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Abstract

When a surface slanted away from the fronto-parallel plane is viewed binocularly, surface markings
and texture are imaged with slightly different orientations and degrees of foreshortening. These
orientation and spatial frequency disparities are systematically related to surface slant and tilt
and could potentially be exploited by biological and machine vision systems. There is evidence
suggesting that human stereopsis has a mechanism that specifically makes use of orientation and
spatial frequency disparities, in addition to the usual cue of horizontal positional disparity.

In this paper we derive constraint equations relating orientation and spatial frequency disparities
to the local surface normal. We derive necessary and sufficient conditions for recovering surface
normals: (i) Two measurements of orientation disparity, or (ii) One measurement of orientation
disparity and associated spatial frequency disparity. These conditions are readily met in local
regions of real images, for example in texture patches and in the neighborhood of brightness edges
and lines that are curved or form corners and junctions. We develop a least squares algorithm that
provides more reliable computation of 3-D surface normals when more than the minimum number
of orientation and spatial frequency disparities are available. Experimental results are presented to
demonstrate the success of this approach.
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1 Introduction

Stereopsis has traditionally been viewed as a source of depth information. When we view a three-
dimensional scene with our two eyes, the small positional differences of corresponding points in
the two images give information about the relative distances to those points in the scene. View-
ing geometry, when it is known, provides the calibration function relating disparity to absolute
depth. To describe three-dimensional shape, the surface normal, n(z,y), can then be computed by
differentiating the interpolated surface z(z,y) (Grimson, 1981).

However, there are other cues available under binocular viewing that can provide direct information
about surface orientation. When we view a surface that is not fronto-parallel, surface markings or
textures will be imaged with slightly different orientations and degrees of foreshortening in the two
views (Fig. 1). These orientation and spatial frequency disparities are systematically related to the
local three-dimensional surface orientation. Psychophysicists have demonstrated (see Section 2 of
this paper) that humans are able to exploit these cues to determine surface orientation, even when
positional disparity information is absent or inconsistent.

Figure 1: Stereo pair of a planar surface tilted in depth. A careful comparison of the two views reveals
a slightly different orientation and spacing for corresponding grid lines drawn on the surface.

There has been very little work investigating the use of these cues in computational vision. In
fact, it is quite common in computational stereo vision to simply ignore the orientation and spatial
frequency differences, or image distortions, that occur when viewing surfaces tilted in depth. These
differences are then a source of error in computational schemes which try to find matches on the
assumption that corresponding patches (or edges) must be identical or very nearly so.

Some approaches acknowledge the existence of these image distortions, but still treat them as
noise to be tolerated as opposed to an additional signal that may exploited (Arnold and Binford,
1980; Kass, 1983). For example Kass (1987), in a framework based on matching filter outputs,
calculates bounds on the expected range of filter output differences that can arise because of the
image distortions when viewing slanted surfaces and uses this to guide the selection of a match
criterion. The match criterion or threshold can be selected to balance the tradeoff between false-
positive matches and correct matches that are improperly ruled out by the criterion. It is very
much in the spirit of coping with and not using image distortions.

A few approaches seek to cope with image distortions in an iterative framework. These methods
typically start off with the initial assumption that disparity is locally constant, and then from
initial estimates of positional disparity, guess at the parameters of the image distortion and locally



transform the image to compensate so that image regions can be compared once again with the
assumption that corresponding regions are merely translated copies of one another (Mori et al.,
1973; Quam, 1984; Witkin et al., 1987). The intent is that this procedure will converge, but the
initial estimates of positional disparity, which may be made with quite inappropriate assumptions,
are relied upon to guide the convergence. In the case where image regions considered might be as
large as 64 x 64 pixels, this repeated “warping” of the input image regions can be quite a costly
computation. As a model of human stereopsis, this seems an unlikely mechanism, especially since
it is unclear whether the “images” are even available at the earliest stages of cortical processing.
Having a mechanism so specific to stereopsis that warps and re-filters the visual input seems a
heavy price to pay, especially in the presence of the myriad other aspects of human vision.

This paper and its companion paper (Jones and Malik, 1991c) develop novel computational methods
for directly recovering surface orientation by exploiting these orientation and spatial disparity cues.
The scheme developed in this paper is based on directly exploiting the constraint equations relating
orientation and spatial frequency disparities to the local surface normal, while the companion paper
is based on recovering H,, H, — two parameters which characterize the local affine transformation
from one view to the other. Our work was done in the context of a filtering model for computational
stereopsis (Jones and Malik, 1990; Jones and Malik, 1991a; Jones and Malik, 1991b) where the
outputs of a set of linear filters at a point are used for matching. However, the algorithms we have
developed can also be utilized in conjunction with edge-based or area-correlation based approaches.

The only significant previous computational models of how orientation and spatial frequency dis-
parity may be exploited are due to Koenderink and Van Doorn (1976) and Wildes (1991). These
models are based on an affine approximation of the transformation from one view to the other
which is then decomposed into expansion, rotation, and deformation components. For the special
case of orientation disparity, Wildes (1991) shows how surface orientation can be recovered from
measurements on three nearby pairs of corresponding line elements (Canny edges).

Our approach has the following advantages:

1. Treatment of both orientation and spatial frequency disparities.

2. The benefit of making use of all the data. While measurements on three pairs may be adequate
in principle, using minimal information leads to much greater susceptibility to noise.

This paper is organized as follows: Section 2 reviews relevant psychophysical evidence for the
importance of orientation and spatial frequency disparity. Section 3 develops the relationship
between surface geometry and orientation and spatial frequency disparity. In section 4, the objective
is to develop intution about the magnitude and range of these diaparities. In section 5 a least squares
algorithm for utilizing this information is developed and evaluated.

2 Human Visual Psychophysics

Explicit awareness of the cues of orientation and spatial frequency disparity and evidence that they
might be important is a relatively recent development in the study of human vision. Some evidence
is outlined below.



2.1 Spatial Frequency Disparity

When viewing a visual stimulus in which the left and right eyes see vertical sinusoidal gratings with
different spatial frequencies, the perception is that of a planar surface rotated about the vertical axis
(Blakemore, 1970). When the spatial frequency is higher for the right eye, the surface appears to
slant away from the observer to the left. The correspondence between bars in the grating, however,
provides a positional disparity cue, leaving it unclear whether the spatial frequency difference itself
is utilized. To eliminate this correspondence, the grating can be replaced by uncorrelated dynamic
visual noise, filtered to contain a certain spatial frequency band — giving the appearance of a
mixture of blurred vertical bars of different widths, rapidly and randomly changing. When there is
a spatial frequency difference, but no systematic positional correspondence, the perception of slant
remains (Tyler and Sutter, 1979).

2.2 Orientation Disparity

A similar stimulus can be constructed to test whether, in the absence of systematic positional cor-
respondence, an orientation difference in the two eyes is sufficient to lead the perception of a surface
tilted in depth. Using uncorrelated dynamic random lines, with a slightly different orientation in
each eye, there is also a consistent perception of slant (von der Heydt et al., 1981).

In much the same way that random dot stereograms confirmed the existence of a mechanism that
makes use of horizontal disparities (Julesz, 1960), these experiments provide strong evidence that
the human visual system possesses a mechanism that can and does make use of spatial frequency
and orientation disparities in the two retinal images to aid in the perception of surface slant.

2.3 Improved Thresholds from Orientation Disparity

An important question, though, is whether under normal viewing conditions these cues make any
difference. It might be argued that horizontal disparities alone are sufficient for the recovery of
three-dimensional shape. After all, a surface tilted in depth will give rise to a gradient in the
disparity map, so given the output of a horizontal disparity mechanism, the surface orientation
could, in principle, be recovered by taking partial derivatives in the estimates of horizontal disparity.
In practice, any inaccuracies present in the horizontal disparity estimates will be compounded by
taking derivatives. If there were a mechanism that recovered surface shape more directly, by making
use of orientation and spatial frequency disparities, then the perception of surface slant would be
more accurate.

This question has been addressed experimentally (Rogers and Cagenello, 1989). Consider the
task of discerning the direction that a planar disc, ruled with a grid pattern similar to that in
Figure 1, is tilted around the vertical axis. Depending on the orientation of the grid lines, there
will be differing amounts of orientation disparity. Vertical and horizontal grid lines (0°/90°) give
rise to no orientation disparity, whereas grid lines at £45°, give rise to orientation disparities that
increase as the surface is rotated about the vertical axis. Equations describing this relationship are
described later. On the other hand, grid line intersections provide very good features for establishing
positional correspondence and measuring horizontal disparity, regardless of the orientation of the
grid. If only horizontal disparities are important in judging depth and surface orientation, then



the smallest noticeable tilt away from fronto-parallel (the psychophysical threshold) should be
unaffected by the orientation of the grid pattern on the disc. This is not the case. The just
noticeable tilt is over twice as large when there are no orientation disparities (0°/90°) as compared
to when there are orientation disparities (£45°).

This evidence supports the idea that even in normal circumstances, orientation disparities, and
possibly spatial frequency disparities as well, are used in order to provide a greater accuracy in the
perception of three-dimensional shape than could be provided by positional disparities alone.

3 Geometrical Basis for Using Orientation and Spatial Frequency
Disparities

This section outlines the geometrical relationships that link the three-dimensional orientation of a
surface to the resulting orientation and spatial frequency disparities that are observed in a pair of
images. Parameters that can be used to specify three-dimensional surface orientation are described
and then it is shown how orientation and spatial frequency disparities depend on these. The
task of stereo vision, of course, is to attempt to solve the inverse problem, recovering the surface
orientation from the measured disparities in a pair of images. It is shown that either of the following
are sufficient to allow, in principle, the recovery of a surface’s orientation: a pair of orientation
disparities; an orientation disparity and a spatial frequency disparity.

3.1 Coordinates and Parameters

In order to discuss the geometry involved in how the three-dimensional orientation of a surface is
related to orientation and spatial frequency disparities a coordinate frame and set of parameters
must be established. Consider a small surface patch with some arbitrary texture on it. Without
loss of generality, we may consider the appearance of a series of evenly spaced parallel lines on
a plane. The results obtained will apply when considering orientation and spatial frequencies of
general texture patterns.

Let the fixation point lie at the origin of an object-centered coordinate system, as shown in Figure
2. The z-axis is to the right, the y-axis is up, and the z-axis points towards the viewer. The
viewer’s eyes (or cameras) lie in the zz-plane and their optical axes make angles £A¢, with the
z-axis, and are not rotated about their optical axes.

To describe the parameters of an arbitrarily oriented plane with a series of evenly spaced parallel
lines on it, start with a unit vector pointing along the z-axis, (1,0,0). A rotation ¢, around the
z-axis allows the pattern to have any orientation on the surface. A rotation of ¢, around the z-axis
followed by a rotation ¢, around the y-axis combine to allow any orientation of the surface itself.



left view right view

Figure 2: Parameters for specifying the three-dimensional orientation of a small planar surface
patch. Parameters for specifying the three-dimensional orientation of a small planar surface patch. A
planar surface (disc) is viewed at a distance d, from two vantage points separated by a distance b. A three-
dimensional vector, v, is used as a reference in the direction of a generic surface texture (a set of parallel
lines). An arbitrary configuration can be achieved by first rotating the surface pattern ¢, around the z-axis,
then rotating the surface ¢, around the z-axis, and lastly rotating the surface ¢, around the y-axis. The
different viewpoints can be handled conveniently by adding an additional rotation +A¢, around the y-axis,
where A¢ = tan~}(b/2d) around the y-axis.

3.2 Projection onto the Image Planes

The three-dimensional vector v resulting from the above transformations can be written concisely:

r

cos¢, 0 sing, 1 0 0 cos¢p, —sing, 0 1
v = 0 1 0 0 cos¢, —sing, sing, cos¢, 0 0
- sing, 0 cosg, 0 sing, cos¢y 0 0 1 0
[ sin ¢ sin ¢y, sin ¢, + cos ¢, cos ¢,
= cos ¢ sin ¢,
| sin ¢, cos @y sin ¢, — sin @, cos ¢,

The vector v indicates the three-dimensional orientation of the lines ruled on the surface. In
order to consider orientation and spatial frequency disparities, this vector must be projected onto
the left and right image planes. In orthographic projection, points are projected onto the image
along lines normal to the image plane, instead of converging on a focal point. In what follows,
orthographic projection will be used, since it provides a very close approximation to perspective
projection for the small surface patches under consideration. For orientation disparity, the results
are unchanged whether an orthographic or perspective projection is used. For spatial frequency
disparity, the difference is negligible under most realistic viewing circumstances (when line spacing
is small relative to the viewing distance).



Instead of working with lengths such as the viewing distance d and the baseline separation between
the viewpoints b, it will be more convenient to work with an angle A¢, = tan~'(b/2d). Ortho-
graphic projection of v can be achieved by replacing ¢, with ¢, + A¢, and then discarding the z
component to give the two-dimensional image vector v;, the orthographic projection of v onto the
left image plane. Similarly, replacing ¢, with ¢, — A¢, gives v,, the projection of v on the right
image plane.

3.3 Orientation Disparity

Figure 3: The slightly different appearance of a tilted surface from two viewpoints. A three-
dimensional surface patch (top), ruled with parallel lines at an orientation given by ¢., is seen from two
viewpoints, giving two different images (bottom). For reference, three-dimensional vectors lie parallel (v)
and perpendicular (w) to these lines. The surface orientation can be specified by a rotation by ¢, around
the z-axis, followed by a rotation by ¢, around the y-axis. The resulting two-dimensional image textures
(lines) can be described by their orientation, 8, and spacing, A. The text describes how orientation disparity,
6, — 6;, and spatial frequency disparity, Ar — A/ %(/\.. + A1), are related to surface orientation ¢z, ¢y.

Let 6, and 6, be the angles the image vectors v; and v, make with the z-axis (Fig. 3). These
orientations can be easily expressed in terms of the components of the image vectors.

tanf = cos ¢ tan ¢,
7 sings sin(¢, + A¢y) tan ¢, + cos(¢y + Agy)
cos ¢, tan ¢,
tané,

sin ¢, sin(¢, — A, ) tan ¢, + cos(¢y — Ady)

This is all that is needed if the goal is to determine the orientation disparity 8, — 6, from a known
pattern orientation ¢,, a known surface orientation ¢z, #y, and a known view angle Ad,. This will
be the case in Section 4.1 where the probability distribution of orientation disparities is considered.



For now, consider the reverse problem of determining the surface orientation ¢, ¢, from an observed
orientation disparity. One observation of orientation disparity is insufficient to allow recovery of
a surface’s orientation. A pair of observations, however, are sufficient as the following will show.
Each of the above equations can be rearranged to isolate tan ¢,.

cos(¢y + Agy) tanb _ cos(¢y — A¢y)_tan 6,
cos ¢ — sin ¢ sin(Py + A¢,) tan; " cos ¢, — sin ¢ sin(¢, — Agy) tanb,

tan ¢,

Setting these two expressions for tan ¢, equal eliminates ¢.. The resulting expression can be
rearranged to isolate tan ¢;.

cos(¢, — A¢,)tanb, — cos(¢p, + Ag,) tané
sin(2A¢,) tan 6, tan 6

tang, =

The orientations of a pair of corresponding line elements in the surface texture, (6,6, and 6;, ;) give
two expressions for tan ¢,. Setting these equal yields the following expression with ¢, eliminated.

cos(¢, + A¢,) _ tanb —tané]
cos(¢y — Ady) " tané, — tan@.

This can be simplified by defining 7; = tan§; — tan 6] and 7, = tan6, — tané;, and then rearranged
to isolate tan ¢,.

1-tangytandg, 7
1+ tan ¢, tan Ag, oo
tan g, 1 T — T

tan A¢, ' ™+

It is now clear that from the orientations 6;,8,,6),6, of a pair of corresponding line elements, the
three-dimensional orientation of the surface can be recovered by solving first for ¢, and then ¢,.
For completeness, the true orientation ¢,, ¢, of each of the line elements on the surface can also be
recovered.

As a concrete example, if there is a texture element resembling a ‘+’ on a surface, then the ori-
entation of the surface can be estimated from the orientations of the two line elements observed
in two different views. The accuracy of this estimate is naturally limited by the accuracy of the
orientation estimates. Furthermore, if the line elements are close to being parallel, then the sur-
face orientation estimate would be less reliable, since the above expressions would be numerically
unstable. Any implementation that relied on this relationship between orientation disparity and
surface slant would likely be able to provide increased accuracy by making use of several orientation
disparity estimates (see Section 5.1).

3.4 Spatial Frequency Disparity

Let A;, A, be the spacing, and f; = 1/X, f, = 1/, be the spatial frequency of the lines in the left
and right images (Fig. 3). The following shows how the spatial frequency disparity f; / fi depends
on the texture orientation ¢, the surface orientation ¢, ¢y, and the relative viewing distance Ag,.



Spatial frequency is measured perpendicular to the lines in the image. For this reason, a new unit
vector w is introduced which is perpendicular to v. This vector indicates the spacing between the
lines. An expression for w can be easily obtained from the expression for v by replacing ¢, with
¢, + 90°.

sin ¢, sin @, cos @, — cos @, sin ¢,
w = €05 ¢ COS P,
sin ¢, cos ¢y, cos ¢, + sin @, sin ¢,

When these three-dimensional vectors, v and w, are projected onto an image plane, they generally
do not remain perpendicular. In the left view of Figure 3, for example, v; and w; are no longer
perpendicular. If we let vj* = (—viy,vi;), then u; = vj* /|lvi]| is a unit vector perpendicular to v;.
The length of the component of w; parallel parallel to u; is equal to )j, the line spacing in the left
image.

w; - vt

[l

Substituting expressions for v; and w; gives an expression for the numerator.

w; v = [sing;sing(¢, + Ay)cos ¢, — cos &Py + Ay )sin @) [— cos ¢, sin &)
+ [cos ¢ cos @] [sin ¢ sin(¢y + A¢,)sin ¢, + cos(¢, + Agy) cos o]
= cos ¢ cos(¢y + Ady)

A simple expression for the denominator can be found in terms of 6;, the angle v; makes with the

T-axis.
2
- - \ /o2 + vl
Voizt vy = (Vg T

‘U[y

Il

€Os ¢ sin @,
sin 91

The same can be done to get an expression for the A,, the line spacing in the right image. Combining
these gives a concise expression for spatial frequency disparity.

oo N _ weor el
fi Ar ol w, v
cos(py + Ay ) sin b

cos(¢y — Ady)sin b,

Taking the absolute value is actually unnecessary since ¢, + A, is always in (-, ) for the surface
to be visible from both viewpoints, and sin 8;,sin 8, always have the same sign.

Once again, if the goal is to determine spatial frequency disparity from a given pattern orientation
., surface orientation ¢, ¢,, and relative viewing distance A¢, then this equation and the previous



ones to determine ;,6, are all that are needed. This will be used later in Section 4.1 when the
distribution of spatial frequency disparities is considered. In that case, it will be more convenient
to deal with the spatial frequency difference relative to the mean spatial frequency A= (A4 X)/2
since, unlike the ratio A;/),, this is symmetric about zero spatial frequency disparity.

Ar— A 9 cos(¢, — A, )sinb, — cos(¢, + Ag,)sin b i
A " cos(¢y — A¢y)sin b, + cos(dy + Agy)sin b,

For now, consider again the problem of determining surface orientation. This time, it will be
shown that a single observation of orientation disparity and spatial frequency disparity is sufficient.
The first expression for spatial frequency disparity can be rearranged to isolate tan ¢,. Defining
o, = A.sin 8 and o; = A;sin 6, puts this equation in a form that bears a striking resemblance to
the previous one for tan ¢,.

Aisind,  1-tang,tandg,
Arsind; 1+ tang,tanAg,
tang, = 1 g, — Oy

tan Ag, ‘ o, + 0]

This makes is clear that from the spacing A, A, and orientation 6;,6, of a pair of parallel line
elements in the surface texture, the three-dimensional orientation of the surface can be recovered,
by first solving for ¢, and then using the equations from the previous section to solve for ¢, and

¢-.

As an example, if there is a texture element similar to ‘||’ (or ‘lf) on a surface, then the surface
orientation can be estimated from the orientation and spacing (or width) observed in two different
views.

4 Magnitude of Orientation and Spatial Frequency Disparities

Before proceeding, the reader might want to get a feel for these expressions for orientation and
spatial frequency by trying particular values for the various parameters. For example, as the viewing
distance becomes very large, or equivalently, as the separation between viewpoints becomes very
small, then Ag, — 0. In the limit, 6, —6; — 0 and (Ar— /\1)/;\ — 0, giving no orientation or spatial
frequency disparity. The reader can also confirm that when the surface patch is only rotated about
the vertical axis (¢, = 0), horizontal and vertical line elements in the image (6; = 0° or 90°) have
no orientation disparity. (cf. Section 2.3).

In addition to knowing the disparities in specific viewing situations, it is also important to know
how large they are in general, especially if we plan to measure them. Visualizing this information
all at once in a single graph is difficult, since even when the viewing distance A¢, is fixed, there
are four dimensions of interest, namely, the texture orientation ¢, the surface orientation ¢, ¢y,
and the resulting disparity. In the 3-D graphs below, orientation and spatial frequencies that arise
in typical human viewing conditions are shown as a function of texture orientation ¢, and one
parameter of surface tilt (¢, or ¢,). A reasonable choice for “typical” human viewing conditions
is taken to be a baseline of 7 cm and a viewing distance of 1 metre, giving A¢, = 2.0°.



The magnitude of the orientation disparity, |8, — 6|, arising when a surface is rotated around
either the horizontal or vertical axis, is shown in Figure 4. When a surface is rotated around the
horizontal axis, horizontal surface markings give no orientation disparity but orientations closer to
vertical give progressively larger orientation disparities, with disparities for near-vertical surface
markings being quite large. When a surface is rotated around the vertical axis, surface markings
that are precisely horizontal or vertical give no orientation disparity, but surface markings at other
orientations (especially just off horizontal) can give rise to rather large disparities, easily exceeding
5°. Given that the human visual system can resolve differences in orientation as small as 1/3°
(Watt, 1984), even surfaces tilted a relatively small amount away from fronto-parallel still give
readily detectable orientation disparities.

The magnitude of the spatial frequency disparity, {A, — A1/ |, arising when a surface is rotated
around either the horizontal or vertical axis is shown in Figure 5. When a surface is rotated around
the horizontal axis, surface markings that are precisely horizontal or vertical give rise to no spatial
frequency disparity, but surface markings at other orientations (especially just off vertical) can give
rise to rather large disparities, easily exceeding 10%. When a surface is rotated around the vertical
axis, spatial frequency disparity is always present except for surface markings that are precisely
horizontal. Since the human visual system can resolve differences in spatial frequency as small as
2% (Mayer and Kim, 1986), the disparities arising from viewing surfaces tilted in depth are well
within the discriminable range.
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Orientation Disparity

Orientation Disparity

Figure 4: Orientation disparities arising when viewing a surface rotated about either the z-axis or
y-axis. The orientation of an element of surface texture is specified by an angle ¢, (0°,180° horizontal;
90° vertical). The graphs plot as height, the orientation disparity, in degrees, resulting when the surface
being viewed has been rotated either ¢, around the z-axis (A), or ¢, around the y-axis (B). A surface 1s
fronto-parallel when both ¢, and ¢, are zero.
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Spatial Frequency Disparity
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Figure 5: Spatial frequency disparities arising when viewing a surface rotated about either the
z-axis or y-axis. As in Fig. 4, the orientation of an element of surface texture is specified by ¢,. The
graphs plot as height, the spatial frequency disparity, in percent, resulting when the surface being viewed
has been rotated either ¢, around the z-axis (A), or ¢, around the y-axis (B).
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4.1 Expected Disparity Ranges

Orientation and spatial frequency disparities are systematically related to how a surface is tilted in
depth. The goal is to make use of this information to accurately infer the local three-dimensional
surface orientation, or in general, the surface shape. For computational approaches to stereo vision
that do not try to make of use of this information, these orientation and spatial frequency disparities
are a source of noise. At best then, these other approaches can be designed to tolerate the fact that
corresponding image patches contain features or edges with dissimilar orientations and dissimilar
lengths or spacings. From this standpoint, it is important to know, on average, how dissimilar
corresponding image features can be.

For line segments (“edges”), it is possible to analytically determine the ezpected range of orientation
and length differences if all three-dimensional orientations of this line segment are equally probable.
For typical human viewing conditions, the probability distribution of orientation differences has a
half-width at half-height of 3°, and the probability distribution of length differences has a half-width
at half-height of 7% (Arnold and Binford, 1980). These values give some measure of the range of
edge orientation and length differences that need to be tolerated when matching edges.

The goal here, however, is not to ignore these differences, but rather to make use of them to infer
how a surface is tilted in depth. There are two aspects of the analysis mentioned above that are
unsatisfactory. First, that analysis is in terms of individual line segments and not surface patches
of solid objects. Though this distinction is sometimes ignored (Kass, 1987), it is important because
a surface can be oriented in such a way that opposite sides of the surface are visible from each
viewpoint, or in the case of a solid object, the surface is only visible from one viewpoint because of
self-occlusion. Second, in designing a scheme for making use of these differences, it would be nice
to have more complete information about the expected ranges of these differences. For example, if
a scheme can only cope with some range of orientation differences, then that range could be chosen
to include, say 90% or 95% of all possible orientation differences.

Instead of a long analytic derivation involving probabilities, it is more intuitively understandable,
though no less accurate, to perform a Monte Carlo simulation to determine experimentally the
probability distributions of orientation and spatial frequency disparity. The following procedure was
followed to perform this Monte Carlo simulation. First, a pattern orientation ¢, is randomly selected
from the range [0°,180°), with all orientations having equal probability. Second, a unit surface
normal 7 is randomly selected so that all orientations are equally probable. (This is equivalent
to saying 7 is a uniformly random point on the surface of the Gaussian sphere). From this, it
is straightforward to calculate the parameters of surface orientation, ¢, and ¢,. If the front of
the resulting surface patch is not visible from both viewpoints, it is discarded, and the process
is repeated. Given these parameters, plus some fixed viewing angle Agy, it is straightforward
to calculate (and store) the resulting orientation and spatial frequency disparities. After many
such trials, the experimental probability distributions accurately reflect the theoretical probability
distributions. For the results presented here, one million trials were used.

The probability distribution of orientation disparity for two representative viewing conditions is
shown in Fig. 6A. As noted earlier, orientation disparity depends on the viewing angle, 2A4,.
Two noteworthy values of A¢, are 2.0°, which corresponds to a human with eye separation 7 cm
viewing a tilted surface at a distance of 1 metre, and 19.3°, which corresponds to two successive
aerial photographs taken at a separation of 700 metres at a height of 1 kilometre.
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Figure 6: Probability distribution of orientation and spatial frequency disparities. Assuming a
uniform random distribution of surface orientations, the probability distributions for orientation disparity
(A) and spatial frequency disparity (B) are plotted, following a Monte Carlo simulation with 1,000,000 trials.
Distributions are shown for two different representative stereo baselines. Human viewing conditions (solid
line) assume an eye separation of 7 centimetres and a viewing distance of 1 metre. Aerial viewing conditions
(dotted line) assume a camera separation of 700 metres and a viewing distance of 1 kilometre.
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The distributions are symmetric, so it is known a priori that the median should be exactly zero.
The median orientation disparity found experimentally was 0.0007 for human viewing conditions
and 0.0022 for aerial viewing conditions. This gives a good indication of the accuracy of the results
and the number of significant digits in values determined by the simulation.

Given these probability distributions, it is possible to make assertions such as: For a human at
a viewing distance of 1 metre, 90% of the time, the orientation disparity is less than 5.5°. The
table below gives the range of orientation disparity for various percentage intervals centered at the
median, and two viewing conditions.

Orientation Disparity

percent human vision aerial photography

Ay, =2.0° Agy, =19.3°
25 + 0.43° + 3.76°
50 + 1.23° +10.79°
75 + 2.82° +24.37°
90 + 5.47° +44.90°
95 + 8.12° +62.62°

The probability distribution of spatial frequency disparity for two viewing conditions is shown in
Figure 6B. Once again, these distributions are symmetric and the medians of 0.0023 and —0.022
for human and aerial viewing conditions give an indication of the accuracy of the method. The
table below gives the range of spatial frequency disparity for various percentage intervals centered
at the median, and for two viewing conditions.

Spatial Frequency Disparity

percent human vision aerial photography

Ady = 2.0° A¢y =19.3°
25 + 1.61% + 12.81%
50 + 4.93% + 36.06%
75 +13.50% + 79.62%
90 +34.37% +132.35%
95 +60.03% +160.99%

If there were some reason to believe that not all surface orientations are equally probable, the
above Monte Carlo simulations could easily be modified to take this into account. For example,
for a given surface area, the image area subtended is smaller for surfaces slanted further away
from fronto-parallel. This foreshortening effect is proportional to the cosine of the slant angle.
It might be argued that this should be taken into account when considering the distribution of
surface orientations seen in an image. Another argument could be made that in certain man-made
environments, surface orientations are quite non-uniformly distributed, with vertical and horizontal
surfaces being much more common, though it is their orientation with respect to the viewer that
is important.
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5 Recovering Surface Orientation from Corresponding Line El-
ements

5.1 Reliable Estimation of Surface Orientation -

While it has been demonstrated that a pair of orientation disparities or an orientation and spatial
frequency disparity pair are mathematically sufficient to recover surface orientation, in practice it
would be desirable to be able to combine several disparities to arrive at an estimate of surface
orientation that would be reliable in the presence of measurement errors, noise, or outliers. The
class of methods that immediately come to mind is “least-squares”.

Using the equations developed earlier, and given n observations of corresponding orientations,
6,.,6:,, and possibly spatial periods, Ar., Al the goal is to reliably estimate surface orientation,
¢, ¢y. This may at first glance seem like a non-trivial undertaking since the equation relating
surface orientation to orientation disparity (Section 3.3) or orientation and spatial frequency dis-
parities (Section 3.4) are non-linear. This is a concern since it could mean that a costly iterative
procedure might be needed to compute the least-squares estimate of surface orientation. The key,
however, is that all the nonlinearities are confined to values that are either measured 6,,, 0;;, or
assumed to be a (possibly known) constant A¢,. This is demonstrated by using a trigonometric
identity to rewrite the equations as follows.

cos ¢y, cos(A¢y) (tan b, — tan @) + sin ¢, sin(A¢,) (tan by, + tanf,,)
sin(2A¢,) tané,, tan 6

tan¢, =
= a;cosdy + b;sin @,

All the measured or observed quantities can be collapsed into two easily computed numbers a;, b;.
If ey, is defined to be the unit vector (cos ¢y, sin ¢, ), then this gives a series of equations that can
be written in the form

tang, = (ai,bi)'ed’y

This has a straightforward geometric interpretation depicted in Figure 7. For a given surface
orientation, all the observations (a;,b;) should lie along a straight line. The angle made by the
perpendicular to that straight line gives ¢, and the distance along that perpendicular from the
origin to the line is tan ¢,. Estimating ¢, ¢, is equivalent estimating the best-fitting straight line
through the points (a;,b;). Since any two points specify a line, it is obvious why two error-free
points are adequate. The best-fitting line will go through the centroid, so subtracting the centroid
from each point would allow @, to be estimated first, from the best-fitting line through the origin,
and then ¢, can be determined second.

The results are much the same when several spatial frequency disparities are also available. The
key equation relating orientation and spatial frequency to surface orientation can be rewritten

Aisind, _ cos ¢, cos(A¢y) — sin @y sin(A¢y)
A sinf ~ cos ¢, cos(Agy) + sin ¢y sin(A¢y)

0 = cos¢y(Asinf, — A sin ;) + sin ¢y (A sin 6, + Ay sin 6;)
0 = a;cos¢, + bisin ¢y
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Figure 7: Determining surface orientation from several observations of orientation disparity. From
the orientations of corresponding line elements lying on a surface, the data points (a;, b;) are easily calculated.
These points must lie along a straight line. A unit vector ey, perpendicular to the best-fitting line gives
one parameter of surface orientation, ¢,. The projection of the vectors (ai, b;) on this unit vector, or the
distance of the best-fitting line from the origin, is tan ¢, giving the other parameter of surface orientation.

This problem also reduces to fitting a line to the observed data points (a;, b;), but this time the
line is constrained to go through the origin. The direction perpendicular to this line gives ¢y, and
again, ¢, can be calculated given the value of ¢,.

For either case, any procedure for fitting a line to a set of points can be employed. The important
thing to note, however, is that it is possible to calculate the parameters ¢z, ¢y of surface orientation
directly, without an iterative algorithm.

5.2 Experimental Evaluation

The computer implementation of this method was evaluated using test stereo pairs such as those
shown in Figure 8. Each of these nine stereo pairs depicts a textured, planar surface with known
surface orientation. The center surface is fronto-parallel, the middle row is rotated around the
vertical axis, the middle column is rotated around the horizontal axis, and the four corners are
rotated around both axes. The white squares marked on these surfaces are to help make the
horizontal compression/expansion and the vertical skew more salient. The image distortion between
the two views in a stereo pair can be characterized by two parameters, H, and Hy, corresponding
to these two effects. This characterization is associated with an alternative approach to utilizing
orientation and spatial frequency disparities and is discussed in a companion paper (Jones and

Malik, 1991c).

In total, 25 test surface orientations were used, with H, and H, taking on values: 0.0,£0.1,+0.2.
For each test surface orientation, 50 indepently generated stereo pairs of a randomly textured
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Figure 8: Stereo pair of a planar surfaces tilted in depth.

plane were created. On each trial, the predominant local orientation at the center of the textured
surface was determined for both the left and right views. To do this, the image was convolved
with rotated copies of an elongated Gaussian derivative filter G5, () G,,(y) with o3 : o1 set at
3 : 1. The orientation associated with the maximum response of this family (found by parabolic
interpolation) was used as the estimate of local orientation. Tests showed that this scheme was
able to provide orientation estimates accurate to about 1°. Our previous experience with running
edge detectors on real images is consistent with this — orientation estimates accurate to within 1°
can be reasonably obtained but one may not expect higher precision in general.

In the presence of this orientation uncertainty, we expect to have trouble for nearly horizontal
edges (6 ~ 0). It is easy to see this from the equations for a;, b; below, where 1/ tanf terms cause
numerical difficulties.

a 1 ( 1 _ 1 )
' 7 2sin(A¢y) \tan$;, tané,,

b 1 ( 1, 1 )
T 2cos(A¢y,) \tan8;, tanéb,,

To deal with this, we discarded all orientations within 10° of horizontal as being too unreliable.

Using the above equations, (a;, b;) were plotted for each trial. An example of one such plot is shown
in Figure 9. Although there is spread of these values around the theoretically expected line, it is
quite clear that these data can be fit with a line to recover the parameters of surface orientation,
¢z, By, for a known (or assumed) value of Ag,.

Some aspects of this plot can be understood by making use of a small orientation disparity approx-
imation which is reasonable for small values of A¢,. With this approximation b; becomes 1/ tané
where 6 is the mean local image orientation, %(0,+0,). For a given uncertainty or error in orientation
estimates of Af, the resulting range of b;, when 6 is small, will be roughly 1/(8 - A8)...1/(6+ A8).
This is quite significant and should clearly be taken into account when finding the line of best fit.
In Figure 9, it may be noted that the points corresponding to large b; have a greater spread.

Using the same approximation (b; ~ 1/tan@), the b; axis could easily be relabelled with the
corresponding mean orientation of texture elements. A b; = 5 corresponds roughly to 11°, b; = 2
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Hx= -0.1, Hy= -0.1
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Figure 9: Typical plot of (a;,b;) values for one particular surface orientation. The points lie quite
close to the theoretically expected line. Calculating the line of best fit provides a good estimate of the 3-D
surface orientation.

to 27°, b; = 1 to 45°, and b; = 0 to 90° or vertical. Thus a uniform distribution of texture element
orientations in the test images results in a clustering of (a;, b;) points towards the origin.

This same procedure was followed for all 25 test surface orientations. The resulting plots are shown
in Figure 10. Plots in this grid are arranged in a manner similar to that in Figure 8, with the center
plot corresponding to a fronto-parallel surface. In this case, the points clearly lie along a vertical
line through the origin. The recovered parameters are ¢, = 0 because the distance from the origin
is zero, and ¢, = 0 because the line is not rotated away from vertical. Moving left-to-right in this
figure, the test surfaces were rotated around the vertical axis. The line along which the points lie
clearly rotates as ¢, is varied. Moving top-to-bottom in this figure, the test surfaces were rotated
around the horizontal axis. The signed distance from the origin clearly varies as would be expected
from the change in ¢, (see Fig. 7).

It is important to note that this method does not strictly require the presence of explicitly identified
“line” or “edge” elements. This makes the method generally applicable.

5.3 Further Work

At this point, we take these experimental results as a reassuring validation of our proposed least
squares solution to recovering 3-D surface orientation from orientation disparity. We are currently
performing similar tests using both orientation and spatial frequency disparities, as well as testing
this scheme to recover the local surface normal on curved surfaces.

To compute ¢, and ¢, reliably, we are currently exploring line-fitting procedures (e.g., Lawson,
1974). This problem is best addressed as a total least squares problem which would treat the a;, b;
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Figure 10: Plots of (ai,b;) for 25 test surface orientations The data clearly fall close
distance tan ¢, from the origin, and rotated ¢, away from vertical.

to a line at a

coordinates symmetrically. Ideas from robust statistics such as least median of squares may also

be explored in order to cope with occasional outliers.
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Because this method is not computationally demanding, it can clearly be efficiently applied through-
out an image. Where there is sufficient surface detail, the local surface normal can be computed
and displayed, for example, in a “needle” diagram. We are currently investigating reliable ways
for determining when it is not possible to make any useful assertion about the surface normal. In
areas of little image intensity variation, or at boundaries between textured surfaces, the plots of
(ai,b;) as in Figure 9 will not be well fit by a single line.

6 Conclusion

In this paper, we have developed a computational approach that exploits orientation and spatial
frequency disparities to recover 3-D surface normals. The principal mathematical contribution is
the derivation of constraint equations relating orientation and spatial frequency disparities to the
local surface normal. These were used to derive necessary and sufficient conditions for recovering
surface normals: (1) Two measurements of orientation disparity, or (2) One measurement of ori-
entation disparity and associated spatial frequency disparity. These conditions are readily met in
local regions of real images, for example in texture patches and in the neighborhood of brightness
edges and lines that are curved or form corners and junctions. We have shown analytically how
these constraint equations can be expressed in a form such that the determination of 3-D surface
normal is equivalent to finding the best fitting straight line through a set of points. Computational
experiments confirmed these results, suggesting that simple least squares fitting could be used to
directly compute the local surface normals when more than the minimum number of orientation
and spatial frequency disparity observations are available.
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