If flow analysis determines that a predicate will be called with a variable in the arguments
bound to a particular non-variable type, then the task that executes the predicate can wait until the
variable is bound to a term of that type; we do not need the data flow graph because we do not need

to know which task performed the binding.

Data dependency handling is more complicated if flow analysis is unable to obtain useful
information about a set of variables in a predicate. In such cases we must assume that the variables
could be unbound and aliased in any possible combinaton. We refer to such varables as poten-
fially shared unbound variables. Parallel tasks must synchronize before binding potentially shared

unbound variables. We illustrate the reasons for this with the following example.

?- goal3(X).
gocal3 (A) :- a(A), b(a).

a(l).
a(2).

b(2).
b(1).

In the example abcve, the first snlirion produced by conventional sequential Prolog is X =
1 and the second solu.wn is X — 2. Next, suppose that a/1 and b/1 are executed by parallel
tasks and that flow analysis did not give any useful information about the shared variable A. If
there were no synchronization between the two tasks there could be two problems:
(1) Thetask for a/1 antemptstobind 2 to 1 while the task for b/1 attemptstobind Ato 2
simultaneously.
(2) The task for b/1 binds A to 2 first resulting in a different order for solutions than conven-
tional Prolog semantics.
We handle potentially shared unbound variables in FPPM with a simple approach: If a task

encounters such a variable it waits until either

$ Logical variables can only be bound once during forward execution.



34

(1) the variable is bound to a non-variable term by another task, in which case the variable is no

longer unbound, or

(2) all previous goals have completed, in which case the task may safely bind the varniable.
FPPM provides architectural support to simplify checking for this condition. We describe this

support in chapter 4.

The flow analysis used in this dissertation is based on abstract interpretation and was imple-

menied by Van Roy (69] as part of his Prolog compiler.

3.2. Program Partitioning and Task Scheduling

Many researchers have tried to exploit AND- and OR-parallelism in Prolog. There are
several variations (reviewed in chapter 2), but the basic idea is that parallel tasks are created for the
goals in a clause (1o exploit AND-parallelism) and for the clauses in a predicate (to exploit OR-
parallelism). However, because of the large overhead incurred by the complex memory manage-
ment and task management schemes required to implement these systems, they rarely perform better
than the most efficient sequential Prolog systems. The program partitioning scheme used in this
dissertation is more selective. Parallel tasks are created only if they can be executed without large

memory management and task management overhead.

Bookkeeping AND-parallelism Procedure OR-parallelism
parallelism l pipelining ‘
]
Flow Parallelism Stream
‘ Parallelism
Unification parallelism

k exploited by FPPM

Figure 3.1: Taxonomy of Parallelism in Prolog
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In secdon 3.2.1, we identify two major causes of overhead in other parallel execution
schemes: side-effectst and choicepoints. We define flow goals as those that neither execute side-
effects nor create choicepoints. Our partitioning algorithm creates parallel tasks only for flow goals.
In section 3.2.2 we show that unification parallelism is a special case of flow parallelism. It follows
that unification parallelism can be exploited with the same techniques as those used to exploit flow
parallelism. Figure 3.1 illustrates the taxonomy of paralielism in Prolog. FPPM exploits flow paral-
lelism (which includes unification parallelism). FPPM also exploits some bookkeeping parallelism
by executing some bookkeeping tasks, such as environment allocation and deallocation, in parallel.
However, other bookkeeping tasks, such as choicepoint creation and backtracking. are executed
sequentally.

Context switching of tasks is another cause of overhead in parallel systems. Unless special
care is taken in the program partitioning and scheduling methods, it may be pecessary for a proces-
sor to suspend a task and switch contexts in order to avoid a deadlock. We explain the requirements
for deadlock-free execution in section 3.2.3. We choose our partitioning and scheduling algorithms
in such a way that deadlock can be avoided without resorting to context switching. An alterative
scheme for program partitioning and task scheduling that also avoids context switching is described
in section 3.3. This alternative scheme exposes more parallelism, but also incurs greater scicduliag

overhead. We compare the performance of the two schemes in chapter 6.

3.2.1. Problems with Side-Effects and Choicepoints

If sequential semantics of Prolog are to be maintained, then the side-effects that are directly
visible to the programmer, such as input/output, must execute in the same order as in sequential Pro-
log. Similar restrictions on the order of side-effects that are not directly visible to the programmer,
such as asserts and retracts, are also sometimes necessary 1o preserve sequential semantics. If paral-
lel tasks can cause these side-effects then synchronization between tasks is required to enforce this

order. This synchronization results in relatively complex parallel execution with higher overhead.

+ Side effects are actions whose cffects would remain should backwacking occur. Examples of side<cffects are
input/output, assents and retracts.
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For example, one solution [6] is to pass a token from task to task in the order in which the tasks

would have executed if execution were sequential. A task may cause a side-effect only if it

possesses the token and the token is passed to the next task only when the task has completed all its

side-effects. The problem with this scheme is that it imposes the overhead of passing the token to

all tasks although only a few have side-effects.

Allowing paralle! tasks to create choicepoints creates the following problems:

(1)

@)

3)

(4)

If a choicepoint remains after a task has completed execution then the stacks (epvironment
and choicepoint) for that task cannot be deallocated and used for ~aecuton of another task
because the data on the stack may be required on backtracking. Consequently, new stacks

must be allocated for each task.

Prolog’s depth-first, lefi-to-right search imposes an order on choicepoints. The same order
must be enforced for choicepoints created by the parallel tasks. This creates dependencies

among the parallel tasks.

In sequential Prolog the beap is usually allocated as a stack [71]). This has two advantages.
First, space is recovered on failure, thus reducing the amount of garbage collection required.
Second, variables above the heap pointer in the most recent choicepoint need not be trailed.
Both these advantages can be exploited by parallel tasks if they do not create choicepoints
since a parallel task can have space interieaved with that of other parallel tasks on the heap
(although structures must still be contiguous). This is possible because all the tasks fail if any
one of them fails (since there are no choicepoints between them). Therefore, all their heap

space is restored on failure.

Similarly, the trail stack space can also be recovered on backtracking if parallel tasks do not
create choicepoints. In addition, since the trail entries for a task may not be contiguous, if the
tasks create choicepoints they must be explicitly linked so that the variables bound by one
task can be unbound if that task should fail If the parallel tasks have separate stacks (both
heap and trail) for each task then the size of the cboicepoint increases since the stack pointers

of all the tasks must be saved in a choicepoint. This increases the overhead of choicepoint
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creation and backtracking.

(5) If backtracking is allowed within a parallel task, then environment frames cannot always be
deallocated after remrning from a procedure; the frame may be required if the procedure
created a choicepoint. Thus, environment stack management is also complicated by back-

tracking.

3.2.2. Unification Parallelism and Flow Parallelism

Since they cause the problems described above, we disallow side-effects and choicepoints in
parallel tasks. In our partitioning scheme, a goal is a candidate for execution by a parallel task only
if it satisfies the following requirements:
(1) It can not create a choicepoint.
(2) It can not cause side-effects.

These conditions are satisfied for many predicates, in particular, for time-consuming inner loop
predicates.

We call goals that satisfy conditions (1) and (2) above flow goalst. Flow parallelism 1is
exploited when two or more flow goals are executed in parallel. Cleady, flow parallelism is a spe-
cial case of AND-parallelism. It is easy to show that unification parallelism is a special case of flow
paslclism and can be exploited with the same techniques. We illﬁstrme this with the following
example:
reverse([],[])-
reverse ([X|L1],L) :~ reverse(Ll,L2), concat (L2, ([X],L).
concat ([],X,X).
concat ([X|L1],L2, [X|L3]):- concat (L1l,L2,L3).

The program is easily transformed into the following equivalent program in which the head

unification and the creation of complex goal arguments are written as new goals that perform expli-

+ Goals that do not create choicepoints never undo their bindings (unless they fail entirely). If such a goal binds a var-
able, then information "flows™ from the goal to other goals that share the vanable.



cit unifications.
reverse (H1,H2) :- Hl=[]), H2=[].
reverse (H1,H2) : - Hl=[X|Ll}, Al=(X], reverse (L1,L2), concat(L2,Al,H2).

concat (E1,H2,H3) :- Hl=[], HZ=H3.
concat (H1,H2,H3):- Hl=({X|L1l], H3=[X]|L3], concat (L1,H2,L3).

The purpose of rewriting the program in this way is to illustrate the following:

(1) Head unification and creation of goal arguments are similar since both can be treated as goals
(called unification goals) that perform explicit unifications. For example, the goal H1 =
[X|L1] inthe second clause of reverse/2 represents head unification while the goal Al
= [X] represents argument creation for the concat /3 goal in the same clause.

(2) Parallel unification is exploited when two or more such goals are executed by parallel tasks.
An example is the paralle! execution of the goals H1 = [X|Ll] and H3 = [X|L3] in
the second clause of concat/3. Since unification goals do not create choicepoints pOr exe-

cute side-effects, they are also flow goals.

3.2.3. Preventing Deadlock Without Context Switching
Context switching of tasks by processors also contributes to overhead in parallel execuﬁon,
In order to eliminate this overbead, we disallow context switching in FPPM. However, unless pro-
gram partitioning and scheduling algonthms are chosen appropriately, context switching may be
necessary to avoid deadlock. In this section we describe constraints on our program partitioning
and task scheduling methods that guarantee deadlock-free execution without the need for context
switching.
Deadlock can arise if and only if all four of the following conditions hold simultaneously [52]:
(1) Mutual exclusion. A resource cannot be used by more than one task at the same time.
(2) Hold and wait. At Jeast one task peeds simultaneous access to two or more resources and it
will not relinquish the resources that it has already been granted while it waits for the other

resources.



(3) No preemption. Once granted, resources cannot be taken away.

()  Circular wait. There must exist a set {?o, {1,..., &, } of waiting tasks such that 1o is waiting for
a resource that is currently held by ¢, f, is waiting for a resource that is currently beld by ¢,

.y 1o is waiting for a resource that is currently held by ¢, with n >0.
Deadlock will not occur if we can ensure that at least one of the conditions above do not hold.

In the context of FPPM, there are two types of resources: (1) processors for tasks to run on
and (2) input data for a task that is produced by another task. If context switching is disallowed,
then the condition (1), mutual exclusion, bolds for the processors. Condition (3), no preempuion,
also clearly holds for both types of resources if context switching is disallowed. In order to avoid
deadlock without context switching, we must ensure that one of the remaining two conditons (2 and
4) do not hold. Condition (2), hold and wait, holds in the following cases: (a) a task is executing on
a processor and is waiting for data from another task, or (b) a task that produces data needed by
anotber task is waiting for a processor. Condition (4), circular wait, is satsfied if the tasks execut-

ing on the processors are waiting for data produced by tasks that are waiting for processors.

Consider a representation of a parallel program by a directed graph in which the tasks are the
nodes and the data dependencies between the tasks are the directed edges. If the graph contains a
cycle and the number of nodes in the cycle is greater than the number of pronescors, then all four
conditions for deadlock hold if context switching is no: allow:d. i Giuci iv avoid this situation, we
ensure that the program is partitioned such that the graph is acyclic. This requirement is met by a
partition in which the tasks are Prolog goals since each goal depends only on goals that appear ear-

lier in the sequential (depth-first, left-to-right) crder of Prolog’s execution.

A program partition with an acyclic dependence graph is not sufficient to avoid deadlock
without context switching, as the following example illustrates. Consider a program consisting of
three tasks, A, B, and C such that B and C depend on A for data. Suppose there are only two avail-
able processors and that tasks B and C have been scheduled to run on them while task A is waiting
for a free processor. Clearly, the program is deadlocked if peither B nor C will suspend so that A

can be executed. To ensure deadlock-free execution without context switching, the task scheduling
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algonithm must also be chosen appropniately.

We have already mentioned that our program partition can be represented by a directed acy-
clic grapb (dag). We define a partial order, <, on the graph such that A < B if and only if there is
path from A to B in the graph (ie., B depends on A). We choose a scheduling algorithm that
ensures that all tasks, A, such that A < B, have been scheduled on processors before task B is
scheduled. It is easy to see that deadlock will not occur with such a scheduling algorithm because
condition (4), circular wait, does not hold. None of the tasks that currently have processors are

waiting for data from a task that does not have a processor.

We simplify the implementation of such a scheduling algorithm by placing a restricuon on the
program partition (we will explain the reasons for such a restriction shortly). The parallel program
consists of a single main program task and a number of parallel tasks. Only the main program is
allowed to create parallel tasks. Each parallel task executes one or more goals for the main program
and the order in which the tasks are created is the same as the sequential order of execution of these
goals. Since parallel tasks are created only for flow goals, choicepoints and side-effects must be
executed by the main program task. Figure 3.2 illustrates parallel execution in FPPM. With this
partition, task scheduling is simple: tasks are scheduled in the order in which they are created by the
main program.

This scheduling method (ie., scheduling tasks in the order in which they are created) will
result in deadlock-free execution only if parallel tasks are not allowed to create other parallel tasks.
As the following example illustrates, deadlock can occur if parallel tasks are allowed to create other

parallel tasks and context switching is disallowed.
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! Figure 3.2: Task execution and choicepoint creation in FPPM. Only the main program can create
parallel tasks. Choicepoints and side-effects are executed only by the main program. Choicepoint
creation is partially overiapped with execution of other tasks, but all parallel tasks must terminate
before the choicepoint creation can complete.

p:- a(X), b(x).

a(X):- al(X), a2(X).

b(X):- bl(X), b2(X).
In the program above, assume that al/1 < bl/1. Suppose parallel tasks are created for execu-
tion of the goals a/1 and b/1 in that order. Now, if the tasks for a/1 and b/1 are allowed to

create paralle! tasks for their goals, it is possible that b/1 creates a task for bl/1 before a/1



creates a task for a1/1. The scheduler would then schedule the task for bl/1 before ai/1. If

there is no other free processor for al/l then a deadlock occurs. Therefore, if parallel tasks are

allowed to create other paralle! tasks then either context switching should be allowed or a more
sophisticated scheduling algorithm should be used. Both opuons result in greater overbead. We
describe one scheme that does not need context switching and allows parallel tasks to create other

parallel tasks in section 3.3. The scheme is evaluated in chapter 6.

Our partitioning and scheduling methods have the following advantages:

. No task suspension and context switching are required.

. Scheduling can be implemented using a single queue of task:. Tasks may be added to the
queue without synchronization by the processor that executes the main program task since
there is only one processor adding tasks to the queue; synchronization is only required for the
processors that take tasks off the head of the queue.

. The scheduling overhead can be significantly reduced by architectural support described in
chapter 4.

The main disadvantages of such a scheme stem from the fact that only one task is allowed to create

other parallel tasks:

. The scheme cannot exploit a large number of processors because the performance is limited
by the fact that parallel tasks can be created by only one processor.

* Parallelism cannot be exploited effectively for for some programs. In particular, the amount
of parallelism that can be exploited in non-linearly recursive Prolog programs is limited (we
explain the reasons for this later i this chapter).

In spite of these disadvantages, we show that our partitioning and task scheduling method can
achieve good speedups over a variety of programs for multiprocessors with a small number of pro-
cessors (4 10 8). Our scheme is probably pot the right choice for multprocessors with a large

number of processors.



3.2.4. Heuristics for Program Partitioning

Determining the granularity of a task (i.e., its execution time) is an extremely hard problem.
In geperal, it is not solvable since it is equivalent to the halting problem. Therefore, the best that
one can hope for is an estimate. Sarkar [55] uses profile informaton from sequenual execution of
the program to obtain estimates of task sizes. In cases where the task size depends oo the value of
input data, some researchers, for example Fagin [29] and Shu, et al [57], have used explicit tests on
input data to decide whether to create a parallel process for a goal or not. Although they currently
require the programmer to explicitly provide these tests, they claim that they expect future com-
pilers to automatically generate the tests. Automatic generation of such tests is extremely hard and
requires a sophisticated program analysis that, to the best of our knowledge, is not yet in sight. Most
paraliel systems are very dependent on such tests because parallel task creation has a high overhead
that can easily result in slower execution rather than a speedup of the program if the test is not
selected judiciously.

Rather than rely on profile information, or generate tests to determine at run time whether or
not to create a parallel task, we rely on 2 static analysis of the program’s structure to determine
which goals will execute as parallel tasks. This analysis is much simpler than that required for gen-
erating run time tests on input data because it does not consider how the input data influences the
execution time. Rather, it assumes that a loop (recursion) does sufficient we.k 0 execute as a
separate (parallel) task. Given this knowledge of recursions in the program we then use heuristics
to select those flow goals for which parallel tasks are created. We consider heunstics for two cases:

linearly recursive predicates and non-linearly recursive predicates.

32.4.1. Linearly Recursive Predicates

Prolog programs use recursion to implement iteration. We use the the structure of recursion
to partition the program into parallel tasks. The simplest recursive clause has only one recursive
call. Such clauses are called linearly recursive. Predicates whose clauses are either non-recursive
or linearly recursive are called linearly recursive predicates. In this section we discuss only linearly

recursive predicates, leaving the nop-linearly recursive predicates for the next section. An example



of a linearly recursive clause 1s given below.

concat ({X|L1l], L2, [X|L3}}:- concat(Ll, L2, L3).

It is clearly not useful to create a parallel task for the only goal of the recursive clause since
this goal would then execute sequentially as a task. However, if the clause also has some computa-
tion before or after the recursive call, then that computation can be executed as a parallel task for
each iteration. In fact, the clause above does have some computation before the recursive call. This

computation becomes apparent if we rewrite the clause as follows:

concat (81, L2, H2):- Hl=[X|Ll}, H2={X|{L3], concat(Ll, L2, L3).
We now have two unification goals for every iteration that can be executed as parallel tasks. To
simplify the discussion, we assume that both the unification goals for each iteration are executed by
a single task, although the two unifications could also be executed as separate parallel tasks. Paral-
lel execution of the clause is illustrated in figure 3.3. Goals that appear after the recursive goal may

also be executed as parallel tasks. An example of clause that has goals before and after the recur-

sive goal 1s
reverse (H1,H2) :~ Hl={X|Ll), Al=[X], reverse(Ll1l,L2), concat (L2,Al,H2).
> Time
main program Foncaxl | EoncalZ ][ concar3 ]
parallel task [ unif} ] [ unif2 ] [ unif3 ]

Figure 3.3: Parallel execution for computations before linearly recursive goals.

Again, for simplicity we assume that both the goals before the recursive goal are executed by
a single task. Paralle! execution of the clause is illustrated in figure 3.4. In figure 3.4 the boxes
marked "rev 1" through "rev 3" represent execution of the clause for three iterations respectively.
The box marked "rev term” represents the execution of the base case (which terminates the recur-
sion). The box marked "revt 3" through "revt 1" represent the execution of the three iterations after

the recursive goals. Figure 3.4 also shows that it is possible that paraliel tasks for muluple iterations
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» Time
main program  rev ] '{"[n:\'Z I rev 3 Girevterm | {revt3 {‘mvllJu—tv(]J
paralicl task 1 lunifl  |[unif2 | unif3 concar 3 [conca.l 1

parallel task 2 . concat 2

i

? Figure 3.4: Parallel execution for computations before and after lineary recursive goals.

may execute stmultaneously.

The examples above serve to illustrate some of the choices that the partitioning algonthm
must make. In the recursive clause of the reverse/2 predicate above we created a task for each
concat /3 goal in the clause. Since parallel tasks in FPPM are not allowed 10 create other parallel
tasks, no parallelism can be exploited within the concat/3 goals. However, we can also exploit
parallelism of a finer grain in the concat/3 goals since the recursive clause of concat/3
represents a nested iteration. For which goals should the compiler generate parallel tasks: the
unification goals of the concat/3 clause or the concat/3 goals of the reverse/2 clause?
We do not hope for optimal solutions to these choices. Instead we rely on a beuristic, which, as we

shall see in chapter 6, works quite well.

Dartisening Y zaristic 1: Favor Outer Loop

If there are nested linearly recursive predicates, then create a parallel rask for each inner-
most recursive loop.

For example, in the program below, the predicate inner is the innermost loop and the
predicate outer is the outer loop. The clauses before and after are goals that do pot contain
loops. Parallel tasks for the goal inner are created during each execution of the recursive clause
for outer. If there are more than one goals that represent inper loops, then a parallel task is

created for each such goal.
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outer(..) :- before, inner(..), outer(..), after.
cuter{(..).

inner(..) :- inner(..).

inner{(..).

Partitioning Heuristic 2: Minimum Size
Create parallel tasks for goals that contain no loops (recursions) if they contain enough work.

In this dissertation we do not discuss how one might determine whetber or not a goal with no
loops contains enough work; the heuristic could use criteria such as the minimum length of the

instruction sequence that the goal executes.

For example, in addition to creating a parallel task for the inner goal in the recursive
clause of outer, parallel tasks may be created for the goals before and after if they contain

computations that are large enough to justify creation of a parallel task.

3.2.4.2. Non-Linearly Recursive Predicates

A non-linearly recursive clause is ope that has more than ooe recursive goal. A Non-linearly
recursive predicate is ope that has a non-linearly recursive clause. In most paraliel systems a paral-
lel task is created for each recursive call. Each parallel task, in tum, creates paralle! tasks for each
of its recursive calls. However, our model of execution does not allow parallel] tasks o crente ~ther
parallel tasks. This limits the amount of parallelism that we can exploit in non-linearly recursive
predicates. In order to exploit more parallelism in non-linearly recursive predicates we would have
to allow parallel tasks to create parallel tasks. But if we allowed parallel tasks to create otber paral-
lel tasks then, in c;rder to avoid deadlock, we would have to either (1) allow task suspension and
context switching or (2) use different program partitioning and task scheduling methods. Both
options are likely to increase complexity and parallel execution overhead. In keeping with the goals
of this dissertation, we choose to retain our low overhead model of executon in spite of the limited

parallelism that it can exploit.
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Partitioning Heuristic 3: Last recursive goal

Treat the non-linear recursion as a nested linear recursion by considering only the last recur-
sive goal as a recursive call; the other recursive calls are treated as inner loops and executed as

parallel tasks that cannot create other parallel tasks.

Noo-linearly recursive predicates are often used to specify divide-and-conquer algorithms.
An example of such a predicate is the quicksort (gsort/2) predicate shown below.
gsort ([1,[1).
gsort ([X[L],S):-

divide (X,L,L1,L1L2),

gsort (L1,Lls),

gsort (L2,L2s),

concat (L1, [X[L2],8).
Heuristic 3 creates parallel tasks for the divide/4, the first gsort/3 and the concat/3
predicates; the second gsort/3 goal is executed by the main program and forms the outer loop.
This requires two versions of the compiled code for the gsort/3 predicate: one for execution as
the main program, and the other for execution as a parallel task. The parallel task for concat/3

is created only after returning from the recursive call to the the second gsort/3 goal. The execu-

tion of this program is illustrated in figure 3.5.

» Time

main program {gsont 1} [gsort 2 [gsont 3 [ gsormerm | [ gsont13 |[ gsorn2 ][ gsorul

parallel task 1 [ divide 1 | [divide 3] [ concat3 1 [ concatl ]
paralle] ask 2 [seq_gsort 1| ] [comcal ]

paralicl ask 3 [divide 2] [seq gson 3

paraliel task 4 [seq gsort 2 |

Figure 3.5: Parallel execution for non-linearly recursive predicates

Figure 3.6 illustrates the main problem with the partitioning scheme: the execution time could
be dominated by a few large tasks. One disadvantage of an alternate heuristic, in which the main
program follows all the noo-linearly recursive calls instead of just the last one, is apparent from

figure 3.7: there are many more small tasks, resulting in higher overhead. A second disadvantage of
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this altermative heuristic is more subtle and has to do with how often the parallel tasks are busy-
waiting for data from other tasks. Each task for the divide goal divides the data for the original
problem (the input list in the case of quicksort) into two sets of data. Each of these sets of data are,
in tumn, divided into smaller sets by subsequent divide tasks. Consequently, each of these tasks
have progressively smaller sets of data to work on. However, in the alternative partiioning scheme,
divide tasks are created first for only one of the sets along a depth-first path as shown in figure
3.7; the other sets are not processed further untl later, when the main processor returns from the
first recursive call and executes the second. In FPPM, a divide task does not wait untl its input
is complete: it operates on whatever data the previous task has placed in its soput and busy-waits for
further data. Since each task operates on only a part of its predecessor's output, each subsequent
task must busy-wait more than its predecessor. Consequently, average processor utilization can be

poor.

3.2.4.3. Mutually Recursive Predicates

With mutually recursive predicates any one predicate in the recursion could be chosen as the
predicate that executes in the main program with the others executed as parallel tasks. This requires
the predicate that executes on the main processor to be compiled in two versions since it may also
exccute sequectally within a parallel task. Two compiled versions of predicates may be required in
other instances as well if the predicate is executed in the main program as well as within a parallel

task.

33. An Alternative Scheme for Partitioning and Scheduling

As mentioned earlier, a major disadvantage of FPPM's methods for partitioning and schedul-
ing is that the parallelism that is exploited in non-linearly recursive predicates is limited because
parallel tasks can not create otber parallel tasks. In this section, we describe an alternative scheme
in which parallel tasks may create other parallel tasks. As in the earlier scheme, we ensure that con-
text switching is not necessary to avoid deadlock. Although the scheme exploits more parallelism

in non-linearly recursive predicates, it incurs greater scheduling overhead. We evaluate this scheme
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in chapter 6.

In this scheme, we allow paraliel tasks to create other parallel tasks. However, in order to
ensure that context switching is not necessary to avoid deadlock, a task creates a parallel task to
execute a flow goal only if a processor is available to execute the task; if no processor is available,
then goal is executed (as in conventional sequental Prolog execution) by the same task. We imple-
ment this method by having the processors queue for tasks, instead of queuing the tasks for proces-

sors. Deadlock will not occur because no task ever waits for a processor.
The additional overhead in this scheme arises due to the following reasons:

(1)  For each goal that can be executed as a parallel task, the code must first check to see if a pro-
cessor is available. This check is overhead if no processor is available. If a processor is

available, then it is removed from the queue and the task is dispatched to it.

(2) No synchronization is needed to create tasks if a single processor creates the tasks; synchroni-
zation is only required when processors take tasks out of the task queue. If processors queue
for tasks and paralle] tasks are allowed to create other parallel tasks, synchronization is

required for processors to enter the queue and for tasks that take processors from the queue.

(3) The processors in the queue are idie. If tasks are queued instead of processors, then fewer

processors are idle because the task queue acts as a buffer for waiting tasks.

(4) If more than ope processor can create parallel tasks, then the architectural support for low

overhead task creation in FPPM cannot be fully exploited.

3.4. Chapter Summary

In this chapter, we have described our approach to (1) handling data dependencies, (2) pro-
gram partitioning and (3) task scheduling. In each case, we use low overhead schemes, even though
more complex methods can exploit more parallelism at the expense of greater overhead. We
explained how side-effects and choicepoints in parallel tasks contribute to overhead. Consequently,
in the first scheme we restrict parallel execution to flow goals. We also restrict the program parti-

tion so that only a single main program is allowed to create other parallel tasks. This enables us to
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use a low overhead task scheduling method that schedules tasks in the order that they are created.
With such a scheme, task suspension and context switching are not required to avoid deadlock.
Tasks may busy-wait for data from other tasks, thus eliminating the overhead due to context switch-

ing. We also described heuristics for partitioning programs into paralle] tasks at compile time.

If parallel tasks are not allowed to create other parallel tasks, the amount of parallelism that
can be exploited in nop-linearly recursive predicates is limited. Therefore, we described an altema-
tive scheme that allows the paraliel tasks to create other parallel tasks. However, this alternative

scheme incurs greater scheduling overbead.



4. FPPM: An Architecture to Exploit Flow Parallelism

In this chapter, we describe a pew architecture, the Flow Paralle! Prolog Machine (FPPM),

that exploits low parallelism in Prolog. FPPM has special architectural features to support

e sequental Prolog execution,

 data dependency handling,

o low overhead task creation and terminaton.

Figure 4.1 is an overview of the FPPM architecture. FPPM consists of a Main Processor that
executes the main program and one or more attached processcrs, called Slave Processors, that exe-
cute the paraliel tasks created by the main program. All the processors have access to shared
memory. Processors also share a two types of registers: global registers and write-once registers.
The global shared registers allow tasks to share stack pointers efficiently. The write-once registers

allow tasks to pass arguments to other tasks with very low overbead.

Section 4.1 describes the data representation in FPPM. Section 4.2 describes the FPPM regis-
ters. Although most instructions are common to both the Main Processor and the Slave Processors,
each type of processor has some specialized instructions. Section 4.3 describes the instruction set
common to both the Main Processor and the Slave Processors. Section 4.4 describes the instruc-
tions specific to the Main Processor and secdos 4.5 describes the instructions specific to the Slave

Processors. Section 4.6 describes how programs are compiled for FPPM.

4.1. Data Representation

Prolog has dynamic typing, which means that variables can be bound to values of different
types at run time. Therefore, it is pecessary to encode the type of each data item along with its
value. We store the type and value of a data items in the same word so that only one word needs to

be read for each data item. The type is encoded in a type tag field in the word.

Data words in FPPM are 32 bits wide and consist of a 4-bit type tag and 28-bit value field.
Two type tag values are defined by the architecture: tag 0 represents an unbound variable and tag 1

represents a reference or bound variable. All other tags are defined by the software. It is useful to
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specify tags for unbound and bound vanables in order to support dereferencing of variables
efficiently in the architecture. The 28-bit value field of the data word can contain word addresses or
values. Table 4.1 lists some type tags used in this dissertation for lists, structures, integers and

atoms.

tag (hex) type

0 unbound variable

1 bound variable (reference)
2 list

3 structure

4 integer

5 atom

6-E (curently undefined)

F nil (special constant)

Table 4.1: Data Type Tags in FPPM

Simple data types are represented by a single data word. The type is indicated by the tag
field. The value field can either bold the value of the datum (as in ao integer of 28 bits or less) or a
pointer to the value as an atom where the value field contains a pointer to the symbol table entry for
the name of the atom. Structure data types of arity n are represented by a single data word contain-

ing a structure tag and a pointer to the first word of a contiguous chunk of n + 1 memory locations.
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The first word of the chunk is an atom representing the functor and arity of the structure. Its value
field 1s a pointer into the symbol table entry for the functor. The anty of the structure is stored in
the symbol table. The remaining n words contain the arguments of the structure. Since lists are
structures of arity 2 and fixed (but unspecified) name, the functor field is omitted in list representa-
tions. Lists occur often enough in practice that this optimization is quite useful and is used in all
Prolog systems that we know of. A special tag is provided for lists. List data types are represented
by a word containing a list tag and a pointer to the first word in a chunk of 2 contiguous memory
locations. The first word contains the first element of the list (the car) and the second is a represen-

tation of the rest of the list (the cdr). Figure 4.2 illustrates representations for data structures in the

FPPM.
length({a.B.c.a(s)].4) SYMBOL TABLE
/——————'—" length/2
i 1 ‘[
| struct ——J—b atom / K——’ a
list atom f )/—P c
int List / s "
[
d uvar | D a/l 1-7
list ‘ A
q atom /’ atom
isi, . atom -
S struct /
nil

Figure 4.2: Representation of "length([a,B,c,a(s)].4)".

Dobry er al {22] employ a more concise representation for lists using cdr-coding, in which a
special cdr-bit is used to indicate that the word is the cdr of a list. Cdr-coding has two disadvan-
tages: (1) Unification algorithms for cdr-coded lists are more complicated [25]; (2) the cdr-bit uses
an extra bit in each word. Touati and Despain [66] have shown that the space saved by the more
compact list representations due to cdr-coding is rather small because most lists are constructed dur-
ing program execution by unifying a list with an unbound variable in the cdr of another list Lists

constructed in this way do not use cdr-coding.
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4.2. The Registers

Each processor in FPPM (i.e., the Main Processor and the Slave Processor) has access to three
register files: (1) the local register file, (2) the global register file and (3) the write-once register file.
The local register file consists of 16 registers. As the name implies, the local registers of one pro-
cessor cannot be accessed by another processor. An instruction pever stalls when reading or writing

alocal register.

Global Registers

The global register file consists of 16 shared registers. A pew value written to 2 global regis-
ter by any processor will be seen by all processors at the same time. We describe the implementa-
tion of the registers in more detail in chapter 5, but it is necessary to understand the general method
operation of the global registers in order to understand the FPPM architecture. We describe the
implementation very briefly below. The global registers are implemented by shadow copies of the
register file in each processor. Global registers are only updated over a shared broadcast bus (called
the distribution bus). Processors arbitrate for the use of the bus. Therefore, unlike an instruction
that writes to a local register, an instruction that writes to a global register will stall if it is not
granted the distribution bus in the first round of arbitration. An instruction never stalls when read-
ing a global register. Another important difference between an instruction that writes to a local
register and one that writes to a global register is that local register writes are bypassedt, whereas
global register writes are not. We do not allow global register writes to be bypassed because the
bypass paths are local to processors (i.e., the processor that writes to the global register can use the
pew value before all the others, violating the requirement that all updates be simultaneously visible
to all processors). Since there are no bypass paths for global registers, a value written to a global

register can only be read four instructions later.

Global registers are used for shared stack pointers, such as the heap pointer and the trail

pointer. A processor that wants to allocate heap space must (1) obtain exclusive access to the heap

+ A bypass path allows the data that is writicn (o a register to be used by subsequent instructions as soon as it is avail-
abie in the data path.
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pointer (the architecture provides a lock for this), (2) read the shared bheap pointer and increment it

by the amount of space required. and (3) release exclusive access to the heap pointer.

Write-Once Registers

The write-once register file consists of multiple sets of shared registers with valid bits associ-
ated with each register. Each register set contains 16 registers. The architecture specifies a
minimum of 3 write-once register sets. The actual pumber of register sets may vary with the imple-
mentation. Like the global registers, write-once registers are implemented by shadow copies of the
register file on each processor with updates occurring only over the shared distribution bus and are
not bypassed. Updates to a write-once register have the same latency as global registers (i.e., four
instructions). Unlike global registers, each write-once register has a valid bit that is set when the
register is written, and instructions that read a write-once register will stall if the valid bit is not set,
since this indicates that the data that the instruction intended to read is not yet in the register. The
valid bit can be used to implement simple data flow control provided the valid bit of the register is
reset after its value is no longer required and before the new value is either written or read. It is the
responsibility of the compiler to ensure that a write-once register is written only once before its
valid bit is reset.

Each instruction in a processor hac arcess tn r=eisters in valy two adjacent write-once register
sets: an input set and an output set. The input set usually contains arguments to a procedure. The
procedure usually writes only to the output set. However, an instruction may read or write a regs-
ter from either set. The output set of one procedure is the input set of another. A special instruction
(ie., new) executed on the Main Processor makes the current output set the new input set and pro-
vides a new output set in which all the valid bits bave been cleared. The instruction, old, reverts to
the old input and output sets. Although the architecture assumes that there is an infinite supply of
pew register sets that can be obtained by executing new, an implementation can only have a small
number (typically 4 or 8) of them. The implementation organizes the registers sets as a circular
queue so that the set numbers wrap around and register sets may be re-used. The number of the

input set for each instruction is referred to as the set number for that instruction. The new
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instruction stalls if there are any processors still executing instructions with the set number of the
next output set. This ensures that the valid bits of registers in a set are not cleared until all instruc-
tions that could potentally read those registers are completed. The write-once registers can be used

10 pass arguments to tasks that have been created by the Main Processor.

code  mnemonic type

0 IN write-once 1nput set
1 ouT write-once output set
2 G giobal

3 T local

Table 4.2: Register Type Encodings in FPPM

A register operand is specified in a FPPM instruction using two fields: a 2-bit type field and a

4-bit register number field. Table 4.2 lists the various register types.

43. The Common Instruction Set

The common instruction set is recognized by both the Main Processor and the Slave Proces-
sors of FPPM. All instructions in FPPM occupy exactly 1 word (32 bits) The instructions are

inspired by the intermediate language suggested by Van Roy in [67] for Prolog compilation.

The various instructi~n &elds are specified in table 4.3. The lock and unlock bits are used to
obtain and release a single lock provided by the hardware. The lock and unlock fields are provided
1o enable each instruction to lock and unlock a global lock for synchronization. The use of the lock
and unlock are explained later. The special code field is used with arith, brcond and brncond
instructions to indicate an arithmetic operation to perform or condition to branch on. The instruc-
tion formats are chosen such that the register source operands and branch address displacement can
be quickly obtained.

The instruction set is best understood keeping in mind the basic 5-stage pipeline structure of
the processors shown in figure 4.3. Registers are read in the decode stage (d-stage) and instructions
that have invalid register operands stall in the d-stage. The d-stage also computes the branch

addresses causing a branch delay of 1 cycle. “Squashed" versions of branch instructions are



range field name

31 lock bit (Ibit)

30 unlock bit (ulbit)

29:24  opcode

23:20  special code (scode)
23:20  immediate tag (itag)
19:12  offset (off)

23:12 immediate (imm)

19:6 label (1ab)

23:0 long label (longlab)
17:16  register 2 type (reg2t)
15:12  register 2 number (reg2)
11:10  register O type (regOt)
9:6 register ) number (reg0)
5:4 register | type (reglt)
3:0 register | oumber (regl)

Table 4.3: Instruction Fields in FPPM

Fetch

A4

Decode

Memory

Writeback

Figure 4.3: Basic Pipeline Structure for Processors
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provided so that the instruction after the branch can be annulled if the branch is taken. Local regis-
ter values are bypassed from the ALU stage (a-stage) and memory stage (m-stage) for instructions
that use them as operands in the a-stage. Consequently local register values computed by instruc-
tons in the a-stage are available for the a-stage of the very next instruction and there is 1 load delay
slot for local register values read from memory. Branch instructions that use local register values in
the d-stage experience a 1-cycle delay for values computed by the a-stage and a 2-cycle load delay

for values read from memory. No bypass paths exist for write-once and global registers.

If the lock bit in an instruction is set, then the processor executing the instruction requests a
global lock before reading any of its operands (i.e., in the decode stage of the pipeline) and stalls
unless the lock is granted. No other processor will be granted the lock untl the processor releases
it. The lock is released if the fail line for set number of the instruction that obtained the lock is set
or if a subsequent instruction on the processor releases the lock. If the instruction bas the unlock bit
~ set then the lock is released after the destination registers writes have been initiated (Le., in the last

stage of the pipeline).

The instructions are divided into the four categories and listed in table 4.4 along with a

description in register transfer notation.

The processors can signal a failure of a unification to the otber processors by executing the
fail instruction (pulling a fail Line high). There are separate fail lines for each <et The fail signal
for a set causes (1) the Main Processor to abort and branch to an address in a fixed register
(T,FAIL_ADDRY), (2) all tasks of the failed set to be aborted, (3) the output write-once registers for

the set to be cleared and (4) the locks granted for instructions of the set to be released.

The various arithmetic operation and branch condition encodings of the scode field are listed

in table 4.5. The only field encoding that needs explanation is DRF. The DRF condition is true

+ The tag and value parts of a word arc indicated by "t and ".v" respectively. Concatenation is represented by = Al
the register specifiers are acally two fickds, one specifying the register type and the other the register number. For write-
once register types, the actual sct number is computed by adding the type to the current sct number for the instruction
modulo the total number of register sets. The fewch stage program counter is denoted as "fpc” and the decode stage program
counter {(which points o the instruction following the one being decoded) is denoted as "dpe”. There are “squashed” ver-
sions of every branch operation in which the instruction in the delay slot is annulled if the branch is taken. An"s” prefix in
a branch instruction indicates a squashed version.
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description

ALU Instructions

nop 0o operation

arth(scode.rl.r0,12)

rl <-10.t°( 10.v scode 12.v)

arithoff(scode.rl y0,0ff)  rl1 <- r0.t°(r0.v scode off)
. movetag(rl.r).itag.off) rl <- itag"(rQ.v + off)

Memory Instructions

load(rl 10,0ff)
store(r1.r0,off)
push(rl.r0,off)

11 <- m(rQ.v + off)
m(rQ.v + off) <- rl
m(rl) <- r0.(r0.v + off); rl <- rl.t™(rl.v + 1)
pushtag(rl.r().itag.ofﬂ m(rl) <- itag"(r0.v + off); rl <-rl.t°(rl.v + 1)

i Branch Instructions

| br(longlab) fpc <- dpc + longlab

: brind(rl) fpc <- rl.v

 bral(rl lab) fpc <- dpc + lab: rl <- dpc + 1
bruageq(itag,rl lab) if rl.t = itag fpc <- dpc + lab

i brtagneq(itag,rl,lab)
| brcond(scode.rl.lab)

if rl.t !=itag fpc <- dpc + lab
if scode(rl) fpc <- dpc + lab

brncond(scode,rllab) if Iscode(rl) fpc <- dpc + lab

bremp(rl,r0,imm) if rl =10 fpc <- dpc + imm
bmemp(rl r0,imm) if r1 !'=r0 fpc <- dpc + imm
| Signaling Instructions
fail clear current set’s tasks, interrupt Main Processor
waitexec wait until previous tasks are done
Table 4.4: Common Instruction Set
moemonic operation |
Arithmetic  Coues
ADD addition
SUB subtraction
NAND nand
NOR nor
SLL shift left logical
SRL shift right logical
MAX maximum
Condition  Codes
GEZ greater or equal to zero
EQZ equal to zero
DRF dereferenced
OTF other fail

Table 4.5: Scode Field Encoding

60



61

when a word has been dereferenced. The condition is not satsfied if either (1) the word has a
BVAR (bound variable) tag or (2) the word has a UVAR (unbound vanable) tag and the instructions
of some previous set are not complete. Condition (1) implies that the word is pointer to another
word. Condition (2) implies that the word is an unbound variable, but since the instructions of the
previous set are not complete there is a possibility that the variable will be bound by the instructions

of the earlier sets.

4.4. Main Processor Specific Instructions

! instuction description

| exec(longlab)  dispatch task starting at dpc + longlab
new allocate new register set and clear its output set
old go back to previous register set
clearfail clear fail latch for current set

| quit halt

Table 4.6: Main Processor Specific Instructions

The Main Processor has special instructions to (1) dispatch tasks for execution on Slave Pro-
cessors, (2) allocate new register sets and (3) handle failure of unifications. The Main Processor

Specific Instructions are listed in tabie 4.6.

4.5. Slave Processor Specific Instructions

The Slave Processors have only one instruction in addition to the common instruction set: the
done instruction. This instruction indicates that the current task is done and another task may be
started. It is similar to a branch instruction in that the fetch stage program counter is loaded, and

consequently there is a delay slot after the done instruction.

Instructions that belong to different tasks, but are currently in the pipeline of the same Slave
Processor, are decoupled with respect to pipeline interlocks. In other words, stalls in the pipeline
caused by instructions of the next task do not stall the instructions of the current task; the instruc-
tions of the current task are allowed to complete. This decoupling is very useful in avoiding

deadlock situations due to instrucdons from different tasks being executed on the same processor.
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For example, consider the situation in which the last instruction of a task writes to a write-once
register, and the first instruction of the next task that executes on the same Slave Processor reads the
same write-once register. When the first instruction of the second task is in the d-stage, the last
instruction of the first task has not yet reached the w-stage. Since the write-once register has not yet
been written, the instruction in the d-stage stalls. If the instructions are not decoupled, the stall in
the d-stage also stalls the instructions in later stages of the pipe, including the ooe that writes the
write-once register, causing a deadlock. The compiler would then have to ensure that deadlock

simations do not arise by checking all possible combinations of tasks for deadlock.

4.6. Compiling for FPPM

In this section, we describe standard register usage and code sequences for common Prolog
operations that could be generated by a compiler for FPPM. Note that the register usage, memory
organization and code sequences in this section are only conventions used in this dissertation; of

course, FPPM may be programmed in ‘her ways as well.

4.6.1. Memory and Register Organization in FPPM

The basic data structures and memory organization of FPPM is derived from the WAM. In
FPPM. memory is divided into a shared code area, a shared global stack (called a heap in WAM ter-
minclogy), a shared trail stack area and separate local stacks for each processor. A single global
register (G, HP) is used as the pointer to the top of the beap. Each processor allocates beap space in
chunks and a local register (T,HP) is used to keep track of the top of the local chunk of heap space.
The size of the remaining chunk of heap space is stored in another local register (T JHC). A single
global register (G, TR) is used as a pointer to the top of the trail stack. The starting address of the
local stack of each processor is stored in a local register (T,E). This register is never written on a
Slave Processor. At the beginning of each task in the Slave Processors the (T,E) register is copied
into the (T.TE) register which is then used as the pointer to the top of the local stack. The (T,E)
register is pever written because we want to be able to start a new task with an empty local stack

even if the previous task that executed on the processor failed without restoring its stack pointer.
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The local stack is used for environments on all processors and for choicepoints as well on the Main
Processor. The Slave Processors do not create choicepoints. The Main Processor has one local
register (T B) that serves as the backtrack pointer (Le. the pointer to the most recent choicepoint).
The Main Processor aborts execution when any fail line is set and branches to the address stored in
a fixed local register (T .FAIL_ADDR). On each processor, the temporary register (T,CP) is used as

the continuation pointer (or linkage register).

4.6.2. Instruction Sequences for Operations Requiring Synchronization

We pow describe bow FPPM performs operations that require synchronizaton. One such
operation is allocating a chunk of memory on top of the shared heap. The instruction sequence,

represented as a macro by getheap (Size) is

getheap (Size) =
1_arithoff (ADD,G,HP,G,HP,Size) ! lock, (G,HP)new <- (G HP)old + Size
u_arithoff (ADD, T, HP,G, HP,0) !unlock, (T.HP) <- (G,HP)old
arithoff (aDD,T,HC,G,0,Size) ! (T,HC) <- Size
The trail operation also requires synchronization because the trail stack is shared. The trail opera-
tion is described below, where the register (T.R) contains the address of the variable:

1 push(G,TR,T,R,0)! lock, (G, TR)<-(G, TR+ 1, m[(G,TR)] <(T,R)
u_next_instruction ! unlock in next instruction

The current environment in the Main Processor is not necessarily on the top of the local stack.
Before creating either a choicepoint or an environment the Main Processor must determine the top
of the local stack. It does so using the arithoff (MAX,T,TE,T,B,T,E) instuction. The
(T,E) register is then the top of the local stack. The current environment is always on top of the
local stack on the Slave Processors since they do not create choicepoints. Choicepoints contain the
values of the (G,HP) and (G,TR) registers. The Main Processor must wait until all the previous
tasks have completed before it can be sure that the (G,HP) and (G, TR) values are correct. The

waitexec instruction achieves this by stalling until all previous tasks have completed.



5. A FPPM Implementation

This chapter describes an implementation of FPPM in which each processor (i.e the Main
Processor as well as the Slave Processors) may be implemented in 2 CMOS VLSI chip. Figure 5.1
is an overview of a FPPM system consisting of a Main Processor, 1 to 7 Slave Processors and a
shared memory system with separate ports for instruction and data. In additon, FPPM has the fol-
lowing interconnections between the processors to implement special instructions in the FPPM
architecture. The Main Processor dispatches tasks to Slave Processors over a wsk dispatch bus.
Updates to the global registers and the write-once registers are done over a reswult distribution bus.
There are also various control signals including (1) a fail signal for each write-once register set to
indicate that the fail instruction has been executed for that set by some processor, (2) a busy line for
each write-once set to indicate whether or not there are pending in.étrucdons for the set, (3) a free
line for each Slave Processor that indicates that the Slave Processor is free, (4) request, grant and
release lines for locks, (3) request and grant lines for result distribution bus arbitration and (6) lines

to reset the valid bits of all the registers in a register set.

countro} Kignals

T T T result distribution bus
l - ! task dispatch bus
| ] | 1 |

Main l Slave Slave Siave : Siave

Proc. Proc. Proc. ©0 O Proc.
J 1 2 3 ! ! B
D I D I D I D I i D

I

| deac -cachc |doache || icache | |doache || icache |i icache | deache
_I_J J| JVIJF ] JLﬁﬁJL,J

memory bus

et '-{Eiﬂ: " g

= insTuction memory port

D = data memory port

Figure 5.1: Overview of an FPPM implementation. Shared memory is implemented by snooping
caches.

The chapter is organized as follows. We describe the clocking scheme is section 5.1. Since
the instruction sets of the Main Processor and the Slave Processors are very similar, their data paths

are similar as well. We describe both the data paths in section 5.2. We describe the shared memory
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implementation alternatives in section 5.3. We discuss minimum overhead for paralle] execution in

secuon S.4.

PHI_O ] ]_

|
T

r stall
S

M = maswer lach

S = slave laich

Fgure 5.2: Clocking Scheme

5.1. The Clocking Scheme

The implementation of FPPM processors described in this chapter uses a simple 2-phase
non-overlapping clock scheme shown in figure 5.2. All changes to the state of the processor are
latched during phase 1 (PHI_1) into the master latches. Slave latches are loaded during phase 0
(PHI_0) and all combinational logic is performed between the start of PHI_0 and the beginning of
PHI_1. Combinational logic performs t=o functons iz parallel: (1) new values are computed and
(2) stall signals are computed. The stail signais aic used to inhibit latching of new values into mas-
ter latches during PHI_1. Stall signals stall pipeline stages in order to handle events that are asyn-
chronous to the Slave Processor such as cache misses, non-availability of result distribution buses

and invalid write-once register operands.

5.2. The Processor Data Path

Since the data paths of the the Main Processor and the Slave Processors are very similar, we
describe them both in this section. A schematic of data path of a processor is shown in figure 5.3. A
more complete description of the processor bardware is the ISP register transfer level description

listed in appendix 3.
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Figure 5.3: The processor data path consists of a program counter pipe, an instruction pipe, and a
computation pipe. The register file block in the diagram contains all three types of registers: local,
global and write-once. Bypass paths are provided only for local registers. The global and write-
once registers are written from the result distribution bus through the write port labeled "wg". the
local rcgisters are wriren *hrough the write port labeled "wl”.

The processor pipeline has 5 stages: the fetch stage (f-stage) the decode stage (d-stage), the
ALU stage (a-stage), the memory stage (m-stage) and the write back stage (w-stage). Instructions
are fetched from the code memory (on-chip instruction cache) in the f-stage. The d-stage decodes
the instructions, reads register source operands, computes the branch address, executes branches
and arbitrates for the lock. The a-stage has an alu/shifter as well as an incrementer (for push and
bral instructions). The m-stage performs data memory accesses. The w-stage writes the destinaton
local register, arbitrates for the result distribution bus, writes data to the result distribution bus and
release the lock. We describe the data path in three sections: the program counter pipe, the instruc-

don pipe and the computation pipe.
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52.1. The Program Counter Pipe

Each stage has its own program counter (pc). The f-pc is used to fetch the pext instruction
from the code memory port. The instruction is loaded into the d-stage instruction register, d-inst-
reg, and the d-pc is loaded with the instruction’s address + 1. The pc then gets transferred along
with the instruction down the pipeline. In each stage (other than the f-stage) the pc is 1 greater than
the instruction in that stage. The d-pc is used to compute the branch address. In the case of the
Main Processor, the branch address is also the address of the task created by the exec instruction. In
the case of the Slave Processor, the f-pc is loaded from the task dispatch bus when the Slave Proces-
sor is free. In the Slave Processor each pc has a valid bit indicating that the instruction in that stage
is valid. The valid bits of all the pc’s are initially cleared. The valid bits of any stage will be
cleared if the fail line for the set number of the instruction in the stage is high. The done instruction
clears the valid bit of the f-pc. The free line for the Slave Processor is pulled high when the f-pc is

iovahid.

5.2.2. The Instruction Pipe

The instruction pipe consists of instruction registers for the d-stage, a-stage, m-stage and w-
stage. The instruction pipe also contains a register for the set number of the instruction of each
stage (these set number are not shown in figure 5.3 for lack of space) and the set number also travels
down the pipe along with the instruction. In the case of the Slave Processor the f-stage set number
register is loaded from the task dispatch bus along with the address of a new task. In the case of the
Main Processor, the set number of the f-stage can be incremented or decremented by the new and
old instructions respectively. If there is a valid instruction in a pipeline stage, then the busy line for
the write-once register set is pulled high. Since these busy lines are wired-or, the line for a set will

be high if there are any outstanding instructions for the set in any processor.

5§.2.3. The Computation Pipe

The d-stage of the computation pipe contains the register file (including local, global and

write-once registers) and a register bypass for local registers. The bypass path is required for
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branch instructions that have local register source operands. The bypasses work as follows. The
register file is read during PHI_0. The bypass logic active duning PHI_0 compares the source regis-
ter addresses with destination register addresses of instructions in the a-stage and m-stage. If the a-
stage address matches and the register is a local register then the register value is taken from the
result register slave latch, else if the m-stage address matches and the register is a local register then
the register value is taken from the mdr-in slave latch, else no bypass is performed. Thus, each
bypass point shown in figure 5.3 is a 3-input multiplexer and two register address comparators. The
a-stage contains a second bypass path for local registers, an ALU/shifter and an incrementer. This
second bypass path is required for a-stage local register source operands. The m-stage contains a
data memory (discussed in greater detail later). The w-stage arbitrates for the result distribution bus

if it has to write a global or write-once register.

The register file contains all three types of registers: local, global and write-once (see figure
5.4). It has two write ports and three read portst. The implementation has multiple write-once
register sets (4 and 8 sets are simulated), but any given instruction can access only two consecutive
sets: the input set is addressed by the set pumber of the instruction and the output set is the next set
in circular order. One of the write ports is exclusively for the local registers while the other write
port is for the updates to the global and write-once registers over the result distribution bus. The
write-once registers have a valid bit each. The valid bits of an entire set are clearcd by when the
clear signals are set by the Main Processor or when the fail line of the previous set are high. The

valid bit for a write-once register is set when the register is written.
5.3. Processor Control

53.1. Decoding and Sequencing

FPPM processor instructions are decoded in the d-stage. The control signals are listed in

All three read ports arc never used at the same tume. In fact, it is possible to change the instruction format so that the two
register source operands arc always in the same position in the instruction (this is required if register reads are 10 be donc in
the decode stage). However, some fields of the instruction will then not be contiguous. Since non-contiguous fields arc a
hindrance for writing and debugging the simulator, we use three register read ports in the simulator and in figure 5.3. If we
were actually building the processor we would use only two read ports
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local write port

N

_7, > T (local registers)
3 > > G (global registers)
|3
e 0
._>
Y N 1 (write-once
> J register sets)
> > > 2
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> > > 3
i
v A4 \4
Read Ports
global write port (from result distribution bus)

Figure 5.4: The register file contains all three types of registers: local (T), global (G) and write-
once (sets 0 through 3 are shown). The read ports are commoo to all the the register types, but there
are two write ports, one for the local registers and one for the global and write-once register sets.

appendix 3. In this section, we only discuss those control signals that could be part of a crical
path. Since the d-stage executes the branches (both conditional and unconditional), the control sig-
nals for the branches must be made available quickly. These signals control selection of the branch
destination and conditions for branches. However, the computation of possible branch destinations
as well as all the conditions can proceed before the control signals are available: the control signal

selects one conditfon from among the various conditions and one destination from among the
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various destinations. The possible conditions for branches in the FPPM are such that they can be
computed quickly, but they require the source registers to be read first. Although register reads can
be performed as soon as the instruction is loaded into the d-inst-reg, the regster file access time, the
register bypass, the condition computation and the selection of branch destination could be the criti-
cal path in the chip. If this is the case, then the following technique may be used to reduce the
length of this critical path by reducing the access time for the data required to compute the condi-
tion. Most of the conditions use the tag field of the registers. Only two conditons use the value
field: GEZ and EQZ. Therefore the critical path can be reduced if addiﬁonal bits for the GEZ and
EQZ conditions and the tags for the regisier are stored in a separate register file that is faster than
the larger register file for the value fields. The BAM processor [40] uses this approach for the tags.
The GEZ and EQZ conditions can be computed and stored along with the tags every time a register

is written into the register file.

5.32. Arbitration, Locks and Stalls

Processor in FPPM have to arbitrate for locks (in the d-stage) and for the result distribution
bus (in the w-stage). In each case the request is sent out at the beginning of PHI_0. The grant sig-
nals are expected in sufficient time to stall the pipeline stage if the bus or lock is not granted. The
pipeline stalls are different for tbe Main Processor and for the Slave Processors. In the case of the
Main Processor, a stall in any pipeline stage stalls the entire pipeline. In the case of the Slave Pro-
cessor the execution of different tasks are decoupled from each other. A stall in a pipeline stage of
an Slave Processor stalls all the previous pipeline stages, but only those of the following stages that
are executing instructions from the same task. This is necessary to avoid deadlocks caused by data
dependencies between two tasks that execute on the same Slave Processor. The deadlock may
occur if the destination of an instruction in the earlier task is a a write-once register that is also the
source of an instruction in the later task. The later instruction could stall in the d-stage before the
earlier instruction (which is the only one that can release the stall) reaches the w-stage. If the two
tasks were not decoupled, then the later instruction would also stall the earlier instruction, creating a

deadlock. The compiler could avoid such deadlocks by ensuring that writes to write-once registers



71

are done sufficiently before the end of a task (or that reads of write-once registers are done
sufficiently after the start of the task). However, this reduces the utilization of Slave Processors by

requiring several nop instructions at the end (or the beginning) of tasks.

5.4. The Memory System

In this section, we discuss practical methods of implementing a shared memory system for
FPPM. FPPM processors have separate instruction and data memory ports. Compared to the shared
data memory, instruction (code) memory is easy to implement because there are usually no writes to
the insiruction stream. In this section, we only study the implementaton of a shared data memeory

system.

The most common method method of implementing a high performance shared memory sys-
tem is using snooping caches [35]. In a snooping cache system, a single shared bus is used for com-
munication. The single shared bus cannot support a large number of caches because of limited bus
bandwidth. Cache coherence is maintained in snooping cache systems by means of a cache cober-
ence protocol. There are a large number of cache coberence protocols. A detailed analysis of the
wradeoffs involved in each of these coherence schemes is beyond the scope of this dissertation. We

only consider a few promising alternatives.

Two of the most important characteristics of the cache protocol are (1) the way in which they
maintain consistency between caches and memory (write through versus write back), (2) the way in
which they maintain consistency between caches (update versus invalidate). With a write back pro-
tocol, modified data is written to memory only when the block is replaced, whereas with a write
through protocol, every write is broadcast on the bus. Wirite through usually results in high bus
traffic and, unless some form of write buffer is used, in longer latencies for write operations that
occur in quick succession. Therefore we only consider write back protocols. In an update protocol,
when a processor writes to a block that is also present in another cache, the write is broadcast over
the bus so that subsequent reads of the data in the other cache do not require the bus. In an invali-
date protocol, if a processor writes to a block that is also present in another cache, the cache exe-

cutes a bus transaction to invalidate the block in the other cache so that subsequent writes to the



72

block do not require the bus. Generally, update protocols work better than invalidate protocols
when shared data is written only a few times in a cache, but read very often by other caches. Invali-
date protocols work better than update protocols when shared data is written often in the same
cache, but read only a few times in other caches. In FPPM’s flow parallelism, shared data are
shared variables. They are written only twice (once to create an unbound variable and once to bind
the variable), but are read very often (while the consumer process is waiting for it to be bound).
Therefore we expect that for FPPM an update protocol is preferable to an invalidate protocol.
Simulation results in chapter 6 show that update protocols do perform better than invalidate proto-

cols for FPPM as expected.

We simulate two cache coherence protocols: an update protocol and an invalidate protocol.
Both protocols are simulated for a write back, direct-mapped cache. The state diagram for the
update protocol is shown in figure 5.5 and the state diagram for the invalidate protocol is shown in
figure 5.6. In each case, the diagram consist of two parts: ope for the actions initiated by the proces-
sor and the other for the actions on the bus. The processor transaction codes and the cache block
states are also listed in figures 5.5 and 5.6. Apart from read and write operations, the cache supports
push operations. A push operation is a write to the top of a stack. If there is a cache miss on a
write, then the cache first fetches the entire block over the bus before proceeding with tie wuite .
However, in the case of a push, the cache does not need to fetch the data for the block provided that
the word being written is the first word in the block (since it is on the top of the stack). Since a
large fraction of Prolog writes are to the top of a stack, it is useful to provide this special operation.
The FPPM processor generates a push operation for push or pushiag instructons provided that the
word is at the beginning of the cache block. This optimization was suggested by Morioka et al {47].
In FPPM, heap space is first allocated in chunks and then data is often written to the chunks using
push of pushtag ipstructions. However, another processor could be writing to data in another chunk
above. Thus, it is no longer true that the push occurs only for words on the top of the stack. If the
cache did not fetch the block on a miss then there could be an inconsistency. This problem is solved

by ensuring that chunks are always allocated in sizes that are multples of the cache block size and
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Processor Side State Diagram

W .> broadcast

Processor Actions

i R/W/P
1 [ -> broadcast R = Read
R W = Write
P = Push
M = Miss (read or write)
PM = Miss (push)
{from cache)
. -> missrg S = Swapout
5 mem)
-> missrq
Bus Side State Diagram
missrq -> from cache
/p\ Cache States
{SM .
broadcast I = lovaid
E = Exclusive Unmodified
M = Exclusive Modified
Thissrg SM = Shared Modified

-> from cache . .
S = Shared Unmodifed
tnvalidate
missrq
-> from cache

Figure 5.5: State diagram for FPPM’s cache coherence protocol (update)

that initially the beap pointer is aligned with the cache block.

The cache block states are Invalid (I), Exclusive Unmodified (E), Exclusive Modified (M),
Shared Modified (SM) and Shared Unmodifed (S). The exclusive states (E,M) indicate that the
block is not present in any other cache. Writes to an exclusive block do not require the bus. The
shared states (S,SM) indicate that the block may also be in another cache. In the case of the update
protocol, a write to a shared block must be broadcast over the bus. In the case of the invalidate pro-
tocol, a write 1o a shared block must first invalidate the copies of the block in the other caches. The

modified states (M,SM) require that the block be written back to memory when it is swapped out.
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Processor Side State Diagram

R/W/P Processor Actions
R = Read

@ R W = Write
P = Push

M = Miss (read or write)

W/P -> invalidate

-> wri‘tcback

PM = Miss (push)

wP

V (from cache)

-> missrg S = Swapout

5T mem)
-> missrq

Bus Side State Diagram

missrq -> from cache

Cache States
1= Invalid
E = Exclusive Unmodificd
M = Exclusive Modified
Faissrg SM = Shared Modified

-> from cache
. S = Shared Unmodifed

missrq
-> from cache

mvalidate

Figure 5.6: State diagram for FPPM’s cache coherence protocol (invalidate)

The SM state indicates the the block is both shared and modified. A block can only be in the SM
state in one cache; this cache is the one that wrote to the block most recently, and that block has the
respoasibility of writing it back to memory if it needs to be replaced.

The cache implementation has two shadow copies of the tag and state stores so that the bus
and processor transactions can execute simultaneously provided that only ope of the transactions
needs to write to the tags or state. If both transactions need to write to the state or tag stores then

the processor transaction is stalled.
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Operation ' Latency
hit, no bus transaction required 1
hit, invalidation or broadcast required 3+s
push miss, no writeback required 3+s
push miss, writeback required S+w+s
read/write miss, no writeback, data from cache 3+w+s
read/write miss, no writeback, data from memory | 4+w+s
read/write miss, writeback, data from cache 6+2w+s
read/write miss, writeback, data from mem T+2w+s

Table 5.1. Latencies for cache operations, where s is the number of unsuccessful bus arbitration cy-
cles and w is the number of bus cycles required to transfer a line afier obtaining the bus. In the
simulations, we assume that w is equal to the number of words on a cache block.

The latencies of various cache operations is summarized in table 5.1. These latencies assume

that there are no bus transactions that write to the state or tag stores and stall the processor transac-

ton.
5.5. Evaluation of Overbead for Parallel Execution

Overhead in FPPM

Parallel task creation in FPPM is very inexpensive. The Main Processor can initiate a parallel
task on a Slave processor with a single exec instruction. This instruction stalls the Main Proces-
sor until a Slave Processor is available. If a Slave Processor is available, the cost of task creation on
the Main Processor is a single cycle. The task begins execution on the Slave Processor three cycles
later. The arguments of the task are usually in the write-once registers and can be written after the
task has been created, either by the main program or by another paralle! task. Therefore, the task

can begin execution before all its arguments are available.

The heap pointer and trail pointer are stored in global registers in FPPM. Heap or trail space
can be allocated in 2 cycles (the pointers remain locked for 6 cycles). If all N arguments required
by the task are loaded into write-once registers by the Main Processor and all N arguments are sub-
sequently copied into the local registers by the Slave Processor, the total overhead of task creation is

2N +1.
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Overhead if the Result Distribution Bus or the Task Dispatch Bus are Eliminated

Task creation is more expensive if the special buses (i.e., the result distribution bus and the
task dispaich bus) are eliminated. Without these special buses, the Main Processor can communi-
cate with the Slave Processors only through shared memory. The Main Processor creates tasks by
appending a task frame (coataining the task’s arguments and starting address) to a task queue. The
Slave Processors remove task frames from the task queue, load. the arguments and starting address

from the task frame and begin execution at the starting address.

Assuming an ideal multi-port shared memory with single cycle access, the cost of task crea-
tion for the Main Processor is N+4 cycles, where N is the number of arguments for the task. N+2
cycles are for storing the arguments, the size of the task frame and starting address in the task
frame, and the additional 2 cycles are for computing and storing the new pointer to the tail of the
task queue. Since the Slave Processors share a single task queue, their accesses to the queue must
be synchronized. In order to eliminate frequent locking and unlocking of the task queue when it is
empty, the Slave Processors poll the status of the queue without locking it while it is empty. The

Slave Processors obtain tasks from the queue as follows:

get_task:
repeat
read gueue status
until (gqueue not empty)

lock (gueue head)

read queue status;

if (gueue empty)

{
unlock (gueue head)
goto get_task

}

else

{
remove task from queue
update gqueue head
unlock (gqueue head)
execute task

The status of the queue is the bead and tail of the queue; the queue is empty if the bead is
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equal to the tail. The status of the queue is determined by reading and companng the bead and tail
pointers. A task is removed from the queue by reading the size of the task frame and loading the
arguments and starting address into registers from the task frame. The queue bead is then updated
by adding the size of the task frame to the bead pointer of the queue and storing the new head
pointer in memory. Once a task frame (with N arguments) has been added to the queue by the main
processor, a Slave Processor takes 2 minimum of N +15 cycles to remove the task from the queue
and begin executing it. This assumes that the memory is an ideal muld-port shared memory, that
there are po stalls to obtain the lock, and that the Slave Processor executes the get_task code
sequence as soon as the Main Processor has added the task to the task queue. Therefore, the
minimum total overbead for task creation using a task queue in ideal shared memory is 2N +19
cycles. If shared memory is implemented by snooping caches, the additonal overhead for the
shared task frame is at least N +5 cycles (3 cycles latency to initiate a bus transfer, and 1 cycle each
for transferring the N+2 entries in the task frame). Since the head and tail pointers are also shared

among the processors, each shared access to the these pointers results in a bus transfer.

Without a Result Distribution Bus, there can be no global registers. Consequently the heap
and trail pointers must be stored in memory locations. Assuming an ideal multi-port shared

memory, heap and trail space allocation now require 4 cycles (the pointers remaiu: iocked for 7

cycles).

Overhead in the Unrestricted Scheme

In the unrestricted scheme, processors queue for tasks (instead of tasks queuing for proces-
sors). This scheme requires synchronization for both ends of the queue: at the head when acquiring
a processor to execute a parallel task, and at the tail when adding a processor to the queue. How-
ever, the advantage of this scheme is that parallel tasks may create other parallel tasks. If a proces-
sor is available in the queue, then the task is dispatched to the processor, otherwise the task is done
sequentally.

We consider two cases: (1) with global registers and a result distribution bus and (2) with no

shared registers or result distribution bus. In both cases a paraliel task's arguments and staring
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address are stored in shared memory. However, in (1) the shared pointers (heap, trail, processor

queue head head and processor queue tail) are stored in global registers, whereas in (2) the shared

pointers are stored in memory. The overhead for these cases is discussed below.

(1)

()

The overhead of checking whether a processor is available to execute a parallel task is 2
cycles. This overhead is incurred even if no processor is available and po parallel task is
created The minimum additional overhead of removing a processor from the queue is 3
cycles (the head of the queue remains locked for 7 cycles). Assuming an ideal mult-port
shared memory, the cost of dispatching the task to the processor (i.e., loading the arguments
and starting address of the task into a frame in shared memory) is N+1 cycles. The processor
incurs a minimum additional overhead of N+7 cycles before it can begin executing the task: 6
cycles to determine that its frame in memory has been loaded with a task, and N+1 to load the
task’s arguments and starting address into its registers. Having completed the task, the pro-
cessor incurs an minimum overbead of 4 cycles (the tail of the queue remains locked for 6
cycles) to place itself in the queue. Therefore, the minimum total overhead for task creation

using a processor queue in ideal shared memory is 2N+17 cycles.

Additional overbead over Case (1) is incurred if the shared pointers are stored in shared
memoxy instead of shared registers. The mduimuin overhead of checking whether a processor
is available is 6 cycles. The minunum adaitional overhead of removing a processor from the
queue is 6 cycles (the head of the queue remains locked for 10 cycles). The overhead for the
processor to load the arguments and starting address are the same (N+7 cycles). Having com-
pleted the tasks, the processor incurs a minimum additional overhead of 6 cycles (the tail of
the queue remains locked for 7 cycles) to place itself on the processor queue. Therefore, the
minimum total overhead for task creation using a processor queue in ideal shared memory is

2N +25 cycles.



6. Evaluation of Performance and Tradeoffs

In this chapter, we evaluate the design choices and overall performance of FPPM using meas-
urements obtained from a register-transfer level simulator. The FPPM simulator 1s written using
Zycad Corporation’s ISP hardware description language and simulation tools [74]. The simulator
models the architecture at a register transfer level with a Main Processor and up to 7 Slave Proces-
sors. The simulator also models several shared memory systems including (1) an ideal multipont
memory whose access time for each port can be preset, (2) a snooping cache memory system using

an update protocol and (3) a snooping cache system using an invalidate protocol.

Benchmark | Descripton

Benchmarks that do not create choicepoints
fib7 Computes the 7th number in the Fibonacci senes
banoi8 Towers of Hanoi problem for § disks
nrev30 Naive reverse of a list of 30 elements
gsort50 Quicksort of a List of 50 integers
gsonSOr Same as above with first 2 integers in list interchanged
tak963 Takeuchi function tak(9,6,3.X)
vaddn Add a vector of size n to each row of an nx» matrix
gennrevn Creates a list of n elements and reverses it

Benchmark that creates choicepoints frequently

queens4 ] Computes first solution to the 4 queens problem

Table 6.1: The benchmarks programs

The benchmark programs are listed in table 6.1. Since FPPM only exploits parallelism
between choicepoints, we consider mainly programs that do not create choicepoints. The perfor-
mance of programs that have only a small amount of computation between choicepoints, such as the
queens4 benchmark, cannot be improved significantly by FPPM. The benchmarks that do not
create choicepoints were chosen as representatives of the various types of inner loops that one might
find between choicepoints in a program. The nrev30, vaddrnand gennrevn benchmarks are
examples of nested linearly recursive loops. The nrev30 benchmark was chosen because it is a
well-known Prolog benchmark whose performance bas been measured or simulated on most Prolog
systems. The gennrevn beochmark is similar to nrev30, but it allows us to measure the per-

formance as a function of the size of the list. There are close knit dependencies between the inner

79
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toops of the gennrevn and nrev30 benchmarks. The vaddn benchmark has no data depen-
dencies between the ipner 100ps. Therefore the vaddn benchmark can be expected to perform
very well. The remaining benchmarks contain mop-linearly recursive predicates. Non-linearly
recursive predicates are commonly used for the divide-and-conquer type of algorithms. The
tak 963 benchmark has a clause with 4 recursive goals (i.e., its degree of recursion is 4), whereas
all the others have clauses with 2 recursive calls (i.e. tbeir degree of recursion is 2). In the
hanoig and £ib7 benchmarks the various recursive goals have few data dependencies between
them, whereas the recursive goals of gsort50 and gsortS50r benchmarks have close knit

dependencies between them.

Throughout this chapter we list both arithmetic means and geometric means of performance
ratios, but we only use the geometric means for performance comparisons. This chapter summar-

izes the results of our measurements. The detailed measurements and graphs are given in appendix

6.1. FPPM's Sequential Performance

When evaluating FPPM’s speedup due to paralle] execution we compare the parallel execu-
nop time with sequental execution time on a single FPPM processor (the Main Processor). There-
fore, it is important to show that FPPM's sequential execution ume is competitive with other high
performance sequential Prolog processors. In this section, we compare execution time of a single
FPPM processor with the Berkeley VLSI-PLM [60] (a high performance WAM-based processor)
and the VLSI-BAM [40] which is the higbest performance sequential Prolog processor that we are

aware of.

Table 6.2. lists the number of execution cycles for the VLSI-PLM, VLSI-BAM and a single
FPPM processor. The cycle time of the VLSI-PLM is 100 nsec. The cycle tume of the VSLI-BAM
is expected to be 33 nsec. We expect that FPPM can also be implemented with a cycle time of
about 33 nsec. The last two columns are ratios of cycles. The VLSI-BAM executes benchmarks in
approximately 4 times fewer cycles thao the VSLI-PLM. Sequential FPPM performance 1is roughly

equivalent to that of the VLSI-BAM. The differences in performance in table 6.2 are due to the
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Benchmark | VLSI-PLM ! VLSI-BAM | FPPM | VLSI-PLM/ | VLSI-BAM/ |
cycles cycles ‘ cycles | VLSI-BAM FPPM }
fib7 6647 1447 754 | 4.59 1.92
hanoi8 72784 17974 8179 405 2220
arev30 21122 4218 4801 5.01 0.88
gsort50 43121 6175 5901 6.98 1.05
' queens4 2819 1355 1380 2.08 0.98
1ak963 43275 5351 3374 8.09 1.59
arith. mean | - - - | 513 1.43
geom. mean | - ! - - 471 1.35

Table 6.2: Performance Evaluation of Sequential Code on FPPM. The VLSI-PLM and the VLSI-
BAM figures are for compiled programs whereas the sequential FPPM programs are written in as-
sembly.

following two reasons:

(1) FPPM code includes addiional optimizations performed manually. These optimizations can
reasonably be expected of a compiler, but have not yet been implemented by the VLSI-BAM
compiler. As more optimizations are implemented by the compiler, we expect the VLSI-

BAM performance to be closer to the sequential FPPM performance.

(2) The FPPM and BAM instruction sets are similar, but not identical. One of the more important
differences is in the memory access instructions. BAM has instructions to load and store two
words at a ime over a 64-bit data bus to the cache whereas FPPM only does singie word
memory operations. However, the VLSI-BAM takes 2 cycles for memory writes whereas the
FPPM assumes that writes can occur in one cycle.

Table 6.2 shows that FPPM’s sequential execution time is competitive with the most efficient

sequental implementations. Consequently, the speedups over the sequential execution time that we

measure are true measures of the bepefits of paralle! execution in FPPM.

6.2. Speedup Due to Parallel Execution in FPPM

We have just shown that using a single FPPM processor one can achieve performance com-
petitive with other fast sequential Prolog processors. Ip this section, we estimate the speedup that

can be obtained by exploiting fine grain parallelism in FPPM. For the measurements in this section,
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we initially assume an ideal shared memory (i.e. a multiport memory with single cycle reads and
writes at each port). Clearly, this assumption is unrealistic, but we wanted to get an idea of the per-
formance that we could achieve if we had such an ideal memory. Measurements of more realistic

shared memory systems will be presented later in this chapter.

Bench- Sequent. Number of Slave Processors

mark (cycles) 1 2 | 3 4 1 L7
fib7 754 | 082 | 1.41 | 1.70 | 1.70 170 i 1.70 | 1.70
hanoi8 8179 | 093 | 1.82 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83
arev30 | 4801 | 070 | 122 | 161 | 190 | 2.11 i 228 | 238
gsortS0 5901 084 | 1.18 | 1.18 | 1.18 | 1.18 | 118 | 1.18
qsort50r 5901 | 0.84 | 138 | 1.63 | 1.81 | 1.81 | 1.81 | 1.81
1ak963 3374 100 | 183 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83
vadd16 7585 1 089 | 1.72 | 2.56 | 327 | 3.94 | 470 ' 5.18
arith. mean | - | 086 | 151 | 1.76 | 193 | 2.06 | 219 | 2.27
geom. mean | - | 0.86 | 149 | 172 | 1.85 | 1.93 | 2.01 | 2.05

Table 6.3: Speedup relative to sequential execution due to fine grain parallelism in deterministic
programs. Ideal multi-port shared memory with 1 cycle access and FPPM implementation with 8
wTite-once register sets are assumed.

We saw, in chapter 3 that FPPM's execution is serialized by choicepoint creation or side-
effects and that parallelism can be exploited only between choicepoints or side-effects. Conse-
quently, we estimate the overall speedup of FPPM by analyzing FPPM execution in two parts in the
sub sections below. We first estimate the speedup of programs that do 5ot create choicepoints or
side-effects. Next, we show that choicepoint creation and backtracking with parallel execution do
not conmibute large overhead by examing FPPM's execution of a program that has relatively little

computation between choicepoints.

6.2.1. Speedup for Predicates that Do Not Create Choicepoints or Cause Side-Effects.

Since execution is serialized by choicepoints, we first measure the speedup obtained by predi-
cates that do pot create choicepoints. The speedup of these predicates indicates the speedups that
can be obtained between choicepoint creations. Table 6.3. lists the sequential execution time (in
cvcles) and speedup relative to the sequential execution time for a number of benchmarks that do

pot create choicepoints. Speedups are listed for FPPM with 1 through 7 Slave Processors and 8
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write-once register sets.

= paralle] task

_____ N = main program sequence

Figure 6.1: Parttioning of divide-and-conquer problem in FPPM

The largest speedup (5.18) is obtained for the vaddlé benchmark, in which there are few
data dependencies and the size of each paralle] task is the same. A good speedup is also obtained for
the nrev30 benchmark. The vaddlé and nrev30 benchmarks are linearly recursive whereas
the others are pon-linearly recursive. Non-linearly recursive benchmarks often expenence less
speedup than linearly recursive predicates because these benchmarks use divide-and-conquer algo-
rithms and FPPM creates a parallel task for an entire partition as shown in figure 6.1. If the the
problem is divided into two equal parts in the first divide stage, then the parallel task that is created
for ope partition does almost half the work of the entire program. The performance depends on the
size of the partitions in each case. The gsort40 benchmark’s performance is poor because the
first parallel task created corresponds to a large pariion. The gsort40r benchmark’s perfor-

mance is better because the first paraliel task created corresponds to a smaller partition.

The speedups in table 6.3 are also limited by the fact the at the beginning and end of the exe-
cution of each program most of the Slave Processors are idle. The effect of this is illustrated by the

nrevnrev benchmark in which a list is reversed and then reversed again using the nrev/2
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| Bench- | Sequent ‘ Number of Slave Processors
| mark (cycles)y | 1 | 2 | 3 | 4 | 5 | 6 ! 7
prevorev | 9545 | 069 ! 1.24 | 1.64 | 1.96 | 2.19 | 237 i 248

Table 6.4: Speedup relative to sequential execution due to fine grain parallelism in the nrevnrev
program, which executes the nrev/2 predicate of the nrev30 benchmark on a list and then ap-
plies the same predicate to the resulting list. Ideal mult-port shared memory with 1 cycle access
and FPPM implementation with 8 write-once register sets is assumed.

predicate defined in the nrev30 benchmark. Table 6.4 lists the speedups of the nrevnrev

benchmark. As expected, the speedup of nrevnrev is greater than that of nrev30.

6.2.2. Performance Impact of Frequent Choicepoint Creation

Choicepoint creation under parallel execution results in some extra overhead compared to
sequential execution. In this section, we measure the effect of frequent choicepoint creation with
very little parallel execution between choicepoints. The queensd benchmark has these charac-
teristics. Table 6.5 lists the speedup of the benchmark as a function of the number of Slave Proces-
sors. The performance of FPPM drops by very little for programs that have frequent choicepoint

creation and very little parallel execution between choicepoints.

| Bench- | Sequent | Number of Slave Processors
? mark (cycles) 1 ] 2 3] 4 1 s | 6 1 7
queensé | 1380 ] 0.83 098 | 0.98 | 0.98 | 0.98 | 0.95 = 098

Table 6.5: Speedup relative to sequential execution for a program with frequent choicepoint crea-
tion and very little parallel execution between choicepoints. Ideal multi-port shared memory with 1
cycle access and FPPM implementation with 8 write-once register sets is assumed.

6.3. Effect of Memory Access Time on Performance ‘

The previous section measured speedup due to parallel execution in FPPM assuming an ideal
mult-port memory with 1 cycle access. Although it is possible to build multi-port memories, they
are slow and expensive. In this section, we measure the performance degradation of FPPM for
multi-port memories with longer access times. We only consider access times for the data memory

ports. Multiport memories for instructions are easier to construct than data memory ports because



85

2.507
R
flf 2.00 1
a
{
i
\%
e 1.50
P
e
r a
f o 1.00¢/
0 :
r 1
m
a : : : : : :
n ; : : : : :
I e A S
e ; : : : : ;
0.00 . ' . . ' ;
1 2 3 4 5 6 7

Number of Slave Processors

Figure 6.2: Effect of memory access time on the geometric mean performance of FPPM relative to
sequential execution with the same memory access time. A FPPM implementation with 8 register
sets is assumed.

we assume that there are no writes to the instruction stream. Figure 6.2 plots the geometric mean
performance of FPPM (relative to sequential execution with the same memory access time) for
memory access times ranging from 1 cycle to 4 cycles. Notice that the speedup due to parallelism
increases as memory access time increases. This shows that the performance of parallel FPPM exe-
cution is affected less than performance of sequential FPPM execution by increasing memory
access time. In figure 6.3 we plot the the geometric mean performance of FPPM relative to sequen-
tial execution with 1 cycle memory access as a function of the number of Slave Processors. In
figure 6.3 sequential program execution (using only the Main Processor) is represented by data
points for 0 Slave Processors. Figure 6.3 shows that performance with parallel execution with 4 or

more Slave Processors and 3 cycle memory access is better than sequential execution with 1 cycle

memory access.
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Figure 6.3: Effect of memory access time on the geometric mean performance of FPPM relatve to
sequential execution with 1 cycle memory access. On the X-axis sequential program execution (us-
ing the Main Processor alone) is represented by data points for 0 Slave Processors. A FPPM imple-
mentation with 8 register sets is assumed.

The performance graphs for individual benchmark programs are shown in figure Al.1 in
appendix 1. The graphs in figures 6.2 and 6.3 were computed using data listed in table Al.l in

appendix 1.

6.4. FPPM’s Performance with Snooping Caches

A common method of implementing shared memory systems (for small numbers of proces-
sors) is using snooping caches. In this section, we estimate the performance of FPPM with various
snooping cache implementations for the data memory ports. As in the previous section, we assume
that instruction memory accesses are done in one cycle. We investigate FPPM’s performance for
direct-mapped caches with the the two write-back cache coherence protocols described in chapter 5:
the update protocol and the invalidate protocol. Table 6.6 lists the geometnic mean performance of

FPPM relative to sequential execution using a uniprocessor cache of the same size and organization,
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:PTOlOCOl . Line Size Number of Slave Processors

: < 1 | 2 1 3 | 4 "5 6 | 7
update | 2 0.84 | 1.34 | 1.53 ; 159 | 1.70 | 1.73 | 173
update | 4 0.86 | 140 | 1.59 | 1.72 | 1.76 | 1.81 I 1.80
update | 8 089 | 142 : 162 | 174 | 1.77 | 1.81 | 1.80
invalid. 2 0.84 | 1.33 | 1.51 ’ 1.63 | 164 | 1.67 | 1.67
invalid. 4 0.86 | 1.37 i 155 | 1.68 | 1.69 | 172 | 171
invalid. 8 0.89 | 139 | 153 | 1.64 | 162 | 1.64 ' 1.65

Table 6.6: Geometric mean performance of FPPM for various cache organizations and coberence
protocols relative to sequential execution with the same cache organization. The size of each cache
is 8K data words. For sequential execution we simulate a cache of the same size and organizauon,
but without the overhead of a coherence protocol A FPPM implementation with 8 register sets is
assumed.
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Figure 6.4: Geometric mean performance of FPPM with data caches relative to ideal sequenual
performance with 1 cycle memory access. On the X-axis sequental program execution (using the
Maip Processor alone) is represented by data points for 0 Slave Processors. No coherence protocol
is used for the sequential case. A FPPM implementation with 8 register sets is assumed. The lines
titled "dcacheps” are for data caches where p is the protocol (i is invalidate, u is update) and s is the
line size. The m1l line, representing performance with ideal 1-cycle multi-port memory, is drawn
for reference.

but without the overhead of a cache coherence protocol. In each case the total size of the cache is
fixed at 8K data words (i.e. line size x number of lines = 8096). Performance measures for each
individual benchmark are listed in table A1.2 and table A1.3 in appendix 1. We see from table 6.6

that the update protocol performs better than the invalidate protocol.

In figure 6.4 we plot the geometric mean performance of FPPM relative to sequential execu-
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tion with 1 cycle memory access as a function of the number of Slave Processors. As in figure 6.3,
sequential execution (using only the Main Processor) is represented by data points for 0 Slave Pro-

cessors. Similar graphs for each individual benchmark are given in figure A1.2 in appendix 1.

6.5. Evaluation of FPPM’s Specialized Resources

FPPM has a number of specialized resources. The most expensive of these are (1) the spe-
cialized buses including the task dispatch bus and the result distribution bus, and (2) the multple
write-once register sets. The costs of these resources are summarized in table 6.7 (chip area for the
register fileis based on the register file design for the VLSI-BAM for 2 1.2 micron CMOS process).
Eliminating these specialized resource entirely results in a model of parallel execution in which all
communication between processors occurs through shared memory. The overhead of task creation
and communication in such a model is high compared to the overhead in FPPM. In this section, we

study the impact on performance of reducing or eliminating these resources.

| Resource | Cost
Task dispatch bus 36 pins
Result distribution bus 41 pins
Merged task dispatch/result distribution bus | 42 pins
Write-once register file | 16sq. mm.

Tabie 6.7: Cost of FPPM’s specialized resources. These costs assume an implementation with 8 re-
gister sets and 16 registers/set. Reducing the number of sets or the number of registers/set results in
lower chip area as well as fewer pins for the buses.

6.5.1. Merging the Task Dispatch and Result Distribution Buses

The task dispatch bus and the result distribution bus are expensive resources because they use
input/output pins on the processor packages. It is possible to reduce the cost of the implementation
by using a single bus for both task dispatch and result distnbution. In this section we investigate the

performance degradation due to using a single bus instead of separate buses.

The utilization of the result distribution and task dispatch buses depends on the relative size of

parallel tasks; if the tasks are small the buses will be more heavily used. table 6.8 lists the fraction
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. Bencb- Number of Slave Processors 3
Cmak | 1 | 2 ! 3 | 4 | 5 1 6 ' 1|
fib7 094 | 090 | 0.87 | 0.87 | 0.87 | 0.87 ; 0.87
hanoi8 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 098 . 0.98 '
orev30 | 0.96 | 094 | 092 | 0.90 | 0.89 | 0.8 | 0.87 |
gsort50 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
gsortS0r | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98
k963 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
vaddlé | 0.98 | 0.96 | 0.93 | 0.92 | 0.90 ‘ 0.88 | 0.87
queensd | 0.86 | 079 | 079 | 079 | 0.79 | 079 - 079
arith | 0.96 | 0.94 | 093 | 093 | 0.93 | 0.92 | 0.92 |
geom | 096 . 094 1093 1093 1092 092 092

Table 6.8: Fraction of time that the result distribution bus is idle.

ideal multi-port memory with 1 cycle access is assumed.

FPPM with & register sets and

Benchmark . Number of Parallel Tasks |
fib7 19
hanoi8 9
nrev30 61
gsort50 10
gsort50r 12
tak963 4
vadd16 34
| queensd 24

Table 6.9: Number of parallel tasks created. This is also the number of cycles that the task dispatch

bus is busy during the execution of the benchmark.

of time that the result distribution bus is idle. We see that the bus is idle for 92% of the time on an

average. The task dispatch bus is idle even more than the result distribution bus since it is only used

once for every parallel task created. The number of parallel tasks created for each benchmark is

listed in table 6.9. If the result distribution bus is also used for dispatching tasks and priority is

given to task dispatch in the arbitration for bus, then the execution ime would increase, in the worst

case, by the number of tasks created. The increase in execution time is small for all the bench-

marks.
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| Bench- Sequent. | Number of Slave Processors

| mark (cveles) ~ 1 i 2 | 3 1 4 | 5 ' 6 ! 7

: 8 regaster sets
fib7 754 082 | 141 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70
hanoi8 8179 | 093 | 1.82 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83
arev30 4801 070 | 1.22 | 1.61 | 190 | 2.11 ] 228 | 2.38
qsont50 5901 084 | 1.18 | 1.18 | 1.18 | 1.18 | 118 | 118
qsont50r 5901 084 | 138 | 1.63 | 1.81 | 1.81 | 181 } 1.81
1ak963 3374 100 | 1.83 | 1.83 | 183 | 1.83 = 183 | 183
vadd16 7585 | 089 | 1.72 | 2.56 | 327 | 3.94 | 4.70 ! 5.18

' arith. mean - | 086 151 | 1.76 | 193 i 2.06 - 219 | 2.27

| geom. mean - | 086 . 149 | 1.72 | 1.85 | 193 ' 2.01 | 2.05

4 Register Sets ;

fib7 755 | 082 | 138 , 138 | 138 ' 138 138 | 1.38
hanoi8 8179 | 093 | 1.62 | 1.62 | 1.62 | 1.62 - 1.62 | 1.62
arev30 4801 | 070 | 122 | 158 | 1.58 | 1.58 | 158 | 1.58
gsort50 5901 084 | 1.17 1 117 | 117 | 117 | 117 | 117
gsort50r 5901 | 084 | 136 | 160 | 177 | 177 L 177 | 177
tak963 3374 1.00 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83 | 1.83
vadd16 7585 | 0.89 | 172 | 2.49 | 249 | 249 | 2.49 | 2.49

| arith. mean | - | 086 | 1.47 | 1.66 | 1.69 | 1.69 | 1.69 | 1.69

| geom. mean | - | 086 i 145 | 162 | 1.65 | 165 ' 1.65 ! 1.65 |

Table 6.10: Speedup relative to sequential execution for FPPM with 8 and 4 register sets. Ideal,
multi-port memory with 1 cycle access assumed.

6.52. The Number of Write-Once Register Sets

In general, a new write-once register set is allocated for each new procedure in the main pro-
gram. If the new register set is not yet available then the main program must stall. Therefore, the
main program will stall more often if the implementation has fewer register sets. If one new task is
issued for each register set, then the number of register sets also determines how many Slave Pro-
cessors can be used effectively. If multiple tasks are issued for each register set, then more Slave
Processors that can be used effectively. In table 6.10 we compare the performance of FPPM with 4
and 8 register sets. With 4 register sets, FPPM achieves very little performance improvement with
more than 3 Slave Processors. With 8 register sets, FPPM's performance continues to improve up
to 7 Slave Processors. However, even with § register sets, some benchmarks do not benefit from

more than 3 Slave Processors.
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6.5.3. Eliminating the Task Dispatch and Result Distribution Buses

Eliminating the result distribution bus implies that we also eliminate the shared regsters (the
global registers as well as the write-once registers). In this case FPPM processors can share data

only through the shared memory. This approach has additional overhead due to:

(1) The pointers to the top of the shared heap and trail stacks reside in memory and a processor

must obtain a lock before allocating stack space.

(2) The Main Processor dispatches tasks to Slave Processors by enqueuing the task’s starting
address and its arguments in memory. The Slave Processors must obtain a lock before taking

a task from the queue. This increases the overhead of creating a parallel task.

Eliminating the write-once registers has one advantage: Executon does not stall when a new

register set cannot be allocated since it is still being used.

A consequerce of the extra overhead of creating a parallel task without shared registers or a
task dispatch bus is that parallel tasks need to be larger for any performance benefit In order to see
how large a task must be in order to be useful, we run two versions of the gennrevn and the
vaddn benchmarks for n values of 1, 2, 4, 8, 16, 32 and 64. The first version uses the task dispatch
bus, result distribution bus and shared registers. These resources are eliminated for the second ver-
sion and all communication between processors i< through shared memory. In figure 6.5 we plot the
maximum speedup of each version the benchmarks versus the logarithm (base 2) of the value of n
for ideal shared memory and for shared memory implemented with snooping caches. More detailed
performance plots as a function of the number of Slave Processors for each value of n are given in
figure Al1.3 in appendix 1.

Figure 6.5 shows that FPPM with a task dispatch bus and a result distribution bus achieves
better performance for small task sizes. The performance difference is even greater if shared

memory is implemented using spooping cachest. As the task size is increased, the difference in

+ In figure 6.5 the maximum speedup for both benchmarks for small values of n is greater with snooping caches than
with ideal memory. This is because the initial memory accesses o the heap and local stack collide in the single, direct-
mapped cache of the scquential processor whereas they do not collide for the paralle] execution because they occur on dif-
ferent processors. Therefore, the sequential performance is poor for small values of n and the relative speedup for parallel
exccution (with or without the task dispatch and result distribution buses) is high.
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Figure 6.5: Comparison of FPPM’s performance for the gennrevn and the vaddn benchmarks
with and without the special buses (i.e., the task dispatch bus and the result distribution bus). The
solid lines labeled reg represents the performance with special buses and the dashed lines labeled
mem represents performance with special buses. The two graphs on top are for ideal, mult-port
shared memory with 1 cycle access, whereas the graphs at the bottom are for shared memory imple-
mented using 8K word, direct-mapped, snooping caches with 4 words/line and the update protocol.
Performance is plotted relative to sequential execution with a similar memory. The average size of
the tasks increase along the x-axis. The graphs illustrate the performance benefits of the special
buses for small tasks.

speedup is smaller because the overhead of creating tasks is smaller compared to the total size of the
task. Forthe gennrevn benchmark the performance is better without the write-once registers for

large values of n and ideal memory because stalls due to unavailable register sets are eliminated.
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6.6. Evaluation of the Alternative (Unrestricted) Model

So far, we have considered the performance of FPPM using a parallel execunoo model in
which only the main program is allowed to create parallel tasks. As explained earlier, such a model
limits the amount of parallelism that can be exploited in non-linearly recursive predicates. In
chapter 3, we proposed an alternative program partitioning and task scheduling scheme (the Unres-
tricted Model) that allows parallel tasks to create other parallel tasks. In this section, we compare

the performance of the FPPM Model with that of the Unrestricted Model.

Ideal Memory (1 cycle) i Soooping Cache

Benchmark FPPM Unrest. | Unrest/ FPPM Unrest. Unrest./

(cycles) i (cycles) FPPM (cycles) | (cycles) FPPM
fib7 443 465 1.05 503 873 1.74
hanoi8 4478 2046 0.46 5301 3699 0.70
nrev30 2018 2512 1.24 3635 4912 1.35
gsort50 4991 2491 0.50 5518 4216 0.76
gsort50r 3263 2646 0.81 3778 4461 1.18
1ak963 1845 2845- - 1.54 1865 4388 2.35
vaddl6 1464 2223 1.52 2452 3340 1.36
arith. mean - ! - 1.02 - - 1.35
geom. mean | - - | 092 | - - I 1.25

Table 6.11: Performance comparison of the FPPM Model and the Unresticted Model. All meas-
ures are for Configurations with 7 Slave Processors. The snooping cache measurements are for a
direct-mapped, 8 Kword cache using the update protocol and 4 words/line. The mean performance
of the two models are roughly equivalent for ideal memory. However, if snooping cacbes are used,
the FPPM model performs better by a factor of 1.25. As expected. the FPPM model is beuer for the
benchmarks with linearly recursive predicates (i.e., nrev30 and vaddlé). It is interestung to
note that the Unrestricted Model does not always perform better then the FPPM Model for non-
linearly recursive predicates.

Table 6.11 lists the performance of the FPPM Model and the Unrestricted Model (with 7
Slave Processors for both Models), for two memory systems: ideal multi-port memory and shared
data memory implemented by a snooping cache (8 KWords, direct-mapped, update protocol, 4
words/line). The two models have roughly equivalent mean performance if an ideal shared memory
is assumed. However, the FPPM Model has better mean performance for shared memory imple-
mented with snooping caches. The FPPM Model consistently outperforms the Unrestricted Model

for the benchmarks with linearly recursive predicates (ie., nrev30 and vaddl6). Since the
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Unrestricted Model allows parallel tasks to create other parallel tasks, it exposes more parallelism in
noo-linearly recursive predicates than the FPPM Model. Nevertheless, the FPPM model performs
better than the Unrestricted Model on some benochmarks (i.e..£ib7 and tak9€3) that contain

non-linearly recursive predicates.

6.7. Summary

The VLSI-BAM is the fastest sequential Prolog implementation that we are aware of. The
sequential FPPM implementation that we use in our evaluation performs better than the VLSI-BAM
(primarily because FPPM programs are written by hand). Therefore, the speedups due to parallel
execution that FPPM achieves represent the true bepefits of parallel executon. With an ideal
multi-port memory, FPPM achieves speedups between 1.18 and 5.18 (with a geometric mean of
2.03) for a variety of programs that do not create choicepoints or execute side-effects. Although the
benchmarks for which these speedups were measured are small, we believe that they are representa-

tive of the deterministic parts of programs that lie between consecutive choicepoints or side-effects.

We investigated FPPM’s performance with shared memory implemented using direct-mapped
snooping caches for an update as well as an invalidate protocol. All the cache studies were for data
caches with a total of 8K words. We also assumed that instruction accesses completed in 1 cycle.
Among the cache organizations and protocols studied we found the best perfarmance using the
update protocol and a line size of 4 words. With such a cache organization the speedup over
sequential execution with a similar cache (but without the cache coberence overhead) ranged from

1.09 to 3.17 (with a geometric mean of 1.80).

The two most expensive specialized resources of FPPM are the special buses and the write-
once register sets. We found that the performance penalty for a single bus instead of separate task
dispatch and result distribution buses is small. However, if we eliminate both the buses then all
shared data must reside in shared memory. This increases the overbead of creating parallel tasks.
Consequently, parallel execution achieves smaller speedup and requires bigger tasks to perform

better than sequential execution.
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The pumber of write-once register sets limits the number of procedures that have paraliel
tasks in execution. If the number of write-once register sets i1s reduced from 8 to 4, then the

geometric mean speedup (assuming ideal memory) decreases from 2.05 to 1.65.

FPPM's model of execution allows only the main program to create parallel tasks. This limits
the amount of parallelism that can be exploited for pon-linearly recursive predicates. The Unres-
tricted Model is an alternative that allows parallel tasks to create other parallel tasks, but it incurs
greater overhead than FPPM's model In a performance comparison of the two models, we found
that the Unrestricted Model performs betier than the FPPM Model for some non-lnearly recursive
predicates, but performs worse than the FPPM model for the linearly recursive predicates and for

other non-linearly recursive predicates.



7. Conclusions

7.1. Summary of Research Goals

The potenual usefulpess of Prolog has motivated several attempts to achieve higher perfor-
mance than the fastest sequential Prolog system currently available. Several researchers have
attempted to do thus by exploiting parallelism in Prolog. Most of these efforts have concentrated on
coarse grain forms of parallelism such as AND-parallelism and OR-parallelism. These forms of

parallelism provide polcnu'aj for many parallel tasks. However, AND- and OR-parallel systems

require complicated task management and memory management schemes that result in high over-

head. Consequently, few practical systems have demonstrated speedups over the most efficient

sequential Prolog systems. The goals of this dissertation have been

. to identify forms of parallelism thar could be exploited with low overbead memory manage-

ment and task management schemes,

. to develop a model of parallel execution that exploits flow parallelism efficienty,
10 identify architectural features that are useful in exploiting flow parallelism, and

10 measure the performance of the architecture and examine the tradeoffs in the design.

72 Summary of Research Coatributions
(1) We identified a form of fine grain parallelism, called flow paralielism, that can be exploited
with low overbead memory management and task management schemes. Flow parallelism is
exploited when goals that do not create choicepoints nor cause side-effects are executed in
parallel. Thus, flow parallelism is a special case of AND-parallelism. General AND-parallel
goals are usually of coarser granularity than flow parallel goals because they are allowed to
create choicepoints. We showed that unification and complex goal argument creation are spe-
cial goals (called unification goals) that perform explicit unification. Since unification goals
do not create choicepoints nor cause side-effects, unificadon parallelism is a special case of

flow parallelism. Some bookkeeping operations, such as environment allocation and deallo-

cation, can also execute in parallel with low overhead.

9%
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We defined a model of parallel execution that exploits flow parallelism while requiring low
overhead. The model ensures that deadlock will not occur if tasks busy-wait for dependen-
cies to be satsfied. Therefore, the overbead due to task suspension and context switching is
eliminated. In the model, a program consists of a main program, executing on a Main Proces-
sor, and parallel tasks created by the main program that execute on Slave Processors. Paraliel
tasks executing on the Slave Processors are not allowed to create other parailel tasks. Task
creation and scheduling for this master-siave model can be implemented with very low over-
head. We also described an altermative scheme, called the Unrestricted Scheme, in which
parallel tasks are allowed to create other parallel tasks. In order to prevent deadlock without
context switching, the Unrestricted Scheme requires free processors to queue for tasks. A
task may create a parallel task only if a free processor is available in the processor queue; if
no processor is available, then the task is executed sequentally. The Unrestricted Scheme
can expose more parallelism than the master-slave model in non-linearly recursive programs,

but task creation and scheduling in the Unrestricted Scheme involve greater overhead.

We specified an architecture, called the Flow Parallel Prolog Machine (FPPM) that exploits
flow parallelism using the master-slave model. FPPM consists of a Main Processor that exe-
cutes the main program and a number of Slave Processors that execute parallel tasks. The
Main Processor and the Slave Processors access shared memory. The FPPM architecture has
additional features to support Prolog execution, data dependency handling between parallel
tasks, and fast task creation and termination.

We described an implementation of FPPM in which each processor can be implemented as a
VLSI chip and shared memory is implemented using snooping caches. We described imple-

mentations for both update and invalidate protocols.

We evaluated the performance of FPPM and investigated the design tradeoffs using measure-
ments from a detailed register transfer level simulator. Specifically, we obtained the follow-

ing results:
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Sequential Prolog execution on a single processor (the Main Processor) is about as fast as the

Berkeley VLSI-BAM [40]. currently the fastest sequential Prolog processor.

Assuming an ideal shared memory (i.e., one cycle memory access for each pon), FPPM
achieves speedups ranging from 1.18 to 5.18 (with a geometric mean of 2.05) for the bench-

marks using up to 7 Slave Processors.

If shared memory is implemeanted using 8K word direct-mapped spooping caches (for data)
and an update cache coherence protocol, FPPM achieves speedups ranging from 1.09 to 3.17
(with 2 geometric mean of 1.8) over the sequential execution with the same size data cache
(but without the overhead of a cache coherence protocol). The invalidate protocol does not

perform as well as the update protocol

FPPM cannot speed up programs that create choicepoints frequently and perform very small
computatuons between choicepoints. However, the overhead of parallel execution is small
enough that trying to execute one such program, the queens4 benchmark, results in only 2%

lower performance than sequential execution.

The result dismbution bus and the task dispatch bus are not heavily used. Therefore, there is
no need to provide separate buses; a single bus can be used for both purposes with no appreci-
able performance degradation. However, if we eliminate both buses all shared data must
reside in shared memory and explicit synchronization is required. This increases the over-
head of creating parallel tasks and the speedup over sequential execution is achieved only for
large tasks. Reducing the number of register sets from 8 to 4 reduces the speedup (assuming

ideal shared memory) over sequential execution from 2.05 to 1.65.

FPPM's master-slave model of parallel execution exposes only a limited amount of parallel-
ism in non-linearly recursive predicates. The Unrestricted Scheme does not suffer from this
limitation, but the overhead for task creation and scheduling is greater. As expected, we
found that FPPM performs better than the Unrestricted Scheme for the linearly recursive pro-
grams. We found that FPPM performs better than the Unrestricted Scheme even for some

non-linearly recursive predicates. Although our benchmark suite has more noa-linearly



99

recursive programs than linearly recursive programs, the mean performance of FPPM is about

25% better than the Unrestricted Scheme.

73. Directions for Future Research

The model of parallel execution proposed in this dissertation places restrictions on FPPM
tasks that reduce the overhead for parallel execution; unfortunately, the also limit the available
parallelism. The two restrictions that have the most significant impact on the available parallelism
are: (1) Parallel tasks cannot create choicepoints or cause side-effects and (2) Parallel tasks cannot
create other parallel tasks. Several opportunities for future research exist 10 both easing these res-
trictions and finding other ways to exploit paralielism that FPPM does not exploit. We describe

some of these below.

Restriction (1) makes it important for Prolog compilers to eliminate choicepoint creation
wherever possible. With good mode analysis, compilers should generate code to create
choicepoints only for those predicates that require a non-deterministic search strategy. FPPM can-
not directly exploit OR-parallelism that is inherent in such predicates. One avenue of research is to
exploit OR-paralielism using a network of FPPMs without substantially increasing the overhead of
flow parallel execution within each deterministic branch of the search. However, the creation of
such OR-parallel processes will most probably require much larger overhead than creation of FPPM
tasks. Consequently, OR-parallelism cannot be exploited effecuvely in this way if many OR-
branches in the search tree are small, as they often are near the leaves of a search tree. Determining
the size of an OR-parallel branch is a hard problem. The altemative, an unpleasant one, is to require

the user to annotate which branches of the search tree should be explored in parallel.

Another alternative is to ease restricion (1) so that parallel tasks are allowed to create
choicepoints on their local stacks to permit backtracking within the task under the following cir-
cumstances:

(a) No choicepoints remain on the local task when it completes. This is because no context is

saved for tasks.
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(b) During backtracking the task never unbinds shared vanables. This is because other tasks
could have read the bound variable and must also fail, requiring a global choicepoint rather

than a choicepoint local to a task.

(c) If the task has allocated space on the shared heap, this space cannot be reclaimed on back-

tracking since other tasks could have space allocated above it.

(d) The task must maintain a local trail stack since the global trail stack contains addresses of

variables bound by other tasks.

Restriction (2) simplifies scheduling and belps eliminate context switching. However, with
this restriction the partitioning of the program into parallel tasks becomes critical in obtaining good
speedups. In this dissertation we use a heuristic that relies on the recursive structure of programs to
determine which goals to execute in parallel. However, the actual parallelism available depends on
the data dependencies between the parallel tasks. A promising research topic is a more sophist-
cated beuristic that also uses the data dependency information derived from flow analysis. Similar
research on data dependency analysis of Lisp programs to create parallel programs was done by

Larus [43].
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Appendix 1: Detailed Measurements

Bench- Sequent. Number of Slave Processors
mark (cycles) 1} 2 | 3 | 4 | 5 | 6 | 7
Memory Access Time = 1 cycle
fib7 754 082 | 141 | 170 | 1.70 | 170 | 1.70 | 1.70
hanoi8 8179 093 | 1.82 | 183 | 1.83 | 1.83 | 1.83 | 1.83
nrev30 4801 070 | 122 | 1.61 | 190 | 2.11 | 2.28 | 238
gsort50 5901 084 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18
gsort50r 5901 084 | 138 | 1.63 | 1.81 | 1.81 | 1.81 | 1.81
12k963 3374 100 { 1.83 ] 1.83 | 1.83 | 1.83 | 1.83 | 1.83
vaddl6 7585 089 | 1.72 ] 256 | 327 | 394 | 470 | 5.18
arith. mean - 086 | 151 | 1.76 | 193 | 2.06 | 2.19 | 2.27
geom. mean - 086 | 149 | 1.72 | 1.85 | 1.93 | 2.01 | 2.05
Memory Access Time = 2 Cycles
fib7 1136 092 | 163 | 192 | 192 | 192 | 192 | 192
hanoi8 14045 097 | 189 | 189 | 189 | 1.89 | 1.89 { 1.89
nrev30 7547 080 | 140 | 1.86 | 221 | 249 | 2.69 | 2.85
qsori50 8497 089 | 124 | 124 | 124 | 124 { 1.24 | 1.24
gsortS0r 8497 089 | 147 | 172 | 190 | 190 | 1.90 | 190
1ak963 4615 100 | 184 | 184 | 184 | 184 | 1.84 | 1.84
vadd16 10721 095 | 1.85 | 272 | 3.51 | 4.18 | 5.04 | 5.33
arith. mean - 092 | 1.62 | 1.88 | 2.07 | 221 | 2.36 | 245
geom. mean - 092 | 1.60 | 1.84 | 199 | 207 | 2.15 | 2.20
Memory Access Time = 3 Cycles
fib7 1517 098 | 1.76 | 210 | 2,10 | 2,10 | 2.10 | 2.10
hanoi8 19911 098 | 192 1192 | 192 | 192 | 192 | 192
nrev30 10293 0.85 | 151 | 201 | 239 | 269 | 292 | 3.09
qsorS0 11093 092 | 1.27 | 127 1 1.27 | 1.27 | 1.27 | 1.27
qsortS0r 11093 092 | 152 | 1.77 ] 195 | 195 | 195 | 195
1ak963 5856 100 [ 185 [ 1.85 [ 1.85 | 1.85 | 1.85 | 1.85
vaddl$ 13857 099 | 192 | 282 | 366 | 433 | 5.23 | 5.75
arith. mean - 095 | 168 | 196 | 2.16 | 230 | 2.46 | 256
geom. mean - 095 | 1.66 | 191 { 207 | 215 | 2.24 | 2.29
Memory Access Time = 4 Cycles
fib7 1898 1.01 | 182 ] 214 {1 214 | 214 | 2,14 | 214
hanoi8 25777 099 { 193 ) 193 3193|193 | 193 | 193
nrev30 13039 089 | 158 | 2.11 | 253 | 286 | 3.13 | 333
gsor50 13689 094 | 129 | 129 | 129 | 1.29 | 1.29 | 1.29
gsortS0r 13689 094 | 156 | 180 { 198 | 198 [ 198 | 198
1ak963 7079 100 | 185 | 185 | 185 | 1.85 | 1.85 | 1.85
vaddl6 16993 101 | 197 | 289 | 3.76 | 443 | 538 | 5.89
arith. mean - 197 {1 171 | 200 | 221 | 236 | 2.53 | 2.63
geom. mean - 097 | 1.70 | 195 | 2.11 | 220 | 2.29 | 2.34

Table Al.1: Speedup relative to sequential execution for memory access times varying from 1 to 4. FPPM im-
plementation with 8 write-once register sets is assumed.
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Bench- Sequent. Number of Slave Processors
mark {cycles) 1 | 2 | 3 | 4 | 5 | 6 | 7
Update Protocol, 2 words/line, 4096 lines (dcacheu2)
fib7 1167 1.02 | 1.83 | 227 | 230 | 232 | 231 | 231
hanoi8 8615 083 [ 153 | 1.53 | 153 | 153 | 1.53 | 1.53
rrev30 5913 074 | 096 | 1.23 | 144 | 156 | 1.54 | 1.51
gsonsS0 6021 0.76 | 105 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05
gsorSOr 6021 077 | 121 | 136 | 154 | 155 | 1.55 | 1.55
1ak963 3374 098 | 1.79 | 179 { 1.79 | 1.79 | 1.79 | 179
vadd16 7753 079 | 128 | 1.79 | 1.79 | 2.55 | 2.90 | 3.01
arith mean - 084 | 138 | 157 | 1.63 | 1.76 | 1.81 | 1.82
geom mean - 084 | 134 | 153 | 159 | 1.70 | 1.73 | 1.73
Update Protocol, 4 words/line, 2048 lines (dcacheud)
fib7 1219 1.01 | 193 | 235 | 240 | 242 | 242 | 242
hanoi8 8607 088 | 1.63 | 1.63 | 1.63 | 1.62 | 1.63 | 1.62
nrev30 5635 075 | 098 | 126 | 143 | 160 | 1.63 | 155
qsortS0 6021 081 | 110 | 109 [ 1.09 { 1.09 | 1.09 | 1.09
gsortS0r 6021 081 | 127 | 142 | 1.60 | 1.59 | 1.60 | 1.59
1ak963 3374 099 [ 181 | 1.81 | 1.81 | 1.81 | 181 | 1.81
vadd16 7775 084 [ 134 | 192 | 250 | 2.65 | 3.14 | 3.17
arith mean - 087 | 1.44 | 164 | 178 | 1.83 | 1.90 | 1.89
geom mean - 08 | 140 | 159 | 1.72 | 1.76 | 1.81 | 1.80
Update Protocol, 8 words/line, 1024 lines (dcacheu8)
fib7 1533 1.12 | 225 | 2.68 | 3.01 | 298 | 298 | 2.98
hanoi8 8587 08 | 1.61 | 165 | 1.64 | 1.64 | 1.64 | 1.63
nrev30 5633 078 | 090 | 127 | 137 | 147 | 148 | 139
gsort50 6019 0.83 | 1.10 | 1.09 | 1.08 | 1.08 | 1.08 | 1.08
gsort50r 6019 082 | 127 | 140 | 1.56 | 1.56 | 1.57 | 1.55
1ak963 3374 099 | 182 | 182 | 1.82 | 1.82 | 1.82 | 1.82
vadd16 7817 086 { 1.44 | 1.89 | 238 | 250 | 2.87 | 3.02
arith mean - 090 | 1.48 { 169 | 1.84 | 1.86 | 1.92 | 1.92
geom mean - 089 | 142 | 162 | 1.74 | 1.77 | 1.81 | 1.80

Table A1.2: Performance of FPPM for various data cache organizations with the update coherence protocol re-
lative to sequential execution with the same cache organization. The size of each cache is 8K words. For
sequential execution we simulate a cache of the same size and organization but without the overhead of a
coherence protocol. A FPPM implementation with 8 register sets is assumed.



Bench- Sequent. Number of Slave Processors
mark (cycles) 1 ] 2 3 4 5 | 6 | 7
Invalidate Protocol, 2 words/line, 4096 lines {(dcachei2)
fib? 1167 1.01 | 174 { 208 | 2.17 | 2,16 | 2.16 | 2.16
hanoi8 8615 08311531153 | 153 153 | 153 | 153
rrev30 5913 074 | 097 | 124 | 142 | 134 | 132 | 130
gsort50 6021 076 | 106 { 104 1 104 | 104 | 1.04 | 1.04
gsortS0r 6021 077 1121 | 135 154 | 154 | 1.54 | 1.53
1ak963 3374 098 {179 | 1791179 | 179 179 | L.79
vadd16 7753 079 | 126 | 1.81 | 225 | 254 | 294 | 298
arith mean - 0.8 | 137|155 168 | 1.70 | 1.76 | 176
geom mean - 084 | 133 | 151} 1.63 | 1.64 | 1.67 | 1.67
Invalidate Protocol, 4 words/line, 2048 lines (dcachei4)
fib7 1219 1.00 | 1.80 | 2.19 | 223 | 2.22 | 2.21 | 221
hanoi8 8607 088 { 1.63 | 1.63 | 1.63 | 1.62 | 1.63 | 1.62
nrev30 5635 075 | 098 | 124 | 143 | 140 | 137 | 1.28
gsonS0 6021 0.81 | 1.09 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07
gsortS0r 6021 081 {1251 137 | 154 ] 155 | 1.54 | 1.53
1ak963 3374 099 [ 1.81 | 1.81 | 1.81 | 1.81 | 1.81 | 1.81
vadd16 7775 0.84 | 131 { 188 | 245 | 2.64 | 3.10 | 3.12
arith mean - 0.87 | 141 {160 | 174 | 1.76 | 1.82 | 1.81
geom mean - 086 | 137 | 155 {168 | 1.69 | 1.72 | 1.71
Invalidate Protocol, 8 words/line, 1024 lines (dcachei8)
fib7 1533 1.11 | 2.06 | 237 | 2.68 | 2.62 | 2.63 | 2.63
hanoi8 8587 089 | 162 ] 165 | 1.64 | 1.64 | 1.64 | 1.63
nrev30 5633 078 1 097 | 1.16 | 122 | 1.13 | 1.07 | 1.06
gsort50 6019 0.83 | 1.06 | 1.01 | 099 | 099 | 1.00 | 0.99
gsort50r 6019 082 | 121 | 128 | 144 | 137 | 1.40 | 1.40
1ak963 3374 099 | 182 | 1.82 | 1.82 | 1.82 | 1.82 | 1.82
vadd16 7817 086 | 131 | 187 | 227 | 248 | 274 | 2.87
arith mean - 090 | 144 | 159 | 172 1 172 | 1.76 | 1L.77
geom mean - 089 | 139 | 153 | 1.64 { 1.62 | 164 | 163
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Table Al.3: Performance of FPPM for various data cache organizationswith the invalidate coherence protocol
relative to sequential execution with the same cache organization. The size of each cache is 8K words. For
sequential execution we simulate a cache of the same size and organization but without the overhead of a
coherence protocol. A FPPM implementation with 8 register sets is assumed.
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represented by data points for 0 Slave Processors.
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Figure A1.2 (a): Performance of FPPM with data caches relative to ideal sequential performance with 1 cycle
memory access. On the X-axis sequential program execution (using the Main Processor alone) is represented
by data points for O Slave Processors. No coherence protocol is used for the sequential case. A FPPM imple-
mentation with 8 register sets is assumed. The lines titled "dcacheps™ are for data caches where p is the proto-
col (i is invalidate, u is update) and s is the line size. The m! line, representing performance with ideal 1-cycle
multi-port memory, is drawn for reference.
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Figure A1.3 (a): Performance of FPPM with ideal shared memory relative to sequential performance for the
gennrevn and vaddn benchmarks for various values of n. Speedup due to parallel execution is greater for
larger values of n. The speedups are lower for FPPM without the shared registers and task bus, especially for
small values of n.
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Figure A1.3 (b): Performance of FPPM with shared memory implemented using 8K word, direct-mapped
snooping-caches with 4 words/line and an update protocol relative to sequential performance for the
gennrevn and vaddn benchmarks for various values of n. The difference in performance between FPPM
with and without the shared registers and task bus is greater than in figure A1.3(a).
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Appendix 2: Benchmarks and FPPM Code

fib7
main:-
£fib(7,N).
fib(0,1).
fib(1,1).
fib(N,F) :-
N>1,
Nl is N - 1,
N2 is N - 2,
fib(N1,F1),
fib{(N2,F2),
F is F1 + F2.
hanoi8
main :- han(8,1,2,3,X,[]).
han(0, _,_._,%X.X).
han(N,A,B,C,H1,R) :-
N > 0,
Nl is N -1,
han(N1,A,C,B,Hl, [move (A,B) |H2]),
han(N1,C,B,A,H2,R).
nrev30
main :- nrev([1,2,3,4,5,6,7,8,9,10,
11,:12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30), L).
nrev (], []).
nrev{[X{L1},L3):~
nrev(Ll,L2),
concat (L2, [X],L3).
concat ([]1.,X,X).
concat ([X|L1],L2, {(XIL3])):~ concat (L1l,L2,L3).
qsortS0

main :-
gsort ([27,74,17,33,94,18,46,83,65,2,
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qsort50r

tak963

32,53,28,85,99,47,28,82,6,11,
55,29,39,81,90,37,10,0, 66,51,
7,21,85,27,31,63,75,4,95,99,

11,28,61,74,18,92,40,53,59,8],

gsort ([X|L],R,RO) :-

partition(L,X,L1,L2},
gsort (L2,R1,R0),
gsort (L1,R, [X|R1}).

gsort ([],R.R}.

partition([XI|L],Y, (XIL1l},L2) :-

X<Y,
partition(L,Y,L1,L2).

partition({X!iL],Y,L1, [XIL2]) :-

X >= Y,

partition(L,Y,L1,L2).

partition(([],_,([].(]).

main

32,53,28,85,99,47,28,82,6,11,
55,29,39,81,90,37,10,0, 66,51,
7,21,85,27,31,63,75,4,95,99,

11,28,61,74,18,92,40,53,59,8]},

qsOrt([le],R,Ro) i

partition(L,X,L1,L2),

gsort (L2,R1,R0)},

gsort (L1,R, [X{P1]).

gsort([].R,R).

partition([XI|L},Y, (XI11],L2) :-

X<y,
partition(L,Y¥Y,L1,L2).

partition({X{|L],Y,L1, [XiL2]) :-

X >= Y,
partition{(L,Y,L1,L2).

partition((),_, (1.,[]).

main

:- tak(9,6,3,T).

tak(X,Y,2,4) :-

X =< Y,
Z = A.

tak(X,Y,Z,A) :-

X>Yx,

X1l is X - 1,
tak (X1,Y,2,A1),

X,

X,

gsort ([74,27,17,33,94,18,46,83,65,2,

(n.
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vaddn

gennrevn

Yl is Y -1,

tak (Y1,2,X,A2),
21l is 2 - 1,

tak (Z1,X,Y,A3),
tak (Al1,A2,A3,A).

main :-
createmat (n,n,0,1,M),
createvec(n,0,2,V, ),
matadd (M,V,M1),
print {M1).

Vadd([]r[]r[])-

vadd ([X1|R1], [X2}R2), [X3|R3]):-
X3 is X1 + X2,
vadd (R1,R2,R3) .

matadd ([}, _, [1).

matadd ([V1{R1],V2, [V3{R3]) :-
vadd (Vl1,v2,V3),
matadd(R1,V2,R3).

createvec(O,_,_,[]).
createvec (Size, Start,Step, [Start|Rest]) :-
Size > 0,
NSize is Size - 1,
NStart is Start + Step,
createvec (NSize,NStart, Step,Rest) .

createmat (0, _, _, _,[]).
createmat (Numvec, Vecsize, Start, Step, [VIR}])
Nurvac > 0,
createvec (Vecsize, Start, Step, V),
NStart is Start + n,
NNumvec is Numvec - 1,
createmat (NNumvec,Vecsize,NStart, Step,R) .

main :-—
gennrev(n, X} .

gennrev (N, X) :-
range (1,N,L),
nrev(L,X).

range (N, N, [N]) :- !.

range (M,N, [M{Ns]) :~
M < N, ,
Ml is M + 1,
range (M1,N,Ns) .
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nrev ([],[]).
nrev ([X|Ll),L) :- nrev(Ll,L2),
concat (L2, [X],1).

concat ([}, X,X).
concat ([X|Ll],L2, [X|L3]) :- concat(Ll,L2,L3).

queensd

main:-
solve (4,X).

solve (N,Qs) : -
range(1,N,Ns),
queens (Ns, [],0s) .

queens({]).,Qs,0s).

queens (Unplaced, Safe, Qs):-
select (Q, Unplaced, NewUnplaced),
not_threat (Q, Safe),
queens (NewUnplaced, [Q|Safe],Qs) .

not_threat (Q,Safe) :~
safe (Q,1,Safe).

safe(_,_.[1).

safe (Q,N, [Y{Ys]):-
Q == (Y+N),
Q == (Y-N),
Nl is N + 1,
safe(Q,N1,Ys).

select (X, [X]Xs],Xs).
select (X, [Y|Ys],[YIZs]):~
select (X,Ys,Zs).

range (N,N, [N]) :— !.
range (M,N, [M|Ns}):-
M < N,
Ml is M + 1,
range (M1,N,Ns}) .

Instruction Definitions and Macros

/* FILE: fppm.format */
/* define instruction format for the FPPM processors */

sy st [1.1] 32> 8§

format
Ibit = inst[0]<31:31>, % lock bit %
ulbit = inst{0]<30:30>, 9o unlock bit %

opcode =  inst[0}<29:24>,



= inst[0]<23:20>, % special code for arith,cond%
itag = inst{0]<23:20>,
off = inst{0]<19:12>,
imm = inst{0}<23:12>,
lab = inst{0]<19:6>,
longlab = inst[0]<23:0>,
regt = inst{0]<17:16>, % register 2 type %
reg2 = inst[0]<15:12>,
reglt = inst{0]<11:10>,
regd = inst{0]<9:6>,
reglt = insf0]<5:4>,
regl = inst{0}<3:0> $

/* FILE: fppm.m */

/* define instructons */

macro
! macros for register types
IN = 0 &, % inputset %
OUT = 1 &, % outputset %
G = 2 &, % global registers %
T = 3 &, % temprary (local) %
! macros for types
UVAR = 0x0 &,
BVAR = O0x1 &,
LIST = 0x2 &,
STRUCT = 03 &,
INT = 0x4 &,
ATOM = 0x5 &,
NIL = Oxf &,
! macros for special shared registers
B = 8 &,
CP = 9 &,
E Oxa &,
TE = 0xb &,
HP = Oxc &,
TR = Oxd &,
PC = Oxe &,
L = Oxf &
! macros for global registers
TR_REG = Oxd &,
HP_REG = Oxc &,
PC_REG = Oxe &,
FAIL_REG= Oxf &,
QREG = 0xl &,
HEADREG = 0x2 &,
TAILREG = 0x3 &,
FRAMEREG= Oxf &,
NUMPROC= Oxe &,
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!macros for opcodes

NOP = 0x0
QUIT= Ox1
NEW = 0x2
FAIL = 0x3
DONE =
EXEC =

WAITEXEC =

CLEARFAIL =
OLD = Oxa
CLEARCP =

ARITH =
ARITHOFF =

MOVETAG
PUSH
PUSHTAG =

LOAD
STORE

BR = 0x20
BRIND
BRAL
BRTAGEQ =
BRTAGNEQ-=
BRCOND =
BRNCOND=
BRCMP
BRNCMP =

Hon

SBR =  0x30
SBRIND =
SBRAL =
SBRTAGEQ=
SBRTAGNEQ=
SBRCOND =
SBRNCOND=
SBRCMP =
SBRNCMP =

&,
&,
&,
&,
Ox4
0x5

Ox7

0x9
&,
Oxb

0x10
Ox11

Ox14
0x15

0x16
0x17

&,

0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28

&,

0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38

S S A N

2
]
Ro

R R

PEREREEE

&
&
&,
&,
&
&

&,
&

! macros for arithmetic codes

ADD = 0x0
SUB = Ox1
NAND =

NOR = 0x3
SLL = Ox4
SRL = 0x5
MAX= 0x6

&,

FREPOE

! macros for condition codes

GEZ = 0x0

&,

% >=09%
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EQZ = oxl & %=0%

DRF = 0x2 &, % dereferenced %

OTF = 0x3 &, % other fail latches %

CPV = 0x4 &, % valid choicepoints %

VCP = 0x5 &, % current set is valid choicepoint %

! macros for instructions

nop =opcode=NOP §
quit = opcode = QUIT §
new =opcode = NEW §
old =opcode=0OLD §
fail = opcode =FAIL §
done = opcode = DONE

waitexec = opcode = WAITEXEC

clearfail = opcode = CLEARFAIL

CEpR R

clearcp = opcode = CLEARCPS
exec(l) = opcode = EXEC;

longlab=1 § &,

arith(cr1tr1,10Lr0.r2tr2) =
opcode = ARITH;
scode =c;
reglt=rlg
regl =rl;
regOt = 10t
regh = r0;
reg2t = 12;
reg2=12 § &,

arithoff(c,r1trl rOLr0v) =
opcode = ARITHOFF;
scode = c;
reglt=rlt
regl =r1l;
regOt = rt;
regl = 10;
off=v $

move(ritrl rfOtrO,v) =
opcode = ARITHOFF,;
scode = ADD;
reglt=rlg
regl =rl;
regOt = r0t;
reg0 = 10;
off=v S

movetag(rltrl rOtr0,g.v) =
opcode = MOVETAG;
reglt=rltg;
regl =11;
regOt = rOt;
reg0 = 10;
itag = 1g;
off=v S

push(rltrl,OLr0,v) =

&,

trli<-r0cr2

trl<-Ocv

'rl<-r0+v

'rl <-1g"(r0v + v)

fm(rl)<-rO+v
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opcode = PUSH; Irl<rl+1
reglt=rlt;

regl =rl;

regOt = rOt;

reg0 = 10;

off=v ) &,

pushtag(rltrlrOurO,tg.v) = t m(rl) <- tg"(r0v + v)
opcode = PUSHTAG; frlc-rl +1
reglt=rlg
regl =rl;
regOt = rOt;
reg0 = 10;
itag = tg;
off=v 3 &,

load(rltrlaOLrl,v) = trl <-m(r0 +v)
cpcode = LOAD;
reglt =rly
regl =rl;
regOt = r0t;
reg0 = 10;
imm=v $ &,

store(rOtr0,ritrl,v) = 'm(r0 +v)<-rl
opcode = STORE;
reglt=rly
regl =r11;
regt = r0t;
reg0 = r0;
imm =v 3 &,

br(l) = opcode = BR; fpc<-1+pc
longlab=1 § &,

prma(ricrl) = fpe<-1l
opcode = BRIND;
reglt=rlg
regl=r! $§ &,

bral(ritrll) = fpe<-1+pc
opcode = BRAL; 'rl <-pc
reglt=rlg
regl =rl;
lab=1 S &,

briageq(tg.ritrll) =
opcode = BRTAGEQ;
reglt=rly
regl =r1l;
itag = tg;
lab=1 Y &,

briagneq(tg.ritrll) =
opcode = BRTAGNEQ;
reglt=rlg
regl =rl;
itag = tg;
lab =1 $ &,
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breond(cond,rltri]l) =
opcode = BRCOND;
reglt=rlg
regl =rl;
scode = cond;
lab=1 $ &,

brmeond(cond.ritrl]) =
opcode = BRNCOND;
reglt=rlg
regl =rl;
scode = cond;
lab=1 s &,

bremp(ritrl,rOLr0]) =
opcode = BRCMP,;
regit=rlg;
regl =11,
regOt = r0t;
reg0 = 10;
imm =1 $ &,

brnemp(rltrl r0tr0,]) =
opcode = BRNCMP;
reglt=rlg
regl =r11;
regOt = r0t;
reg0 = r0;
imm=1 S &,

sbr(1) = opcode = SBR; ! fpc<-1+pc
longlab=1 § &,

sbrind(rltrl) = ! fpc <-11
opcode = SBRIND;
reglt=rlt;
regl=r1 § &,

sbral(ritrl) = Ifpc<-1+pc
opcode = SBRAL; 'rl<-pc
reglt=rlg
regl =rl;
lab=1 M &,

sbrtageq(tg.ritrl]) =
opcode = SBRTAGEQ;
regit=rlt;
regl =rl;
itag = tg;
lab=1 $ &,

sbriagneq(tgritrl,]l) =
opcode = SBRTAGNEQ;
regit=rlg;
regl =rl;
itag = tg;



lab=1 $ &,

sbrecond(cond,ritrll) =
opcode = SBRCOND;
reglt=rlg
regl =11;
scode = cond;
lab=1 b3 &,

sbmcond(cond,ritrl,l) =
opcode = SBRNCOND;
reglt =rlg;
regl =rl;
scode = cond;
lab=1 $ &,

sbremp(rltrl rOLr0,l) =
opcode = SBRCMP;
reglt=rlg
regl =rl;
reg0t = 10t
reg0 = 10;
imm =1 S &,

sbmemp(rltrl OOl =
opcode = SBRNCMP;
reglit=rly
regl =rl;
reglt =10y
regl =10,
imm =1 S &,

! instructions with lock_unlock same as above except with
! Ibit and ulbit appropriately set (not included here for

! sake of brevity)

% now define some macros for instruction sequences %

% getheap(n) %o
getheap(n) =

1_arithoff(ADD,G,HP,G,HP,n)

u_move(T,.HP,G,HP,0) &,

% mem_getheap(n) getheap when HP is in memory %

mem_getheap(n) =
load(T,HP,G,HP,0)
1_nop
arithoff(ADD,T,B,T,HP.n)
u_store(G,HP,T,B,0) &,

makevar(ty,t) =

pushtag(T.HP,T.HP,UVAR,0)
movetag(ty,LT,HP.BVAR,-1) &,

putelicdr(tg,v) =
pushtag(T.HP.G,0,tg.v)
pushtag(T.HP,T . HP,LIST.1)
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puteltnil(tg,v) =
pushtag(T,HP,G,0.1g.v)
pushtag(T,HP,G,0,NIL.0) &,

switchlist(t,niladr,elseadr) =
sbriageq(LIST,T,t,10)
sbriageq(NIL.T,t niladr)
sbrcond(DRF,T,1,2)
load(T,t, T,,0)
sbr(-5)
sbrtagneq(UVAR,T,telseadr)
load(T,, T,1,0)
nop
nop
sbrtageq(UVAR, T, telseadr)
sbr(-11) &,

seq_switchlis(t niladr,elseadr) =
sbrtageq(LIST,T,14)
sbrtageq(NIL,T,t.niladr)
sbrtagneq(BVAR,T,t.elseadr)
load(T,.,T,10)
sbr(-5) &,

% deref Tregt %

deref(1) =
sbrtageq(UVAR,T,1.3)
sbriagneq(BVAR,T,,8)
load(T L T,1,0)
sbr(-4)
breond(DRF,T,1,2)
load(T,,T,1,0)
sbr(-7)
nop
nop
sbmcondDRF,T.1,-8) «,

% seq_deref %

seq_deref(t) =
sbriagneq(BVAR,T,1.2)
load(T, . T.1,0)
sbr(-3) &,

% wait_ground(t) %

wait_ground(t) =
sbrtageq(BVAR,T.1,1)
sbrtagneq(UVAR,T,1,2)
1oad(T,t.T,L0)
sbr(4) & §

Example FPPM Code (for gennrev64)

include ./Soft/fppm.format  $
include ./Soft/fppman  §

begin



mutalize:

move(T,0,G,0,16)

arithof f(SLL,G,HP,T,0.8)
move(T,0,G.0,0xf)
arithoff(SLL,T.E,T,0,12)
move(T, TE.T.E.0)

nop

nop

nop

nop

exec(f_mainl)
bral(T,CP,gennrev)

new

nop
nop
nop
nop
nop
waitexec
quit

f_mainl:

getheap(8)
makevar(OUT.2)

movetag(OUT,1,G,0,INT,64)

done
nop

gennrev:

nop
exec(s_range)
br(nrev)

Li€w

S_fange.

movetag(T,1,G,0,INT,1)
move(T,TE,T,E.0)
move(T,2,IN,1,0)
move(OUT,2,IN,2,0)
getheap(64)
movetag(T,7,G,0,INT,63)
makevar(T,3)
bral(T,CP.range)
move(OUT,1,T,3,0)

done
nop

range:

deref(1)
deref(2)

% initialize HP = 0x1000 %

% initialize E = 0xf000 %

arith(SUB.T.0,T.2,T.1) %TO<-N-M%

arithoff(SUB,T,7.T,7.2)
sbrcond(EQZ,T,0,rangel)
sbmcond(GEZ,T,0,error)

sbrcond(GEZ,T,7 range_alloc)
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range_noalloc:

push(T,HP,T,1,0)

pushtag(T ,HP,T,HP,UVAR,0)
movetag(T,0,T,HP,LIST,-2)
store(T,3,T,0,0)
arithoff(ADD,T.1,T,1,1)
br(range)
movetag(T,3, T HP.BVAR,-1)

range_alloc:

getheap(40)
br(range_noalloc)
movetag(T,7,G,0INT,38)

rangel:

sbmeond(GEZ T, 7 rangel_alloc)

rangel_noalloc:

push(T,HP,T,1,0)
pushtag(T,HP,G,0.NIL.,0)
movetag(T,0,T,HP,LIST,-2)
brind(T.CP)
store(T,3,T,0,0)

rangel _alloc:

nrev:

nrev2:

getheap(8)
br(rangel_noalloc)
movetag(T,7,G,0,INT,6)

move(T,1,0UT,1,0)
nop
switchlist(1,nrev2 error)
exec(f_nrevil)

push(T.TE,T,TE.0) % Save E %

push(T. TE,T,CP,0) 9, save CP %
push(T.TE.IN,2,0)% save L %
push(T,TEOUT3,0) %saveX %
push(TTEOUT,2,0) %savel2%
bral(T,CP,nrev)

new

nop

exec{sconcat)

load(OUT,1,T.TE,-1) % L2 %
load(OUTA4,T.TE,-2) %X %
load(T,CP,T,TE,4) % old CP %
load(QUT3,T.TE,-3) %L %
load(T,TE,T,TE,-5)

brind(T,CP)

new

brind(T,CP)
store(IN,2,IN,1,0)

f_nrevll:

move(T,1,IN,1,0)
getheap(8)
wait_ground(1)
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load(OUT,1,T,1,1)
load(OUT,3,T,1.0)
makevar(OUT,2)
done

nop

sconcat:
move(T,1,0UT,1,0)
move(T,3,0UT.3,0)
getheap(40)
push(T.HP,OUT4,0) % [X]%
pushtag(T,HP,G,0,NIL,0)
movetag(T,2, T, HP LIST,-2)
move(T,7,G,0,38) % count of free locadons - 2 %
concat:
switchlist(1,concat2,error)
load(T.4,T,1,0) % X%
arithoff(SUB.T.7.T,7.2)
load(T,1,T,1,1) %L1 %
sbrncond(GEZ,T,7,concat_alloc)
concat_noalloc:
push(T,HP,T.4,0) 9% X %
pushtag(T,HP,T,HP,UVAR,0) 9% 1.3 %
movetag(T,5,T . HP,LIST,-2)
store(T,3,T,5,0) % bind the previous location %
br(concat)
movetag(T,3,T,HP.BVAR,-1)

concat_alloc:
getheap(24)
br(concat_noalloc)
move(T,7,G,0.22) % count of free locations - 2 %

concat2:
done
store(T,3,T.2,0)

error:
quit

end
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Appendix 3: Simulator Source Code

A3.1. Overview

The FPPM simulator is written using Zycad’s ISP hardware description language and associated simula-
tion tools. Each distinct hardware entity is written in ISP. Instances of these hardware entities and their inter-
connections are then specified in an ecology file. An assembler and a linker create load images of programs
which are loaded into simulated into memory before starting the simulations. The decoders of Main Processor
and Slave Processor simulators use & microinstruction memory to generate control signals for each pipeline
stage. The contol words for each instruction are assembled and loaded into simulated microinstruction

memory before starting the simulations.

In this appendix, we list the ISP descriptions of the Main Processor (the description of Slave Processor is
not listed here; it differs from that of the Main Processor in only a few places), the ideal multi-port shared
memory, the update protocol snooping cache and the arbitration unit for the distribution bus and lock. We also
list an example ecology file and the control words for the Main Processor. The ISP descriptions and control
words use macros defined in a number files that are included by 2 préprocessmg stage. Since the numerical
values of these macros are not necessary for an understanding of the simulator, we do not list the macro

definitions here. Complete source code listings for the simulator will be made available as a technical report.
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A3.2. Main Processor Description

/* mainproc.isp
main processor for FPPM

*/

include(../Inc/global.inc)

include(../Inc/clock.inc)

include(../Inc/mainproc.inc)

include(../Inc/dist_bus.inc)

include(../Inc/task_bus.inc)

include(../Inc/code.inc)

define(anyfail, (fail_latch[O] or fail_latch[1] or fail_latch[2] or
fail_latch[3] or fail_latch[4] or fail_lawch{5] or
fail_latch[6] or fail_latch[7]))

define(exec_done_other, (case $1

0: (exec_done7 and exec_done6 and exec_doneS and
exec_done4 and exec_done3 and exec_done2 and
exec_donel)

1: (exec_done7 and exec_done6 and exec_doneS and
exec_done4 and exec_done3 and exec_done2 and
exec_doneQ)

2: (exec_done7 and exec_done6 and exec_doneS and
exec_done4 and exec_done3 and exec_donel and
exec_doneQ)

3: (exec_done7 and exec_done6 and exec_doneS and
exec_done4 and exec_done2 and exec_donel and
exec_done0)

4: (exec_done7 and exec_done6 and exec_doneS and
exec_done3 and exec_done2 and exec_donel and
exec_doneQ)

5: (exec_done7 and exec_done6 and exec_done4 and
exec_done3 and exec_done2 and exec_donel and
exec_doneQ)

6: (exec_done7 and exec done5 and exec_doned and
exec_done3 and exec_done2 and exec_donel and
exec_done0)

7: (exec_done6 and exec_done5 and exec_done4 and
exec_done3 and exec_done2 and exec_donel and
exec_done(Q)

esac))
define(exec_done_set, (case $1

0: exec_done0

1: exec_donel

2: exec_done2

3: exec_done3

. exec_doned
: exec_done5
: exec_done6
: exec_done?
esac))

NN A

define(other_fail, (case $1
0: fail_latch{1] or fail_latch{2] or fail_latch[3] or
fail_latch{4] or fail_latch{5] or fail_laich[6] or
fail_latch{7]
1: fail_latch[0] or fail_latch{2] or fail_latch[3] or
fail_latch[4] or fail_latch{S] or fail_latch{6] or
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port

clock

fail_latch{7]

2: fail_latch[0] or fail_latch[1] or fail_latch{3] or
fail_latch{4] or fail_latch[5] or fail_latch[6] or
fail_latch{7}

3: fail_latch[0] or fail_latch{1] or fail_latch{2] or
fail_latch{4] or fail_latch(5] or fail_latch(6] or
fail_latch(7]

4: fail_latch[0] or fail_lawch{1] or fail_latch{2] or
fail_latch[3] or fail_latch[5] or fail_latch{6] or
fail_lawch(7]

S: fail_latch{0} or fail_latch{1] or fail_latch[2] or
fail_latch[3] or fail_latch[4] or fail_latch{6] or
fail_latch{7]

6: fail_latch[0] or fail_latch{1] or fail_latch[2] or
fail_latch(3] or fail_latch[4] or fail_latch[5] or
fail_latch{7}

7; fail_latch[0] or fail_latch[1] or fail_latch(2] or
tail_latch{3] or fail_latch[4] or fail_latch{5] or
fail_latch(6]

esac))

'input,

i_maddr<ADDR> ‘output:connect,
i_mdata<WORD> "bidirectional:discormect,
i_mrq (0) 'output:connect,

i_mrw (READ) ‘output:connect,

i_mrdy

‘input,

maddr<ADDR> ‘output:connect,
mdata<WORD> ‘'bidirectional:discormect,

mrq (0)

‘output:connect,

mrw (READ) ‘output:connect,
mpush (0) ‘output:connect,

mrdy

‘input,

free_execl (1) *bidirectional:and:connect,
free_exec2 (1) *bidirectional:and:connect,
free_exec3 (1) "bidirectional:and:connect,
free_execd (1) *bidirectional:and:connect,
free_execS (1) *bidirectional:and:connect,
free_exect (1) "bidirectional:and:connect,
free_exec? (1) ‘bidirectional:and:connect,

task_bus<TB_WID>(0) 'output:cormect,

dist_bus<DB_WID> ’bidirectional:or:connect,
db_rq (0) ‘outputconnect,

db_gr

lock_

'input,

(0) ’output:connect,

lock_rel (1) "output:connect,

lock_gr

‘input,

fail_sig0 (0) "bidirectional:or:comnect,
fail_sigl (0) bidirectional:or:connect,
fail_sig2 (0) 'bidirectional:or:comect,
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state

fail_sig3 (0) 'bidirectional:or:connect,
fail_sig4 (0)'bidirectional:or:comnect,
fail _sig5 (0)'bidirectional:or:comnect,
fail_sigé (0) bidirectional:or:comnect,
fail_sig7 (0) bidirectional:or:connect,

clear_sig0 (0) "bidirectional:or:connect,

clear_sigl (0) *bidirectional:or.connect,
clear_sig2 (0) bidirectional:or:connect,
clear_sig3 (0) *bidirectional:or:connect,
clear_sigd (0) ’bidirectional:or:connect,
clear_sig5 (0) *bidirecdonal:or:connect,
clear_sig6 (0) ‘bidirectional:or:connect,
clear_sig7 (0) "bidirectional:or:connect,

exec_done0 (1)  ‘bidirectional:and:connect,
exec_donel (1) ‘bidirectional:and:connect,
exec_done2 (1) ‘bidirectional:and:connect,
exec_done3 (1)  bidirectional:and:connect,
exec_done4 (1)  ‘'bidirectonal:and:connect,
exec_done5 (1)  ‘bidirectonal:and:connect,
exec_done6 (1)  ‘bidirectional:and:connect,
exec_done7 (1) ‘bidirectonal:and:connect,

pref_set<2:0> (0)'bidirectional:connect,
pref_stall ‘input:or;

d_inst_reg<WORD>, d_inst_reg 0<WORD>,
a_inst_reg<WORD>, a_inst_reg O<WORD>,

m_inst_reg<WORD>, m_inst_reg 0<WORD>,
w_inst_reg<WORD>, w_inst_reg_O<WORD>,

a_uinst<UINST_WID>, a_uinst O<UINST_WID>,
m_uinst<UINST_WID>, m_uinst_O<UINST_WID>,
w_uinst<UINST_WID>, w_uinst_O<UINST_WID>,

f_pc<ADDR>, f_pc_O0<ADDR>,
d_pc<ADDR>, d_pc_0<ADDR>,
a_pc<ADDR>, a_pc_O<ADDR>,
m_pc<ADDR>, m_pc_O<ADDR>,
w_pc<ADDR>, w_pc_O<ADDR>,

f_current_set<3:0>, {_current_set_0<3:0>,
d_current_set<3:0>, d_current_set_0<3:0>,
a_current_set<3:0>, a_current_set_0<3:0>,
m_current_set<3:0>, m_current_set_0<3:0>,
w_current_set<3:0>, w_current_set_0<3:0>,

f_stage_valid, f_stage_valid_0,
d_stage_valid, d_stage_valid_0,
a_stage_valid, a_stage_valid_0,
m_stage_valid, m_stage_valid_O,
w_stage_valid, w_stage_valid_0,

m_done, m_done_0,
w_done, w_done_0,
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reg[REG_RANGE]<WORD>, /* temp regs */
greg[REG_RANGE]<WORD>, /* global regs */

reg[SET_RANGE}(REG_RANGE]<WORD>, /* argregs */
reg v[SET_RANGE][REG_RANGE],

temp_regO<WORD»>,
temp_regl<WORD>,
temp_reg2<WORD>,

regO<WORD>, reg0_O0<WORD>,
regl<WORD>, regl_O0<WORD>,
reg2<WORD>, reg2_0<WORD>,

temp_reg0_v,
temp_regl_v,
temp_reg2_v,

lock_granted (0),
lock_set<2:0>,

condition,
branch_address<ADDR>,
decoder_output<UINST_WID>,

mar<WORD>, mar_O<WORD>,

mdr<WORD>, mdr_0<WORD>,
mdr_in<WORD>, mdr_in_0<WORD>,
mdr_in_temp<WORD>, mdr_in_temp_0<WORD>,
result<WORD>, result_0<WORD>,

b_operand<WORD>,

alu_output<WORD>,
inc_output<WORD>,

stall_pipe,
exec_num<2:0>,

last_exec[0:1}<2:0>,
max_exec<3:0>,

dist_bus_latch<DB_WID>,
fail_enable (1), fail_enable_0,
fail_latch{SET_RANGE],
squash,
inst_count<WORD> (0), /* number of instructions executed */
stall_f, stall_d, stall_m, stall_w;
memory
uinst_mem[0:0xff]<UINST_WID>,
format

d_fpced = decoder_output<1:0>,
d_branchlength = decoder_output<3:2>,
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d_cond = decoder_output<6:4>,
d_dispatch = decoder_output<8:7>,
d_squash = decoder_output<10:9>,
d_regset = decoder_output<12:11>,
d_fail = decoder_output<14:13>,

. d_stall = decoder_output<18:15>,
a_alucode = a_uinst<19:19>,

. a_bopsrc = a_uinst<20:20>,
a_tagsrc = a_uinst<21:21>,
a_bypass = a_uinst<22:22>,
a_incsrc = &_uinst<23:23>,
a_result = a_uinst<24:24>,
a_arsrc = a_uinst<25:25>,
a_mdrsrc = a_uinst<26:26>,
m_ctrl = m_uinst<28:27>,
m_bypass = m_uinst<29:29>,
w_writereg = w_uinst<31:30>;

format ! for decoder bypasses
m_abypass = m_uinst<22:22>,
w_mbypass = w_uinst<29:29>;
format

a_alucode_0 = a_uinst_0<19:19>,
a_bopsrc_0 = a_uinst_0<20:20>,
a_tagsre 0 = a_uinst_0<21:21>,
a_bypass_0 = a_uinst_0<22:22>,
a_incstc_ 0 = a_uinst_0<23:23>,
a_result 0 = a_uinst_0<24:24>,
a_marsrc_0 = a_uinst_0<25:25>,
a_mdrsrc_0 = a_uinst_0<26:26>,
mectal 0 = m_uinst_0<28:27>,
m_bypass_0 = m_uinst_N<29:20>,
w_writereg 0 = w_uinst_0<31:30>;

/.Uttt“‘ uSeful ﬁmcum dcﬁnlnons “t“l“ttt“t‘t‘tt‘tt‘*t‘t"rt‘t/

function exec_done_previous(set<2:0>)<0:0> :=

(
state i<2:0>, done;

i=set-1;

- done=1;
nexg

- while (i neq pref_set)
(

done = done and exec_done_set(i);
i=i+1;

)i

exec_done_previous = done;

)

/ttt“tt“““tt.'t‘t.““ FClCh Sla.ge ““tt‘t“t“‘tt‘ttt‘tt.t‘ttt‘tl/
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when f_stage_slave (clock:PHI_0):=
(

f pc_0=1f_pc;

f_current_set_0 = f_current_set;

)

when drive_i_addr (clock:PHI_0):=
(

i_maddr = {_pc;

imrq=1;

delay(0);
)

when read_i_data(clock:PHI_1):=

i_mrq=0;

delay(ND);

if ((anyfail) and (fail_enable_0)) or (squash and not stall_pip=2)

(
d_inst_reg = 0;
d_stage_valid = 0;

)

else if not stall_pipe

(
d_inst_reg = i_rndata;
dpc=fpc 0+1
d_current_set = f_current_set_0;
d_stage_valid=1;

)

/tt‘tt‘t‘i“‘-““.“‘.‘. Demde Smge “““li“‘t‘*‘t‘.*“**“““‘#“#*‘/
when d_stage_slave(clock:PHI_0):=
(
d_pc_0=d_pc;
d_inst_reg U =d_inst_reg;
d_current_set_0 = d_current_set;
d_stage_valid_0 = d_stage_valid;
)

when manage_fpc(clock:PHI_1):=
(
delay(ND);
if (anyfail) and (fail_enable_0)
(
f_pc = greg[FAIL_REG]<VALUE>;
fail_enable = 0;
)
else if not stall_pipe
(
case d_fpcctl
DF_INC:f pc=f pc 0+1
DF_BRANCH: f_pc = branch_address
DF_COND: if (condition)
f_pc = branch_address
elsef_pc=f_pc_ 0+1



)

%

DF_REG!: f_pc = temp_regl<VALUE>

esac;

when manage_fcurrentset(clock:PHI_1):=

(

)

state temp_clear{ SET_RANGE]};

temp_clear{0] = 0
temp_clear[1} =0
temp_clear{2] = 0;
temp_clear(3] =0

temp_clear{4] = 0;
temp_clear{5] = 0;
temp_clear[6] = 0;
temp_clear{7] = 0;

delay(ND);
if (not stall_pipe) and (not ((anyfail) and fail_enable_0))

(

)

case d_regset
DR_NEW:
(
f_current_set = (f_current_set_0 + 1) mod NUM_SET;
temp_clear{((f_curreni_set_0 ext SET_MAX) + 1) mod NUM_SET}=1;
)
DR_OLD:
(
f_current_set = ((f_current_set_0 ext SET_MAX) + NUM_SET - 1)
mod NUM_SET;
)

esac;

next,

oref_set = {_current_set;

ciear_sig0 = temp_clear[0];
clear_sigl = temp_clear(1];
clear_sig2 = temp_clear([2];
clear_sig3 = temp_clear[3];
clear_sigd = temp_clear(4];
clear_sig5 = temp_clear[5];
clear_sig6 = temp_clear[6];
clear_sig7 = temp_clear(7];

when lock_request(clock:PHI_0):=

(

v

)

lock_rq = d_inst_reg<L.BIT>;

if lock_gr

lock_granted = 1;
lock_set = d_current_set_0;

when clear_cp (clock:PHI_1):=
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(

)

if d_fail eql DL_CLEARCP

(

)

delay(ND);

if not stall_pipe
reg_v(d_current_set_0}{L] =0;

when decode_bypass (clock:PHI_0):=

(

case d_inst_reg<REGOT>
IN.OUT:

(

)

temp_reg0 = reg[(d_current_set +

(d_inst_reg<REGOT> ext SET_MAX)) mod NUM_S ET]{d_inst_reg<REGO0>];
temp_reg0_v =reg v[(d_current_set +

(d_inst_reg<REGOT> ext SET_MAX)) mod NUM_SET][d_inst_reg<REGO0>];

temp_reg0 = greg(d_inst_reg<REGO0>);
temp_regO_v =1;

if m_abypass and (m_inst_reg<REG1> eql d_inst_reg<REGO0>)
temp_reg0 = result

else if w_mbypass and (w_inst_reg<REG1> eql d_inst_reg<REG0>)
temp_reg0 = mdr_in

else
temp_reg0 = treg[d_inst_reg<REGO>);

temp_regO_v =1;

esac;

case d_inst_reg<REG1T>
IN,OUT:

(

~ N

-~

temp_regl = reg[(d_current_set +

(d_inst_reg<REG1T> ext SET_MAX)) mod NUM_SET](d_inst_reg<REG1>});
temp_regl _v = reg_v[(d_current_set +

(d_inst_reg<REG1T> ext SET_MAX)) mod NUM_SET}{d_inst_reg<REG1>];

temp_regl = greg[d_inst_reg<REG1>];
temp_regl_v=1,;

if m_abypass and (m_inst_reg<REG1> eql d_inst_reg<REG1>)
temp_regl = result

else if w_mbypass and (w_inst_reg<REG1> eql d_inst_reg<REG1>)
temp_regl = mdr_in

else
temp_regl = treg{d_inst_reg<REGI>];

temp_regl_v =1;

142



143

)

esac;

case d_inst_reg<REG2T>
IN,OUT:
(
temp_reg2 = reg[(d_current_set +
(d_mnst_reg<REG2ZT> ext SET_MAX)) mod NUM_SET]|(d_inst_reg<REG2>];
temp_reg2 v =reg v[(d_current_set +
(d_inst_reg<REG2T> ext SET_MAX)) mod NUM_S ET][d_inst_reg<REG2>];

el el

temp_reg2 = greg[d_inst_reg<REG2>];
temp_reg2_v =1;

—

—

if m_abypass and (m_inst_reg<REG1> =gl d_inst_reg<REG2>)
temp_reg2 = result

else if w_mbypass and (w_inst_reg<REG1> eql d_inst_reg<REG2>)
temp_reg2 = mdr_in

else
temp_reg2 = treg[d_imst_reg<REG2>];

temp_reg2_v = 1;

esac;
next
wait{clock:PHI_1);

delay(ND);

if not stall_pipe

(
reg0 = temp_reg0;
regl = temp_regl;
reg2 = temp_reg2;

)

)

when decoder (clock:PHI_0):=

(
case d_inst_reg<OPCODE>
NOP: decoder_output = uinst_mem[uNOP]
QUIT: decoder_output = uinst_mem[uQUIT]
NEW: decoder_output = uinst_mem[uNEW]
FAIL: decoder_output = uinst_mem[uFATL]
DONE: decoder_output = uinst_mem[uERROR]
EXEC: decoder_output = uinst_mem[uEXEC]
WAITEXEC: decoder_output = uinst_mem[uWAITEXEC]
CLEARFAIL: decoder_output = uinst_mem[uCLEARFAIL]
CLEARCP: decoder_output = uinst_mem[uCLEARCP]
OLD: decoder_output = uinst_mem[uOLD]

ARITH: case d_inst_reg<REGIT>
T: decoder_output = uinst_mem[uARITH]
default: decoder_output = uinst_mem[uARITHG]
€sac



)

ARITHOFF:case d_inst_reg<REG1T>
T: decoder_output = uinst_mem{uARITHOFF]
default: decoder_output = uinst_mem[uARITHOFFG]
esac

MOVETAG:case d_inst_reg<REG1T>
T: decoder_output = uinst_mem[uMOVETAG]
default: decoder_output = uinst_mem{uMOVETAGG]
esac

PUSH: case d_inst_reg<REG1T>
T: decoder_output = uinst_mem[uPUSH]
default: decoder_output = uinst_mem{uPUSHG]
esac

PUSHTAG: case d_inst_reg<REG1T>
T: decoder_output = uinst_mem[uPUSHTAG]
default: decoder_output = vinst_mem{uPUSHTAGG]
esac

LOAD: case d_inst_reg<REGIT>
T: decoder_output = uinst_mem[uLOAD]
default: decoder_output = uinst_mem{:LOADG]
esac

STORE: decoder_output = uinst_mem[uSTORE]

BR: decoder_output = uinst_mem{uBR]
BRIND: decoder_output = uinst_mem[uBRIND]
BRAL: case d_inst_reg<REGIT>
T: decoder_output = uinst_mem[uBRAL)]
default: decoder_output = uinst_mem(uBRALG]
esac
BRTAGEQ: decoder_output = uinst_mem[uBRTAGEQ]
BRTAGNEQ: decoder_output = uinst_mem[uBRTAGNEQ]
BRCOND: decoder_output = uinst_mem[uBRCOND)]
BRNCOND: decoder_output = uinst_mem{uBRNCOND]
BRCMP: decoder_output = uinst_mem{uBRCMP]
BRNCMP: decoder_output = uinst_mem[uBRNCMP]

SBR: decoder_output = uinst_mem/uSBR]
SBRIND: decoder_output = uinst_mem[uSBF.IND]
SBRAL: cased_inst_reg<REGIT>

T: decoder_output = uinst_mem[{uSBRAL]

default: decoder_output = uinst_mem[uSBRALG])

esac
SBRTAGEQ: decoder_output = uinst_mem{uSBRTAGEQ)]
SBRTAGNEQ: decoder_output = uinst_mem[uSBRTAGNEQ]
SBRCOND: decoder_output = uinst_mem[uSBRCOND]
SBRNCOND: decoder_output = uinst_mem{uSBRNCOND]
SBRCMP: decoder_output = uinst_mem[uSBRCMP]
SBRNCMP: decoder_output = uinst_mem{uSBRNCMP]

default: decoder_output = uinst_mem{uERROR]
€sac;

when d_branch_compute(clock:PHI_0):=

(

delay(ND); ! wait for decoder output

case d_branchlength

DB_LAB: branch_address = d_pc + d_inst_reg<LAB>
DB_LONGLAB: branch_address = d_pc + d_inst_reg<LONGLAB>
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DB_IMM: branch_address = d_pc + d_inst_reg<IMM>
esac

)

when d_compute_condition(clock: PHI_0):=

(

delay(ND); ! wait until registers are read
case d_cond

DC_COND: condition =

(case d_inst_reg<SCODE>

GEZ:
EQZ:
DRF:

OTF:
CPV:

VCP:
esac)

temp_regl<VALUE> geq O
temp_regl<VALUE> eql 0
not((temp_reg1<TAG> eql BVAR) or

((temp_reg1<TAG> egql UVAR) and

not (exec_done_previous(d_current_set))))
other_fail(d_current_set)
reg v[0](L] orreg_v[1][L] or reg v[2][L] orreg v{3][L] or
reg_v[4){L] orreg_v[5][L] or reg_v{6][L] or reg_v{7}{L]
reg_v{d_current_set}[L]

DC_NCOND: condition =
not (case d_inst_reg<SCODE>

GEZ:
EQZ:
DRF:

OTF:
CPV:

VCP:
esac)

temp_regl<VALUE> geq 0
temp_regl<VALUE> eql 0
not((temp_reg1<TAG> egl BVAR) or
((temp_reg1<TAG> eql UVAR) and
(exec_done_previous(d_current_set))))
other_fail(d_current_set)
reg_v[0]{L] orreg_v[1][L] orreg v[2][L] orreg v[3][L] or
reg v[4){L} orreg _v[5)[L] or reg_v[6][L] or reg v{7]{L]
reg_v[d_current_set][L]}

DC_TAGEQ: condition = (d_inst_reg<ITAG> eql temp_reg1 <TAG>)
DC_TAGNEQ: condition = (d_inst_reg<ITAG> neq temp_reg1<TAG>)
DC_CMP: condition = (temp_regl eql temp_reg0)

DC_NCMP: condition = (temp_regl neq temp_reg0)

ecne

)

when d_microsequencer(clock:PHI_1):=

(

delay(ND);
if ((anyfail) and fail_enable_0)

(

)

a_uinst=0;
a_stage_valid = 0;

else if not stall_pipe

(

)R

)

&_uinst = decoder_output;
a_inst_reg = d_inst_reg 0;
a_pc=d_pc_0;

a_current_set = d_current_set_0;
a_stage_valid = d_stage_valid_0;

inst_count = inst_count + (d_stage_valid_0 ext 32);

when pull_free_execs(clock:PHI_0) :=
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if (last_exec[0] eql 1) or (last_exec[1] eql 1) free_execl =0
else (if (max_exec geq 1) free_execl = 1);

if (last_exec[0] eql 2) or (last_exec[1] eql 2) free_exec2 =0
else (if (max_exec geq 2) free_exec2 = 1);

if (last_exec[0] eql 3) or (last_exec[1] eql 3) free_exec3 = 0
else (if (max_exec geq 3) free_exec3 = 1);

if (last_exec([0] eql 4) or (last_exec[1] eql 4) free_execd = 0
else (if (max_exec geq 4) free_execd = 1);

if (last_exec[0] eql 5) or (last_exec[1] eql S) free_exec5 =0
else (if (max_exec geq 5) free_exec5 = 1);

if (last_exec[0] eql 6) or (last_exec[1] eql 6) free_exec6 = 0
else (if (max_exec geq 6) free_exec6 = 1);

if (last_exec[0] eql 7) or (last_exec[1] eql 7) free_exec? =0
else (if (max_exec geq 7) free_exec7 = 1);

)

when set_exec_num(clock:PHI_1):=
(
if free_execl
exec_num=1
else if free_exec2
exec_num = 2
else if free_exec3
exec_num =3
else if free_execd
exec_num =4
else if free_execS
exec_num =5
else if free_exec6
exec_num= 6
else if free_exec7
exec_num =7
else
exec_num = 0;
next;

)

when d_dispatch_task(clock:PHI_1):=
(
delay(ND);

if not (stall_pipe or ((anyfail)and fail_enable_0))
(
case d_dispatch
DD_NONE.:
(
task_bus = 0;
last_exec[1] = last_exec[0];
last_exec[0] = 0;
)
DD_EXEC:
(
last_exec[1] = last_exec[0];
last_exec[0] = exec_num;
task_bus<TB_UNIT> = exec_num;
task_bus<TB_ADDRESS> = branch_address;
task_bus<TB_SET> = d_current_set_0;
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)

esac

)

else

(
task_bus = 0;
last_exec[1] = last_exec[0];
last_exec{0] = 0;

)

when d_squash_gen(clock:PHI_0):=

(

)

delay(2*ND); ! wait for condition to be computed

case d_squash

DQ_NO: squash =0

DQ_YES: squash = 1
DQ_COND: squash = condition

€sac

when set_fail_sigs(clock:PHI_1):=

(

)

state temp_fail[0:7];

temp_fail{0} = 0;
temp_fail[1] = 0;
temp_fail[2] = 0;
temp_fail[3] = 0;
temp_fail[4) = 0;
temp_fail[5] = 0;
temp_fail{6] = 0;
temp_fail{7] = 0;

delay(ND);
if (d_fail eql DL_FAIL) and (not stall_pipe)
(
temp_fail[d_current_set_0} =1;
)3

next;

fail_sig0 = temp_fail[{0];
fail_sigl = temp_fail{1];
fail_sig2 = temp_fail{2];
fail_sig3 = temp_fail{3];
fail_sigd = temp_fail{4];
fail_sig5 = temp_fail[5];
fail_sig6 = temp_fail[6];
fail_sig7 = temp_fail[7];

when latch_fail (clock: PHI_0):=

(

fail_enable_0 = fail_enable;
if fail_sigQ fail_latch[0] = 1;
if fail_sigl fail_laich{1] = 1;
if fail_sig?2 fail_lawch{2] = 1;
if fail_sig3 fail_lach[3] = 1;
if fail_sig4 fail_latch[4] = 1;
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if fail_sig$ fail_latch{5] = 1;
if fail_sig6 fail_latch[6] = 1;
if fail_sig7 fail_laich(7] = 1;

wait{clock:PHI_1);

delay(ND);
if (d_fail eql DL_CLEAR) and (not stall_pipe)
(
fail_latch{d_current_set] = 0;
fail_enable = 1;

)

when set_done_signals(clock: PHI_0):=
(
state temp_se{SET_RANGE];

temp_set[0] = 1;
temp_set[1] = 1;
temp_set[2] = 1;
temp_set[3] = 1;
temp_set(4] = 1;
temp_set[5] = 1;
temp_set[6] = 1;
temp_set[7] = 1;

nexg;

temp_set[f_current_set] = 0;

if d_stage_valid
temp_set[d_current_set] = 0;

if m_stage_valid
temp_set{m_current_set] = 0;

if w_stage_valid
temp_set[w_current_set] = 0;

wait(clock:PHI_1);

exec_doneQ = temp_set[0];
exec_donel = temp_set[1];
exec_done2 = temp_set[2];
exec_done3 = temp_set[3];
exec_doned = temp_set[4];
exec_done$ = temp_set{5];
exec_done6 = temp_set{6];
exec_done7 = temp_set[7];

/‘“‘...““““‘.““ Ad&ess Compumdon Stﬂge ‘t‘tt‘t‘*tttttt‘ttt‘tl*‘t&/
when a_slave (clock:PHI_0):=
(

a_inst_reg_0=a_inst_reg;

a_uinst_0 = a_uinst;

a_pc_0=a_pc;

a_current_set_0 = a_current_set;

a_stage_valid_0 = a_stage_valid;



when address_bypass (clock:PHI_0):=

(

case a_inst_reg<REGOT>
IN.OUT.G:

(
reg0_0 = reg0;

)
T:
(
{f m_sbypass and (m_inst_reg<REG1> eql a_inst_reg<REG0>)
reg0_0 = result
else if w_mbypass and (w_inst_reg<REG1> eql a_inst_reg<REGQ»)
reg0_0 » mdr_in
else
1030_0 = reg0;
)

[ 1114

case a_inst_reg<REG1IT>
IN.OUT.G:
(

regl_Ow=regl;

)
T:
(
if m_abypass and (m_inst_reg<REQ1> eql a_irt_reg<REG1>)
regl_0 = result
else if w_mbypass and (w_inst_reg<REG1> ogl &_inst_reg<REG1>)
regl_O=mdr_tn
olse
regl_Owregl;
)

[31 "N

case a_inst_reg<REQ2T>
IN.OUT.G:

(
reg2 0 =reg2;

)
T:
(
if m_sbypass and (m_inst_reg<REG1> eql o_inst_reg<REG2>)
reg2_0 = result
alse If w_mbypass and (w_inst_reg<REG1> eql a_inst_reg<REG2>)
reg2_0=mdr_in
else
reg2 0 = reg2;

csac;

when s_microsequencer (clock:PHI_1):=

(

delay(ND);
if ((mnyfail) end fail_snadie_0)
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m_uinst = 0;
m_stage_valid = 0;

)

else if not stall_pipe

(
m_uinst = a_uinst_0;
m_inst_reg = a_inst_reg_0;
m_pc=a_pc_0;
m_current_set = a_current_set_0;
m_stage_valid = a_stage_vahd_0;
m_done = 0;

)

)

when incrementer(clock: PHI_0):=
(
delay(ND);

case a_incsrc
Al_R1:
(
inc_output<VALUE> =regl_O0<VALUE> + 1;
inc_output<TAG> =regl _0<TAG>;
)
Al_PC:
(
inc_output<VALUE> = a_pc + 1;
)
esac;

)

when alu(clock:PHI_0):=
(
delay(ND);

case a_bopsrc

AB_OFF:

(
b_operand<VALUE> = a_inst_reg<OFF> sxt 28;
b_operand<TAG> = a_inst_reg<ITAG>;

)

AB_R2: b_operand =reg2_0

esac;

nexy;,

case a_alucode
AA_ADD: alu_output<VALUE> = reg0_0<VALUE> + b_operand<VALUE>
AA_SCODE:
(
alu_output<VALUE> =
case a_inst_reg<SCODE>
ADD: reg0_O<VALUE> + b_operand<VALUE>
SUB: reg0_0<VALUE> - b_operand<VALUE>
NAND: reg0_0<VALUE> nand b_operand<VALUE>
NOR: reg0_0<VALUE> nor b_operand<VALUE>
SLL: reg0_O<VALUE> *: logical b_operand<VALUE>
SRL: reg0_O<VALUE> /: logical b_operand<VALUE>
MAX: case (reg0_O<VALUE> geq b_operand<VALUE>)




0: b_operand<VALUE>
1: reg0_O<VALUE>
esac
esac
)

esac;

case a_tagsrc

AT_RO: alu_output<TAG> = reg0_0<TAG>
AT_ITAG: alu_output<TAG> = a_inst_reg<ITAG>
esac;

)

when source_mar(clock:PHI_1):=

(
delay(ND);

if not stall_pipe

{
v

case a_marsrc_0
AM_ALU: mar = alu_output
AM_R1: mar=regl 0
esac;
)
)

when source_mdr(clock:PHI_1):=
(

delay(ND);
if not stall_pipe
(
case a_mdrsrc_0
AD_ALU: mdr = alu_output
AD_R1l:mdr=regl 0
esac;
)

when source_result(clock:PHI_1):=

(
delay(ND);
if not stall_pipe
(
case a_result_0
AR_ALU: result = alu_output
AR_INC: result = inc_output
esac;
)
)

/ttt“t“.“t“““‘..“‘t Memory Smge “*““‘tt“‘t‘l““.‘t‘tlt*“/
when m_copy (clock:PHI_0):=
(

m_inst_reg 0 = m_inst_reg;

m_uinst_0 = m_uinst;

m_pc_0 =m_pc;
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m_current_set_0 = m_current_sey;
m_stage_valid_0 = m_stage_valid;
mar_0 = mar;

mdr_0 = mdr;

result_0 = result;

m_done_0 = m_done;
mdr_in_temp_0 = mdr_in_temp;

)

when m_microsequencer (clock:PHI_1):=
(
delay(ND);
if ((anyfail) and fail_enable_0)
(
w_uinst = 0;
w_stage_valid = 0;
)
else if not stall_pipe
(
w_uinst = m_uinst_0;
w_inst_reg = m_inst_reg 0;
w_pc=m_pc_0;
w_current_set = m_current_set_0;
w_stage_valid = m_stage_valid_0;
w_done = 0;
)
)

when drive_mem_addr(clock:PHI_0):=

(
maddr = mar<ADDR>;

if not m_done

(

case m_ctrl
MC_READ:

mrw = READ;
mrq = I;

)

MC_WRITE:

(
vcomnect(mdata,mdr);
mrw = WRITE;
mpush = 0;
mrq = 1;

)

MC_PUSH:

(
veonnect(mdata,mdr);
mrw = WRITE:
mpush = 1;
mrq = 1;

)

default:

mrw = READ;
mrq = (;
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disconnect(mdata);

mrw = READ;
[ mrq = 0;
disconnect{mdata);
)
P delay(0);
)

when handle_mdata(clock:PHI_1):=
(
delay(ND);

casem_cul_0
MC_READ:
(
if m_done_0
(
if not stall_pipe
(
mdr_in = mdr_in_temp_0;
)
)

else if mrdy

(

mrq=0;
if not stall_pipe
(
mdr_in = mdata;
)
else

(
mdr_in_temp = mdata;
m_done = 1;
)
- )
)
MC_PUSH,
MC_WRITE:
(
if mrdy
(
mrq = 0;
disconnect(mdata);
if stall_pipe
m_done = 1;
T X
if not stall_pipe
mdr_in = result_0;
i )
default:
(
mrq =0;
disconnect(mdata);
if not stall_pipe
mdr_in = result_0;
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esac;

)

/ntttt‘ttttttottttttttt Writeback stage ‘tttttt‘tt‘ttttttattttttttttuttttct/
when w_slave_copy (clock:PHI_0):=
(

w_uinst_0 = w_uinst;

w_inst_reg 0 = w_inst_reg;

mdr_in_0 = mdr_in;

w_current_set_0 = w_current_set;

w_stage_valid = w_stage_valid_0;

w_pc_0=w_pc;

w_done_0 = w_done;

)

when write_register(clock:PHI_0):=

(

case w_writereg

WW_NO:

(
db_rq =0;
delay(0);

wait{clock:PHI_1);

disconnect{dist_bus);

delay(0),
)
WW_LOCAL:
(

db_rq =0;

delay(0);

wait(clock:PHI_1);

disconnect(dist_bus);

delay(ND);
if not stall_pipe
(
treg{w_inst_reg 0<REG1>] = mdr_in_0;
)
)
WW_GLOBAL:
(
db_rq =1 and not w_done;
delay(0);

wait(clock:PHI_1);

if db_gr and (not fail_latch[w_current_set_0])

(
commect(dist_bus);
delay(0);
dist_bus<DB_CODE> = WRITE;
dist_bus<DB_TYPE> = w_inst_reg 0<REGIT>;
dist_bus<DB_DATA> = mdr_in_0;
dist_bus<DB_REG> = w_inst_reg 0<REG1>;
dist_bus<DB_SET> = (w_current_set_0 +




(w_inst_reg O<REGIT> ext SET_MAX)) mod NUM_SET;
delay(ND);
if stall_pipe
w_done = 1;
)
else
(
f disconnect(dist_bus);
delay(0);
)

esac;

)

when write_global_registers(clock:PHI_0):=
(

dist_bus_latch = dist_bus;
wait(clock:PHI_1);

if (dist_bus_lawch<DB_CODE> eql WRITE) and
(not case dist_bus_latch<DB_SET>

0: fail_latch({7]

: fail_latch[0]

- fail_latch[1]

: fail_latch(2]

: fail_latch{3]

: fail_latch{4]

. fail_latch[5]

: fail_latch[6]

esac)

~N A WN

case dist_bus_latch<DB_TYPE>

IN,OUT:

(
reg[dist_bus_laich<DB_SET>]{dist_bus_laich<DB_REG>] =

dist_bus_laich<DB_DATA>;

reg_v{dist_bus_lawch<DB_SET>}({dist_bus_latch<DB_REG>] = 1;

)

G:

(
gregldist_bus_latch<DB_REG>] = dist_bus_latch<DB_DATA>;

)

esac;

)i
)

when clear_registersets(clock:PHI_0):=

(
: state temp_clear{SET_RANGE], i<3:0>;

temp_clear[0} = clear_sig7 or fail_sig7;
temp_clear(1] = clear_sig0 or fail_sig0;
temp_clear(2] = clear_sigl or fail_sigl;
temp_clear[3] = clear_sig2 or fail_sig2;
temp_clear(4] = clear_sig3 or fail_sig3;
temp_clear(5] = clear_sig4 or fail_sig4;
temp_clear{6] = clear_sig5 or fail_sig5;
temp_clear(7] = clear_sig6 or fail_sig6;
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wait(clock:PHI_1);

if temp_clear{0]}

(

)

1= 0; next;

do

(
reg_v(0]J{i] = 0
i=i+1;

) unul (i eql O);

if temp_clear[1}

(

)

i = 0; next;

do

(
reg_v[1){i]=0;
i=1+1;

) untl (i eql 0);

if temp_clear(2]

(

)

1= 0; nexy

do

(
reg v[(2){i}=0;
i=i+1];

} until (i eql 0);

if temp_clear(3]

(

)

i=0; nexy;

do

4
reg_v[3](i] = 0;
i=i+1;

) untl (i eql 0);

if temp_clear{4]

(

)

i=0; next;

do

(
reg_v([4]{i]=0;
i=zi+ 1

) unt! (i eql 0);

if temp_clear(5]

(

i=0; next;

do

(
reg_v[{5)i]=0;
1i=1+1;
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) untl (i eql 0);

)
if temp_clear[6]
(
1= 0; next;
do
( .
reg_v[6]li] = 0;
izi+ ]
) untl (i eql 0);
)
if temp_clear{7]
(
i=0; nexy
do
(
reg v[7][i} =0;
1=1+1;

y unul (i eql 0);
).
)

when release_lock(clock:PHI_1):=

(
delay(ND);
if (lock_granted and fail_lawch{lock_set])
(
lock_rel=1;
lock_granted = 0;
)
else if not stall_pipe
(
if w_inst_reg_O<ULBIT>
\
lock_rel = 1;
tock_granted = 0;
)
else
lock_rel=0;;
)
)

,“‘t“l““‘.“...‘.““.“ Gmaam Lhc sta_us ““.‘#““.t“““t‘.“lt/
when generate_stalls(clock:PHI_1):=
(
stall_f= noti_mrdy;
stall_d = (case d_stall
DS_NONE: 0
DS_RO: not temp_reg0_v
.DS_R1: not temp_regl_v
DS_ROR1: not (temp_reg0_v and temp_regl_v)
DS_ROR2: not (temp_regO_v and temp_reg2_v)
DS_EXEC: not (exec_done_other(d_current_set_0))
DS_EXECAVAIL: not (free_exec] or free_exec? or free_exec3
or free_exec4 or free_execS or free_exect or free_exec7)
DS_SETAVAIL: noy
case f_current_set_0




- exec_done2
: exec_done3
: exec_done4
: exec_doneS
: exec_doneb
: exec_done?7
: exec_done(
: exec_donel

NN A W = O

esac) or
(d_inst_reg_O<LBIT> and (not lock_gr) and (not lock _granted));
stall_m = (not m_done_0) and
(case m_ctrl_0
MC_READ,
MC_PUSH,
MC_WRITE: not mrdy
default: 0
esac);
stall_w = (not w_done_0) and
(case w_writereg 0
WW_GLOBAL: not db_gr
default: 0
esac),

nexg

stall_pipe = stall_foor stall_dor stall_m or stall_w or pref_stall;
delay(0);
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A33. Ideal Multi-port Memory Description

/* mem.isp

One port of ideal multi-port memory
*/
include(../Inc/mem.inc)
include(../Inc/global.inc)
include(../Inc/clock.inc)

port
maddr<ADDR>  ‘input,
mdata<WORD> ‘bidirectional:disconnect,
mrw ‘input,
mrq *input,
mrdy (0)  ‘output:connect,
clock 'input;
memory
m[MEMSIZE]<WORD>;
state

MD<WORD> (10), ! memory delay

ct_rd[0:15]<WORD>,
ct_wr{0:15]<WORD>;

when mem_port (clock:PHI_0):=

delay(ND);
if mrq
(
if mrw eql READ
(
delay(MD);
vconnect(mdata,m{maddr]);
mrdy = 1;
ct_rd[maddr<15:12>] = ct_rd[maddr<15:12>] + 1,
next;
wait(clock: PHI_1);
delay(MH);
disconnect{mdata);
mrdy = 0;
)
else
(
m[maddr] = mdata;
delay(MD);
mrdy = 1;

ct_wr{maddr<15:12>] = ct_wr{maddr<15:12>] + 1;
wait(clock: PHI_1);

delay(MH);
mrdy = 0;
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A3.4. Update Protocol Snooping Cache Description

/* dcacheu.isp

update protocol snooping cache

*/

include(../Inc/dcacheu.inc)
include(../Inc/global.inc)
include(../Inc/bus.inc)
include(../Inc/clock.inc)

port

state

/tttttttt‘t‘t“.t prDCCSSOY Slde ‘t“#tt“ttttttttttt‘tttt“tttt‘ttttt‘!ttt/

clock ‘input,

maddr<ADDR> ’input,
mdata<WORD> ‘bidirectional:disconnect,

mrq ‘input,
mrw ‘input,
mpush "input,

mrdy (0) ‘bidirectional:connect,

b_maddr<ADDR> ‘bidirectional:disconnect,
b_mdata<WORD> ‘bidirectional:disconnect,
b_code<4:0> ‘bidirectional:or:disconnect,

b_rq (0) ‘output:connect,
b_gr ‘input,

b_busy (0) ‘outputor:connect;

dstate[NUMSETS}<2:0>,
1ags[NUMSETS]<TAGWIDTH>,
data[ NUMSETS)[LINESIZE|<WORD>,

accimes[0:31]<WORD>,
p_tag<TAGWIDTH>,
p_linestate<2:0>,

p_data<WORD>,

p_word_cu<3:0>,
p_state<4:0> (0),

b_word_ctr<3:0>,
b_state<4:0> (0),

b_maddr_lawch<ADDR>,
p_maddr<ADDR>,

p_mrw,
p_mpush;

when proc_stall(clock:PHI_0

(

((p_state eql PS_NORMAL) and (b_state neq BS_NORMAL))):=
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delay(ND);
if mrq

mrdy = 0;
next,
)
)

when proc_normal(clock:PHI_0
((p_state eql PS_NORMAL) and (b_state eq]l BS_NORMAL))):=
(

state buswrite;

delay(ND); /* wait until bus and processor requests are valid */

buswrite = ((b_code eql BC_INV) or (b_code eql BC_BROAD)) and
(tags{b_maddr<SETSELWIDTH>] eql b_maddr<TAGWIDTH>);

p_maddr = maddr;

p_mrv = mrw;

p_mpush = mpush;

next;

if mrq and not ({(p_maddr<L.INEADDR> eql b_maddr<LINEADDR>) and (b_code neq 0))
(

p_tag = tags[p_maddr<SETSELWIDTH>];

p_linestate = dstate[p_maddr<SETSELWIDTH>];

p_data = data[p_maddr<SETSELWIDTH>][p_maddr< WORDSELWIDTH>];

next,

if (p_tag eql p_maddr<TAGWIDTH>)
(
f* hit */
case p_mrw
READ:
(
case p_linestate
I:

’
AN

wait (clock:PHI_1);

p_state = PS_BUSRQMISS;
)
E.M.SM,S:
(
vconnect(mdata, p_data);
mrdy = 1;

wait(clock: PHI_1);

delay(CH),
mrdy = 0;
disconnect(mdata);
)
esac;
)
WRITE:
(
if p_mpush and (p_maddr<WORDSELWIDTH> eql 0)
(
/* push of first word in line */




case p_linestate
I.SM.S:

(
wait{clock:PHI_1);

p_state = PS_BUSRQINV;
)
EM:
(
if buswrite
(
mrdy = 0;
wait(clock:PHI_1);

else

( -
mrdy = 1;
data[p_madd:r<SETSELWIDTH>][p_maddr<WORDSELWTDTH>] = mdata;
dstau;[p_maddr<SETSELWIDTH>] =M;

wait(clock:PHI_1);

delay(CH);
mrdy = 0;

/* ordinary write */
case p_linestate
I
(
wait (clock:PHI_1);

p_statz = PS_BUSRQMISS;

S,.SM:

(
wait (clock:PHI_1);

p_state = PS_BUSRQBROAD:;
)
EM:
(
if buswnite
(
mrdy = 0;
wait(clock:PHI_1);
)
else
«
mrdy = 1;
data{p_maddr<SETSELWIDTH>][p_maddr< WORDSELWIDTH>] = mdata;
dstate[p_maddr<SETSELWIDTH>] = M:

wait(clock:PHI_1);




delay(CH);
mrdy = 0;

/* miss */
case p_linestate
LE.S:

(
wait (clock:PHI_1);

if (p_mrw eql WRITE) and (p_mpush and (p_maddr<WORDSELWIDTH> eq! 0))
p_state = PS_BUSRQINV

else
p_state = PS_BUSRQMISS;

)
M.SM:

(
wait{clock:PHI_1);

p_state = PS_BUSRQWB,;
)
esac;
)
)
)

when proc_busrgmiss (clock:PHI_O (p_state eql PS_BUSRQMISS)) :=
(

/* request bus to ship out request for line */

b rq=1;

delay(0);

wait(clock:PHI_1);

if b_gr
(
b_rq=0;
b_busy =1;
p_state = PS_MISSRQ;
)
)

when proc_busrqinv (clock:PHI_0 (p_state eql PS_BUSRQINV)) :=
(

/* request bus to invalidate the line */

b_rq=1;

delay(0);

wait(clock:PHI_1);
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if b_gr
(
b_rq=0;
p_state = PS_INV;
)
)

when proc_busrgbroad (clock:PHI_O (p_state eql PS_BUSRQBROAD)) :=

(
/* request bus to broadcast the word */

b_rq=1;
delay(0):

wait(clock:PHI_1);

i b_gr
4
\

b_rq=0;
p_state = PS_BROAD:
)
)

when proc_busrqwb (clock:PHI_O (p_state eql PS_BUSRQWB)) :=
(

/* request bus to wrriteback line */

brq=1;

delay(0);

wait(clock:PHI_1);

if b_gr
(
b_rq=0;
b_busy =1;
p.staie = PS_WE:
)
)

when proc_wb{(clock: PHI_O (p_state eql PS_WB)) :=
(
veonnect(b_code, BC_WB);
connect(b_maddr);
p_word_ctr = 0;
next;
b_maddr<WORDSELWIDTH> = p_word_cau<WORDSELWIDTH>;
b_maddr<SETSELWIDTH> = p_maddr<SETSELWIDTH>;
b_maddr<TAGWIDTH> = p_tag;
delay(0);

wait(clock:PHI_1);

p_state = PS_WBDELAY;
)

when proc_wbdelay(clock:PHI_O (p_state eql PS_WBDELAY)):=
(

connect{b_mdata);
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wait(clock:PHI_1);

p_state = PS_WBDATA;
)

when proc_wbdata(clock:PHI_0 (p_state eql PS_WBDATA)):=
(
b_code = BC_WBDATA;
b_mdata = data[p_maddr<SETSELWIDTH>][p_word_ca<WORDSELWIDTH>];
b_maddr<WORDSELWIDTH> = p_word_cu<WORDSELWIDTH>;
delay(ND);
p_word_ctr = p_word_ctr + 1;
dstate[p_maddr<SETSELWIDTH>] = I;

wait(clock:PHI_1);

if (p_word_ctr eql NUMWORDS)
(
if (p_mrw eql READ) or ((p_mrw eql WRITE) and (p_mpush eq! 0))
or ((p_mrw eql WRITE) and (p_mpush eq! 1) and (p_maddr<WORDSELWIDTH> neq 0))
(
/* read or write */
p_state = PS_MISSRQ;
)
else
(
/* push */
b_busy = 0;
p_state = PS_INV;
)

delay(BH);
discommect(b_code),
discormect(b_maddr);
disconnect(b_mdata);
)
)

when proc_inv(clock:PHI_O (p_state eql PS_INV)) :=
(

vconnect(b_code, BC_INV);

veonnect(b_maddr, p_maddr);

delay(ND);

data[p_maddr<SETSELWIDTH>][p_maddr<«WORDSELWIDTH>] = mdata; -
tags{p_maddr<SETSELWIDTH>] = p_maddr<TAGWIDTH>;
dstate{p_maddr<SETSELWIDTH>] = M;

if (maddr eq! p_maddr) mrdy = 1;

wait(clock:PHI_1);

p_state = PS_NORMAL,;
delay(BH);
disconnect(b_code);
disconnect(b_maddr);
mrdy = 0,

)

when proc_broad(clock:PHI_O (p_state eql PS_BROAD)) :=
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vconnect(b_code, BC_BROAD);
veonnect(b_maddr, p_maddr);
veonnect(b_mdata, mdata);

delay(ND);

data{p_maddr<SETSELWIDTH>){p_maddr<«WORDSELWIDTH>] = mdata;
dstate[p_maddr<SETSELWIDTH>] = SM;
if (maddr eql p_maddr) mrdy = 1;

wait{clock:PHI_1);

p_state = PS_NORMAL,;
delay(BH);
disconnect(b_code);
disconnect(b_maddr),
disconnect(b_mdata);
mrdy = 0;

)

when proc_missrq (clock:PHI_O (p_state eql PS_MISSRQ)) :=
(

/* ship out request for line */

vconnect(b_code, BC_MISSRQ);

vconnect(b_maddr, p_maddr);

delay(0);

wait(clock:PHI_1);

p_state = PS_MISSWAIT;
p_word_ctr = 0;
delay(BH);
disconnect(b_code);
disconnect(b_maddr),

)

when proc_misswait(ciock:PH1_C (p_state eql PS_MISSWAIT)) := i
(
/* wait for line data from either memory or another cache */
delay(ND); /* wait for bus data to become valid */

if (b_maddr<LINEADDR> eql p_maddr<LINEADDR>) and
(b_maddr<WORDSELWIDTH> eql p_word_cau<WORDSELWIDTH>) and
{((b_code eql BC_FROM_CACHE) or (b_code eq]l BC_FROM_MEM))
(
data[b_maddr<SETSELWIDTH>]{b_maddr<WORDSELWIDTH>] = b_mdata;
tags[b_maddr<SETSELWIDTH>] = b_maddr<TAGWIDTH>;
dstate[b_maddr<SETSELWIDTH>] = case b_code
BC_FROM_CACHE: S
BC_FROM_MEM: E
esac;
p_word_ctr = p_word_ctr + 1;

wait{clock:PHI_1);

if (p_word_ctr eq] NUMWORDS - 1)
(

b_busy =0;
)
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else if (p_word_ctr eqd NUMWORDS)
(
p_state = PS_NORMAL;
)
)
)

/'t"‘."t“"‘t“““““ bm Side “."““.‘.“.‘.‘.‘t“““““/

when bus_normal(clock:PHI_O ((b_state eql BS_NORMAL) and
{(p_state eq! PS_NORMAL) or
(p_state eql PS_BUSRQMISS) or
(p_state eql PS_BUSRQINV) or
(p_state eql PS_BUSRQBROAD) or
(p_state eql PS_BUSRQWB)))) :=

delay(ND);

case b_code

BC_INV:

(
if (tags{b_maddr<SETSELWIDTH>] eqgl b_maddr<TAGWIDTH>)

dstate[b_maddr<SETSELWIDTH>] = [;

)

BC_BROAD:

(
if (tags{b_maddr<SETSELWIDTH>] eql b_maddr<TAGWIDTH>)
(

if (dstate[b_maddr<SETSELWIDTH>] eql S) or
(dstate[b_maddr<SETSELWIDTH>] eql SM)

(
data[b_maddr<SETSELWIDTH>][b_maddr<WORDSELWIDTH>] = b_mdata;
dstate{b_maddr<SETSELWIDTH>] = §;

)

else if (dstate[b_maddr<SETSELWIDTH>] eql E) or

(Ustaic(L_madd:SCTSCLWIDTH>] eql M)

(
neify(UNVEXPECTED_BROADCAST),

)

)
)
BC_MISSRQ:
(
if (tags{b_maddr<SETSELWIDTH>] eq! b_maddr<TAGWIDTH>) and
(dstate[b_maddr<SETSELWIDTH>] neq I)
(
b_word_ctr =0;
b_maddr_latch = b_maddr;

wait{clock:PHI_1);

b_state = BS_MISS;
)
)

esac

)

when bus_miss(clock:PHI_O (b_state eql BS_MISS)) :=
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veonnect(b_code, BC_FROM_CACHE);

veonnect(b_mdata, dam[b_maddr_latch<SETSELWIDTH>][b_word_ctr<WORDSELWIDTH>]);
connect{b_maddr);

next

b_maddr<LINEADDR> = b_maddr_latch< LINEADDR>;
b_maddr<WORDSELWIDTH> = b_word_ctt<WORDSELWIDTH>;
delay(ND);

b_word_ctr = b_word_ctr + 1;

case dstate[b_maddr_latch<SETSELWIDTH>]

M.SM: dstate[b_maddr_laich<SETSELWIDTH>] = SM

E.S: dstate[b_maddr_latch<SETSELWIDTH>] = §

esac;
wait(clock:PHI_1);

if (h_word_ctr eqt NUMWORDS)
b_state = BS_NORMAL;

delay(BH);
disconnect(b_code);
disconnect(b_mdata);
disconnect(b_maddr);
)
when access_time_monitor(mrq:lead):=
(

state acctime<WORD>;

wait{clock:PHI_1);

accume = 1;

nexg;

while(mrq and not mrdy)
(

wait{clock:PHI_1);

acctime = acctime + 1;
)

next;
if (acctime gtr 30)

(

acctimes[31] = acctimes{31] + 1;

acctimes[acctime] = acctimes[acctime) + 1;




A3.S. Distribution Bus and Lock Arbitration

/‘

*/

arbitisp

arbitration unit for the FPPM dist_bus and lock_rq

include(../Inc/clock.inc)
include(../Inc/global.inc)

port

state

clock

db_rq0
db_gr0 (0)
db_rql
db_grl (0)
do_rq2
db_gr2 (0)
db_rq3
db_gr3 (0)
db_rq4
db_gr4 (0)
db_rq$
db_gr5 (0)
db_rg6
db_gr6 (0)
db_rq7
db_gr7 (0)

lock_rq0

'input,

‘input,
‘output:connect,
‘input,
‘output.connect,
‘inpus,
‘output:connect,
‘input,
‘output:connect,
‘input,
‘output:connect,
"input,
‘output:connect,
‘input,
'output:connect,
"input,
‘output:connect,

'input,

lock_gr0 (0) output:connect,

lock_rql

‘input,

lock_gr1 (0) output:connect,

lock_rq2

‘Input,

lock_gr2 (0)output:connect,

lock_rg3

'input,

lock_gr3 (0)’output:connecy,

lock_rq4

‘input,

lock_gr4 (0)’output:connect,

lock_rg5

‘input,

lock_gr5 (0) output:connect,

lock_rg6

'input,

lock_gr6 (0) output:connect,

lock_rq7

‘input,

lock_gr7 (0)’output:connect,

lock_rel0
lock_rell
lock_rel2
lock_rel3
lock_reld
lock_rel5
lock_rel6
lock_rel7

pref_stall

‘input,
‘tnput,
‘input,
‘input,
‘mput,
‘mput,
'input,
‘input,

‘input;
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last_lock<2:0> (),
last_dist<2:0> (0),
lock_grant (0),

db_rq ct0:7]<WORD>,
lock_rq_ct{0:7]<WORD>;

when arbit(clock: PHI_0):=

(

state temp_gr{0:7], 1<2:0>, dist_grant

delay(ND); /* wait for lock_rq. db_rq */

if lock_grant  /* check if lock has been released */

(

if (case last_lock
0: lock_rel7

: lock_relQ

: lock_rel!

s lock_rcl12

: lock_rel3

: lock_reld

: lock_relS

: lock_rel6
esac)

(
lock_grant = 0;

)

~N N R W)

/* initalize temp_gr */

1=0;

next,

do

(
temp_gr{i] = 0;
i=i+1;

) until (iegl 0);

next;

if not lock_grant

(

/* find the first lock_rq in round_robin order */
i = last_lock;
next;

do
(

if (case 1

0: lock_rq0

1: lock_rql
2: lock_rq2
3: Jock_rq3
4: lock_rq4
5: lock_rq5
6: lock_rq6
7: lock_rq7
esac)
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lock_grant = 1;
temp_gr{i] = 1;
)
i=i+1;
) until ((i eql last_lock) or lock_grant);
last_lock = i;
)

next,;

/* ship out lock_gr signals */
lock_gr0 = temp_gr[0];
lock_grl = temp_gr{1};
lock_gr2 = temp_gr(2];
lock_gr3 = temp_gr(3];
lock_gr4 = temp_gr{4];
lock_gr5 = temp_gr{5}:
lock_gr6 = temp_gr([6}];
lock_gr7 = temp_gr[7};

/* iniualize temp_gr */
1=0;
next,
do
(
temp_gr{i] = 0;
1=1+1;
) until (i eq! 0);
dist_grant = 0,
next;

/* if lock was granted, check if the same unit has a db_rq */

if lock_grant

(
case last_lock

: temp_gr[7] = db_rq7

: temp_gr(0] = db_rq0

stemp_gr[1] = db_rql

: temp_gr[2] = db_rq2

: temp_gr(3] = db_rq3

: temp_gr[4] = db_rq4

: temp_gr[5] = db_rq5

: temp_gr(6] = db_rq6

esac;

next;

dist_grant = (ternp_gr[0] or temp_gr{1] or temp_gr{2] or
temp_gr{3] or temp_gr[4] or temp_gr[S] or
temp_gr{6] or temp_gr[71]);

nex;

if dist_grant

(

last_dist = last_lock;
X

SO AW - O

)

if not dist_grant

(
1 = last_dist;
next;
do



(
if (case i
0: db_rq0
:db_1ql
:db_rq2
:db_rq3
:db_rq4
:db_rq$5
: db_rq6
:db_rq7
esac)

GO WA W -

dist_grant = 1;
temp_gr{i] = 1;
)i
i=i+1;
) until ((i eql last_dist) or dist_grant);
last_dist =1;
next;

)

/* ship out db_gr signals ¥/
db_gr0 = temp_gr[0];
db_grl = temp_gr[1};
db_gr2 = temp_gr{2};
db_gr3 = temp_gr{3];
db_grd = temp_gr[4];
db_gr5 = temp_gr(5];
db_gr6 = temp_gr[6);
db_gr7 = emp_gr{7];
)

when db_arb_monitor{clock:PHI_0):=
(

state temp<2:0>;

delay(ND);

temp = (db_rq0 ext 4) +
{db_rql ext4) +
(db_rq2 ext 4) +
(db_rq3 ext 4) +
(db_rq4 ext 4) +
(db_rq5 ext 4) +
(db_rqb ext 4) +
(db_rq7 ext 4);

nexg;

db_rq_ct(temp] = db_rq_ct{temp] + 1;

)

when lock_arb_monitor(clock:PHI_0):=
(

state temp<2:0>;

delay(ND);

temp = (lock_rq0 ext 4) +
(lock_rql ext 4) +
(lock_rq2 ext 4) +
(lock_rq3 ext 4) +
(lock_rq4 ext4) +
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(lock_rq5S ext4) +
(lock_rq6 ext 4) +
(lock_rq7 ext 4);
next,
lock_rq_ct{temp] = lock_rq_ct{temp] + 1;
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A3.6. Example Ecology Flle

/'

Ecology file with

1 Main Processor

4 Slave Processors

Update protocol data caches
*/

I‘
first define signals common to all configs
*/
signal
clock<1>,

i_maddrO<28>,
i_mdata0<32>,
i_mrw0<1>,
i_mrqO<l1>,
i_mrdy0<1>,

maddrO<28>,
mdata0<32>,
mrw(<l1>,
mpushO<1>,
mrq0<1>,
mrdyO<1>,

free_execl<l>,
free_exec2<1>,
free_exec3<l1>,
free_execd<1>,
free_exec5<1>,
free_execbH<l1>,
free_exec7<1>,

task_bus<37>,

pref_stall<1l>,
pref_set<3>,

dist_bus<42>,

db_rq0<1>,
db_rql<l>,
db_rq2<1>,
db_rq3<1>,
db_rqd<1>,
db_rg5<1>,
db_rq6<1>,
db_rq7<1>,

db_gri1>,
db_gri<i>,
db_gr2<1>,
db_gr3<l>,
db_grd<li>,
db_gr5<1>,
db_gré<i>,



/t

db_gr7<l>,

lock_rq0<1>,
lock_rql<l>,
lock_rq2<1>,
lock_rq3<1>,
lock_rq4<l1>,
lock_rq5<1>,
lock_rg6<1>,
lock_rq7<1>,

lock_grO<1>,
lock_gri<l>,
lock_gr2<1>,
lock_gr3<i>,
lock_grd<i>,
lock_gr5<1>,
lock_gré<1>,
lock_gri<l>,

lock_relO<1>,
lock_rell<li>,
lock_rel2<1>,
lock_rel3<1>,
lock_reld<1>,
lock_rel5<1>,
lock_relb<l>,
lock_rel7<1>,

exec_done0<1>,
exec_donel<l>,
exec_done2<l1>,
exec_done3<l1>,
exec_doned<l1>,
exec_doneS<l1>,
exec_doneb<l>,
exec_done7<1>,

clear_sig0<1>,
clear_sigl<l>,
clear_sig2<1>,
clear_sig3<1>,
clear_sigd<l>,
clear_sigS<1>,
clear_sigb<1>,
clear_sig7<1>,

fail_sigO<1>,
fail_sigl<l>,
fail_sig2<1>,
fail_sig3<1>,
fail_sigd<l>,
fail_sigS<1>,
fail _sigb<l>,
fail_sig7<1i>;

signals for shared memory bus
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signal

/* shared memory bus */

b_maddr<28>,
b_mdata<32>,
b_code<S>,
b_busy<1>,

/* arbitration signals for bus */

b_rqO<1>,
b_gri<1>,

b_rql<l>,
b_gri<l>,

b_rq2<1>,
b_gr2<i>,

b_rq3<1>,
b_gr3<l>,

b_rqd<l1>,
b_grd<l>,

b_rq5<1>,
b_grS<i>,

b_rgb<1>,
b_gro<1>,

b_rq7<1>,
b_gri<l>,

b_rq8<1>,
b_gr8<1i>,

b_rq9<1>,
b_gr9<1>,

b_rqa<l>,
b_gra<l>,

b_rgb<1>,
b_grb<1>,

b_rqc<l1>,
b_gre<l>,

b_rqd<1>,
b_grd<1>,

b_rqe<1>,
b_gre<l>,

b_rqf<1>,
b_grf<i>,
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b_rqi0<1>,
b_gri0<1>;

/t
Extra signals for Slave Processors
*/
signal
i_maddr1<28>,
i_mdatal<32>,
i_mrwl<l>,
i_mrql<l>,
i_mrdyl<l>,

maddr1<28>,
mdatal<32>,
mrwl<i>,
mpushl<l>,
mrql<l>,
mrdyl<l>;

signal
i_maddr2<28>,
i_mdata2<32>,
i_mrw2<l>,
i_mrq2<1>,
i_mrdy2<l>,

maddr2<28>,
mdata2<32>,
mrw2<l>,
mpush2<1>,
mrq2<1>,
mrdy2<1>;

signal
i_maddr3<28>,
i_mdata3<C2>,
_mrw3<l>,

i_mrq3<1>,
1_mrdy3<i>,

maddr3<28>,
mdata3<32>,
mrw3<1>,
mpush3<1>,

mrg3<1>,
mrdy3<1>;

signal
i_maddr4<28>,
i_mdatad<32>,
i_mrwd<l>,
i_mrgd<1i>,

i_mrdyd<l>,

maddrd<28>,
mdatad<32>,
mrwd<]>,
mpushd<l>,
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mrgd<l>,
mrdyd<1>;

/‘
the processor declaration for the minimum FPPM with dcache
*/
processor clock = clock.sim'isp;
time delay = 1;
connections
clock = clock;

processor mainproc = mainproc.sim’isp;
time delay = 1;
initial uinst_mem = mainproc.out'simulated;
connections

clock = clock,

i_maddr = i_maddrQ,
i_mdata = i_mdata0,
i_mrq = i_mrq0,
i_mrw = i_mrw0,
i_mrdy = i_mrdy0,

maddr = maddr0,
mdata = mdata0,
mrq = mrq0,
mrdy = mrdy0,
mrw = mrw(,
mpush = mpush0,

free_execl = free_execl,
free_exec2 = free_exec2,
free_exec3 = free_exec3,
free_execd = free_exec4,
free_execS = free_execS,
free_exect = free_exech,
free_exec7 = free_exec7,

task_bus = task_bus,
pref_stall = pref_stall,
pref_set = pref_set,

dist_bus = dist_bus,
db_rq = db_rq0,
db_gr = db_gr0,

Tock_rel = lock_rel0,
lock_rq = lock_rq0,
lock_gr = lock_gr0,

fail_sig0 = fail_sig0,
fail _sigl = fail_sigl,
fail_sig2 = fail_sig2,
fail_sig3 = fail_sig3,
fail_sigd = fail_sig4,
fail_sig5 = fail_sig5,
fail_sig6 = fail_sig6,
fail_sig7 = fail_sig7,
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clear_sig0 = clear_sig0,
clear_sigl = clear_sigl,
clear_sig2 = clear_sig2,
clear_sig3 = clear_sig3,
clear_sigd = clear_sig4,
clear_sig5 = clear_sig5,
clear_sig6 = clear_sig6,
clear_sig7 = clear_sig7,

exec_done( = exec_doneQ,
exec_donel = exec_donel,
exec_done2 = exec_done2,
exec_done3 = exec_done3,
exec_doned = exec_done4,
exec_done$ = exec_doneS,
exec_done6 = exec_doneb,
exec_done7 = exec_done7,

processor i_mem0 = mem.sim’isp;
ume delay = 1;

initial m = program.out'simulated;
connections

clock = clock,

maddr = i_maddr0,
mdata = i_mdata0,
mrw = i_mrw0,
mrq = i_mrq0,
mrdy = i_mrdy0;

processor dcacheQ = dcacheu.sim'isp;
time delay = 1;
connections

clock = clock,

maddr = maddr0,
mdata = mdata0,
mrw = mrw(,
mpush = mpush0,
mrq = mrq0,
mrdy = mrdy0,

b_maddr = b_maddr,
b_mdata = b_mdata,
b_code = b_code,

b_busy = b_busy,
b_rq = b_rq0,
b_gr=b_gr0;

processor arbit = arbit.sim isp;
connections
clock = clock,

pref_stall = pref_stall,

db_rq0 = db_rq0,



db_gr0 = db_gr0,
db_rql = db_rql,
db_grl = db_grl,
db_rq2 = db_rq2,
db_gr2 = db_gr2,
db_rq3 = db_rqg3,
db_gr3 = db_gr3,
db_rq4 = db_raq4,
db_gr4 = db_gr4,
db_rq5 = db_rg5,
db_gr5 = db_gr5.
db_rq6 = db_rqgb,
db_gr6 = db_gré,
db_rq7 = db_rq7,
db_gr7 = db_gr7,

lock_rel0 = lock_rel0,
lock _rell = lock_rell,
lock_rel2 = lock_rel2,
lock_rel3 = lock_rel3,
lock_reld = lock_reld,
lock_relS = lock_relS,
lock_rel6 = lock_rel6,
lock_rel7 = lock_rel7,

lock_rq0 = lock_rq0,
lock_gr0 = lock_gr0,
lock_mql = lock_rql,
lock_grl =lock_grl,
lock_rq2 = lock_rq2,
lock_gr2 = lock_gr2,
lock_rg3 = lock_rq3,
lock_gr3 = lock_gr3,
lock_rg4 = lock_rq4,
lock_gr4 = lock_grd4,
lock_rgS = lock_rqg5,
tock_gr> = lock _gr5,
lock_rq6 = lock_rq6,
lock_gr6 = lock_gr6,
lock_rq7 = lock_rq7,
lock_gr7 = lock_gr7,

/* mbusproc.t

*/

processor declarations for memory bus

/* shared memory */

processor dmemu = dmemu.sim’isp;

ume delay = 1;

initial m = program.out’simulated;

connections

clock = clock,

b_maddr = b_maddr,
b_mdata = b_mdata,

b_code = b_code,
b_busy = b_busy,

b_rq =b_rql0,
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b_gr=">b_grl0;

/* bus arbiter for shared bus */
processor busarb = shbusarb.sim’isp;
ume delay = 1;

connections

clock = clock,

b_busy = b_busy,
b_code = b_code,

b_rq0 = b_1q0,
b_rql =b_rql,
b_rq2 = b_rq2,
b_rq3 = b_rq3.
b_rqd =b_:q4,
b_rgS =b_1q53,
b_rg6 = b_rq6,
b_rq7 =b_1q7,
b_rq8 =b_rq8,
b_rq9 = b_rq9,
b_rqa = b_rqa,
b_rgb = b_rgb,
b_rqc = b_rqc,
b_rqd = b_rqd,
b_rge = b_rqe,
b_rgf = b_rqf,
b_rql0 =b_rql0,

b_gr0 = b_gr0,
b_grl =b_grl,
b_gr2 =b_gr2,
b_gr3 =b_gr3.
b_grd = b_gr4,
l)_gr.;:b__g:,
b_gr6 =b_gré,
bgri=u_gl,
b_gr8 = b_gr8,
b_gr9 =b_gr9,
b_gra=b_gra,
b_grb = b_grb,
b_grc = b_grc,
b_grd =b_grd,
b_gre = b_gre,
b_grf = b_grf,
b_grl0="b_grl0;

processor slavel = slave.sim’isp;
ume delay = 1;
initial uinst_mem = slave.out'simulated;
connections
clock = clock,

i_maddr = i_maddrl,
i_mdata = i_mdatal,
i_mrq =i_mrql,
i_mrw =i_mrwl,
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i_mrdy = t_mrdyl,

maddr = maddrl,
mdata = mdatal,
mrq = mrql,

mrw = mrwl,
mpush = mpushl,
mrdy = mrdyl,

free_exec = free_execl,
task_bus = task_bus,

dist_bus = dist_bus,
db_rq =db_rql,
db_gr = db_grl,

lock_re’ = lock_rell,
lock_rq = lock_rql,
lock_gr = lock_grl,

pref_stall = pref_stall,
pref_set = pref_set,

fail_sig0 = fail_sig0,
fail_sigl = fail_sigl,
fail_sig2 = fail_sig2,
fail_sig3 = fail_sig3,
fail_sig4 = fail_sig4,
fail_sig$ = fail_sig$,
fail_sig6 = fail_sig6,
fail_sig7 = fail_sig7,

clear_sig0 = clear_sig0,
clear_sigl = clear_sigl,
clear_sig2 = clear_sig2,
clear_sig3 = clear_sig3,
clear_sig4 = clear_sig4,
clear_sig5 = clear_sig5,
clear_sig6 = clear_sig6,
clear_sig7 = clear_sig7,

exec_done0 = exec_done0,
exec_donel = exec_donel,
exec_done2 = exec_done?2,
exec_done3 = exec_done3,
exec_doned = exec_doned,
exec_doneS = exec_doneS5,
exec_done6 = exec_doneb,
exec_done7 = exec_done7;

processor i_mem] = mem.sim'isp;
time delay = 1;

nitial m = program.out’simulated,
connections

clock = clock,

maddr = i_maddrl,




mdata = i_mdatal,
mrw =i_mrwl,
mrqg = i_mrql,
mrdy = i_mrdyl;

processor dcachel = dcacheu.sim’isp;
time delay = 1;
connections

clock = clock,

maddr = maddrl,
mdata = mdatal,
mrw = mrwl,
mpush = mpushl,
mrq = mrql,
mrdy = mrdyl,

b_maddr = b_maddr,
b_mdata = b_mdata,
b_code = b_code,
b_busy = b_busy,

b_rq=b_rql,
b_gr=b_grl;

processor slave2 = slave.sim'isp;
time delay = 1;
initial uinst_mem = slave.out’simulated;
connections
clock = clock,

i_maddr = i_maddr2,
i_mdata = i_mdata2,
i_mrq =i_mrq2,
imrw =i_mrw2,
i_nrdy = i_mray2,

madd: = m.audrs,
mdata = mdata2,
mrq = mrq2,

mrw = mrw2,
mpush = mpush2,
mrdy = mrdy2,

free_exec = free_exec2,
task_bus = task_bus,
dist_bus = dist_bus,
db_rq =db_rq2,

db_gr =db_gr2,
lock_rel = lock_rel2,
lock_rq = lock_rq2,
lock_gr = lock_gr2,

pref_stall = pref_stall,
pref_set = pref_set,
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fail_sig0 = fail_sig0,
fail _sigl = fail_sigl,
fail_sig2 = fail_sig2,
fail_sig3 = fail_sig3,
fail_sigd = fail_sig4,
fail_sig5 = fail_sig5,
fail _sig6 = fail_sig6,
fail_sig7 = fail_sig7,

clear_sig0 = clear_sig0,
clear_sigl = clear_sigl,
clear_sig2 = clear_sig2,
clear_sig3 = clear_sig3,
clear_sig4 = clear_sig4,
clear_sig5 = clear_sig5,
clear_sig6 = clear_sig6,
clear_sig7 = clear_sig7,

excc_done( = exec_done0,
exec_donel = exec_donel,
exec_done2 = exec_done2,
exec_done3 = exec_done3,
exec_doned = exec_doned,
exec_done5 = exec_doneS,
exec_doneb6 = exec_doneb,
exec_done7 = exec_done7;

processor i_mem?2 = mem.sim'isp;
time delay = 1;

initial m = program.out’simulated;
connections

clock = clock,

maddr = i_maddr2,
mdata = 1_mdata2,
mre = i_mrw2,
mrq = i_mrq2,
mrdy = i_mrdy2;

processor dcache?2 = dcacheu.sim’isp;
time delay = 1;
connections

clock = clock,

maddr = maddr2,
mdata = mdata?2,
mrw = mrw2,
mpush = mpush2,
mrq = mrq2,
mrdy = mrdy?2,

b_maddr = b_maddr,
b_mdata = b_mdata,
b_code = b_code,
b_busy = b_busy,

b_rq=b_rq2,
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b_gr=>b_grl;

processor slave3 = slave.sim'isp;
ume delay = 1;
initial uinst_mem = slave.out 'simulated;
connections
clock = clock,

i_maddr = 1_maddr3,
i_mdata = i_mdata3,
i_mrq = i_mrq3,
i_mrw =i_mrw3,
i_mrdy = i_mrdy3,

maddr = maddr3,
mdata = mdata3,
mrq = mrq3,

mrw = mrw3,
mpush = mpush3,
mrdy = mrdy3,

free_exec = free_exec3,
task_bus = task_bus,

dist_bus = dist_bus,
db_rq = db_rq3,
db_gr = db_gr3,

lock_rel = lock_rel3,
lock_rq = lock_rq3,
lock_gr = lock_gr3,

pref_stall = pref_stall,
pref_set = pref_set,

fail_sig0 = fail_sig0,
fail_sigl = fail_sigl,
fail_sig2 = fail_sig2,
fail_sig3 = fail_sig3,
fail_sigd = fail_sig4,
fail_sig5 = fail_sig$,
fail_sig6 = fail_sig6,
fail_sig7 = fail_sig7,

clear_sig0 = clear_sig0,
clear_sigl = clear_sigl,
clear_sig2 = clear_sig2,
clear_sig3 = clear_sig3,
clear_sigd = clear_sig4,
clear_sig$ = clear_sig$,
clear_sigh = clear_sig6,
clear_sig7 = clear_sig?,

exec_doneQ = exec_done0,
exec_donel = exec_donel,
exec_done2 = exec_done2,
exec_done3 = exec_done3,
excc_doned = exec_doned,
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exec_doneS = exec_doneS,
exec_done6 = exec_done6,
exec_done?7 = exec_done7;

processor i_mem3 = mem.sim'isp;
ume delay = 1;

initial m = program.out’'simulated;
cornnections

clock = clock,

maddr = i_maddr3,
mdata = i_mdata3,
mrw = i_mrw3,
mrq = i_mrq3,
mrdy = i_mrdy3;

processor dcache3 = dcacheu.sim’isp;
time delay = 1;
connections

clock = clock,

maddr = maddr3,
mdata = mdata3,
mrw = mrw3,
mpush = mpush3,
mrg = mrq3,
mrdy = mrdy3,

b_maddr = b_maddr,
b_mdata = b_mdata,
b_code = b_code,

b_busy = b_busy,
b_rq=b_rq3,
b_gr =b_gr3;

processor slaved = slave.sim'isp;
time delay = 1;
initial uinst_mem = slave.out 'simulated;
connections
clock = clock,

i_maddr = i_maddr4,
i_mdata = i_mdata4,
i_mrq = i_mrq4,
_mrw = i_mrw4,
i_mrdy = i_mrdy4,

maddr = maddr4,
mdata = mdatad,
mrq = mrqg4,

mrw = mrw4,
mpush = mpush4,
mrdy = mrdy4,

free_exec = free_exec4,



task_bus = task_bus,

dist_bus = dist_bus,
db_rq = db_rq4,
db_gr =db_gr4,

lock_rel = lock_reld,
lock_rq = lock_rq4,
lock_gr = lock_gr4,

pref_stall = pref_stall,
pref_set = pref_set,

fail_sig0 = fail_sig0,
fail_sigl = fail_sigl,
fail_sig2 = fail_sig2,
fail_sig3 = fail_sig3,
fail_sigd = fail_sigd,
fail_sig5 = fail_sig5,
fail_sig6 = fail_sig6,
fail_sig7 = fail_sig7,

clear_sig0 = clear_sig0,
clear_sigl = clear_sigl,
clear_sig2 = clear_sig2,
clear_sig3 = clear_sig3,
clear_sigd = clear_sigd,
clear_sig5 = clear_sig5,
clear_sig6 = clear_sigS6,
clear_sig7 = clear_sig7,

exec_done0 = exec_done0,
exec_donel = exec_donel,
exec_done2 = exec_done2,
exec_done3 = exec_done3,
exec_doned = exec_doned,
exec_doneS = exec_done$,
exec_done6 = exec_doneb,
exec_done7 = exec_done7;

processor i_mem4 = mem.sim'isp;
tme delay = 1;

initial m = program.out’simulated;
connections

clock = clock.

maddr = i_maddr4,
mdata = i_mdatad,
mrw = i_mrwd4,
mrq = i_mrg4,
mrdy = i_mrdy4;

processor dcache4 = dcacheu.sim’isp;
tme delay = 1;

connections

clock = clock,
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maddr = maddr4,
mdata = mdata4,
mrw = mrw4,
mpush = mpush4,
mrq = mrq4,
mrdy = mrdy4,

b_maddr = b_maddr,
b_mdata = b_mdata,
b_code = b_code,
b_busy = b_busy,

b_rq = b_rq4,
b_gr=b_grd;
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A3.7. Control Words for Main Processor

% mainproc.m

e

include ../Prefmic/mainproc.format §
include ../Prefmic/mainproc.uinst  $

begin

= uQUIT $

d_stall = DS_QUIT $

= uEXEC )

d_branchlength = DB_LONGLAB;

d_stall = DS_EXECAVAIL;
d_dispatch = DD_EXEC §

= uNEW $

d_regset = DR_NEW;

d_stall = DS_SETAVAIL $

= uOLD Y

d_regset = DR_OLD §

= uFAIL S

d_fail = DL_FAIL $

= uCLEARFAIL §

d_fail = DL_CLEAR 3

= uCLEARCP S

d_fail = DL_CLEARCP §

= LWATTeAEC § ! wait till previous set's execs done
d_stall = DS_EXEC $

= uARITH § tr1 <- r0 scode r2, rl is local
d_stall = DS_RORZ2;

a_bopsrc = AB_R2;

a_alucode = AA_SCODE;

a_bypass = AP_YES;

m_bypass = MP_YES;

w_writereg = WW_LOCAL 3

= uARITHG $ 11l <- 10 scode 2, 11 is global
d_stall = DS_ROR2;

a_bopsrc = AB_R2;

a_alucode = AA_SCODE;

w_writereg = WW_GLOBAL §

= uARITHOFF s ! r1 <- r0 scode off, r1 is local
d_stall = DS_RO;

a_alucode = AA_SCODE;

a_bypass = AP_YES:

m_bypass = MP_YES;

WW_LOCAL §

w_writereg
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= uARITHOFFG $ 'rl <- 10 scode off, rl is global
d_stall = DS_RO;

a_alucode = AA_SCODE;

w_writereg WW_GLOBAL §

= uMOVETAG S 111 <- tag™(r0v + off), rl is local

d_stall = DS_RO;

a_tagsrc = AT _ITAG;

a_bypass = AP_YES;

m_bypass = MP_YES;

w_writereg = WW_LOCAL §

= uMOVETAGG § 111 <- tag™(sOv + off), r1 is global
d_stall = DS_RO;

a_tagstc = AT_ITAG;

w_writereg = WW_GLOBAL $

= uPUSH £ ' m(rl) <- 10 + off, r1 <- r1+1.rl local

d_stall DS_ROR1;
a_marsrc = AM_R1,;

a_result = AR_INC;

a_bypass = AP_YES;
m_bypass = MP_YES;

m_ctrl = MC_PUSH;
w_writereg =  WW_LOCAL §
= uPUSHG $ ! m(rl) <- 10 + off, 11 <-r1+1.r1 global
d_stall = DS_RORI;
a_marsrc = AM_R1;

a_result = AR_INC;

m_ctrl = MC_PUSH;
w_writereg = WW_GLOBAL §

= uPUSHTAG S ! m(rl) <- tag"(rOv + off), r1 <- r1+1,r1 local
d_stall = DS_RORL;

a_tagsre = AT_ITAG;

a_marsrc = AM_RI;

a_result = AR_INGC;

a_bypass =  AP_YES;

m_bypass = MP_YES;

m_ctrl = MC_PUSH;

w_writereg = WW_LOCAL §

= uPUSHTAGG § ! m(rl) <- tag™(rOv + off), 11 <-rl1+1.r1 global
d_stall = DS_ROR1;

a_tagsrc = AT_ITAG;

a_marsrc = AM_R1;

a_result = AR_INC;

m_ctrl = MC_PUSH;

w_writereg = WW_GLOBAL $§

= uLOAD s !t 11 <- m(r0 + off), rl local
d_sall =  DS_RO;

m_ctrl = MC_READ;

m_bypass = MP_YES;

w_writereg = WW_LOCAL §

= uLOADG § 111 <- m(r0 + off), r1 global
d_stall = DS_RO;




m_ctr]
w_writereg =

= uSTORE
d_stall
a_mdrsrc =
m_ctrl

= uBR §
d_branchlength

d_fpccd =

= uSBRS$
d_branchlength

d_fpccd =
d_squash =

= uBRIND
d_fpccd =
d_stall

= USBRIND
d_fpccd =
d_stall

d_squash =

= uBRAL
d_branchlength
d_fpced =
a_incsre
a_result
a_bypass
m_bypass

w_writereg

"

= uBRALG
d_branchlength
d_fpccd =
a_incsrc
a_result
w_writereg

= uSBRAL
d_branchlength
d_fpeccd =
d_squash =
a_incsrc =
a_result
a_bypass
m_bypass

w_writereg =

= uSBRALG

d_branchlength
d_fpecd =
d_squash
a_incsre
a_result
w_writereg
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= MC_READ;
WW_GLOBAL §

S t m(r0 + off) <- rl
= DS_ROR1;
AD_RI1;

= MC_WRITE S

! fpc <- pc + longlab
= DB_LONGLARB;
DF_BRANCH §

! fpc <- pc + longlab, squash
= DB_LONGLAB;
DF_BRANCH;

DQ_YES S

) ! fpc <- regl
DF_REG1;
= DS_R1 S

S ! fpc <- regl,squash
DF_REG];

DB_LAB;

WW_LOCAL §

$ ! fpc <- pc + lab, 11 <- pe+1, 11 global
= DB_LAB;
DF_BRANCH;
AI_PC;
AR_INC;

WW_GLOBAL §

s ! fpc <- pc + lab, 11 <-pc+1, 1l localsquash
= DB_LAB;

DF_BRANCH;

DQ_YES;

Al_PC;

AR_INC;

AP_YES;

MP_YES;

WW_LOCAL §

S ! fpc <- pc + lab, 11 <-pc + 111 global,squash
= DB_LAB;

DF_BRANCH;

DQ_YES;

Al_PC;

AR_INC;

WW_GLOBAL $




= uBRCOND § 1if cond(r1) fpc <- pc + lab

d_fpccd = DF_COND;

d_stall = DS_RI;

d_cond = DC_COND $

= uBRNCOND S 'if ncond(r1) fpc <- pc + lab
d_fpeccd = DF_COND;

d_stall = DS_R1;

d_cond = DC_NCOND 3

= uBRCMP § lif r1 = 10 fpc <- pc + lab
d_branchlength = DB_IMM;

d_fpecd = DF_COND;

d_stall = DS_ROR1;

d_cond = DC_CMP §

= uBRNCMP § tif r1 1= 10 fpc <- pc + lab
d_branchlength = DB_IMM;

d_fpced = DF_COND;

d_stall = DS_RORI;

d_cond = DC_NCMP $

= uSBRCOND ) 1if cond(rl) fpc <- pc + lab,squash
d_fpccd = DF_COND;

d_squash = DQ_COND;

d_stall = DS_R1;

d_cond = DC_COND $

= uSBRNCOND § 1if ncond(rl) fpc <- pc + lab,squash
d_fpecd = DF_COND;

d_squash = DQ_COND;

d_stall = DS_R1;

d_cond DC_NCOND $

= uSBRCMP $§ 1if r1 = 10 fpc <- pc + lab,squash
d_branchlength = DB_IMM;

d_fpced = DF_COND;

d_squash = DQ_COND;

d_stall = DS_ROR1;

d_cond = DC_CMP 3§

= uSBRNCMP s 1if r1 1= r0 fpc <- pc + lab,squash
d_branchlength = DB_IMM;

d_fpeced = DF_COND;

d_squash = DQ_COND;

d_stall = DS_RORI;

d_cond DC_NCMP $

= uBRTAGEQ S 1if tageq(rl,tag) fpc <- pc + lab
d_fpecd = DF_COND;

d_stall = DS_R1;

d_cond = DC_TAGEQ S

= uBRTAGNEQ 3§ 1if tagneg(rl,tag) fpc <- pc + lab
d_fpecd = DF_COND;

d_stall = DS_R1;

d_cond = DC_TAGNEQ §

= uSBRTAGEQ § 1if 1ageq(rl,tag) fpc<- pc + lab,squash
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d_fpced = DF_COND;

d_squash = DQ_COND

d_stall = DS_R1;

d_cond = DC_TAGEQ s

= uSBRTAGNEQ $ 1if tagneq(rl.tag) fpc<-pc + lab,squash

d_fpecct = DF_COND;

d_squash = DQ_COND;

d_stall = DS_R1;

d_cond = DC_TAGNEQ §

end





