Vector Processor Caches*

Jeffrey D. Gee
Alan Jay Smith

Computer Science Division
University of California
Berkeley, CA 94720

ABSTRACT

Vector processors have typically used vector registers, interleaved memory,
and pipelined access to data to provide sufficient memory system performance.
Caches have been used mainly for instructions, while data references are usually
uncached, presumably partially because of the belief that there is insufficient
data locality in vector workloads. In this study we use memory address traces
from Cray X-MP and Ardent Titan machines to examine both reference locality
and cache performance in a vector processing environment. Many of the Titan
traces in particular are from real vectorized applications which reference large
amounts of data. We have found that vector references contain somewhat less
temporal locality, but large amounts of spatial locality compared to instruction
and scalar references. Cache miss ratios are found to be comparable to those
measured and published previously for various non-vectorized workloads. We
provide analyses of trace behavior with regard to parameters of interest to cache
designers. Calculations based on our measured miss ratios indicate that caches
will improve average access times, which in turn can be expected to translate
into significant improvements in machine performance.

October 21, 1992

* The material presented here is based on research supported in part by the National Science Foundation under grants
MIP-8713274 and MIP-9116578, by NASA under consortium agreement NCA2-128, by the State of California under the
MICRO program, and by Philips Laboratories/Signetics, the International Business Machines Corporation, Digital Equip-
ment Corporation, the Intel Corporation, Mitsubishi Electric Company and Sun Microsystems,

1. Introduction

Caches are small, high speed memories which improve performance by reducing memory
access time from tens of processor cycles to at most a few processor cycles. Caches are effective
because of the principle of locality, which states that over small periods of time, programs tend
to cluster their references to a small subset of the address space. Temporal locality implies that
data currently in use will likely be used again in the near future (i.e. program loops and local
variables). Spatial locality implies that data near recently referenced data is also likely to be
used (i.e. instructions, array data and stack data).

Most commercial vector processors do not fully utilize caches in their memory hierarchies.
Vector processors from Cray, Hitachi, Fujitsu, and NEC use caches only as high speed instruc-
tion buffers [Eoya88, Lazo88, Lube85]. The IBM 3090 VF [Tuck86] and Alliant FX-8 [Abu86]
are among the few machines which cache vector references. The IBM 3090, however, is a com-
mercial mainframe with cache memory. The add-on Vector Facility simply shares the common
memory interface with the general purpose processor. The Alliant FX-8 is a vector multiproces-
sor which requires caches to support the memory bandwidth requirements of its eight processors.

One reason for the lack of data caches in most vector processors is the (incorrect) assump-
tion that there islittle locality in vector workloads. We will show that sufficient locality existsin
these workloads to well justify the use of caches. Furthermore, current technology allows the
implementation of much larger caches compared to the cache sizes available when current super-
computers were developed. Caches of a megabyte or more may reasonably contain the working
sets of real vector applications.

Caches have also been avoided because it has been possible to obtain good performance
through careful programming. By overlapping data access with useful computation and using
long vectors to minimize the effect of large memory latencies, programs can be coded to run
well on supercomputers. Nevertheless, there is the cost in programmer time to tune programs on
vector machines, which follows what we believe is the obsolete paradigm of expending human
time rather than improving the machine hardware or software. We aso point out that coding
around memory latencies is becoming increasingly difficult as memory latencies continue to
increase [Neve89]. By improving locality in vector applications [McKe69, Triv77] and using
vector caches to speed access to data, it may be possible to obtain higher performance levels
with less programmer effort.

This research makes extensive use of trace-driven simulation to explore the feasibility of
using caches in vector processors. We drive cache models with a large number of vector traces,
including many from real production applications running on Ardent Titan machines. Our

-2-

results indicate that caches can significantly improve the performance of a vector processor.
Vector references contain large amounts of spatial locality and significant temporal locality.
Miss ratios are in the same range as miss ratios for scalar machines, and are especially low for
the large cache sizes possible with current technology. Vector caches reduce average access
times by large amounts, which should transate into improved execution rates.

The remainder of this paper is organized as follows. Section 2 provides some background
information and summarizes prior research on vector processor caches. Section 3 describes our
methodology and examines the address traces used in this study. The bulk of our work is con-
tained in Sections 4 and 5, in which we evaluate the locality present in the traces and analyze
cache miss ratios across a wide range of cache parameters. Section 6 uses these miss ratios to
estimate the performance effect of a vector cache, and compares these estimates to detailed tim-
ing ssimulations carried out in a separate effort [Gee92]. Section 7 presents our conclusions.

2. Background

2.1. Cachesand Vector Processors

Very few commercial vector machines cache vector references. One such machine is the
IBM 3090 VF [Tuck86], which caches vector references in a 64 Kbyte cache with a 128-byte
block size and 4-way associativity. The cache is a write-back cache with LRU replacement and
a data bandwidth of one 64-bit word per processor cycle. The single-ported cache is shared
between the 3090 general purpose unit and the Vector Facility. The Alliant FX/8 multiprocessor
[Abu86] aso caches vector references in a shared, 128 Kbyte cache. The FX/8 consists of eight
processors, each capable of 12 Mflops peak execution rate, connected to the shared cache via a
crossbar switch. The cache is direct-mapped, with four-way interleaving and a peak bandwidth
of 47 million words per second.

The fastest supercomputers only cache instructions, or at most scalar data references. Cray
machines contain four to eight instruction buffers to store program code fragments currently in
use. Cray 1 processors contain four 128-byte buffers; Cray X-MP and Y -MP processors contain
four 256-byte buffers;, Cray 2 processors contain eight 128-byte buffers. The Cray-2 also has a
128 Kbyte programmable local memory which can hold scalar as well as vector data currently in
use. Thislocal memory is not a cache, and its performance hinges on the ability of the compiler
or programmer to keep frequently used data resident. The Hitachi S-810/20, Fujitsu VP-200,
and NEC SX-2 contain 256 Kbyte, 64 Kbyte, and 64 Kbyte caches for instruction and scalar
references respectively [Lazo88]. Successors to those Japanese machines continue to avoid using
caches for vector references [Neve39].

-3-

Personal supercomputer and minisupercomputers such as the Ardent Titan [Died88], Star-
dent ST3000, and Convex C-240 [Chas88] use caches to improve integer or scalar operations,
but have no cache for vector operations. The Ardent Titan consists of a commercial micropro-
cessor (the MIPS R2000) performing integer operations, with a custom floating-point vector unit
capable of delivering 16 Mflops peak performance. A Titan processor has 16 Kbytes of instruc-
tion and 16 Kbytes of data cache for MIPS scalar references. The Stardent ST3000, the succes-
sor to the Ardent Titan, runs at twice the clock speed of the Titan and contains 32 Kbyte instruc-
tion and scalar data caches. The Convex C-240 multiprocessor supports up to four 50-Mflop
processors which execute a Cray-like instruction set. Each processor has 8 Kbytes of instruction
cache and 4 Kbytes of data cache for scalar data references.

2.2. PreviousWork

Although caches for vector data are currently not used in many supercomputers, continuing
improvements in processor speed relative to memory speed have led to renewed interest. Several
studies have recently looked at vector cache performance by measuring cache miss ratios using
traces from vectorized applications. A few studies have also looked at the more important issue
of processor performance with a vector cache. This section summarizes these earlier efforts, al
of which tend to indicate that vector caches perform reasonably well. Results from our research
supplement and extend the previous work.

Clark and Wilson [Clar86] measured cache miss ratios for an IBM 3090 VF running both
scalar and vectorized versions of a benchmark set. The 3090 has a 64 Kbyte cache, with a 128
byte block size and a set size of four. Clark and Wilson found that vectorized versions of a pro-
gram have higher cache miss rates, because vectorized programs execute and reference fewer
instructions. The absolute number of cache misseswas fairly constant.

So and Zecca [S088a,S088b] and Callahan and Porterfield [Call90] measured miss ratios
for scientific programs running on IBM vector machines. Both studies started from a baseline
cache organization and selectively varied parameters such as cache size, block size, and associa-
tivity. So and Zecca simulated cache sizes up to 2 Mbytes, while Callahan and Porterfield simu-
lated cache sizes up to 256 Kbytes. Miss ratios were found to be approximately 5% or less for
caches larger than 64 Kbytes using large block sizes (i.e. 64-128 bytes). Callahan and
Porterfield estimated processor performance with a 32 Kbyte data cache with a four-byte block
size, and found that approximately one-third of total execution time is spent waiting for cache
misses. Those authors suggest that compilation techniques can be used to reduce this waiting
time, although it is possible that larger caches with larger blocks would be as effective, and
potentially more useful given the large size of typical vector applications.

-4-

Abu-Sufah and Maony [Abu86] timed kernels of varying vector length on the Alliant FX/8
to evaluate the performance effect of its 64 Kbyte data cache. Caching vectors was found to
improve performance significantly, as programs executing on a uniprocessor system ran 1.4 to
2.3 times faster when vector data fits into the cache. In an eight-processor system, observed
speedups from caching vectors are even larger, because the cache aleviates to a large extent the
bottleneck at shared main memory.

Our research extends earlier work by first providing a detailed evaluation of the spatial and
temporal locality within the reference stream of a vector processor. This analysis provides use-
ful insight as to the potential benefit of vector caches. We then measure cache miss ratios over a
much wider range of cache parameters, as compared to earlier efforts. These miss ratios are in
turn used to estimate the performance effect of a vector cache. Our estimates show that very
large caches can improve execution speed by a factor of two when memory is slow (e.g. 50 pro-
cessor cycles). Studies which have previously looked at machine performance [Abu86, Call90]
examined cache sizes (32-64 Kbytes) which are considerably smaller than the cache sizes that
can be obtained with current technology. Our performance estimates are also validated against
results from an accurate timing simulator of avector cache machine [Gee92].

3. Methodology and Trace Characteristics

This research makes extensive use of trace-driven simulation. Trace-driven simulation
involves the recording, via either hardware or software means, of the sequence of memory
addresses referenced by a program. These addresses are later used as input to a cache simulator.

We have collected two sets of vectorized traces, one from programs running on a Cray X-
MP, and another from programs running on an Ardent Titan. Most of the applications traced on
the Cray are small programs such as the Livermore Loops and NAS Kernels. These programs are
designed more for evaluating processor pipelines rather than large vector caches. We have other
Cray traces from scalar UNIX applications, also not typical of large vectorized workloads. The
Ardent Titan traces are more representative of true memory reference behavior, as they were
gathered from large real production applications. The Titan traces are also quite long (20 mil-
lion references), enabling us to more thoroughly evaluate the large caches that we simulate.

The Cray X-MP address traces were collected by a modified Cray Research Inc. smulator
of Cray machines [Cast87]. In this case, the ssimulator was configured to simulate the X-MP and
was also run on an X-MP. The simulator was modified to record reference addresses into a trace
file while simulating X-MP execution. The traces come from both vectorizable and non-
vectorizable benchmarks. Traces from vector benchmarks include four of the NAS Kernels
[Bail85] and four of the Livermore Loops [McMa36]. The NAS Kernels are specifically
designed to evaluate vector processor performance, while the Livermore Loops are Fortran

-5-

computations frequently used at the Lawrence Livermore National Laboratory. The remaining
traces were collected from the UNIX utilities diff, grep, and gsort, and the dhrystone, linpack,
and whetstone benchmarks. None of the Cray benchmarks references very much address space.
As mentioned earlier, the vectorized kernels are designed to represent computational rather than
memory reference behavior.

The Cray traces include al instruction, scalar data, and vector data references. Data refer-
ences access eight-byte quantities, although references involving Cray 24-bit address registers
use only the low three bytes of an eight-byte word. Instruction fetches reference two-byte
instruction parcels, with an instruction being either one or two parcels long. Separate trace
records are generated for each parcel of a two-parcel instruction. Each benchmark was traced
for up to one million instruction executions.

The Ardent Titan is a graphics supercomputer which combines the scalar performance of a
MIPS R2000 processor with a custom floating point unit (FPU) which executes scalar and vector
floating-point operations. The FPU has a peak performance of 16 Mflops, and is fully pipelined
with chaining support, vector register storage for 8K 64-bit words, and three memory access
pipelines. A Titan can be configured with up to four processor boards, where each board con-
tains a16 MHz R2000 and an 8 MHz FPU.

The Titan traces were collected by using an Ardent postloader (similar to the MIPS pixie
tool) to instrument object code. Calls to tracing routines were inserted in front of each load,
store, and branch in the original object code. The tracing routines are implemented in Unix Sys-
tem V shared libraries, which are attached to the code at runtime. When the calls to the tracing
routines are inserted, care is taken to ensure that instruction addresses passed to the tracer are the
same as in the original, unmodified code. While it is working, the postloader maintains original
addresses for each basic block. Calls to tracing routines pass these original addresses as parame-
ters, along with the number of instructions in the basic block. Data reference addresses are unaf-
fected by the postloader. Traces include instruction and scalar references made by the MIPS
R2000, as well as scalar and vector references made by the FPU. The FPU can also perform
scatter/gather references, which are seen as a sequence of scalar references. MIPS instruction
and data references are four bytes wide, while FPU data references are four or eight bytes wide,
depending on the floating-point operation precision.

The Ardent benchmarks, all of which are in Fortran, are listed in Table 1. Three (bmkl,
bmk11a, and bmk21b) come from the Los Alamos benchmark set [Grif84]. Although these codes
are self-contained applications, and not just program kernels, they are smaller and somewhat less
““rea’’ than the other programs.

Ardent Benchmarks

Benchmark Description
ampac molecular orbital package
arc3d 3-D fluid flow using finite difference analysis
bmk1 monte carlo simulation

bmk1la particlein acell
bmk21b photon transport

born molecular mechanics minimization

flo82 airfoil flow analysis using Euler equations
lapack 1000x1000 linear equation solver (BLAS level 3)
mopac molecular orbital package
simple hydrodynamic and thermal behavior of fluids

wake calculates free wake of rotor

Table 1: Ardent Benchmarks

The other programs are real production applications used for benchmarking at Ardent Com-
puter, and come from areas such as computational chemistry, computational fluid dynamics and
linear analysis. While not as large as programs routinely run on Cray machines, the Ardent pro-
grams are large enough to stress the memory system of the Titan, and are very similar qualita-
tively to the types of programs run on Crays. Thus, results observed on the Ardent programs
should apply directly to Cray applications, provided we scale our results to correspond to the
larger problem sizes.

Table 2 lists memory reference and address space characteristics of our traces. The
memory reference counts were measured using two techniques:

(1) Each architectura memory reference is counted as one access, irrespective of whether it
references a one, two, four, or eight-byte quantity. These reference counts, being unnor-
malized to the word size of the machine, are more representative of the machine architec-
ture rather than the machine implementation.

(2) Certain program references are merged into one or split into two accesses, depending on
the nominal word size of the machine. This corresponds more to how data is actually
referenced. For the Cray, with aword size of eight bytes, consecutive two-byte instruction
parcels in the same basic block are packed into a single eight-byte word reference. For the
Ardent Titan, with a word size of four bytes, each double precision data reference is split
into two single precision references. These are referred to as normalized reference counts.

-7-

In Table 2, unnormalized instruction fetch percentages are highest for the Cray scalar work-
load and smallest for the highly vectorized kernelsin the Cray vector workload. Cray instruction
fetch percentages are reduced significantly once the counts are normalized to word size. Table 2
also lists the fraction of data references that are vectorized, which ranges from a low 10 percent
in the Cray scalar workload to over 80 percent in the Cray vector workload. Average basic
block size ranges from 17 to 25 instructions, corresponding to branch taken frequencies of 4 to 6
percent. Prior studies have measured branch taken frequencies of 7% and 6% for IBM 370 and
CDC 6400 scientific workloads [Lee84] and 10% in a MIPS floating point workload [Perl89].
The fraction of taken branches is much larger in non-scientific workloads, and ranges from 10 to
nearly 30 percent [Lee84, Perl89].

Table 2 also shows workload averages from [Smit85], including data from a VAX work-
load of ten integer C programs, an IBM 370 workload of three FORTRAN scientific applica
tions, and an IBM 360/91 workload consisting of four mixed applications. All results from
[Smit85] are normalized to machine word size, and thus are best compared to our normalized
statistics. The VAX and IBM 370 workloads assume a constant four-byte reference width, while
the 360/91 workload assumes a constant eight-byte reference width.

Normalized averages for the Ardent workload agree quite well with the workloads from
[Smit85]. In the Cray vector workload, instruction fetch percentages are much lower because
the highly vectorized kernels require fewer instructions to execute the application. In the Cray
scalar workload, the ratio of data reads to writes is only one-to-one, much lower than the typical
two-to-one ratio. This is possible because Cray machines provide programmer-visible backup
scalar registers which buffer data between primary scalar registers and main memory. Transfers
between these backup registers and main memory are carried out in block mode, thus equalizing
the ratio of reads to writes.

Table 2 also shows that the Cray traces are quite small, as none references much more than
128 Kbytes of memory space. In comparison, the Ardent traces average over one megabyte of
referenced space, and many of the Ardent programs have not even reached their full size by the
end of the trace.

's91Aq AQ pue suononasul AQ Yiog paist| S18z1s %20|q d1seq abielony (94PpIUs) SSousB e elep 10}
-09A puUe e eds Yioqg Ag pue ‘(94109A) Saousss jol eep AJuo-10199A AQ ‘(04410S) Seouase i elep Ajuo-eedas Ag ‘(oe41) suononisul Ag payonol saiAq
J0 abejusolad ay1 se |pm se ‘Pasi| SI 8Jell yJes UIUyliM paousio el Sa1Agy Jo Jequinu 2101 3yl “(94109A) UBAID OS[e S1apow JOJ0aA Ul IO pall
-1ed 8. eyl ssouse U eep Jo afieiusdled ayl - (0pIw) Sa1lIM eIRp pue ‘(9ppJ) Spealemrp ‘(0pi1) Suononlsul 10} palsi| afe sabejuadied souae joy
'saJel} 8y} Ul aJeds Ssalppe padusse Pl JO Junowe syl Se |PM Se Saousia el AJowall JO UMOPEalq Pazifewlou pue pazijewlouun Z a|gel

VN VN - - 729 6L8 [Llc 0 Y0l <Z€ ¥99 0000SC - - - - - T6/09€ NG|
VN VN - - §/9 g2 899 0 0Cl <20g 8.9 0000SC - - - - - 0Le WglI
VN VN - - L'€L €9¢ g 0 T9T 99¢ €/9 0000SC - - - - - XVA
¢6'/9 86'9T vy VL 78 67 7'68TT 61 €¢l Ve 8E9 €29E8SIC 0S 8TI 66T €89 /90.ES6T ueply
09'99 9v'sc | 1'8¢ 9°€T 06c €6 99 18 8€C V¥E€S 87C¢ S86.00T 18 8YT €€ 6719 O0EY6eTIT 1091 Re1p
44614 2zcoe | o€ 1%% €95 €le €9 (0] €6T <20Z 909 910887 (0)8 9L 6L S¥8 /G99VCT 110 Re1D
sabie Jony peopopn
28'SS S6€T | 29T 0'€s Z8 97 0'9cC 6€ 9TT 98T V69 8.ESCE0C (0,4 ZTT 62T 90.L T0000002 M
/816 16'¢C 'ac [5WA%4 €€ Tve 6¢ve 08 VEL LEr 6¢cr 26.260LC V. 0T GT€ ¢85 T0O00000C ajdws

oT’29 1297 90T 08¢ vse T9T 96 8T ¢Tl G€T ¢€¢L SPSETI9N T 88 TE€T T18L 60.L06VT Jedow
€69 veLT 9'66 [40] TO TO 8191 VA4 8¢l <CZ6l 089 €9¢8LccC G€ L8 L'ST 8'GL 2000000 oede|

T€'T6 €8'¢e 8¢l vve 8Gc T9E €718 Zs 98 0T¢ €0L 9T96650C 1S L8 6'8T S'¢/ €000000C 280}
€9'6¢ e 00 00 €66 L0 6'¢SIy 0 L€T TOT €9L Se5/¢00c 0 L€l 66 ¥'9. T000000C uioq
9299 69°9T 09 41 ¢SS L'Se cilL 0 6L EVT L'lL 625€E02C 0 4] T6 /'S8 2000000C qrewq

01’99 [40h4" 20 L'99 €0 6¢ SWASIS 08 8T¢ <CVE G6E E6LI6T.LC 8. 0T <¢9¢ L'€S 5000000 BT W
1128 6TET 0T 788 ST 49 S6TT 6€ 98 €0c TT. T.T0000C 6€ 98 €0¢ TT. S000000C g
2656 86'€C Sov T8y L'E 9L G288T 09 9¢l T6Z €85 TLOOTTOC 09 9¢T 682 985 T000000C pedse
1E'8L 65'6T 00 00 8¢8 TLT 086Y 0 €6 66T 80L 892/19T1C 0 6L G'GT 1'9/. T000000C Jedwe

SJewyoueg Wep.y

6€°06T ST'8L Tov 06 g8 G9T 06ET 96 Sv¢ <299 0T 0T2¢896T 96 T6T 905 <20€ 6.6T€SC /seu
877’19 861 0T €GT Zve 9ty 699 0L 8¢C <COF T.lE €09vEE T STT €0C <289 926099 gseu
95201 ¢v'Tv T8 v 09 LTS 09 TL T¢e 8¥c TE€e 021697 0L L9T T8l TG99 S60T06 zseu
8T'LTT 6€°0S €¢T L9 gve Sor Z'av 68 62T 0€9 T6T T6EV88 68 LTl TTr <ZLr G9E9SET Tseu
w80l €8vv | tvTT 0¢ L'€9 8¢ 086 96 99¢ 979 88 £86206T 96 Z1¢ G189 €/lZ ¥S618ed gsdoo|
8e'8yT ¢C'29 L'8¢ L9 L'0¢c 6¢€ vPv9 8 €9¢ 0Ly L'9C T98.5.L ¥8 ¢Sl T'/l¢ 8.9 T9g9TET Tesdoo|
ve'LE 6T¢CT '8 et €Te 6Ly Vv 0 €0T 99 TVs <cihee 0 Sv ST T08 9ETOSIC 9Tsdoo|
€eZs 98'8T STy 0GT GG6¢ 08T 8.LIT 14 Z¢Te 90c <28 Gleei8 S 79T 0ST .69 (029es9T ¥Tsdoo|
Sy fewyousg 10199 Aed
€6'Gy T0'8T 4% LC €6Cc 9¢9 g8 € 98T 9T¢ 665 S9T60C € €L 98 T¥8 +2S8cs Skym
9T'68 T8¢ T9 €9 €0L €T 99 8 S6T 0T G€9 91186y 8 'L €9 G'98 C0LTSET uosh
oT'Lv or'6T v A TTE V.S Vil qT L'€¢ 2S¢ <ZT9 T626SS 9T ¢0T 80T 06,L V8€66<T ul
18'Gy 20°0C €¢ v €IS <J¢cr b€ 0 90T 6€T ¥S. 0ST6cy 0 9¢ 8 9T6 6180SCT do.f
98'85 6.'TC LYy A S8y vec var 9T 9¢¢ TS TS 62C80L 9T TOT 80T Te6. /9v0S9T Kip
0S've T0VT 00 60 918 TET 699 Z T9T LST 189 SvIvcS € 19 6'G 088 8TI86ET Hp
Syfewiyousg refeds Aeld
sa1Ag Jsu| %PIUS 9%IBA 04I[0S Op)l SO | %I0OA LM 0PI %31 Sjod %1®A %IM 0PI % Sy 6o
9ZIS Yo0|g o1seg 9ZIS 80eds SssaIppy SIeIS 80U Jo PazIeWIoN SIeIS 80UB B Joy Pazifewlouun d

Program Size Working Set Size

100007 100001
K K

i 10001 i 100071
0 0
b b
y

t t

e 100': e 100':

S] S]

10+———r——— 10¥F——m—mmmr——r—
100 1000 10000 100000 10 100 1000 10000
References x 1000 Window Size (1K refs)

Figure 1: Ardent program sizes as a function of time (top) and working
set sizes as afunction of the window size parameter (bottom).

Figure 1 displays the cumulative address space size referenced as a function of time for
various Ardent programs. Programs such as born, bmkl, bmkl1la, and bmk21b appear to have
reached maximum size by the end of the trace, while arc3d, ampac, lapack, mopac, and wake
continue to reference new data. Working set sizes in the same figure increase with window size,
but remain for the most part below 500 kilobytes for window sizes as large as 10 million refer-
ences.

Tables 3 and 4 list the vector lengths and strides observed in all of the the traces containing
vector references. Averages and distributions are provided for individual traces and for all traces
collected on a given machine. In this context, vector lengths represent the length of individual
vector load and store instructions, which is constrained to some maximum number (64 in the
Cray X-MP, 32 in the Ardent Titan). Actual vector lengths coded in the applications may even
be larger, but such vectors are processed in strips. Vector strides are the distances (in words)
between memory addresses of successive vector elements; vectors of unit stride are contiguous.
Geometric as well as linear averages are listed for strides, as the presence of only a few large
strides can greatly skew linear averages.

10 -

Vector Lengthsin the Cray Traces
length loopl4 | loopl6é | loop2l loop8 | nasl | nas2 | nas5 | nas7 | All Programs
% % % % % % % % %
3 21 45.3 - - - - 18 - 0.2
5 - 22.1 - - - - 2.3 - 0.1
7 - 10.5 - - - - 20 - 0.1
8 - - - - - 73.6 18 - 10.8
16 - - - - - 249 15 - 3.7
19 - - - - - - 19.6 - 0.8
20 - - - - - - 34 - 0.1
25 - - 99.2 - - - 2.3 - 125
32 - - - - 98.2 - 35 | 916 43.9
35 - - - 49.3 - - 3.3 - 11.3
411 5.6 - - - - - - - 0.1
64 90.1 9.3 - 49.8 - - - 7.7 16.1
averages 60 11 25 49 32 10 24 34 33
Vector Stridesin the Cray Traces
sride loopsld | loopsl6 | loops21 | loops8 | nasl | nas2 | nasS | nas/ || All Programs
% % % % % % % % %
1 99.8 90.7 0.7 15.4 996 | 17.7 | 189 8.3 24.9
2 - - - - - 61.5 5.7 - 89
5 - - - 84.6 - - - - 185
8 0.2 9.3 - - 04 04 13 0.2 0.2
16 - - - - - 204 - - 29
25 - - 99.2 - - - - - 12.0
32 - - - - - - - 91.6 29.4
40 - - - - - - 74.2 - 3.0
lin. avg. 1.0 17 24.8 4.4 1.0 47 | 301 | 294 155
geo. avg. 1.0 12 24.4 39 1.0 27 | 165 | 240 7.1

The Cray benchmarks tend to operate on only a few different vector lengths, with the
exception of nass. Cray vector lengths are also short for the most part, averaging less than half
the maximum vector length on the X-MP. The average Cray stride is quite large due to large
values in loops21, nasb, and nas/, but geometric averages are lower due to short strides in
loopsl4, loopsl6, and nasl. Geometric and linear averages for individual Cray traces are

Table 3: Vector lengths and strides in the Cray traces.

approximately equal, as strides within a Cray kernel are fairly uniform.

Average vector lengths in the Ardent traces are close to the maximum vector length on the
Titan. Ardent strides, in comparison to Cray strides, are less uniform. Ardent linear averages
are larger than Cray linear averages, but this is due more to the presence of outlying values
rather than to poorer locality in the Ardent programs. Since the Ardent programs are real appli-

cations, they are presumably more representative of the relevant workload.

-11-

Vector Lengthsin the Ardent Traces
length arc3d | bmkl | bmklla | flo82 | lapack | smple | wake || All Programs
% % % % % % % %
2 - - - 5.7 - - - 11
4 - - - 13.7 - - - 2.7
8 - - - 30.3 31 - - 6.1
9 - - - 3.7 - 424 - 115
10 - - - 4.5 - - - 0.9
15 - - - - - - 3.8 0.3
20 - 98.6 - 14.1 - - - 12.6
21 - - - 3.2 - - - 0.6
26 55 - - - - - - 0.9
28 55.0 - - - - - - 8.7
29 10.1 - - - - - - 1.6
30 26.1 - - - - - - 41
31 - - - - - 46.2 11.9 12.6
32 - - 100.0 20.6 96.9 11.2 83.9 36.3
averages | 28 20 32 15 31 22 31 24
Vector Stridesin the Ardent Traces
ride arc3d | bmkl | bmklla | flo82 | lapack | simple | wake || All Programs
% % % % % % % %
1 98.6 50.4 100.0 745 | 100.0 55.4 99.5 78.8
2 - - - 0.8 - - - 0.2
12 - - - - - 21.2 - 53
20 - 24.8 - - - - - 25
30 09 - - - - - - 0.1
34 - - - - - 234 - 59
48 - - - - - - 0.2 0.0
90 05 - - - - - - 0.0
385 - - - 39 - - - 0.8
386 - - - 20.7 - - - 40
961 - - - - - - 0.3 0.0
1351 - 24.7 - - - - - 2.4
lin. avg. 19 | 339.8 1.0 95.6 1.0 111 44 55.4
geo. avg. 11 125 1.0 4.4 1.0 39 1.0 2.4

Table 4: Vector lengths and strides in the Ardent traces.

4. Locality in Vectorized Applications

This section directly examines the temporal and spatial locality present in the address
traces. We characterize temporal locality by using reference counts and reference intervals,
which respectively represent (a) the number of references to an address, and (b) the times
between references to an address. Applications containing temporal locality have high reference
counts and short reference intervals, as data is referenced repeatedly within small windows of
time. We characterize spatial locality by examining the decrease in cache miss ratio with
increasing block size. The greater the degree of spatial locality, the more quickly the miss ratio

-12 -

will decrease with increasing block size.

Our various analyses have been run on each individual trace; we've condensed those ana-
lyses into three workloads from the Cray traces and two from the Ardent traces. The Cray traces
are divided into a Livermore Loops workload, a NAS Kernel workload, and a scalar workload
consisting of the remaining traces. The first two workloads are heavily vectorized, while the
third workload consists mainly of scalar benchmarks plus linpack. The Cray linpack trace was
generated for a small 10x10 dataset and thus is predominantly scalar. Throughout this and
remaining sections of the paper, Cray references are analyzed with consecutive instruction par-
cels packed into eight-byte quantities, i.e. an instruction parcel fetch does not occur until parcels
outside the current eight-byte word are needed. This packing of instructions is consistent with
the actual X-MP hardware, which fetches both instructions and data in eight-byte quantities.

The Ardent traces with significant vectorization (arc3d, bmk1, bmk11a, flo82, lapack, sm-
ple, and wake) comprise an Ardent vectorized workload, while the remaining Ardent traces
(ampac, bmk21b, born, mopac) comprise an Ardent scalar workload. Unlike the Cray traces, we
analyze the Ardent traces without normalizing to a single reference width, as the Ardent Titan
references both four and eight-byte data items over its eight-byte bus. The Titan fetches instruc-
tions four bytes at a time from its instruction cache, which is how we model the instruction
Stream.

4.1. Reference Counts

Reference counts were obtained by measuring the number of individual (1) instruction, (2)
scalar, and (3) vector references to each memory location. This separates reference counts for
what we call shared data (Table 2) into scalar and vector components, allowing us to draw com-
parisons between scalar and vector reference locality. We later combine counts for all reference
types to examine the overall temporal locality in vector applications.

Figure 2 presents reference counts for the individual Ardent workloads, the entire set of
Ardent traces, and the entire set of Cray traces. (Results for individual Cray workloads, are left
to the Appendix). Each graph in Figure 2 shows reference counts for instruction, scalar, vector,
and all references. The point (X,Y) on the graph signifies that a fraction Y of all memory loca-
tions are referenced up to X times during the course of the trace.

Vector reference counts in the Cray benchmarks are very high, but are an artifact of the
large loop indices required to benchmark accurately with the Livermore and NAS kernels. Vec-
tor reference counts in the Ardent traces, while lower, are more likely to reflect the true amount
of data reuse in vectorized workloads. Note that there is reuse of vector data, as vector reference
counts in the Ardent vector workload actually exceed scalar reference counts. Mean, median,
and 90 percentile reference counts for al workloads are summarized in Table 5.

SO ——0 =T

-0

00>

SO ——0 =T

—+~0

00>

-13-

.. Ardent Scalar Workload
0.91 //
/
|
081 |
|
i
0.71 //
|
0.61
0.51
,,,,,,,,,,,,,,, instruction
————————— scalar
1 Vector
04 al
0.3 —_ —rr T——— o
i 10 100 1000 10000
References to an Address

0.41

,,,,,,,,,,,,,,, instruction
777777777 scalar

0.3

1 10 100 1000 10000

Referencesto an Address

SO ——0 =Tl

o)

00>

SO —0O =Tl

—+~0

00X

0.51
"""""""" instruction
S T scalar
g S === vector
0.4 i
0.3 +——r———————
1 10 100 1000 10000
References to an Address
All Cray Workloads
1.01 U [z

instruction
scalar

0.3 LR | U | U | EEEEE |
1 10 100 1000 10000

References to an Address

Figure 2: Cumulative reference count distributions for individual Ardent workloads, the com-
bined Ardent workload, and the combined Cray workload.

-14 -

Reference Count Summary by Workload
Instruction Scalar
Workload : :
Mean Median 90pct. | Mean Median 90 pct.

Cray loops 55 3 23 17 4 20
Cray nas 54 4 55 14 1 16
Cray scalar 144 3 270 53 2 58
Cray (al) 99 3 80 26 2 20
Ardent vector 352 21 928 8 1 6
Ardent scalar 464 37 920 6 1 1
Ardent (all) 397 23 928 7 1 2

Vector All

Workload , ,

Mean Median 90pct. | Mean Median 90 pct.

Cray loops 157 20 479 83 4 20
Cray nas 156 40 360 99 40 360
Cray scalar 59 2 169 89 2 104
Cray (al) 135 20 400 87 6 208
Ardent vector 22 1 32 51 2 60
Ardent scalar 8 1 3 30 1 1
Ardent (all) 22 1 32 40 1 20

Table 5: Reference Count Summary

Listed are mean, median, and 90 percentile reference counts (number of references to each memory location) for the
Cray and Ardent workloads. Results are provided for individual workloads and for al traces collected on a given
machine. Summaries are presented for instruction references, scalar references, vector references, and all refer-
ences combined.

4.2. Reference Intervals

Reference intervals are the number of references between successive accesses to the same
memory location. As a measure of temporal locality, reference intervals are more useful than
reference counts because references that are closely clustered in time define a different type of
locality of reference than the same number of references uniformly spaced over the traced inter-
val. Programs contain large amounts of temporal locality if reference intervals are short, and
low amounts if the opposite holds true. Datawill remain cached during short reference intervals,
but will often be pushed from the cache during longer intervals. One study [Sang84] found that
data must be referenced more than 600 times per second to remain cached in the Amdahl 580.

We analyze reference intervals separately for instructions, scalar references, and vector
references. For data referenced by both scalar and vector instructions, scalar reference intervals
are the times between the current and previous scalar reference to that data. Similarly, vector

-15-

reference intervals are the times between the current and previous vector reference to that data.
For overall results, we do not differentiate between data reference types and measure reference
intervals between any two references to that data.

Figure 3 shows cumulative reference interval distributions for the individual Ardent work-
loads and the compl ete sets of Ardent and Cray traces (results for the individual Cray workloads
are in the Appendix). Each graph contains reference interval distributions for instruction, scalar,
vector, and all references. Mean, median, and 90 percentile reference intervals are listed in Table
6.

Reference Interval Summary by Workload
Instruction Scalar

Workload : :
Mean Median 90pct. | Mean Median 90 pct.
Cray loops 2034 46 873 | 13714 45 38395
Cray nas 2478 237 984 3094 169 6515
Cray scalar 1049 48 1086 1267 48 892
Cray (all) 1628 49 1086 6347 48 5472
Ardent vector 1992 98 1713 6456 103 3962
Ardent scalar 3915 234 9643 3719 138 4339
Ardent (all) 2776 156 3332 5243 121 4231

Vector All

Workload : ,
Mean Median 90 pct. Mean Median 90 pct.
Cray loops 5058 2217 4444 4181 292 4444
Cray nas 9240 699 46521 7608 490 37089
Cray scalar 1740 410 1461 1109 48 1086
Cray (al) 7165 1086 32887 4502 237 8996
Ardent vector | 45655 3917 268165 | 10456 150 9213
Ardent scalar | 23613 8435 238069 3911 201 8620
Ardent (all) 45294 3962 265333 8072 160 8759

Table 6. Mean, median, and 90 percentile reference intervals (number of refer-
ences between rereferences to data) for the Cray and Ardent workloads.

In the Cray programs, reference intervals for instructions and scalar data are short, while
vector reference intervals are roughly an order of magnitude larger. Since vectorized applica-
tions operate on large data structures in a serial fashion, the times between successive references
to each individual vector data item are consequently high. In processing each vector element
however, the same instructions and scalar variables are being reused, which accounts for the
higher temporal locality in these reference classes. Note, however, that median vector reference
intervals are only a few thousand references, which is sufficiently short that vector data should
remain in the cache between loop iterations.

—+~0 SO ——0 =Tl

ne—~+35—

—+~0 SO ——0 =Tl

ne—+35—

1.0

0.8

0.61

0.41

0.21

0.0

1.07

0.8

0.61

0.4

0.21

0.0

-16 -

Ardent Scalar Workload B

"""""""" instruction
A scalar
S vector
v all
1 10 100 1000 10000 100000
Reference Intervals
All Ardent Workloads
e
/
/

/
instruction
scaar
vector
all

1 10 100 1000 10000 100000

Reference Intervals

—+ 0 SO——0O =TI

ne+35—

—+ 0 SO ——0 =Tl

ne—~+5—

1.0

0.8

0.61

0.41

0.2

0.0

1.07

0.8

0.6

0.41

0.21

Ardent Vector Workload

instruction
scalar

1 10

100 1000 10000 100000

Reference Intervals

instruction
A scalar

0.0+

100 1000 10000 100000

Reference Intervals

Figure 3. Cumulative distribution of time between successive references

to the same memory location.

-17 -

Results for the Ardent workloads are similar to the Cray results. Instruction and scalar
reference intervals are both short, while vector reference intervals are roughly an order of magni-
tude larger than both. Reference intervals in the Ardent traces are also larger relative to the Cray
traces, as the Ardent programs are real, long-running codes and not tightly-coded kernels or
small benchmarks.

4.3. Ratiosof Miss Ratios

To quantify spatial locality, we measured ratios of missratios [Smit87], which, for a partic-
ular cache and block size, is the ratio of its miss ratio to the miss ratio for the same-size cache

with one-half the block size. Mathematically, the ratios of miss ratios for a cache of size C and

mr (C,B)

block size B is given by where mr(C,B) is the miss rate for a cache of size C with

mr (C’E)
block size B. The ratio of miss ratios can range from a low of 0.5, when the level of spatial
locality isvery high, to well above 1.0 if there islittle spatial locality; the ratio of miss ratios can
be above one if the extra data fetched in large blocks is not used and only displaces useful data
from the cache. This latter phenomenon, known as memory pollution, is most noticeable in
smaller caches since increasing block size reduces the number of cache blocks below the number
of distinct regions in concurrent use.

To obtain ratios of miss ratios, we measured cache miss ratios using LRU stack techniques.
Simulations were run for block sizes from 16 to 128 bytes, covering a wide range of micropro-
cessor and mainframe cache implementations. Fully-associative caches were ssimulated using
fairly deep LRU stacks (500 elements). For still larger caches, set-associative simulations were
performed to reduce overhead searching LRU stacks. Each set-associative cache consisted of 64
fully-associative stacks, with each stack containing up to 500 elements. Prior work [Smit82,
Hill89] had found that set sizes beyond eight do little to improve cache miss ratios; thus our set-
associative results should be virtually identical to results for fully-associative caches.

Figures showing ratios of miss ratios for various reference classes in the individual Cray
and Ardent workloads are left to the Appendix. In the Cray workloads, ratios of miss ratios are
low for instruction and scalar data references. Vector references, however, contain little spatial
locality due to large strides in the Livermore and NAS kernels. We have noted that these kernels
are designed for evaluating processor pipelines, and do not necessarily reflect the typical
memory reference behavior of vector applications.

1.257

-0 O——o T

»wo——o 0

0.50

1.251

-0 O——0 0

»wo——o 0

0.50

1.001

0.751

-18-

Ardent Instructions

Block Size

1.001

0.751

100 1000
Cache Size (kbytes)

Ardent Vector Data

Block Size

Cache Size (kbytes)

©O——o0 0 nwo——o M —+O0 O——0.0

—+~0

nwo——~o D

1.257

1.001

0.751

0.50

1.251

1.001

0.751

0.50

Ardent Scalar Data

Block Size

10 100 1000

Cache Size (kbytes)
All Ardent References
Block Size
"""""""" 32
********* 64
128
1000

Cache Size (kbytes)

Figure 4. Ardent ratios of miss ratios for all workloads plotted on the basis of instructions, scalar data,
vector data, and all references. The last graph also contains ratios of miss ratios from [Smit87].

-19-

Figure 4 shows the ratios of miss ratios across al Ardent traces, plotted on the basis of
instruction, scalar, vector, and all references. The last graph in the figure also contains ratios of
miss ratios measured for general-purpose, multiprogrammed workloads [Smit87]. Unlike the
Cray results, spatial locality is present in all reference classes, and is particularly strong for vec-
tor references. This improved locality is mainly due to the shorter strides in the Ardent pro-
grams. Ratios of miss ratios for scalar and vector data become quite low once the cache size
exceeds 16 Kbytes. In Figure 4d, measured ratios of miss ratios across all references are actually
lower than results from [Smit87]; i.e. we find more locality in our workloads than was found pre-
viously for a non-vectorized workload.

In summary, in our analysis of locality we have found large amounts of spatial and tem-
poral locality in instruction and scalar references within the Ardent and Cray traces. Vector
references contain lesser amounts of temporal locality, although median vector reference inter-
vals are short enough (severa thousand references in the Ardent programs) that the bulk of the
vector data should remain cached between periods of use. The Ardent traces show large
amounts of spatial locality; there is less spatial locality in the Cray traces. We believe the Cray
results to be anomalous due to the artificial memory reference behavior in the small kernels,
whereas the Ardent results reflect the considerable spatial locality in real vector applications.

5. Cache Miss Ratios

In this section, we examine cache miss ratios over awide range of cache parameters, to see
if the measurements of locality yield the expected low miss ratios. Simulations were conducted
using both the Ardent and Cray traces, although as in prior sections we will emphasize the
Ardent results over the Cray results. To approximate actual hardware implementations, refer-
ences to consecutive two-byte Cray instruction parcels are merged into one eight-byte word
reference. The Ardent Titan, unlike the Cray X-MP, references both single-precision as well as
double-precision data, thus Titan references are not normalized to a constant word size. We do
not implement periodic cache flushing in our cache simulator, as uniprogrammed vector
machines typically execute for long periods of time between interrupts.

5.1. Fully-Associative Caches

Three types of fully-associative caches were simulated: instruction caches, data caches
(containing scalar and vector data), and unified caches (containing instructions, scalar data, and
vector data). Block sizes range from 16 to 128 bytes, and the maximum cache size simulated is
4 Mbytes. To keep stack distances manageable, we did not simulate some combinations of large
cache size and small block size.

-20-

5.1.1. MissRatios

Figure 5 shows miss ratios for fully-associative Ardent instruction, data, and unified caches,
as well as for fully-associative Cray unified caches. Figures containing results for Cray instruc-
tion and data caches are |eft to the Appendix.

Figure 5 aso shows (a) design target miss ratios [Smit87] and (b) SPEC miss ratios
[Gee9l] averaged over the SPEC [SPEC89] floating-point application subset. All missratios are
for fully-associative caches except for the SPEC results, which are plotted for a set size of eight,
the maximum measured. The design target miss ratios, measured from address traces for a
variety of scalar machines, represent the cache performance in general-purpose, multipro-
grammed environments. The SPEC miss ratios were measured in a uniprogrammed environ-
ment, and should provide a better basis for comparison against our uniprogrammed vector work-
loads. We note that the SPEC floating-point miss ratios are significantly higher than miss ratios
for the SPEC integer benchmarks [Pneva0].

In the figure, both the Ardent and SPEC instruction cache miss ratios fall more rapidly than
design target miss ratios as cache size increases. Unlike the workloads used to measure design
target miss rates, the Ardent and SPEC workloads are uniprogrammed, and thus do not contain
any multiprogramming cache misses.

Ardent data cache miss ratios agree reasonably well with the design targets, while SPEC
data cache miss ratios tend to be larger by as much as a factor of three. The higher SPEC miss
rates are likely due to inherent differences between workloads. What is more interesting is that
data cache miss ratios for real vector workloads are actually quite low; they compare favorably
with miss ratios for general-purpose workloads (the design targets) and with miss ratios for the
popular floating-point benchmark suite (SPEC).

For unified caches, design target miss ratios are slightly higher than Ardent miss ratios,
again due to multiprogramming effects. SPEC unified cache miss ratios are also higher than
Ardent miss ratios, due to a higher data component of the miss rate. For the Cray programs,
unified cache miss ratios are larger than SPEC and design target miss rates at small cache sizes,
since the Cray kernels contain little spatial locality. We also observe that Cray miss ratios drop
dramatically once these kernels completely fit into the cache.

-21-

100005 Instruction Caches 1.000; Data Caches
] _ Ardent] — Ardent
_ _ _ SPEC - SPEC
_ 32bytes design target | design target
M o1000{ /. . 16bytes M |
S W{ S O.lOOE
S Sl S
0.0100+
R | R
a
32 bytes a
t t 0.010;
[i :
0 0.00102 o
0.0001 +——————F———— 0.001 - - . .
1 10 100 1000 10000 1 10 100 1000 10000
Cache Size (kbytes) Cache Size (kbytes)
Unified Caches Unified Caches
1.0007 1.000-
- - - SPEC] - - - SPEC
""""" design target 1 ~— design target
M M *
I i
g 01001 g 0100]
S S
R R 32bytes i
a a
t 00101 t 0010
|] i]
o 0 1 — . 32bytes
000 +——————————————— 000l +——mmT———————T—
1 10 100 1000 10000 1 10 100 1000 10000
Cache Size (kbytes) Cache Size (kbytes)

Figure 5: Fully-associative cache miss ratios plotted against design target
and SPEC floating-point miss rates.

-22 -

We can make a couple of observations from these results:

() The Ardent traces reference significant amounts of data, as data and unified cache miss ratios
continue to decrease until the cache size exceeds 512K. Traces used in previous cache simu-
lation efforts [Hill87, Hill89, Pnevo0, Przy88, Smit82, Smit85, Smit87] have referenced
much less data. Bypassing the trace storage process completely and simulating references
during trace generation [Borg90, Gee92, Gee9l, So88a, So88b] can allow even larger prob-
lem sizes (e.g. [Borg90]) to be observed. However, the large increase in CPU time to simu-
late these longer traces limits the design space that can be explored.

(b) Ardent missratios level off beyond caches larger than one half megabyte. This cache sizeis
large enough to capture most, if not all of the locality within these programs. There is even
sufficient locality in the Ardent programs to make use of smaller caches. Data cache miss
ratios fall below 1 percent for cache sizes as small as 64 or 128 Kbytes.

In generating these results, we have assumed that Ardent data references can be either four
or eight-byte quantities. To compare Ardent results more directly with design target and SPEC
miss ratios, Ardent Titan simulations were repeated with data references normalized to a four-
byte reference width, i.e. double precision data references are split into two four-byte halves.
Results for Ardent data and unified caches, listed in the Appendix, show that normalizing data
references to a four-byte word size reduces data and unified cache miss ratios by some 30 and
10%, respectively. The reduction arises because the second half of each double-precision data
reference always hits in the cache. Ardent data cache miss ratios fall to roughly 70% of design
target miss ratios and less than 50% of SPEC data cache miss ratios, while unified cache miss
ratios fall to less than 50% of design target and SPEC miss rates.

5.1.2. Ratios of Miss Ratios

Cache miss ratios are often workload dependent. A more stable measure of cache perfor-
mance is the ratio of miss ratios, which we used in Section 4 to analyze spatia locality. Ratios
of miss ratios less than one indicate that doubling the cache block size decreases miss ratios.
However, whenever the ratio of ratios exceeds 0.5, any decrease in cache miss ratio is aso
accompanied by increased fetch traffic.

Ratios of miss ratios for fully-associative unified caches are shown in Table 7 (instruction
and unified cache results are in the Appendix). The table also includes ratios of ratios from
[Smit87] for comparison. Ardent ratios of miss ratios are consistently 12 to 15 percent smaller
than ratios of miss ratios from [Smit87], due to the large amount of spatial locality in this

-23-

Unified Cache Ratios of Miss Ratios
Ardent Cray [Smit87]
Cache Block Size Block Size Block Size
Size 32 64 128 32 64 128 32 64 128

128 || 0.753 | 0941 | 1.801 || 0.861 | 0.871 | 1.110 | 0.942 | 1.184 | 2.046
256 || 0685 | 0942 | 1.078 || 0.860 | 0.836 | 0.952 | 0.822 | 1.162 | 1.453
512 || 0.668 | 0.776 | 0.967 || 0.950 | 0.819 | 0.878 || 0.767 | 0.914 | 1.451
1024 || 0.732 | 0.729 | 0.886 || 0.955 | 0.856 | 0.876 | 0.831 | 0.880 | 1.023
2048 || 0.665 | 0.736 | 0.927 || 0.923 | 1.028 | 0.930 || 0.731 | 0.787 | 1.132
4096 || 0.584 | 0.668 | 0.865 || 0.824 | 0.893 | 1.187 || 0.719 | 0.746 | 0.809
8192 || 0.558 | 0.763 | 0.834 || 0.646 | 0.857 | 1.028 || 0.645 | 0.661 | 0.753
16384 || 0.530 | 0.567 | 0.660 | 0.513 | 0.979 | 1.007 || 0.616 | 0.633 | 0.685
32768 || 0.522 | 0539 | 0.618 || 0.784 | 0.197 | 2.878 || 0.601 | 0.601 | 0.660
65536 || 0.511 | 0.517 | 0.553 || 0.825 | 0.887 | 0.160 - - -
131072 || 0.504 | 0.516 | 0.531 | 0.529 | 0.556 | 0.533 - - -
262144 || 0.507 | 0.514 | 0.526 || 0.529 | 0.556 | 0.533 - - -
524288 || 0.500 | 0.500 | 0.546 || 0.529 | 0.556 | 0.533 - - -

Table 7: Unified Cache Ratios of Miss Ratios

workload. Cray ratios of miss ratios are about 15 percent larger for unified caches, but agree
fairly well with [Smit87] for instruction and data caches. These results, in conjunction with the
miss ratios presented earlier, indicate that the cache performance of vector workloads is compar-
able to that of any other workload which normally benefits from data caching.

5.2. Set-Associative Caches

Set-associative caches have been studied in detail in the literature (see e.g. [Smit82],
[Hill89]); it has been observed that caches with moderate levels of associativity (4-way to 8-
way) have miss rations nearly as low as for fully-associative caches. In [Hill89], it was found
that reducing associativity from eight-way to four-way, four-way to two-way, and from two-way
to direct-mapped causes relative increases of 5, 10, and 30 percent in miss ratio respectively.
These increases in miss ratio were found to be consistent over a wide range of cache and block
sizes. As discussed, the benefits of increasing associativity clearly diminish beyond a size size of
eight.

The question is whether these results aso apply for vector workloads. Two prior studies
using vector applications [So88a, So88b] simulated three programs on a 64 Kbyte cache with set
size varying from one to four. On average, their results agree with [Hill89]. As set size varied
from four to two, and two to one, miss ratios increased by averages of 10 and 28 percent, respec-
tively. Another study [Call90], however, found that increasing associativity has little effect on
vector cache performance, and could even reduce performance in certain cases.

-24-

Instruction Caches

0.01001
M
[
S
S
[R0.00101
N |
t
[
0
0.0001 ————
1 10 100 1000
Cache Size (kbytes)
10003 Unified Caches
] — Ardent
- - - SPEC
M
[
S 0.1001
S
R
a
t
i 0.0104
0
0.001
1 10 100 1000 10000
Cache Size (kbytes)

1.0007

0.1001

0.010-

O——=X nun—<

0.001

1.0007

0.1001

0.010-

O——=X wnun-—<

10 100 1000 10000

Cache Size (kbytes)

Unified Caches

—— Cray
- - - SPEC

0.001

10 100 1000 10000

Cache Size (kbytes)

Figure 6: Set-associative Ardent and Cray cache miss ratios for a 64 byte block size, plotted
against SPEC floating point missratios. Curves are labeled by set size.

-25-

In this section, we evaluate the effect of set-associativity in vector processor caches over a
wide range of cache parameters, covering cache designs not examined in previous studies.
Instruction, data, and unified caches up to four megabytes in size were simulated, with set size
ranging from one to eight. We also compare LRU replacement to random replacement.

5.2.1. MissRatios

Figure 6 shows set-associative Ardent and Cray miss ratios vs. set-associative SPEC
floating-point miss ratios for a block size of 64 bytes. Full tables of set-associative Ardent and
Cray cache miss ratios are available in the Appendix.

Set-associative miss ratios for the Ardent and Cray traces decrease significantly when the
set size is increased from one to two. Set sizes beyond two have much less effect, as only
instruction cache performance improves noticeably. In contrast, SPEC floating-point miss ratios
continue to drop as associativity increases, although most of the improvement is realized with a
Set size of two.

Ardent and Cray instruction cache miss ratios are roughly equal to SPEC instruction cache
miss ratios, For data and unified caches, Ardent and Cray miss ratios are both lower than the
SPEC miss ratios. The smaller Cray miss ratios, as we have noted before, are due to the small
kernels being completely contained in caches larger than 64 Kbytes. The smaller Ardent miss
ratios are likely due to workload differences, as we had observed similar results for fully-
associative caches.

One interesting observation is that miss ratios for 128 Kbyte and 256 Kbyte Ardent data
caches, as well as for 64 Kbyte Cray data caches, actually increase as set size increases beyond
two. This same phenomenon was observed in one study [Call90], but not in another [So88a]. We
suspect that the LRU replacement algorithm used in the simulations is poorly matched to the
reference patterns typical of vector applications. When references are highly sequential (i.e.
instruction and vector references) and the set size is not large enough to manage collisions, then
LRU replacement will often remove blocks that are most needed in the near future [Smit83].
We compare LRU to random replacement in Section 5.2.3.

5.2.2. MissRatio Spreads

Miss ratio spreads enable us to isolate the relative effect of increasing associativity on
cache miss ratios. The miss ratio spread between a 2n-way set associative cache and an n-way
set associative cache is defined as m(n)/m(2n) - 1. Here m(2n) is the missratio for the 2n-way set
associative cache, and m(n) isthe missratio for the n-way set associative cache. Table 8 list miss
ratio spreads for Ardent unified caches as set size varies from eight-to-four, four-to-two, and
two-to-one. The data is smoothed with a weighted average of adjacent spreads as recommended

-26-

by [Cham83]. If mrs(c) is the miss ratio spread for a cache of size c, then the smoothed spread
mrs'(c) isequa to 0.15*mrs(c/4) + 0.20* mrs(c/2) + 0.30*mrs(c) + 0.20* mrs(2c) + 0.15* mrs(4c).
Spreads for endpoint cache sizes are calculated with weights increased proportionately to sum to
1.0.

In a previous study [Hill89], smoothed miss ratio spreads were found to be fairly constant
across cache size, block size, and cache type, averaging 5, 10, and 25 percent for changes in
associativity from eight-to-four, four-to-two, and two-to-one, respectively. Our results are not as
consistent, as miss ratio spreads for unified caches clearly increase with increasing block size.
The spreads going from two-way to one-way associativity (direct mapping) are much larger
compared to [Hill89], but spreads from eight-way to four-way and four-way to two-way associa-
tivity are much smaller. Ardent instruction caches (see Appendix) do seem to benefit more from
increased associativity than Ardent data or unified caches, but instruction miss ratios are so low
that any reduction in the number of misses appears insignificant.

Miss ratio spreads for the Cray traces, which are not given, are smaller than Ardent miss
ratio spreads for instruction caches but larger for data and unified caches. Like the Ardent
spreads, the Cray spreads vary significantly with cache and block size, but also suggest that set
Sizes beyond two or four are unnecessary in vector applications. This differs from earlier work
in both scalar [Smit82, Hill89] and vector [So88a, So88b] environments, where increasing asso-
ciativity beyond two continued to yield decreases in miss ratio.

Ardent Smoothed Miss Ratio Spreadsfor Unified Caches
_ Block Size: 16 Bytes Block Size: 32 Bytes
Cache Size
8-to-4 | 4-to-2 | 2-to-1 | 8to-4 | 4-to-2 | 2-to-1
32K 0.019 | 0.056 | 0.296 || 0.020 | 0.080 | 0.381
64K 0.020 | 0.044 | 0.370 || 0.024 | 0.059 | 0.450
128K 0.010 | 0.040 | 0414 || 0.014 | 0.050 | 0.488
256K 0.003 | 0.030 | 0433 || 0.014 | 0.028 | 0.498
512K -0.006 | 0.030 | 0.370 || 0.003 | 0.021 | 0.426
) Block Size: 64 Bytes Block Size: 128 Bytes
Cache Size
8to-4 | 4-to-2 | 2-to-1 | 8to-4 | 4-to-2 | 2-to-1
32K 0.044 | 0113 | 0521 | 0.051 | 0.197 | 1.292
64K 0.039 | 0.090 | 0582 || 0.060 | 0.141 | 1.316
128K 0.023 | 0.083 | 0.609 | 0.046 | 0.104 | 1.295
256K 0.012 | 0.059 | 0.607 | 0.044 | 0.044 | 1124
512K 0.000 | 0.048 | 0.526 || 0.022 | 0.018 | 0.905

Table 8: Smoothed missratio spreads for Ardent unified caches

-27 -

5.2.3. Replacement Algorithms

While studying the effects of set-associativity, we observed that data cache miss rates for
certain combinations of cache and block size data caches can actually increase with increasing
associativity. For the Cray kernels, thisincrease is as large as 30 percent as the set size increases
from two to four to eight. For the Ardent workload, based on real applications rather than small
kernels, the increase is dight but apparent.

One paper [Smit83] noted that LRU and FIFO replacement can lead to 100 percent miss
ratios in small, fully-associative instruction caches when program loops are larger than the cache
size. Under such conditions, random replacement provides superior performance compared to
both LRU and FIFO. While the data caches we study are much larger than the small instruction
buffers analyzed in that study, we believe that similar effects are occurring within cache sets
when the number of blocks which map into a set islarger than the set size.

To test this theory, set-associative data cache simulations were repeated for the Ardent
traces using the stack-based implementation of random replacement described in [Matt70]. Fig-
ure 7 compares Ardent data cache miss ratios with random replacement vs. data cache miss
ratios with LRU replacement. The various curves in the figure are parameterized by cache size.
The figure shows that there is effectively no consistent difference in performance between ran-
dom and LRU replacement. With random replacement, miss ratios no longer increase with
increasing associativity, but neither is there a significant improvement in performance. LRU
replacement performs dightly better than random replacement when the set size is small, while
random replacement is slightly better for larger set sizes.

6. Estimated Performance I mpact

So far we have provided fairly strong evidence supporting the use of vector caches. This
evidence, however, consists mainly of time-independent metrics such as cache miss ratios and
ratios of miss ratios. The performance impact of caching vector references on machine perfor-
mance is the actual issue, and we consider this by using our measured cache miss ratios to esti-
mate average memory access delays. Our results suggest that vector caches can significantly
reduce the time needed to gain access to data in memory.

Before proceeding, we should mention that reducing memory access delays may not always
trandate into large performance gains in a vector machine. Vector machines typically reference
long vectors in a pipelined fashion, which reduces the average delay seen per individual refer-
ence. Vector processors can also request data well before it is used, athough this generally
requires significant programming effort. Still, applications can often be coded to perform well in
an environment where memory is many cycles away.

-28-

6.1. Mean Delay Per Memory Reference

We can compare the memory system performance of caching vs. non-caching vector pro-
cessors by estimating the average delay seen by each memory reference. In a machine using a
cache, the mean delay is approximately the product of the cache miss ratio and the time to ser-
vice a cache miss. This estimate assumes that copy-back caches with write buffering are
employed to minimize the effect of data writes on average delays [Smit79]. The time to service
a cache missis the sum of (a) memory system latency, and (b) cache block size divided by total
memory bandwidth. Given a memory latency of L cycles, a block size of B bytes, a bus width of

W bytes, and C cycles per bus transfer, the miss service time (in cycles) isequal to L + C(%).

This calculation assumes no fetch bypass or wrap-around load; instead, the entire line is fetched
and then accessed.

A non-caching vector processor encounters main memory delays at: (1) branches in the
instruction stream, (2) the first element of a vector load, and (3) scalar loads. Instruction refer-
ences following a branch and vector loads following the first load cause no additional delay, as
these accesses are overlapped in a pipelined memory system. Note that assumption (1) is some-
what unfair by ignoring the use of commonly used instruction buffers. We make this assump-
tion, however, to show that even small instruction caches are extremely effective relative to a
machine which does not cache instructions. Similarly, (2) and (3) assume that a vector machine
stalls on each pending scalar or vector load, which is clearly a worst-case scenario. We aso
assume that stores to memory are buffered, and only the occasiona store which overflows the
store buffers will cause delays. We assume that such stores make up 10 percent of the total
[Smit79].

Two sets of parameters were used to compute a range of mean delays per memory refer-
ence for the Ardent traces. The first set of parameters assumes a memory latency of 14 cycles,
an eight-byte bus, and a transfer rate of eight bytes per cycle. These values correspond closely
to Cray X-MP and Ardent Titan memory system parameters. The second set of parameters
assumes a memory latency of 45 cycles, an eight-byte bus, and a transfer rate of eight bytes per
cycle. The longer memory latency corresponds roughly to the memory system parameters of a
Cray 2.

Figures 8 and 9 show mean delays per memory reference for Ardent fully-associative
instruction, data, and unified caches. The figures show average delay vs. cache block size, with
curves in each figure parameterized by cache size. Each graph also shows mean delays per
reference without caches for comparison. For data and unified caches, which support combina-
tions of instruction, scalar, and vector references, mean delays without caches are separately
plotted for the different reference classes.

-29.

Block Size = 16 bytes Block Size = 32 bytes
0.081 0.051
—— LRU —— LRU
- — — random - — — random
32 Khytes 0.04-
M 0,06 ¥\ M
I e R [
S 64 Kbytes S 32 Kbytes
S S 0.031 N
R 0.041 - R 64 Kbytes
a 128 Kbytes a S -
0.021 S .
t t 128 Kbytes
| | \
0 0.021 256 Kbytes o | 000000
0.011 256 Kbytes
12 Kbyt
> bytes 512 Kbytes
0.00 - - - - 0.00 - - - -
0 2 4 6 8 0 2 4 6 8
Associativity Associativity

Block Size = 64 bytes

0.031
——— LRU
- — — random
M
I
S 0.021 o
S 32 Kbytes
R 64 Kbytes
a NS
b o1 — -
| 128 Kbytes
0 \
 256Kbytes
512 Kbytes
0.00 T T T]
0 2 4 o _6 8
Associativity

Figure 7: Set-associative Ardent data cache miss ratios for block sizes of 16, 32, and 64 bytes.
For each cache size (labeled in kbytes), missratios are plotted for LRU and random replacement.

-30-

Instruction Caches Data Caches
10.0001)
10.0001 O uncached scalar data
uncached instructions A @l data uncached
|
Mi1oo0f - 5 M - T
e ~_ Tt~ ____ NN - &K
- -X I N
a - 4K a’ 22— =~ _9 uncached vector data
n R n N -
T [15
Do - T - 8K 5 Il 7/
e ST ek T o
| ~ € SO T~ - - 128K
a e 32K ;0-100' oo
y 0.0107 y s
e
0.001 r r ' 0.010 r r r
16 32 64 128 16 32 64 128
Block Size (bytes) Block Size (bytes)
Unified Caches
10.0001
o uncached scalar data
al references uncached
lVA
M ~ X
e 1~ uncached instructions
a1.000 \\\\\érﬂgl’kgl,m(
n :\“\Eﬂ”-“—fSK
"~ - _ uncached vector data
D \ B [+ ¢
(Ia T
0.1001 ~ S~ T T -
a S S -~ 64K
y [
e T e
T - m1kK
0.010 T r .
16 32 64 128

Block Size (bytes)

Figure 8: Mean delay per memory reference (cycles) for Ardent fully-associative instruction, data, and unified
caches. Plots are labeled by cache size (Kbytes), and delays without caches are also shown for the different refer-
ence types. Memory latency is 14 cycles, and transfer timeis 1 cycle per 8-byte word.

-31-

Instruction h D h
10,0001 struction Caches 1000- ata Caches
R g Uncached instructions
e o uncached scalar data
I\éll.ooo- I M 4 all datauncached
- 4K e
~ 10.01
a \\\\\\\‘ a]
n B n NP
0.1001 T T T 16K N uncached vector data
D f\\\\\ D :i\\\:\::g,~~"~~ﬂ aK
.e B
a 10' \\\\\\\\:::\\\\\‘\-R]_GK
y 00101 - a o Bk
| - y R R -7 ¢
T el Tl T 128K
64K ~ ~—
—— 256K
0.001 . . ' 01 : : _ - 51K
16 32 64 128 16 32 64 128
Block Size (bytes) Block Size (bytes)
100.000- Unified Caches
O uncached scalar data
M10.0001 all references uncached
] A
e]
a | ~ _uncached instructions_ _ _ _ oK
n - uncached vector data- — — — 4K
1000 ~>- T 8K
D P
e R -
| ~ T _—_— - 32K
a Sot.L To-— LT ek
y 01001 - -7 128K
| ST o6k
T - 51K
0.010 T T T
16 32 64 128

Block Size (bytes)

Figure 9: Mean delay per memory reference (cycles) for Ardent fully-associative instruction, data, and unified
caches. Plots are labeled by cache size (Kbytes), and delays without caches are also shown for the different refer-
ence types. Memory latency is 45 cycles, and transfer timeis 1 cycle per 8-byte word.

-32-

As the figures show, caches of even a few kilobytes can improve memory access perfor-
mance relative to systems without caches. Scalar references benefit most, while instruction and
vector references can be pipelined and thus require larger caches to realize performance
improvements. Note that the average delay per uncached vector reference is actually quite low,
as one might expect in carefully tuned vectorized applications. We note again that the Ardent
traces are drawn from real production applications, and that care has (presumably) been taken to
minimize memory access delays.

It is also interesting to note that because of very low miss rates, memory access delays in
large caches are quite tolerant of increasing memory latency. Access delays remain reasonably
stable as memory latency increases from 14 cycles to 45 cycles.

Block Sizes Which Minimize M ean Delay
) Ardent [Smit87]
Cache Size - — - —
Instruction | Data | Unified || Instruction | Data | Unified

1K 128 32 64 64 32 32

2K 128 32 64 64 32 64

4K 128 64 64 128 64 64

8K 128 128 64 128 64 128
16K 128 128 128 128 64 128
32K 128 128 128 128 128 128
64K 128 128 128 - - -
128K 128 128 128 - - -
256K 128 128 128 - - -
512K 128 128 128 - - -

Table 9: Block sizes which minimize mean access delays for instruction, data, and unified caches.
Results for the Ardent traces are identical for memory latencies of 14 and 45 cycles. Results from
[Smit87] are for amemory latency of approximately 40 cycles.

We can also use average access delays to determine the best choice of block size for a par-
ticular cache size. While increasing block size usually reduces miss ratios, the improvement in
miss ratio is offset somewhat by the increase in service time for a cache miss. Eventualy, we
reach a point where delays are minimized, and further increases in block size reduce perfor-
mance. The block sizes which maximize performance, which are identical for both 14 and 45
cycle memory latencies, are presented in Table 9, along with results from [Smit87] for a memory
latency of approximately 40 cycles. Our optimal block sizes are slightly larger than measured in
[Smit87], due to the increased spatial locality in vector applications and our wider bus width (8
bytes vs. 4 bytes). Note that in both this and the earlier study, the maximum block size con-
sidered was 128-bytes; better performance might be obtained with still larger block sizes.

-33-

6.2. Machine Performance

Trandating these observed reductions in mean access delay into performance speedups is
difficult, as vector machines have the ability to overlap memory system delays with useful work.
This section provides estimates for a worst-case scenario in which a vector machine always halts
until the completion of each memory reference. Our model thus gives an upper bound on the
performance effect of a vector cache; in another study which uses a detailed timing simulation
[Gee92], we find quantitatively similar results.

At peak performance, a vector processor can produce and store floating-point results back
to memory on every cycle. The average performance of a vector machine is well below peak
due to a number of factors, including (1) nonvectorized and integer execution, (2) memory
access delays, and (3) paging and I/O, We create a simple model which assumes that average
performance is limited mainly by vector access delays. In other words, a vector machine can, on
average, produce one result every 1+ Do CycCles, where D IS the mean delay per vector
reference. Therefore the average performance of a vector processor, as a fraction of peak perfor-
mance, is given by the following equation:

I:)ave - 1
I::'peak 1+ Dvector

While this model is clearly oversimplified, it has the useful property that it can be used to esti-
mate the maximum possible speedup brought about by a vector cache. This maximum speedup
isthe ratio of the average performance with cache to the average performance without cache:

_ 1+ Dvector (memory)
max —

1+ Dvector (cache)

This maximum speedup can be calculated using mean vector access delays from the previ-
ous section. From Table 10, the mean delay accessing each vector element from memory is (a)
0.85 cycles and (b) 2.7 cycles for memory latencies of (a) 14 cycles and (b) 45 cycles. A 512
KByte data cache can reduce the mean delay per vector reference to roughly 0.1 cycles. Substi-
tuting 0.85 cycles for Dyecor (memoryy @A 0.1 cycles fOr Dyecor cache) WE g€t @ maximum cache-
induced speedup of 1.7 for a memory latency of 14 cycles. For a memory latency of 45 cycles,
substituting 2.7 cycles for Dyeor memoryy F€SUItS in @ maximum speedup of 3.4. Given the trend
towards longer memory latencies, vector caches could improve performance by even larger fac-
tors in future machines.

Ardent Mean Delay Per Memory Reference Without Cache (cycles)
Reference Type Memory Latency (cycles)
14 45
instructions 0.8996 2.8916
scalar data 9.3525 30.0615
vector data 0.8471 2.7229
scalar and vector data 5.6728 18.2340
instructions and all data 2.3041 7.4061

Table 10: Mean delay per memory reference (cycles) without caches

We can validate these estimates against results from [Gee92], where we presented the
results of detailed timing simulations of proposed vector cache machines based on the Ardent
Titan. The proposed machine had a maximum execution rate of 128 megaflops, based on a 64
MHz vector pipeline. The memory latency was roughly 40 cycles. Machine models with caches
up to 4 Mbytes were simulated, along with a model which referenced all data from memory.
The average speedup measured over a wide range of applications was roughly 2x, and speedups
up to 4x were measured on applications making large numbers of scalar references. This agrees
reasonably well with the 3.4x speedup estimated here for a machine with a 45-cycle memory
latency. Note that in one case the addition of a cache caused a decrease in performance; that was
for an FFT which used a dataset larger than the cache size. Generally, such poor results can be
avoided by using tiling type algorithms rather than ones that assume a uniform flat memory sys-
tem.

7. Conclusions

We have provided a detailed evaluation of cache performance in avector processor. Work-
loads were constructed from a large number of address traces from CRAY X-MP and Ardent
Titan vector machines. The Titan traces in particular came from real workloads which were
heavily used at Ardent Computer. Both vectorized as well as scalar workloads were analyzed.
We began by examining the spatial and temporal locality in the workloads. We then measured
cache miss ratios over a range of cache sizes, block sizes, and associativities. Finaly, we
estimated the performance impact of a vector cache using memory system parameters typical of
current vector machines.

Temporal locality was characterized with reference counts and reference intervals, spatial
locality was characterized with ratios of cache missratios. The results are reasonably consistent

-35-

between the Cray and Ardent traces. Large amounts of temporal and spatial locality are present
in instruction and scalar references. Vector references contain lesser, but still significant amounts
of temporal locality. Spatial locality in vector references is very strong in the Ardent traces, but
weaker in the Cray traces due to large strides in the Cray kernels. Since the Cray kernels are
small programs used to test CPU performance, we have more confidence in the Ardent results,
which were measured from real production applications.

Cache miss ratios were measured for fully-associative caches ranging from 128 bytes to 4
Mbytes, with block size varying from 16 to 128 bytes. Compared to the design target miss
ratios [Smit87], Ardent and Cray instruction and unified cache miss ratios are significantly
lower, as multiprogramming misses are absent from uniprogrammed vector workloads. Ardent
data cache miss ratios agree fairly well with the design targets, while Cray data cache miss ratios
are nearly five times larger due to low spatial locality in Cray vector references. Ardent miss
ratios are also lower than observed results for the SPEC floating-point suite of benchmarks,
which were also analyzed in a uniprogramming environment.

We also examined the effect of set-associativity on cache performance, and found that set
sizes larger than two do not have a significant effect on miss ratios. Under certain cir-
cumstances, data cache miss ratios actually increased dightly with increasing set size. We
found that random replacement eliminates this phenomenon, although the average performance
difference between the two replacement schemesis negligible.

Finally, we evaluated the performance effect of a vector cache by comparing mean delays
per reference, which correspond to the average delay seen by each reference due to cache misses
and memory system latency. Two sets of memory system parameters were chosen to represent a
range of vector machines. Scalar references benefit most from data caches, as, unlike instruction
or vector references, memory latency cannot be amortized over a string of contiguous references.
Delays for instruction and vector references, while low, can aso be reduced significantly by
caching. The mean delays were then used to estimate the maximum performance improvement
due to a vector cache. Estimated maximum speedups ranged from 1.7 to 3.4, based on memory
latencies of 14 and 45 cycles. These estimates are in line with results from a detailed timing
simulation study of vector cache machines [Gee92].

In summary, caches can significantly improve the performance of a vector processor.
Locdlity in vector applications is sufficiently strong that even moderately-sized caches can
improve the performance of vector references. Although it is possible to avoid caches by pro-
gramming around long memory latencies, the time and cost of this process can be large, and
counters the modern practice of substituting machine time for people time. Memory latencies
are also increasing relative to processor speeds [Neve89], which complicates the tuning process
and further supports the use of vector caches.

-36 -

Bibliography

[Abu86] W. Abu-Sufah and A.D. Malony, ‘‘Experi-
mental Results for Vector Processing on the Alliant
FX/8," CSRD Rpt. No. 539, University of Illinois,
Urbana, IL, 1986.

[Bail85] D.H. Baley and J.T. Barton, ‘‘The NAS
Kernel Benchmark Program,”” NASA Technical
Memorandum 86711, August 1985.

[Borg90] A. Borg, R.E. Kesder, and D.W. Wall,
“‘Generation and Analysis of Very Long Address
Traces,” Proc. 17th Int'l Symp. Comp. Arch., May,
1990, Seattle, WA, pp. 270-279.

[CalaB5] D.A. Calahan, **An Analysis and Simulation
of the CRAY X-MP Memory System,”’ Proceedings
of the First International Conference on Supercom-
puting Systems, December, 1985, St. Petersburg, FL,
pp. 568-574.

[Cala88] D.A. Calahan, ‘' Performance Evaluation of
Static and Dynamic Memory Systems on the CRAY -
2,"" Proceedings of the 1988 International Conference
on Supercomputing, July, 1988, St. Malo, France, pp.
519-524.

[Call90] D. Callahan and A. Porterfield, ** Data Cache
Performance of Supercomputer Applications,’”
Proceedings Supercomputing ‘90, November, 1990,
New York, NY, pp. 564-572.

[Cast87] M.J. Castillo, Instruction and Address Trac-
ing and Analysis For The CRAY X-MP, Master's
Report, University of California, Berkeley, 1987.

[Cham83] JM. Chambers, W.S. Cleveland, B.
Kleiner, and P.A. Tukey, Graphical Methods for Data
Analysis, Duxbury Press, Boston, 1983.

[Chas88] M. Chastain, G. Gostin, J. Mankovich, and
S. Wallach, ‘* The Convex C240 Architecture,”’ Proc.
Soring Compcon 88, February, 1988, San Francisco,
CA, pp. 321-329.

[Cheu84] T. Cheung and J. Smith, ‘‘An Analysis of
the CRAY X-MP Memory System,”’ Proceedings of
the 1984 International Conference on Parallel Pro-
cessing, August, 1984, Bellaire, M1, pp. 499-505.

[Clar86] R.S. Clark, and T.L. Wilson, ‘*Vector Sys-
tem Performance of the IBM 3090, IBM Systems
Journal, val. 25, no. 1, 1986, pp. 63-82.

[Died88] T. Diede, C. Hagenmaier, G. Miranker, J.
Rubinstein, and W. Worley, ‘‘The Titan Graphics
Supercomputer Architecture,’’ Computer, September
1988, pp. 13-30.

[Eoya88] C. Eoyang, R.H. Mendez, and O.M.
Lubeck, ‘*The Birth of the Second Generation: The
Hitachi S-820/80,"" Proceedings Supercomputing ' 88,
November, 1988, pp. 296-303.

[Gee9l] J. Gee, M.D. Hill, D. Pnevmatikatos, and
A.J. Smith, *‘ Cache Performance of the SPEC Bench-
mark Suite,’ U.C. Berkeley Technica Report no.
UCB/CSD 91/648 and University of Wisconsin at
Madison Computer Sciences Department Technical
Report no. 1049, September, 1991.

[Gee92] J. Gee and A.J. Smith, ‘‘The Performance
Impact of Vector Processor Caches,’’ Proc. of the
25th Hawaii Int’'l Conf. on System Sciences, Kauai,
HI, Jan. 1992, pp. 1:437-448.

[Grif84] JH. Griffin and M.L. Simmons, Los Alamos
National Laboratory Computer Benchmarking 1983.
Tech. Report LA-10151-MS, Los Alamos National
Laboratory, June 1984.

[Hill87] M.D. Hill, Aspects of Cache Memory and
Instruction Buffer Performance, Ph.D. Dissertation,
University of California, Berkeley, 1987.

[Hill89] M.D. Hill and A.J. Smith, ‘*Evaluating Asso-
ciativity in CPU Caches,’’ IEEE Transactions on
Computers, vol. 38, no. 12, December, 1989, pp.
1612-1630.

[Lazo88] C. Lazou, Supercomputers and their Use,
Oxford University Press, 1988.

[LeeB4] JK.F. Lee and A.J. Smith, ‘‘Branch Predic-
tion Strategies and Branch Target Buffer Design,”’
Computer, January, 1984, pp. 6-22.

[Lube85] O. Lubeck, J. Moore, and R. Mendez, ‘A
Benchmark Comparison of Three Supercomputers:
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,”’
Proceedings of the First International Conference on
Supercomputing Systems, December, 1985, St. Peters-
burg, FL, pp. 320-327.

[Matt70] R.L. Mattson, J. Gecsel, D.R. Sutz, and
L.L. Traiger, ‘‘Evaluation Techniques for Storage
Hierarchies,”” IBM Systems Journal, 2, 1970, pp. 78-
117.

[McKe69] McKeéllar and E.G. Coffman, Jr., ‘*Organ-
izing Matrices and Matrix Operations for Paged
Memory Systems’’ Comm. ACM, vol. 12, no. 3,
1969, pp. 153-165.

[McMa86] F.H. McMahon, ‘‘The Livermore Fortran
Kernels: A Computer Test of the Floating-Point Per-
formance Range,’’ Lawrence Livermore National

-37-

Laboratory, UCRL-53745, December 1986.

[Neve89] K.W. Neves, ‘‘Supercomputers. The Next
Generation,”” Scientific Information Bulletin, vol. 14,
no. 4, 1989.

[Perl89] C.H. Perleberg and A.J. Smith, ‘‘Branch Tar-
get Buffer Design and Optimization,”” Technica
Report No. UCB/CSD 89/552, University of Califor-
nia, Berkeley, 1989.

[Pneva0] D. Pnevmatikatos, M. D. Hill, **Cache Per-
formance of the Integer SPEC Benchmarks on a
RISC,” Computer Architecture News, vol. 18, 2,
June, 1990, pp. 53-68.

[Przy88] S. Przybylski, M. Horowitz, J. Hennesy,
‘“‘Performance Tradeoffs in Cache Design,”’ Proc.
15th Int'l Symp. Comp. Arch., May, 1988, Honolulu,
HI, pp. 290-298.

[Sang84] J. Sanguinetti, ‘* Program Optimization for a
Pipelined Machine,’ Proc. 1984 Sgmetrics, August,
1984, Cambridge, MA, pp. 88-93.

[Smit79] A.J. Smith, ‘‘Characterizing the Storage
Process and Its Effect on the Update of Main Memory
by Write Through,”” Journal of the ACM, vol. 26, no.
1, January, 1979, pp. 6-27.

[Smit82] A.J. Smith, ** Cache Memories,”” ACM Com+
puting Surveys, vol. 14, no. 3, September, 1982, pp.
474-529.

[Smit85] A.J. Smith, ‘‘Cache Evaluation and the
Impact of Workload Choice,’’ Proceedings of the
12th International Symposium on Computer Architec-
ture, June, 1985, Boston, MA, pp. 64-73.

[Smit87] A.J. Smith, ‘‘Line (Block) Size Choices for
CPU Cache Memories,”’ |EEE Transactions on Com-
puters, vol. C-36, no. 9, September, 1987, pp. 1063-
1075.

[Smit83] J.E. Smith, and J.R. Goodman, ‘‘A Study of
Instruction Cache Organizations and Replacement
Policies,”” Proc. 10th Int'l Symp. Comp. Arch., June,
1983, pp. 132-137.

[S0884] K. So and V. Zecca, * Cache Performance of
Vector Processors,’” Proc. 15th Int'l Symp. Comp.
Arch., May, 1988, Honolulu, HI, pp. 261-268.

[So88b] K. So and V. Zecca, ‘‘Program Locality of
Vectorized Applications Running on the IBM 3090
with Vector Facility,”” 1BM Systems Journal, vol. 27,
no. 4, 1988, pp. 436-452.

[SPEC89] SPEC newsletter, Vol 1, 1, Fall 1989.

[Triv77] K.S. Trivedi, ‘**On the Paging Performance
of Array Algorithms,”’ |EEE Trans. Comp., vol. C-26,
no. 10, October, 1977, pp. 938-947.

[Tuck86] S.G. Tucker, ‘“The IBM 3090 System: An
overview,”” IBM Systems Journal, vol. 25, no. 1,
1986, pp. 4-19.

-38-

Appendix

This appendix contains various figures and tables omitted from the main text due to space
limitations. Included are tables of miss ratios, ratios of miss ratios, and memory access delays.
Some of this datais also present in the main text in graphical form.

In addition, there are a number of results here which pertain only to the Cray traces. Aswe
considered these traces to be far less realistic than the Ardent traces, we omitted much of the
Cray results from the main text but present them here for completeness.

SO —0O =Tl

00> =0

SO —0O =Tl

00> -0

-39-

1.01
0.9-
0.81
0.7 1
0.61
051 /
Iy o instruction
L T scalar
044/ b === vector
w ! all
f/ i
0_3 T “““‘Il T LN § T LENLELELELEY | T LB §
1 10 100 1000 10000
References to an Address
Cray Scalar Workload
1.01 B ‘7//7,,,,‘
0.91
0.81
0.71
061
i
I
051
S instruction
o T scalar
o4 = - vector
al
0_3 T LB | T LB | T Ty T T
1 10 100 1000 10000

References to an Address

SO ——0O =Tl

00> -0

SO —0O =Tl

00> =0

Cray Nas Worklo
1.07 =
0.9- T
J
’_/
‘/
08{ -
,/’/
071/
,/’
0.61
0.51
"""""""" instruction
S/ T scalar
1/ o= vector
0.4 i
0.3 +————e——————m
1 10 100 1000 10000
Referencesto an Address
All Cray Workloads
1.0 PR —

instruction
scaar

0.3

1 10 100 1000 10000

References to an Address

Figure Al: Cray reference counts for individual workloads and for all

workloads combined.

—+~0 SO ——0 =T

ne+5—

-+~ 0 S5O ——0 =Tl

ne+5—

-40-

Cray Loops Workload
1.0 R
0.81
0.61
0.41 /)
,/’/"l
/i
/ ;"
A instruction
0.2 / P T scalar
oo e vector
p — al
0_0 : “‘/“‘7: AL LR | LU | HELEREURERN |
1 10 100 1000 10000 100000
Reference Intervals
. Cray Scalar Workload
1.01
T~
/ ,"”’//
/)
0.81 //' |
/ /
/! I
/ I
/ /
0.61 // g /
e |
/ /
, /
// /
0.41 i /
/] /
i /
i/ /
) instruction
0.2 . scalar
/A vector
O all
s
0.0 - L T v T]
1 10 100 1000 10000 100000

Reference Intervals

—+~ 0 SO——0 =Tl

ne—~+35—

—+ 0 SO——0O =Tl

n—~+5—

1.01

0.41

0.21

Cray Nas Workload

-

/'/// /
[
i 4
I |
/ /
/ I
i /
I /
Fs £ e instruction
/ /

- A scalar
. S e vector
s / al

/o

0.0+

10 100 1000 10000 100000

Reference Intervals

Figure A2: Cray reference intervals for individual workloads and for all

workloads combined.

-0 O——0 0

wo——o 1

-41 -

105, Cray Loops Workload Los- Cray Nas Workload
Block Size g Block Size
t
|
1.001 O 1.001
0
f
R
0.751 a 0.751
t
|
0
S
0.50 T T J 0.50 T T
1 10 100 1000 1 10 100
Cache Size (kbytes) Cache Size (kbytes)
- Cray Scalar Workload
R Block Size
a
t
|
O 1.001
0
f
R
a 0.751
t
|
0
S
0.50 +—m—m™mM@™M8m™r—————r————
1 10 100 1000

Cache Size (kbytes)

Figure A3: Cray ratios of miss ratios for individual workloads and for all
workloads combined.

1000

-0 O——o 0

wo——o 1

-0 O——o D

»nwo——o 0

1.251

1.001

0.751

0.50

1.257

1.00+

0.751

0.50

Cray Instructions

-42-

Block Size
——————————————— 32
********* 64
128
1 1IO 1(I)O 10IOO
Cache Size (kbytes)
Cray Vector Data
Block Size
1 10 100 1000

Cache Size (kbytes)

-0 O——0 0

wo——o X0

-0 O——0 0

wo——o 0

1.251

1.001

0.751

0.50

1.257

1.00+

0.751

0.50

Cray Scalar Data

Block Size

10 100 1000
Cache Size (kbytes)
All Cray References

Block Size

10 100 1000
Cache Size (kbytes)

Figure A4: Cray ratios of miss ratios for all workloads plotted on the
basis of instructions (upper left), scalar data (upper right), vector data
(lower left), and all references (lower right).

-43-

105 Ardent Vector Workload
I; Block Size
t T 32
o 64
| 128
O 1.004
0
f
R
a 0.751
t
|
0
S
0.50 —
1 1000
Cache Size (kbytes)
Lo5- Ardent Scalar Workload
I; Block Size
t
|
O 1.004
0
f
R
a 0.751
t
|
0
S
0.50
1

Cache Size (kbytes)

Figure A5: Ardent ratios of miss ratios for individual workloads.

1.00001

M 0.10001

O——o 0 wnw-—

0.0001

0.01001

0.00101

Instruction Caches 1.000- Data Caches
—— Cray 1 —— Cray
-~ SPEC] -~ SPEC
""""" design target 1 “ design target
32 bytes M]
[
s 01001
S
R
a
t 0.0101
I |
\ 0
T T T 1 0.001 AL AL AL AL
10 100 1000 10000 1 10 100 1000 10000
Cache Size (kbytes) Cache Size (kbytes)
Unified Caches
1.0001
] —— Cray
- - - SPEC
"""""" design target
M |
[
s
R 32 bytes. |
a
t 00101
|]
0] ‘. 32bytes
0.001 +————"—————————————
1 10 100 1000 10000

Cache Size (kbytes)

Figure A7: Fully-associative Cray vs. design target and SPEC floating
point missratios. Curves are parameterized by block size.

-45-

Fully Associative Cache Miss Ratios

Ardent Instruction Cray Instruction
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.1859 | 0.1059 | 0.0783 | 0.0625 || 0.4263 | 0.2835 | 0.1820 | 0.1251
256 0.1614 | 0.0910 | 0.0583 | 0.0406 || 0.2720 | 0.1997 | 0.1339 | 0.0915
512 0.1216 | 0.0725 | 0.0460 | 0.0300 || 0.1479 | 0.0845 | 0.0724 | 0.0465
1K 0.0883 | 0.0505 | 0.0307 | 0.0238 || 0.1132 | 0.0648 | 0.0398 | 0.0272
2K 0.0725 | 0.0412 | 0.0241 | 0.0155 || 0.0777 | 0.0448 | 0.0279 | 0.0187
4K 0.0434 | 0.0268 | 0.0176 | 0.0119 || 0.0139 | 0.0084 | 0.0156 | 0.0105
8K 0.0139 | 0.0074 | 0.0045 | 0.0031 || 0.0105 | 0.0061 | 0.0044 | 0.0028
16K 0.0088 | 0.0048 | 0.0029 | 0.0018 || 0.0053 | 0.0029 | 0.0020 | 0.0018
32K 0.0021 | 0.0011 | 0.0008 | 0.0006 || 0.0050 | 0.0028 | 0.0016 | 0.0009
64K 0.0003 | 0.0002 | 0.0001 | 0.0001 || 0.0050 | 0.0028 | 0.0016 | 0.0009
Ardent Data Cray Data
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.3881 | 0.3138 | 0.3443 | 0.3985 || 0.7129 | 0.6619 | 0.5714 | 0.5155
256 0.3173 | 0.2509 | 0.2283 | 0.2709 || 0.6617 | 0.6128 | 0.5319 | 0.4719
512 0.2491 | 0.1963 | 0.1710 | 0.1713 || 0.5945 | 0.5708 | 0.4822 | 0.4386
1K 0.1749 | 0.1320 | 0.1270 | 0.1185 || 0.4641 | 0.4982 | 0.4571 | 0.3919
2K 0.1381 | 0.0816 | 0.0762 | 0.0884 || 0.4488 | 0.3236 | 0.3515 | 0.3656
4K 0.1191 | 0.0657 | 0.0402 | 0.0461 || 0.4023 | 0.2630 | 0.2194 | 0.2578
8K 0.0990 | 0.0531 | 0.0315 | 0.0213 || 0.3119 | 0.1992 | 0.1740 | 0.1565
16K 0.0821 | 0.0427 | 0.0235 | 0.0151 || 0.2307 | 0.1227 | 0.1212 | 0.1230
32K 0.0678 | 0.0349 | 0.0183 | 0.0103 || 0.1329 | 0.1063 | 0.0941 | 0.0613
64K 0.0561 | 0.0285 | 0.0145 | 0.0079 || 0.0611 | 0.0524 | 0.0473 | 0.0073
128K || 0.0389 | 0.0195 | 0.0099 | 0.0051 || 0.0051 | 0.0027 | 0.0014 | 0.0008
256K 0.0237 | 0.0119 | 0.0060 | 0.0030 || 0.0051 | 0.0027 | 0.0014 | 0.0008
512K 0.0141 | 0.0071 | 0.0036 | 0.0018 || 0.0051 | 0.0027 | 0.0014 | 0.0008
M 0.0068 | 0.0034 | 0.0017 0.0027 | 0.0014 | 0.0008
2M 0.0032 | 0.0016 0.0014 | 0.0008
Ardent Unified Cray Unified
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.3061 | 0.2306 | 0.2170 | 0.3908 || 0.6818 | 0.5867 | 0.5110 | 0.5672
256 0.2455 | 0.1682 | 0.1584 | 0.1707 || 0.6187 | 0.5318 | 0.4446 | 0.4231
512 0.2096 | 0.1399 | 0.1086 | 0.1050 || 0.5108 | 0.4852 | 0.3975 | 0.3491
1K 0.1536 | 0.1124 | 0.0819 | 0.0726 || 0.4267 | 0.4076 | 0.3489 | 0.3056
2K 0.1140 | 0.0758 | 0.0558 | 0.0517 || 0.3075 | 0.2838 | 0.2917 | 0.2712
4K 0.0871 | 0.0509 | 0.0340 | 0.0294 || 0.2457 | 0.2025 | 0.1809 | 0.2147
8K 0.0468 | 0.0261 | 0.0199 | 0.0166 || 0.2237 | 0.1444 | 0.1237 | 0.1271
16K 0.0353 | 0.0187 | 0.0106 | 0.0070 || 0.1687 | 0.0865 | 0.0847 | 0.0853
32K 0.0270 | 0.0141 | 0.0076 | 0.0047 || 0.0951 | 0.0746 | 0.0652 | 0.0423
64K 0.0178 | 0.0091 | 0.0047 | 0.0026 || 0.0452 | 0.0373 | 0.0331 | 0.0053
128K || 0.0123 | 0.0062 | 0.0032 | 0.0017 || 0.0051 | 0.0027 | 0.0015 | 0.0008
256K || 0.0073 | 0.0037 | 0.0019 | 0.0010 || 0.0051 | 0.0027 | 0.0015 | 0.0008
512K || 0.0044 | 0.0022 | 0.0011 | 0.0006 || 0.0051 | 0.0027 | 0.0015 | 0.0008
M 0.0021 | 0.0011 | 0.0005 0.0027 | 0.0015 | 0.0008
M 0.0010 | 0.0005 0.0015 | 0.0008
Table Al: Fully-associative cache miss ratios

-46 -

Data Cache Miss Ratios by Reference Type
Ardent Scalar Data Cray Scalar Data
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.3405 | 0.3346 | 0.4521 | 0.5896 | 0.4060 | 0.4163 | 0.4213 | 0.4793
256 0.2358 | 0.2335 | 0.2515 | 0.3651 || 0.2641 | 0.2575 | 0.3014 | 0.3434
512 0.1579 | 0.1492 | 0.1574 | 0.1921 || 0.1886 | 0.1416 | 0.1421 | 0.2372
1K 0.0915 | 0.0834 | 0.0939 | 0.1077 || 0.1375 | 0.1121 | 0.0858 | 0.0834
2K 0.0605 | 0.0413 | 0.0440 | 0.0649 | 0.1076 | 0.0704 | 0.0612 | 0.0597
4K 0.0493 | 0.0303 | 0.0216 | 0.0245 | 0.0737 | 0.0507 | 0.0368 | 0.0368
8K 0.0392 | 0.0231 | 0.0157 | 0.0120 || 0.0601 | 0.0387 | 0.0289 | 0.0217
16K 0.0320 | 0.0173 | 0.0109 | 0.0077 || 0.0531 | 0.0320 | 0.0195 | 0.0166
32K 0.0294 | 0.0155 | 0.0084 | 0.0050 || 0.0427 | 0.0223 | 0.0117 | 0.0070
64K 0.0273 | 0.0138 | 0.0072 | 0.0038 || 0.0229 | 0.0119 | 0.0065 | 0.0034
128K || 0.0240 | 0.0120 | 0.0061 | 0.0031 || 0.0134 | 0.0071 | 0.0039 | 0.0021
256K || 0.0193 | 0.0097 | 0.0049 | 0.0025 || 0.0134 | 0.0071 | 0.0039 | 0.0021
512K || 0.0186 | 0.0093 | 0.0047 | 0.0024 || 0.0134 | 0.0071 | 0.0039 | 0.0021
M 0.0092 | 0.0046 | 0.0023 0.0071 | 0.0039 | 0.0021
Ardent Vector Data Cray Vector Data
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.4488 | 0.2874 | 0.2069 | 0.1550 | 0.8398 | 0.7635 | 0.6334 | 0.5305
256 0.4212 | 0.2731 | 0.1988 | 0.1508 || 0.8262 | 0.7597 | 0.6272 | 0.5250
512 0.3652 | 0.2563 | 0.1884 | 0.1448 || 0.7623 | 0.7483 | 0.6229 | 0.5219
1K 0.2812 | 0.1939 | 0.1692 | 0.1323 || 0.6807 | 0.6579 | 0.6107 | 0.5194
2K 0.2369 | 0.1330 | 0.1173 | 0.1183 || 0.5850 | 0.4283 | 0.4715 | 0.4921
4K 0.2080 | 0.1107 | 0.0638 | 0.0736 | 0.5369 | 0.3508 | 0.2949 | 0.3492
8K 0.1752 | 0.0914 | 0.0515 | 0.0332 || 0.4154 | 0.2656 | 0.2340 | 0.2122
16K 0.1458 | 0.0750 | 0.0396 | 0.0245 | 0.3041 | 0.1601 | 0.1633 | 0.1669
32K 0.1169 | 0.0597 | 0.0310 | 0.0171 || 0.1703 | 0.1410 | 0.1278 | 0.0838
64K 0.0928 | 0.0472 | 0.0240 | 0.0131 || 0.0769 | 0.0691 | 0.0641 | 0.0089
128K || 0.0578 | 0.0292 | 0.0148 | 0.0077 || 0.0016 | 0.0008 | 0.0004 | 0.0002
256K || 0.0294 | 0.0147 | 0.0074 | 0.0038 || 0.0016 | 0.0008 | 0.0004 | 0.0002
512K || 0.0082 | 0.0042 | 0.0021 | 0.0011 || 0.0016 | 0.0008 | 0.0004 | 0.0002
M 0.0037 | 0.0019 | 0.0010 0.0008 | 0.0004 | 0.0002
2M 0.0014 | 0.0007 0.0004 | 0.0002

Table A2: Fully-associative data cache miss ratios by reference type
(scalar and vector data).

-47 -

Unified Cache Miss Ratios by Reference Type
Ardent Instructions Cray Instructions
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.2280 | 0.1360 | 0.1057 | 0.2905 || 0.5029 | 0.3423 | 0.2930 | 0.5208
256 0.1808 | 0.1079 | 0.0819 | 0.0663 || 0.4130 | 0.2694 | 0.2013 | 0.2159
512 0.1578 | 0.0926 | 0.0602 | 0.0432 || 0.2561 | 0.2282 | 0.1603 | 0.1219
1K 0.1125 | 0.0770 | 0.0488 | 0.0343 || 0.2079 | 0.1390 | 0.0966 | 0.0874
2K 0.0841 | 0.0513 | 0.0334 | 0.0275 || 0.1312 | 0.0825 | 0.0682 | 0.0560
4K 0.0623 | 0.0358 | 0.0235 | 0.0161 || 0.0938 | 0.0525 | 0.0378 | 0.0361
8K 0.0189 | 0.0109 | 0.0114 | 0.0104 || 0.0351 | 0.0227 | 0.0142 | 0.0109
16K 0.0118 | 0.0063 | 0.0038 | 0.0025 || 0.0147 | 0.0099 | 0.0090 | 0.0061
32K 0.0079 | 0.0041 | 0.0022 | 0.0015 || 0.0093 | 0.0056 | 0.0039 | 0.0031
64K 0.0011 | 0.0006 | 0.0004 | 0.0002 || 0.0073 | 0.0043 | 0.0028 | 0.0012
128K || 0.0007 | 0.0004 | 0.0002 | 0.0001 || 0.0050 | 0.0028 | 0.0016 | 0.0009
256K || 0.0004 | 0.0002 | 0.0001 | 0.0001 || 0.0050 | 0.0027 | 0.0016 | 0.0009
512K || 0.0003 | 0.0002 | 0.0001 | 0.0000 || 0.0050 | 0.0027 | 0.0016 | 0.0009
Ardent Scalar Data Cray Scalar Data
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.5205 | 0.5851 | 0.6965 | 1.0000 || 0.5673 | 0.5452 | 0.5693 | 0.7231
256 0.3686 | 0.3350 | 0.4476 | 0.6263 || 0.4373 | 0.4136 | 0.4036 | 0.5072
512 0.2747 | 0.2443 | 0.2482 | 0.3336 || 0.2652 | 0.2565 | 0.2452 | 0.3040
1K 0.1890 | 0.1672 | 0.1491 | 0.1847 || 0.1948 | 0.1433 | 0.1157 | 0.1518
2K 0.1305 | 0.0981 | 0.0879 | 0.0991 || 0.1460 | 0.1045 | 0.0849 | 0.0752
4K 0.0907 | 0.0616 | 0.0497 | 0.0481 || 0.0920 | 0.0636 | 0.0502 | 0.0513
8K 0.0535 | 0.0330 | 0.0262 | 0.0271 || 0.0710 | 0.0430 | 0.0320 | 0.0246
16K 0.0422 | 0.0243 | 0.0156 | 0.0113 || 0.0549 | 0.0335 | 0.0208 | 0.0183
32K 0.0345 | 0.0192 | 0.0113 | 0.0076 || 0.0445 | 0.0233 | 0.0121 | 0.0073
64K 0.0278 | 0.0143 | 0.0077 | 0.0043 || 0.0230 | 0.0119 | 0.0067 | 0.0034
128K || 0.0243 | 0.0122 | 0.0062 | 0.0032 || 0.0134 | 0.0071 | 0.0038 | 0.0021
256K || 0.0194 | 0.0097 | 0.0049 | 0.0025 || 0.0134 | 0.0071 | 0.0038 | 0.0021
512K || 0.0186 | 0.0093 | 0.0047 | 0.0024 || 0.0134 | 0.0071 | 0.0038 | 0.0021
M 0.0092 | 0.0046 | 0.0023 || 0.0134 | 0.0071 | 0.0038 | 0.0021
Ardent Vector Data Cray Vector Data
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128
128 0.4572 | 0.2925 | 0.2099 | 0.1589 || 0.8528 | 0.7728 | 0.6374 | 0.5348
256 0.4404 | 0.2835 | 0.2047 | 0.1566 || 0.8358 | 0.7618 | 0.6295 | 0.5315
512 0.4079 | 0.2639 | 0.1937 | 0.1487 || 0.7883 | 0.7573 | 0.6243 | 0.5247
1K 0.3314 | 0.2347 | 0.1755 | 0.1380 || 0.6957 | 0.7024 | 0.6196 | 0.5198
2K 0.2551 | 0.1810 | 0.1366 | 0.1230 || 0.6040 | 0.5664 | 0.5316 | 0.5008
4K 0.2174 | 0.1189 | 0.0713 | 0.0777 || 0.5467 | 0.4871 | 0.3337 | 0.4056
8K 0.1903 | 0.1000 | 0.0577 | 0.0368 || 0.4199 | 0.3567 | 0.3019 | 0.2497
16K 0.1541 | 0.0787 | 0.0413 | 0.0260 || 0.3221 | 0.2907 | 0.2296 | 0.1677
32K 0.1214 | 0.0621 | 0.0324 | 0.0179 || 0.1753 | 0.1435 | 0.1289 | 0.0838
64K 0.0959 | 0.0485 | 0.0247 | 0.0134 || 0.0805 | 0.0707 | 0.0650 | 0.0089
128K || 0.0599 | 0.0303 | 0.0154 | 0.0081 || 0.0016 | 0.0008 | 0.0004 | 0.0002
256K || 0.0297 | 0.0149 | 0.0075 | 0.0038 || 0.0016 | 0.0008 | 0.0004 | 0.0002
512K || 0.0083 | 0.0042 | 0.0021 | 0.0011 || 0.0016 | 0.0008 | 0.0004 | 0.0002
M 0.0038 | 0.0020 | 0.0010 0.0008 | 0.0004 | 0.0002
2M 0.0014 | 0.0007 0.0004 | 0.0002

Table A3: Fully-associative unified cache miss ratios by reference type
(instruction, scalar, vector).

-48-

Fully Associative Ardent Cache Miss Ratios (4-byte memory interface)

Data Caches
Cache Block Size
Size 16 32 64 128
128 0.2865 0.2317 0.2542 0.2941
256 0.2342 0.1852 0.1685 0.1999
512 0.1838 0.1449 0.1262 0.1265
1K 0.1291 0.0974 0.0938 0.0875
2K 0.1019 0.0602 0.0563 0.0652
4K 0.0879 0.0485 0.0297 0.0340
8K 0.0730 0.0392 0.0232 0.0157
16K 0.0606 0.0315 0.0173 0.0111
32K 0.0501 0.0258 0.0135 0.0076
64K 0.0414 0.0210 0.0107 0.0058
128K 0.0287 0.0144 0.0073 0.0038
256K 0.0175 0.0088 0.0044 0.0022
512K 0.0104 0.0052 0.0026 0.0013
Unified Caches
Cache Block Size
Size 16 32 64 128
128 0.2771 0.2087 0.1964 0.3537
256 0.2222 0.1523 0.1433 0.1545
512 0.1897 0.1267 0.0983 0.0950
1K 0.1390 0.1017 0.0741 0.0658
2K 0.1032 0.0686 0.0505 0.0468
4K 0.0789 0.0461 0.0308 0.0266
8K 0.0424 0.0236 0.0180 0.0151
16K 0.0320 0.0169 0.0096 0.0063
32K 0.0245 0.0128 0.0069 0.0042
64K 0.0162 0.0082 0.0043 0.0023
128K 0.0111 0.0056 0.0029 0.0015
256K 0.0066 0.0033 0.0017 0.0009
512K 0.0039 0.0020 0.0010 0.0005

Table A4: Fully-associative Ardent cache miss ratios as-
suming a 4-byte cache interface

- 49 -

Instruction Cache Ratios of Miss Ratios

Ardent Cray [Smit87]
Cache Block Size Block Size Block Size
Size 32 64 128 32 64 128 32 64 128
128 0570 | 0.739 | 0.798 || 0.665 | 0.642 | 0.687 || 0.687 | 0.955 | 0.929
256 0564 | 0641 | 0.69 || 0.734 | 0.671 | 0.683 || 0.723 | 0.754 | 0.931
512 059 | 0635 | 0.652 || 0.571 | 0.857 | 0.642 | 0.735 | 0.705 | 0.910
1K 0572 | 0608 | 0.775 || 0.572 | 0.614 | 0.683 || 0.693 | 0.790 | 0.801
2K 0568 | 0585 | 0.643 || 0.577 | 0.623 | 0.670 | 0.737 | 0.701 | 0.832
4K 0.618 | 0.657 | 0.676 || 0.604 | 1.857 | 0.673 || 0.651 | 0.660 | 0.831
8K 0532 | 0.608 | 0.689 || 0.581 | 0.721 | 0.636 || 0.598 | 0.667 | 0.690
16K 0546 | 0.604 | 0.621 || 0.547 | 0.690 | 0.900 || 0.581 | 0.624 | 0.657
32K 0524 | 0.727 | 0.750 || 0.560 | 0.571 | 0.563 || 0.581 | 0.624 | 0.634
64K 0.667 | 0.500 | 1.000 || 0.560 | 0.571 | 0.563 - - -
128K 0.667 | 0.500 | 1.000 || 0.560 | 0.571 | 0.563 - - -
Table A5: Instruction Cache Ratios of Miss Ratios
Data Cache Ratios of Miss Ratios
Ardent Cray [Smit87]
Cache Block Size Block Size Block Size
Size 32 64 128 32 64 128 32 64 128
128 0.809 | 1.097 | 1.157 || 0.929 | 0.863 | 0.902 1.004 | 1.328 | 1.439
256 || 0.791 | 0.910 | 1.187 | 0.926 | 0.868 | 0.887 || 0.944 | 1.124 | 1577
512 || 0.788 | 0.871 | 1.002 || 0.960 | 0.845 | 0.910 | 0.956 | 1.122 | 1.314
1K 0.755 | 0.962 | 0933 || 1.074 | 0.918 | 0.857 0.836 | 1.015 | 1.499
2K 0591 | 0934 | 1.160 || 0.721 | 1.086 | 1.040 0.787 | 0.853 | 1.071
4K 0552 | 0.612 | 1.147 | 0.654 | 0.834 | 1.175 0.727 | 0.770 | 0.835
8K 0.536 | 0.593 | 0.676 || 0.639 | 0.874 | 0.899 0.667 | 0.723 | 0.817
16K 0.520 | 0.550 | 0.643 || 0.532 | 0.988 | 1.015 0.646 | 0.672 | 0.747
32K 0.515 | 0524 | 0.563 || 0.800 | 0.885 | 0.651 0.646 | 0.662 | 0.697
64K 0.508 | 0.509 | 0.545 || 0.858 | 0.903 | 0.154 - - -
128K 0.501 | 0508 | 0515 || 0529 | 0519 | 0.571 - - -
256K 0.502 | 0504 | 0500 || 0.529 | 0519 | 0.571 - - -
512K 0.504 | 0.507 | 0500 || 0.529 | 0519 | 0.571 - - -

Table A6: Data Cache Ratios of Miss Ratios

-B50 -

Instruction Caches Data Caches
0.0100- . 1.0007
1 N — Cray 1
N - - - SPEC
hi12
M 48\ M
| N ;\ i
S \\; g 0.100
S 4.8 0y S :
\
RO'OO]'O-: \\\\\\\\\ R
a ‘\\\ \\\ a
t w t
i " j 0.0107
"W]
0 n 0]
\\\\
|
\\
\
0.0001 —_—— 0.001 —r——————————
1 10 100 1000 1 10 100 1000 10000
Cache Size (kbytes) Cache Size (kbytes)
Unified Caches
1.0007
] — Cray
_ __ SPEC
M
l 1
s 01007
. |
R
a
t
j 0.0107
5 |
0.001
1 10 100 1000 10000
Cache Size (kbytes)

Figure A8: Set-associative Cray and SPEC cache miss ra-
tiosfor a 64 byte block size. Curves are labeled by set size.

-51-

Set-Associative | nstruction Cache Miss Ratios

Ardent Cray

Cache | Set Block Size Block Size

Size Size 16 32 64 128 16 32 64 128
32K 1 0.0070 | 0.0039 | 0.0022 | 0.0014 || 0.0077 | 0.0045 | 0.0028 | 0.0020
32K 2 0.0042 | 0.0023 | 0.0013 | 0.0008 || 0.0061 | 0.0036 | 0.0022 | 0.0015
32K 4 0.0029 | 0.0016 | 0.0009 | 0.0006 || 0.0052 | 0.0029 | 0.0017 | 0.0011
32K 8 0.0024 | 0.0013 | 0.0008 | 0.0005 || 0.0050 | 0.0028 | 0.0016 | 0.0010
64K 1 0.0044 | 0.0023 | 0.0013 | 0.0007 || 0.0065 | 0.0037 | 0.0022 | 0.0014
64K 2 0.0011 | 0.0006 | 0.0003 | 0.0002 || 0.0052 | 0.0029 | 0.0017 | 0.0010
64K 4 0.0004 | 0.0002 | 0.0001 | 0.0001 || 0.0050 | 0.0028 | 0.0016 | 0.0010
64K 8 0.0003 | 0.0002 | 0.0001 | 0.0001 || 0.0050 | 0.0028 | 0.0016 | 0.0009
128K 1 0.0007 | 0.0004 | 0.0002 | 0.0001 || 0.0055 | 0.0031 | 0.0018 | 0.0011
128K 2 0.0003 | 0.0002 | 0.0001 | 0.0001 || 0.0051 | 0.0028 | 0.0016 | 0.0010
128K 4 0.0003 | 0.0002 | 0.0001 | 0.0000 || 0.0050 | 0.0028 | 0.0016 | 0.0009
128K 8 0.0003 | 0.0002 | 0.0001 | 0.0000 || 0.0050 | 0.0028 | 0.0016 | 0.0009

Table A7: Set-associative Ardent and Cray instruction cache missratios

Set-Associative Data Cache Miss Ratios

Ardent Cray
Cache | Set Block Size Block Size
Size Size 16 32 64 128 16 32 64 128
32K 1 0.0795 | 0.0444 | 0.0284 | 0.0221 || 0.1473 | 0.1207 | 0.1042 | 0.0967
32K 2 0.0697 | 0.0365 | 0.0199 | 0.0122 || 0.1393 | 0.1186 | 0.1012 | 0.0910
32K 4 0.0678 | 0.0352 | 0.0188 | 0.0109 || 0.1287 | 0.1048 | 0.0942 | 0.0886
32K 8 0.0671 | 0.0347 | 0.0184 | 0.0105 || 0.1324 | 0.1061 | 0.0941 | 0.0879
64K 1 0.0639 | 0.0337 | 0.0190 | 0.0119 || 0.0626 | 0.0470 | 0.0385 | 0.0344
64K 2 0.0559 | 0.0287 | 0.0151 | 0.0083 || 0.0504 | 0.0366 | 0.0296 | 0.0262
64K 4 0.0555 | 0.0283 | 0.0147 | 0.0080 || 0.0570 | 0.0477 | 0.0427 | 0.0403
64K 8 0.0546 | 0.0279 | 0.0144 | 0.0078 || 0.0583 | 0.0512 | 0.0470 | 0.0451
128K 1 0.0444 | 0.0229 | 0.0123 | 0.0071 || 0.0241 | 0.0161 | 0.0119 | 0.0100
128K 2 0.0372 | 0.0190 | 0.0099 | 0.0053 || 0.0079 | 0.0042 | 0.0023 | 0.0014
128K 4 0.0375 | 0.0191 | 0.0098 | 0.0052 || 0.0056 | 0.0030 | 0.0017 | 0.0009
128K 8 0.0379 | 0.0193 | 0.0099 | 0.0052 || 0.0051 | 0.0027 | 0.0014 | 0.0008
256K 1 0.0336 | 0.0172 | 0.0092 | 0.0052 || 0.0165 | 0.0122 | 0.0100 | 0.0090
256K 2 0.0221 | 0.0112 | 0.0057 | 0.0030 || 0.0051 | 0.0027 | 0.0014 | 0.0008
256K 4 0.0225 | 0.0113 | 0.0058 | 0.0030 || 0.0051 | 0.0027 | 0.0014 | 0.0008
256K 8 0.0227 | 0.0114 | 0.0058 | 0.0030 || 0.0051 | 0.0027 | 0.0014 | 0.0008
512K 1 0.0211 | 0.0107 | 0.0056 | 0.0030 || 0.0161 | 0.0120 | 0.0097 | 0.0086
512K 2 0.0143 | 0.0072 | 0.0037 | 0.0019 || 0.0051 | 0.0027 | 0.0014 | 0.0008
512K 4 0.0140 | 0.0071 | 0.0036 | 0.0018 || 0.0051 | 0.0027 | 0.0014 | 0.0008
512K 8 0.0140 | 0.0071 | 0.0036 | 0.0018 || 0.0051 | 0.0027 | 0.0014 | 0.0008

Table A8: Set-associative Ardent and Cray data cache miss ratios

-52-

Set-Associative Unified Cache Miss Ratios

Ardent Cray

Cache | Set Block Size Block Size

Size Size 16 32 64 128 16 32 64 128
32K 1 0.0355 | 0.0211 | 0.0141 | 0.0132 || 0.1077 | 0.0876 | 0.0757 | 0.0712
32K 2 0.0282 | 0.0156 | 0.0093 | 0.0064 || 0.0995 | 0.0835 | 0.0708 | 0.0636
32K 4 0.0262 | 0.0141 | 0.0080 | 0.0050 || 0.0907 | 0.0730 | 0.0651 | 0.0610
32K 8 0.0260 | 0.0139 | 0.0077 | 0.0047 || 0.0935 | 0.0740 | 0.0652 | 0.0607
64K 1 0.0263 | 0.0148 | 0.0089 | 0.0081 || 0.0463 | 0.0343 | 0.0279 | 0.0248
64K 2 0.0193 | 0.0102 | 0.0056 | 0.0034 || 0.0371 | 0.0267 | 0.0215 | 0.0190
64K 4 0.0185 | 0.0096 | 0.0052 | 0.0030 || 0.0411 | 0.0337 | 0.0298 | 0.0280
64K 8 0.0175 | 0.0091 | 0.0048 | 0.0028 || 0.0423 | 0.0363 | 0.0328 | 0.0312
128K 1 0.0159 | 0.0086 | 0.0049 | 0.0050 || 0.0195 | 0.0129 | 0.0094 | 0.0078
128K 2 0.0124 | 0.0064 | 0.0034 | 0.0019 || 0.0088 | 0.0048 | 0.0027 | 0.0016
128K 4 0.0120 | 0.0061 | 0.0032 | 0.0017 || 0.0076 | 0.0041 | 0.0022 | 0.0012
128K 8 0.0121 | 0.0062 | 0.0032 | 0.0017 || 0.0051 | 0.0027 | 0.0015 | 0.0008
256K 1 0.0117 | 0.0062 | 0.0035 | 0.0021 || 0.0140 | 0.0100 | 0.0079 | 0.0070
256K 2 0.0071 | 0.0036 | 0.0019 | 0.0010 || 0.0051 | 0.0027 | 0.0015 | 0.0008
256K 4 0.0070 | 0.0036 | 0.0018 | 0.0010 || 0.0051 | 0.0027 | 0.0015 | 0.0008
256K 8 0.0070 | 0.0035 | 0.0018 | 0.0009 || 0.0051 | 0.0027 | 0.0015 | 0.0008
512K 1 0.0073 | 0.0038 | 0.0021 | 0.0012 || 0.0125 | 0.0090 | 0.0070 | 0.0061
512K 2 0.0046 | 0.0023 | 0.0012 | 0.0006 || 0.0051 | 0.0027 | 0.0015 | 0.0008
512K 4 0.0044 | 0.0022 | 0.0011 | 0.0006 || 0.0051 | 0.0027 | 0.0015 | 0.0008
512K 8 0.0044 | 0.0022 | 0.0011 | 0.0006 || 0.0051 | 0.0027 | 0.0015 | 0.0008

Table A9: Set-associative Ardent and Cray unified cache miss ratios

-53-

Ardent Smoothed Miss Ratio Spreadsfor Instruction Caches
_ Block Size: 16 Bytes Block Size: 32 Bytes
Cache Size
8-to-4 | 4-t0-2 | to-1 8-to-4 | 4-to-2 | 2-to-1
32K 0.199 | 0.745 | 1538 || 0.107 | 0.817 | 1.424
64K 0.167 | 0.723 | 1.647 || 0.054 | 0809 | 1.487
128K 0.098 | 0417 | 1.233 || 0.035 | 0466 | 1.071
256K 0.050 | 0.262 | 0.917 | 0.000 | 0.300 | 0.775
512K 0.000 | 0.000 | 0.333 | 0.000 | 0.000 | 0.250
_ Block Size: 64 Bytes Block Size: 128 Bytes
Cache Size
8-to-4 | 4-t0-2 | to-l 8-to-4 | 4-t0-2 | 2-to-1
32K 0.058 | 0.821 | 1576 | 0.092 | 0462 | 1.115
64K 0.029 | 0810 | 1.751 || 0.047 | 0.431 | 1.059
128K 0.019 | 0467 | 1.271 || 0.030 | 0.250 | 0.613
256K 0.000 | 0.300 | 1.000 || 0.000 | 0.150 | 0.375
512K 0.000 | 0.000 | 0.350 || 0.000 | 0.000 | 0.000

Table A10: Smoothed miss ratio spreads for Ardent instruction caches

Ardent Smoothed Miss Ratio Spreadsfor Data Caches
_ Block Size: 16 Bytes Block Size: 32 Bytes
Cache Size
8-to-4 | 4-to-2 to-1 8-to-4 | 4-to-2 | 2-to-1
32K 0.007 | 0.013 | 0.154 || 0.009 | 0.020 | 0.201
64K 0.004 | 0.004 | 0.221 | 0004 | 0.011 | 0.255
128K -0.001 | 0.003 | 0.283 || 0.000 | 0.007 | 0.309
256K -0.005 | -0.002 | 0.318 || -0.003 | 0.001 | 0.334
512K -0.007 | 0.003 | 0.288 || -0.003 | 0.002 | 0.300
, Block Size: 64 Bytes Block Size: 128 Bytes
Cache Size
8-to-4 | 4-to-2 to-1 8-to-4 | 4-to-2 | 2-to-1
32K 0.014 | 0.038 | 0.333 || 0.025 | 0.071 | 0.586
64K 0.010 | 0.023 | 0.357 | 0.018 | 0.046 | 0.553
128K 0.004 | 0.018 | 0.388 | 0.011 | 0.039 | 0.544
256K 0.001 | 0.007 | 0.383 || 0.004 | 0.021 | 0.486
512K -0.002 | 0.006 | 0.334 | 0.000 | 0.020 | 0.404

Table A11: Smoothed miss ratio spreads for Ardent data caches

Performance of Different Replacement Algorithms (Ardent Data Caches)
Miss Ratios (Random) Ratios of Ratios (Random / LRU)
Cache Set Block Size Block Size
Size Size 16 32 64 16 32 64
32K 1 0.0795 | 0.0444 | 0.0284 || 1.0000 1.0000 1.0000
32K 2 0.0708 | 0.0371 | 0.0204 || 1.0158 1.0164 1.0251
32K 4 0.0682 | 0.0354 | 0.0191 || 1.0059 1.0057 1.0160
32K 8 0.0669 | 0.0346 | 0.0183 || 0.9970 0.9971 0.9946
64K 1 0.0639 | 0.0337 | 0.0190 || 1.0000 1.0000 1.0000
64K 2 0.0567 | 0.0292 | 0.0154 || 1.0143 1.0174 1.0199
64K 4 0.0554 | 0.0284 | 0.0148 || 0.9982 1.0035 1.0068
64K 8 0.0542 | 0.0277 | 0.0143 || 0.9927 0.9928 0.9931
128K 1 0.0444 | 0.0229 | 0.0123 || 1.0000 1.0000 1.0000
128K 2 0.0405 | 0.0207 | 0.0108 || 1.0887 1.0895 1.0909
128K 4 0.0386 | 0.0196 | 0.0101 || 1.0293 1.0262 1.0306
128K 8 0.0375 | 0.0191 | 0.0098 || 0.9894 0.9896 0.9899
256K 1 0.0336 | 0.0172 | 0.0092 || 1.0000 1.0000 1.0000
256K 2 0.0217 | 0.0110 | 0.0057 || 0.9819 0.9821 1.0000
256K 4 0.0215 | 0.0109 | 0.0055 || 0.9556 0.9646 0.9483
256K 8 0.0214 | 0.0108 | 0.0055 || 0.9427 0.9474 0.9483
512K 1 0.0211 | 0.0107 | 0.0056 || 1.0000 1.0000 1.0000
512K 2 0.0143 | 0.0072 | 0.0037 || 1.0000 1.0000 1.0000
512K 4 0.0140 | 0.0071 | 0.0036 || 1.0000 1.0000 1.0000
512K 8 0.0140 | 0.0070 | 0.0036 || 0.9929 0.9859 1.0000
Geometric
Average 0.9999 1.0006 1.0028

Table A12: Ardent set-associative data cache miss ratios using random replacement, along with
ratios of missratios (random / LRU). Values are averages across al Ardent traces.

-B5-

Ardent Mean Delay Per Memory Reference (cycles)

Instruction Caches: 14 Cycle Latency Instruction Caches: 45 Cycle Latency
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128

128 29744 | 1.9062 | 1.7226 1.8750 8.7373 5.1891 4.1499 3.8125
256 2.5824 | 1.6380 | 1.2826 1.2180 7.5858 4.4590 3.0899 2.4766
512 19456 | 1.3050 | 1.0120 0.9000 5.7152 3.5525 2.4380 1.8300
1K 14128 | 0.9090 | 0.6754 0.7140 4.1501 24745 16271 1.4518
2K 11600 | 0.7416 | 0.5302 0.4650 3.4075 2.0188 1.2773 0.9455
4K 0.6944 | 0.4824 | 0.3872 0.3570 2.0398 1.3132 0.9328 0.7259
8K 0.2224 | 0.1332 | 0.0990 0.0930 0.6533 0.3626 0.2385 0.1891
16K 0.1408 | 0.0864 | 0.0638 0.0540 0.4136 0.2352 0.1537 0.1098
32K 0.0336 | 0.0198 | 0.0176 0.0180 0.0987 0.0539 0.0424 0.0366
64K 0.0048 | 0.0036 | 0.0022 0.0015 0.0141 0.0098 0.0053 0.0030

Data Caches: 14 Cycle Latency Data Caches: 45 Cycle Latency
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128

128 6.2096 | 5.6484 | 7.5746 | 11.9550 || 18.2407 | 15.3762 | 18.2479 | 24.3085
256 5.0768 | 4.5162 | 5.0226 8.1270 || 14.9131 | 12.2941 | 12.0999 | 16.5249
512 3.9856 | 3.5334 | 3.7620 5.1390 || 11.7077 9.6187 9.0630 | 10.4493
1K 27984 | 2.3760 | 2.7940 3.5550 8.2203 6.4680 6.7310 7.2285
2K 22096 | 1.4688 | 1.6764 2.6520 6.4907 3.9984 4.0386 5.3924
4K 1.9056 | 1.1826 | 0.8844 1.3830 5.5977 3.2193 2.1306 2.8121
8K 15840 | 0.9558 | 0.6930 0.6390 4.6530 2.6019 1.6695 1.2993
16K 1.3136 | 0.7686 | 0.5170 0.4530 3.8587 2.0923 1.2455 0.9211
32K 1.0848 | 0.6282 | 0.4026 0.3090 3.1866 1.7101 0.9699 0.6283
64K 0.8976 | 0.5130 | 0.3190 0.2370 2.6367 1.3965 0.7685 0.4819
128K || 0.6224 | 0.3510 | 0.2178 0.1530 1.8283 0.9555 0.5247 0.3111
256K || 0.3792 | 0.2142 | 0.1320 0.0900 1.1139 0.5831 0.3180 0.1830
512K || 0.2256 | 0.1278 | 0.0792 0.0540 0.6627 0.3479 0.1908 0.1098

Unified Caches: 14 Cycle Latency Unified Caches: 45 Cycle Latency
Cache Block Size Block Size
Size 16 32 64 128 16 32 64 128

128 48976 | 4.1508 | 4.7740 | 11.7240 || 14.3867 | 11.2994 | 11.5010 | 23.8388
256 3.9280 | 3.0276 | 3.4848 5.1210 || 11.5385 8.2418 8.3952 | 10.4127
512 3.3536 | 25182 | 2.3892 3.1500 9.8512 6.8551 5.7558 6.4050
1K 24576 | 2.0232 | 1.8018 2.1780 7.2192 5.5076 4.3407 4.4286
2K 1.8240 | 1.3644 | 1.2276 1.5510 5.3580 3.7142 2.9574 3.1537
4K 1.3936 | 0.9162 | 0.7480 0.8820 4.0937 2.4941 1.8020 1.7934
8K 0.7488 | 0.4698 | 0.4378 0.4980 2.1996 1.2789 1.0547 1.0126
16K 0.5648 | 0.3366 | 0.2332 0.2100 1.6591 0.9163 0.5618 0.4270
32K 0.4320 | 0.2538 | 0.1672 0.1410 1.2690 0.6909 0.4028 0.2867
64K 0.2848 | 0.1638 | 0.1034 0.0780 0.8366 0.4459 0.2491 0.1586
128K || 0.1968 | 0.1116 | 0.0704 0.0510 0.5781 0.3038 0.1696 0.1037
256K || 0.1168 | 0.0666 | 0.0418 0.0300 0.3431 0.1813 0.1007 0.0610

Table A13: Mean delay per memory reference (cycles) for Ardent fully-associative instruction,
data, and unified caches. Results are listed for memory latencies of 14 and 45 cycles. Transfer
timeis 1 cycle per 8-byte word.

-56-

Set-Associative Cache Block Sizes Which Minimize Mean Delay
Cache Size | Associdtivity Instruction Data Unified
32K 1 128 64 64
32K 2 128 128 128
32K 4 128 128 128
32K 8 128 128 128
64K 1 128 128 64
64K 2 128 128 128
64K 4 128 128 128
64K 8 128 128 128
128K 1 128 128 64
128K 2 128 128 128
128K 4 128 128 128
128K 8 128 128 128
256K 1 128 128 128
256K 2 128 128 128
256K 4 128 128 128
256K 8 128 128 128
512K 1 128 128 128
512K 2 128 128 128
512K 4 128 128 128
512K 8 128 128 128

Table Al4: Block sizes which minimize mean access delays in Ardent set-associative caches.
Results are identical for memory latencies of 14 and 45 cycles.

