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ABSTRACT

Inexpensive multiprocessor systems that obtain notable improvement in performance over sequen-
tial processors are currently under development at U.C. Berkeley. We are describing a crossbar system,
an interconnection network, as a component of a multiprocessor system that may be used for experimen-
tation with different processor architectures. For instance, one may wish to experiment with (1) intercon-
necting computing nodes, which contain processors, memory, and caches and (2) connecting processors
to memory modules in a "dance hall" configuration. The crossbar system is based on a single bit-slice
16x16 crossbar chip with low latency, i.e., less than 50 ns of delay using a 2 micron static CMOS tech-
nology. The chip is designed so that it can be implemented in CMOS or EDFL GaAs. We used three dif-
ferent tools to develop this chip: (1) Lager Tools, (2) NCR and Mentor Graphics tools, and (3) Tim-
berwolfe standard-cell tools. By stacking 33 of these chips, a crossbar system has been designed that
interconnects sixteen processing elements (PE) for transferring 32 bits of data and address with one-cycle
read/write capability, providing there is no contention between PEs. If a conflict occurs, a tree arbiter
impartially selects a PE. A printed circuit board (PCB) version of the crossbar system has also been
designed. This multilayer PCB acts as a backplane and contains the crossbar chips on one side and VME

connectors to the PEs on the other side.
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1. Introduction

A key component of a high-performance multiprocessor system is the interconnection network
between the processors and memory modules or between processors. The bandwidth and the latency of
the interconnection network are two factors that are significant in the performance of the multiprocessor
system. For example, doubling the data path width between the processor and the memory may feasibly
double the data available to a processor for a memory read. This may result in fewer memory references
and conflicts and in more performance. Reducing the latency in the interconnection network reduces the
memory access time, which may in turn improve the effectiveness of the system. Our goal is to design an
interconnection network where bandwidth may be enlarged by increasing the width of the data path and

latency may be reduced by decreasing the gate delay.

Although crossbars have been in use in computer systems [Bur69, WuB72, WuH78], they do not
meet our bandwidth and latency requirements. For instance, the memory references in Prolog programs
do not exhibit locality usually found in Pascal or C programs. This means a processor’s memory refer-
ences may change from module to module in adjacent cycles. A similar situation also arises in object
oriented programs. To support this type of randomness in memory references, a dynamic crossbar with
low latency for changing switch settings is needed. We have designed [Sri88, StD89] a single bit-slice
crossbar chip for connecting 16 processors to 32 memory modules. The switch connection in the crossbar
can change every cycle based on the memory requests from the processors. By stacking 33 of these chips,
we can have 32-bit words transferred in one cycle. The extra chip is for control. The total delay in the
chip is equivalent to the delay through 20 gates. Because of the complexity of 16x32 crossbar system, we
have also designed a simpler crossbar chip for interconnecting 16 PEs. This second crossbar system is

described in this paper. It is easy to extend the simpler design to connect processors to memory.

Our design is different from that of other designs in the literature. It is oriented towards high perfor-
mance implementation in submicron CMOS and GaAs technologies. The chip design proposed by Frank-
lin [FWT82, WaF83] employs multiple stages and does not meet our latency requirements. The 16x16
crossbar chip in the MARS [Agr87] system for connecting processors does not meet our specifications.
The arbiter used in the chip is based on positional priority, which may cause performance problems in

logic programs because of the randomness in memory references.
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Section 2 describes current multiprocessor systems for Prolog employing the crossbar. Section 3
details the crossbar chip and section 4 presents the testing of the chip. Section 5 describes the crossbar

board. Section 6 gives some conclusions.

2. Multiprocessor System for Prolog

Several proposals for executing Prolog programs on multiple processors have appeared in the litera-
ture. Two of the proposals [Bor84, WAD84] extend the stack architecture of Warren [TiW83, War83].
The stacks are allowed to spread across the processors in the shared memory multiprocessor system
[Bor84] as the parallelism grows. The AND parallelism and stream parallelism [Con83] are exploited in
this multiprocessor. The distributed system of Warren [WAD&84] supports the OR parallelism {Con83] in
Prolog programs by distributing the clauses in a procedure to many processors connected to a broadcast
network. We have been experimenting with a heterogeneous, tightly coupled, multiprocessor system
[Dob86, NSD88] with special processors to execute logic programming at the control level and numeric
processing to execute arithmetic functions. A block diagram of our proposed multiprocessor is shown in
Figure 1. It employs 12 Parallel Prolog Processors (PPP) [SrD89], three floating point processors (FPP),
a general purpose processor (GPP),snooping caches (SC), caches (C), memory (M), and the crossbar. The
PPP in the figure is based on the Prolog machine (PLM), developed at Berkeley [DPD84,STN87], and
will exploit the AND, OR, and stream parallelism in Prolog programs. A static analysis of Prolog pro-
grams will be done to detect the AND parallelism. One of the key components of the multiprocessor is
the crossbar. There are other multiprocessors (INECTAR, RP3, etc.) that employ crossbars. Some of the

early systems such as B6700 [Bur69] and C.mmp [WuB72] have also employed crossbars.

3. Crossbar Chip

The crossbar chip described in this paper is an interconnect-intensive and pad-limited chip. It con-
tains 40,000 transistors. The pin-out of a single bit-slice 16x16 crossbar chip is shown in Figure 2. The
inputs to the chip are indicated with a triangle pointing inward; the outputs have the triangles pointing
outward. Signal names starting with a P are connected to the source PE, while signal names starting with
an M are connected to the destination PE (or memory). These signals are explained in section 5 on the

crossbar system design. The timing diagrams for read and write requests are shown in Figure 3.



3.1. Crossbar Chip Design

The physical design of the crossbar chip was done using three sets of tools. The first layout of the
chip using the OCT/VEM/Mosaico tools [Spi88] resulted in a chip with a size of 28 mm by 21 mm using
the MSU standard cells and a 2 micron CMOS technology. Since the die size exceeded our limit of 20
mm by 20 mm, no fabrication effort was made. The second attempt at layout was done using the Lager
IV tools [Bro88] and improved MSU standard cells. The die size is 20 mm by 16 mm for a 2 micron

CMOS process.

The third set of tools used in the layout process is the Mentor Graphics’ Idea Station and NCR’s
Tangent router. The gate level design was completed using the Idea Station. The physical design has
been completed using a 1.5 micro CMOS technology with NCR supplied standard cells. The resuiting
chip has a die size of 9 mm by 9 mm. This fabrication of this design with good yield appears to be feasi-
ble. The actual fabrication could use a 1.2 micron technology and thus bring the die size to 7.5 mm by
7.5 mm. The standard PGA packages with 210 leads can be used with the above die size, or a tape
automated bonding (TAB) packaging technology may be used and the die surface mounted on a PC

board. The chip is pad limited and uses metal2 quite heavily for the interconnections.

The bit-slice approach to crossbar design may cause word inconsistency problems [FWT82]. To
avoid this problem, reset pins are included in the chip. All the crossbar chips of a word can be initialized
to the same state using the reset signal coming from the PEs. Although the number of pins in a chip may
be reduced by using bidirectional data lines for the read and write operations, we decided against it to

keep the circuits simple and also to facilitate a GaAs implementation.

3.2. Crossbar Chip Components

The crossbar design has five components: decoder, arbiter, crosspoint matrix, input drivers, and
output drivers. They are shown in the first sheet of the top-level schematic for the crossbar chip in Fig-
ures 4 and 5. The design details of each component are described in this section. To achieve low latency
and simplicity in circuit design, chip area has been compromised. Every component contains many
blocks, each of which has its delay estimated by running timing simulation. We iterated on the design

and added bigger drivers to reduce the time delay in the blocks.



3.2.1. Decoder

There are sixteen 4 input to 16 output decoders per chip. Each decoder receives a 4-bit destination
PE address and a PE request signal from a source PE . At most one output of a decoder will be high,
denoting the destination PE requested by the source PE connected to it. There are many ways to design
the decoder, the simplest and slowest being to use S input AND gates. The nominal delay through a 5
input NAND gate for a load of 0.2pf is 5.5 ns and the delay through an inverter is 1.0 ns. Another way is
to use two levels of 3 and 2 input NAND gates and NOR gates. The nominal delay through a 3 input
NAND gate for a load of 0.2pf is 2.5 ns and the delay through a 2 input NOR gate is 2.0 ns. The two-
level design has a delay of 4.5 ns compared to 6.5 ns for a one level design. We chose the two-level
design. Figures 6 through 9 show the symbols and logic of the decoder. Figure 7 is only a sample of the

decoder’s schematic sheet. The Decoder Array in Figure 4 is formed by using sixteen of the decoders.

3.2.2. Arbiter

Contention occurs when two or more PEs request the same destination PE in the same cycle. The
arbiter selects one and informs the other PEs to try later by sending a collision signal. To prevent a single
PE from holding up a destination PE while others are waiting for the same module, a fairess scheme is
introduced in arbitration. Since there are 16 PEs that can simultaneously generate requests to the same
destination PE, a one-of-sixteen arbiter is needed for each PE. We designed the arbiter as a tree of one-
of-two arbiters shown in Figures 10 through 15. The sixteen requests to the arbiter are received at the leaf
level nodes of the tree. Each of the one-of-two arbiters at this level communicates a signal on the request
chain (REQC) output. The REQC outputs are the inputs to the arbiters at the next level of the tree. The
REQC output will be high if any of the two inputs (REQO or REQ1) is high.

The one-of-two arbiter in Figure 13 uses a D flip-flop to provide fair response to requests. For
example, if both REQO and REQ]1 are high during successive cycles then the D flip-flop will be in state 0
(1) followed by state 1 (0), providing that GRANTC is one. This causes GRANTO (1) followed by
GRANT1 (0) to be one if GRANTC is one.

The delay through the arbiter is the sum of the time needed for the REQC signals in the arbiters to
propagate to the root of the tree and for the GRANTC signal in the root to propagate to the leaf arbiters.
This delay plays an important role in the duty cycle of the clock for the chip. Since the D flip-flops
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change state during the falling edge of the clock, the duty cycle of the clock must be greater than the pro-
pagation delay from the leaves to the root of the arbiter. Table 1 shows the state table of the one_of_two
arbiter. The worst case delay (Temperature of 80 degrees Celsius and VDD = 4.5 V) for the arbiter is
used in determining the duty cycle. The grant signals coming down from the root of the tree will be
stable after clock goes low. This will allow the grant signals at the leaves to be stable when the clock is

low.

3.2.3. Crosspoint Matrix

The crosspoint matrix component, shown in Figures 16 through 21, connects the 16 PEs to each
other using 256 switches. Each switch is a combinational logic block and is shown in Figure 17. If PE i
has been selected to communicate with PE j, then the signal g_i_j will be high. This signal allows the
read, write, address, and data to be communicated to the PEs. Sixteen of these switches are grouped into
a block where a wired-or connection is used for the read, write, address, and data signals. Since the

switches are unbuffered the connections last for one cycle only, making the crossbar chip dynamic.

3.2.4. Input Drivers

The signals entering the chip from the PEs are directed to various components in the chip using
drivers. The P_SYNC unit in Figures 22 through 26 has drivers for all signals coming from the input

pads. It also supplies conflict information to the PEs.

3.2.5. OQutput Drivers

The read, write, address, and data signals are sent from the M_SYNC unit in Figures 27 through 30
using drivers. These signals first go to output pads and are then connected to the PEs. The pad drivers

supply 8 milliamps of current.

4. Simulating the Crossbar Chip

The complexity of the design of the crossbar chip is augmented by the need to achieve a 50 ns cycle
time. We used functional simulation to verify the data transfers from the inputs to outputs. The timing

simulation used estimated capacitances to determine the delay through the blocks.
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The simulation efforts used a "start small" approach. The functional simulation was performed in
two stages. Each of the blocks of the crossbar was simulated separately, then the entire crossbar chip was
simulated. The patterns used for simulating the chip are generated by programs and used as an input to
the MG QuickSim tool. Since it was not possible to have a simulation run for each combination of
read/write requests, patterns were selected from 1, 2, 4, 8, and 16 simultaneous requests to produce con-

sistent test cases.

The timing simulations programs were run for each of the blocks to calculate the delay in each
block. This allowed us to redesign some blocks by adding bigger drivers or by changing the circuits to

reduce the delay and to meet the timing constraints.

After the crossbar chip design schematics were completed and verified, we used the MG tool
Expand to transform the multi-level hierarchical schematics into a flat array of primitive elements consist-
ing only of basic cells and wires. A basic cell is a digital component that has associated with it a com-
puter program that models its functional behavior. The simulations were performed with the QuickSim
tool, which interactively allows for the verification of the functionality and timing of the design. All
simulation results followed specifications. The stimulants for the one of two arbiter and its output is

shown in Table 2. The input and outputs of the one of 16 arbiter is shown in Table 3.

5. Crossbar System

An essential part of the multiprocessor system in Figure 1 is the crossbar interconnection network.
This crossbar system employs the crossbar bit-slice chip and was designed for interconnecting 16 PEs.
The system is interconnect intensive because each PE has two groups of 80 signals, and is a difficult one
to simulate because of its size. There are over 2500 wires, 33 chips with 210 pins each, 288 driver chips

with support for driving 2304 signals, and 32 VME DIN connectors.

To manage this wiring complexity, two approaches were explored. One approach used the wafer
scale integration (WSI) and innovations in packaging technology. The MIT-Lincoln Laboratory has
developed a WSI technique using laser cutting and welding. The technique has been demonstrated by
building two signal processors on wafers [Raf85]. Using the WSI technique it is possible to interconnect
9 crossbar chips on a 10 cm (4 inch) diameter wafer using a redundancy factor of four. The redundancy

will be used to bypass faulty chips. A new wafer packaging technique that will allow connections to
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1200 pads on a wafer is needed for this approach to succeed along with software tools for programming

the wafer.

The second approach is to use tape automated bonding (TAB) for the chips and surface mount the

dies on a multilayer PC board. The latter approach is pursued in this research project.

In this design, the latency of the crossbar system is the delay through a single chip. Each PE sup-
plies a 4-bit module address to the crossbar chip. The address within the module, data to be communi-
cated, read operation, and write operation are specified by separate pins. Each PE receives address, data,
read, and write signals on separate pins from a crossbar chip. If two or more PE address the same destina-
tion PE, one will be selected by the chip. The other PE will be sent conflict information. Each PE has a
collision pin to receive the above information, 32 address pins, 32 data pins, four module indicator pins,
and eight control pins to the crossbar system. The control pins are used to design the access protocol of

VME.

5.1. Crossbar Board Design

In this section, we will describe how we connected 33 bit-slice crossbar chips to create the crossbar
system that interconnects sixteen PEs for 32 bits of data and control communication. The multilayer
crossbar board uses 33 crossbar chips, 32 VME J1P1/J2P2 connector pairs, and 288 driver chips to build
a backplane for the multiprocessor system. The crossbar chips are placed on the component side of the

board, while the VME connectors are on the connector side.

Figure 31 shows the top sheet of the crossbar board, which contains 33 crossbar chips labeled from
zero to 32 to represent the data/address bits zero through 31 and the read/write collision signals control
chip, respectively. To provide the required drive for the control signals, each signal is split into two sig-
nals via a driver. One signal goes to crossbar chips zero through sixteen; the other goes to chips seven-
teen through 32. A "Z" is added to the signal name attached to chips seventeen through 32. The control

pins are used to design the protocol for communication between PEs using the VME access protocol.

Figure 32 shows the second sheet of the crossbar board, which contains the VME connectors for the
sixteen PEs. We used a frame (for I = 0 to 15) around the logic to represent the sixteen PEs to simplify
the Neted drawing. For one PE, we used the VME connector pair J1/P1 and J2/P2 along with 144 drivers
(74F244) in 18 chips. On the J1/P1 connector, we used pins IRQ3* to IRQ7* for the PE control signals
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(four for processor module address and one for processor request). These are supposed to be used for

interrupt requests, but we decided that only IRQ1* and IRQ2* are needed for interrupts in our design.

We used many 74F244 drivers to guarantee good signal strength at the destination. For example,
the signal MDI(I) for bit J (J = 0 to 31) and PE I (I = 0 to 15) shown in Figure 32 is sent from PE I
through the J2/P2 VME connector to a 74F244 driver before it is sent to crossbar chip J. The drivers are
controlled by the 32nd bit of the signals, i.e., MD32(I) controls the drivers that send the MDJ(I) (J = Oto
31) from crossbar J to PE 1. The signals PDIN and PD are multiplexed by using two drivers controlled by
PDIN32(I) and PD32(I). The signals MDOT and MD are similarly multiplexed. The signals MA and PA

did not need drivers, so they come directly out of the crossbar and VME connectors.

Figure 33 shows the inputs and outputs of a PE. The module request signals PO(3:0) to P15(3:0) are
sent from PEs zero to fifteen, respectively, to each of the bit-slice crossbar chips. These signals are used
to request a destination PE. For instance, PE zero can send the 4-bit address P0O(3:0) of a desired destina-
tion PE to all 32 crossbar chips. To drive these signals to all 32 crossbar chips, the signals are put
through two 74F244 drivers, as displayed in Figure 32 in the upper right comer. One driver’s outputs are
PJ(3:0) (for J = 0 to 15 for the sixteen PEs), which go to crossbar chips zero through sixteen. The other
driver’s outputs are PZJ(3:0), which go to crossbar chips seventeen through 32. This signal gave us the
most trouble when designing this schematic sheet. To use the frame (for I = O to 15 for the sixteen PEs),
we had to label these signals CP’&I)(J) and ("PZ’&I)(J) (for J = 0 to 3) as shown in the upper right comner
in Figure 32. When the design is prepared for layout and routing, the MG tool Expand interprets the &
symbol to mean concatenate. If this was not done, we would have had to make a separate sheet for each

PE, complicating the design and comprehensibility.

The processor request PR(15:0) is sent from the PEs to the crossbar chips. This signal issues a
request for contacting a destination PE. For example, PR(0) is sent by PE zero to all 33 crossbar chips.
To drive this signal, it is put through a 74F244 driver, as seen in Figure 32 in the upper right corner. The
signal PR(I) (for PE I) is connected to two drivers. The outputs of the first driver are PR(J), which is sent
to crossbar chips zero to sixteen, and the output of the second driver is PRZ(J), which is sent to crossbar

chips seventeen to 32.

The processor address bus PAJ(15:0) (for J = 0 to 32 for the 32-bit address and control bit) is sent
from all PEs to the crossbar chips. The signal PAJ(I) holds the Jth bit of the 32-bit address that is sent
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from PE I to the crossbar chips. For example, PE zero sends every crossbar chip (J = 0 to 32) the bit
PAJ(0).

The processor data output bus PDJ(15:0) (for J = 0 to 32 for the 32-bit data and control bit) is sent
from all PEs to the crossbar chips. The signal PDJ(I) holds the Jth bit of the 32-bit address that is sent
from PE I to the crossbar chip J. For example, PE one sends the crossbar chip zero the bit PDO(1).

The processor data input bus PDINJ(15:0) (for J = 0 to 32 for the 32-bit data and control bit) is sent
from the crossbar chips to the PEs. The signal PDINJ(I) holds the Jth bit of the 32-bit address that is sent

from crossbar chip J to PE I. For instance, crossbar chip zero sends PE two the bit PDINO(2).

The data from the destination PE (or memory module) MDOTIJ(15:0) (for J = 0 to 32 for the 32-bit
data and control bit) is sent from the destination PE to the crossbar chips. - Similarly, the data into the des-
tination PE MDJ(15:0) and the destination address MAJ(15:0) are sent from the crossbar chips to the des-

tination PE.

The clock and reset signals also must be put through a driver, as displayed in Figure 32 in the upper

right hand comer, to have the necessary drive to reach all 33 crossbar chips.

To illustrate the complexity of the crossbar system, we can look at a sample scenario. Suppose that
PE 0 wants to send PE 1 32 bits of data and an address and PE 1 wants to send PE 2 data and an address
all in the same cycle. PE O first sends PR(0) to all crossbar chips, indicating that it wants to communicate
with another PE. It then sends the address of PE 1 in PO(3:0) to all crossbar chips. If there is no conten-
tion, PE 0 sends PDJ(0) (for J = 0 to 32) to the crossbar chips, which send this 32-bit data to PE 1 in one
cycle. PE 1 receives the data as MDJ(1) (J = O to 32). Simultaneously, PE 1 sends PR(1) to all crossbar
chips followed by the address of PE 2 in P1(3:0). If there are no conflicts, PE 1 sends PAJ(1) (forJ=0to
32) to the crossbar chips, which send this 32-bit address to PE 2 as MAJ(2) (J = 0 to 32). All sixteen PEs
can be reading and writing data and addresses in the same cycle, providing there is no contention for des-

tination PEs.

5.2. Crossbar PCB

The placed and routed PCB for the crossbar board is shown in Figure 34. The PCB measures 20 by
13 inches, has a connector side and a components side, and has eight signal layers and two power layers.

On the connector side, we placed the sixteen pairs of VME connectors, which are on the top and bottom
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of the board. The J1/P1 and J2/P2 connectors for PE zero are on the far left, with J1/P1 above J2/P2. The
connectors for PE fifteen are on the far right. On the component side, we placed the 33 crossbar chips and
the 288 drivers (74F244). The placement was done manually. We had to redo the placement a few times
with a larger board size. Although the board has two sides, there can be no overlap between the VME
connectors and the crossbar and driver components because we used through-pin PCB components. The
routing was done automatically on the Apollo’s DN3000. We are using many passes of the routing algo-
rithms to completely route the PCB. The backplane may be used for other general purpose systems, such
as the WARP system at Camegie-Mellon University and the signal processing systems at UCB.

6. Conclusion

We have described the design and simulation of a bit-sliced crossbar chip and the design of a
crossbar system that interconnects processing elements. The crossbar interconnection system is the main
component of a multiprocessor system for Prolog that is currently under development at U.C. Berkeley.
The crossbar system was designed to interconnect sixteen PEs, but can be easily extended to connect six-

teen processors to 32 memory modules or to interconnect 32 computing nodes.

Although this is an on going project, some initial conclusions may be drawn based on design and
simulation work. The timing simulation of the crossbar chip shows that using a 1.5 micron CMOS tech-
nology a latency time of 50 ns can be achieved for the crossbar chip. This means an extra cycle for
read/write access when there is a cache miss and there are no conflicts assuming a 50 ns cache cycle time.
This is important for the parallel execution of Prolog programs, which has heavy memory traffic. Since
the miss ratios are well under five percent for many of the high performance systems, we expect no

noticeable performance degradation if the crossbar system is used.

Since the crossbar chip and the crossbar system designs are huge, the VLSI tools have to be
modified to accommodate more than 5000 wires and chips with more than 200 pins. This has motivated

tool designers and builders to pay attention to memory management and space allocation per process.
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Table I
State Transition Table for one of two Arbiter

Present INPUTS Next OUTPUTS
State RQO RO1 GRC State GRO GR1 RQC
0] 0 0] 0 0 0 0 0
0 1 0 1 0 1 0 1
0] 1 1 1 1 0 1 1
0 - - 0 0 0 0 -
0 0 0 1 0 0 0 0
0 0 1 1 1 0] 1 1
1 0 0] 0 1 0 0] 0
1 0 1 1 1 0 1 1
1 1 1 1 0 1 0 1
1 - - 0 1 0 0 -
1 0 0] 1 1 0 0 0
1 1 0 1 0 1 0] 1



Table 2 Simulation Results cf One of Two Aribiter

TIME ~REQO *REQC ~CLK ~SETB
~REQ1 ~“GRANT(0 ~CLKB
~“GRANTC ~“GRANT1 ~“RESETR

0.0 Xr Xr Xr X X X 0 1 0 1
55.0Xr ¥r Xr X 0 0 1 0 0 1
90.0 Xr Xr Xr X X X 0 1 1 1
100,00 0 0 X X X 0 1 1 1
200,00 0 0 O O Q0 O 1 0 1
4100.01 1 1 1 1 0 O 1 O 1
4155.01 1 1 1 0 0 1 0 O 1
41%0.01 1 1 1 O O O 1 o©0 1
4200.01 0o 1 1 0 0 O 1 1 1
4204.01 0 1 1 1 0 0 1 1 1
4304.01 1 1 1 0 1 o0 1 1 1
4404.01 1 2 1 1 0 0 1 1 1
4504.01 1 1 1 O 1 0 1 1 1
4604.01 0 1 1 1 O O 1 1 1
4704.0 0 1 1 1 0 1 o0 1 1 1
4804.01 1 1 1 1 0 0 1 1 1
4904.0 0 1 1 1 0 1 0 1 1 1
5104.01 1 1 1 1 o0 0 1 1 1
5204.01 1 1 1 0 1 0 1 1 121
5304.01 0 1 1 1 0 o0 1 1 12
5404.01 1 1 1 0 1 ¢ 1 1 121
5504.02 1 1 2 1 O O 1 1 12
5600.01 1 1 1 0 1 0 1 1 1



hn e et i sk i

Table 3 ‘Input and Outputs of One of 16 Aribter

TIME “PREQ ACLK “RESET
~PGRNT ~SET
200.0 0001 0000 O O O
212.0 0001 0001 O ©
300.0 0002 0001 O 0 O
302.0 0002 0002 0 0 O
400.0 0004 0002 0 0 O
407.0 0004 0004 0 0 O
500.0 0008 0004 0 0 0
502.0 0008 0008 0 0 O©
600.0 0009 0008 0 0 O
607.0 0009 0001 0 0 O
755.0 0008 0008 1 0 O
790.0 0009 0008 0 0 O
855.0 0008 0001 1 0 O
955.0 0008 0008 1 0 O
1000.0 0002 0001 O O O
1004.0 000a 0002 0 0 O
1055.0 000A 0002 1 0 O
1155.0 0002 0008 1 0 O
1255.0 000A 0002 1 0 O
"1355.0 000A 0008 1 0 O
1400.0 000C 0002 0 0 O
7100.0 FFFF 0000 0 0 O
7113.0 FFFF 0100 0 0 0
7201.0 FFFF 0001 0 0 O
7301.0 FFFF 1000 O 0 0
7401.0 FFFF 0010 0 0 0
7501.0 TFFF 0400 0 0 O©
7601.0 FFFF 0004 0 0 O
7701.0 FFFF 4000 0 0 O
7801.0 FFFF 0040 0 0 0
7901.0 FFFF 0200 0 O O
8001.0 FEFF 0002 0 0 O
8101.0 FFFF 2000 0 0 0O
8201.0 FFFF 0020 0 0 0
8301.0 FFFF 0800 0 0 0
8401.0 FFFF 0008 Q0 0 O
8501.0 FFFF 8000 0 0 O
8601.0 FFFF 0080 O 0 ©
8701.0 FFFF 0100 0 0 O
8902.0 0000 0000 0 0 O
TIME A“PREQ ~CLK “RESET

“PGRNT ~SET
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Figure 24 P Sync Schematic Sheet 2
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Figure 25 P_Paddr Symbol
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Figure 26 P_Paddr Schematic
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Figure 28 M_Sync Schematic
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Figure 30 M_Paddr Schematic
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Figure 31 Crossbar System Sheet 1
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Figure 34 Crossbar System PCB





