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Abstract

Most approaches to reducing (or eliminating) the use of randomness in probabilistic algo-
rithms can be viewed as attempts to replace the probability space from which the algorithm
samples by a much smaller one. The use of limited independence among the random choices of
the algorithm has long been used as a technique for constructing small spaces that \approxi-
mate" the exponential-sized spaces resulting from complete independence. Biased sample spaces
have recently been proposed as an alternative approximation scheme.

We present results that exhibit severe limitations in the extent to which biased spaces can
approximate unbiased ones. Speci�cally, we show that the small bias of a biased space can be
destroyed by extremely simple transformations, thereby rendering such spaces unsuitable for
any randomized algorithm that employs such transformations. Our results partially explain
the paucity of applications for small biased spaces as well as of tools (such as probability tail
bounds) for analyzing these distributions. They also suggest that this state of a�airs is likely
to persist because of the inherent fragility of the notion of bias of a sample space.
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1 Introduction

The notion of biased sample spaces is best motivated by the following conceptual view of a ran-
domized algorithm. Suppose that a randomized algorithm A tosses an unbiased coin n times
independently on inputs of length l and is guaranteed to yield the correct answer with probability
at least 1=2. We can think of A as sampling from the uniform distribution on S = f0; 1gn whenever
presented an input of length l and acting deterministically thereafter. The performance guarantee
says that for each input of length l at least half the strings of S are \good" in that they lead A to
the correct solution.

We might attempt to reduce the number of random bits required by A by replacing the sample
space S with a suitably chosen small subset S0 � S and showing that the performance guarantee
is not compromised. (Of course, this can only be done for speci�c algorithms since, in general,
the omitted strings might all be good for some input x.) This approach has been used successfully
for several algorithms ([ABI], [BR], [CG], [KR], [KW], [Lu1], [Lu2], [MNN]) by choosing a k-wise
independent subset S0 of S. Such a subspace need be no larger than O(nk) and hence O(k logn)
bits su�ce to sample uniformly at random from S0.

Naor & Naor [NN] proposed an alternative construction of small sample spaces to approximate Un,
the uniform distribution on S = f0; 1gn. Their de�nition is based on the notion of the bias of a
distribution (see [Va].) Given a set X of n random variables, each taking a value in f0; 1g, the bias
of a subset X 0 of X is the di�erence in the probabilities of even and odd parity for X 0. It is clear
that if the n random variables are distributed according to Un, the bias of each non-empty subset is
zero; moreover, Un is the only distribution with this property. [NN] showed how to construct sample
spaces where the bias of every subset is at most � and called such spaces �-biased . Several simpler
constructions were subsequently presented in [AGHP]. The size of these spaces is polynomial in n
and 1=�, implying great savings in randomness for any algorithm that can be shown to work using
�-biased spaces.

The notion of �-approximations to arbitrary (i.e. non-uniform and non-binary) discrete distributions
was developed by Azar, Motwani & Naor [AMN] as a generalization of �-biased spaces, which they
viewed as an �-approximation to Un. These authors showed that every joint distribution of n
variables admits an �-approximation of size polynomial in n and 1=� and gave a construction for
an �-approximation to the uniform distribution on f0; : : : ; d� 1gn.

It would appear that �-biased spaces with their \almost random" behavior on all subsets of the
variables hold great promise for use in randomized algorithms. Indeed, an �-biased space with � =

1
nO(1) induces an \almost" logn-wise independent distribution on a sample space of only polynomial
size. Surprisingly, however, not many instances have been found of algorithms that work as well
with these spaces as with (exponential size) unbiased spaces. This may be partly explained by
the dearth of tools for analysing the probabilistic behavior of �-biased distributions. On the other
hand, the success of k-wise independence as a viable technique for reducing randomness suggests
that total independence on small subsets of variables might be more useful than near-independence
on large subsets.
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1.1 Main Result and Implications

Our main result lends credence to this thesis by exhibiting a severe limitation of �-biased spaces
with respect to some natural transformations. Suppose we have random variables X1; : : : ; Xn with
joint distribution DX . Let Y1; : : : ; Yn with Yi = fi(Xi) and let the induced joint distribution (on
Y1; : : : ; Yn) be denoted DY . It is clear that, regardless of the choice of fi's, any (total) independence
properties enjoyed by DX is inherited by DY ; for example, DY is k-wise independent whenever DX

is. We show that the corresponding statement is false for �-biased distributions even for very simple
transformations. Speci�cally, we consider the following transformations:

� f : f0; 1; 2gn! f0; 1gn given by

f(x1; : : : ; xn) = (y1; : : : ; yn) with yi = xi mod 2

� g : f0; 1g2n ! f0; 1gn given by

g(x1; : : : ; x2n) = (y1; : : : ; yn) with yi = x2i�1x2i

We show that for both transformations, we can �nd an �-biased distribution DX such that the bias
of DY is 
(cn�) for some constant c > 1.

The bias of a distribution is thus shown to be highly fragile, incapable of withstanding even the
simplest of transformations. This suggests that �-biased spaces can only be used `as is': if the
algorithm that samples from such a space transforms the sampled values in any way, or if { as is
often the case { the analysis of the algorithm rests on analysing the behavior of auxiliary random
variables de�ned by such transformations, then the small bias of the distribution is of little help.
As a useful contrast, observe (as noted above) that limited independence is a robust property,
persisting through arbitrary point-wise transformations.

We venture to suggest that �-biased spaces have found few applications precisely because of this
limitation. An additional argument in favor of this view comes from observing that tools such as
moment inequalities or probability tail bounds have not been developed for �-biased distributions.
Typically, such bounds are derived by studying some simple transformation of the original space
and the discussion above precludes the possibility of using such an approach in establishing these
bounds. It would appear then, that even though the notion of bias has an intuitive appeal in that
it guarantees certain global randomness properties of the distribution, it is not the correct measure
of reduced randomness from an algorithmic point of view. On the other hand, the �-biased spaces
of [NN], [AGHP] and [AMN] might have randomness properties other than small bias that make
them appropriate for use by randomized algorithms and it would be extremely interesting to study
these spaces more closely.

1.2 Outline of the Paper

Section 2 of this paper presents the basic de�nitions and develops the background necessary for
understanding our proofs. Section 3 outlines a general framework for analysing transformations
of sample spaces and studying their e�ect on bias. Section 4 contains proofs of our lower bounds
for the two simple functions mentioned in the introduction. Some concluding remarks are made in
Section 5.
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2 De�nitions and Background

2.1 �-Biased Distributions

Let X1; : : : ; Xn be f0; 1g-valued random variables with joint distribution D.

De�nition 2.1 The bias (with respect to D) of a subset S � f1; : : : ; ng of indices is de�ned to be

biasD(S) = jPrD[
X

i2S

Xi (mod 2) = 0]� PrD [
X

i2S

Xi (mod 2) = 1]j

De�nition 2.2 A distribution D is called �-biased if biasD(S) � � for every non-empty subset S.

Observe that the bias of the empty set is 1, irrespective of the distribution.

It is not di�cult to show that the bias of D is zero if and only if D = Un, the uniform distribution
on f0; 1gn. In view of this, one may think of an �-biased distribution as an approximation to Un,
with � measuring the goodness of the approximation.

2.2 �-Approximations of Arbitrary Distributions

An equivalent de�nition of �-biased distributions can be made in terms of linear tests: each subset
of random variables corresponds to a linear function of the variables with the coe�cients being
speci�ed by the bits of the characteristic vector of the subset. The bias of a subset represents the
e�cacy of the corresponding function in distinguishing the given distribution from Un. Thus, an
�-biased distribution is precisely one which \passes" all linear tests (to within �.)

In a more general context, we may consider linear tests that attempt to distinguish between distri-
butions D and D0 and call D0 an �-approximation to D if no such test achieves a success probability
of more than �. Azar, Motwani & Naor [AMN] elegantly formalized this notion using the theory
of Fourier transformations of discrete functions. In the following subsection, some basic concepts
and de�nitions of this theory are presented so as to motivate the de�nition of an �-approximation
to an arbitrary discrete distribution. For a more detailed exposition of the theory, see, for example
[DM] or [K�o].

2.3 Fourier transformations

Let Zd denote the set f0; : : : ; d� 1g and C the complex numbers. The set V = ff : Zn
d ! Cg of

complex-valued functions on the (additive) group Zn
d forms a dn-dimensional vector space.

De�nition 2.3 For f; g 2 V, the inner product of f and g, denoted < f; g >, is de�ned as

< f; g > =
1

dn

X

x2Zn

d

f(x)g(x)�

where a� is the complex conjugate of a.

In what follows, we shall use A = (a1; : : : ; an) and x = (x1; : : : ; xn) to denote arbitrary elements of

Zn
d . Given A and x, we let A:x denote the value of

Pn
i=1 aixi (mod d). Finally, we let !d = e

2��
d .
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De�nition 2.4 The A-character of Zn
d is the function �

A 2 V given by

�A(x) = !A:x
d

Fact 1 The set of characters of Zn
d , f�A : A 2 Zn

d g forms an orthonormal basis for V.

Thus, < �
A; �A >= 1 for each A, < �

A; �B >= 0 for A 6= B and every f 2 V can be expressed
(uniquely) as a linear combination of the characters:

f =
X

A2Zn

d

f̂A�A

The coe�cients ff̂Ag are called the Fourier coe�cients of the function f and orthonormality of
characters implies that

f̂A = < f; �A >

Let D be a distribution on Zn
d . Viewing D as an element of V , we can write

D =
X

A2Zn

d

D̂A
�
A

where the Fourier coe�cient D̂A satis�es

dnD̂A =
X

x2Zn

d

D(x)�A(x)
�

=
d�1X

j=0

PrD [A:x = j] � !�jd

Observe that if d = 2; biasD(S) = 2njD̂S j and that, more generally, dnjD̂Aj measures how well
the linear test corresponding to A distinguishes D from the uniform distribution on Zn

d . This
observation motivates the following de�nition:

De�nition 2.5 Let D and D0 be distributions on Zn
d . The Fourier distance between D and D0 is

de�ned as:
dn max

A2Zn

d

jD̂0
A � D̂Aj

We say that D0 is an �-approximation of D if the Fourier distance between D and D0 is at most �.

It is clear that this de�nition extends that of �-biased distributions in that the latter are �-
approximations to Un.

It was shown in [AMN] that, unless d is large compared to n, every distribution on Zn
d admits an

�-approximation of size polynomial in n and 1
�
. However, explicit constructions of such approxima-

tions are known only for uniform distributions.
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3 Transformations and Bias

Several interesting distributions can be obtained by natural transformations of uniform ones: for
example, a coin which has probability 1=4 of coming up heads can be simulated by tossing a fair
coin twice and declaring the outcome to be heads if and only if both tosses resulted in a head.
More generally, we can consider transforming an n-bit string to an m-bit string according to some
transformation f : f0; 1gn ! f0; 1gm. Given such a transformation, any distribution D on n-bit
strings induces a distribution f(D) on m-bit strings.

In the context of �-approximations, it is natural to ask whether success against linear tests is pre-
served by such transformations. Indeed, an a�rmative answer to this question would immediately
yield explicit constructions of �-approximations to non-uniform distributions: we could simply ap-
ply the appropriate transformation to an �-biased distribution. We shall now develop a framework
for analysing the e�ect of transformations on the bias of distributions.

Let D be a distribution on Zn
d and D0 an �-approximation to D. (Observe that there are many

�-approximations to D; we will later choose one that yields the strongest lower bound in our proof.)
Let f : Zn

d ! Zm
c be a function and let E = f(D); E 0 = f(D0) be the induced distributions on Zm

c

given by:
E(y) =

X

x2f�1(y)

D(x)

E 0(y) =
X

x2f�1(y)

D0(x)

We wish to study how well E is approximated by E 0. To this end, consider a �xed B 2 Zm
c and

de�ne
�B = cm(ÊB � Ê 0B)

Clearly, �0 = 0 and, in general, j�Bj is a measure of the e�cacy of the linear test corresponding
to B in distinguishing between the distributions E and E 0. By de�nition,

�B =
X

y2Zm
c

(E � E 0)(y)�B(y)
�

De�ning b = �
B � f we can rewrite this as

�B =
X

x2Zn

d

(D � D0)(x)b(x)�

The following lemma allows us to express �B in terms of the Fourier di�erences D̂A � D̂0
A:

Lemma 2 Suppose a; b 2 V. Then

X

x2Zn

d

a(x)b(x)� = dn
X

A2Zn

d

âA b̂
�
A
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Proof: Write a =
P

A12Z
n

d

âA1
�
A1 ; b =

P
A22Z

n

d

b̂A2
�
A2 and use orthonormality of characters. 2

Applying the lemma to the expression for �B we get

�B = dn
X

A2Zn

d

(D̂A � D̂0
A)b̂

�
A

In general, each term in this sum is a product of complex numbers but by an appropriate choice of
the �-approximation D0, we can ensure that for some constant �,

j�Bj � ��
X

A2Zn

d
;A 6=0

ĵbAj

The worst-case bias of the induced distribution against the linear test B can thus be determined
by studying the Fourier coe�cients of the composition b = �

B � f de�ned only in terms of the
test vector B and the transformation f . In the next section, we shall do this for two simple
transformations and demonstrate exponential lower bounds for �B.

4 Simple Transformations with Exponential Bias

4.1 The Pairing Transformation

The pairing transformation g : Z2n
2 ! Zn

2 is de�ned by

g(x1; : : : ; x2n) = (y1; : : : ; yn) where yi = x2i�1x2i:

Thus, g(U2n) is the distribution on n-bit strings corresponding to n independent tosses of a f0; 1g-
coin which has probability 1=4 of coming up 1.

Following the notation of the previous section, let B = (b1; : : : ; bn) be a non-zero element of Zn
2

and de�ne b : Z2n
2 ! f+1;�1g by b = �

B �g. We evaulate
P

A2Z2n
2 ;A 6=0 ĵbAj by explicitly evaluating

each Fourier coe�cient b̂A.

Let A = (a1; : : : ; an) 6= 0 be a �xed vector in Z2n
2 . By de�nition, b̂A = 1

22n
P

x2Z2n
2
b(x)�A(x)�

=
1

22n
[
X

x2b�1(1)

�
A(x)

� �
X

x2b�1(�1)

�
A(x)

�]

We distinguish between the following cases:

Case 1: There is some index i 2 f1; : : : ; ng such that bi = 0 and either a2i�1 = 1 or a2i = 1.

Without loss of generality, assume that a2i = 1. It is clear that b(x) is independent of the 2i-th
bit of x whereas �A(x) is not. But then each partial sum in the expression above must evaluate to
zero since whenever x = (x1; : : : ; x2i; : : : ; x2n) is in b�1(k) so is x0 = (x1; : : : ; 1� x2i; : : : ; x2n) and
�
A(x) + �

A(x
0) = 0.

Case 2: bi = 0) a2i�1 = a2i = 0.
Without loss of generality, we may assume that b1 = : : : = bl = 1; bl+1 = : : : = bn = 0. The
evaluation of b̂A is facilitated by some auxiliary de�nitions. Let
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� Sk(p; q; v1; v2) = fx 2 Z2k
2 : x2k�1 = v1; x2k = v2;

P2k
i=1 aixi = q;

Pk
i=1 bix2i�1x2i = pg

� Sk(p; q) = [v1;v2S
k(p; q; v1; v2)

� Nk(p; q; v1; v2) = jSk(p; q; v1; v2)j

� Nk(p; q) = jSk(p; q)j

(In the de�nitions above and in the recurrences below, all the arithmetic is modulo 2.)

The following relationships are readily veri�ed:

� Nk(i; j; 0; 0) = Nk�1(i; j)

� Nk(i; j; 0; 1) = Nk�1(i; j � a2k)

� Nk(i; j; 1; 0) = Nk�1(i; j � a2k�1)

� Nk(i; j; 1; 1) = Nk�1(i� bk; j � a2k�1 � a2k)

Thus we may write

Nk(i; j) = Nk�1(i; j) +Nk�1(i; j � a2k) +Nk�1(i; j � a2k�1) +Nk�1(i� bk; j � a2k�1 � a2k)

Finally, we observe that

b̂A =
1

22n
(Nn(0; 0)�Nn(0; 1)�Nn(1; 0)+Nn(1; 1))

Using our recurrence repeatedly, we get b̂A = 2�l or b̂A = �2�l. (Which of these holds is determined
by whether the number of pairs a2i�1a2i = 11 is even or odd.)

This yields X

A2Z2n
2 ;A6=0

ĵbAj =
X

A2Z2l
2 ;A 6=0

2�l = (2l � 2�l)

We have thus proved the following:

Theorem 3 Let D be a distribution on Z2n
2 and let g denote the pairing transformation. Then

there exists an �-approximation D0 of D such that the Fourier distance between g(D) and g(D0) is

(�2n).

4.2 The Modular Transformation

The modular transformation g : Zn
3 ! Zn

2 is de�ned by

f(x1; : : : ; xn) = (y1; : : : ; yn) where yi = xi mod 2:

Thus, if U denotes the uniform distribution on Zn
3 ; f(U) is the distribution on n-bit strings corre-

sponding to n independent tosses of a f0; 1g-coin which has probability 1=3 of coming up 1.
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As before, let B 2 Zn
2 ; B 6= 0 and de�ne b : Zn

3 ! f+1;�1g by b(x) = �
B(f(x)). We wish to

evaluate X

A2Zn

3 ;A 6=0

ĵbAj

The Fourier coe�cient b̂A = 1
3n
P

x2Zn

3
b(x)�A(x)

�

=
1

3n
[
X

x2b�1(1)

�
A(x)

� �
X

x2b�1(�1)

�
A(x)

�]

Again, we consider two cases:

Case 1: For some index i; bi = 0; ai 6= 0.

For such A, note that if x = (x1; : : : ; xi; : : : ; xn) is in b�1(k), then so are x0 = (x1; : : : ; xi+1; : : : ; xn)
and x00 = (x1; : : : ; xi + 2; : : : ; xn) (the additions being modulo 3.) Moreover, �A(x) + �

A(x
0) +

�A(x00) = 0 from which it follows that each partial sum in the expression for b̂A is zero.

Case 2: For each index i; bi = 0) ai = 0.
By a counting argument similar to that used in the previous subsection, we can show the following:

Lemma 4 Suppose that b1 = : : : = bl = 1; bl+1 = : : := bn = al+1 = : : : = an = 0. Let r denote the
number of indices j such that aj 6= 0. Then b̂A = 2r

3l
.

Using the lemma it is easy to see that whenever B has l non-zero indices,

j�Bj � �
�

3l
(5l � 1)

yielding the following:

Theorem 5 Let D be a distribution on Zn
3 and let f denote the modular transformation. Then

there exists an �-approximation D0 of D such that the Fourier distance between f(D) and f(D0) is

(�(5=3)n).

5 Summary and Conclusions

We have shown that the bias of a distribution { or, more generally, its security against linear
tests { is not a robust attribute: very simple transformations can bring about an exponential
deterioration in the bias. It seems unlikely, therefore, that �-biased distributions will �nd general
application in reducing the use of randomness in probabilistic algorithms since most algorithms (or
their performance analyses) employ transformations of the sample space.

Our technique also makes explicit the abstract properties required of bias-preserving transforma-
tions, viz. that the sum of the absolute values of the Fourier coe�cients of certain functions
determined by the transformation be small. Most natural transformations will fail to satisfy this
property. The stringency of this requirement stems directly from the fact that an �-biased space
constrains only the magnitude of the bias against linear tests and not the direction. An adversary
can exploit this freedom to ensure that the transformed distribution has a large bias.
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It is interesting to note that the �-biased distributions constructed by [NN] have a positive bias
against each linear test. One may wonder if the transformations considered here have more success
when applied to these distributions. Unfortunately, it turns out that the bias of the transformed
space can still be exponentially large in the worst case.

The techniques developed here have been used in [Sa] to investigate how moments of simple func-
tions of n binary random variables are a�ected by introducing a small bias in the distribution.
The �nding there is as pessimistic : the bias of the distribution interacts strongly with the Fourier
coe�cients of the functions and could, in the worst case, cause the moments to deviate by an
exponentially large amount from the unbiased moments.
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