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Abstract

We present an efficient algorithm for generating an n X n nonsingular matrix uni-
formly over a finite field. This algorithm is useful for several cryptographic and checking
applications. Over GF[2] our algorithm runs in expected time M(n) + O(n?), where
M(n) is the time needed to multiply two n x n matrices, and the expected number of
random bits it uses is n? + 3. (Over other finite fields we use n? + O(1) random field
elements on average.) This is more efficient than the standard method for solving this
problem, both in terms of expected running time and the expected number of random
bits used. The standard method is to generate random n x n matrices until we produce
one with nonzero determinant. In contrast, our technique directly produces a random
matrix guaranteed to have non-zero determinant. We also introduce efficient algorithms
for related problems such as uniformly generating singular matrices or matrices with
fixed determinant.

1 Introduction

There are several algorithms that depend on efficient methods for generating random nonsin-
gular matrices according to the uniform distribution. For example, the program checker that
Blum, Luby and Rubinfeld use to check the rank of a matrix uses 2k random nonsingular
matrices, where k is the confidence parameter [1]. Random nonsingular systems of linear
equations are used in Shamir’s knapsack-based cryptosystem in order to allow the receiver
to decrypt messages [2]. A third application is the family of trapdoor functions provided
in the McEliece Cryptosystem, where a random nonsingular matrix over GF[2] is needed to
construct the public key [3].

We consider two resources for analyzing the efficiency of our algorithm: the total running
time and the expected number of random bits. A simple algorithm that can be used to find
a random nonsingular matrix is to generate matrices uniformly over the finite field and then
test to see if it has nonzero determinant. If we are unlucky and the matrix is not invertible, we
reject it and repeat the process. Unfortunately this simple method is potentially inefficient,
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both in terms of time and of the number of random bits used. We can test whether the
determinant of the matrix is nonzero in O(M(n)) time, where M(n) is the time it takes to
multiply two n X n matrices, but the constant is fairly large. This step dominates the running
time of the algorithm. Also, each time we fail we need to generate another n? random field
elements and in general random bits are difficult to generate and should be used sparingly.
In GF[2], for example, the probability that a matrix is nonsingular is less than .3, so on
average we calculate the determinant more than three times and we consume more than 3n?
random bits before the algorithm successfully terminates.

In this paper we present a more efficient technique for generating nonsingular matrices.
There are two parts to the algorithm. The first part is probabilistic and on average takes
O(n?) time. If we are working in a finite field F, then the average number of random field
elements we need is less than n2 + 3. In particular, if we work over GF[2] this gives an
upper bound for the number of bits we need to generate a nonsingular matrix of 0’s and 1’s.
An information theoretical lower bound shows that we require at least n? — 1 random field
elements, so this is optimal to within an additive constant. The second part of the algorithm
is a single matrix multiplication which takes time M(n). Thus, the total expected running

time is M(n) + O(n?).

2 Nonsingular Matrix Generation

Our algorithm simultaneously constructs two matrices whose product will be the nonsingular
matrix we are looking for. It works recursively, fixing a row and column of each matrix at
every stage. We iteratively assume that the product of the two implied minors will be
a random nonsingular matrix of smaller dimension. We show that the product of the two
matrices will be nonsingular of full rank since the fixed row and column on the second matrix
just acts as a linear transformation of some standard basis vector and this nonsingular minor.

The main ideas behind the algorithm are as follows. To generate a nonsingular matrix
with first row e; =< 1,0,0,...,0 > uniformly it suffices to choose the remaining elements
in the first column uniformly from the field and choose the (1,1)*-minor uniformly from
the set of n — 1 x n — 1 nonsingular matrices. We can generalize this to matrices of any
fixed nonzero first row. Let e, =< 0,0, ...,1,...,0 >, where the 1 is in the r* row. Given a
vector v in F™\{0"} with nonzero r** coordinate, we describe a bijection between the set of
nonsingular matrices with first row e, and those with first row v. This bijection is the linear
transformation achieved by multiplying on the right by a matrix T that is the identity matrix
with the rt* row replaced with v. This provides a reduction from the problem of uniformly
generating an nxn nonsingular matrix to that of generating an n—1xn—1 nonsingular matrix
and takes one matrix multiplication. Although this suggests an algorithm that requires n
matrix multiplications, we can use the sparse structure of these transformation matrices on
the right to multiply them trivially, so we actually only need one matrix multiplication.
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2.1 Background and Notation

Let M™ represent the set of n x n nonsingular matrices. M7 is the set of n X n nonsingular
matrices with first row v. If M is an n x n matrix, then M{t, ] denotes the (¢, j)**-minor.
Let e, be the vector with a 1 in the r** position and 0’s elsewhere.
We use the notation “choose a €, S” to mean “choose a from the set S according to the
uniform distribution.” A running time of “E[ - ]” means “the ezpected running timeis [ - ]”.
Let p = |F|. The number of nonsingular n x n matrices is (p™ — 1)(p" — p)...(p" — p"1)
and so the probability that a random n x n matrix is nonsingular is:
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To see this we consider the nonsingular matrix as n linearly independent vectors in F™.
There are p™ — 1 choices for the first vector in the space, since all nonzero vectors will work.
The " vector chosen can be anything outside the subspace spanned by the first : — 1 vectors,
so there are p"* — p*~! choices.

We show by a simple information theoretical argument that at least n? — 1 random field
elements are required to generate a random nonsingular matrix when field elements are our
only source of randomness. Taking the first two terms of the inclusion/exclusion expansion,
we find the number of nonsingular matrices is greater than
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Taking the log base p we find that we need n? — 1 random field elements, for p > 2.
The argument for p = 2 is similar. The number of nonsingular matrices over GF[2] is
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which proves that we need at least n? — 1 random bits.

2.2 The Algorithm

The algorithm that follows constructs matrices A and T recursively, where A is a nonsingular
matrix that assigns some e, to the top row of a minor at each stage of the iteration, and T'is
the linear transformation that maps this to a random nonsingular matrix over the field. At
each stage we assign values to a row and a column of each matrix, and we call the function
recursively on the two minors defined by these rows and columns until we have assigned all
the elements of the matrices. The product A T is the output.



NonSing (n):
begin
Gen (A, T,n);
return (AxT).
end.
Gen (A, T, n):
begin
it n=1 then
let A1 =1;
choose Ty €, F\{0};
else
choose v €, F*\{0"} such that v # 0";
let r be the first nonzero coordinate of v;
/* Assign Values to A: */
let the first row of A =e€,;
/* Assign Values to T: %/
let the r'* row of T = v;
for all 1<i<n, where i#r, T;, =0;
Gen (A[l,7),T[r,r],n—-1).
end.

Choosing r to be the coordinate of the first nonzero entry of v is arbitrary, but this simplifies
the transformation matrix T and enforces a canonical representation of the matrices A and
T for each choice of v.

The efficiency of the algorithm comes from reducing the problem of generating random
n x n nonsingular matrices to the problem of generating nonzero vectors of size k, for all
k < n. We save random bits since each time we generate a vector which is identically zero
we need only regenerate that one vector. In the standard algorithm where we generate n X n
matrices until we find one with nonzero determinant, we have to regenerate the entire matrix
each time we fail. Furthermore, it is easy to check whether a vector is identically zero, unlike
determining whether the determinant of a matrix is zero, so we speed up the running time.

Theorem 1 : The output A * T of Nonsing(n) is a random nonsingular matriz generated
according to the uniform distribution. The number of random field elements used by the
algorithm is E[n? + O(1)] and the running time is M (n) + E[O(n?)].

Before proving the theorem we present two lemmas.

Lemma 1 : Fiz any v € F"\{0"}, and let r be any coordinate where v is nonzero. Let T
be the n x n identity matriz with the r*" row replaced by v. We define fr as follows:

froMg — Mj
fr(M)=M+T.

Then fr is a bijection.



Proof: Since T is nonsingular it has an inverse, T~!. Define g7 : M} — M, gr(M) =
M * T-'. Then gr = f7' and since gr is defined on all of M7, this gives us the bijection.
=

This bijection shows that there are an equal number of nonsingular matrices with any
fixed nonzero first row.

Lemma 2 : For any r, we can uniformly generate an element A € M7 using the following
technique:

1. The first row of A is e,.

2. Forall2<i<n,Ai, €, F.

3. Let the (1,r)h-minor = A’, where A’ €, M"1isann—1xn—1 nonsingular matriz

Proof: Each matrix generated is nonsingular since A, is the only nonzero entry of the first
row of A and therefore det(A) = £ det(A’) # 0.

If A€ M2 then A[l,r] must be nonsingular so we can generate it by this method.
Furthermore, since we pick the r** row and the (1,7)* minor uniformly and each choice
defines a unique matrix, we will generate each matrix with equal probability. [ ]

Proof of Theorem: We show that our algorithm uniformly generates a nonsingular n x n
matrix over F by induction on n. _

Ifn =1, then ay; = 1 and t; €, F\{0}, so their product is a random nonsingular 1 x 1
matrix.

Applying the inductive hypothesis, we assume that we can uniformly generaten—1xn—1
matrices. We use Nonsing to generate matrices A and T and we want to show that their
product is a random nonsingular matrix.

Decompose T into two matrices T and T, whose product is T as follows: Tj is the
identity matrix with the (r,7)*-minor replaced by the (r,7)*" minor of T'. T, is T with the
(r,7)*"-minor replaced by the identity matrix I,_;. Because Ty * To = T,AxT = A*x Ty + Ty,

Because the first row of A is e, the product of A and Tj is the matrix A with the (1, r)th-
minor replaced by A[l,7] * T[r,r], which we know from the inductive hypothesis to be a
random n — 1 x 7 — 1 nonsingular matrix. Therefore AT is a nonsingular matrix with first
row e,, and from lemma 2 we know that it is generated uniformly.

By lemma 1 (A * T;) * T, is a random nonsingular matrix with first row v, and since v
was chosen uniformly and is independent of A* T1, A* T is a random nonsingular matrix.

To analyze the expected number of random bits we consider the ith stage of the algorithm.
At this stage we choose ¢ — 1 random elements from F and one nonzero vector of length z.
The total expected number of random elements this takes 1s
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Therefore the total expected number of random field elements needed by the algorithm is
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where ¢, is a constant dependent on p. In GF[2], ¢ = 3, and since a random field element
is represented by a single bit, on average n* + 3 random bits are sufficient. For larger fields
c, will be smaller than 3.

This also gives us an upper bound of E[O(n?)] for the expected time for Nonsing to
generate matrices A and T, so the total running time of the algorithm is dominated by the
matrix multiplication and takes time M(n) + E[O(n?)]. =

3 Other Results

The algorithm can be easily modified to address several related problems.

Corollary 1.1 : We can uniformly generate a matriz and its inverse in time 2M(n) +

E[O(n?)].

Proof: We can use Nonsing to generate A and T. T is upper triangular and A is easily
decomposed into a lower triangular matrix and a permutation matrix. By inverting each of
these matrices in time O(n?), we can construct AxT and T~'*A~! in time 2M(n)+E[O(n?)].
=

Corollary 1.2 : We can uniformly generate matrices with given nonzero determinant. In
particular, given any d € F\{0} we can uniformly generate an n x n matriz with determinant

d in time M(n) + E[O(n?)].

Proof: This follows from the way we generate the matrices A and T. When we choose
the 1 x 1 transformation matrix 77, in the final call to Nonsing we can choose it to be
d* ([T75(T:)""). The determinant of the matrix we generate is d and is chosen uniformly
since there are exactly | F|—1 choices for T, in each case and exactly one gives us determinant
d. |



The problem of generating a random singular matrices is only slightly more complicated
than generating a random nonsingular matrix. We can determine the fraction of singular
matrices with first row 0™ and flip a biased coin to assign the first row 0™ with this probability.
If the first row is zero we randomly choose each of the remaining elements of the matrix from
the field. If the first row is nonzero we use the same trick to reduce the problem to that of
finding an n — 1 x n — 1 singular matrix. The algorithm follows:

Sing (n):
begin
Sing Gen (A,T,n);
return (AxT).
end.
Sing_Gen (A, T,n):
begin
if n =1 then
let Al,l =0;
let T1‘1 =1;
else
let t be the fraction of singular matrices
whose first row is 07;
with probability ¢:
let the first row of A =107";
for 2<n<i, 1<j<n, choose A;; €« F:
let T =1,;
with probability 1 —t:
choose v €, F*\{0"} such that v # 0";
let r» be the first nonzero component of v;
/* Assign Values to A: */
let the first row of A —e,;
for all 2<i< n, choose A, €, F;
/* Assign Values to T: =*/
let the r** row of T = v;
for all 1<i<n, where 1 £77;,=0;
Sing.Gen (A[l,r},T[r,rl,n—1).
end.

Theorem 2 : The output A+ T of Sing(A,T,n) has determinant zero and is chosen uni-
formly from the set of singular matrices. The running time is M(n) + E[O(n?)] and the
number of random bits we use is n* + E[O(n)].



Proof: We can easily determine the value of t. Let p be the size of 7. Then the number of
nonsingular matrices of size n

M| = (p" = 1)(p" = p)(p™ = P" 7).
Then the number of singular matrices is
n2 n
og=p = |M |7
and the fraction which have first row 0" is
n(n—1)

t:p

g

The rest of the proof is similar to the proof of Theorem 1.

The expected number of random bits to simulated the biased coin in each iteration is
constant, so the total number of random elements of the field necessary is E[n? + O(n)] and
the expected running time is M(n) + E[O(n?)]. =
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