Pan I Version 4.0
An Introduction For Users

Laura M. Downs
Michael L. Van De Vanter

Computer Science Division (EECS)
University of California, Berkeley
Berkeley. California 94720

August 1991

Report No. UCB/CSD 91/659

Research sponsored in part by the Defense Advanced Research Projects Agency (DoD). monitored
by Space and Naval Warfare Svstems Command under Contracts N00039-84-C-0089 and N00039-
88-C-0292. by IBM under IBM Research Contract No. 564516, by a gift from Apple Computer,
Inc.. and by the State of California MICRO Fellowship Program. Michael L. Van De Vanter was
supported in part by a MICRO fellowship.

Abstract

Pan is a prototype and testbed for language-based editors and views. Its design addresses
the needs of experienced users who manage complex objects such as large software systems. All
of Pan’s components are multilingual. incremental. description-driven. customizable. and exten-
sible. Viewing is facilitated by semantics-based browsing and an object model that integrates
text and structure. Pan is intended to share information with other tools. allowing integration
into a larger language. program. and document development environment.

This document. a users manual. describes the basic operational facilities of Pan I (version
4.0). the current implementation. It explains the concepts behind Pan’s editing environment.
introduces editing commands. and discusses techniques for customization. Appendices list com-
mand bindings (to both kevstrokes and menus), view options. and view flags.

Contents

1 Introduction

2 Concepts

2.1

2.2

2.3
2.4

2.5

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

VIOWS o o o o e e e e e e
Special VIeWs
Views vs. WIndOWS v o e e e e e e e e e e
WIRAOWS . . o o o e e e e e e e e e e e
The Information Panel 0 0 e
The Editing ATea o o
View StYIes . . o o v o e e
Textual VIEWS . . o v v o e e e e e e e e e e e e e e e e e e
The Text CUISOT « v v v v v v e e e e e e e e e e e e e e e e e e
Regions and The Text Selection o
RIDES .« o o o e o e e e e e
The Clipboard o
Kill RIRES . . o« o oo e e e e
Marks and the Mark Stack
Graphical VIews oo
Configuration oo oo e
SCOPES o o v v e e e e e e e e
Kev Bindings« o o o i i
Menu Bindings
Operand Level Bindings and Menus
ChaTacter SeTS . « v v o v e i e e e e e e e e e e e e e
Options, Flags. and Variables
FONt Maps . .« « v v v v v e e e e e e e e e e e e
Language Descriptiono

Basic Interaction

Getting Started
Executing Commands
QUItting o e
Supplying Arguments to Commands
Numeric Prefix Arguments. oo
Prompts and Pop-Ups
Cancelling Commandsttt
Reviewing Message History e
Undoing ACtIONS v v v v e e
Getting Help
ADPIOPOS . . o v v o i i e e e
Help Commandso vt ittt
Documentation Commands

ii

Pan I Ver. 4.0: An Introduction For Users

3.9 Views and WIndows o 0 e e e
Visiting Files and Other Objects o oo
Directory Editor
Saving and Writing Files Lo
Manipulating Windowso

3.10 Scrolling . .« o o o .

3.11 When Things Go Wrong« o vt

Using Textual Views

4.1 Text Cursor MOtION . . . o o v v o i e e e e e e e e e
Moving the Cursor With the Mouse
Moving Forward and Backwardo
Moving Around in the Text Stream
Mark Commands v v v o e e e e e e e e e e e e

4.2 The Current Operand Level o

4.3 Operand Level Commands oo

4.4 The Textual Selection &« o o o i v i i vt

4.5 Entering Text o o oo

4.6 Filling Text o . o o i

4.7 Deleting TeXt v v i e e

4.8 Killing Text . . . o o o v v i v it e e e

4.9 The Clipboard o . o it

4.10 Copying and Moving Texto

4.11 Changing Case v v v vttt

4.12 Transposing TeXt« . o v v v v it e e e e e e e

4.13 Searching Text o . v i i
Regular EXpressions oot vttt
Balanced Bracket Commands« v o o h o e e

Using Graphical Views

Language-Oriented Services

6.1 Language-Based Textual Views

6.2 Language-Based Amnalysis

6.3 Consistency and Inconsistencyo o

6.4 Operand Levels o o

6.5 The Structure CUTSOT . . .+ & v« v e et e bt et e e e e e e e e e

6.6 Setting The Structure Cursor o

6.7 Structural Navigation00 oo e

6.8 Language Errors

6.9 Editing

6.10 Searching in Programs oot vttt

6.11 QUETIES . o v v o v o e e e e e e e e e e e e e e e

6.12 Debugging Featureso

22
22
22
22
23
24
24
25
26
27
28
28
29
30
30
31
31
31
31
33

33

iii

Graphical VIiews 44

Other Language-Oriented Viewso 44
Exploring the Tree Structure 45

7 Simple Customization 45
7.1 Start-Up Processing 45
Language-Based Configuration 46

T2 USINE SCOPES . o o v v e e e 47
T3 Packaging oo 47
7.4 Creating Bindings 48
Creating Key Bindings oo 48
Creating Menu Bindings o 50
Creating Operand Level Bindings oo 51

7.5 Getting and Setting Options« ... 52
Setting Font Maps o ..o 33

Setting Color Maps v v v 33

6 CRhaTactel SeLs . . o v o i e e e e e e e e e e 54
7.7 Creating and Modifving Flags o 35
7.8 Lisp-Oriented Commandso oo 56
Defining Variables and Options 57

Hooks and Notifiers o v i i i e e 57

8 Acknowledgments 58
References 59
9 Glossary 60
A Default Key Bindings 67
A.1 Bindings by Command Name in a Text View 67
A.2 Bindings by Key in a Text View 69
A.3 Special Key Bindings in the View List !
A.4 Special key Bindings in the Help Viewo 71
A.5 Special Key Bindings in a Directory Editoro 71
A.6 Special Key Bindings in a Language-Based View (SIMPLE2) 71
A.7 Special Key Bindings in a Graphical Viewo 71

B Default Menu Bindings 72
B.1 Bindings in an Ordinary Text View by Command Name 72
B.2 Bindings in an Ordinary Text View by Menu 73
B.3 Additional Menu Bindings in the View List 74
B.4 Additional Menu Bindings in the Help View T4
B.5 Additional Menu Bindings in a Directory Editor 74
B.6 Additional Menu Bindings in a Language-Based View (SIMPLE2) 74
B.7 Additional Menu Bindings in a Graphical View 74

Pan I Ver. 4.0: An Introduction For Users

Operand Level Bindings in a Language-Based View (SIMPLE2)
Options Defined in Pan

Flags Defined in Pan

Character Sets in a Text View

View-Styles

75

77

89

90

91

List of Figures

= O N

S O

Screen image of Pan showing view list. help view. and a text (TEX) view 3
Pan with a default menu visible L 9
Two language-based views on a program 35
The operand levels for SIMPLE2 oot 39
The options that control structural highlighting 42

Bindings and names for special kevs 49

1 Introduction

Pan is an editing system for text- and language-structured documents that uses the mouse. menus.
and multiple windows to provide both textual and language-based browsing and editing. Pan is
implemented in ComMoN Lisp with PCL and C. It runs on Sun3 and Sparc Workstations! under
SunOS and X11R4.

This document is an informal introduction to Pan I Version 4.0. It contains essential informa-
tion for editing with Pan. All of the commands necessary for editing files. programs. and directories
are described along with the key-sequences or menu choices which make them quickly accessible.
With the help of this manual and the on-line help system. a new user should be able to edit text
files with Pan. If vou have not used Emacs or a similar editor before this, vou can get started on
Pan by focusing on the cursor motion commands (see Section 4.1) and using Pan’s menus to visit
files. open views, use the clipboard. and get help.

The text-oriented facilities of Pan are modeled partially on the Emacs family of text editors.
so users familiar with an Emacs-style editor will have little trouble learning Pan. Pan is extensible
and customizable in the spirit of Emacs(7).

Some information for extending the svstem is included in this document. Using the infor-
mation contained in the manual, any user should be able to set up a “.panrc” file which alters
key- and menu-bindings and changes the default value for any options to customize the edit-
ing environment (see Section 7). For more help, vou may want to contact the Pan group (pan-
pipes@sequoia.berkeley.edu) directly. For more general background on Pan, consult a recent de-
scription of the project [2].

Pan also provides for manipulating and editing programs using the syntax and semantics of
the language being edited. Pan understands descriptions of language syntax using the language-
definition language Ladle[3]. The semantics of the language may also be described using the
semantics-description language Colander[1]. To effectively use the language-based facilities within
Pan. all the user should need to know is the language in question. The most useful of Pan’s
language facilities, operand-sensitive commands, is described in this manual and in Pan’s help
svstem. For more information and background on Pan’s language-based features, see Coherent
User Interfaces for Language-Based Editing Systems{8].

Adding new language definitions to Pan is beyond the scope of this manual.

2 Concepts

This section is a brief introduction to the terminology and notation of Pan.

2.1 Views

A view represents a format for presenting the contents of or information about a file, directory,
program. or other editable object. A view may also provide services with which a user may browse,
explore, and modify the object being presented. For example, a text view and a graphical view of
a program would be considered different views on the same program.

1Sun Workstation is a registered trademark of Sun Microsystems, Inc.

2 2 CONCEPTS

Each view has a configurable environment which includes specifications for many aspects of the
view’s behavior, such as:

¢ kev. menu. and operand-level bindings.
e definitions of character sets.

e option values. and

o flag specifications.

All views in Pan are named. The name of a view is composed of the name of the object being
edited in that view. the tvpe of the view, and possibly some extra qualifving information. In the
current release. the name of a text view is the name of the file being edited.

Special Views

The view list is vour doorway to Pan: within its edit window are the names of the views being
edited. As new views are created. their names are added to this list. The view list appears in the
upper left of Figure 1 on page 3. a typical workstation screen running Pan: it lists two other views,
the help view and a view named “manual.tex’.

The help view is a special text view which is used for displaying help and other information.
A window on the help view appears in the upper right of Figure 1 and. currently shows the key
bindings in effect for the active view. There can be only one help view at any given time (although
this view can have several windows). Most commands which output information to the help view
clear its contents first. See Section 3.8 for more about help facilities.

Views vs. Windows

Most commands act on the active window of the active view. The active window is the window
in which the most recent kevstroke or mouse action occurred. The active view is the view which
owns the active window.

Views exist independently from the windows (see below) in which they are displayed. Thus
there can be views that are not visible on the workstation.

In Figure 1, the text view “manual.tex” (containing a file of the same name) is currently active
and has two separate windows open onto it.

2.2 Windows

A window represents the actual X window in which the contents of the view are displaved. A
view may have any number of independent windows. For example. the text view “manual.tex” in
Figure 1 has two separate windows open onto it.

A window provides a display mechanism, scroll bars, a message line, view flags. and a text
cursor as seen in Figure 1. Every window also has its own operand level (see Section 2.6). All of
the windows opened onto a single view share that view’s contents: its bindings. its option values.
and its flag specifications. A textual view (see Section 2.4) may at times have a single text selection,

2.2 Windows 3

AP text:Previous - Line

g — AQ 'q:@;-m;uu

K view list & Helplnfo
Pan View List: view list ? Pan Key Bindings for “nanual.tex” 7]
1pinto | T Newline text:Newhne - And - Indent
_tex AE text:Kill- To - Eol
AL win:Redraw- Carent - Window
Rewrn text:insert - Newdine - Fil
i AN text:Next - Line lll
I A0 text:Open-Line

- AR opl:Oplevel - Cursor - Search - Bacioward
manual. tex A5 opl:Opievel- Cwrsor-Seexch-Farwerd
B Text Strean: manual.tex * @ |Ag text: Tramspose - Characters

~) Fan . . | A top:Prefix
= Lenguage: Text Level: Character | A [Bm:Forward- Vecroll-Cwrem - Window
| AW text:Kill- Selected- Region
Doerations that modify text scroll the active window o that the change AXAA text:Togge - Text- Fill
and therefore the cursor) 1s visible. AXAB help:Displa; 1-0b;ec1s
AXAC top:Exit - Editar
o AXAD dired:Visti-Directary

F view's text cursor may not be visible on the screen due to ,)
{acroiling) or other motion. | AXAF ohject: Viait - File
[The command ‘cwd{Scroll-Te-Cursor—Current-Window} in the | AXAG define:Editar - Exror
\menuname{N1ndow} menu scrolls the window so that the cursor
lis visible as does any cursor movewent,

\subsubsect1on{Regions and The Text Selection}

—ee e
Mary of the text-oriented commands ir \Pan\ operate on 2 MmANUSS . Te M El
contiguous sequence of characters called & \firstdef{region} of __ — 1au_—_—-_—_—t Stroan: manual.tex .)
pext. g Pan Language: Text Level: Character
BJerg textual view can have a specially designated region of text
Falled the the \firstdef{selected"region} or simply the ~ -
£ 1rstdef {selection). 1 visible as does any cursor movement, -
n " vizib] L \subsubsectiomRegion: and The Text Selactwn)l N
!;Flgfba:v:fu?n page™\pageref {(f 1g:baseview) shows & selection M of the text-oriented 1n \Fan\ ate on &
wred dovs . guous sequence of char {) of
LLommands that alter the contents of the view “{deselect} the current S::t’ © acters called o \firstoef{region
selection, N

Xtua have 2 spec f text
NPan\ also has an \firstdef{implicit~selection}, namely the region between ;E::Tx‘idt:m Jev::r::‘“;mﬁcw:”;ge”w“? region of te
91 or simply the
fthe text cursor and the top mark of the mark stack. firstdef{selection}
[This selection is different for each window, since each window has & hen the ~{select1o '],_ get}. 1t is underlined an all of the windows
different cursor. 1 whicn 3t is vigible
In \emacs. the implicit selection 1s the onlu reqion available, while in | Flotaseviews on page”\pageref{fig:basevieu? shows a selection

——

Figure 1: Screen image of Pan showing view list, help view. and a text (TEX) view

shared by all of the view’s windows, but each text window has its own independent text cursor and
any window may show a different part of the view.

The horizontal scroll bar, and horizontal scrolling commands allow vou to see text to the right
(or left) of the current edit window (see Section 3.10). If the Text-Fill option is on then the flag
“P™ appears in the information panel and newly typed lines are caused to wrap around rather than
being truncated (see Section 4.6).

Pan windows can be manipulated like any X window according to the window manager you are
using. Closing a window from the window manager causes that window to be iconified. Closing a
window from within Pan will cause the window to be iconified if the option Window-Close-With-icon
is set to be true. otherwise no icon is created. In any case the window can be reopened from the
view list or by opening a view or window on that file. Internal state of the window is retained even
when the window is not visible (see Section 3.9).

A window is partitioned into two areas: the information panel and the editing area.

4 2 CONCEPTS

The Information Panel

At the top of the window appears the information panel. which displays information about the
view. It includes the view name. a message line, and the values of various flags. For example.
Figure 1 on page 3 shows the Object-Modified? and Text-Fill flags in the “manual.tex” view and
the Object-Protected? flag in the help view.

It also may display the language being edited and the operand selection level (see Section 6).
Clicking the right mouse button over the name of the current operand level will bring up a menu
of all of the possible operand levels for the view.

The Editing Area

Below the information panel is the editing area. This area includes horizontal and vertical
scroll bars. and the actual edit window. Pressing the right button of the mouse over the
edit window activates the Pan menus for that view. Selecting an item from those menus executes
the command bound to that selection (see Section 3.2).

In a text window. pressing the left button of the mouse sets the text cursor to the position of
the mouse (see Section 4.1). Pressing the middle button of the mouse selects the region between
the text cursor and the mouse (see Section 4.4).

Windows onto textual views display text as if it were an infinite quarter-plane of characters.
with newlines separating each line. Rather than wrapping lines when they reach the right-hand
edge of the viewport. the lines appear truncated.

In a graphical window, there is no text cursor but the behavior of the panel, the menu selection
mechanism, and the scroll bars is the same (see Section 5).

2.3 View Styles

Within Pan there are many different editing contexts. These different contexts are called view styles.
FEach view must be associated with a view style. For example. the help view uses the help-view-style.
directory editors use the dired-view-style. and views on ordinary text files use the text-edit-view-style.
Everv Pan view style is either graphical or textual. For a list of all of the available view styles, see
Appendix G.

All views of a particular view style inherit its configuration information (see Section 2.6). The
menus. key-bindings. flags, and fonts as well as many other less visible aspects of Pan’s behav-
ior provide a look and feel for each view style which may be individually tailored to provide a
comfortable environment for different editing purposes.

2.4 Textual Views

Most views in Pan are based on the textual display and manipulation of information. Many, but
not all, of the services in textual views reflect familiar styles of text-based editing. This section
presents a brief overview of those services. Section 4 contains more detail.

(&3]

2.4 Textual Views

The Text Cursor

Each text window has a single text cursor independent of any other cursors in other windows on
the view. A text cursor appears on the screen as an inverse-video or outlined box highlighting the
character selected by that cursor.

All textual insertions and deletions occur at the position to the left of the character selected
by the cursor. If a command alters text not located at the cursor (for instance. by deleting the
current selection). the cursor is moved to the point of change . Operations that modify text scroll
the active window so that the change (and therefore the cursor) is visible.

A view’s text cursor may not be visible on the screen due to scrolling or other motion. The
command Scroll-To-Cursor-Current-Window in the Window menu scrolls the window so that the
cursor is visible as does any cursor movement.

Regions and The Text Selection

Many of the text-oriented commands in Pan operate on a contiguous sequence of characters called
a region of text.

Every textual view can have a specially designated region of text called the the selected region
or simply the selection. When the selection is set, it is underlined in all of the windows in which
it is visible. Figure 1 on page 3 shows a selection shared by two windows. Commands that alter
the contents of the view deselect the current selection.

Pan also has an implicit selection, namely the region between the text cursor and the top
mark of the mark stack. This selection is different for each window, since each window has a
different cursor. In Emacs, the implicit selection is the only region available, while in Pan. it is
secondary to the visible selection. Commands that operate on the implicit selection are provided
mostly for Emacs compatibility. The command Select-Region-Dot-To-Mark which is usually bound
to the key sequence “Esc “W” makes the implicit selection into the selection.

Pan’s style of selection is similar to, but not the same as, X’s. Clicking the middle button of the
mouse selects and underlines the region between the cursor and the mouse, but placing or dragging
the cursor does not affect the selection. The selection. the position of the mouse, and the position
of the text cursor are all independent.

Rings

A ring is a circular bounded stack. Adding an item to a ring pushes the other items just like a
bounded stack. The oldest value in the stack may be discarded to preserve the boundedness.

Rings can also be “cycled”, where the top value is moved to the position of the oldest value,
and all of the other values move up—the second voungest becoming the top. Cycling a ring by n
values moves the nth element (modulo the size of the ring) to the top. The top value in a ring is
called the “contents™ of the ring.

Both the clipboard and the kill rings are implemented as rings.

6 2 CONCEPTS

The Clipboard

The clipboard—a holder for regions of text—is shared among all views. A selection can be copied
(or cut) to the clipboard and then pasted in another view. These operations are modeled on the
Macintosh? user interface. Unlike the Macintosh clipboard. Pan’s clipboard is a ring that contains
several items. The size of the clipboard is determined by the value of the option Clipboard-Max-Size.

Kill Rings

The kill ring is a a repository for deleted text. Commands that kill text place the killed text into
the kill ring. This text can be retrieved at a later time by vanking it.

The size of the kill ring is determined by the value of the option Killring-Max-Size.

In Pan. the kill ring is local to a view rather than global to all views as it is in Emacs. The
kill ring and the clipboard are independent entities: cutting text to the clipboard does not affect
the contents of the kill ring and killing text does not affect the clipboard. However. if the option
Kills-To-Clipboard is set, then the “Kill-” commands use the global clipboard instead of the kill ring
and text killing and vanking is then effectively global.

Marks and the Mark Stack

A mark is a character position in a textual view. Marks associate with the character to the left of
the position; when text is deleted. affected marks migrate to the beginning of the deletion.

Each view has a stack of marks called the mark stack. Marks in Pan are used for two
purposes: to remember a cursor position, and to construct regions. The top mark on the stack is
usually referred to as “the mark”.

2.5 Graphical Views

For any program or other structure-based view, a graphical view of the internal tree representation
may be created. Graphical views may be generated on the entire internal tree or on any subtree of
it. The contents of the nodes in the graph may contain the names of the nodes or other information
about the node. depending on the command used to generate the view.

The contents of the text stream from which the view was generated can not be altered from
within the graphical view. In the current version of Pan, the graph is a display only and not a
graphical editor; not even the structural cursor may be set from within a graphical view.

Graphical views may be navigated by thumbing the window to a fixed position by pressing the
middle mouse button over the scroll bars or by “Zoom-"ing in and out.

A graphical view also contains a global image in the upper-left corner of the window. Within
this image a miniature of the entire graph or subgraph being viewed is displayed, and the region
of the graph which is currently visible in the window is outlined. This global image may be resized
or toggled on and off.

Graphical views of the tree structure of programs are the only kind of graphical view imple-
mented at present. Because the graphical view functions only as a display of the tree representation

- ZMacintosh is a registered trademark of Apple Computer, Inc.

2.6 Configuration

and has no interactive capability. its usefulness is limited mostly to system extenders. particularly
to authors of language descriptions.

Other types of graphical views are possible, such as a program call graph. but have not yet
been implemented. This sort of view would have more practical use to the programmer.

2.6 Configuration

Most of the user interface and much of the operation of Pan may be customized. Each view in Pan
is a separate editing context in which many aspects of Pan’s behavior and user interface may be
configured. The default configuration of Pan is defined by a collection of declarations in the same
format as those a user might write to customize one or more of Pan’s editing contexts (Section 7).
A binding associates a sequence of kevboard or mouse actions with a command. Pan provides
for adding key- and menu-bindings, setting options. configuring operand-level bindings. describing
character sets, creating and manipulating flags. and creating new editing environments for specific
uses. The on-line help system provides documentation for any configurable Pan command. option.
or other object. All of these are scoped to provide flexible control of the editing environment.

Scopes

There are normally three possible scopes® for any binding or option:

e :global - global to all views,
e :view-style - restricted to all views of a particular view style, and

e :view - local to a single view.

Any configurable data can lie within any of these scopes. Therefore they are either local to a
view, shared by all views of a particular view style. or global to all views. Thus, every view may
have its own set of key bindings, and even its own menus and menu selections. Naturally, local
bindings take precedence over global bindings.

Key Bindings

Key bindings associate keystroke sequences with commands. They provide the user with a quick
way to execute commands. Most commonly used commands are bound to some kev sequence. Pan.
like Emacs. provides a live kevboard. Keystrokes (including mouse buttons and special keyvboard
kevs) are read until a valid binding is detected. When a binding is detected, the associated command
is executed.

A key binding associates a keystroke sequence with a command. These kev sequences are
generally one or two characters but there is no restriction on how long a binding can be. The
kevs “Escape”, “"X”. “~C". and “~Z” are. by convention, used as prefix keys. The “Shift”™ and
“Control” keys are modifier keys rather than prefix keys. Any keystroke sequence may be bound
to any command. In vour configuration, you can set aside other keys to be prefixes as well as those

*The scope :buffer, which consists of all views on a single editable object, is also defined internally but is not
often used for configuration.

2 CONCEPTS

o0

mentioned above. However. if vou bind a key sequence to a command. that binding will shadow
any previously defined bindings which have that sequence as a prefix or which are a prefix of that
sequence. For example. if vou bind “"A ~X” to a command. vou will no longer have the usual
binding for “~A” or if vou bind “~X” to a command. vou will no longer have any of the kev bindings
for which “~X" is a prefix.

Any kev sequence can be bound in any scope. A binding in a :view-style scope will shadow
a binding to the same sequence in the :global scope; a binding in the :view scope will shadow a
binding in its :view-style scope or the :global scope. Thus each view-style or view can have its
own customized editing environment.

Mouse buttons and function kevs can be bound to commands just like the standard kevboard
keys. In fact. it is the standard binding of the right-most mouse button to Execute-Menu that
implements Pan’s menu selection service. The function keys available vary between kevboards
and key mappings. Pan’s default key bindings for the special kevboard keys generally reflect the
standard usage for the keys. For example the “Undo”, “Cut”, and “Paste” kevs on the left and the
“Up-" and “Down-Arrow” keys on the right are bound to commands which reflect their purpose.

The default bindings for mouse buttons are similar to the X bindings. Appendix A lists Pan’s
default key bindings.

Menu Bindings

Each view has a default menu. often inherited from the view’s view style. but bindable in any scope.
A Pan menu contains a collection of menu bindings, each of which associate menu item selections
with commands. A menu binding consists of a menu, a menu item. and a command name.

The advantages of a menu binding are that you don’t need to remember a command name
or a key binding to execute the command, because you need only recognize the command in the
menu and select the corresponding menu item with the mouse. Because of this. menu bindings are
extremely useful for the new user. Like key bindings, menus and menu bindings may be scoped
by :view, :view-style. or :global. The default menus associated with a view appear when the
right button of the mouse is pressed while the mouse is positioned over the edit window. Figure 2
on page 9 shows a menu selection being made.

A menu binding is designated by a menu title and a selection name, denoted typographically by
MenuTitle: SelectionName. For example. the selection Menus in Figure 2 is bound to the command
Display-Default-Menu. It is not necessary for the selection name to be identical to the name of the
command bound to the selection.

Default menu bindings are best discovered by mousing around. Appendices B.1-B.4 list the
default menu bindings for a text view, for the view list, and for the help view.

As with key bindings, any command may be bound to a menu item. Each different menu or
submenu is globally defined. The binding of a submenu or a menu selection to a menu affects the
global definition of the menu. However, menus may be copied and the copy may be altered to
achieve a :view-style or :view local configuration.

Operand Level Bindings and Menus

Operand level bindings associate generic operations, such as Cursor-Forward or Delete with

2.6 Configuration ‘ 9

K view list
Fan =] View List: view list
Pan

pIntfo i

.tex
8J manuzl.te.

Text Strean: mnanual.tex + D

(;E,s Pan Language: Text Level: Character

——]

rations that modifu text scroll the active window so that the change
iand therefore the cursor) s visible.

Fi view’s text cursor may not be visible on the screen due to TeX/Text
{scrollingt or other motior,

Tne command \cad{Scroll-To-Cursor—Lurrent-Window} in the
wweruname{Wi1ndow} meru scrolls the window so that tne cursor
15 visible as does any cursor movement,

hsubsubsection{Regions and The Text Selection}

Maru of the text—oriented commands in \Fan\ operate on a Hel
contiguous sequence of characters called a \firstdef{regions d eip
fext. Thiz Vien Bindings

y textual view can have & soecially designated region of text
called the the \firstdef{selected"region} or simply the
firstdef{selection},

hn which it 1s visible,

Figibaseview> on page™\pageref{fig:baseview} shows a selection
isnared by two wincows,

Lommancs that alter the contents of the view “{deseiect} the current
peiection,

2

Fan', also has an \firstdef{implicit~selectiont, namely the region between
kne text cursor and the top mark of the mark stack,

[fhis selection is different for each window, since each window has &
Hifferent cursor.

|h \emacs, the implicit selection is the onlu reaion availeble, while in

Figure 2: Pan with a default menu visible

operands designated by the current operand level (see Section 6). A keystroke sequence or menu
item can be bound to a command that implements a generic operation. The generic operation, in
turn, consults the operand level bindings and the current operand level of the active window to
determine the actual command to execute.

Each window has a current operand level which can be used to control the actions of operand-
generic operations. The generic operations are: Cursor-Forward, Cursor-Backward, Cursor-To-First.
Cursor-To-Last. Cursor-in. Cursor-Out, Select. Cursor-To-Mouse, Mouse-Extend, and Delete as well
as the search operations: Query-Replace-All, Replace-All, Cursor-Search-Forward. and Cursor-Search-
Backward. The Oplevel-Menu command. which is normally bound to ““C Mouse-Right” brings up
a menu which contains all of the operand-level operations for the current level.

For example, the key “Right-Arrow” is bound to the command Oplevel-Cursor-Forward. If
the current operand level is “Character”. and the binding of the generic command Cursor-Forward
at the level “Character” is the command Next-Character, then Oplevel-Cursor-Forward will execute
Next-Character.

10 2 CONCEPTS

Setting the operand level is a bit like changing modes in a moded editor, except that it only
affects the generic bindings. The current operand level persists across operations. In pure text
editing. the operand level is of limited usefulness. When editing views that have a richer operand
domain. for example programs supported by one of Pan’s language descriptions. the ability to select
and navigate using the operand level bindings is a bonus. For instance. a programming language
might define operand levels such as “Expression”. “Statement”, and “Declaration”. Figure 4 on
page 39 shows the operand-level choices for a language-based view.

The current operand level affects only those commands that consult it. These commands are
svntactically distinguished by containing the phrase “Oplevel-" in their name. An operand level
binding is designated by a generic operation and an operand level denoted typographically by
Operation at level “OperandLevel”.

As with key-bindings. operand level bindings may also be scoped by :view, :view-style. or
:global to provide a specialized editing environment for different views.

Character Sets

A character set has a name and may contain any number of ASCII characters. For example.
the set indentation-characters contains the characters { Tab Space }. The default character sets are
listed in Appendix F. Any character may belong to any number of sets or to no set. Character
sets are used to recognize white-space, to identify matching brackets, and to find the extent of a
word among other things. Commands for finding and altering the contents of a character set are
described in Section 7.6.

Character set definitions are scoped and local definitions shadow global definitions. For example.
the set word-characters is defined differently in the help view than in text views. The command
Display-Char-Sets will display the contents of the character sets in the active view.

Options, Flags, and Variables

An option is implemented as a variable which is used to control user-configurable settings. Option
variables. flags. and variables are provided for controlling and extending the system.

Option variables, or simply “options™ are used to control user-configurable settings. They
are implemented as strongly-typed, scoped variables. Appendix D lists the basic options, their
tvpes. and their default values. The effective value of an option is obtained using the command
Announce-Option-Variable (see section 7.5). All options along with their values for a particular view
may be listed with the command Display-Option-Variables.

A flag is an option that can be made visible. Flags can be displayed on the information panel by
adding the associated option to a list of flag specifications along with an “on-icon™ and an “off-icon™.
When the flag is set. i.e. the associated option is non-nil, then the “on-icon™ is displaved in the
information panel. The “off-icon™ is often invisible. For instance, if the Object-Modified? flag is
set (meaning that the text of a view has been modified since last saved), a “x” appears on the
information panel. Appendix E lists the default set of flags, together with their display properties.

A Pan variable is scoped, like an option, but is used for internals and not accessible to the
user.

2.7 Language Description 11

Font Maps

Every character in Pan's internal text representation contains a font code. This code determines
the font used when the character is displaved in a window. Each view has an associated font map.
which associates font codes with internal font descriptors. A font map contains from 1 to 8 entries.

Internallyv. fonts are referred to as “font 0™, “font 17. etc. The first element of the list (font 0)
is the default font: unspecified font codes revert to the default font.

Pan maintains a default font map option which may be scoped. You can alter these defaults by
setting the option Text-Window-Fontmap globally. in the scope of the view-style you want to affect,
or in a particular view.

The standard specification for a font map is a zero-indexed list of font names containing from
1 to 8 names. for example:

("-adobe-times-medium-i-normal--17-120-100-100-p-84-i508859-1"
"-bgh-lucida-medium-r-normal-sans-12-120-75-75-p-71-1508859-1"
"-adobe-times-bold-i-normal--17-120-100-100-p-86-is08859-1")

Standard text views use only the default font. Section 6.2 describes a more elaborate use of
font maps in conjunction with language-structured documents.

2.7 Language Description

Adding new language descriptions is the most important of Pan’s extension mechanisms. A
Pan language description is distinct from a language definition. which is written by the designer
of the language, although it typically relies heavily on the definition. The language description is
a configuration mechanism that enables Pan to deliver services to the user which are based on the
underlying language structure and which can be tailored to the particular Janguage. There may
be more than one Pan description for a given language definition, each delivering different services
(e.g. demonstration descriptions SIMPLE and SIMPLE2).

Language descriptions have many components, but they fall roughly into three categories: A
svntax description (for the syntactic analyzer). a semantic description (for the semantic analyzer),
and a specification of the editing interface (for the user’s services).

o The syntax description consists of a Ladle file plus panic declarations. The Ladle description
consists of a specification of the lexical tokens followed by a description of the grammar of
the language in a format similar to YACC input format These are accompanied by directives
to Pan on how to construct the abstract syntax tree [3].

o The semantic description is optional and consists of one or more “.col” (Colander) files. A
Colander description consists of a set of goals associated with the rules of the grammar. each
of which specifies a context-sensitive constraint that should be satisfied at each instance of
a grammar rule in the internal tree. These are expressed in the language Colander (a Log-
ical Constraint Grammar |1}, and are accompanied by supporting declarations and function
definitions.

12 3 BASIC INTERACTION

e the editing interface is configured mostly in a COMMON LISP run-time library file for each
language named “<language>-mode.cl” This file may configure nearly all of the parameters
described in Section 2.6. especially language-specific operand levels. operand menus, font
maps, and other special-purpose functionality.

Further information on constructing these interface description files is found in Section 7.

Errors in a program being edited (with respect to the language description) are divided into
two categories in Pan’s underlying implementation: syntactic errors and unsatisfied constraints.
Syntactic errors are structural inconsistencies between the program and the Ladle syntax de-
scription. Unsatisfied constraints, also referred to sometimes (somewhat inappropriately) as
semantic errors. are unsatisfied contextual constraints in the program. as specified in a Colander
semantic description. These may include. for example. type checking (based on the language's
definition) and naming conventions (based on the language’s intended use).

Default error definition and handling is automatically provided by Pan. However. the error
handling mechanism may be configured for each specific language description. For example both
svntactic errors and unsatisfied constraints may be treated as one via a single operand level defi-
nition (e.g. as in demonstration language SIMPLE). Alternately, the two basic categories may be
divided further, for example unsatisfied language constraints vs. stylistic constraints.

When you are editing a file with a complete Pan language description, Pan maintains:

e an internal structural representation of the program based on the Ladle description of the
language which is updated incrementally with each analysis

¢ a database of semantic information. structural annotations, and other data derived from the
program and the Colander description, also updated with each analysis

e a configuration that controls the look and feel of user interaction with the language as well
as a number of user services that exploit the derived information

3 Basic Interaction

This section is an introduction to general kinds of interaction with the Pan system. At the beginning
of each subsection is a list of the commands discussed. together with their default bindings. Control
kevs are represented by prepending the character “~” in front of the key, e.g.. “Control-X" is shown
as “~X”. and the kevstroke sequence “Control-X" “Control-F” is shown as ““X “F". The prefix
“Escape” is denoted “Esc”.

Menu bindings are denoted by MenuTitle: SelectionName where MenuTitle is the title of the
menu which appears at the top of the menu and SelectionName is the name of an item appearing
in the menu. Operand-level bindings are denoted by Command at level “OperandLevel”. All of the
configurable bindings are described in Section 2.6 and details of creating and altering bindings are
contained in Section 7.4.

3.1 Getting Started 13

3.1 Getting Started

When Pan is started. the files named on the command line are read in as Pan text views and
prepared for editing. Once initialization is complete, the view list will appear. Section 7.1 provides
more specific details about Pan’s start-up processing.

3.2 Executing Commands

Execute-Command Esc x
Execute-Menu Mouse-Right

The simplest and most common way to execute a command is via a kev or menu binding (see
Section 2.6). but it is also possible to execute any Pan command by name. To execute a Pan
command by name, type “Esc x”, the keystroke sequence bound by default to Execute-Command.
Execute-Command prompts for a command name. The prompt is case-sensitive, so you have to
capitalize the command name correctly or it won’t be recognized.

To select an item from a view’s default menu, hold down "Mouse-Right” within the edit window
of the view in which vou want to execute the command. When the menu appears, continue to hold
down the button and move the mouse over the menu item of vour choice. When the item you want
is highlighted. release the button. If you choose a sub-menu, do not release the button but move
to the appropriate item in the sub-menu and repeat the process.

3.3 Quitting

Exit-Editor X ~C
Exit-Editor View List: Quit
interrupt-Editor X "z

Exit-Editor is the normal method for terminating a Pan session.When modified views exist you will
be asked whether they should be saved.

Interrupt-Editor stops the svstem and control goes to a break loop in the underlying CoM-
MoN LisP. You can resume editing by typing “:cont”. This is usually used for debugging.

3.4 Supplying Arguments to Commands

There are three ways to provide arguments to Pan commands: by a numeric prefix argument, by
setting the current selection. or by responding to a prompt. The actual method used depends
on the particular command. Commands that can use a numeric argument normally check for the
presence of a numeric prefix. while commands that require textual arguments may use the selection
or may prompt for an argument.

Numeric Prefix Arguments

Prefix ~U

14 3 BASIC INTERACTION

The behavior of many commands can be altered by supplving numeric prefix arguments. In
most cases. the argument is interpreted as a repetition factor. and the effect of the command is
simply repeated. Prefix reads the prefix arguments from the kevboard. There are two ways to tvpe
such arguments: by typing a sequence of digits. or by repeating the keyvstroke sequence bound to
Prefix. In the latter case. each repetition corresponds to multiplication by the value of the option
Prefix-Arg-Multiplier (default value 4). For example. the key sequence “~"N” is normally bound to
the command Next-Line which takes a prefix argument. Typing “~U “N” would cause the cursor
to move forward four lines: typing *~U ~U “N” would cause the cursor to move forward 16 lines:
typing ““U 3 ~“N” would cause the cursor to move forward 3 lines.

Prompts and Pop-Ups

Pan prompts for input by making a small pop-up window appear on the screen. The pop-up
remains on the screen until vou complete the input. When a pop-up is visible. Pan is effectively
stopped until the pop-up is dismissed. Pop-ups may be manipulated by the window manager,
though.

Pop-ups have one or more “buttons” on their lower edge: clicking the left button of the mouse
over one of those areas completes and confirms the prompt. When typing a textual argument into a
pop-up, standard UNIX editing characters serve to edit the input. Pop-ups for textual arguments
are confirmed by selecting a button or by hitting the “Return” key. The “Return” key has the
same effect as clicking on the button with the bold outline.

3.5 Cancelling Commands

Editor-Error ~G
Editor-Error “C "G
Editor-Error Esc ~G
Editor-Error "X "G
Editor-Error “Z "G
Editor-Error “Cancel” on Pop-ups

To cancel a keystroke sequence, type “~G” with any prefix. To cancel a menu selection, move the
mouse cursor outside (away from) the menu, and release the mouse button. When responding to a
prompt. select the “Cancel” button.

Once a command is initiated. there is little vou can do to stop it. If the command takes more
than an instant to complete. the mouse cursor image, normally an arrow. may be replaced by a
clock.

3.6 Reviewing Message History

Prev-Message-Current-Window Esc p
Next-Message-Current-Window Esc n

3.7 Undoing Actions 15

These commands allow vou to review the messages which have been displaved in a window s message
line. Fach time one of these commands is invoked. a message is displayed on the message line along
with an index that indicates which message is being displaved: the most recent message is indexed
[0). the one previous to that is [-1]. etc.. A history of the significant messages which have been
printed is stored for each window. The size of this history is controlled by the option Window-
Message-History-Size whose default value is 32 messages. Insignificant messages are not part of the
history, e.g. empty announcements that clear the message line and messages announcing that the
svstem is garbage collecting.

3.7 Undoing Actions

Undo “Xu
Undo L4
Undo Undo: Undo
Redo “Xr
Redo Undo: Redo
Sub-Undo Undo: Sub-Undo
Sub-Redo Undo: Sub-Redo

The undo facilities of Pan allow vou to undo the most recent action or series of similar actions.
The effect of undoing an action is to return the text to the state it was in before that action was
executed.

Invoking Undo will undo the most recent action. Invoking Undo a second time will undo the
action previous to that. The command Redo will redo the last command undone. For instance.
typing a series of characters and then invoking Undo will remove the entire series of characters just
typed. Invoking the command Redo after the first Undo restores the text removed by the first Undo.
A sequence of consecutive Undo commands are coalesced into a single action and so may be undone
as one action after other commands have been executed.

Both Undo and Redo use the numeric prefix argument to determine the number of previous
actions to undo or redo. The option Undo-Size specifies the maximum number of consecutive
commands which can be undone.

Sub-Undo and Sub-Redo operate on commands that are subdivided into separate commands
such as Replace-All and Query-Replace-All. Sub-Undo will undo the last portion of the previous
command (i.e. the last replacement in Replace-All).

3.8 Getting Help

Reset-Help Help View: Reset Help
Visit-Help-View Help

Pan is largely self-documenting. Each view has an associated Help menu that provides access to the
help information supplied by the system. This information will be displayed in the help view—a
special view known to the system. Figure 1 on page 3 shows the help view in the upper right-hand

16 3 BASIC INTERACTION

corner of the screen. The help view acts like a normal text view. except that it is altered only by
the help commands.

Most help commands delete any pre-existing text in the help view before adding their contribu-
tion. Others. such as Describe-Selection add additional information to the view. The information
in the help view can be saved to a text file at any time. The command Reset-Help empties the
help view. If there is not already a window open onto the help view, the command Visit-Help-View
opens one window onto the help view, otherwise it brings the already open window to the front of
the screen. This command is implicitly called every time information is printed to the help view.

Apropos

Help: Apropos
Not bound

Apropos-String
Display-Apropos-index

The “Apropos-~ family of commands associate a keyword with a list of command names. For
instance, invoking the command Apropos-String and supplying the argument “clipboard” lists, in
the help view. all of the commands that use the clipboard. Display-Apropos-index ¢ will list all of
the possible “Apropos” arguments and their corresponding commands.

Help Commands

Document-Symbol
Visit-Symbol-Definition
Visit-Symbol-Definition

Display-Objects

Display-All-Key-Bindings
Display-Key-Binding
Display-Key-Bindings-For-Command
Display-Default-Menu
Display-Operand-Level-Bindings
Display-Operand-Command-Bindings
Display-Operand-Level-Menus
Display-Option-Variables
Display-Flags

Display-Char-Sets

Dispiay-Objects
Display-Language-List
Display-Commands
Display-Auto-Load
Display-Auto-Exec

Display-Version

Help View: Describe

Help View: Visit Definition

Esc .

"X "B

Help=This View=-Keys: Display All
Help=This View=-Keys: Key -> Command
Help=>This View=Keys: Command -> Key
Help=This View: Default Menu

Help=This View=-Operand Cmds.: By Level
Help=This View=-Operand Cmds.: By Command
Help=>This View: Operand Menus
Help=This View: Options

Help=This View: Flags

Help=>This View: Char. Sets

Help=-Pan: Objects Being Viewed
Help=-Pan: Language Descriptions Loaded
Help=Pan: Commands Available

Help=>Pan: Filename Auto-Load Map
Help=>Pan: Filename Auto-Exec Map
Help=>Pan: Version

*Many help commands are of limited value to new or casual users, and are therefore not bound to the default
mienus. Invoking the command Debug adds auxiliary menus in which more help commands are available.

3.9 Views and Windows

Display-Bug-Report-Info
Display-View-Class-Key-Bindings
Display-Configuration
Display-File-l1ds

Display-Hooks

Display-Notifiers

Commands beginning with “Display-" simply list the names of all things of a given type for the
current view. (e.g.. all commands or all options). Commands in the This View sub-menu refer to
things which are scoped and the commands give the values for those things in the current scope.
Commands in the Pan sub-menu refer to things which are global to the editor. For more about
Auto-Load and Auto-Exec see Section 7.1. For more about hooks and notifiers see section 7.8, and

for setting options see Section 7.5.

Documentation Commands

Display-Command-Documentation
Display-Operand-Level-Documentation
Display-Operand-Command-Documentation
Display-Option-Documentation

Display-Char-Set-Documentation
Display-Variable-Documentation
Display-Constant-Documentation
Display-Function-Documentation
Display-Macro-Documentation
Display-Hook-Documentation

“.Documentation” commands display the names of all things of a given type along with a documen-

tation string.

3.9 Views and Windows

Help=Pan: How To Report Bugs

Not bound
Not bound
Not bound
Not bound
Not bound

Not bound
Not bound
Not bound
Not bound

Not bound
Not bound
Not bound
Not bound
Not bound
Not bound

The commands presented in this section support basic view and window management.

Visiting Files and Other Objects

Visit-Selected-View
Visit-Selected-View
Visit-File

Visit-File

Visit-File
Protected-Visit-File
Visit-Backup
Visit-Checkpoint

View List: Visit View
f in View List

“X °F

View List: Visit New
Store: Visit New...

“X °R
Not bound
Not bound

18 3 BASIC INTERACTION

Visit-Directory "X °D
Visit-Directory X d
Set-Working-Directory Not bound
Visit-View "X b
Visit-View-List R7
Scratch-View View List: New Scratch
Rename-View Not bound
Remove-Selected-View View List: Remove
Remove-Selected-View x in View List
Remove-View “X k
Remove-View View: Remove
Remove-Object Not bound

To edit a file, one must first create a view onto it with the command Visit-File or the command
Dired-Visit (see below). Visit-File prompts for a file name. If a view does not already exist for that
file. a new view is created for it and the file is read and prepared for editing.

To visit an existing view, you can use the Visit-Selected-View command from the view list. This
command normally appears as Visit View in the View List menu. It is used by first selecting a
name in the view list.

To edit a directory. either use Visit-File with the name of the directory or use the command Visit-
Directory. The Visit-Directory command allows vou to specify a pattern for file names. For example.
if vou give it the argument “~/pan/*.tex”, it will give vou the directory editor for “~/pan” listing
only files whose names end in “.tex".

Visit-View prompts for the name of a view and opens a window for that view if it is in the view
list. Scratch-View creates a new text view named “**scratch**" that is not associated with any
file.

The Remove-Object command removes all views which share the given editable object and offers
vou a chance to save any changes.

Remove-Selected-View and Remove-View remove one view from the view list. If that is the only
active view that exists on that data then it is removed as in Remove-Object. Once a “Remove-”
command has been executed, all of the state associated with the removed object is lost.

Directory Editor

Dired-Visit Dired: Visit
Dired-Visit f
Dired-Visit-Read-Only Dired: Visit Read Only
Dired-Visit-Read-Only "R
Dired-Mark-Selection Dired: Mark
Dired-Mark-Selection d
Dired-Unmark-Selection Dired: Unmark
Dired-Unmark-Selection u

Dired-Delete-Files Dired: Delete marked files

3.9 Views and Windows 19

Dired-Delete-Files x
Dired-Mark-Editor-Files Dired: Mark backup files
Dired-Mark-Editor-Files #
Revert-Object Dired: Reread directory
Revert-Object g
Visit-Directory "X "D
Visit-Directory XD

The directory editor view-style is useful for editing objects which are directories. To visit any
file in the directory. select that file with the mouse or by normal cursor movement and invoke the
command Dired-Visit. The command Dired-Visit-Read-Only works the same except that the view is
protected so that its contents cannot be altered.

The directory editor allows vou to mark files to be deleted with the command Dired-Mark-
Selection then to delete those files with the command Dired-Delete-Files. Dired-Mark-Editor-Files
marks for deletion all of the files in the directory which were created by Pan as backups.

Saving and Writing Files

Save-Object "X °S
Save-Object Store: Save
Preserve-All-Objects “X Return
Exit-Editor "X °C
Save-Object-Copy-As “X W
Save-Object-Copy-As Store: Save Copy As ...
Write-Selection-To-File Text Edit=-File: Write Selection To ...
Append-Selection-To-File Text Edit=>File: Append Selection To ...
Revert-Object ~X Backspace
Revert-Object Store: Revert
Backup-Object Not bound
Checkpoint-Object Not bound
Revert-Object-To-Backup Not bound
Revert-Object-To-Checkpoint Not bound
Toggle-Object-Protection “X "Q
Toggle-Object-Protection Text Edit: Toggle Protection
Toggle-Object-Modification Not bound

Save-Object saves the contents of the current view in its associated file; Preserve-All-Objects save s
all of the modified views being edited. Exit-Editor performs the standard termination sequence of
saving modified views and exiting. The commands Preserve-All-Objects and Exit-Editor prompt for
whether a particular view is to be written to file.

All of the commands Save-Object-Copy-As, Write-Selection-To-File. and Append-Selection-To-File
prompt for the name of a file to write. The command Save-Object-Copy-As does not rename the

view.

20 3 BASIC INTERACTION

Revert-Object replaces the contents of the object underlyving the view in memory with the stored
copy.

Toggle-Object-Protection toggles the Object-Protected? option in the view. When this option is
set, the flag “@ " appears on the information panel and yvou will be prevented from modifving or
writing that file. This option is set by default when you commence editing a file for which vou do
not have permission to write. Toggling the Object-Protected? flag does not affect the permissions
on the stored file itsel{.

If the option Backup-Object? is set, then the first time a file is saved. a backup of the original
is created. The command Revert-Object-To-Backup can be used to restore the original file.

The file will be checkpointed after a number of modifications given by the option Checkpoint-
Modification-Interval. The command Visit-Checkpoint allows vou to edit the last checkpoint of the
file and the command Revert-Object-To-Checkpoint allows vou to revert the file to that state.

Toggle-Object-Modification allows you to toggle the Object-Modified? which appears as the flag
“x™ in the information panel.

Manipulating Windows

Open-A-Window-In-View Not bound
Open-Another-Window-in-View “X 2
Open-Another-Window-In-View Window: Open Another
Close-Current-Window "X 0
Close-Current-Window Window: Close
Redraw-Current-Window “L
Redraw-Current-Window Window: Redraw

When you visit a view that has no visible windows, Pan will reopen the view’s most recently closed
window. If the view has no windows, a new window is created. To open a second (or third, or
fourth, ...) window onto a view. execute the command Open-Another-Window-in-View.

Closing a window causes it to disappear from the screen. If the option Window-Close-With-lcon
is set, then the window will be iconified when it is closed from within Pan. Closing a window from
the window manager will always cause it to be iconified. The internal state of the view is retained
even when it has no windows so that windows onto that view can be reopened later. You can not
remove the view list.

Windows are reopened using the same commands as are used for opening new windows. They
are reopened in last-in. first-out order relative to the order in which they were closed.

Redraw-Current-Window redraws the active window.

3.10 Scrolling

Forward-Vscroll-Current-Window ~V
Backward-Vscroll-Current-Window Esc v
Left-Hscroll-Current-Window “X <

Right-Hscroll-Current-Window i G

3.11 When Things Go Wrong 21

Scroll-To-Cursor-Current-Window Window: Scroll To Cursor

Pan’s scrolling behavior is a simplified version of the X scrolling protocols. The scroll bars in a
window respond to simple scroll commands. For vertical scrolling, pressing the left button in the
vertical scroll bar scrolls the window toward the end of the file. the right button scrolls the window
towards the beginning of the file. and the middle button thumbs the window to the point indicated
by the scroll “bubble”. Holding down the middle button and moving the mouse allows vou to scan.
or “thumb”, the file.

When scrolling horizontally, pressing the left button in the horizontal scroll bar scrolls the
window toward the end of the line. the right button scrolls the window towards the beginning of
the line. and the middle button thumbs the window to the point indicated by the scroll bubble.

The first four of the above commands permit scrolling from the keyboard instead of from the
mouse. During vertical scrolling. when the option Text-Window-Proportional-Scroll is set to be true
(in CoMMON Lisp, ’t), the amount that the edit window is scrolled depends upon the distance
between the mouse cursor and the top of the scroll bar. For small movements, place the mouse
cursor near the top of the scroll bar. For larger movements, place the mouse cursor near the bottom
of the scroll bar. To scroll an entire screen, place the mouse cursor opposite to the last line of text
visible in the window.

When the option Text-Window-Proportional-Scroll is set to be false (in ComMoN Lisp, ’nil),
the vertical scrolling commands scroll the window by a full screen at a time.

To “thumb” the view to an absolute position, place the mouse cursor in the scroll bar and press
Mouse-Middle. The window will be scrolled to the position corresponding to the relative distance
between the top of the scroll bar and the position of the mouse cursor.

Scrolling the screen by a full screen at a time can also be achieved by using Forward-Vscroli-
Current-Window and Backward-Vscroll-Current-Window. Both of those commands consult the nu-
meric prefix argument to determine the number of screens to move.

Left-Hscroll-Current-Window and Right-Hscroll-Current-Window are keyboard variants of the hor-
izontal scrolling commands.

The command Scroll-To-Cursor-Current-Window redraws the window and scrolls so that the
cursor appears in the center of the window. The position of the cursor is not affected by scrolling.
Therefore, scrolling may cause the cursor to be not visible in the window.

Any cursor motion or alteration of the text will scroll the window so that the cursor is visible.

3.11 When Things Go Wrong

:panic
:resume

Pan has been remarkably (well. reasonably) robust throughout its long development period. Most
problems are routinely handled by printing a message on the message line of the active view.
However. provisions have been made for recovering from major catastrophes.

We'd probably all agree that a catastrophe has occurred if Pan failed either by returning to
the underlyving COMMON LIsP system or by dying altogether. Fortunately, the first rarely happens,
and the second won’t occur without returning to CoMMON LisP.

22 4 USING TEXTUAL VIEWS

If an unanticipated COMMON LisP error occurs, Pan enters a COMMON Lisp break loop. If
vou do somehow end up in a CoMMON LisP break loop, a prompt will appear in the tool window
in which the system is running. (If Pan is running from a menu. the prompt will appear in the
console.). The prompt will look like “{nn}” or “nn =" where “nn” is a small integer.

In the first case (“{nn}"). the svstem is in a COMMON Lisp break loop. You can recover {from
the error by typing the CoMMON LISP expression :resume which returns the system to the normal
command evaluation loop or :panic which executes the normal code for saving the modified views
and then exits the svstem. Naturally, the circumstances of such an error should be noted and
passed on to the developers of Pan. (Mail to pan-bug@sequoia.berkeley.edu)

The second case (“nn =) is more serious. In fact, the session is almost over. All that you can
do is to type :panic.

4 Using Textual Views

This section describes the basic text-oriented services that are available in Pan’s textual views.
These correspond in many ways to traditional text editors. and users of Emacs will find much
that is familiar. Pan’s language-based services (also available in textual views) are described in

Section 6.

4.1 Text Cursor Motion

Announce- Text-Cursor-info “X =

The command Announce-Text-Cursor-Info can be used to display status information in the informa-
tion panel about the text cursor in the active window.

Moving the Cursor With the Mouse

Oplevel-Cursor-To-Mouse ~C Mouse-Left
Cursor-To-Mouse Mouse-Left
Cursor-To-Mouse Cursor-To-Mouse at level “Character”
Mouse-Select-Fullword Cursor-To-Mouse at level “Word”
Mouse-Select-Line Cursor-To-Mouse at level “Line”

The left button of the mouse is bound to the command Cursor-To-Mouse which sets the cursor to
the character selected by the mouse icon. This command does not affect the current selection.

The corresponding operand level command Oplevel-Cursor-To-Mouse is normally bound to the
kev sequence “~C Mouse-Left”. When the operand level is set to “Character”, it invokes the com-
mand Cursor-To-Mouse. At different operand levels, Oplevel-Cursor-To-Mouse selects the operand
under the mouse and places the text cursor at the beginning of the selection.

Moving Forward and Backward

Oplevel-Cursor-Forward “C °F

4.1

Text Cursor Motion

Oplevel-Cursor-Forward

Next-Character °F
Next-Character Cursor-Forward at level “Character”
Next-Word Esc £
Next-Word Cursor-Forward at level “Word”
Next-Line “N
Next-Line Cursor-Forward at level “Line”
Oplevel-Cursor-Backward “C "B
Oplevel-Cursor-Backward Left-Arrow
Previous-Character “B
Previous-Character Cursor-Backward at level “Character”
Previous-Word Esc b
Previous-Word Cursor-Backward at level “Word”
Previous-Line “P
Previous-Line Cursor-Backward at level “Line”
Oplevel-Cursor-In ~Cc -1

Oplevel-Cursor-In

Right-Arrow

Down-Arrow

Next-Line Cursor-in at level “Character”
Next-Line Cursor-In at level “Word"
Next-Line Cursor-In at level “Line”
Oplevel-Cursor-Out “C -0
Oplevel-Cursor-Out Up-Arrow

Previous-Line
Previous-Line
Previous-Line

Cursor-Out at level “Character”
Cursor-Qut at level “Word”
Cursor-Out at level “Line”

23

The cursor can also be moved using cursor motion commands shown above. If the operand level
were “Word” . then Oplevel-Cursor-Forward would move the cursor to the word following the word
containing the cursor and Oplevel-Cursor-To-First would move the cursor to the first word in the
view. The “Next-” and “Previous-” commands use the numeric prefix argument to determine the
number of units to move.

Note that the generic commands Cursor-In and Cursor-Out (bound by default to “Down-Arrow”
and “Up-Arrow” respectively) have little meaning for ordinary textual editing. They are bound to
Next-Line and Previous-Line respectively at all three textual operand levels.

Moving Around in the Text Stream

Oplevel-Cursor-To-First “C Esc <
Move-To-Bos Esc <
Move-To-Bos Cursor-To-First at level “Character”
Move-To-First-Word Cursor-To-First at level “Word"
Move-To-Bos Cursor-To-First at level “Line”

Oplevel-Cursor-To-Last ~C Esc >

24 4 USING TEXTUAL VIEWS

Move-To-Eos Esc >
Move-To-Eos Cursor-To-Last at level “Character”
Move-To-Last-Word Cursor-To-Last at level “Word”
Move-To-Last-Line Cursor-To-Last at level “Line”
Move-To-Bol ~A
Move-To-Eo! “E
End-Of-Word Not bound
First-Non-Blank Esc m
Goto-Line X1

Move-To-Bol moves the cursor to the first position on the current line; Move-To-Eol moves the
cursor to the last position on the current line. To move to the beginning or end of the view being
edited. use Move-To-Bos or Move-To-Eos. respectively

End-Of-Word moves the cursor to the end of the word that encloses the cursor. Finally. First-
Non-Blank moves the cursor to the first character (that is not white space) on the current line.

The command Goto-Line moves the cursor to the beginning of the line specified by the numeric
prefix argument. If there is no prefix argument. Goto-Line prompts for a line number. Internally.
Pan treats the first line of a file as line number 0. If the option Zero-index-Lines is false. the
argument to Goto-Line is treated as a 1-indexed line number and is converted appropriately.

Mark Commands

Set-Mark ~@
Pop-Mark Not bound
Push-Mark Not bound
Swap-Dot-And-Mark "X X
Dot-To-Mark Not bound

Set-Mark and Push-Mark both push the location of the cursor to the top of the mark stack of the
active view.Pop-Mark pops the mark stack of the active view. The commands Swap-Dot-And-Mark
and Dot-To-Mark move the text cursor to the position indicated by the top of the mark stack. They
differ in that the first exchanges the cursor’s position with the top mark, while the second pops
stack.

4.2 The Current Operand Level

Set-Oplevel-To-Character “Cec
Set-Oplevel-To-Word “Cw
Set-Oplevel-To-Line “c1

The current operand level is a mode which affects the subsequent operation of operand level com-
mands (a.k.a. level-sensitive commands), see Section 4.3. The level does not affect the operation

4.3 Operand Level Commands 25

of any other commands: in particular. text may be entered and manipulated freely, independent of
level.

The operand level may be set by using these commands or selected using “Mouse-Right” over
the menu in the information panel where the current level is always visible. You can leave the
operand level at “Character”. and Pan will operate much like Emacs.

Other operand levels related to languages are described in Section 6.4.

4.3 Operand Level Commands

Oplevel-Cursor-Forward “C °F
Oplevel-Cursor-Forward Right-Arrow
Oplevel-Cursor-Backward “C "B
Oplevel-Cursor-Backward Left-Arrow
Oplevel-Cursor-In “C "I
Oplevel-Cursor-in Down-Arrow
Oplevel-Cursor-Out =C -0
Oplevel-Cursor-Out Up-Arrow
Oplevel-Cursor-To-First ~C Esc <
Oplevel-Cursor-To-Last ~C Esc >
Oplevel-Cursor- To-Mouse ~C Mouse-Left
Oplevel-Select ~C Backspace
Oplevel-Mouse-Extend ~C Mouse-Middle
Oplevel-Delete “C "D
Oplevel-Cursor-Search-Forward “C -8
Oplevel-Cursor-Search-Forward L9
Oplevel-Cursor-Search-Backward “C "R
Oplevel-Replace-All “C Escr
Oplevel-Query-Replace-All) ~C Esc "R
Oplevel-Menu ~C Mouse-Right

These are generic commands whose behavior depends on the current operand level and on operand
level bindings (both command and menu). They may be bound to different commands at any
operand level in any given scope. Note that the key bindings for these commands are the same as
the key bindings for the analogous character level commands prefixed by the key sequence “~C”.

The first five commands control cursor movement relative to the operand level; see Section 4.1
for more detail. Oplevel-Select selects the operand under the edit cursor. Oplevei-Mouse-Extend
extends the selection to include the mouse position; see Section 4.4. Oplevel-Delete deletes the
operand under the edit cursor. The “Search™ and “Replace” commands are discussed in Section 4.13.

The operand level menu is specific to each particular operand level and usually contains all of
the commands which are bound to the generic commands by default at that operand level.

26

4.4 The Textual Selection

Oplevel-Cursor-To-Mouse
Oplevel-Mouse-Extend
Oplevel-Select

Cursor-To-Mouse
Select-Region-Dot-To-Mark
Select-Region-Dot-To-Mouse
Select-Region-Dot-To-Mouse

Select-Word
Select-Line
Select-Fullword
Select-Full-Line
Select-Text-Stream

Mouse-Select-Word
Mouse-Select-Line
Mouse-Select-Fullword
Mouse-Select-Fullword
Mouse-Select-Full-Line
Mouse-Extend-Selection-Fuliword
Mouse-Extend-Selection-Full-Line
Mouse-Extend-Oplevel-Text
Mouse-Extend-Oplevel-Text

Next-Line-Select
Previous-Line-Select
Select-Expr
Null-Select

Deselect-Region
Deselect-Region

4 USING TEXTUAL VIEWS

“C Mouse-Left
~C Mouse-Middle
Not bound

Mouse-Left

Esc "W

Mouse-Middle

Mouse-Extend at level “Character”

Esc @

Select at level “Line”

Select at level “Word”

Not bound

“Xh

Not bound

Cursor-To-Mouse at level "“Line”
Cursor-To-Mouse at level “Word”
Esc Mouse-Left

Not bound

Esc Mouse-Middle

Not bound

Mouse-Extend at level “Word”
Mouse-Extend at level “Line”

Not bound
Not bound

Esc @
Not bound

Select at level “Character”
Esc °D

Each textual view has a single textual selection. shared by all windows. It may be set in any window,
but it is visible in all windows. Any alteration of the text stream deselects the textual selection.
The text selection is generally set by the commands Select-Region-Dot-To-Mouse. Oplevel-Cursor-
To-Mouse, Oplevel-Mouse-Extend, and Select-Region-Dot-To-Mark. Select-Region-Dot-To-Mouse is
bound to “Mouse-Middle” and selects the region between the text cursor and the mouse. Oplevel-
Cursor-To-Mouse is bound to the key sequence “~C Mouse-Left” and selects one unit at the current
operand level beneath the mouse cursor. Oplevel-Mouse-Extend is normally bound to the key se-
quence “~C Mouse-Middle”.When the level is “Character”, this command selects the region between
the text cursor and the mouse. At other levels, it selects the region that includes both the current
selection and the operand (relative to the current operand level) beneath the mouse cursor. Select-
Region-Dot-To-Mark selects the implicit region between the top mark on the mark stack and the
text cursor.

4.5 Entering Text 27

“_Fullword” commands select the entire word back to the first letter. Likewise. =-Full-Line”
commands select the entire line from the first character in the line.

The command Select-Word selects the region from the text cursor to the end of the word
surrounding the text cursor. while Mouse-Select-Fullword selects the full word beneath the mouse
cursor. Mouse-Extend-Selection-Fullword extends the text selection to include the full word beneath
the mouse cursor. Select-Text-Stream selects all the text in the view.

When the cursor is positioned on a left brace. bracket, or parenthesis, Select-Expr selects the
region from that character to the matching right brace. bracket. or parenthesis .

Null-Select creates a selection with one blank at the cursor.

The commands Select-Line and Select-Full-Line consult the numeric prefix and select that number
of lines. The commands Next-Line-Select and Previous-Line-Select also consult the numeric prefix
and move that number of lines forward or backward before selecting one line.

The current selection can be cleared using Deselect-Region.

4.5 Entering Text

Self-Insert most printable characters
Quote-Character ~Q
Newline-And-indent LineFeed
insert-Newline Return
indent-Like-Previous-Line Esc Tab
Center-Line Not bound
Open-Line ~0
Split-Line Esc ~0
Insert-Parentheses Esc (
Insert-File ~X Tab
Insert-File Text Edit=>File: Insert Text from...

Typing a printable character generally causes that character to be inserted into the text at the
position of the cursor. When printable characters are typed consecutively, the Self-Insert commands
are merged into a single action for the purpose of Undo operations. Quote-insert inserts the next
ASCII character typed even if it is a control character.

Newline-And-indent is bound to the “LineFeed” character; the next line will be indented to the
level of the previous line by inserting tabs and blanks. Center-Line centers the current line between
the beginning of the line and the value of the Text-Line-Length. Indent-Like-Previous-Line simply
reindents the current line to the level of the previous line.

Open-Line inserts “newline” characters after the cursor; the number of “newline” characters
inserted is determined by the value of the numeric prefix argument (default 1). Split-Line does the
same thing, but also indents any text following the cursor to its original horizontal position.

The command Insert-Parentheses inserts a pair of matching parentheses at the cursor, and po-
sitions the cursor between them.

Insert-File prompts for a file name and copies the contents that file into the active view at the
position of the text cursor.

28 4 USING TEXTUAL VIEWS

4.6 Filling Text

Set-Text-Line-Length X f
Toggle- Text-Fill "X "A
Insert-Space-Fill Space
Insert-Newline-Fill Return
Fill-Selected-Lines Not bound
Set-Text-Fill-Prefix "X .
Text-Fill-To-Blank-Line Esc g

To fill text means to move text from line to line so that all the lines are approximately the same
length. Pan has a rudimentary mechanism for filling text lines as vou type them. When the Text-
Fill option is on. the flag “© ™ appears in the information panel and the keys “Space™ and “Return”
are bound to special procedures. These procedures compare the current horizontal position of the
cursor with the value of Text-Line-Length. If the line is too long, it will be broken where appropriate;
if not. the procedures act like Self-Insert. Use Toggle-Text-Fill to turn on text filling and again to
turn it back off. When filling is on, vou can type text continuously without worrving about line
length.

Use Set-Text-Line-Length (with a numeric prefix argument) to set the maximum line length used
by auto-filling.

The commands Fill-Selected-Lines and Text-Fill-To-Blank-Line fill more than one line at a time.
The first fills the selection; the second fills all lines from the cursor to the first blank line following
the cursor .

Set-Text-Fill-Prefix sets the line prefix to the characters before the cursor on the line with the
cursor. This prefix is then added to the beginning of each new line as it is started. This is useful
for indenting an entire section of text or for prefixing each line with a fixed string of characters.

4.7 Deleting Text

Oplevel-Delete “C °D
Delete-Character “D
Delete-Character Delete at level “Character”
Delete-Previous-Character Delete
Delete-Previous-Character Backspace
Delete-Word Delete at level “Word”
Delete-Fullword Not bound
Delete-Previous-Word Not bound
Delete-Line Delete at level “Line”
Delete-Selected-Region Not bound
Delete-Region-Dot-To-Mark Not bound
Delete-Blank-Lines "X -0
Delete-Horizontal-Space Esc \
Just-One-Space Esc Space

-~

Delete-Indentation Esc

4.8 Killing Text 29

Deleted text can be recovered by issuing an “Undo” command immediately after the deletions. but
in no other way. Deleted text is not retained in the kill ring. The standard bindings reflect this
limitation by using “Kill" commands when removing large regions. Pan merges deletions that are
contiguous in space and time into a single undo-able action.

Oplevel-Delete deletes one unit at the current operand level. Thus. if the operand level is “Char-
acter”. Oplevel-Delete deletes one character. Delete-Character deletes the character under the cursor.
Delete-Previous-Character deletes the character before the cursor. The pair of commands Delete-
Word and Delete-Previous-Word delete from the cursor to the end (beginning) of the word enclosing
the cursor. while Delete-Fullword deletes the entire word enclosing the cursor. The commands
Delete-Selected-Region and Delete-Region-Dot-To-Mark operate on the selection and the implicit
selection. respectively.

There are several wayvs to delete white space around the cursor. Delete-Blank-Lines deletes
vertical and horizontal white space. leaving exactly one blank line at the cursor. Delete-Horizontal-
Space deletes white space surrounding the cursor on the same line as the cursor: Just-One-Space
does the same thing. but leaves exactly one space at the cursor. Delete-indentation removes any
leading white space on the line containing the cursor.

4.8 Killing Text

Kill-Word Esc d
Kill-Previous-Word Esc Del
Kill-To-Eol “K
Kill-Expr Esc K
Kill-Selected-Region W
Kill-Selected-Region Text Edit: Kill
Kill-Region-Dot-To-Mark Not bound
Copy-Selection-As-Kill Esc w
Yank-From-Kill-Ring Y
Yank-From-Kill-Ring Text Edit: Yank
Cycle-Yank Esc y
Cycle-Kill Not bound
Show-Kill X7
Cycle-Show-Kill “X !

Like the deletion commands of the previous section. commands that kill text remove the text from
a view. Unlike deletion commands. however, these also copy the removed text into the kill ring.

The pair of commands Kill-Word and Kill-Previous-Word kill from the cursor to the end (begin-
ning) of the word enclosing the cursor. The command Kill-Expr kills the text of the next word or of
the balanced bracket expression following the text cursor. The commands Kill-Selected-Region and
Kill-Region-Dot-To-Mark kill the current textual selection and the implicit selection, respectively.
Kill-To-Eol kills all characters up to the end of the line.

30 4 USING TEXTUAL VIEWS

Text in the kill ring can be recovered using the command Yank-From-Kill-Ring which copies the
contents of the top item in the kill ring into the view at the current cursor position. If a prefix
argument is present, then Yank-From-Kill-Ring will replace the current selection with the copied
item.

Cycle-Yank cycles the kill ring (see Section 2.4) before vanking the top of the kill ring. Copy-
Selection-As-Kill copies the current selection to the kill ring without removing it from the text
stream.

The command Show-Kill displays the first item in the kill ring. The commands Cycle-Kill and
Cycle-Show-Kill both cycle the kill ring; Cycle-Show-Kill also shows the new top item.

The maximum number of items stored in the kill ring is determined by the option Killring-Max-
Size. If the option Kills-To-Clipboard is set then all kill commands use the global clipboard instead
of the view-specific kill rings.

4.9 The Clipboard

Cut-To-Clipboard Clipboard: Cut
Cut-To-Clipboard L10
Copy-To-Clipboard Clipboard: Copy
Copy-To-Clipboard L6
Paste-From-Clipboard Clipboard: Paste
Paste-From-Clipboard L8
Replace-From-Clipboard Not bound
Cycle-Clipboard Not bound
Show-Clipboard Clipboard: Show Contents
Show-Clipboard Esc 7
Cycle-Paste Not bound
Cycle-Show-Clipboard Clipboard: Cycle and Show
Cycle-Show-Cliipboard Esc !

These commands manipulate the contents of the global clipboard shared by all views. Cut-To-
Clipboard deletes the current textual selection and places it onto the clipboard. Copy-To-Clipboard
places a copy of the current selection onto the clipboard. Paste-From-Clipboard inserts a copy of
the top item of the clipboard at the text cursor. If a prefix argument is present, then Paste-
From-Clipboard will replace the current selection with the top item of the clipboard. Finaliy,
Replace-From-Clipboard replaces the selected region with the top item of the clipboard.

The command Show-Clipboard displays the first item of the clipboard in the help view. Cycle-
Clipboard cycles the clipboard using the prefix argument to determine the number of entries to move,
while Cycle-Show-Clipboard combines the two actions. Cycle-Paste-Clipboard cycles the clipboard and
pastes the new top element into the text stream at the cursor.

The maximum number of items in the clipboard is determined by the option Clipboard-Max-Size.

4.10 Copying and Moving Text

Copy-Selection-To-Cursor Esc Y

4.11 Changing Case 31

Copy-Selection-To-Cursor Text Edit: Copy To Cursor
Move-Selection-To-Cursor Esc Return
Move-Selection-To-Cursor Text Edit: Move To Cursor

Text can copied or moved within a textual view by using either the clipboard or the local kill ring.
However. the above commands are useful short cuts. Both use the current selection as the source to
copv or move, and the text cursor to mark the destination. These commands operate only within
a view; copying and moving between views requires the clipboard.

4.11 Changing Case

Capitalize-Word Esc ¢
Lowercase-Word Esc 1
Uppercase-Word Esc u
Capitalize-Selection Esc °C
Lowercase-Selection Esc "L
Uppercase-Selection Esc U

These commands are use to change cases within a word or region. The word-oriented commands
operate on the region from the cursor to the end of the word and leave the cursor at the end of
the word when done. The selection-oriented commands leave the cursor at the beginning of the
affected selection.

4.12 Transposing Text

Transpose-Characters ~T
Transpose-Characters-At-Cursor Not bound
Transpose-Lines X °T

Transpose-Characters exchanges the character at the cursor and the character before the cursor
unless the cursor is at the end of a line, in which case it transposes the previous two characters.
Transpose-Characters-At-Cursor the character at the cursor and the character before the cursor even
if the cursor is at the end of a line. Transpose-Lines exchanges the line containing the cursor with
the line before it.

4.13 Searching Text

Pan provides commands for searching for regular expressions and for matching balanced brackets.

Regular Expressions

Oplevel-Cursor-Search-Forward L9
Oplevel-Cursor-Search-Forward ~C °s
Re-Search-Forward S

32 4 USING TEXTUAL VIEWS

Re-Search-Forward Cursor-Search-Forward at level “Character”
Re-Search-Forward Cursor-Search-Forward at level “Line”
Oplevel-Cursor-Search-Backward “C "R
Re-Search-Backward "R
Re-Search-Backward Cursor-Search-Backward at level “Character”
Re-Search-Backward Cursor-Search-Backward at level “Line”
Oplevel-Query-Replace-All “C Esc "R
Query-Replace-All Esc "R
Query-Replace-All Query-Replace-All at level “Character”
Query-Replace-All Query-Replace-All at level “Line”
Oplevel-Replace-All “C Esc r
Replace-All Esc r
Replace-All Replace-All at level “Character”
Replace-All Replace-All at level “Line”

These commands prompt for an expression argument and then search for text matching the standard
UNIX regular expressions. For a description of those expressions. see the ED(1) manual page of
the UNIX Programmer’s Manuals. Pan is unable to search for patterns which contain embedded
“newline” characters. The most recently specified regular expression is shared by all views.

The “Oplevel-Cursor-Search™ and “Oplevel-Replace” commands step through each unit at the
given level and try to match the argument pattern to the given unit. This has more meaning when
vou are using the operand levels associated with a programming language (see Section 6.4). When
vou are using a program operand level. the pattern must match the entire operand unless a numeric
prefix is present, in which case it may match a subset of the operand. The “Character” and “Word”
levels allow the pattern match to span more than one operand. When text matching a pattern is
found. the text cursor is moved to the first character in the match, and the matched text is selected.

Both Re-Search-Forward and Re-Search-Backward. the text level search commands, process the
numeric prefix argument idiosyncratically: the presence of a prefix argument causes the command to
search using the last regular expression specified. For instance. “~U “S” invokes Re-Search-Forward
using the most recent search pattern—and the command will match the next occurrence of the
pattern. Alternatively. supplving an empty string as the regular expression causes the previously
specified expression to be used.

When the option Autowrap-Search is true. searches wrap from one end of the view to the other;
if that option is false, searches terminate when finding the beginning or end of the view.

The “Replace”™ commands search for a string and replace all instances of it with the specified
replacement string. Oplevel-Query-Replace-All asks the user whether to replace. ignore, or cancel
the search at each instance of the sample string.

The set of replacements made during a “Replace” command are grouped together as a single
action for the purpose of “Undo™ operations. However, the Sub-Undo command allows you to undo
the individual replacements one at a time (see Section 3.7).

33

Balanced Bracket Commands

Backward-Expr Esc "B
Forward-Expr Esc °F
Select-Expr Esc ~@
Kill-Expr Esc K
Show-Match Esc ¥

These commands use character set definitions to operate on balanced bracket expressions. The
set match-characters contains all of the characters which are defined to have have matches. Both
Forward-Expr and Backward-Expr move the cursor. The Select-Expr command selects the balanced
bracket expression surrounding the cursor, and the command Kill-Expr kills it.

If the cursor character is in the set match-characters. Show-Match moves the cursor to the
matching bracket. pauses for the value of the option Pause-Ticks internal ticks. and returns the
cursor to its original position. If the option Auto-Show-Match is set then Show-Match is called
every time a right bracket from the match-characters set is typed.

5 Using Graphical Views

Zoom-In i
Zoom-In “in” button in control panel
Zoom-In Window: Zoom In
Zoom-Qut o
Zoom-Out “out” button in control panel
Zoom-Out Window: Zoom Out
Zoom-Reset a
Zoom-Reset “all” button in control panel
Zoom-Reset Window: Zoom All
Global-Image-Toggle g
Global-image-Toggle Window: Toggle Global Image
Global-Image-Enlarge e
Global-image-Enlarge Window: Enlarge Global Image
Global-Image-Shrink s
Global-Image-Shrink Window: Shrink Global Image

A graphical view can be created to represent the internal tree representation of a program or other
structure-based view. The textual label on the graph nodes vary depending on which command was
used to generate the view. This view functions only as a display and can not be used to alter the
contents of the textual view from which it was generated. Other graphical views are anticipated.
but not vet implemented.

Currently, the graphical views can be navigated only by zooming in and out via the commands
Zoom-ln and Zoom-Out. which are bound to the in and out buttons on the control panel, and
scrolling with the scroll bars on the window frame. The Zoom- commands scale the view up
or down by a factor of Graph-Window-Zoom-Factor (whose default value is 0.1). The “Zoom-"

34 6 LANGUAGE-ORIENTED SERVICES

commands take a numeric prefix and effectivelv zoom in or out that many times to produce more
drastic scale changes. Only the middle button of the mouse functions for scrolling in a graph view.
The left and middle buttons of the mouse have no effect when the mouse is over the display area.
but the right button still invokes a menu.

The global image shows the entire graph being viewed and marks the portion of the graph which
is visible in the window. It appears in the upper left corner of the graph view window. It may be
resized using Global-image-Enlarge and Global-Image-Shrink and it may be toggled on and off using
the command Global-Image-Toggle.

6 Language-Oriented Services

In addition to its more conventional text-based services, Pan provides facilities for viewing and
modifving textual objects whose underlving structure can be described by formal languages , for
example programs. These services require the loading of one or more Pan language descriptions, as
discussed in sections 2.7 and 7.1. In no case. however, does the presence of a language description
inhibit the operation of Pan's text facilities; users need incur no loss of convenience to benefit from
Pan’s more advanced features.

The basic interface provided by Pan for language-oriented editing is uniform across languages.
It is also configured specially for each language and can be customized further for any particular
language and for any style of interaction. Finding an appropriate balance between uniformity and
specialization is encouraged by Pan’s configuration mechanisms. but by no means assured. This is
a matter of user interface design on the part of the author of Pan’s language descriptions. and is
the subject of ongoing research.

This section introduces Pan’s basic language-oriented editing features. Many of these are ex-
perimental, and more are under development. A more thorough discussion of these features appears
elsewhere (8].

All interaction with a program takes place in the context of a view on that program, where
both textual and graphical views are supported in the current implementation. It is intended,
however. that ordinarv programming take place in the context of a primary textual view, a view
that operates very much like an ordinary text editor but with many extra language-based services
available.

Pan’s basic language-oriented services include a number of program views that will be of primary
interest to svstem extenders and especially to authors of language descriptions. see Section 6.12.
For example. different tree views can be created which contain subtrees of the entire structure or
which display different information at the tree nodes. Views can also be created which display
information about the lexical stream or the semantic database. These alternate views are usually
updated every time the program is reanalyvzed.

Ladle svntax descriptions have been written for Modula-2[9]. Pascal, Ada. Ladle, Colander,
and ASPLE[4]. ASPLE is a simple example language used for demonstrations and for learning
Pan. Other language descriptions. including C, C**, and FIDIL[6], are under development. A
Colander semantic description has been written for Modula-2. as well as some small demonstration
languages. including TINY and SIMPLE. SIMPLE2 is a second language description for the language
SIMPLE which provides additional and somewhat different services to the user.

6.1 Language-Based Textual Views 35

Figure 3 shows a Pan session involving two views on a SIMPLE2 program: one textual and one

graphical.
3] prog.snoll DR . ; —————- & view 1.5t
~— Text Strean: prog snpl.2 x © ' HHD View List
EE; Pan Language: sinple2 Level: Suntactic Error E"“ i Pan
HelpInfo :
rog.smpl2 |
PROGRAM testl { rog.smpl2] Graph} :

2 3]
outer], count], result] : integer ; prog.smpl2fbrapn]
fooR : real, o\ P Progran Graph: prog.snpl2lGraph) * T AHD
valuel : integer ; an

- =£
L - e
nested { = e [decl_idlist {resultl]
result] integer ; / Thisis an inner decl. of result! * all

13

----- kT

peili] = Tubesd %,
count] = outer] * valuel + result],

b
resultl = outerl + resultl

malformed expression

expr_id HouterI |

View

Progran Graph Visit Program Graph §
With Node Names

With Dperators

| statement__ 4 |

expr_id p~resultl]

Figure 3: Two language-based views on a program

In contrast to earlier examples, the “Language:” field in the information panel now reads
“SIMPLE2”, revealing that the language description has been loaded and is being used for this
view. The default menu has been augmented: new submenus Language and Variables appear and
the View menu contains additional submenus Program Graph and Subgraph At Cursor. The Variables
menu provides access to commands which allow you to query or rename a variable or to visit its
definition. while the additional View menus provide quick access to the graphical language-based
views. As with text views, many of these commands are also available from the keyboard.

6.1 Language-Based Textual Views

Most user interaction with programs takes place in the context of what appears at first glance to
be an ordinary Pan textual view. for example the view whose window appears at the upper left of
Figure 3 on page 35. In fact. all of the conventional text-based support provided by Pan continues
to available at all times with no restrictions. The language-based information derived by Pan’s
analvzers is kept behind the scenes. The information is used to support a variety of user services, but

36 6 LANGUAGE-ORIENTED SERVICES

only when those services are requested. Whenever structural information is required for execution
of a command. incremental svntactic analysis (parsing) updates the internal tree structure. Most of
the time. this transformation is hidden from the user — it occurs automatically as operations like
~delete the selected subtree” are invoked. Whenever possible, the language-based services provided
by Pan are similar in form, name. and default key binding to analogous text operations.

The information panel in windows owned by language-based views differs slightly from those
for purely text-based views. For example. the name of the language description being used appears
in place of “Text” in the “Language:” field.

Two additional flags reveal the presence and status of derived information:

e The “" (Parse-is-Current?) flag is visible. but gray. when there are textual changes that have
not vet been incorporated into the tree by the syntactic analyzer, that is when the tree is
present but inconsistent with the text. The flag appears solid when text and structure are
consistent.

e The “D” (Database-Updated?) flag is visible. but gray, when there are changes that have not
vet been incorporated into the semantic database. This flag is absent entirely when there is
no Colander component to the language description being used. The flag appears sold when
the database is consistent with text and structural information.

Pan’s default behavior at present for language errors (that is. for situations where a program
violates part of the language’s definition) is to show the user two categories of error. reflecting Pan’s
underlying implementation. In the default configuration two additional flags reveal the presence of
language errors:

e The “! (Syntax-Errors-Present?) flag appears when there are lexical or syntactic errors in the
program being edited.

e The “#” (Semantic-Errors-Present?) flag appears when there are semantic errors in the pro-
gram being edited.

It is possible. however, to configure a language description so that the user only sees one category
of error in place of the two. Section 6.8 discusses this topic in more detail.

6.2 Language-Based Analysis

Analyze-Changes Language: Analyze
Analyze-Changes °C a
Visit-And-Check-File Not bound

Language-based analysis is the process of deriving information from text based on an underlying
description of the structure of the language, a set of contextual constraints. and possibly other
information.

The analysis method used is incremental—only the areas affected by the changes are reanalyzed.
Analysis occurs whenever the derived information is out of date with respect to the text and
when a language-oriented operation takes place. for example when the user invokes a tree-oriented

6.3 Consistency and Inconsistency 37

navigation command. Analysis can also be invoked explicitly. with the command Analyze-Changes.
This command is also used internallv to invoke analysis if there have been any changes in the
contents of the view. Visit-And-Check-File performs the same function as Visit-File but also analvzes
the view’s contents.

Syntactic analysis incorporates changes in a view’s contents into the tree that represents a
program. Svntactic analysis is a two-stage process. In the first stage. the text stream is broken
into larger fragments called lexemes. Lexemes are the basic svmbols in the language being edited.
e.g.. kevwords. identifiers. constants. and comments.

When a view is lexicallv analvzed, various classes of lexemes are given different visual images
using fonts. The following table defines the relationship between font codes and characters in
lexemes. These codes permit the assignment of specific fonts (via the font map mechanism. see
Section 7.5) to each category for each language®.

Class Example Font
Unanalvzed characters inserted text 0
Ignored by the lexical analyzer 1
Fixed-length lexemes kevwords 2
Recognized but not analyzed comments 3
Variable-length lexemes identifiers 4

Semantic analysis checks a program against a set of contextual constraints defined in the
Colander component of the language description. These constraints may be based on the language
definition. for example type checking. on the intended use. for example naming conventions. and
many other restrictions as needed. At the same time. semantic analysis records facts about the
program in the semantic database that are used to support various services.

6.3 Consistency and Inconsistency

Unlike svntax directed editors, which don’t permit vou make a mistake or restrict vour options
when vou do. Pan allows the text to be modified without restriction at all times. When text has
been changed since last analysis, the derived information is said to be inconsistent: it should be
considered unreliable and may be incomplete. In this situation. the Parse-ls-Current? and Database-
Updated? flags appear gray and newly entered unanalyzed text is displaved using the default font 0.
Any text which has previously been analyzed and assigned a non-default font remains in that font
until it is reanalvzed. Also any text which has been highlighted as a syntactic or semantic error
remains highlighted until it is reanalyzed. When derived information becomes inconsistent, the
structure cursor is cleared (see Section 6.5).

Pan's current implementation requires consistency for any structural operation. Therefore,
reanalvsis takes place whenever any structural information is needed. Work is underway to loosen
this restriction.

Note that derived information mayv be consistent or inconsistent whether or not there are lan-
guage errors (Pan separates the two). see Section 6.8.

“No single combination of font assignments seems to be best for all languages. Designing a font map is part of the
user interface design work for the author of a Pan language description.

38 6 LANGUAGE-ORIENTED SERVICES

6.4 Operand Levels

Set-Oplevel-To-Lexeme “C x
Set-Oplevel-To-Syntactic-Error ~C !
Set-Oplevel-To-Semantic-Error “C #
Set-Oplevel-To-Query “Cq
Set-Oplevel-To-Node Not bound
Oplevel-Menu “C Mouse-Right

Unlike simple textual views in which only the three textual operand levels are available, the
list of operand levels available in a language-based text view is part of Pan’s configuration for
the particular language. defined by Operand-Level-Choices. This list defines what components of
a program (more accurately. of Pan’s representation of a program) that the user “sees” and can
manipulate.

Some of the operand levels are standard across all languages, for example the three textual
levels and the lexical level. Some levels have the same or similar names as analogous levels in
other languages (e.g. statement, expression). but their internal definitions differ according to the
underlying language description.

These are the operand levels for the example language, SIMPLE2: “Lexeme”. “Expression”.
“Statement” . “Declaration”. “Placeholder”. “Syntactic Error”. “Unsatisfied Constraint”. and “Query”.
Figure 4 on page 39 shows the set of operand levels defined for SIMPLE2.

All of the previously defined Oplevel commands may have bindings at these levels. Thus cursor
motion. selection. deletion, and searches may all be effected relative to the structure of the program.
The operand levels for a language are related to nodes in the Ladle description of the language.
They must be specified in the language-mode file which is loaded in and executed when a view
in that language is edited. (See Auto-Load and Auto-Exec in Section 7.1) To see the available
operand levels for a language, simply inspect the panel “Level:” menu. There are also key bindings
designed to permit level selection from the keyboard: standard bindings for the standard levels,
language-specific ones for the language-specific levels.

There are menus available for each level, executable by the command Oplevel-Menu, which
make available manv of the same generic commands that have key bindings. In some cases. the
level-specific menus may be extended in ways specific to each language.

The command Set-Oplevel-To-Node is used for debugging. It sets the operand level to all nodes
of the internal tree, whereas most operand levels define useful subsets of the internal tree. Note
however that this command. like all Set-Oplevel- commands. works only if the specified level is
permitted in the view. as controlled by option Operand-Level-Choices.

6.5 The Structure Cursor

Clear-Structure-Cursor Esc "D
Cursor-To-Token Not bound
Announce-Structure-Cursor-Info “C "X =

Announce-Structure-Cursor-Node-Rule Not bound

6.5 The Structure Cursor

39

& view list ‘ orog.smple
View List > Text Strean: prog.snpl2 *x
Pan Language: sinple2 Level: Statenent
1pInto
prog. smpl2 Setting level to "Statement™. u“e'"U_ . o
rog.smpl2| Subgraph(assign)] | Unsatisfied Constraint
PROGRAM testl { Syntactic Error
Placeholder
outer], countl, result] : integer | Declaration
fooR : real, _ Statenent
valuel : integer ; Expression
; Line
nested | Hord
resultl . integer ; /* This is an inner dd Character
result]l = outerl
sunt] e prater)
)i
resultl = outer] + resultl,
+
prog.smpl2{Subgraphiassign)l
A Pan Progran Subgraph: prog.snpl2[Subgraph{assign)] * " D
in
out
all

expr_id

CrJ valuel |

expr_iﬂ—ﬁesultl I

Figure 4: The operand levels for SIMPLE2

The structure cursor is a reference to one component in the internal tree representation of a
structured object: it is shared by all views on a program. At any point the structure cursor may or
may not be present. Currently, the structure cursor is only usable when the derived information
is consistent with the text. When an operand level command is invoked and the operand level
corresponds to a program structure type (such as “Lexeme” or “Expression”). the structure cursor
is set to the current node at that operand level. Commands which operate on a structure node,
such as “Visit-Program-Subgraph-" commands, take the structure cursor’s node as their argument.

Whenever the structure cursor is set, the textual selection will also be set to the region of text
which corresponds to the structure cursor and the text cursor in the active window will be moved
to the beginning of that region.® If the option Highlight-Structure-Cursor is set, then the region
of text in the program which corresponds to the structure cursor will be visible as a light blue
highlighted region. The highlight color for the structure cursor may be set to any color by setting
the option Text-Window-Bg-Colormap in the appropriate view (see Section 7.5). The text cursor

Setting or clearing the text selection explicitly clears the structure cursor as a side effect.

40 6 LANGUAGE-ORIENTED SERVICES

may be moved away from the structure cursor without clearing it, but any alterations to the text
stream render the derived information inconsistent and clear the structure cursor.

In some cases at certain operand levels (this is configurable). an announcement may accompany
positioning the structural navigation at a node. for example error diagnostics (see Section 6.8)

Clear-Structure-Cursor clears the structure cursor without clearing the textual selection. Cursor-
To-Token sets the cursor to be the token which contains the text cursor regardless of the current
operand level. Announce-Structure-Cursor-info displays information about the node at the structure
cursor in the information panel. Announce-Structure-Cursor-Node-Rule displays information in the
information panel about the reduction rule in the language for the node at the structure cursor
(generally used for debugging).

6.6 Setting The Structure Cursor

Oplevel-Cursor-To-Mouse ~C Mouse-Left
Oplevel-Mouse-Extend ~C Mouse-Middle
Oplevel-Select ~C Backspace
Mouse-Select-Lexeme Cursor-To-Mouse at level “Lexeme”
Mouse-Select-Oplevel-Node Cursor-To-Mouse at level “Any Structure Level”
Mouse-Extend-Lexeme Mouse-Extend at level “Lexeme”
Mouse-Extend-Oplevel-Node Mouse-Extend at level “Any Structure Level”
Select-Lexeme Select at level “Lexeme”
Select-Oplevel-Node Select at level “Any Structure Level”

Selection during language-oriented editing relies on the notion of operand levels (section 2.6). In
a language-oriented view, the set of operand levels is much richer than in the text world. The
operand levels for text editing are included. as well as levels corresponding to basic abstractions in
the language being edited (see Section 6.4).

As with text, the command Oplevel-Cursor-To-Mouse. bound to ~C Mouse-Left. selects the
operand beneath the mouse cursor. The structure node which will be designated by the structure
cursor and the region of text actually chosen are determined by the operand level. Thus if the
mouse cursor is over the character “*” in Figure 4 on page 39 when the left button is clicked. the
selected object might be the underlying lexeme “*”, expression “outerl * valuel”, or statement
“countI := outerl * valuel + resultl” depending on whether the operand level is “Lexeme”,
“Expression”, or “Statement” respectively.

What happens if the object beneath the mouse cursor is not an element of the class of objects
specified by the current operand level? Then Pan uses a heuristic to find an object close to the
mouse cursor that is an element of that class. This behavior is fairly predictable, although in some
cases it leads to unforeseen selections.

To select arbitrary portions of a structure, use the “Character” level commands and operate on
the textual representation.

6.7 Structural Navigation

Oplevel-Cursor-Forward “C °F

6.8 Language Errors 41

Oplevel-Cursor-Forward Right-Arrow
Oplevel-Cursor-Backward “C "B
Oplevel-Cursor-Backward Left-Arrow
Oplevel-Cursor-To-First “C Esc <
Oplevel-Cursor-To-Last “C Esc >
Oplevel-Cursor-To-Mouse ~C Mouse-Left
Oplevel-Cursor-In “C "I
In-Oplevel-Node Cursor-In at level “Any Structure Level”
Oplevel-Cursor-Out ~C -0
Out-Oplevel-Node Cursor-Out at level “Any Structure Level”
Oplevel-Menu ~C Mouse-Right
Next-Lexeme Cursor-Forward at level “Lexeme”
Next-Oplevel-Node Cursor-Forward at level “Node”
Prev-Lexeme Cursor-Backward at level “Lexeme”
Prev-Oplevel-Node Cursor-Backward at level “Node”
First-Lexeme Cursor-To-First at level “Lexeme”
First-Oplevel-Node Cursor-To-First at level “Node”
Last-Lexeme Cursor-To-Last at level “Lexeme”
Last-Oplevel-Node Cursor-To-Last at level “Node”

Structural navigation of a program allows you to move the structure cursor from one node of a
given tvpe to another where type is defined in the language description by operand levels. Simple
navigation involves the “Oplevel-” operations Oplevel-Cursor-Forward and Oplevel-Cursor-Backward.
They perform preorder and reverse-preorder tree walking operations relative to the current operand
level. For example, if the operand level setting is “Expression”, the command Oplevei-Cursor-Forward
moves the structure cursor to the “next” expression node. Oplevel-in and Oplevel-Out move the
structure cursor to the nearest enclosed or enclosing node, again relative to the current operand
level. Oplevel-Cursor-To-First and Oplevel-Cursor-To-Last move the structure cursor to the “first”
and “last™ instances of the current operand level respectively. Oplevel-Cursor-To-Mouse moves the
structure cursor to the instance of the operand level which is closest to the position of the mouse.

All of the operand level navigation commands are available from the operand level menu as
well. This menu can be invoked by the command Oplevel-Menu which is normally bound to the key
sequence “~C Mouse-Right”.

6.8 Language Errors

The operand levels “Syntax Error” and “Unsatisfied Constraint” are preset by default in most lan-
guage descriptions and are of special significance: they are used to locate errors in a structured
document and to move the structure cursor from one error node to another. The standard set of
“Oplevel-” commands are bound at the “Syntax Error” and “Unsatisfied Constraint” levels to allow
quick and easy navigation between errors. The presence of errors in a program in no way interferes
with normal text editing. In Pan, the identification and diagnoses of language errors is just another
kind of derived information; as much service as possible will be supplied in their presence.

42 6 LANGUAGE-ORIENTED SERVICES

Some language descriptions may combine these two types of language errors into a single operand
level or mav split different types of svntax errors or different unsatisfied constraints into separate
levels. The two operand levels and their corresponding flags described here are used in most of the
existing language descriptions.

After lexical analvsis, provided that there are no lexical errors, the syntactic analyzer updates
the internal structured representation.

The svntactic analvzer checks the structure (or syntax) of the program against the Ladle de-
scription of the language. If the svntactic analyzer encounters svntactic errors, the number of errors
discovered during the analysis is displaved on the annunciator line, and the Syntax-Errors-Present?
flag is set. This flag appears as a “!" on the information panel. When the syntactic analyzer detects
an error, the subtrees involved in the error are gathered into an “error subtree™. Selecting the sub-
tree rooted at an error node causes the error message from the svntactic analyzer to be displaved on
the annunciator line. If the option Highlight-Syntax-Errors is set then the text associated with the
svntax error node will be displayed in red ink. Text colors may be changed by setting the option
Text-Window-Fg-Colormap (see Section 7.5).

The options that control highlighting and color text rendering for languages are described in
Figure 5.

| Option ' Configured By [Default |
Highlight-Syntax-Errors Ink (foreground color) 1 Red
Highlight-Query-Results Ink (foreground color) 2 Blue

Highlight-Semantic-Errors | Shading (background color) 1 | Pale Red
Highlight-Structure-Cursor | Shading (background color) 2 | Pale Blue

Figure 5: The options that control structural highlighting

Figure 3 on page 35 shows the display of a syntax error as well as a graphical view displaving
the internal tree structure for the error.

The semantic analyzer checks that the program satisfies a set of contextual constraints. for
example type restrictions (based on the underlving language definition) and naming conventions
(based on intended usage). If the semantic analyzer detects any semantic errors, the number of
errors discovered during the analysis is displaved on the annunciator line, and the Semantic-Errors-
Present? flag is set. This flag appears as a “#” on the information panel. The semantic errors or
unsatisfied constraints are represented as annotations on the internal tree. If the option Highlight-
Semantic-Errors is set then the text associated with the semantic error node will be highlighted in
red ink. The highlight colors may be set to any set of colors by setting the option Text-Window-
Bg-Colormap in the appropriate view (see Section 7.5).

6.9 Editing

Editing structured views is quite simple in Pan. Actual editing is implemented by text operations,
but navigation and selection may be optionally driven by language-based information.

6.10 Searching in Programs 43

All insertions use the text-level commands used for text editing’. Deletions are accomplished
using either text-level commands, or using the Oplevel-Delete command. Oplevel-Delete will delete
the region of text under the structure cursor at the current operand level. Other editing. using the
clipboard and the kill ring, function the same as for text editing.

Undoing edit actions restores the text without restoring the structured representation. Thus
undoing currently requires reanalysis.

6.10 Searching in Programs

Lexeme-Search-Forward Cursor-Search-Forward at level “Lexeme”
Replace-Lexemes Replace-All at level “Lexeme”
Query-Replace-Lexemes Query-Replace-All at level “Lexeme”

In addition to ordinary textual search. which is always available along with all textual services.
regular expression searching may be applied to structural components and particular operand levels.
At the moment this is only implemented at the lexical level.

The search commands apply the match pattern to each lexeme except for comments (which
are not regarded as lexemes). If a prefix argument is not present then the entire lexeme must
match the pattern. Otherwise, the pattern may match a subset of the lexeme. If the option
Case-Sensitive- Lexeme-Search is set then the match must be case sensitive.

6.11 Queries

The effect of a query is to mark a set of nodes in the internal tree which have some specified property.
For example. in SIMPLE2 a variable may be queried. When a variable has been queried. the text
associated with the tree nodes representing the declaration and all of the uses of that variable is
displayed in blue. (Text colors may be changed by setting the option Text-Window-Fg-Colormap.See
Section 7.5) You may then set the operand level to “Query” and navigate among these uses of the
variable with the normal operand level commands.

The current prototype implementation of queries insists that object protection be turned on
while displaying a query result. This means that you must manually clear a query (by toggling
the object protection) before vou make further modifications. Work is underway to remove this
restriction.

6.12 Debugging Features

These features of Pan are not generally useful for programming in Pan, but are very useful to
designers of Pan language descriptions.

"The language description SIMPLE2 includes the a rudimentary prototype for the template-expansion style of
svntax directed editing. These operations are also implemented textually, but the fact is somewhat hidden from
the user since a newly expanded template is always immediately incrementally analyzed, and thereby promoted into
structure

44 6 LANGUAGE-ORIENTED SERVICES

Graphical Views

Visit-Program-Graph-View View=>Program Graph: With Node Names
Visit-Program-Subgraph-View View=Subgraph At Cursor: With Node Names
Visit-Program-Graph-Operator-View View=>Program Graph: With Operators
Visit-Program-Subgraph-Operator-View View=>Subgraph At Cursor: With Operators
Visit-Program-Graph-Address-View Not bound
Visit-Program-Subgraph-Address-View Not bound
Visit-Program-Graph-Context-View Not bound
Visit-Program-Subgraph-Context-View Not bound
Visit-Program-Graph-Parse-Change-View Not bound
Visit-Program-Subgraph-Parse-Change-View Not bound
Visit-Program-Graph- Parse-Status-View Not bound
Visit-Program-Subgraph-Parse-Status-View Not bound

The Visit-Program-Graph- commands all bring up a graphical representation of the internal tree
representation for the program. The Visit-Program-Subgraph- commands generate a representation
for the subgraph of the internal subtree which is rooted at the currently selected node of the graph.
The tree is laid out horizontally, with the root at the left and at every node the first child above
the second child which is above the third child, etc.

A graphical view is redrawn after every reanalysis of the structure. Subgraph views are removed
if a reanalysis ever causes the associated node to be deleted.

The views created by the different variations of these commands are graphically similar: they
differ in the way that a textual label is created for each node. In the simplest version. Visit-Program-
Graph-View, each node is simply named, but other versions add extra information useful for various
kinds of debugging.

The colors and line thicknesses of the graph are configurable options.

Other Language-Oriented Views

Visit-Database-View Not bound
Visit-Node-Semantics-View Not bound
Visit-Lexeme-internal-Data-View Not bound
Visit-Worklist-View Not bound
Visit-Tree-Internal-Data-View Not bound
Visit-Subtree-Internal-Data-View Not bound

These textual views are primarily useful for debugging Ladle and Colander language descriptions.
They are not maintained incrementally during text editing. Instead, the first textual modification
after analvsis causes the view to be marked dirty. As long as the information in the view is
inconsistent with the text of the program, it will be displayed in gray. It is then redrawn the next
time there is an analysis to reflect the new information.

These views display the internal data representation for the structure of a program. Visit-
Lexeme-Internal-Data-View creates a view which displays a description of the lexical stream inter-

45

nal representation. Visit-Tree-Internal-Data-View and Visit-Subtree-Internal-Data-View both create a
view which continually displays a textual description of the internal tree representation.

These views display information derived from the semantic analyzer. Visit-Database-View creates
a view which contains the contents of the semantic database. Visit-Node-Semantics-View creates a
view which continually displays the contents of the semantic database for the tree node of the tree
cursor at the time the command is executed. Visit-Worklist-View creates a view which displays the
semantic worklist (currently unsatisfied constraints).

Exploring the Tree Structure

Tree-Up Not bound
Tree-Down unbound
Tree-Left Not bound
Tree-Right Not bound

This set of navigation commands for textual language-based views is used for debugging. It includes
Tree-Up. Tree-Down, Tree-Left. and Tree-Right. These are the usual tree-oriented commands. They
function in the text view of the program. From the current node, Tree-Up moves the structure
cursor to the parent, Tree-Down moves it to the leftmost child of the current node, Tree-Left and
Tree-Right move the structure cursor to the appropriate sibling in the tree. These commands can be
used to explore the actual tree structure, as opposed to the tree structure imposed by the operand

hierarchy mechanism?®.

7 Simple Customization

Pan can be customized by altering option values and bindings, extended by defining new options,
flags, and commands or by introducing new code at hooks or notifiers. and broadened by defining
new, formal languages by using the language definition language Ladle and the semantic definition
language Colander. This section provides a brief introduction to the facilities for tailoring and
extending the system.

7.1 Start-Up Processing

Load-File X “L
Load-From-Text-Stream Esc X
Load-From-Selection Esc ~S

At start-up. a run-command file named “.panrc” is loaded automatically into Pan. The * .panrc”
file should be a file of CoMMON Lisp and Pan commands located either in your working or vour
home directory.

80ne could make the same kind of navigation possible by adding the oplevel “Node” to those available on a
view and then using the Oplevel-Cursor-Forward, Oplevel-Cursor-Backward, Oplevel-Cursor-in, and Oplevei-Cursor-Out
commands.

46 7 SIMPLE CUSTOMIZATION

Pan loads the *.panrc” file using the command Load-File. All commands that load files use
the search path specified by the option Editor-File-Search-List. The default value of the option
Editor-File-Search-List is set to

(n.v v-n o n/usr/local/lib/pan/')

Pan can be instructed to automatically load files other than ~.panrc™. One way is to include
Load-File directives in the *.panrc” file. Such files will be loaded once at start-up. This method
can be used to ensure that a certain selection of libraries will always be loaded. A second way is
to use the Auto-Load command described in the next section.

(Load-File “filename™)

While running Pan vou can explicitly load commands from any file with the Load-File command
which prompts for a file name or from any view in Pan with the Load-From-Text-Stream or Load-
From-Selection commands.

Language-Based Configuration

Display-Language-List Help=-Pan: Language Descriptions Loaded

Auto-Load file-name regular-expression

Auto-Exec function-name regular-expression

Display-Auto-Load Help=Pan: Filename Auto-Load Map
Display-Auto-Exec Help=Pan: Filename Auto-Exec Map

The basic textual views on programs all use the standard text-edit-view-style. so language-specific
configuration must be done at the view-instance level (the :view scope). Typically, this is achieved
by using the Auto-Exec mechanism. When a file in a given language is opened for editing, an auto-
exec function. named <language>-mode by default. is executed. These functions and all supporting
code are in modules named “<language>-mode .cl” by default. Loading one of these modules loads
all aspects of the language description needed: Ladle description. Colander description. editing
interface configuration and support. The Pan Engineering Manual[5] contains more information
about configuration and language-based information in particular.

These modules may be preloaded in a dumped Pan, or they will be auto-loaded when needed.
To see a list of all of the languages for which a Ladle syntactic description or a Colander semantic
description have been loaded. use the command Display-Language-List.

The commands Display-Auto-Load and Display-Auto-Exec display the list of Auto-Load and Auto-
Exec commands which have been defined. The Auto-Load command instructs Pan to ensure that a
file has been loaded whenever a file whose name matches a given UNIX file expression is created.
If the Auto-Load is set up properly. then the language mode for a file should be loaded when a view
is created for the file. The file is loaded at most once as a result of Auto-Load.

For instance. (Auto-Load "c-mode" "*.[hc]") tells the system to load the file “c-mode™ the
first time that a file whose name matches “*.[hc]” is edited. The file “c-mode” can be either
lisp code or compiled lisp code; if both “c-mode.cl” and a “c-mode.fasl” are found in the same

7.2 Using Scopes 47

directory. the most recently modified version is chosen.

Similar to Auto-Load. the command Auto-Exec instructs Pan to execute a given function when-
ever a view having a name that matches a given pattern is created. Taken together. Auto-Load and
Auto-Exec can be used to create minor modes.

A minor mode is a collection of commands and bindings useful while editing views of a given
type. For instance these commands can be used to create a minor mode for TEX input:

(Auto-Load "tex-mode" "*.tex'")
(Auto-Exec ’tex-mode "*.tex'")

The parameterless function tex-mode is defined in the library file “tex-mode.cl™ to set up a
specialized collection of bindings. The file “tex-mode.cl” also defines a number of commands
useful for manipulating TEXnical text.

7.2 Using Scopes

With-View-Style-Scope view-style (commands)

With-View-Scope view (commands)
With-Buffer-Scope buffer (commands)

To set options or create bindings within a given scope (other than :global), the scope must be
specified before the command to set the option or create the binding is executed. The default scope
for most bindings is :global.

Most commonly. the :view-style scope is used for setting non-global defaults. For example.
to set up the normal kev binding for “f” in the directory editor view-style, dired-view-style, vou
could use this lisp code:

(With-View-Style-Scope (view-style dired-view-style)
(Bind-Key ’Dired-Visit "f" :view-style))

The other two “-Scope™ macros are not often used. Usually, if you want to make a change within
a view, vou would make the change from within that view or from within an Auto-Exec function.
and then you don’t need to mention the scope explicitly.

7.3 Packaging

Pan’s implementation uses the CoMMON Lisp package system. so every symbol (in particular
every command, function, option, etc.) is defined in some package: almost nothing is defined in the
default user package.

For convenience, all of Pan’s commands, functions. options, etc. are imported automatically
into the default user package. This means that configuration files (e.g. “.panrc”), which typically
are left in the user package, need not contain package qualifiers for these names (the qualifiers are
optional).

48 7 SIMPLE CUSTOMIZATION

The help svstem by default does not display the package qualifiers for these names: option
Package-Symbol-Names requests that the qualifiers be displayed.

7.4 Creating Bindings

Pan provides several configuration mechanisms in the form of bindings. Keystrokes. menu items.
and generic commands may all be bound to Pan commands. All bindings are scoped. with local
bindings taking precedence over global bindings. This section describes how to find out what your
current bindings are and how to set up new default bindings with your “.panrc” file.

When vou shadow a binding for an object in a given scope. it effectively removes any binding
for that object inherited from an enclosing scope if any such binding exists.

It is possible to invoke a command without binding it by using the commands Execute-Lisp-Line
or Execute-Command (Section 7.8 provides more details.).

Creating Key Bindings

Display-All-Key-Bindings Help=This View=-Keys: Display All
Bind-Key command key-sequence [scope]

Key bindings associate keystroke sequences with commands. The command Display-All-Key-Bindings
prints the key bindings for the current view into the help view. Key bindings are established or
altered using the command Bind-Key. The default scope of the change is :global: specifving :view
or :view-style within the proper scope makes the change in the local environment. The syntax
for Bind-Key is

(Bind-Key ‘function “key sequence” [scope])

where ’function is a quoted function name. “key sequence” is a COMMON LISP string specifying a
keystroke sequence. and scope is either :view, :view-style, or :global. The default value for
scope is :global.

Pan allows vou to bind any key sequence to any command. This includes special keys, function
keys. mouse buttons, and keys modified by shift or control. Figure 6 shows some of the special
kevboard keys (and pseudo-keys, which is how mouse button events are handled in Pan) that are
known to Pan along with their names and default bindings. Most of the names for special keys
are derived from and correspond to X11 “kevsyms.” Not all of the keys are generated by everv
kevboard. The default bindings of the “L™ function keys are inspired by their labeling on Sun
kevboards.

When specifving a keystroke sequence, control characters such as “Control ?” are denoted by
the two-character sequence “~?”; the “Escape” prefix is denoted by “Esc”. For example,

(Bind-Key ’Delete-Character "~“D" :global)

establishes the default binding for Delete-Character.

7.4 Creating Bindings

l' Key Key Name [Binding
T Space Insert-Space-Fill
“=I” Tab Self-Insert
“mJv Newline Newline-And-indent
“ M Return Insert-Newline-Fill
““H" Backspace Delete-Previous-Character
“Escape” Esc Not bound
Mouse-Left Cursor-To-Mouse
“ood” Mouse-Middle Select-Region-Dot-To-Mouse
“lood” Mouse-Right Execute-Menu
“food” Control-Mouse-Left | Oplevel-Cursor-To-Mouse
“Shift=pef" Shift-Mouse-Left Oplevel-Cursor-To-Mouse
“lood” Control-Mouse-Right | Oplevel-Menu
“Shift-pe{" | Shift-Mouse-Right Oplevel-Menu
b= Left-Arrow Oplevel-Cursor-Backward
‘=" Right-Arrow Oplevel-Cursor-Forward
“1° Up-Arrow Oplevel-Out
<1 Down-Arrow Oplevel-in
“Begin” Begin Oplevel-Cursor-To-First
“End” End Oplevel-Cursor-To-Last
“Prior” Prior Oplevel-Cursor-Backward
“Next” Next Oplevel-Cursor-Forward
“Find” Find Oplevel-Cursor-Search-Forward
“L17-%L3" L1-L3 Not bound
“L4” L4 Undo
“Ls” L5 Not bound
“L6” L6 Copy-To-Clipboard
“LT” L7 Not bound
“L8” L8 Paste-From-Clipboard
“L9” L9 Oplevel-Cursor-Search-Forward
“L10" L10 Cut-To-Clipboard
“F17-“F10” F1-F10 Not bound
“R1"-“R15" R1-R15 Not bound
“Home" Home Visit-View-List
“Help™ Help Visit-Help-View
“Insert” Insert Not bound
“Menu” Menu Not bound
“Cancel” Cancel Not bound
“Break” Break Not bound

Figure 6: Bindings and names for special keys

49

50 7 SIMPLE CUSTOMIZATION

Creating Menu Bindings

Display-Defauit-Menu Help=-This View: Default Menu
Bind-Menu menu-name bindings

Rebind-Menu menu-name old-label new-item [new-label]

Create-Menu menu-being-added title bindings

Copy-Menu old-name new-name [new-title]

A menu binding associates a menu item with a command or another menu.® The command Display-
Default-Menu prints the menu bindings for the current view in the help view. Menu bindings are
created via the macros Bind-Menu. Copy-Menu, Create-Menu. and Rebind-Menu. All menus are
global. Any change to a menu affects the global description of that menu. To establish a binding
for a menu item in an existing menu, use

(Bind-Menu menu-name bindings)
where bindings is a list of menu items of the form
(item [“Selection Name”] [position])

The item being bound to the menu may be either a command or another menu. The “Selection Name”
must be a CoMMON Lisp string. If “Selection Name™ is omitted. the name of the command or
menu is used. The optional argument position is an integer - the position in the menu at which to
insert the item. The first item in the menu has position 1. For example,

(Bind-Menu help-view-style-menu
(Document-Symbol "Describe" 1))

sets up the default binding for Document-Symbol as the first item in the Help menu and

(Bind-Menu text-edit-view-style-menu
(global-help-menu "Help"))

sets up the default binding for the Help sub-menu in the Text menu.

The macro Create-Menu creates a new menu with the given name, title, and bindings. The
format for Create-Menu is:

(Create-Menu menu-name menu-title bindings)

For example. the default global Help menu is created by the following CoMMON LISP code:

®A menu item may also be a lisp form.

7.4 Creating Bindings 51

(Create-Menu global-help-menu '"Help"
(this-view-help-menu "This View")
(help:Apropos-String "Apropos')
editor-help-menu)

Rebind-Menu allows vou to change an existing menu item. Its format is:
(Rebind-Menu menu-name old-label new [new-label])

For example. vou could change the menu item This View: Options to print the option docu-
mentation with the command Display-Option-Documentation by the following code:

(Rebind-Menu this-view-help-menu
"Options" Display-Option-Documentation "Option Docs.")

Creating Operand Level Bindings

Display-Operand-Level-Bindings Help=>This View=-Operand Cmds.: By Level
Display-Operand-Command-Bindings Help=This View=-Operand Cmds.: By Command
Display-Operand-Level-Menus Help=This View: Dperand Menus
Display-Operand-Level-Documentation Not bound
Display-Operand-Command-Documentation Not bound
Oplevel-Menu “C Mouse-Right
Execute-Oplevel-Menu Menu at level “Most Operand Levels”

Bind-Oplevel-Command-List operand-command-command-pair-list level [scope]
Bind-Oplevel-Menu level menu-name [scope]

Operand level command bindings associate an operand level and a generic command with a Pan
command. Operand level menu bindings associate an operand level with a menu. The com-
mands Display-Operand-Level-Bindings, Display-Operand-Command-Bindings, and Display-Operand-
Level-Menus print into the help view the appropriate bindings in the current view. Display-Operand-
Level-Documentation and Display-Operand-Command-Documentation display documentation about
the operand levels and generic “Oplevel-” commands respectively.

Bind-Oplevel-Command-List allows vou to create a set of operand level command bindings at a
given operand level. Its format is:

52 7 SIMPLE CUSTOMIZATION

(Bind-Oplevel-Command-List
((operand-commandl commandl)
{operand-command? command?2)

(operand-commandN commandN))
level [scope])

For example. the standard cursor-motion bindings for the operand level “Word” are established
by the following code:

(Bind-Oplevel-Command-List
((Oplevel-Cursor-Forward text:Next-Word)
(Oplevel-Cursor-Backward text:Previous-Word)
(Oplevel-Cursor-To-First text:Move-To-First-Word)
(Dplevel-Cursor-To-Last text:Move-To-Last-Word)
(Oplevel-Cursor-To-Mouse text:Mouse-Select-Fullword))
word-level)

The operand level menu contains. by default, all of the commands which are bound at that
level. Operand level menus may be created and altered in exactly the same fashion as other menus.
The function Bind-Oplevel-Menu binds a menu to an operand level. Its format is:

(Bind-Oplevel-Menu level menu-name [scope])

For example, this code binds the standard word-oplevel-menu to the operand level “Word” in
the global scope:

(opl:Bind-Oplevel-Menu ’word-level ’word-oplevel-menu)
The command Oplevel-Menu is a bindable generic command. It is usually bound to the command
Execute-Oplevel-Menu which executes the menu that is bound to the current operand level. It is

possible to rebind Oplevel-Menu to a different command for a given operand level; this allows for a
highly customizable environment. used at present only for experimental features in SIMPLE2.

7.5 Getting and Setting Options

Announce-Option-Variable Not bound
Set-Global-Option-Variable Help=This View=Set Option: Global
Set-View-Style-Option-Variable Help=This View=-Set Option: View Style
Set-View-Option-Variable Help=This View=-Set Option: View Only
Set-Buffer-Option-Variable Not bound

Display-Option-Variables Help=-This View: Options

7.5 Getting and Setting Options 53

Display-Option-Documentation Not bound

Much of Pan’s behavior may be modified by setting options. The command Announce-Option-
Variable is used to retrieve the value of an option in the current view. The command prompts for
the name of the option and then announces its value in the message line.

The Set- commands listed above allow vou to set the value of an option in the given scope while
running Pan. They all prompt for the name of the option and then for its new value. which vou
must specify in a form acceptable to the COMMON LisP reader.

To set an option’s default value to value. use the lisp form in vour “.panrc” file

(setf (variable option-name scope) value)
In this case, scope must specify either :view-style or :global. For instance. the expression
(setf (variable Window-Close-With-Icon :global) nil)

sets the value of the option Window-Close-With-Icon to be nil. To set any option in a particular
view-style. use the macro With-View-Style-Scope to specify the view-style (see below). A list of all
of the view styles is in Appendix G.

Setting Font Maps

Since the Text-Window-Fontmap option is a scoped variable. the macro With-View-Style-Scope must
be used to set the font for a particular view-stvle as described in Section 7.2. For example. the help
view uses the view-style help-view-style: thus a new font map for the help view could be specified
by the following code:

(With-View-Style-Scope (view-style help-view-style)
(setf (variable Text-Window-Fontmap :view-style)
) ("-adobe-times-medium=-i-*k==-12-k=k=k—sk=k-sk=-x"
"-adobe-new century schoolbook-medium-r—*==10=%=k=%-%—%-k-x"
v-adobe-times-bold-I-%=-12-%-*-*-x-x-%-%x'}))

The X tool XFONTSEL is useful for determining the exact font you are looking for and getting
its full name.

Setting Color Maps

Text-Window-Fg-Colormap
Text-Window-Bg-Colormap
Panel-Bg-Color
Panel-Flag-Default-Fg-Color
Panel-Flags-Bg-Color
Panel-Logo-Fg-Color
Panel-Logo-Bg-Color

54 7 SIMPLE CUSTOMIZATION

Panel-View-Logo-Fg-Color
Panel-View-Logo-Bg-Color

Colors are represented in Pan as dotted pairs of strings which represent color names. such as
("red"."black"). The first color will be used on a color monitor if the option Window-Use-Color
is set. otherwise the second color is used. Figure 5 on page 42 shows the uses and default values
for the text colormaps in structure-based documents.

Each of the “Panel-" options has the value of a single pair of colors one of which is used for
the appropriate area of the panel. You can set a color option by any of the methods vou use to
set other options. For example. this code would change the Panel-Flag-Default-Fg-Color to blue on
color screens:

(setf (variable Panel-Flag-Default-Fg-Color :global) ’("blue"."black'))

The Text-Window-Fg-Colormap is used for displaving colored or greved text in textual views.
The Text-Window-Bg-Colormap is used for displaving colored or greved background highlight for
text in textual views. Each of these two options is an indexed list of color pairs. When a region
of text is highlighted or colored in Pan. it is assigned an index into the appropriate colormap and
displaved with that color.

The X tool xcoL will give vou a display of the colors that are available on vour system.

7.6 Character Sets

Display-Char-Sets Help=This View: Character Sets
Display-Char-Set-Documentation Not bound

Set-Char-Set char-set-name char-list [scope] [operation]
Set-Char-Match left-char right-char [scope] [operation]

These are the normal help commands. Display-Char-Sets lists all of the character sets and their con-
tents in the current view. Display-Char-Set-Documentation lists the character sets with a description
and their default global values.

One particular character set, match-characters. contains all of the matched characters such as
right and left braces. Whenever Pan looks for a balanced expression it tries to find the match for
the character under the cursor.

The functions Set-Char-Set and Set-Char-Match are useful for creating character sets and altering
the contents of existing character sets. Set-Char-Set allows vou to add. delete. or shadow characters
in a character set. Its format is:

(Set-Char-Set char-set-name char-list [scope] [operation])

The char-list has the form of a CoMMON LisP string of characters. The operation may be one
of :add, :delete. or :shadow: it defaults to :add. For example. here is the lisp code to add the
character “-" to the character set word-characters:

(1}
[eha]

7.7 Creating and Modifving Flags

(Set-Char-Set ’word-characters ’"-")

Set-Char-Match allows vou to add. delete. or shadow pairs of match characters to the match-character
set. Its format is:

(Set-Char-Match left-char right-char [scope] [operation])
For example, here is code to add the characters “>” and “<” to the match-characters set:

(Set-Char-Match #\< #\>)

7.7 Creating and Modifying Flags

Display-Flags Help=This View: Flags
Window- Modify-Flag-Collection

A flag in Pan is implemented as an option which can be true or false (in COMMON Lisp, t or
nil) and an associated bitmap. The command Display-Flags displays all of the flags defined in the
current view.

Flags may be added to or removed from any scope with the function Window-Modify-Flag-
Collection. Its format is:

(Window-Modify-Flag-Collection [scope]
[:add °’ (add-flag-list)]
[:delete ’ (delete-flag-list)]
[:shadow ’ (shadou-flag-list)])

where delete-flag-list is a list of variables in the current collection of flags and add-flag-list is a list
of flag descriptors of the form:

(variable
[Con-bitmap [[on-background-color]| on-foreground-color])
[Coff-bitmap [[off-background-color] off-foreground-color])]]

The bitmap variables both default to Panel-Flag-Default-Bitmap, the on-foreground-color defaults
to Panel-Flag-Default-Fg-Color, and the background color variables both default to Panel-Flags-Bg-
Color. The off-foreground-color defaults to Panel-Flag-Default-Fg-Color if the off-bitmap is set and
Panel-Flags-Bg-Color if it is not.

All bitmaps and colors used in the descriptor must be defined as variables. For example, to
create a new bitmap for the syntax error flag and assign colors and bitmaps for its on and off
representations, variables representing all of these pieces of information would have to be defined

and set in your “.panrc” file:

56 7 SIMPLE CUSTOMIZATION

(setf (variable Syntax-Errors-Present-Bitmap :global)
"~ /syntax-error.12x12")

(Define-Option-Variable Error-On-Color ’("red" . “black")
"The color to use for the error flags."
:bindable-scopes :global)

(Define-Variable-Cache Error-On-Color
*win-sys:color-compute-cache)

(Define-Option-Variable Error-0ff-Color ' ("mediumseagreen' . "black")
"The color to use for the no error flag."
:bindable-scopes :global)

(Define-Variable-Cache Error-0ff-Color
'win-sys:color-compute-cache)

(Define-Option-Variable No-Error-Bitmap "~ /no-error.12x12"
"The bitmap which represents the no error flag."
:bindable-scopes :global)

(Define-Variable-Cache No-Error-Bitmap
’win-sys:bitmap-compute-cache)

See Section 7.8 for more information on defining new options. Then the following code would be
included in the appropriate auto-load files:

(win:Window-Modify-Flag-Collection :view
:add
' ((otree:Syntax-Errors-Present?
(Syntax-Errors-Present-Bitmap Error-On-Color)
(No-Error-Bitmap Error-0ff-Color))))

The X tool BITMAP is useful for designing flag bitmaps.

7.8 Lisp-Oriented Commands

Execute-Lisp Esc Esc
Execute-Command Esc x
Load-File -x "L
Load-From-Selection Esc ~S

Load-From-Text-Stream Esc X

RS

(2]

7.8 Lisp-Oriented Commands

These commands are mostly for the use of people extending Pan, although sometimes vou’ll want
to use one to see what a command does. They are included here for completeness.

Execute-Lisp prompts for a CoMMON Lisp form to evaluate: the resulting value is printed on
the message line. If vou want to execute a bindable Pan command. there are two methods. The
simplest is to invoke Execute-Command and respond to the prompt with the name of the command.
e.g. Next-Character. Alternatively, one can invoke Execute-Lisp and respond to the prompt with the
expression (Next-Character). The parentheses are required in the latter case, since commands
are implemented as CoMMON LisP functions.

Load-File loads a file of CoMMON LisP and Pan commands into the system. Load-From-Text-
Stream loads the contents of the entire text stream in the current view and evaluates the CoM-
MON Lisp and Pan commands. Load-From-Selection loads and evaluates the CoMMON Lisp and
Pan commands in the current text selection.

Defining Variables and Options

Define-Option-Variable option [initial-value [documentation [:apropos] [:notifier]]]
Define-Variable variable [initial-value [documentation [:apropos] [:option] [:notifier]]]

You can create variables and options simply by defining them as CoMMON LisP variables in your
“_ panrc” file. The macro Define-Variable allows you to include documentation and apropos infor-
mation. add notifiers. or make vour variable into an option variable known to the help system. The
macro Define-Option-Variable is the same as Define-Variable with :option set to t. As an example,
here is COMMON LISP code to create the option variable Number-Of-Views-Created:

(Define-Option-Variable Number-0Of-Views-Created O
“the number of views that have been created so far"
:notifier #’view-num-notifier
:bindable-scopes :global
:initial ’nil)

Hooks and Notifiers

Display-Hooks Not bound
Display-Hook-Documentation Not bound
Display-Notifiers Not bound

Define-Hook-Function hook scope function [arguments] body
Define-Hook hook hookable-scopes arguments [documentation] [:apropos]
Perform-Hook hook arguments

add-variable-notifier variable notifier

If vou really want to dig into Pan’s internals and change things significantly, you may be interested
in using hooks and notifiers. This is for ambitious users only!

58 & ACKNOWLEDGMENTS

A notifier is a function which is called every time the value of a given variable is changed. Most
Pan variables and options have notifiers. You can add a notifier to a variable with the function
add-variable-notifier or vou can list the notifier when vou declare the variable. Here is CoMMON Lisp
code for a notifier to display the value of the variable in your console window (note that this notifier
was listed in the variable definition):

(defun view-num-notifier (foo scope-kind bound new old)
(declare (ignore scope-kind bound old))
(format t ""A is “A.7Y"
foo new))

A hook is a place within a function where vou can insert new code. The Define-Hook-Function
macro allows vou to add code at an existing hook. Here is an example of a function to increment the
option Number-Of-Views-Created (defined above) attached to the hook %view-construct ion-hookY,
which is called immediately after a view is created:

(Define-Hook-Function bufview:Yview-construction-hook/
:global
add-to-view-num
O
(incf (variable Number-0f-Views-Created :global)))

8 Acknowledgments

Pan is the work of many people. Professor Susan Graham has directed the project since its incep-
tion. Robert Ballance was the original architect and continued with the project until completing
his Ph.D. Michael Van De Vanter joined the project in its early stages and has a been a principal
member of the project through the present. Christina Black, Jacob Butcher, Bruce Forstall, Mark
Hastings, Darrin Lane. Bill Maddox, Ethan Munson, Tim Wagner, and Robert Wahbe have all
made substantial contributions. Finally, we wish to acknowledge the community of “editor peo-
ple” with whom we have interacted over the past several years. Many of their best ideas appear
somewhere within Pan.

REFERENCES 59

References

[1] Robert A. Ballance. Syntactic and Semantic Checking in Language-Based Editing Systems.
PhD thesis. Computer Science Division. UC Berkeley. December 1989. Available as Technical
report number 89/548.

[2] Robert A. Ballance. Susan L. Graham, and Michael L. Van De Vanter. The Pan Language-
Based Editing System. ACM Transactions on Software Engineering and Methodology. 1991. To
Appear.

[3] Jacob Butcher. Ladle. Master’s thesis. Computer Science Division, UC Berkeley, November
1989. Available as Technical report number 89/519.

[4] J. C. Cleaveland and R. C. Uzgalis. Grammars for Programming Languages. Elsevier Holland.
1977,

[5] Bruce Forstall. The Pan Engineering Manual. Working Paper 91-1. March 1991.

[6] Paul N. Hilfinger and Phillip Colella. Fidil: A language for scientific programming. In Robert

Grossman. editor, Symbolic Computation: Applications to Scientific Computing, pages 97-138.
SIAM. 1989.

[7] R. M. Stallman. EMACS, the Extensible. Customizable, Self-Documenting Display Editor. In
Proc. of the ACM SIGPLAN SIGOA Symposium on Text Manipulation, pages 147-156, 1981.

[8] Michael L. Van De Vanter, Robert A. Ballance, and Susan L. Graham. Coherent User Interfaces
for Language-Based Editing Systems. International Journal of Man-Machine Studies, 1991. To
Appear.

[9] Nicklaus Wirth. Programming in Modula-2. Springer-Verlag, third. corrected edition, 1985.

60 9 GLOSSARY

9 Glossary

Active View The view that owns the active window.

Active Window The active window is the window in which the most recent kevstroke or mouse
action occurred. although the active window may change as the result of a command. for example
Visit-File.

Apropos A Help command for browsing documentation gathered during definition of Pan’s com-
mands, flags, and options For instance. (Apropos "Cursor") lists all of the commands dealing with
the cursor.

Auto Load The Auto-Load command instructs Pan to ensure that a specified file has been loaded
whenever a view is created onto a file whose name matches a specified UNIX file expression.

Auto Exec The command Auto-Exec instructs Pan to execute a specified function whenever
creating a view having a name that matches a specified pattern.

Backup A copy of the file being visited that records the state of the file before any changes are
made using Pan. You may visit the backup of a file with the command Visit-Backup. You may
restore a view of a file to its backed-up state with the command Revert-Object-To-Backup.

Binding An association between an event (key-sequence. mouse action, menu selection) and a
Pan command, used by Pan’s command dispatcher to determine the appropriate response to each
user event. Everv binding is made at a scope: global. for a specified view style. or for a specific
view instance.

Character Set A named set of ASCII characters. scoped as with all other Pan bindings. Char-
acter sets are used to define simple structural attributes of ordinary text: words, white-space.
matching brackets, and the like.

Checkpoint A copy of a file being visited that records an intermediate, modified state of the file.
Pan makes a checkpoint periodically as the text in a view is modified; each checkpoint replaces
the previous one. You may visit separately the most recent checkpoint of a file with the command
Visit-Checkpoint. You may restore a view of a file to its most recently checkpointed state with the
command Revert-Object-To-Checkpoint.

Clipboard A ring. shared by all views, that contains one or more regions of text. The clipboard
supports copy. cut, and paste among views, or between Pan and other processes.

Command An operation that may be invoked directly by users through bindings to kevstroke
sequences and menus. Pan commands are defined using Define-Command. They are implemented
as and may also be called as CoMMON Lisp functions.

61

Current Operand Level See Operand Level.
Cut Remove a region of text from the active text stream and push it onto the clipboard.

Cycle Make the current top item in a ring become the oldest item. moving all other values
up—the second voungest becoming the new top item.

Default Font The first element in the font list specified by option Text-Window-Fontmap. When
any other slot in a map is unspecified, the default font is used.

Delete Remove a region of text from the active text stream, keeping no copies other than possibly
in undo history.

Deselect Ensure that there is no selection in the active view. without affecting the view’s con-
tents.

Directory Editor A Pan view style for browsing and operating upon UNIX file system direc-
tories.

Dot An anachronistic internal name for Pan’s text cursor. The function Dot returns the integer
offset (in characters, zero-based) of the text cursor from the beginning of the file.

Edit Object Whatever can be displaved and possibly manipulated by a Pan view. closely related
to the Emacs notion of “buffer.” A Pan session instantiates an edit object for each text file, program
or directory being viewed; each edit object comprises a copy of the data being edited. one or more
views. and other information.

Edit Window That area of a Pan window in which part of the object being edited is displayed
to the user.

Expression A balanced bracket expression is a string of characters enclosed within matched left
and right braces. brackets, parentheses. or other matched characters. and which may contain nested
pairs of balanced match characters. Character set declarations specify which characters are to be
treated as matching characters.

Fill Rearrange lines of text so that all are of approximately the same length, as controlled by
option Text-Line-Length.

Flag A Pan variable that has been configured specially in some scope so that its (boolean) value
appears on the information panel of all windows in that scope. At the flag’s panel location will
appear one specified graphical appearance when the variable’s (scoped) value is on (non-nil) and
another specified graphical appearance when the variable’s value is off (nil).

62 9 GLOSSARY

Font Map A zero-indexed list of font names. containing from 1 to 8 names. that specifies how font
codes stored in Pan’s internal text representation are to be interpreted during display operations.

Frame The outer surrounding edge of a window that responds to X window protocols.

Generic Operation A Pan command. such as Cursor-Forward or Delete. whose behavior is deter-
mined dvnamically by dispatch on the current operand level of the active window and by operand
bindings.

Global Image A small inset within a Pan graphical window that summarizes the entire graph
being viewed. regardless of zoom and scroll state. It also marks specially that portion of the entire
graph that is visible in the rest of the window. The global image can be resized by the user and

can be toggled on or off.

Graphical View A Pan view that displays information in terms of boxes (possibly containing
text) and lines that connect them.

Help View A special Pan view used for displaying help information.

Hook A place within Pan‘s thread of control where new code can be inserted conveniently. The
Define-Hook creates a hook, Define-Hook-Function adds code to the hook. and Perform-Hook executes
the hook’s code.

Implicit Selection The text region between the text cursor and the top mark of the mark stack.
This is distinct from and secondary to the visible selection in each view.

Information Panel The upper portion of every Pan window. which contains information about
the current view, such as the language, the operand level, and displayved flags.

Internal Tree Pan's internal representation for programs and other language-structured objects.
It is generated by the syntactic analyzer (parser) from the lexical stream. The details are generally
hidden from users and are revealed only through the operand level mechanisms.

Key Binding An association between a sequence of kevboard (or mouse button) events and a
Pan command. used by Pan’s command dispatcher to determine the appropriate response to each
user event. In some cases (prefix kevs) the response may be to wait for another kevboard event.
Every kev binding is made at a scope: global, for a specified view style. or for a specific view
instance.

Kill Remove a region of text from the active text stream and push it onto the active view’s kill
ring (or to the clipboard, depending on option Kills-To-Clipboard).

63

Kill Ring A ring. local to each view, that contains one or more regions of text. The kill ring
supports copy. cut, and paste within a single textual view.

Load Read into Pan’s execution image a collection of CoMMON Lisp and Pan commands, exe-
cuting top level forms.

Lexeme The smallest unit known to the syntactic analvzer. Lexemes include variable names.
arithmetic and assignment operators. and keyvwords.

Lexical Analysis The process of reading a text stream and constructing an appropriate stream
of lexemes. according to an underlving language description. Lexical analysis in Pan is incremental,
only making changes to the lexical stream where needed because of changes to the text stream since
the previous analvsis.

Mark A character position in a text stream that is guaranteed to remain in the stream. even
when an underlving character is deleted (in which case the mark is moved rightward). A mark is
attached to a character. not an offset. so deletions before a mark do not affect the character to
which a mark refers.

Mark Stack FEach Pan text stream provides for a stack of marks. the top element of which is
known as simply “the mark”. These values may be popped and pushed as in any stack.

Menu Binding An association between a menu or submenu title and a Pan command. used by
Pan's command dispatcher to determine the appropriate response to each menu operation by the
user. Every key binding is made at a scope: global, for a specified view style. or for a specific view
instance.

Message Line The lowermost part of the information panel in each Pan window, used to display
a single line of text containing various information: incomplete key sequences, information about
time consuming operations being performed. and the output of some commands.

Minor Mode A collection of bindings that may be added to particular view instances. providing
a slight variation on one of Pan’s established view styles.

Mouse Icon A graphical token that shows the location of the mouse on the workstation screen.
The mouse icon is normally an arrow when the mouse is positioned within a Pan window, as
specified by option Window-Default-Mouse-lcon. Different mouse icons appear when Pan is busy
working (not responding to user events) or to suggest a different function for the mouse in a region.

Node A structural component of Pan’s internal tree representation. used to represent a mean-
ingful part of a program or other structured document.

64 9 GLOSSARY

Notifier A function that may be associated with a Pan variable. using either the Lisp:motifier
kevword with Define-Variable and Define-Option-Variable or the function Lispadd-variable-notifier.
Whenever the value of a Pan variable in a particular scope changes. all associated notifiers are
called with information about the old and new values.

Numeric Prefix An optional (default 1) integer argument to each Pan command invocation.
supplied by special sequences of prefix kevboard events. Not all commands use the numeric prefix,
and some check only for its existence and not its value.

Operand Level An element of Pan window state. always visible in the panel. which modulates
the behavior of certain generic (or level-sensitive) operations like Cursor-Forward or Delete. The
current level is selected by the user. from among those specified by option Operand-Level-Choices.
using either the panel menu or by invoking level-specific commands such as Set-Oplevel-To-Character.
and Set-Oplevel-To-Declaration.

Operand Level Binding A three-way association of an operand level (for example Character at
level “)", a generic (or level-sensitive) operation (for example Cursor-Forward). and a Pan command
(for example Next-Character). These bindings are used by Pan’s command dispatcher to determine
the appropriate response to each user invocation of a generic command. Every binding is made at
a scope: global, for a specified view style, or for a specific view instance.

Operand Level Menu A menu associated with a particular operand level; the command Oplevel-
Menu by default presents the user with the menu appropriate to the current level. These menus
normally display all of the operand level bindings for the generic commands at the given level.

Option A user-definable, user-modifiable, typed Pan variable. Every value is assigned at a
scope: global, for a specified view style. or for a specific view instance. Many of the customizations
available to a user are provide via predefined options. Option values may be made visible in Pan’s
windows; see flags. Options may be made “active values” by the addition of notifiers.

Parsing See syntactic analysis.
Paste Copy a region of text from the top of the clipboard into the current text stream.

Pop-Up Window A small window which appears on the screen to accept a textual argument to
a command or to obtain a response to a question.

Prefix Keys Keyboard events that are not bound to a command but which form prefixes to
sequences which are bound. Any key may be a prefix in Pan: the keys “Escape”, “"X", “°C”, and
“~Z" are used as prefix keys for in Pan’s default key bindings.

Protected The contents of a file, directory. or other editable object which is nrotected may not
be altered.

65

Region A contiguous sequence of characters in a Pan text stream. Most text operations involve
regions either as source, destination. or both.

Replace 1. A “Replace-” command searches for instances of a given pattern and replaces them
with a given string. 2. A region of text may be replaced by another region of text from the kill
ring or clipboard.

Ring A circular bounded stack. Adding an item to a ring pushes the other items just like a
bounded stack. The oldest value in the stack may be discarded to preserve the boundedness. Rings
can also be cvcled.

Scope The scope of an option or binding determines the set of Pan views in which the option or
binding is effective. Normal configurations occur in one of three scopes: global. for a specified view
stvle. or for a specific view instance.

Scroll Bars The scroll bars are found on the borders of a Pan window and allow vou to scroll
the window with the mouse.

Scrolling Scrolling a window moves the region of the view which is currently visible in the window
vertically or horizontally.

Search Pan provides commands which search for strings that match specified regular expressions.

Selection A specially designated region in textual views. distinguished by underlining in all text
windows. There is at most one selection per view.

Semantic Analysis The process of analyzing a program and its associated database of derived
information. according to the Colander portion of an underlying language description. Results of
semantic analysis include facts asserted in the database and diagnosis of program components at
which Colander constraints (typically including, but not limited to, the static semantics of the
language) are not satisfied. Semantic analysis in Pan is incremental, only making changes to the
database where needed because of changes to the internal tree since the previous analysis. The
Database-Updated? is on in a view if and only if semantic analysis has been performed since the
most recent textual or database change.

Shadow When vou shadow a binding in a given scope. it effectively removes any binding inherited
from an enclosing scope if any such binding exists.

Structural Cursor A reference to some component in the internal tree representation of a struc-
tured object, shared by all views on that object.

66 9 GLOSSARY

Syntactic Analysis The process of reading a lexical stream and constructing an appropriate
internal tree. according to an underlying language description (also known as parsing). Syntactic
analvsis in Pan is incremental. only making changes to the internal tree where needed because of
changes to the lexical stream since the previous analysis. The flag Parse-Is-Current? is on in a
view if and only if lexical and syntactic analysis have been performed since the most recent textual

change.

Text Cursor The location where alterations to a text stream can occur. displayed as an inverted
box in all text windows. Characters are inserted or deleted at the character position to the left of
the character designated by the cursor.

Undo Return the state of an edit object to a state it was in before a recent modification.

Unsatisfied Constraints Contextual constraints from the Colander description of the underly-
ing language which are not met in the program.

View A view is a format for viewing an object. Any object may have several views. For example.
a program may have a text view, a tree view. a subtree view. and a database view. A view may
have more than one window. Each view has associated state information which is shared by all
windows on that view.

View List A Pan view style for browsing and operating on the list of all view instances in a Pan
session. Quitting the view list terminates Pan.

View-Style A configurable editing context. Pan has several different view-styles and every view
must belong so some view-style.

Window The equivalent of a window in Emacs. a window displays a view. Each text window
has its own text cursor but all other state is shared by other windows on the same view.

Yank Copy a region of text from the top of the kill ring into the current text stream.

A.1 Bindings by Command Name in a Text View

A Default Key Bindings

Al
a Text View

Announce-Text-Cursor-Info
Backward-Expr
Backward-Vscroll-Current-Window
Backward-Vscroll-Current-Window
Capitalize-Selection
Capitalize-Word
Capitalize-Word
Close-Current-Window
Copy-Selection-As-Kill
Copy-Selection-As-Kill
Copy-Selection-To-Cursor
Copy-To-Clipboard
Cursor-To-Mouse
Cut-To-Clipboard
Cycle-Paste
Cycle-Show-Clipboard
Cycle-Show-Kill
Cycle-Yank

Cycle-Yank
Delete-Blank-Lines
Delete-Character
Delete-Horizontal-Space
Delete-Indentation
Delete-Previous-Character
Delete-Previous-Character
Deselect-Region
Display-Objects
Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error

Editor-Error
Execute-Command
Execute-Command
Execute-Lisp
Execute-Menu

Exit-Editor
First-Non-Blank
First-Non-Blank
Forward-Expr

Bindings by Command Name in

-x =
Esc "B
Esc V

Esc v

Esc °C
Esc C

Esc ¢

"X 0

Esc W

Esc w

Esc 7Y

L6
Mouse-Left
L10

Esc L8
Esc !

X !

Esc Y

Esc y

"X -0

D

Esc \

Esc ~
Backspace
Delete
Esc D

“X “B

Esc ~G

“C "G

“C Cancel
“G

"X "G

~X Cancel
~Z "G

~Z Cancel
Cancel
Esc Cancel
Esc X

Esc x

Esc Esc
Mouse-Right
"X °C

Esc M
Escm

Esc °F

Forward-Vscroll-Current-Window
Goto-Line

Goto-Line
Indent-Like-Previous-Line
Insert-Fiie
Insert-Newline-Fill
Insert-Parentheses
Insert-Space-Fill
Interrupt-Editor
Just-One-Space

Kill-Expr
Kill-Previous-Word
Kill-Selected-Region

Kill-To-Eol
Kill-Word
Kill-Word

Left-Hscroll-Current-Window
Load-File

Load-From-Selection
Load-From-Text-Stream
Lowercase-Selection
Lowercase-Word
Lowercase-Word
Mouse-Extend-Selection-Fullword
Mouse-Select-Fuliword
Move-Selection-To-Cursor
Move-To-Bol

Move-To-Bos

Move-To-Eol

Move-To-Eos
Newline-And-Indent
Next-Character

Next-Line
Next-Message-Current-Window
Next-Message-Current-Window
Next-Word

Next-Word
Open-Another-Window-In-View
Open-Line
Oplevel-Cursor-Backward
Oplevel-Cursor-Backward
Oplevel-Cursor-Backward
Oplevel-Cursor-Forward
Oplevel-Cursor-Forward
Oplevel-Cursor-Forward
Oplevel-Cursor-in
Oplevel-Cursor-in
Oplevel-Cursor-Out
Oplevel-Cursor-Out
Oplevel-Cursor-Search-Backward
Oplevel-Cursor-Search-Forward
Oplevel-Cursor-Search-Forward

'

v

"X L

“X1

Esc Tab

"X "I
Return

Esc (
Space

"X "z

Esc Space
Esc “K

Esc Delete
"W

“K

Esc D

Esc d

X <

"X "L

Esc °S

Esc "X

Esc "L

Esc L

Esc 1

Esc Mouse-Middle
Esc Mouse-Left
Esc Return
“A

Esc <

“E

Esc >
Newline

°F

N

Esc

Esc

Esc

Esc

X

O NN+ B =

Left-Arrow
“C "B
Prior

Right-Arrow
“C °F
Next
“C "I

Down-Arrow

“C D
Up-Arrow
“C "R
“C ~S§
Find

68

Oplevel-Cursor-Search-Forward L9
Oplevel-Cursor-To-First “C Esc <
Oplevel-Cursor-To-First “C <
Oplevel-Cursor-To-First Begin
Oplevel-Cursor-To-Last ~C Esc >
Oplevel-Cursor-To-Last ~C >
Oplevel-Cursor-To-Last End

Oplevel-Cursor-To-Mouse
Oplevel-Cursor-To-Mouse
Oplevel-Cursor-To-Mouse
Oplevel-Deiete
Oplevel-Menu
Oplevel-Menu
Oplevel-Menu
Oplevel-Mouse-Extend
Oplevel-Mouse-Extend
Oplevel-Mouse-Extend

Control-Mouse-Left
Shift-Mouse-Left

“C Mouse-Left

“C "D
Control-Mouse-Right
Shift-Mouse-Right

~C Mouse-Right
Control-Mouse-Middle
Shift-Mouse-Middle
~“C Mouse-Middle

Oplevel-Query-Replace-All “C Esc "R
Oplevel-Replace-All “C Esc R
Oplevel-Replace-All “C Escr
Oplevel-Select ~C Backspace
Paste-From-Clipboard L8
Prefix U
Preserve-Ali-Objects “X Return
Prev-Message-Current-Window Esc P
Prev-Message-Current-Window Esc p
Previous-Character "B
Previous-Line “P
Previous-Word Esc B
Previous-Word Esc b
Protected-Visit-File “X "R
Query-Replace-All Esc "R
Quote-Character “Q
Re-Search-Backward “R
Re-Search-Forward S
Redo "X R
Redo Xr
Redraw-Current-Window “L
Remove-View "X K
Remove-View "Xk
Replace-All Esc R
Repiace-All Esc r
Revert-Object ~X Backspace
Right-Hscroll-Current-Window "X >
Save-Object-Copy-As "X "W
Save-Object "X °s
Select-Expr Esc "¢
Select-Region-Dot-To-Mark Esc “W
Select-Region-Dot-To-Mouse Mouse-Middle
Select-Text-Stream "X B
Select-Text-Stream "X h
Select-Word Esc ©

A DEFAULT KEY BINDINGS

Self-Insert

Self-Insert

Set-Mark
Set-Oplevel-To-Character
Set-Oplevel-To-Line
Set-Oplevel-To-Word
Set-Text-Fill-Prefix
Set-Text-Line-Length
Set-Text-Line-Length
Show-Clipboard
Show-Kill

Show-Match

Split-Line
Swap-Dot-And-Mark
Text-Fill-To-Blank-Line
Text-Fill-To-Blank-Line
Toggle-Object-Protection
Toggle-Text-Fill
Transpose-Characters
Transpose-Lines

Undo

Undo

Undo
Uppercase-Selection
Uppercase-Word
Uppercase-Word
Visit-Directory
Visit-Directory
Visit-Directory
Visit-File
Visit-Help-View
Visit-Symbol-Definition
Visit-View

Visit-View
Visit-View-List
Visit-View-List
Yank-From-Kill-Ring

lto~
Tab

“C ¢
~C
e
“X

2

X
Esc
X
Esc %
Esc "0
"X °X
Esc Q
Esc g
X -Q
"X "A
“T

"X °T
L4
“XU
“Xu
Esc U
Esc U
Esc u
“XD
"X "D
"X d
"X °F
Help
Esc .
"X B
“Xb
Home
R7

Y

9 0 Hy .

A.2 Bindings by Kev in a Text View

A.2 Bindings by Key in a Text View

“Q
~A
"B
~C
~C
~C
“C
~C
~C
~C
~C
~C
~C
~C
“C
~C
~C
~C
~C
~C
~C
“C
~C
~C
~C
~C
D
“E
°F
“G
Bac
Tab
New
“K
"L
Ret
“N
-0
“P
“Q
“R
“S
°T
i
v
W
X
X
X
X
X

"B

D

“F

“G
Backspace
“I

“0

“R

~S

Esc "R
Esc <
Esc >
Esc R
Esc r

g - 0o VA

Mouse-Left
Mouse-Middle
Mouse-Right
Cancel

kspace

line

urn

“A
“B
-C
D
“F

Set-Mark

Move-To-Bol
Previous-Character
Oplevel-Cursor-Backward
Oplevel-Delete
Oplevel-Cursor-Forward
Editor-Error
Oplevel-Select
Oplevei-Cursor-in
Oplevel-Cursor-Out
Oplevel-Cursor-Search-Backward
Oplevel-Cursor-Search-Forward
Oplevel-Query-Replace-All
Oplevel-Cursor-To-First
Oplevel-Cursor-To-Last
Oplevel-Replace-All
Oplevel-Replace-All
Oplevel-Cursor-To-First
Oplevel-Cursor-To-Last
Set-Oplevel-To-Character
Set-Oplevel-To-Line
Set-Oplevel-To-Word
Oplevel-Cursor-To-Mouse
Oplevel-Mouse-Extend
Oplevel-Menu
Editor-Error
Delete-Character
Move-To-Eol
Next-Character
Editor-Error
Delete-Previous-Character
Self-Insert
Newline-And-Indent
Kill-To-Eol
Redraw-Current-Window
insert-Newline-Fill
Next-Line

Open-Line

Previous-Line
Quote-Character
Re-Search-Backward
Re-Search-Forward
Transpose-Characters
Prefix
Forward-Vscroll-Current-Window
Kili-Selected-Region
Toggle-Text-Fill
Display-Objects
Exit-Editor
Visit-Directory

Visit-File

“X
“X
“X
“X
~X
“X

“X
X
X
“X
“X

X!

“X
X
P
“X
“X
~X
X
“X
“X
“X
X
X
“X
X
X
X
X
“X
“X
“X
“X
“X
“X
“X
Y
~Z
~Z

Esc

~G
Backspace
ot

"L
Return
“0

“Q

"R

~S

~T

W

“X

~Z

I}

EH MY PHALADGDEHXRMTIO WDV HADDO:

Cancel

Cancel
~Q

Esc "B
Esc °C

Esc

“D

Esc °F

Esc G

Esc Tad
Esc “K

Esc "L

Esc Return
Esc "0

69

Editor-Error
Revert-Object

insert-File

Load-File
Preserve-Ail-Objects
Delete-Blank-Lines
Toggle-Object-Protection
Protected-Visit-File
Save-Object
Transpose-Lines
Save-Object-Copy-As
Swap-Dot-And-Mark
Interrupt-Editor
Cycle-Show-Kill
Set-Text-Fill-Prefix
Ciose-Current-Window
Open-Another-Window-in-View
Left-Hscroll-Current-Window
Announce-Text-Cursor-Info
Right-Hscroll-Current-Window
Show-Kill

Visit-View

Visit-Directory
Set-Text-Line-Length
Select-Text-Stream
Remove-View

Goto-Line

Redo

Undo

Visit-View

Visit-Directory
Set-Text-Line-Length
Select-Text-Stream
Remove-View

Goto-Line

Redo

Undo

Editor-Error
Yank-From-Kill-Ring
Editor-Error

Editor-Error

Select-Expr
Backward-Expr
Capitalize-Selection
Deselect-Region
Forward-Expr

Editor-Error
indent-Like-Previous-Line
Kill-Expr
Lowercase-Selection
Move-Selection-To-Cursor
Split-Line

Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc

Query-Replace-All
Load-From-Selection
Uppercase-Selection
Select-Region-Dot-To-Mark
Load-From-Text-Stream
Copy-Selection-To-Cursor
Esc Execute-Lisp
Space Just-One-Space
! Cycle-Show-Clipboard
% Show-Match
(Insert-Parentheses
Visit-Symbol-Definition
Move-To-Bos

Move-To-Eos

Show-Clipboard

Select-Word

Previous-Word

Capitalize-Word

Kill-Word

Next-Word

Lowercase-Word

First-Non-Blank
Next-Message-Current-Window
Prev-Message-Current-Window
Text-Fill-To-Blank-Line
Replace-All

Uppercase-Word
Backward-Vscroll-Current-Window
Copy-Selection-As-Kill
Execute-Command

Cycle-Yank
Delete-Horizontal-Space
Delete-Indentation

Previous-Word

Capitalize-Word

Kill-Word

Next-Word

Lowercase-Word

First-Non-Blank
Next-Message-Current-Window
Prev-Message-Current-Window
Text-Fill-To-Blank-Line
Replace-All

Uppercase-Word
Backward-Vscroli-Current-Window
Copy-Selection-As-Kil
Execute-Command

y Cycle-Yank
Delete Kill-Previous-Word
Mouse-Left Mouse-Select-Fuliword
Mouse-Middle Mouse-Extend-Selection-Fullword
Cancel Editor-Error

) S M s AW O T XTI O e YV A

¥ 8 <4 2 H oYY B HHAOO

A DEFAULT KEY BINDINGS

Esc L8

Space

1to”

Delete

Mouse-Left
Mouse-Middle
Mouse-Right
Control-Mouse-Left

Control-Mouse-Middle

Control-Mouse-Right
Shift-Mouse-Left
Shift-Mouse-Middle
Shift-Mouse-Right
Home

Left-Arrow
Up-Arrow
Right-Arrow
Down-Arrow

Prior

Next

End

Begin

Find

Cancel

Help

L4

Lé

L8

Lo

L10

R7

Cycle-Paste
Insert-Space-Fill
Self-Insert
Delete-Previous-Character
Cursor-To-Mouse
Select-Region-Dot-To-Mouse
Execute-Menu
Oplevel-Cursor-To-Mouse
Oplevel-Mouse-Extend
Oplevel-Menu
Oplevel-Cursor-To-Mouse
Oplevel-Mouse-Extend
Oplevel-Menu
Visit-View-List
Opievel-Cursor-Backward
Oplevel-Cursor-Out
Oplevel-Cursor-Forward
Oplevel-Cursor-In
Oplevel-Cursor-Backward
Oplevel-Cursor-Forward
Oplevel-Cursor-To-Last
Oplevel-Cursor-To-First
Oplevel-Cursor-Search-Forward
Editor-Error

Visit-Help-View

Undo

Copy-To-Clipboard
Paste-From-Clipboard
Oplevel-Cursor-Search-Forward
Cut-To-Clipboard
Visit-View-List

A.6 Special Key Bindings in a Language-Based View (SIMPLE2) 71

A.3 Special Key Bindings in the View Left-Arrow Previous-Line-Select
List Up-Arrow Previous-Line-Select
)) Right-Arrow Next-Line-Select
"B Prewous-L-me-Seiect Down-Arrow Next-Line-Select
F Next-Line-Select 19 Dired-Mark-Selection
"N Next-Line-Select
°P Previous-Line-Select
f Visit-Selected-View . . .
N Remove-Selected-View -6 Special Key Bindings in a Language-
Mouse-Left Mouse-Select-Full-Line Based View (SIMPLE2)
Mouse-Middle Mouse-.SeIect‘-Full-Line -c ~X = Announce-Structure-Cursor-Info
Left-Arrow Prev!ous—L!ne—Select “C ! Set-Oplevel- To-Syntactic-Error
Up-ArTow Prev:ous—l_.me-Select “C # Set-Oplevel-To-Semantic-Error
Right-Arrow Next-L!ne-Select “C = Announce-Structure-Cursor-Node-Name
Down-Arrow Next-Line-Select -¢ ¢ Set-Oplevel-To-Simple2-Placeholder
“C a Analyze-Changes
“cd Set-Oplevel-To-Simple2-Declaration
A.4 Special Key Bindings in the Help “C e Set-Oplevel-To-Simple2-Expression
View “Cp Set-Oplevel-To-Simple2-Placeholder
“C q Set-Oplevel-To-Query
Mouse-Left Mouse-Select-Fullword -¢ ¢ Set-Oplevel-To-Simple2-Statement
Mouse-Middle Mouse-Extend-Selection-Fullword -~¢ Set-Oplevel-To-Lexeme
Left-Arrow Previous-Character Escape ~D Clear-Structure-Cursor
Right-Arrow Next-Character

A.7 Special Key Bindings in a Graph-

A.5 Special Key Bindings in a Direc- ical View

tory Editor

Zoom-Reset

a

“B Previous-Line-Select ¢ Global-image-Enlarge
°D Dired-Mark-Selection ¢ Global-Image-Toggle
°F Next-Line-Seiect 4 Zoom-In
N Next-Line-Select o Zoom-Out
P Previous-Line-Select Global-Image-Shrink
"R Dired-Visit-Read-Oniy

Escape Mouse-Left Mouse-Select-Full-Line

Escape Mouse-Middle Mouse-Extend-Selection-Full-

Line

Dired-Mark-Editor-Files

D Dired-Mark-Selection

F Dired-Visit

G Revert-Object

Q Remove-Object

U Dired-Unmark-Selection

X Dired-Delete-Files

d Dired-Mark-Selection

b3 Dired-Visit

g Revert-Object

q Remove-Object

u Dired-Unmark-Selection

x Dired-Delete-Fiies

Mouse-Left Mouse-Select-Fuli-Line
Mouse-Middle Mouse-Extend-Selection-Full-Line

B Default Menu Bindings

B DEFAULT MENU BINDINGS

B.1 Bindings in an Ordinary Text View by Command Name

Append-Selection-To-File
Apropos-String
Close-Current-Window
Copy-Selection-To-Cursor
Copy-To-Clipboard .
Cut-To-Clipboard
Cycle-Show-Clipboard
Dispiay-All-Key-Bindings
Display-Auto-Exec .
Display-Auto-Load .
Display-Bug-Report-info
Display-Char-Sets
Display-Commands .
Display-Default-Menu
Display-Flags

Display-Key- Blndlngs—For-Command

Display-Key-Binding
Display-Language-List
Display-Objects

Display-Operand- Command Bmdmgs

Display-Operand-Level-Bindings
Display-Operand-Level-Menus
Display-Option-Variables
Display-Version

Insert-File .
Kill-Selected-Region
Move-Selection-To-Cursor .
Open-Another-Window-In-View
Paste-From-Clipboard

Redo .
Redraw-Current- Wmdow
Remove-View .

Revert-Object .
Save-Object-Copy-As .
Save-Object

Seroll-To-Cursor- Current Wmdow .

Set-Global-Option-Variable
Set-View-Option-Variable

Set-View-Style-Option-Variable . .

Show-Clipboard
Sub-Redo

Sub-Undo
Toggle-Object- Protect|on
Undo . .

Visit-File .
Write-Selection- To-FuIe
Yank-From-Kill-Ring

. Text Edit=>File: Append Selection To...
Help: Apropos
- . Window: Close
Text Edit: Copy To Cursor
. Clipboard: Copy
. Clipboard: Cut
Cllpboard Cycle and Show
HeIp:>Th|s View=-Keys: Display All
. Help=Pan: Filename Auto-Exec Map
. Help=Pan: Filename Auto-Load Map
. Help=Pan: How To Report Bugs
Help=This View: Char. Sets
. Help=>Pan: Commands Available
Help=>This View: Default Menu
Help=This View: Flags
Help=.>Th|s View=Keys: Command - Key>
Help=This View=Keys: Key - Command>
. Help=>Pan: Language Descriptions Loaded
) . Help=>Pan: Objects Being Viewed
He|p=:>Th|s View=>Operand Crmds.: By Command
Heip=>This View=Operand Cmds.: By Level
. Help=This View: Operand Menus
Help=>This View: Options
. Help=>Pan: Version
Text Edlt:Flle Insert Text From.
. Text Edit: Klll
Text Edit: Move To Cursor
Window: Open Another
Clipboard: Paste
Undo: Redo
Window: Redraw
. View: Remove
) Store: Revert
Store Save Copy As.
. Store: Save
. Wmdow Scroll to Cursor
He|p=:>Th|s View=-Set Option: Global
Help=>This View=-Set Option: View Only
Help=>This View=>Set Option: View Style
Clipboard: Show Contents
Undo: Sub-Redo
Undo: Sub-Undo
Text Edlt Toggle Protection
oo Undo: Undo
Store: Visit New.
Text Ed|t=>F||e Write Selection To.
. Text Edit: Ya.nk

B.2 Bindings in an Ordinary Text View by Menu

B.2 Bindings in an Ordinary Text View by Menu

Clipboard: Cut .

Clipboard: Copy .

Clipboard: Paste .
Clipboard: Show Contents
Clipboard: Cycle and Show
Text Edit: Kil11 .

Text Edit: Yank . A
Text Edit: Copy To Cursor .
Text Edit: Move To Cursor .
Text Edit: File .

Insert Text From.. Text Edlt:FtIe Hrlte Selectlon To

Text Edit=>File: Append Selection To..
Text Edit: Toggle Protection

Cut-To-Clipboard

. Copy-To-Clipboard
Paste-From-Clipboard
Show-Clipboard
Cycle-Show-Clipboard
Kill-Selected-Region
Yank-From-Kill-Ring
Copy-Selection-To-Cursor
. Move-Selection-To-Cursor
. Insert-File
. Wnte—Selectlon To-Fiie
Append-Selection-To-File
Toggle—ObJect Protection

Undo: Undo Undo
Undo: Redo . Redo
Undo: Sub-Undo Sub-Undo
Undo: Sub-Redo Sub-Redo
Store: Save . . Save-Object
Store: Save Copy As Save—ObJect Copy-As
Store: Revert . Revert-Object
Store: Visit New... . Visit-File
View: Remove . Remove-View

Window: Close .

Window: Open Another

Window: Scroll to Cursor

Window: Redraw)

Help=This View=>Keys: Dlsplay All
Help=>This View=Keys: Key ~ Command>
Help=>This View=>Keys: Command - Key>
Help=>This View: Default Menu

Ciose-Current Window
Open-Another-Window-In-View
Scroll-To-Cursor-Current-Window
Redraw-Current-Window
Display-All-Key-Bindings
Display-Key-Binding

Dlsplay Key-Bindings-For-Command

Display-Default-Menu

Dlsplay Operand-Level-Bindings
Display-Operand-Command-Bindings
Dispiay-Operand-Level-Menus
Display-Option-Variables

. Set-View-Option-Variable
Set-View-Style-Option-Variable
Set-Global-Option-Variable

Help=This View=>Operand Cmds.: By Level
Help=This View=0perand Cmds.: By Command
Help=This View: Operand Menus

Help=>This View: Options

Help=This View=-Set Option: V:Lew Only
Help=>This View=-Set Option: View Style
Help=>This View=>Set Option: Global

Help=>This View: Flags « . « « . .« o Display-Flags
Heip=This View: Char. Sets o Display-Char-Sets
Help: Apropos Apropos-String
Help=Pan: Objects Belng Vlewed Display-Objects

Dispiay-Language-List
. Display-Commands

Help=>Pan: Language Descriptions Loaded .
Help=>Pan: Commands Available .

Help=>Pan: Filename Auto-lLoad Map . . Display-Auto-Load
Help=>Pan: Filename Auto-Exec Map . Display-Auto-Exec
Help=>Pan: Version Display-Version
Help=Pan: Bow To Report Bugs Display-Bug-Report-Info

74 B DEFAULT MENU BINDINGS

B.3 Additional Menu Bindings in the View List

View List: Visit View« \VisitSelected-View
View List: Remove View « « RemoveSelected-View
View List: Visit NeW... o o Visit-File
View List: New Scratch o« o Scratch-View
View List: EXit-EQitor o o s Quit

B.4 Additional Menu Bindings in the Help View

Help View: Describe Document-Symbol
Help View: Visit Deflnltlon e Visit-Symbol-Defiition
Help View: Apropos« Apropos-String
Help View: Reset « ResetHelp

B.5 Additional Menu Bindings in a Directory Editor

Dired: Visit s . . . Dired-Visit
Dired: Visit Read Only e Dlred Visit-Read-Only
Dired: MarkDired-Mark-Selection
Dired: UnmarkDired-Unmark-Selection
Dired: Delete marked flles Dired-Delete-Files
Dired: Mark backup files Dired-Mark-Editor-Files
Dired: Reread directory - . « . « Revert-Object
Dired: Unde oo oo Undo

B.6 Additional Menu Bindings in a Language-Based View (SIMPLE2)

Language: Analyze S Analyze-Changes
Variables: Show Declaration and Uses e . . . Query-Simple2-Variable
Variables: Goto Declaratiom Goto—Slmp|e2 Variable-Declaration
Variables: Rename Variable Rename-Simple2-Variable
View=-Program Graph: With Node Names Visit-Program-Graph-Name-View
View=Program Graph: With Operators Visit-Program-Graph-Operator-View
View=Subgraph At Cursor: With Node Names Visit-Program-Subgraph-Name-View
View=Subgraph At Cursor: With Operators Visit-Program-Subgraph-Operator-View

B.7 Additional Menu Bindings in a Graphical View

Window: Toggle Global Image Global-image-Toggle
Window: Enlarge Global Image Global-lmage-Enlarge
Window: Shrink Global Image Global-imageShrink
Window: Zoom In « . . i e e e e i Loom-in
Window: Zoom DUt e e e e i e oo ... loom-Out

Window: Zoom A1l oo oo Loom-All

&3]

C Operand Level Bindings in a Language-Based View (SIMPLE2)

Level: “Character” OPERAND LEVEL BINDINGS
Oplevel-Cursor-Backward: Previous-Character
Oplevel-Cursor-Forward: Next-Character
Oplevel-Cursor-In: Next-Line
Oplevel-Cursor-Out: Previous-Line
Oplevel-Cursor-Search-Backward: Re-Search-Backward
Oplevel-Cursor-Search-Forward: Re-Search-Forward
Oplevel-Cursor-To-First: Move-To-Bos
Oplevel-Cursor-To-Last: Move-To-Eos
Oplevel-Cursor-To-Mouse: Cursor-To-Mouse
Oplevel-Delete: Delete-Character
Oplevel-Menu: Execute-Oplevel-Menu
Oplevel-Mouse-Extend: Select-Region-Dot-To-Mouse
Oplevel-Queryv-Replace-All: Query-Replace-All
Oplevel-Replace-All: Replace-All
Oplevel-Select: Deselect-Region

Level: "Word" OPERAND LEVEL BINDINGS
Oplevel-Cursor-Backward: Previous-Word
Oplevel-Cursor-Forward: Next-Word
Oplevel-Cursor-In: Next-Line
Oplevel-Cursor-Out: Previous-Line
Oplevel-Cursor-To-First: Move-To-First-Word
Oplevel-Cursor-To-Last: Move-To-Last-Word
Oplevel-Cursor-To-Mouse: Mouse-Select-Fullword
Oplevel-Delete: Delete-Fullword
Oplevel-Menu: Execute-Oplevel-Menu
Oplevel-Mouse-Extend: Mouse-Extend-Opievel-Text
Oplevel-Select: Select-Fullword

Level: “Line" OPERAND LEVEL BINDINGS
Oplevel-Cursor-Backward: Previous-Line
Oplevel-Cursor-Forward: Next-Line
Oplevel-Cursor-In: Next-Line
Oplevel-Cursor-QOut: Previous-Line
Oplevel-Cursor-Search-Backward: Re-Search-Backward
Oplevel-Cursor-Search-Forward: Re-Search-Forward
Oplevel-Cursor-To-First: Move-To-Bos
Oplevel-Cursor-To-Last: Move-To-Last-Line
Oplevel-Cursor-To-Mouse: Mouse-Select-Line
Oplevel-Delete: Delete-Line
Oplevel-Menu: Execute-Oplevel-Menu
Oplevel-Mouse-Extend: Mouse-Extend-Selection-Full-Line
Oplevel-Query-Replace-All: Query-Replace-All
Oplevel-Replace-All: Replace-All
Oplevel-Select: Select-Line

76 C OPERAND LEVEL BINDINGS IN A LANGUAGE-BASED VIEW (SIMPLE2)

Level: “Lexeme” OPERAND LEVEL BINDINGS
Oplevel-Cursor-Backward: Prev-Lexeme
Oplevel-Cursor-Forward: Next-Lexeme
Oplevel-Cursor-Search-Forward: Lexeme-Search-Forward
Oplevel-Cursor-To-First: First-Lexeme
Oplevel-Cursor-To-Last: Last-Lexeme
Oplevel-Cursor-To-Mouse: Mouse-Select-Lexeme
Oplevel-Delete: Delete-Lexeme
Oplevel-Menu: Execute-Oplevel-Menu
Oplevel-Mouse-Extend: Mouse-Extend-Lexeme
Oplevel-Querv-Replace-All: Query-Replace-Lexemes
Oplevel-Replace-All: Replace-Lexemes
Oplevel-Select: Select-Lexeme

Level: “Expression” OPERAND LEVEL BINDINGS
Oplevel-Cursor-Backward: Prev-Oplevel-Node
Oplevel-Cursor-Forward: Next-Oplevel-Node
Oplevel-Cursor-In: in-Oplevel-Node
Oplevel-Cursor-Out: Out-Oplevel-Node
Oplevel-Cursor-To-First: First-Oplevel-Node
Oplevel-Cursor-To-Last: Last-Oplevel-Node
Oplevel-Cursor-To-Mouse: Mouse-Select-Oplevel-Node
Oplevel-Delete: Delete-Oplevel-Node
Oplevel-Menu: Execute-Oplevel-Menu
Oplevel-Mouse-Extend: Mouse-Extend-Oplevel-Node

Oplevel-Select: Select-Oplevel-Node

D Options Defined in Pan

Apropos-Documentation-Sub-Type-List OPTION
Type: list

Default Value: (:option-variable :command :view-style)

Scopes: global

If non-nil. the apropos commands list only symbols defined with a documentation sub-type in this list.

Arrow-Mouse-lcon OPTION
Type: dotted pair of strings

Default Value: ("left.ptr” . "left._ptr")

Scopes: view object view-style global

Arrow mouse icon.

Auto-Show-Match OPTION
Type: boolean

Default Value: t

Scopes: view object view-style global

If T. insert of a right bracket shows matching left bracket.

Auto-Show-Match-Limit OPTION
Type: integer

Default Value: 2000

Scopes: view object view-style global

Bound on number of characters to scan when Auto-Show-Match is on.

Autowrap-Search OPTION
Type: boolean

Default Value: ¢t

Scopes: view object view-style global

If T. search wraps around at Eos back to cursor; else to Eos only.

Backup-Object? OPTION
Type: boolean

Default Value: t

Scopes: object global

When true, the first time an object is saved, the original is backed up.

(ase-Sensitive-Lexeme-Search OPTION
Type: boolean

Default Value: nil

Scopes: view object view-style global

When attempting to peform regular expression matching on lexemes, should comparisions be case sensitive?

Checkpoint-Modification-interval QOPTION
Type: integer

Default Value: 250

Scopes: object global

Checkpoint after this many modifications without saving or checkpointing.

78 D OPTIONS DEFINED IN PAN

Clipboard-Max-Size OPTION
Type: integer

Default Value: 8

Scopes: global

Maximum number of clips in clipboard.

Default-Line-Style OPTION
Type: 1list

Default Value: ("line-solid" "line-solid")

Scopes: view object view-style global

Default line style for objects displayed in graph window. Possible values are line-solid, line-on-ofl-dash or
line-double-dash. All values are expressed as strings.

Demo OPTION
Type: boolean

Default Value: nil

Scopes: global

Controls special configuration modes suitable for demos.

Dired-Ls-Flags OPTION
Type: string

Default Value: "-a"

Scopes: global

String containing flags for /bin/ls command used in Directory Editor. The string must begin with the "-
prefix. The flag -1 is supplied automatically, so need not be included. Any of the flags -acrFt may be used.
Don’t use any of the flags -dfgisR.

”»

Editor-File-Search-List OPTION
Type: list
Default Value: ("." "*" "/usr/local/lib/pan/")

Scopes: global

A list of directory names, specified as strings, to search when loading and requiring editor files. May include
standard directory naming conventions like ”.”, "™, and ” "user” where user must be a valid user name in
the svstem. Used by Load-File, editor-load, and editor-require.

Editor-Files-Pattern OPTION
Type: string

Default Value: " .#Pan."

Scopes: global

Regexp pattern matching files created by Editor for backup and checkpointing.

Fast-Draw-Color OPTION
Type: dotted pair of strings

Default Value: ("midnight blue" . ‘“black")

Scopes: view object view-style global

Color to use when fast drawing outlines.

Global-lmage-Initial-Height

Type: real

Default Value: 0.2

Scopes: view object view-style global

Initial height of global image as percentage of the graph window height.

Global-Image-Initial-On?

Type: boolean

Default Value: t

Scopes: view object view-style global
Determines whether global image is initially displayed.

Global-Image-Initial-Width

Type: real

Default Value: 0.2

Scopes: view object view-style global

Initial width of global image as percentage of the graph window width.

Global-Image-Outline-Color

Type: dotted pair of strings

Default Value: ("forest green" . ‘black")
Scopes: view object view-style global
Color to use for box around global image.

Graph-Window-Zoom-Factor

Type: real

Default Value: 0.1

Scopes: view object view-style global
Multiplier for zooming operations.

Graphical-Tree-Hbox-Background-Color
Type: dotted pair of strings

Default Value: (“white" . "white")
Scopes: view object view-style global
Background color for a horizontal box

Graphical-Tree-Hbox-Border-Color

Type: dotted pair of strings

Default Value: ("midnight blue” . "black")
Scopes: view object view-style global

Line color for a horizontal box

Graphical-Tree-Hbox-Border-Styie

Type: dotted pair of strings

Default Value: ("line-solid" . "line-solid")
Scopes: view object view-style global

Line style for a horizontal box

OpTION

OPTION

OPTION

OPTION

OrTION

OPTION

OPTION

OPTION

80

Graphical-Tree-Hbox-Border-Thickness
Type: integer

Default Value: 3

Scopes: view object view-style global
Line border for a horizontal box

Graphical-Tree-Hbox-Text-Color

Type: dotted pair of strings

Default Value: ("black" . 'black")
Scopes: view object view-style global
Text color for a horizontal box

Graphical-Tree-Horiz-Node-Spacing

Type: integer

Default Value: 15

Scopes: view object view-style global
Horizontal spacing between parent and child nodes

Graphical-Tree-Line-Arrow-Filled?

Type: integer

Default Value: 1

Scopes: view object view-style global
Directed edge arrow filled in?

Graphical-Tree-Line-Arrow-Length

Type: integer

Default Value: 6

Scopes: view object view-style global
Directed edge arrow length

Graphical-Tree-Line-Arrow-Width

Type: integer

Default Value: 4

Scopes: view object view-style global
Directed edge arrow width

Graphical-Tree-Line-Color

Type: dotted pair of strings

Default Value: ("midnight blue" . "black")
Scopes: view object view-style global
Edge line color

Graphical-Tree-Line-Style

Type: dotted pair of strings

Default Value: ("line-solid" . "line-solid")
Scopes: view object view-style global

Edge line style

D OPTIONS DEFINED IN PAN

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

81

Graphical-Tree-Line-Thickness OPTION
Type: integer

Default Value: 2

Scopes: view object view-style global

Edge line thickness

Graphical-Tree-Node-Border OPTION
Type: integer

Default Value: 4

Scopes: view object view-style global

Border {*whitespace’) around a node

Graphical-Tree-Node-Type OPTION
Type: integer

Default Value: 0

Scopes: view object view-style global

Svmbolic constant for the drawing figure for nodes

Help-View-At-Startup OPTION
Type: boolean

Default Value: t

Scopes: global

If non-nil, create an empty help view at startup.

Highlight-Query-Results OPTION
Type: boolean

Default Value: t

Scopes: view object view-style global

When t, visually highlight text associated with all components resulting from the most recent structural
query.

Highlight-Semantic-Errors OpTION
Type: boolean

Default Value: t

Scopes: view object view-style global

When t, visually highlight the text associated with all components having unsatisfied semantic constraints.

Highlight-Structure-Cursor OPTION
Type: boolean

Default Value: t

Scopes: view object view-style global

When t, visually highlight text associated with the structure cursor’s location.

Highlight-Syntax-Errors OPTION
Type: boolean

Default Value: t

Scopes: view object view-style global

When t, visually highlight the text associated with all components resulting from syntactic error recovery.

82 D OPTIONS DEFINED IN PAN

Iindent-With-Tabs

Type: boolean

Default Value: nil

Scopes: view object view-style global

If T. use tabs when performing computed indentations: else just spaces.

Kiliring-Max-Size

Type: integer

Default Value: 16

Scopes: view object view-style global
Maximum number of elements retained in kill-ring.

Kills-To-Clipboard

Type: boolean

Default Value: nil

Scopes: view object view-style global

If true. kill commands use the global clipboard instead of the local kill-ring.

Lisp-Mouse-lcon

Type: dotted pair of strings

Default Value: (“star" . ‘"star")
Scopes: view object view-style global
Lisp mouse icon.

Load-Verbose
Type: boolean
Default Value: t
Scopes: global

When non-nil. Load-File, editor-load. and editor-require write messages to standard output.

Modula2-Sre-Dir
Tvpe: boolean
Default Value: nil
Scopes: global

OPTION

OPTION

OpTION

OpTION

OpTION

OPTION

Directory containing source files for Modula2 standard modules. When present, semantic analysis imports

information from them by visiting and analyzing imported modules.

Object-Modified?

Tvpe: boolean

Default Value: nil

Scopes: object

True when the current object is modified.

Object-Protected?

Type: boolean

Default Value: nil

Scopes: object

True when the current object is protected.

OpPTION

OPTION

83

Operand-Level-Choices OPTION
Type: boolean

Default Value: nil

Scopes: view object view-style global

A list of currently visible operand levels from which the user may select one to be "current”. The default 1s
the first in the list.

Package-Symbol-Names OPTION
Type: boolean

Default Value: nil

Scopes: global

If non-nil. help and other tools will attempt to print symbol names with their packages when that package
is not user. Otherwise. tools will usually not print package names.

Panel-Bg-Color OPTION
Type: dotted pair of strings
Default Value: (“white" . "white")

Scopes: view object view-style giobal
Background color for window's panel.

Panel-Fiag-Default-Bitmap OPTION
Type: string

Default Value: "asterisk.12x12"

Scopes: view object view-style global

The default bitmap for panel flags. Assigning this variable does not affect current flags.

Panel-Flag-Default-Fg-Color OPTION
Type: dotted pair of strings
Default Value: ("black” . ‘“black")

Scopes: view object view-style global
The default foreground color for panel flags. Assigning this variable does not affect current flags.

Panel-Flags-Bg-Color OPTION
Type: dotted pair of strings
Default Value: ("white" . "white")

Scopes: view object view-style global
Background color behind panel flags.

Panel-Logo-Bg-Color OPTION
Type: dotted pair of strings
Default Value: ("white" . "white")

Scopes: view object view-style global
Background color for editor logo in panel.

Panel-Logo-Bitmap OPTION
Type: string

Default Value: "pan-edit.31x22"

Scopes: view object view-style global

Bitmap that specifies the editor logo; appears at left of every panel.

Panel-Logo-Fg-Color

Type: dotted pair of strings

Default Value: (“black" . "black")
Scopes: view object view-style global
Foreground color for editor logo in panel.

Panel-View-Logo-Bg-Color

Type: dotted pair of strings

Default Value: ("white" . '"white")
Scopes: view object view-style global

Background color for view style logo in panel.

Panel-View-Logo-Bitmap

Type: string

Default Value: "graph-logo.32x32"
Scopes: view object view—style global

D OPTIONS DEFINED IN PAN

OPTION

OrTION

OPTION

Bitmap that specifies the view style logo: appears at next to panel logo.

Panel-View-Logo-Fg-Color

Type: dotted pair of strings

Default Value: ("black" . '"black")
Scopes: view object view-style global
Foreground color for view style logo in panel.

Pause-Ticks

Type: integer

Default Value: 50000

Scopes: global

Constant multiplier for Pause command.

Prefix-Arg-Multiplier

Type: integer

Default Value: 4

Scopes: view object view-style global
The multiplier value for prefix arguments.

Print-Stats-On-Termination
Type: boolean

Default Value: nil
Scopes: global

Print statistics information on termination of Pan.

Ge-Mouse-Icon
Type: dotted pair of strings

Default Value: ("box.spiral™ . "box_spiral)

Scopes: view object view-style global

The mouse icon displayed during garbage collection.

OPTION

OpPTION

OPTION

OPTION

OPTION

Reticle-Outline-Color OPTION
Type: dotted pair of strings
Default Value: ("'dark orange" . ‘'"black")

Scopes: view object view-style global
Color to use to show position of reticle.

Scratch-View-At-Startup OPTION
Type: boolean

Default Value: nil

Scopes: global

If non-nil, create an empty scratch view at editor startup.

Text-Fill OPTION
Type: boolean

Default Value: nil

Scopes: view object view-style global

Controls automatic line filling in text.

Text-Line-Length OpTION
Type: integer

Default Value: 65

Scopes: view object view-style global

Max line length for text filling.

Text-Window-Bg-Colormap OPTION
Type: dotted pair of strings
Default Value: (("white" . "white"))

Scopes: view object view-style global

Non-empty list of color specifications for text rendering background shading, where each specification is a
dotted pair of color names. the first to be used when performing color rendering. the second to be used when
performing monochrome rendering. Slot positions specify colors for (0) background 1, (1) background 2, (2)
backgrounds 1 and 2 together. Due to a text viewport implementation restriction, text with null background
is always white. Unspecified slots default to the first.

Text-Window-Col-Popover OPTION
Type: integer

Default Value: 16

Scopes: view object view-style global

Minumum characters to move window when scrolling left /right.

Text-Window-Empty-Line-Char OPTION
Type: character

Default Value: #\.

Scopes: view object view-style global

Character prefix for displaying empty lines in a text window.

86 D OPTIONS DEFINED IN PAN

Text-Window-Fg-Colormap OPTION
Type: dotted pair of strings
Default Value: (("black" . "black"))

Scopes: view object view-style global

Non-empty list of color specifications for text rendering ink colors. where each specification is a dotted pair
of color names. the first to be used when performing color rendering. the second to be used when performing
monochrome rendering. Slot positions specify ink colors 0 through 3. Unspecified slots default to the first.

Text-Window-Fontmap QOPTION
Type: list

Default Value: ("fixed")

Scopes: view object view-style global

List of font specifications, where each font specification is either a single font name or a dotted pair of font
names.

Text-Window-Init-Cols OPTION
Type: integer

Default Value: 78

Scopes: view object view-style global

Number of columns in a text window when created.

Text-Window-Init-Rows OPTION
Type: integer

Default Value: 30

Scopes: view object view-style global

Number of rows in a text window when created.

Text-Window-Proportional-Scroll OPTION
Tvpe: boolean

Default Value: t

Scopes: view object view-style global

If T, vertical scroll moves proportional to distance between mouse and top of scrollbar, else fixed screenful
at a time.

Text-Window-Row-Popup OPTION
Type: integer

Default Value: 4

Scopes: view object view-style global

Minimum number rows to move window when scrolling up/down.

Text-Window- Tabwidth OPTION
Type: integer

Default Value: 8

Scopes: view object view-style global

Number of characters to display for a tab character.

Think-Mouse-lcon OPTION
Type: dotted pair of strings
Default Value: (“watch" . "watch")

Scopes: view object view-style global
Think mouse 1con.

Undo-Size OPTION
Type: integer

Default Value: 20

Scopes: object global

The size of the undo history.

Window-Alert-Style OPTION
Type:

Defauit Value: :bell

Scopes: view object view-style global

Style for alerting user. The only style currently supported is :bell.

Window-Bg-Color OPTION
Type: dotted pair of strings

Default Value: ("alice blue" . "white")

Scopes: view object view-style global

Default background color of window.

Window-Close-With-lcon OPTION
Type: boolean

Default Value: ¢

Scopes: view object view-style global

Determines if an icon is created when the window is closed.

Window-Default-Mouse-lcon OPTION
Type: dotted pair of strings

Default Value: ("leftptr" . "left_ptr")

Scopes: view object view-style global

Specifies the default mouse icon.

Window-lcon-Name OPTION
Type: string

Default Value: "Untitled"

Scopes: view object view-style global

Title of icon representing the window.

Window-initial-Pixel-Height OPTION
Type: integer

Default Value: 500

Scopes: view object view-style global

Initial height. in pixels, of window.

Window-Initial-Pixel-Width

Type: integer

Default Value: 500

Scopes: view object view-style global
Initial width, in pixels, of window.

Window-Initial-X-Position

Type: integer

Default Value: 0

Scopes: view object view-style global

Initial X position of top left hand corner of window.

Window-Initial-Y-Position

Type: integer

Default Value: 0

Scopes: view object view-style global

Initial Y position of top left hand corner of window.

Window-Message-History-Size

Type: integer

Default Value: 32

Scopes: view object view-style global

The number of window messages saved for reviewing.

Window-Name

Type: string

Default Value: "Untitled"

Scopes: view object view-style global
Title of window.

Window-Use-Color

Type: boolean

Default Value: ¢

Scopes: view object view-style global

D OPTIONS DEFINED IN PAN

OPTION

OPTION

OPTION

OPTION

OPTION

OPTION

If operating on a color monitor. then setting Window-Use-Color to t specifies that Pan is to use color settings.
If a monochrome monitor is being used, this option variable has no effect.

Zero-Index-Lines

Type: boolean

Default Value: nil

Scopes: view object view-style global

OPTION

If T. arguments to Goto-Line are interpreted as (-indexed, else 1-indexed.

89

E Flags Defined in Pan

Database-Updated? Frac
Presentation: "D"
Behavior: gray when cleared
. Maps: On: D.12x12
Off: gray-D.12x12
Set when semantics of tree have been analyzed and database updated.

Object-Modified? FrLac
Presentation: "x"
Behavior: invisible when cleared
Maps: On: asterisk.12x12[firebrick]
Off: no map
True when the current object is modified.

Object-Protected? FrLaG
Presentation: " "
Behavior: invisible when cleared
Maps: On: read-only.12x12
Off: no map
True when the current object is protected.

Parse-ls-Current? Frac
Presentation: "/»"
Behavior: gray when cleared
Maps: On: tree.12x12
Off: gray-tree.12x12
Set when language file has been parsed.

Semantic-Errors-Present? FLAG
Presentation: "#"
Behavior: invisible when cleared
Maps: On: crosshatch.12x12
Off: no map
Nil if there are no semantic errors, the number of unsatisfied constraints if there are.

Syntax-Errors-Present? FLAG
Presentation: "!'"
Behavior: invisible when cleared
Maps: On: exclamation-point.12x12
Off: no map
Nil if there are no parse errors, the number of error nodes if there are.

Text-Fill FLAG
Presentation: '¢"
Behavior: invisible when cleared
Maps: On: text-fill.12x12
Off: no map
Controls automatic line filling in text.

90 F CHARACTER SETS IN A TEXT VIEW

F Character Sets in a Text View

filename-terminators
Elements: (Tab)(Newline)(Space)\
Characters that terminate filenames in output from "ls™.

identifier-characters
Elements: 0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz

Identifier characters.

indentation-characters
Elements: (Tab) (Space)
Indentation characters, a subset of whitespace-characters.

match-characters

Elements:) [1{}

The characters that are part of match pairs.

whitespace-characters
Elements: (Tab)(Newline)(Space)
Whitespace characters.

word-characters
Elements: 0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz

Word characters.

CHARACTER SET

CHARACTER SET

CHARACTER SET

CHARACTER SET

CHARACTER SET

CHARACTER SET

G View-Styles

base-view-style
The View List style.

database-view-style
The Colander database view style.

dired-view-style
The Directory Editor view style.

help-view-style
The Help View style.

lex-data-view-style
The Lexical stream internal data view

node-sem-view-style
The node semantics view stvle.

null-view-style
A null view style for the View List class.

program-subgraph-style
Graphically presents a subtree of the internal tree representation for programs

program-graph-style
Graphically presents the internal tree representation of programs

subtree-data-view-style
The internal data for the subtree representation view

text-edit-view-style
The view style for ordinary text editing.

tree-data-view-style
The internal data for the tree representation view

worklist-view-style
The Colander worklist view style.

91

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

VIEW STYLE

Index

active view 2
active window 2
radd 54
add-variable-notifier 57. 58
analysis

incremental 12, 36
Analyze 36, 74
Analyze-Changes 36
Announce-Option-Variable 10, 52, 53
Announce-Structure-Cursor-Info 38. 40
Announce-Structure-Cursor-Node-Rule 38
Announce-Structure-Cursor-Node-Rule 40
Announce- Text-Cursor-Info 22
Any Structure Level 40. 41
Append Selection To ... 19,72, 73
Append-Selection-To-File 19
Apropos- 16
Apropos 16
Apropos 16, 72, 73, 74
Apropos-Documentation-Sub-Type-List 77
Apropos-String 16
argument

numeric 13

text 13. 14

tree node 39
Arrow-Mouse-icon 77
Auto-Exec 17, 38, 46, 47, 60
Auto-Load 17, 38, 46, 47, 60
Auto-Show-Match 33, 77
Auto-Show-Match-Limit 77
Autowrap-Search 32. 77
backup

revert 20
backup 19. 20
Backup-Object 19
Backup-Object? 20, 77
Backward-Expr 33
Backward-Vscroll-Current-Window 20, 21
balanced bracket expression 33
base-view-style 91
binding 2, 48, 7
bindings

scope 48

typographic format 12
Bind-Key 48
Bind-Menu 50

92

Bind-Oplevel-Command-List 51
Bind-Oplevel-Menu 51, 52
break loop 13. 22
:buffer 7
By Command 16, 51, 72. 73
By Level 16, 51. 72, 73
cancel 14
Capitalize-Selection 31
Capitalize-Word 31
case

change 31
case sensitive 43
Case-Sensitive-Lexeme-Search 43, 77
center 27
Center-Line 27
Char. Sets 16,72, 73
character set

alter 54

create b4
character set 10, 33, 54
character sets 2
Character Sets 54
Character operand level 9, 22-26. 28, 29, 32, 40, 64.

75

checkpoint

revert 20
checkpoint 20
Checkpoint-Modification-Interval 20, 77
Checkpoint-Object 19
Clear-Structure-Cursor 38, 40
chipboard

copy 30

cut 30

numeric argument 30

paste 30

replace 30

size 30

viewing 30
clipboard 16
clipboard 30
Clipboard 30
clipboard 31, 43, 6
Clipboard 72, 73
Clipboard-Max-Size 6. 30, 78
Close 20, 72, 73
Close-Current-Window 20

INDEX

c-mode 46
c-mode.cl 46
c-mode.fasl 46
.col 11
Colander 1. 11, 12. 34, 36, 37. 44, 45, 46, 65, 66
color representation 54
command 13
cancel 14
execution
by keystroke 7
by menu 8, 13
by name 13
by operand level 9
package 47
undo 15
Command -> Key 16, 72, 73
command arguments 13
Command 12
Commands Available 16, 72, 73
comment 37
configuration 4, 8, 11, 45
language-based 46
consistent information 37
constant 37
:cont 13
contextual constraints 12, 37
control character insertion 27
Copy To Cursor 31, 72,73
Copy 30, 72, 73
Copy-Menu 50
Copy-Selection-As-Kill 29, 30
Copy-Selection-To-Cursor 30, 31
Copy-To-Clipboard 30, 49
Create-Menu 50
current operand level 9, 25
cursor 22
effects of scrolling 21
information 22
location 24
motion 24, 33, 41
move to line 24
cursor motion 5, 25
numeric argument 23
Cursor-Backward 9, 23, 41
Cursor-Forward 8, 9, 23, 41, 62, 64
Cursor-In 9, 23, 41
Cursor-Out 9, 23, 41
Cursor-Search-Backward 9, 32
Cursor-Search-Forward 9, 32, 43

Cursor-To-First 9, 23, 41
Cursor-To-Last 9. 24, 41
Cursor-To-Mouse
Cursor-To-Mouse 9, 22. 26, 40. 49, 75
Cursor-To-Token 38, 40
customization 45
Cut 30. 72, 73
cut-and-paste operations 6
Cut-To-Clipboard 30, 49
Cycle and Show 30.72. 73
Cycle-Clipboard 30
Cycle-Kill 29, 30
Cycle-Paste 30
Cycle-Paste-Clipboard 30
Cycle-Show-Clipboard 30
Cycle-Show-Kill 29, 30
Cycle-Yank 29, 30
Database-Updated? 36. 37, 65. 89
database-view-style 91
Debug 16
debugging
graphical views 44
navigation commands 45
textual views 44
Declaration 10. 38
default configuration 7
default font 11, 37
Default Menu 16, 50, 72, 73
default menu 8
default scope 47
Default-Line-Style 78
Define-Command 60
Define-Hook 57. 62
Define-Hook-Function 57, 58, 62
Define-Option-Variable 57, 64
Define-Variable 57, 64
Delete marked files 18, T4
delete 25, 29
Delete 28
:delete 54
Delete 8, 9, 62, 64
Delete-Blank-Lines 28, 29
Deiete-Character 28, 29, 48, 75
Delete-Fullword 28, 29. 75
Delete-Horizontal-Space 28, 29
Delete-Indentation 28, 29
Delete-Lexeme 76
Delete-Line 28, 75
Delete-Oplevel-Node 76

93

94

Delete-Previous-Character 28, 29. 49
Delete-Previous-Word 28, 29
Delete-Region-Dot-To-Mark 28, 29
Delete-Selected-Region 28, 29
Delete-Word 28, 29
deletion

recover 29
Demo 78
derived information 37
Describe 16. 74
Describe-Selection 16
deselect 5
Deselect-Region 26, 27, 75
directory

edit 18, 19
directory editor 18, 19
directory 18, 19
dired 18, 19
Dired 18, 19. 74
Dired-Delete-Files 18, 19
Dired-Ls-Flags 78
Dired-Mark-Editor-Files 19
Dired-Mark-Selection 18, 19
Dired-Unmark-Selection 18
dired-view-style 4, 47, 91
Dired-Visit 18, 19
Dired-Visit-Read-Only 18, 19
Display All 16,48, 72,73
Display- 17
Display-All-Key-Bindings 16, 48
Display-Apropos-index 16
Display-Auto-Exec 16. 46
Dispiay-Auto-Load 16. 46
Display-Bug-Report-info 17
Display-Char-Set-Documentation 17, 54
Display-Char-Sets 10, 16, 54
Display-Command-Documentation 17
Display-Commands 16
Display-Configuration 17
Display-Constant-Documentation 17
Display-Default-Menu 16. 50, 8
Display-File-lds 17
Display-Flags 16, 55
Display-Function-Documentation 17
Display-Hook-Documentation 17, 57
Display-Hooks 17, 57
Display-Key-Binding 16
Display-Key-Bindings-For-Command 16
Display-Language-List 16, 46

INDEX

Display-Macro-Documentation 17
Display-Notifiers 17, 57
Display-Objects 16
Display-Operand-Command-Bindings 16. 51
Display-Operand-Command-Documentation 17, 51
Display-Operand-Level-Bindings 16. 51
Display-Operand-Level-Documentation 17, 51
Display-Operand-Level-Menus 16. 51
Display-Option-Documentation 17, 51, 53
Display-Option-Variables 10
Display-Option-Variables 16, 52. 17
Display-Version 16
Display-View-Class-Key-Bindings 17
-Documentation 17
Document-Symbol 16, 50
Dot 61
Dot-To-Mark 24
edit

protected 19, 20
edit window 4
editing area 3, 4
editing context 7
editing interface 11
Editor-Error 14
Editor-File-Search-List 46, 78
Editor-Fiies-Pattern 78
End-Of-Word 24
Enlarge Global Image 33, 74
error

highlighting 37, 42

lexical 42

semantic 42

syntax 42
error handling 12
Execute-Command 13, 48, 56, 57
Execute-Lisp 56, 57
Execute-Lisp-Line 48
Execute-Menu 13, 49, 8
Execute-Oplevel-Menu 51, 52, 75, 76
exit Pan 13, 22
Exit-Editor 13, 19, 74
expression

kill 29

selection 27
Expression 10, 38, 39, 40, 41, 76
expression 54
Fast-Draw-Color 78
file

auto-load 46

INDEX

backup 19. 20

delete 19

edit 18. 19

insert 27

load 46, 57

mark 19

revert 20
File 19.27.72. 73. 73
Filename Auto-Exec Map 16, 46. 72, 73
Filename Auto-Load Map 16, 46.
filename-terminators 90
fill 28

multiple lines 28

numeric argument 28

prefix 28
filling text 28
Fill-Selected-Lines 28
First-Lexeme 41. 76
First-Non-Blank 24
First-Oplevel-Node 41, 76
flag is set 10
flag 2. 10
Flags 16, 55, 72, 73
font 37
font code 11, 37
font map 11, 53

scope 11
formal language 34
Forward-Expr 33
Forward-Vscroll-Current-Window 20, 21
~Full-Line 27
-Fuliword 27
function kevs 8
Ge-Mouse-icon 84
generic command 25
generic operations 8
global bindings 7
global image

resize 6, 34

toggle 6. 34
global image 6. 34
global values 17
:global 7, 8. 10. 47, 48, 53
Global 52, 72. 73
Global-Image-Enlarge 33, 34
Global-Image-Initial-Height 79
Global-image-initial-On? 79
Global-Image-initial-Width 79
Global-Image-Outline-Color 79

-]
O

]
(O]

Global-lmage-Shrink 33. 34
Giobal-image-Toggle 33. 34
Goto Declaration 74
Goto-Line 24
graph node

contents 33
graphical representation 44
graphical view

mouse buttons 34

navigation 6

scrol] 34

subgraph 6

zoom 34
graphical view 1. 6. 33, 44
graphical window 4
Graphical-Tree-Hbox-Background-Color 79
Graphical-Tree-Hbox-Border-Color 79
Graphical-Tree-Hbox-Border-Style 79
Graphical-Tree-Hbox-Border-Thickness 80
Graphical-Tree-Hbox-Text-Color 80
Graphical-Tree-Horiz-Node-Spacing 80
Graphical-Tree-Line-Arrow-Filled? 80
Graphical-Tree-Line-Arrow-Length 80
Graphical-Tree-Line-Arrow-Width 80
Graphical-Tree-Line-Color 80
Graphical-Tree-Line-Style 80
Graphical-Tree-Line-Thickness §1
Graphical-Tree-Node-Border 81
Graphical-Tree-Node-Type 81
Graph-Window-Zoom-Factor 33. 79
*. [he] 46
help 15

Help 15, 16. 17. 46, 48, 50, 51, 52, 54. 55, 72, 73

help commands 16

help view 2. 15, 30

Help View 15, 16. 74
Help-View-At-Startup 81
help-view-style 4. 53, 91
highlight color 39, 42
Highlight-Query-Results 42, 81
Highlight-Semantic-Errors 42, 81
Highlight-Structure-Cursor 39, 42, 81
Highlight-Syntax-Errors 42, 81
hook 58

How To Report Bugs 17,72, 73
icon 3. 20

identifier 37

identifier-characters 90

implicit selection 5, 26

96

delete 29

kill 29
Inconsistent 37
inconsistent information 37
indent 27
indentation

delete 29
indentation-characters 10
indentation-characters 90
indent-Like-Previous-Line 27
Iindent-With-Tabs 82
information panel 3. 4, 22. 25, 40, 42
in-Oplevel-Node 41, 76
Insert Text from... 27,72
Insert-File 27
Insert-Newline 27
Insert-Newline-Fill 28, 49
Insert-Parentheses 27
Insert-Space-Fill 28. 49
internal state 20
internal structural representation 12

internal tree representation 6. 33, 39. 44, 45

interrupt-Editor 13
Just-One-Space 28, 29
Key -> Command 16, 72, 73
key binding
create 48
scope 8
key binding 7. 48
typographic format 12
key sequence 7, 48
Keys 16, 48, 72, 73
kevword 37

kill 6. 29
expression 33
restore 30

Kill- 6

Kill 29

Kill 29, 72. 73
kill ring 6. 29, 43

cycle 30

size 30

view 30
Kill-Expr 29, 33
Kill-Previous-Word 29
Kill-Region-Dot-To-Mark 29
Killring-Max-Size 6, 30, 82
Kill-Selected-Region 29
Kills-To-Clipboard 6. 30, 62, 82

Kill-To-Eol 29
Kill-Word 29

Ladle 1.11. 12, 34. 38, 42, 44, 45. 46, 58

language

load 46

operand levels 38
language definition 11. 45
language description 38

INDEX

Language Descriptions Loaded 16, 46, 72, 73

language descriptions 11
language view
flags 36
Language 35. 36, 74
language-based editing
text 35
languages
and font use 37
Last-Lexeme 41. 76
Last-Oplevel-Node 41. 76

Left-Hscroll-Current-Window 20, 21

lex-data-view-style 91

Lexeme 38. 39, 40, 41, 43, 76
lexemes 37
Lexeme-Search-Forward 43, 76
lexical analysis 37. 42

lexical errors 42

line length 28

line number 24

line prefix 28

Line operand level 22-24, 26. 28, 32, 73

-Lisp 57
Lisp-Mouse-lcon 82
Load-File 45. 46, 56, 57
Load-From-Selection 45, 46, 56,
Load-From-Text-Stream 45. 46,
Load-Verbose 82
local bindings 7
Lowercase-Selection 31
Lowercase-Word 31
mark

set 24
Mark backup files 19, 74
mark stack 5, 6, 24, 26
Mark 18
mark 6., 24. 26
Mark 74

match characters 27, 33, 54, 55, 90

menu
scope 8

S
-¥

(@]

-1

INDEX

menu bindings 8. 50
typographic format 12

menu description 50

menu item 8. 50

binding &
menu selection 4. 8
Menu 51
menus 4
Menus 8
MenuTitle 12, 8
message

review 15

message history 15
message line 2. 4, 15, 21
minor mode 47
modifier keys 7
Modula-2 34
Modula2-Sre-Dir 82
Most Operand Levels 51
mouse buttons

selection 4, 5

mouse buttons 4. 8, 21, 22, 25, 26, 34, 41

mouse 22

Mouse-Extend 9, 26, 40
Mouse-Extend-Lexeme 40, 76
Mouse-Extend-Oplevel-Node 40. 76
Mouse-Extend-Oplevel-Text 26, 75
Mouse-Extend-Selection-Full-Line 2

6,75
Mouse-Extend-Selection-Fullword 26, 27

Mouse-Select-Full-Line 26
Mouse-Select-Fuliword 22, 26, 27, 75
Mouse-Seiect-Lexeme 40. 76
Mouse-Select-Line 22. 26, 75
Mouse-Select-Oplevel-Node 40, 76
Mouse-Select-Word 26

Move To Cursor 31.72.73
Move-Selection-To-Cursor 31
Move-To-Bol 24

Move-To-Bos 23, 24, 75
Move-To-Eol 24

Move-To-Eos 24, 75
Move-To-First-Word 23. 75
Move-To-Last-Line 24, 75
Move-To-Last-Word 24. 75
naming conventions 12. 37

New Scratch 18, 74
Newline-And-Indent 27. 49

Next- 23

Next-Character 23, 57, 64, 75, 9

Next-Lexeme 41, 76

Next-Line 14. 23. 75
Next-Line-Select 26. 27
Next-Message-Current-Window 14
Next-Oplevel-Node 41. 76
Next-Word 23. 75

node 44

Node 41, 45

node-sem-view-styie 91

notifier 58

Null-Select 26, 27

null-view-style 91
Number-Of-Views-Created 57. 58
numeric prefix 13, 14
Object-Modified? 4. 10, 20. 82. 89
Object-Protected? 4. 20. 82. 89
Objects Being Viewed 16. 72, 73
Open Another 20. 72, 73
Open-Another-Window-in-View 20
Open-A-Window-in-View 20
Open-Line 27

Operand Cmds. 16, 51, 72. 73

operand level 2, 9. 22, 25. 39, 40. 41, 43

and selection 26

commands 25

current 25

delete 25, 29

error levels 41

language 38, 38

menu 38, 41

navigation 41

search 32, 43

select 22, 25, 26

selection by menu 25

selection 40

set 25
operand level bindings 8, 25, 51

scope 10

command 51

menu 52

typographic format 12
operand level menu 25, 52
Operand Menus 16. 51, 72. 73
Operandlevel 10, 12
operand-level 2
Operand-Level-Choices 38, 64, 83
Operation 10
Oplevel- 10, 41, 51
Oplevel 38

98

Oplevel-Cursor-Backward 23. 25. 41. 45. 49
Oplevel-Cursor-Forward 9. 22, 23, 25. 40. 41. 45, 49
Oplevel-Cursor-In 23, 25. 41. 45
Oplevel-Cursor-Out 23, 25, 41, 45
Oplevel-Cursor-Search 32
Oplevel-Cursor-Search-Backward 25. 32
Oplevel-Cursor-Search-Forward 25, 31. 49
Oplevel-Cursor-To-First 23, 25, 41, 49
Oplevel-Cursor-To-Last 23. 25, 41, 49
Oplevel-Cursor-To-Mouse 22. 25, 26. 40. 41, 49
Oplevel-Delete 25. 28, 29, 43
Oplevel-In 41, 49
Oplevel-Menu 9, 25, 38. 41, 49, 51, 52, 64
Oplevel-Mouse-Extend 25. 26, 40
Oplevel-Out 41. 49
Oplevel-Query-Repiace-All 25, 32
Oplevel-Replace 32
Oplevel-Replace-All 25, 32
Oplevel-Select 25, 26, 40
option

announce 53

define 57

set 53
Option variables 10
option 2. 10. 53
roption 57
Options 16, 51, 52, 72, 73
Out-Oplevel-Node 41, 76
package 47
Package-Symbol-Names 48, 83
Pan 16. 17. 46, 72, 73
Panel- 54
Panel-Bg-Color 533. 83
Panel-Flag-Defauit-Bitmap 55. 83
Panel-Fiag-Default-Fg-Color 53-55. 83
Panel-Flags-Bg-Color 53. 55. 83
Panel-Logo-Bg-Color 53. 83
Panel-Logo-Bitmap 83
Panel-Logo-Fg-Color 53. 84
Panel-View-Logo-Bg-Color 54, 84
Panel-View-Logo-Bitmap 84
Panel-View-Logo-Fg-Color 54, 84
.panrc 1, 45-48, 53, 55, 57
parentheses 27
Parse-Is-Current? 36, 37, 66, 89
Paste 30. 72, 73
Paste-From-Clipboard 30, 49
pattern match 32, 43
Pause-Ticks 33. 84

INDEX

Perform-Hook 57, 62
Panerrors 21
Placeholder 38
Pop-Mark 24
pop-up window 14
prefix

repetition 14
prefix keys 7
Prefix 13. 14
Prefix-Arg-Multiplier 14, 84
Preserve-All-Objects 19
Previous- 23
Previous-Character 23, 75
Previous-Line 23. 75
Previous-Line-Select 26. 27
Previous-Word 23. 75
Prev-Lexeme 41, 76
Prev-Message-Current-Window 14
Prev-Oplevel-Node 41. 76
Print-Stats-On-Termination &4
program

editing

language-based editing 34

operand levels 38
Program Graph 35, 44. 74
program-graph-style 91
program-subgraph-style 91
prompt 13, 14
protected 19
Protected-Visit-File 17
< language >-mode 46
< language >-mode.cl 12, 46
Push-Mark 24
query 43
Query 38. 43
Query-Replace-All 9. 15, 32, 43, 75
Query-Replace-Lexemes 43. 76
Quit 13
quitting Pan 13
Quote-Character 27
Quote-insert 27
reanalysis 37, 44
Rebind-Menu 50, 51
Redo 15
Redo 15, 72, 73
Redraw 20, 72, 73
Redraw-Current-Window 20
reduction rule 40
region 5

INDEX

regular expression 31, 32, 43
Remove View 74
Remove- 18
Remove 18, 72, 73
Remove-Object 18
Remove-Selected-View 18
Remove-View 18
Rename Variable 74
Rename-View 18
replace 32
Replace 25, 32
Replace- 65
Replace-All
Replace-All 9, 15. 32, 43. 75
Replace-From-Clipboard 30
Replace-Lexemes 43, 76
Reread directory 19. 74
Re-Search-Backward 32, 75
Re-Search-Forward 31, 32, 75
Reset Help 15
Reset 74
Reset-Heip 15, 16
Reticle-Outline-Color 85
Revert 19
Revert 72
Revert 73
Revert-Object 19
Revert-Object-To-Backup 19, 20. 60
Revert-Object-To-Checkpoint 19. 20, 60
Right-Hscroll-Current-Window 20, 21
ring 5
cvcle §
Save Copy As ... 19,72, 73
save 13
Save 19, 72, 73
Save-Object 19
Save-Object-Copy-As 19
scope 7. 47
-Scope 47
scoped values 17
scratch view 18
*xgcratch*x 18
Scratch-View 18
Scratch-View-At-Startup 85
scroll 5, 21
horizontal 3, 21
numeric argument 21
proportional 21
vertical 21

with kevboard 21

with mouse 21
scroll bars 2, 4
scroll bubble 21
Scroll To Cursor 21. 72,73
Scroll-To-Cursor-Current-Window 21
Scroll-To-Cursor-Current-Window 5
search 32

cancel 32

numeric argument 32

operand level

numeric argument 32

replace 32

same expression 32

wrapped 32
Search 25
search path 46
select 4. 22, 25

expression 33
Select 9, 26, 40
selected region 5
Select-Expr 26, 27, 33
Select-Full-Line 26, 27
Select-Fullword 26, 75
selection 5. 13. 26

and operand level 26

and structure cursor 39

copy 31

deselection 27

language-based 40

load 57

move 31

numeric prefix 27

set 26

write 19
selection 1s set b
SelectionName 8, 12
Select-Lexeme 40, 76
Select-Line 26. 27. 75
Select-Oplevel-Node 40. 76
Select-Region-Dot-To-Mark 5. 26
Select-Region-Dot-To-Mouse 26, 49, 75
Select- Text-Stream 26, 27
Select-Word 26, 27
Self-Insert 27, 28. 49
semantic analysis 37, 42
semantic database 36
semantic description 11
semantic errors 42

99

100

semantic information 12
Semantic-Errors-Present? 36, 42. 89
Set Option 52. 72, 73
Set- 53
Set-Buffer-Option-Variable 52
Set-Char-Match 54, 55
Set-Char-Set 54
Set-Global-Option-Variable 52
Set-Mark 24
Set-Oplevel- 38
Set-Oplevel-To-Character 24, 64
Set-Oplevel-To-Declaration 64
Set-Oplevel-To-Lexeme 38
Set-Oplevel-To-Line 24
Set-Oplevel-To-Node 38
Set-Oplevel-To-Query 3%
Set-Oplevel-To-Semantic-Error 38
Set-Oplevel-To-Syntactic-Error 38
Set-Oplevel-To-Word 24
Set-Text-Fill-Prefix 28
Set-Text-Line-Length 28
Set-View-Option-Variable 52
Set-View-Style-Option-Variable 52
Set-Working-Directory 18
shadow 48
:shadow 54
Show Contents 30, 72. 73
Show Declaration and Uses 74
Show-Clipboard 30
Show-Kill 29, 30
Show-Match 33
Shrink Global Image 33, 74
Split-Line 27
starting Pan 13
start-up 45
Statement 10, 38, 40
Store 17,19, 72, 73
structural annotations 12
structural navigation 41
structural cursor 6, 39, 40, 41

and selection 39

clear 40

set 39

set 40
structure node 40
Subgraph At Cursor 35, 44, 74
subgraph 44
Sub-Redo 15
Sub-Redo 15, 72. 73

subtree 6
subtree-data-view-style 91
Sub-Undo 15. 32
Sub-Undo 15. 72, 73
Swap-Dot-And-Mark 24
Svntactic analysis 37
Syntactic Error 38
svntactic errors 12, 42
svitax analysis 42
svntax description 11
Syntax Error 41

Syntax-Errors-Present? 36. 42. 89

.tex I8
tex-mode 47
tex-mode.cl 47
text

copy 30, 31

delete 29, 30

editing 22

fill 28, 3

kill 29

move 30. 31

replace 30

transposing 31

vank 30
Text 50
text color 42, 43
text cursor 2, 3, 5. 26
Text Edit 19, 27, 29, 31, 72, 73
text insertion

numeric prefix 27
text insertion 27
text stream

load 57
text view 1
text window 4
text-based editing 4
text-edit-view-style 4, 46, 91
Text-Fill 3. 4. 28, 85. 89
Text-Fill-To-Blank-Line 28
Text-Line-Length 27, 28, 61, 85
textual argument 13
textual insertion 5
textual selection 26
textual view 4, 22, 26. 46

INDEX

Text-Window-Bg-Colormap 39, 42, 53, 54, 85

Text-Window-Col-Popover 85

Text-Window-Empty-Line-Char 85

Text-Window-Fg-Colormap 42, 43, 53, 54, 86

INDEX

Text-Window-Fontmap 11. 53, 61. 86
Text-Window-Init-Cols 86
Text-Window-Init-Rows 86
Text-Window-Proportional-Scroll 21, 86
Text-Window-Row-Popup 86
Text-Window-Tabwidth 86
Think-Mouse-lcon 87
This View 16, 17. 48. 50, 51. 51, 52, 54. 35. 72, 73
Toggle Global Image 33. 74
Toggle Protection 19, 72, 73
Toggle-Object-Modification 19, 20
Toggle-Object-Protection 19, 20
Toggle-Text-Fill 28
Transpose-Characters 31
Transpose-Characters-At-Cursor 31
Transpose-Lines 31
tree navigation 45
tree-data-view-style 91
Tree-Down 45
Tree-Left 45
Tree-Right 45
Tree-Up 45
type checking 12, 37
unanalyzed text 37
undo 15

numeric argument 15
Undo 15. 27, 29, 32,49, 72, 73
Undo 15, 72, 73. 74
Undo-Size 15, 87
Unmark 18, 74
Unsatisfied Constraint 38, 41
unsatisfied constraints 12
Uppercase-Selection 31
Uppercase-Word 31
user interface 7, 12
variable 10

query 43
Variables 35, 74
Version 16, 72. 73
:view 7. 8. 10, 46, 48
view 1,2, 7, 17, 34

create 18, 19

edit 18

graphical 44

remove 18

rename 19

save all 19

save 13, 19

scratch 18

101

subgraph 44

text 4. 22

visit 18

write 19
View 18. 35, 44, 72. 73, 74
view list 2. 3, 13. 18. 20
View List 13, 17, 18. 74
view name 2
View Only 52, 72. 73
View Style 52, 72,73
view style 4, 8
:view-style 7, 8, 10. 47, 48. 53
visit 19
Visit 18, 74
Visit Definition 16, 74
Visit New... 17,72, 73, 74
Visit Read Only 18, 74
Visit View 17, 18, 74
Visit-And-Check-File 36, 37
Visit-Backup 17. 60
Visit-Checkpoint 17. 20. 60
Visit-Database-View 44, 45
Visit-Directory 18, 19
Visit-File 17, 18, 37, 60
Visit-Help-View 15, 16. 49
Visit-Lexeme-Internal-Data-View 44
Visit-Node-Semantics-View 44, 45
Visit-Program-Graph- 44
Visit-Program-Graph-Address-View 44
Visit-Program-Graph-Context-View 44
Visit-Program-Graph-Operator-View 44
Visit-Program-Graph-Parse-Change-View 44
Visit-Program-Graph-Parse-Status-View 44
Visit-Program-Graph-View 44
Visit-Program-Subgraph- 39, 44
Visit-Program-Subgraph-Address-View 44
Visit-Program-Subgraph-Context-View 44
Visit-Program-Subgraph-Operator-View 44
Visit-Program-Subgraph-Parse-Change-View 44
Visit-Program-Subgraph-Parse-Status-View 44
Visit-Program-Subgraph-View 44
Visit-Selected-View 17. 18
Visit-Subtree-Internal-Data-View 44, 45
Visit-Symbol-Definition 16
Visit-Tree-Internal-Data-View 44, 45
Visit-View 18
Visit-View-List 18, 49
Visit-Worklist-View 44, 45
white space

102 INDEX

delete 29
whitespace-characters 90
window 2, 17, 20

close 3, 20

redraw 20, 21

reopen 3, 20
Window 5, 20. 21, 33. 72, 73, 74
window manager 3, 20
Window-Alert-Style 87
Window-Bg-Color 87
Window-Close-With-lcon 3. 20, 53, 87
Window-Default-Mouse-lcon 63. 87
Window-icon-Name 87
Window-Initial-Pixel-Height 87, 88
Window-Initial-X-Position 88
Window-Initial-Y-Position 88
Window-Message-History-Size 15, 88
Window-Modify-Flag-Collection 55
Window-Name 88
windows

multiple 20
Window-Use-Color 54, 88
With Node Names 44, 74
With Operators 44, 74
With-Buffer-Scope 47
With-View-Scope 47
With-View-Style-Scope 47, 53
Word operand level 22-24, 26, 28, 32, 52. 75
word-characters 10. 54, 90
word-oplevel-menu 52
worklist-view-style 91
write protection 20
Write Selection To ... 19, 72,73
Write-Selection-To-File 19
vank 6
Yank 29, 72, 73
Yank-From-Kill-Ring 29. 30
Zero-Index-Lines 24, 88
zoom 33

numeric argument 34
Zoom All 33.74
Zoom In 33. 74
Zoom Qut 33, 74
Zoom- 6, 33
Zoom-ln 33
Zoom-Out 33
Zoom-Reset 33

