Performance Analysis of Queueing Algorithms on Datakit T1 Trunk Linest

Michael J. Hawley

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Datakit® VCS is a networking system which integrates local and wide area networks,
and attempts to provide good interactive response in the presence of bulk transfer
traffic. The queueing algorithms used at the trunk interface are the chief means of pro-
viding good interactive response. This report compares the performance of fifo queue-
ing and per-channel queueing by implementing these disciplines on a programmable
trunk board and measuring the throughput and interactive delay. These measurements
show that (1) fifo queueing delays messages up to ten times longer than per-channel
queueing when the trunk is heavily loaded, and that (2) per-channel queuing does not
adversely affect trunk throughput or delay when the trunk is not loaded.

+ This work was sponsored by AT&T Bell Laboratories.
® Datakit is a Registered Trademark of AT&T Bell Laboratories.

1. Introduction

The Datakit virtual circuit switch developed by AT&T Bell Laboratories is intended to provide
efficient data communication over local-area, metropolitan-area, and wide-area configurations. In the
wide-area case, the switching engine and the queueing disciplines it employs at the trunk interface try to
balance the conflicting requirements of interactive traffic and bulk-transfer wraffic. For example, 56 Kbps
trunks do per-channel queuing at the sending end, which allows short messages to be sent over the trunk
quicker than large messages. In the case of Tl trunks (1.544 Mb/s) however, it was impractical to
implement per-channel queueing until the recent advent of high speed RISC processors. In the spring of
1989, a special Datakit T1 trunk board was developed by Bell Laboratories which incorporates an AMD
29000 RISC processor [Byrne 89]. It was hoped that this processor would be fast enough for per-
channel queueing at T1 speeds. This report describes the attempts to program this board to do per-
channel queueing and gives the results of message delay and throughput performance tests performed on
this board during the summer of 1989 at Bell Laboratories’ Murray Hill location.

The performance tests involve user-level measurements of the throughput and message delay of a
T1 trunk which is programmed to do either fifo or round robin queueing. The goal of the tests is to ver-
ify that performing per-channel queueing on this trunk board does not adversely affect the delay and
throughput of an unloaded trunk, and to verify that per-channel queueing gives lower delays to short
messages than fifo queueing. It is of interest to know how interactive delay increases with increasing
load on the trunk for each of the queueing disciplines. This information will help Datakit designers
decide whether or not the additional hardware required to implement per-channel queueing is justified.
For example, if both disciplines perform identically when the trunk utilization is 98%, one would ques-
tion the value of per-channel queueing.

1.1. Datakit

The test bed for all the experiments performed is Datakit. A detailed description of Datakit may
be found in [Fraser 83]; a brief description follows.

A Datakit node consists of a cabinet that houses a shared backplane through which all auached
devices communicate. Devices connect to the backplane via interface modules that plug into the cabinet
and perform buffering and backplane contention procedures. Typical devices are host computers, termi-
nals, and trunks to other Datakit nodes. Each node also contains a network controller which handles call
processing. Each node performs switching and multiplexing of user data carried on virtual circuits.

The transport protocol Datakit uses is the Universal Receiver Protocol (URP) (Fraser 87]. URP
has several modes, but the only one considered here is block mode with window flow control and
retransmission on error. A URP window is specified as a number of bytes. The bytes are divided into at
most 7 units called blocks (the default is 3), and a block is the unit of error detection and retransmission.
A block may contain user data or URP control characters. URP uses ‘Go-Back-N’ error control, so any
transmission errors are costly. URP does provide negative acknowledgements (NAKs) so that
retransmissions may occur upon detection of an error. However, if the NAK is lost (or never sent) the
timeout is (typically) one second. Each URP block has a four byte trailer which contains an end-of-
block control character (BOT), two bytes containing the length of the block, and a sequence number
control character (SEQ(i)).

In the experiments performed, three types of host interfaces were used: CURE boards, KMCs and
AVDKs (A VMEbus Datakit interface). CUREs and KMCs are both DMA engines, the difference being
that CURE boards have much more on-board memory and a faster processor, and KMCs perform URP
protocol processing. The AVDK board is a DR11-style VMEbus Datakit interface which does not use
DMA. The host simply reads from an input fifo and writes to an output fifo.

1.2. Queueing Disciplines

The queueing disciplines under consideration are first-in first-out (fifo) and per-channel queueing
(or round robin queueing); both are pictured in figure 1. In fifo queueing, data is simply sent out on the
outgoing line in the order it was received. In per-channel queueing, data is queued up in a separate fifo

fifo server delay
Fosllll - R e S —— e
. o et bemd oo bad O
B

round robin server
Figure 1 - Queueing Disciplines

for each virtual circuit, and a chunk (hereafter called a quantum) of data is taken from each fifo in turn
and sent out on the outgoing line. In this way, if a small amount of data arrives on a channel, this data
will be serviced before a long burst would be completely serviced. Thus, round robin queueing pas-
sively gives priority to short messages, so interactive delay is minimized. The only parameter in round
robin queueing is the size of the quantum, which should be selected after weighing the conflicting
requirements of throughput and delay. A smaller quantum will give shorter interactive delays, but the
higher overhead (because the trunk framing is fixed regardless of the amount of user data in the trunk
frame) will decrease the throughput.

1.3. Hardware Environment

The queueing disciplines mentioned above are implemented on a daughter board that plugs into a
DSX1 trunk interface board [Byrne 89] that, in turn, plugs into a Datakit backplane. The daughter board
consists of 1 Megabyte (MB) of fast SRAM, an AMD 29000 processor running at 16 MHz (where every
instruction except loads from and stores to memory takes 1 cycle), a 4K envelope (E) (an envelope is
the Datakit unit of transmission and consists of 8 data bits plus a bit to indicate whether the data is con-
trol or user data, plus a parity bit) input fifo, and a 1 KE output fifo.

Figure 2 shows how two DSX1 boards are connected. Note that data may come from the back-
plane at 8 Mb/s, but data can only be sent out on the T1 line at about 1.5 Mb/s, so queues will build up
on the board. The DSX1 board may be used without its daughter board, in which case the data enters a
32 KE hardware fifo. Alternately, a daughter board may be plugged in, in which case the data is put
into a small fifo on the daughter board. The 29000 reads data from the input fifo, buffers it in memory
(according to the queueing discipline being practiced) and writes the data to the output fifo. The
daughter board also has provisions for downloading programs into its memory and for connecting to a
terminal.

The T1 trunk on which the measurements are made is connected between two Datakit nodes (of
course), and has a physical length of about 3 feet. Because of this short length, the propagation delay
along the trunk is negligible.

1.4. Software Environment

Programs for the 29000 are written in C. These are compiled and linked [AMD 89] on a Sun 3
and downloaded over the Datakit network into thc daughter board’s memory. The 29000 runs in Super-
visor mode with all interrupts and memory management options turned off. There is no multiprogram-
ming. The daughter board has no knowledge of the virtual circuits passing through it unless there is
data for that virtual circuit stored in the board’s memory; the daughter board does not participate in the
call set-up. Thus, a channel is active only when it has data in the daughter board’s memory.

Three trunk configurations are possible: (1) DSX1 board with no daughter board (referred to as
hfifo in the graphs), (2) DSX1 board with daughter board running a fifo program (fifo), and (3) DSX1

8 Mb/s y
Backplane
DKI
T
|
: Daughter Board
Y 4K
19 KE 1 MB SRAM
Fifo DSX1
: 29K
\ 1K
l
l
| S
Output State T1 Line
Machine Interface
T1 Line
(1.544 Mb/s)
Input State T1 Line
Machine Interface
DSX1
DK1
Backplane
8 Mb/s v

Figure 2 - DSX1 Board

This figure is a block diagram of the DSX1 hardware. Each DSX1 module has a Datakit interface (DKI)
which sends data received from the backplane 1o the daughter board. If no daughter board is present, the
data is queued up in a 32 KE hardware fifo. The daughter board has a 29000 processor and one megabyte
of static RAM. The 29000 reads data from the 4 KE input fifo, buffers the data in memory (according to
the queueing discipline desired), and writes the data to the 1 KE output fifo. In either case, the data is now
passed to a state machine which assembles the data into LAPD {Byme 89] frames. These frames are then
passed to the T1 Line Interface, and sent out on the T1 line. At the other end of the T1 trunk, the data is
passed from the T1 Interface to an Input State Machine which converts from the LAPD format to the back-
plane format. The data is then passed to the backplanc. Both ends transmit and receive, of course, but
only one direction is shown for clarity.

board with daughter board running a round robin program (rrobin). All measurements described in this
report have been performed on each of the above configurations.

Some details on the round robin queueing program are in order here, since we want to do some
“back-of-the-envelope’ calculations to determine if it is indeed possible to perform round robin queueing

.5-

at the T1 rate. First of all, due to requisite checking of hardware fifo status registers and various
pointers, it takes a minimum of 18 29000 processor cycles to read data from the daughter board’s input
fifo or write it to the output fifo. When the additional overhead of managing the data structures is
included, it takes (on average) 22.6 cycles to read a byte from the input fifo and store it into memory
and 19.7 cycles to move a byte from memory to the output fifo (these figures assume a 64 E quantum,
which will be justified later). (These numbers were calculated by counting the instructions in the assem-
bly code.) Translated, this means it does not, in fact, add much overhead to do the round robin queue-
ing. These numbers also show we can read data into the daughter board’s memory at 710 KE/s, which
is very close to the backplane speed of 800 KE/s; the input fifo on the daughter board should only
overflow if a 35.6 KE burst comes in at the full 800 KE/s — this is extremely unlikely in practice.

The quantum for the round robin program was chosen to be 64 E. While testing other quanta may
be interesting, time did not permit it. This value has minimal effect on the throughput of the trunk, yet
keeps the service waiting time small. Tables 1 and 2 show the maximum throughput and in-memory
queueing delays for various quanta (for an explanation of how these numbers were calculated, see sec-
tion 2). The total delay a message experiences traversing the board, however, will be greater than the
value shown in Table 2 because of queueing delay in the input and output fifos of the daughter board.

1.5. Network Environment

The computing facilities at Murray Hill are excellent and provide a good environment for network
testing. The portion of the network which was used is shown in figure 3, where the squares represent
Datakit nodes and the ovals represent hosts. Node 4 is a Hyperkit — next-generation Datakit with a 125
Mb/s backplane. The experimental T1 trunk streiches between Node 3 and Node 6, and all other trunks
shown are 8 Mb/s fibers. The nodes are physically close together — no trunk line is longer than a few
tens of feet. Hosts Crab, Coma, and Pipe are Vax 8550’s, and Tempel is a MIPS R-2000. Note that
Pipe has two Datakit interfaces. Network utilization is very low (< 5%) [Marshall 89], so there was
little interference with our tests. Also, since the rest of the network is composed of 8 Mb/s fibers and
backplanes, the T1 trunk is clearly the bottleneck.

2. Expected Results

2.1. Maximum Throughput

What is the maximum throughput of a T1 trunk? To answer this question, the framing on the T1
trunk must be examined, and we consider the round robin queueing case first. First off, one bit out of
every 193 is used for synchronization. Next, because inverted HDLC 1is used on the T1 line, two one
byte flags and two bytes of CRC are added to each frame of data. Also included in the frame are two
other bytes of control and protocol discrimination, and the two byte channel number. A frame may only
contain data from one virtual circuit. A frame will hold at most 256 bytes of data, and URP control
characters require a stuff byte (since only 8 bit bytes are sent over the wire, the 9th bit which discrim-
inates data/control requires a full byte for control characters — the absence of this stuff byte indicates
data characters). Thus, in each frame we have 8 bytes of overhead.

A raw T1 line can transmit 1.544 Mb/s * (192/193) / (8 b/B) = 192 KB/s. Given a 64 byte quan-
tum, we can get at most 192 * (64/(64+8)) = 170.7 KB/s through a Tl trunk. Now, to this we must add
the URP overhead. If the URP block size is some factor of the quantum (true in our case), and the URP
block is full, then the URP trailer will require its own frame. This frame will be 14 bytes Tong: 8 bytes
of frame overhead + 4 bytes of URP trailer + 2 bytes stuffed in front of the BOT and SEQ(i). For a
256 B URP block size, the throughput is 192 KB/s * (256/(256+14+4*8)) = 162.7 KB/s. Similar calcu-
lations will yield the rest of the values in Table 1.

In practice it is possible to exceed this maximum throughput. The framing is done by a finite
state machine implemented in hardware, and if more data arrives for a given channel before a frame has
been transmitted, the new data will be added to the frame (until the frame is full — 256 B). This may
happen when only one channel is active on the board; the channel will only get to output one quantum
at a time, but those packets will end up next to each other in the output fifo and may be combined.

L]

1m
Node | Vax 8550 Node
2 _19_4?]\/ N\ Acae] 3
— X
L.ISM.C.J b e
~ . . P ” Tl
. b ~ ’ < - V
oma) b
ax 8550 Node | ___._-____J Node
1 6
AVD

J

b —————

\ -2000
Node {IPS R-20

]| 4
(Hyperkit)
______ 8 Mby/s fiber . DSX1 +
------------ T1 trunk <] Daughter
host interface cable Board

Figure 3 - Portion of Murray Hill Datakit Network Used for Tests

It is difficult to obtain an exact maximum throughput for the hardware and software fifos (hfifo
and fifo) because we cannot determine what the effective quantum will be. The packets are sent to the
output state machine as they are received off the backplane: with two bytes of channel number and 16
bytes of data. Most likely, several of these packets will be combined by the output state machine, but it
is impossible to determine how many a priori. We expect, however, that the throughput should be
about the same for fifo queueing as for round robin. In some sense, whether the fifos provide the max-
imum theoretical throughput is unimportant; the comparison of fifo and round robin throughputs is the

most interesting information.

Theoretical Round Robin Throughput (KB/s)

Quantum

(bytes)

URP Block Size (bytes)
256 512 1024 oo

16
32
64
128
256

o0

1234 | 1257 | 1268 | 128.7
1472 | 1503 | 1519 | 1544
162.8 | 166.6 | 168.6 | 170.7
1719 | 1762 | 1784 | 180.7
176.8 | 1814 | 183.7 | 186.2
182.8 | 1869 | 189.4 | 192.0

Table 1 - Maximum User Data Throughput for Various Quantums and URP Block Sizes

Theoretical Round Robin Delay (us)
Quantum Number of Active Channels

(bytes) 2 4 8 16
16 39 79 158 315
32 79 158 315 630

64 158 315 630 | 1260
128 315 630 | 1260 | 2521
256 630 | 1260 | 2521 | 5043

Table 2 - In-Memory Queueing Delay for Various Quantums and Active
Channels

2.2. Maximum Interactive Delay

We now consider the maximum delays a short message (defined as a message small enough to be
transmitted in one contiguous burst) should encounter on a loaded trunk. First, for round robin queue-
ing, the expected queueing delays are listed in Table 2 as a function of the number of active channels on
the daughter board. These values were calculated as follows: it takes 19.7 cycles per byte to transfer
data from the daughter board’s memory to the output fifo. If there are 2 active channels, the message
will have to wait at most 2 * 64 B * 19.7 cycles/B * 62.5 ns/cycles = 158 microseconds (iLs) before it is
placed in the output fifo. In practice, however, when the trunk is loaded, there will be additional delays
due to queueing in the daughter board’s input and output fifos. The 4K input fifo can be emptied in 5.6
ms (4 KE/(710 KE/s)) and the 1K output fifo can be emptied in 5.7 ms (1 KE/(176 KE/s)) (since chan-
nel numbers are also put into the output fifo and one envelope of user data requires eight bits on the T1
line, the rate of emptying is 193 KB/s * 192/193 * (64+2)/(64+8) * 1 E/1 B = 176 KE/s). Since the
input fifo is read untl it becomes empty, a good first degree estimate of the maximum round robin
interactive delay (for a message of size one quantum or smaller) should be the sum of these two
numbers, 11.3 ms.

The maximum interactive delay on a loaded trunk using the 32 KE hardware fifo can be calculated
as follows. If we assume the fifo empties to the T1 line at a rate of 176 KE/s (we assume it is about the
same as the round robin case), we find the maximum delay (for one packet) is 182 ms (32 KE/(176
KE/s)), assuming the packet is transmitted without errors. In practice the delay should be less than this
because this case corresponds to the fifo almost overflowing. A similar calculation for the software fifo
yields a maximum delay of 2.8 s (500 KE/(176 KE/s)). This number is not very significant because the
software fifo will never fill up in practice. Further, a 2.8 second delay would trigger timeouts, so this
fifo is far too big to be a ‘sane’ fifo.

2.3. Hardware Fifo vs. Software Fifo vs. Round Robin

The software and hardware fifos should perform almost identically; the only difference is the
amount of buffering available: 32 KE for the hardware fifo and about 500 KE for the software fifo (10
bits require two bytes of storage, and there is 1 MB of memory on the board). Provided no fifo
overflows occur (in practice they do not), the performance should be the same in all respects.

The throughputs achieved by each of the disciplines should be equal. The fifos may have higher
throughput because the processing delay is shorter (no overhead of the data structures). However,
depending on how packets are combined in the output state machine, round robin may perform better
because it sends bigger chunks to the output state machine. Which factor will have greater influence
cannot be determined a priori.

When the trunk is unloaded the interactive delays should be the same, because the round robin
program will simply act as a fifo — there will never be more than one active channel. We hope per-
channel queueing does not increase the delay for the unloaded case due to the overhead of managing the
data structures.

-8-

The interactive delay results should only diverge when the load on the trunk is high enough to
start building queues on the trunk board. This requires a burst data rate greater than T1 speed. As the
queues within the trunk boards build, the interactive delay should rapidly increase for fifo queueing and
remain almost constant for round robin queueing (round robin queueing delay only remains approxi-
mately constant because we have an upper bound on the number of active channels).

3. Methodology

This section will present the general methodology common to all the measurements described in
this report. The detailed methodologies for each test are presented in the results section.

All testing was performed by shell scripts (which may be found in Appendix B) on the host Coma
(see network configuration in figure 3). The Unix®/Datakit rx command was used to start data generat-
ing processes on either Crab or Pipe. Bulk traffic used to measure throughput and provide background
traffic was generated on Crab by a program called mpuke (multiple puke) and transmitted by the CURE
to Tempel via the T1 trunk under test (the exact path of the connection was: CURE!Crab -> Node 4 ->
Node 1 -> Node 3 -> T1 -> Node 6 -> Node 1 -> AVDK!Tempel). A process on Tempel called meat
(multiple eat) sank the data as fast as it could. Interactive traffic (i.e. traffic composed of short mes-
sages) was generated on Pipe by a program called ipuke (interactive puke), transmitted by Pipe’s KMC
on Node 2, and looped through the network back to its KMC (the exact path: KMC!Pipe -> Node 2 ->
Node 1 -> Node 3 -> T1 -> Node 6 -> Node 1 -> Node 2 -> KMC!Pipe). leat sank the data.

Originally, interactive traffic was going to be sent and received by Pipe’s CURE on Node 3 so the
connection could be looped directly back from Node 6, thus avoiding the traversal of the rest of the net-
work. However, the standard deviation of the delay measurements was much larger for this set-up than
for going from the KMC back to itself. The possibility that the CURE was interfering with itself was
considered, and a test was run than sent data from Pipe’s CURE to its KMC. This configuration also
produced very high standard deviations, so the ipukes were routed from the KMC back to the KMC.

Since the rest of the network (backplanes and trunks) runs at 8 Mby/s, the T1 line is the clear
bottleneck, despite the bulk traffic’s double traversal of Node 1 (Node 1's backplane is less than 50%
utilized in this case, so little contention occurs). In any case, delays caused by contention on Node 1’s
backplane will affect all the queueing strategies equally, and we are most interested in the difference
between the strategies.

The following sections will describe mpuke and ipuke in more detail.

3.1. Mpuke

Mpuke first establishes a Datakit connection with the remote meat process, and sends a zero length
message to synchronize the two ends. Meat reads the zero length message and sends a zero length mes-

sage back. Next, mpuke sends meat the number of iterations it will perform, and meat sends back a zero -

length acknowledgement. Mpuke then docs a system call 10 set the URP window size for the conversa-
tion (note that the sender may set the window size independently of the receiver). Now the test is ready
to begin. Mpuke reads the time from a device called /devifineclock which gives 1 ps resolution (a read
of the clock takes approximately 79 us on a VAX 8550), and begins to transmit 1 MB of data as fast as
it can. When it has sent all the data, it sends a zero length message to meat, and meat replies with the
number of characters read. Mpuke then reads the clock again, and computes the throughput by:
throughput = bytes sent / (time_end - time_start). The time to read the clock is insignificant compared
to the time to send the data, so it is ignored. The 1 MB of data is sent iterations times, and the
throughput is calculated each time. Very little data is sent from meat to mpuke, so there is very litle
delay when meat sends the length to mpuke.

3.2. Ipuke

Ipuke is similar to mpuke in that it sets up a connection to ieat, synchronizes the two ends and
sends the iterations. The major difference is that ipuke measures the delay of a single message. The
® Unix is a trademark of AT&T Bell Laboratories.

[

-9-

sequence of events that occur in ipuke after the connection is established is as follows: ipuke reads
Idevifineclock, sends a message of some specified size, and immediately reads the length from the remote
ieat. When the read() returns, the clock is again read, and the round trip time is calculated. The ieat
process reads a message from the network, and writes the length of the message back. This is repeated
iterations number of times.

3.3. Miscellaneous

The tests were all run during unsocial hours of the evening when the test programs were usually
the only active processes on the machines used. During the course of the tests the load on the hosts is
monitored, and if the load varies substantially, the tests are performed again. The transmitter status is
also monitored using the Unix/Datakit dkstar command. Dkstat lists how many bytes were transmitted
and received by the host interface in the last 10 seconds and tells how many retransmissions occurred.
Retransmissions occur whenever data is lost, such as when buffer overruns occur. If the number of
retransmissions is excessive or if the interface is being heavily used by another process, the test is
repeated.

4. Results

This section presents the results of three experiments performed using each of the queueing discip-
lines described above. The experiments measure the throughput achieved on the T1 trunk for each
queueing discipline, the time to traverse the unloaded trunk for variously-sized messages, and the time
those message sizes took to traverse a loaded trunk. Each subsection will cover one of the tests, and
will describe the specific methodology used, the results obtained, and the conclusions that were drawn.

4.1. Throughput

The throughput each queueing discipline achieved was measured by doing mpukes from Crab’s
CURE to Tempel.

4.1.1. Methodology

The variables studied in this test are the number of simultaneous mpuke/meat pairs and the URP
window size. Either one or four mpukes are remotely started on Crab from Coma via a shell script (see
Appendix B for shell scripts used in the tests). URP block sizes of 256, 512, and 1024 are considered
(256 is the default), with either 3 or 7 outstanding blocks (3 is the default, 7 is the maximum). Each
mpuke measures the throughput of transmitting 1 MB of data ten times, and the first and last measure-
ments are discarded. The resulting data has a very low standard deviation, so the 8 data points are
sufficient to obtain accurate results. The shell script records the load of the hosts involved every five
seconds using the Unix load command (which lists the average number of jobs in the run queue for the
past one, five and ten minutes) and records the network interface status every ten seconds using dkstat.
If the load varies significantly during a test, that test is repeated.

4.1.2. Results

Figure 4 shows the throughput of one conversation, and figure 5 shows the throughput of 4 simul-
taneous conversations. Both graphs have the same scale for comparison purposes. It is clear that four
simultaneous conversations achieve a higher aggregate throughput that one conversation. The reason for
this is that when only one conversation is going, some amount of time is spent waiting for acknowledge-
ments, so the bottleneck resource in the path (whatever it may be) is idle. Another factor is pipelining
of processes: since the host handles the URP protocol processing, and since the CURE uses DMA, data
from one conversation could be transmitted while data from another conversation is getting URP pro-
cessed. Several processes may be pipelined to achieve some simultaneity so the throughput out of the
host interface is higher.

For one conversation, the plain DSX1 board with the hardware fifo performs about the same as

when the daughter board is running the round robin scheduler, but the software fifo lags behind. This
lag is probably due to the way the software fifo transfers the data: priority is always given to filling the

-10 -

Throughput vs Window Size
1 conversation

170000 —

o -
theoretical maximum ———

160000 —

Throughput
(bytes/s) 150000 —

140000 —
130000 —

120000 —

i 1 {] 1 |
256*3 256*7 512*3 S12%7 1024*3 1024*7

Window Size (bytes -- arbitrary scale)
Figure 4 - T1 Trunk Throughput for a Single Mpuke/Meat Pair

As a Function of Queueing Discipline

Throughput vs Window Size
4 conversations

170000 — .

theoretical mujmur_rl e e

--
—~
-

-~ .

Throughput CT e
(bytes/s) 150000 -

160000 -

140000 —

=~
™ =

130000 —

120000 —

I I I I | !
256*3 256*7 512*3 512*7 1024*3 1024*7

Window Size (bytes -- arbitrary scale)

Figure 5 - T1 Trunk Throughput for Four Mpuke/Meat Pairs
As a Function of Queueing Discipline

-

-11 -

output fifo, so unless the output fifo fills up, data is simply copied from the input fifo to the output fifo
and no buffering takes place. This impacts the amount of data the output state machine may combine in
one LAPD frame: a frame may contain very litde data because the frame is shipped out before more
data for that channel arrives at the state machine. This framing algorithm also may explain why the
round robin scheduler achieves higher throughput than the fifos and higher throughput than the theoreti-
cal maximum for four simultaneous conversations (see figure 5). Each chunk the round robin scheduler
passes to the output state machine contains 64 bytes of data (and two bytes of channel number), so at
least 64 B will be put into each LAPD frame. The fifos only pass 16 bytes of a data per-channel
number, so smaller frames may be transmitted. Intuitively, it seems more likely that two or four 64 B
frames would be combined than eight or sixteen 16 B frames, so the round robin scheduler most likely
gets bigger LAPD frames out on the T1 line than the fifos. Round robin achieves higher throughput
because larger LAPD frames are sent, thus lowering the overhead.

In figure 5, the curves are fairly flat across each block size as the number of outstanding blocks
increases from three to seven. This indicates that the throughput primarily depends on the URP block
size and not the URP window size. In fact, when seven blocks are outstanding, the throughput decreases
noticeably for a block size of 256. The cause of this is unknown. The reason the number of packets
outstanding does not affect the throughput is easier to explain: given the short physical lengths of the
trunks, three blocks is enough data to fill the pipe (very little buffering occurs along the path because of
the low utilization of the fiber trunks and backplanes). Increasing the number of blocks would tend to
increase the throughput if the propagation delays were longer.

4.1.3. Discussion

The conclusions we draw from this experiment are that (1) round robin gives a little better
throughput, and (2) the throughput in this network environment depends mostly on the URP block size.
Thus, we find the overhead of round robin queueing does not adversely affect throughput as we may
have expected; in fact, round robin achieves higher throughput because larger chunks of data are
transmitted over the T1 trunk.

4.2. Interactive Delay — Unloaded Trunk

The interactive delay of the three configurations is measured by running an ipuke on Pipe which
transmits and receives data on its KMC.

4.2.1. Methodology

The issue under investigation in this experiment is how the delay through the unloaded trunk is
affected by the size of the message traversing the trunk. Fourteen message sizes are considered in the
tests: 1, 2, 12, 13, 60, 61, 64, 65, 256, 257, 511, 512, 768, and 769 bytes. The 1 and 2 byte messages
correspond to keyboard input. A 12 byte message with a 4 byte URP trailer will require one 16 byte
backplane packet; a 13 byte message will require two backplane packets. Similarly, a 60 byte message
with a URP trailer will pass through the round robin program in one 64 B quantum; a 61 B message
requires two quanta. In the Version 9 Unix kernel running on Pipe and Crab, system writes are put into
stream blocks of size 64 B or 1024 B. A 64 byte system write requires one stream block, and 65 byte
write requires two. A 511 B write is put into 8 64 B strcam blocks which are chained together. A 512
B write is put into a 1024 B stream block. The default URP window size is 768 B, so a message of
size 769 B requires two URP windows.

The number of individual measurements to use o compute an average is a key decision in any
experiment. The number must be large enough to yield accurate results, but low enough to allow the
tests to be conducted in a reasonable amount of time. To determine this number, messages of the above
sizes were sent though the round robin configuration 100, 200, 300, and 500 times. The standard devia-
tions of these tests are shown in figure 6. This figure is somewhat disturbing because 500 iterations
shows the highest standard deviation. The cause of this is unclear, but even for 500 iterations the mean
to standard deviation ratios are fairly high. Three hundred iterations was chosen because the standard

-12 -

Standard Deviations for Various
Repetion Counts

100 iterations
_______ 200 iterauons
44 300 iterations KMC to KMC
—e . 500 iterations
3
Standard
Deviation
(ms) 5 |
1 -4
Ot T T T T T T T T T I

1 2 12 13 60 61 64 65 256 257 511 512 768 769
Message Size (bytes -- arbitrary scale)

Figure 6 - Standard Deviation of Delay for Various Message
Sizes and Various Repetition Counts — KMC to KMC

deviation was consistently low, and the time required to run the tests was reasonably short. The mean
to standard deviation ratios from the actual measurements are shown in figure 10.

As mentioned earlier, sending data from Pipe’s CURE to Pipe’s KMC was considered. This idea
was dismissed because of the results in figure 7. The standard deviation of the delays was extremely
high (compared to the mean) for messages between two and 256 bytes in length. The exact cause of
this is unknown; however, the Datakit console on Node 3 reported parity errors received by the host
interface. Why the deviations decrease for message lengths of 256 and up is unknown.

We are primarily interested in the minimum values for the delay, because these values best charac-
terize the delay experienced by a message in an idle network with unloaded source and destination
machines and because minimum values have smaller standard deviations. A clear peak is evident at the
low end of the delay scale in all the data collected, such as the data pictured in figure 8. Given the
experimental error involved here, the average of this peak should be sufficiendy close to the minimum
that it can be used as the minimum. Due to the large number of data files, some mechanized method of
finding the peak is desired. The following algorithm was applied to six of the data sets and was found
to find the average of the peak.

First, the mean (x1) and standard deviation (s1) of all the data points (except the first ten and last
ten measurements which are eliminated because of possible start-up and ending transients) are found
using an awk [Aho 87] script. Then the mean (x2) and deviation (s2) are again found for the data, but
all points greater than x1 + sl are eliminated (in practice, points are never below x1 - sl, so this case is
not considered). This is repeated a second time, but all points above x2 + s2 are eliminated, and we end
up with x3 and s3. This final mean, x3 is used as the minimum. The mean to deviation ratio x3/s3 that
results is much greater than 10 (see figure 10). Appendix A contains a summary of the actual results of
the measurements, including the number of points eliminated, the final threshold (x2 + s2) used, and the
mean to deviation ratio (x3/s3). In figure 8, the threshold used and the calculated average are shown;
the algorithm worked very well for this case.

Intuition is the main justification of this algorithm. It should converge to the average of the
numbers around the peak, and in practice it did for the six test cases. Further, there are two main rea-

-13 -

Standard Deviations for Various
Repetion Counts

70 -
60 — s 100 iterations
——————— 200 itemtions
.............. 300 iterations
50 - —_—a . 500 iterations
Standard 40 —
Deviation CURE to KMC
(ms) 30
20 -
10 -
0 —
I I T I I T T I I T I I I T
1 2 12 13 60 61 64 65 256 257 511 512 768 769
Message Size (bytes -- arbitrary scale)
Figure 7 - Standard Deviation of Delay for Various Message
Sizes and Various Repetition Counts — CURE to KMC
Distribution of Delay Measurements
fifo - 64 Byte Messages
)
4
4
100 - : ~~~~~~~~~~~~ Computed Average
U Threshold
Frequency of 1
Occurence 50 _| 1
K
@q!
0._ l'lllll.ll.. '
i I | I I
5 10 20 50 100

Delay in ms -- .25 ms Intervals (log scale)

Figure 8 - Sample Distribution of Message Delay Times
(fifo — 64 B Messages)

sons why we measure the delay of an unloaded trunk. First, we want to verify that per-channel queueing
does not increase the message delay compared to fifo queueing. If we treat the data for both queueing
disciplines the same, then this purpose will be fulfilled. Second, we want to gather data to compare with
the case of the trunk being loaded. As will be seen when the loaded trunk measurements are presented,
the message delay for the fifo case increases 10 to 25 fold over the unloaded case. Thus, if this algo-

.14 -

Delay vs Message Size
Unloaded Trunk

30
25 —

20

15 —

Delay
(ms) 10
(log scale) ¢ _|

6 —
5
4

[i f |] | 1 | I | | I I l
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)
Figure 9 - Message Delay on an Unloaded T1 Trunk

rithm gets within a few percent of the true minimum, this is sufficient resolution to compare it to the
loaded trunk case.

Originally we considered having several simultaneous ipuke/ieat pairs such as we had for the
throughput tests, but the question must be asked, what would this tell us? Not much. Recall that a
channel is only considered active when it has data in the SRAM on the board. Since it takes a 1 B mes-
sage about 4 ms to traverse from ipuke to ieat and back, and since the message is only on the daughter
board for about 50 ps, there will never be more than the one active channel on the board (particularly
since all the packets are coming from one transmitter and thus are serialized), and no queueing will
occur. Thus, the ‘simultaneous’ conversations would not be simultaneous, and no interesting informa-
tion would be obtained.

4.2.2. Results

Figure 9 shows the results of these measurements, and figure 10 shows the mean to standard devi-
ation ratios for each of the disciplines. We see from the large mean to deviation ratios that this data is
not very spread out, especially considering the minimum-finding algorithm mentioned above only elim-
inated on the order of 40 points out of the possible 280. This is what we expected — if the load on the
network and hosts is low, there should be very little variation. It is clear from figure 9 that all of the
queueing disciplines performed almost identically. This, too, is expected; the round robin scheduler is
just a glorified fifo when only one conversation is active.

We now see the factors that affect the delay of a message. First off, a message that requires two
backplane packets takes no longer than a message that only requires one — there is no difference in
delay from 12 bytes to 13 bytes. It also takes no longer for the round robin program to process two
quanta (61 B) of data instead of one (60 B). We do, however, see a fairly significant 2 ms jump from a
64 byte message to a 65 byte message (from 5 ms w 7 ms). Does it take 2 ms to allocate another stream
block? No. This is an artifact of the way the host and the KMC interact. The host only passes one
stream block at a time to the KMC, and passing each requires one interrupt. The KMC performs the
URP protocol processing, which in this case means adding the URP trailer to the message. In the case

- 15 -

Mean/Deviation vs Message Size
Unloaded Trunk

80

Mean 50

Deviation 40 —
30
20 -
10 —

0 I [| 1] | | { | | | 1] |
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 10 - Mean to Standard Deviation Ratio of Message Delays

of a 64 B message, the host passes the KMC one stream block, and the KMC sends out one burst con-
taining the data and the URP trailer. When a 65 B message is to be transferred, the host passes the
KMC the first 64 B in a stream block. The KMC sends these bytes out in one burst, and tells the host it
is ready for more data. The host then passes the KMC a second stream block containing the last data
byte, and the KMC tacks on a URP trailer and sends this second burst out. Two milliseconds is a long
time to get the next stream block for transmission, and the appropriate persons at Bell Laboratories were
notified about this.

We see another 2 ms increase between a 256 B message to a 257 B message which is an artifact
of this same interaction (a 256 B message requires 4 stream blocks, and a 257 B message requires 5).
The 256 and 257 B messages were supposed to show how multiple URP blocks affected the latency, but
since there is no increase between 768 B and 769 B (where 3 and 4 URP blocks are required, respec-
tively), we assume the extra 2 ms is due to the extra stream block required. Note that messages of size
768 B and 769 B are placed in 1 KB stream blocks. The regularity of this 2 ms phenomena leads us to
the following postulate: it takes 5 ms to send out one strcam block, and 2 ms per additional stream
block, plus the transmit time over the T1 line. The 5 ms term accounts for the delays experienced in the
network plus the allocation of the first stream block. According to this postulate, we expect a 256 B
message to experience a delay of 5 ms + 4 stream blocks * 2 ms/stream block + 256 B/ 176 KB/s =
14.5 ms. The actual delay is 14 ms, which is very close to our prediction. Similarly, a 257 B message
takes 16 ms, where 16.5 ms is predicted. The resuits arc also close for a 511 B message which takes
26.4 ms in practice, and 23.9 ms in theory. There is a marked decrease in delay from 511 B to 512 B
(26.4 ms to 18 ms) because a 1 KB stream block is allocated for the 512 B message.

4.2.3. Discussion

Two conclusions result from this experiment: (1) The primary factor affecting the delay of a mes-
sage over the unloaded trunk is the number of stream blocks which must be allocated for that message,
and (2) All the queueing disciplines perform identically.

- 16 -

4.3. Interactive Delay — Loaded Trunk

Now we examine the delays experienced by variously-sized messages with background traffic
present on the T1 trunk. Crab generated the background traffic with four simultaneous mpukes to Tem-
pel, and Pipe sent ipuke traffic from its KMC back to its KMC.

4.3.1. Methodology

The tests performed in this experiment are identical to the ones performed in the unloaded trunk
case. The same message sizes and number of iterations are used. The only difference between these
tests and those above is that here bulk background traffic is also sent across the T1 trunk. The back-
ground traffic is generated by four simultaneous mpukes from Crab to Tempel. The variable under
investigation is the effect of the URP window size of the background traffic on the interactive delay
(and, of course, the queueing discipline used). Note that varying the URP window effectively regulates
the trunk utilization. Ideally, we would like to be able to set the trunk utilization to some specific value,
particularly since the disciplines do not all have the same throughput for a given window size. There is
no way to accomplish this, however, and setting the URP window is the best we can do.

The URP window sizes considered are 256 * 3, 512 * 6, 1024 * 3, and 1024 * 7 bytes. These
windows were chosen to give a good range of queue build-up. As mentioned, 256 * 3 is the default, but
it gives sufficiently small throughput that we do not expect to see much divergence among the discip-
lines. The 512 * 6 and 1024 * 3 windows are the same size in bytes, and should provide some insight
as to whether the block size is the critical parameter affecting the delay or if delay depends more on the
number of outstanding blocks allowed on the other virtual circuits. The 1024 * 7 window is the largest
URP window allowed in practice; specifying a large block size will simply result in getting a 1024 B
block.

The shell script that ran these tests first started the Crab to Tempel mpukes with one of the given
window sizes, and then waited until each of the mpukes had sent 1 MB of data across the trunk before
starting the ipuke process. This ensured that the tests would not be affected by start-up transients.

In this testing, we are most concerned with the average delay experienced by a message in travers-
ing the network. This again raises the issue of eliminating outliers from the data, and again an
automated method is desired due to the large amount of data acquired. An algorithm somewhat similar
to that used to find the minimums is used. First, the mean and deviation (x1 and s, respectively) of all
the data points for a given message size are found (again, we eliminate the first and last ten points to
remove startup and ending transients). Then the mean and deviation are again found (x2 and s2) but
points greater that x1 + 8 * sl are eliminated. In the actual application of this algorithm, at most three
points out of the 280 collected were eliminated. The small number of points eliminated indicates that
spread of the random variable values is smaller than the threshold of x1 + 8 * sl1, and thus, this method
is justified. Intuitively, if the load on the hosts involved and on the network is low, which indeed was
the case, the delays should be fairly constant.

4.3.2. Results

4.3.2.1. Hardware Fifo (Afifo)

Figure 11 shows how the delay for various message sizes increased as the background traffic’s
window size increased. The most obvious feature of the graph is the significant increase in the delay as
the background traffic increases. For the 1024 * 7 background window, the delay increased forty-fold
for small packets and fifty-fold for large packets over the unloaded trunk case. The shape of each of the
curves is similar when plotted on a log y scale, indicating that there is a multiplicative increase from
window to window.

The relative positions of the curves show what factors affect the message delay. Both the URP
block size and the number of outstanding blocks affect the delay, but the block size has a greater effect.
Though the window sizes 512 * 6 and 1024 * 3 are the same, the effect of the larger block size dom-
inates, and the delay for the 1024 * 3 window is about two times greater (for the larger message sizes).

-17 -

Delay vs Message Size - Loaded Trunk
Hardware Fifo (hfifo)

A
A LT 02407
1000 — Background: 4 mpukes e -
fmanbtoT:::el _»
600 — »- 1024 * 3
300 - x512%6
Xttt (B. d
Del - - A A~ Tra]{i;'s
ela e
Y 100 Window)
(ms) .
(log scale) 60 — . LA - A256%3
X A -
— . '
30 JUTT T . Unloaded
104 -
6 —
4-—4

I I I I | | i |]
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 11 - Message Delay on a Loaded Trunk for Various URP Windows
Hardware Fifo Configuration

The number of outstanding blocks also plays a factor though, because the delay more than doubles (it
increases by a factor of about 7/3) when the number of outstanding blocks increases from 3 to 7. The
window size of 256 * 3 does not significantly increase the delay with respect to the unloaded trunk case,
which is expected because the T1 trunk is not nearly fully utilized by this window.

The host interface artifacts also appear in the graph, particularly for the two largest windows. The
delay is constant for all messages between 1 and 64 B, but then doubles for a message 65 B long; mes-
sages 64 B or smaller are encapsulated in one burst, but a message of 65 B is transmitted in two bursts.
The delay is dominated by the queueing delay on the trunk board, so two packets will take twice as long
as one. We notice similar behavior for 256 and 257 B messages. The delay of a 256 B message is
about four times the delay of a 64 B message, and the delay of a 257 B message is five times the delay
of a 64 B message, just as theory would predict. Notice, too, that there is no perceptible difference
between sending a 768 B message and sending a 769 B message, so extra URP blocks do not add
significant delay. The 512 * 6 window shows some interesting behavior; the delay curve starts out low,
then increases for larger message sizes to about half the delay of the 1024 * 3 window. Most likely the
background traffic was not quite enough to saturate the T1 line, but the addition of the ipuke traffic
brought the total throughput closer to saturation, so the queues grew larger.

We now consider some ‘back of the envelope’ calculations for messages which traversed the trunk
in one packet (i.e. 1 B to 64 B messages). With the 1024 * 7 window, a single packet took 157 ms to
complete its loop from Pipe to Pipe. If we assume the packet spent the whole time waiting in the T1
board’s fifo (we could subtract the 5 ms delay a packet experiences in the unloaded case, but it would
not significantly affect the calculation), using the fifo drain time calculated in section 2.2, we find the
packet was queued behind (157 ms/182 ms) * 32 KB = 27.6 KB. This is almost exactly the sum of the
background window sizes, 28 KB (= 1024 * 7 * 4). Thus, a packet must wait behind a full window of
each of the background conversations. Clearly the T1 trunk is fully saturated. A similar calculation for
the 1024 * 3 background window (which causes a delay of 60 ms) yields 10.5 KB. This is slightly less
than the 12 KB aggregate background window, indicating that the trunk is not quite fully saturated.

-18 -

Delay vs Message Size - Loaded Trunk
Software Fifo (fifo)

A - 2 1024%7
rd

1000 — Background: 4 mpukes e
»
600 — from Crab to Tempel - 1024+ 3
" 300 (Background
— y c's
URP
ol Window)
- e - - - A - - e IR 512% 6
Delay |0 | *~ - ~- oo x
(ms)

(log scale) 60 —

A - A6*3
xoo A'_ -
30 - had Unloaded

10 -

6_ Xeeoo PR x".

4

I f | I I | [I I [
2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 12 - Message Delay on a Loaded Trunk for Various URP Windows
Software Fifo Configuration

This calculation for a 64 B message with a 512 * 6 background shows 3.6 KB are in the fifo ahead of
the message (this time the 5 ms delay for the unloaded case was subtracted).

In short, the results obtained for the hardware fifo configuration are exactly as expected: the delay
does not significantly increase for a 256 * 3 window, but does steadily increase with the larger window
sizes.

4.3.2.2. Software Fifo (fifo)

Now the results for the software fifo are considered. The graph in figure 12 looks rather familiar
— it is almost the same as the graph for the hardware fifo. We find the same host interface artifacts,
and the same relationships hold between the individual curves (figures 14 through 17 show the side by
side comparisons of the queueing strategies for each window size). Because of the similarities, these
results will not be discussed in depth; only the causes of any differences will be discussed.

The major difference between the two fifo configurations is the shape of the 512 * 6 window
curve. As shown in figure 15, the software fifo provides shorter delays for this window size. The delay
curve for the 1024 * 7 window is also slightly lower than the hardware fifo’s curve (157 ms vs. 145 ms
for one packet messages). The reason for these differences is most likely found in figure 5 — the
throughput of the software fifo is lower than the throughput of the hardware fifo. This will particularly
make a difference for the 512 * 6 window, where the larger messages in the hardware fifo tests are
apparently just enough to build up the queue. This difference explained, the round robin results are con-
sidered next

4.3.2.3. Round Robin (rrobin)

The first thing to notice about figure 13, which contains the results for the round robin queueing
discipline, is the scale for the delay: it is 1/10 the scale of the fifo graphs. This graph is also ‘bumpier,’
which is primarily a result of the smaller scale used, but is also affected by the small mean to standard
deviation ratios for these data points (these ratios are typically around 1; see Appendix A for a complete

-19 -

Delay vs Message Size - Loaded Trunk
Round Robin (rrobin)

100 — Mol LeXITT
- - — -0 — 124*7 (Background 5
A 1024. 3 Traffic’s ,
S - %g . g RP
. - A- - A - - .
60 s Unloaded Window) r-= x
40 —
pelay | G fx
(ms) 20
(log scale)
10 — Background: 4 mpukes
from Crab to Tempel
6 —
4

|] | 1 i 1 I | ! | i | I |
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 13 - Message Delay on a Loaded Trunk for Various URP Windows
Round Robin Configuration

listing of the results, including the mean to deviation ratios). The standard deviations are smaller than
those of the fifo results, but, due to the smaller mean delay times, the mean to deviation ratio is small.
However, the data does show the type of curves expected; the delay for very short messages (1 B to 13
B) only increases by at most 2.8 ms (for a 2 B message: 3.9 ms unloaded to 6.6 ms for a 1024 * 7 win-
dow (this excludes the odd spike at 12 B)) over the unloaded trunk case, and the delay for larger mes-
sages also does not increase as much as for the fifo cases. Some increase in delay for round robin
queueing is expected due to queueing delays at the input and output fifos to the daughter board.

The delays measured for round robin queueing are lower than the calculated maximum delay of
11.3 ms (see section 2.2) (except for the 60 B packet with a background window of 1024 * 7, which
could be due to the load on Pipe), which is expected since the input fifo to the daughter board should
not fill up (data can be read from the input fifo at much greater than T1 rates). This is the reason for
doing per-channel queueing: short messages experience very little delay in the presence of bulk back-
ground traffic. Unfortunately, several anomalies occurred during the testing, which calls the validity of
the data into question. A discussion of these anomalies follows.

The first problem with the tests was the load on Pipe. At various points during the tests, the load
(which is the average number of jobs in the run queue over the last minute) increased to as high as 3 or
4, though it remained below 1 for the majority of the testing. The load on Pipe is the probable cause
for the spike in delay at 12 B for the 1024 * 3 window. Some of the tests were attempted again, but the
load on Pipe continued to fluctuate, and the re-trials were postponed.

Another, more critical, problem also hampered the testing. Due to some anomaly, when a large
quantity of background traffic is being sent over the trunk, such as the four mpukes used in this test, and
more traffic from another conversation is added, such as the ipuke, some of the data is lost somewhere,
and URP retransmissions occur. This means that the user level throughput is cut about in half. This
would seem to lower the utilization of the T1 trunk, but this is not necessarily the case. When packets
arrive at the receiver, their length is compared to the length in the URP trailer, and if the values are dif-
ferent, a REJ(i) control character is sent to the transmitter, where i is the sequence number of the

=20 -

rejected block. Since URP is a ‘Go-Back-N’ protocol with respect 0 retransmissions, subsequent blocks
are also rejected. If the channel number is corrupted, the receiver cannot send a REJ(i) and transmission
would be halted until a timeout occurs, but this should be rare. Since the return direction is unloaded,
the REJ(i) should reach the transmitter quickly, and the wansmitter will re-send the corrupted block. If
the REJ(i) arrives quickly enough, the transmitter will be able to continuously send data, so, although
the user level throughput will decrease, the utilization of the trunk should remain high. It is difficult to
verify this in practice however, because it requires either examining the bits on the T1 line or looking at
the internals of the transmitter, neither of which is particularly convenient. It should be noted that no
retransmissions occurred for messages sized 1 B to 13 B.

Where is this data lost? Typically, data losses indicate a buffer overrun somewhere along the path
of the connection. This was investigated by starting up four mpukes and an ipuke and monitoring the
interface status with dkstar. When retransmissions were regularly occurring, the Datakit consoles of
each node were examined, and the status of each module along the path of the virtual circuits was exam-
ined. No overflows were occurring. The next place considered was the round robin program. The pro-
gram was thoroughly inspected by two persons, and it seemed to be in order. A bug affecting some-
thing else was found in the C compiler for the 29000, so this was the next place to be investigated. The
assembly code was examined, and it, too, seemed to be in order. The final place this bug could be is in
the hardware on the DSX1 board or the daughter board. This is the most likely suspect for this ano-
maly, since the hardware is fairly new and has not been tested at high speeds. We suspect a glitch in
the output fifo’s connection to the hardware state machine, though we have been unable to verify this.
Several weeks were spent trying to track this bug down (including the ordering of a new compiler from
AMD), but to no avail. Time pressures mandated completing the project before the source of the bug
was discovered.

The obvious solution to the host loading problems was to run the tests again. Unfortunately, when
the tests were run again a day later, the background traffic was being retransmitted even when no ipukes
were going. The cause of this is uncertain, particularly since the same program was running on the
daughter board, and nothing in the network had changed. The round robin program was then recom-
piled, but this time with the optimizer turned on (we did not use the optimizer previously because we
did not trust the compiler). For unknown reasons (except, perhaps a timing bug in the hardware), this
cleared up the errors that had been occurring, but introduced new problems. Now, when the ipuke sent
its data, a large portion (up to 60%) of the data was received with errors, but no REJ(i) was generated,
indicating that URP trailers were being lost. The resulting data points were dominated by values between
2 and 3 seconds, indicating that timeouts had occurred. Though the original data showed retransmis-
sions for the background traffic, no retransmissions occurred for the ipukes. These tests also suffered
from the URP retransmissions of the background mpukes, so the data was discarded and the original data
was used in spite of the fluctuating load on Pipe.

The problems with interfering traffic will have to be solved before this board can be productively
used in the round robin configuration, but the data collected does give a clear indication that round robin
queueing will significantly lower the delays experienced by short message traffic. While the host load
played a factor in these results, the overall picture is clear enough — round robin queueing significantly
decreases message delay in the presence of bulk traffic.

4.3.2.4. fifo vs. none vs. rrobin

Figures 14 to 17 present a side by side comparison of the queueing disciplines for each back-
ground window, and the delay of the unloaded case is included for reference. For a 256 * 3 background
window (figure 14), all of the queueing disciplines show a small increase in delay, though the increase
for round robin queueing is smallest. We see a greater separation between the disciplines for a 512 * 6
window (figure 15), though the software fifo exhibits close to the same performance as round robin; the
reason for this was previously discussed: the software fifo had a lower throughput, so the trunk was not
as heavily utilized. In figure 16, the disciplines are widely separated, and both fifo programs exhibit
almost identical performance. The round robin delay is about 1/5 to 1/10 the fifo delay, so we see its
advantages. Figure 17 is very similar to figure 16, except the fifo delays have more than doubled, and

.21 -

Delay vs Message Size - Loaded Trunk
Background: 256 * 3 URP Window

50
e S
s - - fifo
—A—it— hfifo
— ¢ — o — rrobin unloaded
-0 o fifo unloaded
20 — —e——o— hfifo unloaded
Delay
(ms)

Background: 4 mpukes
fmmanb to 'Imgnpel

__ﬁllllllllll

1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 14 - Comparison of Message Delay for Fifo and Round Robin Queueing
Background URP Window: 256 * 3

Delay vs Message Size - Loaded Trunk
Background: 512 * 6 URP Window

200 -

100 —

Delay 50 .
(ms) X
(log scale) 20 |

10 — Background: 4 mpukes

----- from Crab to Tempel

1 I 1 1 [] |
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)
Figure 15 - Comparison of Message Delay for Fifo and Round Robin Queueing
Background URP Window: 512 * 6

the round robin delay has increased just slightly. Here round robin provides delays 1/10 to 1/50 of the
fifo delays.

4.3.3. Discussion

It is clear that round robin queueing gives significantly lower delays across a broad range of mes-
sage sizes. The delay will be lower for any message that is shorter in length than the background traffic,
so in these experiments even 768 B messages are short (relative to 1 MB). This is particularly

.22

Delay vs Message Size - Loaded Trunk
Background: 1024 * 3 URP Window

500 — — & — & — robin
Lo - fifo
—h——t— hﬁfq
200 TSI ovineiedd
—o——o— hfifo unicaded
Delay . ’A-__.____.___—l
(ms) 50 4 x U
(log scale) /,
20 —
e ?
10 — P Background: 4 mpukes
s from Crab to Tempel
I f I | { I | I | I
1 2 12 13 60 61 64 65 256 257 511 512 768 769
Message Size (bytes -- arbitrary scale)
Figure 16 - Comparison of Message Delay for Fifo and Round Robin Queueing
Background URP Window: 1024 * 3
Delay vs Message Size - Loaded Trunk
Background: 1024 * 7 URP Window
1000
500 —
Delay
(ms) 100 —

(log scale) 50 —

- @ — v — rmobin unloaded e

<<« o fifounloaded 4
20 — ——g——e—hfifo unioaded -
10 - Background: 4 mpukes
5 [UPEP MU a4 from Crab to Tempel

i] | 1 | | | |
1 2 12 13 60 61 64 65 256 257 511 512 768 769

Message Size (bytes -- arbitrary scale)

Figure 17 - Comparison of Message Delay for Fifo and Round Robin Queueing
Background URP Window: 1024 * 7

significant in a wide-area environment, where large windows and large block sizes are needed to attain
throughput close to the line rate. In a wide-area network fifos are simply a bad idea.

5. Summary

The main conclusion of this work is that round robin queueing does indeed provide lower delays
for short messages, particularly if large windows sizes are used. The message delay of a fifo network
will increase linearly with respect to the aggregate window of the background traffic if the network is

-23-

close to saturation, whereas the message delay of a round robin network will remain approximately con-
stant (assuming a bounded number of virtual circuits). Also, this project has shown that it is practical to
implement this queueing discipline on 2 programmable trunk board. The 29000 processor is fast enough
to do per-channel queueing at T1 speeds, though some bugs need to be worked out of this implementa-
tion. The performance improvement provided by round robin queueing is certainly noticeable, and will
be more noticeable in a wide area network where large windows are needed to achieve high throughputs.

Many more tests could be done on this board in the future. For example, other queueing discip-
lines could be implemented such as the two lists of queues algorithm described in [Fraser 83]. This
board provides an excellent environment for the study of queueing disciplines. Another area open for
investigation is testing in the context of a wide area network, such as XUNET (a wide area Datakit net-
work which connects U.C. Berkeley, the University of Illinois, the University of Wisconsin at Madison,
and Bell Laboratories at Murray Hill). The work of [Arbo 88] and [Vand 88] could be repeated with
these trunk boards in place. The effects of the propagation delays of a wide area network on message
delay and throughput should be studied. The major accomplishment of this project was actually getting
this board working, however.

Many things were learned in the course of trying to program new hardware using a buggy com-
piler package (for a log of the various challenges along the path, see Appendix C). First and foremost,
whenever trying to program new hardware, always make sure an adequate debugging environment is
available. The tools available to debug this board were oscilloscopes, logic analyzers, and print state-
ments in the program. Unfortunately, none of these is particularly helpful when debugging a program
that should be running at T1 speeds, for example, print statements take eons to complete compared with
the speed of the program, and so they disturb what they are trying to measure. The logic analyzer did
come in handy to find a timing glitch caused by a bad PAL on the daughter board. And the oscillo-
scope helped spot the three 32 MHz crystals that failed during the course of the summer. But these
tools are not useful when trying to debug a C program running on the processor. The board was not
designed to be compatible with AMD’s debugger tools, so no options were available. All this was com-
plicated by quirks in the compiler and the linker, where things would fail silently (e.g. C structures were
not initialized properly, and one of the linker directives would set all the pointers in the load module to
zero, silently). A great deal was learned from these experiences.

One of the key early decisions made was to completely automate the data collection and data
analysis through the use of shell scripts and awk scripts. Even the production of this report was
automated by a Makefile, so if any data changes, the graphs and tables will be automatically updated.
Automation is highly recommended for any type of testung, because some (ests will invariably have to
be repeated (such as the round robin delay measurements through the loaded trunk).

6. Acknowledgements

This project would not have been possible without the help of many people. I thank my research
advisor, Domenico Ferrari, for allowing me and encouraging me to pursue this project. Most impor-
tantly, I must thank Alan Kaplan of AT&T Bell Laboratories for agreeing to take me on as a summer
student, without him, this project would not have been possible. He was invaluable in helping to iden-
tify the source of problems and taught me a great deal about hardware. I thank Caryl Carr for arranging
things so I could come here for the summer; Norman Wilson for writing the /dev/fineclock driver so I
could use a precise clock and for explaining the details of the KMC interface to me so I could identify
the various quirks in the delay data; Ed Sitar and Dennis Ritchie for installing the CURE board on Pipe
and getting it working; Jim McKie for tolerating my abuse of Tempel; Bill Marshall who answered
questions about Datakit and set up the Datakit nodes so I could run my tests; the people who were kind
enough to read through this report and give me feedback; and the many other people of Center 1127 at
Murray Hill who answered my numerous questions. Finally, I thank my management at Indian Hill for
allowing me the freedom to pursue this project, and of course, my parents, who gave me the desire and
the freedom to excel, and who celebrate their 33 rd wedding anniversary as I write this.

-2 .

7. References

[Aho 87]
A.V. Aho, B.W. Kemighan and P.J. Weinberger, The AWK Programming Language,
Addison Wesley, Reading, MA, 1987

[AMD 89]
Advanced Micro Devices, 29K Cross Development Software User’s Manual, Beta Release
2.0, Aug. 1989 .

[Arbo 88]

R.S.Arbo, A Performance Study of Remote Executions in a Wide-Area Datakit Network,
Masters Report, U.C. Berkeley, Fall 1988

[Bentley 86]
JL. Bentley and B.W. Kemnighan, GRAP — A Language for Typesetting Graphs, Communi-
cations of the ACM 298, (Aug. 1986), 782-792

[Byrne 891
R.J. Byme, Feature Description of the Exploratory BLX Datakit T1 Module, Internal

Memorandum, AT&T Bell Laboratories, Liberty Comner, NJ, Jan. 3, 1989

[Fraser 83] »
A.G. Fraser, Towards a Universal Data Transport System, JEEE Journal on Selected Areas

in Communications SAC-1,5 (Nov. 1983), 803-816

[Fraser 87]
A.G. Fraser and W.T. Marshall, Data Transport in a Byte Stream Network, Technical
Memorandum, AT&T Bell Laboratories, Murray Hill, NJ, Apr. 28, 1987

[Marshall 89] .
W.T. Marshall, private communication, July 1989

[Vand 88]
T. VandeWater, Delay and Throughput Measurements of the XUNET Datakit Network,

Masters Report, U.C. Berkeley, Fall 1988

[

Appendix A: Results of Measurements
« Throughput Tests
» Standard Deviation Tests
« Message Delay — Unloaded (minimums)
« Message Delay — Unloaded (averages)
» Message Delay — Loaded

-25 -

.26 -

Throughput Statistics

Block Out- # Ave. Tput Sid. Total
Size | Standing | Conv. | Per Conv. | Dev. Tput
B) Blocks (KB/s) (Kbf/s) (Kb/s)
Hardware Fifo
256 3 1 116271 819 116271
256 7 1 126594 1068 126594
512 3 1 142305 903 142305
512 7 1 149981 1129 149981
1024 3 1 160609 1444 160609
1024 7 1 162997 846 | 162997
256 3 4 34274 3900 | 137099
256 7 4 32629 930 | 130519
512 3 4 38779 640 | 155117
512 7 4 38979 1659 | 155918
1024 3 4 41658 90 | 166635
1024 7 4 41701 155 166806
Software Fifo
256 3 1 117957 607 117957
256 7 1 126178 711 126178
512 3 1 138083 566 | 138083
512 7 1 143939 1236 | 143939
1024 3 1 152393 2923 152393
1024 7 1 157050 1289 157050
256 3 4 34589 1630 | 138357
256 7 4 31434 1946 | 125736
512 3 4 38259 628 153036
512 7 4 38258 1290 | 153035
1024 3 4 40782 310 | 163131
1024 7 4 41008 672 | 164034
Round Robin
256 3 1 116375 440 | 116375
256 7 1 126454 7417 126454
512 3 1 144972 1156 | 144972
512 7 1 150255 1285 150255
1024 3 1 162848 1515 162848
1024 7 1 166398 1334 166398
256 3 4 34304 1218 137217
256 7 4 33382 576 | 133528
512 3 4 39966 635 159867
512 7 4 39052 1862 | 156209
1024 3 4 43438 139 | 173755
1024 7 4 43316 2067 173264

R

.27 -

Standard Deviation Test Statistics
Good

essage | Min. Std. Mean/ Bad Thres-
size delay Dev. Dev. Points | Points hold
®) | (ms) | (ms) |- (ms)
100 Tterations
T 4493 T 2.985 1.505 79 1 104.877
2 3.982 | 0.717 5.555 79 1 109.507
12 4.686 | 1.506 3.112 80 0 16.734
13 4,024 | 0.065 | 61.604 79 1 9.954
60 4.807 | O.111 | 43.287 80 0 5.695
61 4.823 | 0.143 | 33.717 80 0 5.967
64 4922 | 0.331 | 14.887 79 1 11.940
65 7.017 | 0.141 | 49.812 79 1 12.012
256 14.410 | 1.937 7.440 79 1 115.791
257 16.599 | 0.600 | 27.653 80 0 21.399
511 27.066 | 0.763 | 35.488 79 1 33.170
512 18.399 | 0.781 | 23.571 80 0 24.647
768 25.297 | 1.392 | 18.175 79 1 127247
769 25.163 | 0.274 | 91.845 79 1 32.022
200 iterations
1 3.369 T 0.661 6.047 179 1 15.687
2 4.070 | 1.485 2.741 179 1 72227
12 4315 | 0.775 5.567 179 1 16.241
13 4.413 | 0.803 5.494 180 0 10.837
60 4969 | 0337 | 14.724 179 1 10.267
61 4956 | 0.218 | 22.698 179 1 8.707
64 5232 | 1.046 5.001 180 0 13.600
65 7.145 | 0.587 } 12.181 179 1 20.751
256 14.510 | 1.543 9.402 179 1 83.676
257 16.561 | 1.499 | 11.051 179 1 89.136
511 26.893 | 2.216 | 12.137 178 2 92.342
512 18.297 | 0.894 | 20.470 179 1 83.998
768 25.233 | 0.685 | 36.827 178 2 91.268
769 25.358 | 0.752 | 33.712 179 1 82.121
300 Tterations
I 4.026 T 0.567 7.095 278 b 9212
2 3.857 | 0.373 | 10.340 278 2 10.657
12 4,134 | 1.190 3.474 279 1 59.040
13 4.181 | 0.253 | 16.548 278 2 9.690
60 4.822 | 0.267 | 18.090 279 1 9332
61 4,935 | 0.351 | 14.067 278 2 10.383
64 5.087 | 0.470 | 10.825 278 2 12.368
65 7.183 | 0.578 | 12.432 278 2 15.781
256 14345 | 1.148 | 12.500 279 1 71.766
257 16.362 | 0.971 | 16.854 279 1 71.793
511 26.742 | 1.219 | 21.939 279 1 80.753
512 18.395 | 1.080 | 17.040 279 1 75.171
768 25.707 | 1.391 | 18.482 279 1 82.634
769 25.545 | 1.269 | 20.137 278 2 97.751
3500 Tierations
I 3936] 0.366 | 10.741 77 k] 5357
2 3.836 | 0.392 9.789 479 1 64.162
12 4.141 | 0.968 4278 477 3 13.357
13 4383 | 0.895 4.896 479 1 63.412
60 5.047 | 1.406 3.588 478 2 64.467
61 5.260 | 3.932 1.338 478 2 84.252
64 4961 | 0.370 | 13.416 477 3 10.640
65 7.028 | 1.246 5.639 479 1 67.873
256 14.420 | 1.525 9.456 477 3 78.259
257 16.797 | 1.963 8.559 477 3 88.049
511 27.282 | 2.685 | 10.160 476 4 105.718
512 18.254 | 0.814 | 22.416 478 2 77.251
768 25.489 | 2.130 | 11.967 475 5 86.391
769 25.295 | 0.650 | 38.891 477 3 103.471

.28 -

Minimum Delay Statistics

Message | Min. Std. | Mean/ | Good Bad | Thres-
size delay Dev. Dev. Points | Points hold
(B) (ms) | (ms) (ms)

Hardware Fifo
1 3.824 | 0.134 | 28.555 253 27 4.568
2 3.878 | 0.050 | 77.407 237 43 4.077
12 4047 | 0.060 | 66.951 248 32 4.181
13 4071 | 0.075 | 54.519 267 13 4,568
60 4706 | 0.063 | 74.453 219 61 4.859
61 4777 | 0.085 | 56.437 226 54 4.920
64 4988 | 0.352 | 14.187 248 32 6.401
65 7.028 | 0.124 | 56.834 250 30 7.341
256 14.047 | 1.025 | 13.707 272 8 15.286
257 16262 | 0.263 | 61.778 256 24 17.073
511 6451 | 0.370 | 71.523 249 31 27.996
512 17.932 | 0.249 | 72.143 262 18 18.991
768 24.842 | 0.294 | 84.523 265 15 26.195
769 24918 | 0.299 | 83.420 264 16 26.281

Software Fifo
1 3.933 | 0.151 | 26.046 241 39 4.733
2 3.873 | 0.074 | 52.167 243 37 4.188
12 4.108 | 0.081 | 50.722 229 51 4.448
13 4213 | 0.192 | 21910 242 38 5.261
60 4832 | 0.104 | 46.348 233 47 5.075
61 4.877 | 0.099 | 49.485 224 56 5.159
64 4898 | 0.124 | 39.402 252 28 5.263
65 7.043 | 0.132 3.389 267 13 7.887
256 14.103 | 1.112 | 12.682 251 29 15.821
257 16.287 | 0.300 | 54.337 253 27 17.529
511 26.395 | 0.386 | 68.469 252 28 27.966
512 17.954 | 0.230 | 77.912 239 41 19.077
768 25.586 | 0.832 | 30.770 245 35 28.216
769 25.329 | 0.717 | 35.321 243 37 27.862

Round Robin
1 3.939 | 0.064 | 61.496 257 23 4121
2 3.936 | 0.126 | 31.210 241 39 4.496
12 4373 | 0.456 9.590 246 34 5.915
13 4227 | 0.075 | 56.430 231 49 4,594
60 5.285 | 0.666 7.934 242 38 7.190
61 4937 | 0.117 | 42.092 232 48 5.263
64 4978 | 0.217 | 22.959 252 28 6.193
65 7.094 | 0.285 | 24.861 244 36 8.336
256 14316 | 0.238 | 60.221 227 53 15.072
257 16435 | 0.219 | 75.077 232 48 17.009
511 26985 | 0.513 | 52.617 244 36 28.831
512 18.268 | 0.267 | 68.506 234 46 19.147
768 25.704 | 0.717 | 35.859 245 35 28.160
769 26.001 | 0.782 | 33.237 247 33 28.302

-29.

Average Delay Statistics

Message Ave. Std. Mean/ | Good Bad Thres-
size delay Dev. | Dev. Points | Points hold
(B) (ms) (ms) (ms)

Hardware Fifo

1 4.069 0.870 4.677 279 1 27.620

2 4.163 0.969 4.296 279 1 13.287
12 4.151 0.449 9.241 279 1 10.114
13 4243 1331 3.188 279 1 65.362
60 4773 0.218 | 21.898 278 2 9.953
61 4.855 0.280 | 17.357 279 1 9.735
64 5.702 3.127 1.823 278 2 73.394
65 7.306 1.255 5.820 279 1 20.870
256 14.162 1.320 | 10.725 279 1 73.580
257 16.745 3.203 5.228 278 2 81.491
511 27.713 6.840 4.052 275 5 108.300
512 18.318 2.882 6.355 277 3 88.750
768 25.250 3.761 6.713 278 2 110.624
769 25.272 2.302 | 10.980 277 3 112.875

Software Fifo

1 4479 2437 1.838 279 1 34,795

2 4.118 | 10.783 5.258 279 i 14.645
12 4424 | 10934 4739 279 1 14.191
13 4,637 | 11.594 2.908 279 1 68.792
60 5.093 | 10.799 6.372 279 i 12.667
61 5.205 0.796 6.540 279 1 12.877
64 5.140 1.197 4,295 278 2 20.214
65 7.301 1.655 4412 278 2 65.870
256 14.627 2915 5.018 279 1 74.025
257 16.820 3.055 5.506 278 2 84.441
511 26.758 1.537 | 17412 278 2 108.582
512 18.472 1.764 | 10474 279 1 76.216
768 26.320 2.631 | 10.005 278 2 129.136
769 27.085 8.604 3.148 276 4 124 479

Round Robin

1 3.996 0.331 | 12.072 279 1 19.735

2 4.178 0.769 5.431 279 1 19.393
12 4916 2.185 2.250 279 1 75.529
13 4.557 0.974 4.678 279 1 15.607
60 6.015 2.966 2.028 279 1 79.451
61 5213 0.856 6.088 279 1 13.869
64 5222 0.971 5.378 278 2 93.238
65 7.803 3.192 2.445 279 1 90.338
256 14.815 1.574 9412 271 3 30.768
257 16.869 1.360 | 12.403 278 2 29.752
511 27.550 2.088 | 13.194 271 3 112.740
512 18.648 1.149 | 16.230 279 1 38.644
768 28.098 | 11.066 2.539 277 - 3 133.232
769 26.653 3.205 8.317 277 3 129.111

-30-

WMessage Delay Statistics Loaded Trunk — Hardware Fifo
Bad

essage Ave. Sud. Mean/ | Good Thres-
size delay Dev. Dev. Points | Points hold
®) (ms) (ms) |- (ms)
256 * 3 window
! 4349 0.482 5.022 279 1 16.926
2 4.162 0.201 | 20.734 280 0 5.770
12 4.443 0.532 8.351 278 2 15.849
13 4.427 0.167 | 26.443 279 1 11.994
60 5.685 0.481 | 11.809 278 2 12.479
61 5.745 0.489 | 11.758 278 2 13.308
64 5.815 0.581 | 10.005 279 1 12.313
65 9.632 7.487 1.287 279 1 179.590
256 18.914 1.344 | 14.072 279 1 76.276
257 21.399 1.264 | 16.934 279 1 77.642
511 38.054 12.100 3.145 279 1 197.515
512 35417 10.200 3472 279 1 185.504
768 52.250 12.443 4.199 279 1 228.691
769 49.843 3.525 | 14.139 278 2 121.154
512 % 6 window
1 7.497 1.861 4,028 280 0 22.385
2 9.393 2.260 4.156 279 1 73.183
12 9.801 2.449 4.002 280 0 29.393
13 14.481 4.583 3.160 279 1 84.548
60 24.852 14.067 1.767 279 i 227.705
61 28.436 4.943 5.752 278 2 112.037
64 25.628 4.938 5.190 278 2 107.970
65 36.322 8.919 4072 278 2 143.390
256 107.498 18.451 5.826 279 1 309.634
257 113.952 20.144 5.657 279 1 356.157
511 194.882 22.932 8.498 278 2 451.377
512 205.314 31.743 6.468 279 1 502.758
768 300.861 24369 | 12.346 280 0 495.813
769 298.790 42.085 7.100 280 0 635.470
1024 * 3 window
T 39.966 11475 5224 279 1 217.266
2 62.744 9.892 6.343 279 1 189.825
12 60.167 13.114 4,588 279 1 231.266
13 63.572 14.418 4.409 279 1 245.399
60 66.191 8.436 7.846 278 2 166.512
61 65.118 12.906 5.045 279 1 199.362
64 58.533 19.169 3.053 280 0 211.885
65 125.872 17.553 7.171 279 1 414.052
256 252.655 38.371 6.585 280 0 559.623
257 312.089 57.637 5.415 280 0 773.185
511 512.694 50.286 | 10.196 279 1 1061.680
512 446.279 32.431 | 13.761 280 0 705.727
768 622.695 75.913 8.203 280 0 1230.000
769 638.457 40.967 | 15.585 280 0 966.193
1024 ¥ 7 window
T 156212 16.456 5.470 219) 312611
2 157.751 15.663 | 10.072 279 1 302.455
12 157.414 21.650 7.271 279 1 370.308
13 156.079 11.831 § 13.193 279 1 316.948
60 163.457 24918 6.560 279 1 401.420
61 158.555 19.280 8.224 278 2 444.633
64 162.299 20.816 1797 279 1 373.648
65 314.509 22.817 | 13.784 280 0 497.045
256 623.582 42.607 | 14.636 280 0 964.438
257 777.427 62.411 | 12.457 280 0 1276.720
511 1250.773 74.479 | 16.794 280 0 1846.600
512 1091.651 64.147 | 17.018 279 1 1714.530
768 1545.262 | 100.279 | 15410 280 0 2347.490
769 1331.216 | 507.930 2.621 280 0 5394.660

=31 -

Message Delay Statistics Loaded Trunk — Software Fifo

essage Ave. Sud. Mean/ | Good Bad Thres-
size delay Dev. Dev. Points | Points hold
B) (ms) (ms) | . (ms)
256 * T window
I 4453 1.026 4341 279 I 62.480
2 4.125 0.259 | 15929 279 1 8.166
12 4.417 0.654 6.756 279 1 225.651
13 4.842 3.207 1.510 279 1 70.595
60 5.340 0.313 | 17.053 277 3 12.085
61 5.534 1.177 4.702 280 0 14.950
64 5.797 2.375 2.441 278 2 50.646
65 8.143 0.691 | 11.787 279 1 14.900
256 18.071 7.215 2.505 279 1 171.922
257 20.275 1.554 | 13.048 279 1 83.971
511 34.638 10.120 | 3.423 279 1 226.111
512 28.456 9.149 |- 3.110 279 1 197.894
768 43,973 5.626 7.816 277 3 147.066
769 44.024 7.639 5.763 278 2 137.955
312 * 6 window
{ 5103 1.700 3.001 279 1 165.030
2 5.408 1.713 3.157 279 1 160.000
12 5.544 1.800 3.080 280 0 19.944
13 5.693 1.559 3.651 279 1 56.087
60 8.572 2.516 3.407 278 2 88.596
61 8307 * 2.085 3.983 280 0 24.987
64 8.484 2.501 3392 279 1 71.391
65 11.457 2.766 4.142 280 0 33.585
256 34.898 16.843 2.072 279 1 235.553
257 38.886 17.180 2.263 280 0 176.326
511 117.612 76.187 1.544 280 0 727.108
512 117.859 | 117.426 1.004 280 0 1057.270
768 154.379 81.059 1.905 280 0 802.851
769 148.371 61.118 2.428 280 0 637.315
1024 * 1 window
T 41.588 27.023 13554 280 4] 258.172
2 59.472 14.642 4.062 279 1 240.214
12 58.701 14.826 3.959 280 0 177.309
13 61.859 14.613 4.233 279 1 231.499
60 63.444 13.568 4676 279 1 187.326
61 66.500 18.086 3.677 280 0 211.188
64 62.610 7.986 7.840 278 2 153.504
65 119.591 21.391 5.591 278 2 375.124
256 248.759 28.296 8.791 280 0 475.127
257 311.391 28.317 | 10.996 280 0 537.927
511 486.928 47337 | 10.286 280 0 865.624
512 428.383 65.823 6.508 279 .1 1065.860
768 613.303 80.261 7.641 280 0 1255390
769 622.797 76.809 8.108 280 0 1237.270
1024 ¥ 7 window
! 140.012 25.074 5584 7279 1 382775
2 145.950 16.171 9.025 279 1 347.440
12 143.626 20.655 6.954 279 1 332.310
13 145.822 15.015 9.712 279 1 290.111
60 146.740 20.735 7.077 279 1 351.202
61 144.760 19.598 7.386 279 1 332.015
64 140.064 24.296 5.765 279 1 373.178
65 299.009 22.940 | 13.034 279 1 529.062
256 613.843 64.485 9.519 280 0 1129.720
257 779.148 85.109 9.155 279 1 1569.340
511 1225.683 69.110 | 17.735 280 0 1778.560
512 1039.660 | 108.732 9.562 280 0 1909.520
768 1522.284 85.787 | 17.745 280 0 2208.580
769 1533.324 81.782 | 18.749 280 0 2187.580

-32-

Message Deiay Statistics Loaded Trunk — Round Robin
Message gKve. Sid. Mean/ T Good Bad Thres-
size delay Dev. Dev. Points | Points hold
(B) (ms) (ms) : (ms)
256 * 3 window
1 4.460 0.527 8.464 279 1 10.347
2 4.527 0.399 { 11.332 278 2 12.271
12 4.845 0.450 | 10.756 279 1 9.053
13 4.753 0.486 9.789 279 1 23.191
60 5.598 0.762 7.346 279 1 25.410
61 5.869 2.396 2.449 279 1 52.182
64 6.050 2.738 2210 279 1 67.743
65 8.299 0.815 | 10.186 279 1 26.054
256 16.896 1.998 8.456 279 1 77.039
257 19.911 2.841 7.009 279 1 83.923
511 31.866 0.866 | 36.778 278 2 105.884
512 26.096 2369 | 11.017 278 2 104.744
768 38.774 | 11.873 3.266 279 1 227.408
769 38.695 9.749 3.969 279 1 215.514
5127* 6 window
1 4872 1.432 3.401 278 2 82.553
2 4.900 1.389 3.527 279 1 67.179
12 5.024 0.590 8.515 279 1 11.610
13 6.141 9.818 0.626 279 1 279.276
60 7.153 3.008 2.378 279 1 73.501
61 8.596 | 18.086 0.475 279 1 435934
64 6.797 1.408 4.829 279 1 73.147
65 10.128 3.248 3.118 279 1 70.992
256 28.110 | 24.561 1.145 278 2 437.484
257 30.713 | 30.994 0.991 278 2 526.443
St 54.003 | 42.092 1.283 279 1 483.370
512 80.110 | 92.460 0.866 280 0 819.790
768 106.568 | 65.627 1.624 279 1 711.223
769 93.328 | 63.689 1.465 279 1 690.395
1024 * 3 window
1 3.764 4032 1.430 278 2 50.783
2 5.877 3.482 1.688 279 1 120.301
12 10.721 | 18.960 0.565 279 1 192.390
13 5.697 0.639 8.910 2719 1 11.696
60 9.792 5.281 1.854 279 1 253.656
61 15.172 | 21.447 0.707 278 2 497.653
64 14.469 { 20.302 0.713 279 1 366.096
65 15.713 | 14.606 1.076 278 2 208.078
256 45.782 | 71.709 0.638 279 1 712.728
257 53.475 | 37.089 1.442 279 1 406.849
511 85.837 | 78.257 1.097 280 0 711.893
512 79.186 | 62.767 1.262 279 1 708.997
768 83.989 | 65.702 1.278 280 0 609.605
769 86.945 | 62.143 1.399 279 1 795.806
1024 %7 window
I 6.245 4553 1372 bif) I [22.0594
2 6.611 5.995 1.103 279 1 270.950
12 6.194 0.865 7.159 278 2 18.815
13 6.386 1.039 6.148 279 1 15.940
60 16.877 | 16.455 1.026 278 2 314.765
61 15.110 9.382 1.611 277 3 219.403
64 15748 | 11.180 1.409 278 2 185.444
65 25912 | 19.482 1.330 279 1 420.136
256 56.228 | 45.120 1.246 279 1 582.299
257 55.453 | 26.024 2.131 278 2 417.105
511 108.747 | 68.923 1.578 280 0 660.131
512 86.675 | 85.911 1.009 280 0 773.963
768 112.884 | 59.239 1.906 279 1 703.895
769 109.820 | 57.618 1.906 279 1 663.275

