
1

Chapter 5: A Control-Theoretic Approach to Flow Control

5.1. Introduction
If networks implement Fair Queueing at each server, then new flow control protocols are

enabled. In Chapter 4, we presented the 2P protocol, which was enabled in this way. The 2P
protocol is strongly motivated by a deterministic model for the network. Since, in practice, this
assumption cannot always be justified, this chapter presents the design of a flow control protocol
that works well even in the presence of stochastic changes in the network state. We use a
control-theoretic approach to determine how a conversation can satisfy its throughput and
queueing delay requirements by adapting its data transfer rate to changes in network state,
and to prove that such adaptations do not lead to instability.

A control-theoretic approach to flow control requires that changes in the network state be
observable. We have shown in Chapter 4 that it is possible to measure network state easily if the
servers at the output queues of the switches do Fair Queueing, and the transport protocol uses
the Packet-Pair probing technique. Thus, in this chapter, we will make the assumption that the
queue service discipline is FQ and that the sources implement Packet-Pair. Our approach does
not extend to First-Come-First-Served (FCFS) networks, where there is no simple way to probe the
network state.

The chapter is laid out as follows. We first present a stochastic model for FQ networks (§5.2).
Next, we use the Packet-Pair state probing technique as the basis for the design of a stable
rate-based flow control scheme (§5.3). A problem with non-linearity in the system is discussed in
§5.4. We present a Kalman state estimator in §5.5. However, this estimator is impractical, and so
we have designed a novel estimation scheme based on fuzzy logic (§5.6). A technique to
increase the frequency of control based on additional information from the system is presented
in §5.7, and this serves as the basis for a new, stable control law. Practical implementation issues
are discussed in §5.8, and these include correcting for parameter drift, and interaction with win-
dow flow control. We conclude with some remarks on the limitations of the approach (§5.9) and
a review of related work (§5.10).

5.2. Stochastic model
In the deterministic model of Chapter 4, µ, the service rate at the bottleneck of a conversa-

tion, is assumed to be constant. Actually, µ changes due to the creation and deletion of active
conversations. If the number of active conversations, Nac, is large, we expect that the change in
Nac in one time interval will be small compared to the value of Nac. Hence the change in µ in
one interval will be small, and µ(k +1) will be ‘close’ to µ(k). One way to represent this would be
for µ to be a fluctuation around a nominal value µ0. However, this does not adequately capture
the dynamics of the process, since µ(k +1) is ‘close’ to µ(k) and not to a fixed value µ0. Instead,
we model µ as a random walk where the step is a random variable that has zero mean and low
variance. Thus, for the most part, changes are small, but we do not rule out the possibility of a
sudden large change. This model is simple, and, though it represents only the first order dynam-
ics, we feel that it is sufficient for our purpose. Thus, we define

µ(k +1) = µ(k) + ω(k),

where ω(k) is a random variable that represents zero-mean gaussian white noise. There is a prob-
lem here: when µ is small, the possibility of an increase is larger than the possibility of a decrease.
Hence, at this point, the distribution of ω should be asymmetric, with a bias towards positive
values (making the distribution non-gaussian). However, if µ is sufficiently far away from 0, then
the assumption of zero mean is justifiable.

The white noise assumption means that the changes in service rate at time k and time k +1
are uncorrelated. Since the changes in the service rate are due to the effect of uncorrelated
input traffic, we think that this assumption is valid. However, the gaussian assumption is harder to
justify. As mentioned in [2], many noise sources in nature are gaussian. Second, a good rule of
thumb is that the gaussian assumption will reflect at least the first order dynamics of any noise

53

distribution. Finally, for any reasonably simple control-theoretic formulation (using Kalman esti-
mation), the gaussian white noise assumption is unavoidable. Thus, for these three reasons, we
will assume that the noise is gaussian.

These strict assumptions about the system noise are necessary mainly for doing Kalman esti-
mation. We also describe a fuzzy prediction approach (§5.6) that does not require any of these
assumptions

Note that the queueing-theoretic approach to modeling µ would be to define the density
function of µ, say G (µ), which would have to be supplied by the system administrator. Then, sys-
tem performance would be given by expectations on the distribution. For example, a metric
X(µ), that depends on the service rate µ would be described by E(X(µ)) = X(µ̂), where µ̂, the aver-
age value of µ is given by µ̂ = ∫µG(µ) dµ. Now, if G(µ) is unknown, so is µ̂. Further, E(X) depends on
µ̂, an asymptotic average. In contrast, we explicitly model the dynamics of µ and so our control
scheme can depend on the currently measured value of µ, instead of an asymptotic time aver-
age.

5.3. Design strategy
This section describes the strategy used to design the flow-control mechanism, some prelim-

inary considerations, and the detailed design. The design strategy for the flow control mechan-
ism is based upon the Separation Theorem [3]. Informally, the theorem states that, for a linear
stochastic system where an observer is used to estimate the system state, the eigenvalues of the
state estimator and of the controller are separate. The theorem allows us to use any technique
for state estimation, and then implement control using the estimated state x̂ instead of the
actual state x. Thus, we will derive a control law assuming that all required estimators are avail-
able; the estimators are derived in a subsequent section. We first discuss our assumptions and a
few preliminary considerations.

5.3.1. Choice of setpoint
The aim of the control is to maintain the number of packets in the bottleneck queue, nb, at

a desired setpoint. Since the system has delay components, it is not possible for the control to
stay at the setpoint at all times. Instead, the system will oscillate around the setpoint value. The
choice of the setpoint reflects a tradeoff between mean packet delay, packet loss and
bandwidth loss (which is the bandwidth a conversation loses because it has no data to send
when it is eligible for service). This is discussed below.

Let B denote the number of buffers a switch allocates per conversation (in general, this may
vary with time; in our work, we assume that B is static). Consider the distribution of nb for the con-
trolled system, given by N (x) = Pr (nb = x) (strictly speaking, N (x) is a Lebesgue measure, since we
will use it to denote point probabilities). N (x) is sharply delimited on the left by 0 and on the right
by B, and tells us three things:

1) Pr(loss of bandwidth) = Pr (FQ server schedules the conversation for service | nb = 0).
Assuming that these events are independent, which is a reasonable assumption, we find
that Pr(loss of bandwidth) is proportional to N (0).

2) Similarly, Pr (loss of packet) = Pr (packet arrival | nb = B), so that the density at B, N (B), is
proportional to the probability of a packet loss.

3) The mean queuing delay is given by

0
∫
B

N (x)dx

sbhhhhhhhhh
0
∫
B

xN (x)dx,

where, on average, a packet takes sb units of time to get service at the bottleneck.

If the setpoint is small, then the distribution is driven towards the left, the probability of
bandwidth loss increases, the mean packet delay is decreased, and the probability of packet

54

loss is decreased. Thus, we trade off bandwidth loss for lower mean delay and packet loss. Simi-
larly, if we choose a large setpoint, we will trade off packet loss for a larger mean delay and
lower probability of bandwidth loss. In the sequel, we assume a setpoint of B/2. The justification
is that, since the system noise is symmetric, and the control tracks the system noise, we expect
N (x) to be symmetric around the setpoint. In that case, a setpoint of B/2 balances the two
tradeoffs. Of course, any other setpoint can be chosen with no loss of generality.

Queueing-theoretic choice of setpoint
In recent work, Mitra et al [96, 97] have studied asymptotically optimal choices of window

size for window based flow control, when the scheduling discipline at a switch is either FCFS or
processor sharing (PS). With some caveats as to its generality, their approach is complementary
to ours, and can provide insight into the choice of setpoint.

The basis for their study is product-form queueing network theory, where asymptotic net-
work behavior is studied as the bandwidth-delay product tends to infinity. In this regime, the
analysis of virtual circuit dynamics indicates that the network behaves almost deterministically
(which reinforces our earlier claim). Further, if a source wishes to optimize the throughput to
queueing delay ratio, or power, then the optimal window size K is given by

K = λ + α√ddλ

where λ is the bandwidth delay product, and α is approximately
2√dddM

1hhhhhh , M being the number of

hops over which the circuit sends data. Thus, the optimal choice of the setpoint is simply α√ddλ .
Since α can be precomputed for a circuit, and changes in λ can be determined using the
packet-pair protocol, the setpoint can be dynamically adjusted to deliver maximum power
using the earlier control model. Thus, the two theoretical approaches can be used in conjunc-
tion to determine the bandwidth delay product, the optimal setpoint, and, also, a mechanism to
keep the system at the optimal setpoint.

However, there are several difficulties with the queueing-theoretic approach that limit its
generality. First, the analysis assumes that the scheduling discipline is either FCFS or PS. While Fair
Queueing can be approximated by Head-of-Line Processor Sharing [50], approximating it by PS
does not seem to be reasonable. Second, the analysis assumes that the cross traffic is strictly
Poisson. Since there is no empirical evidence that the assumption is valid, it may be inaccurate.
Third, the packet service time is assumed to be exponentially distributed. This assumption is
almost certainly incorrect, since numerous studies have indicated that the packet size distribu-
tion is usually strongly multi-modal (usually bi-modal), so that the service times will follow a similar
distribution [13, 51].

Nevertheless, even with these caveats, the queueing approach is a strong basis to justify
our intuitions, and, to a first approximation, these results can be used to determine the choice of
the setpoint in the control system.

5.3.2. Frequency of control
We initially restrict control actions to only once per round trip time (RTT) (this restriction is

removed in §5.7). For the purpose of exposition, we divide time into epochs of length RTT (= R +
queueing delays) (Figure 5.1). This is done simply by transmitting a specially marked packet-pair,
and when it returns, taking control action, and sending out another marked pair. Thus, a control
action is taken at the end of every epoch.

5.3.3. Assumptions regarding round trip time delay
We assume that the propagation delay, R, is constant for a conversation. This is usually true,

since the propagation delay is due to the speed of light in the fiber and the hardware switching
delays. These are fixed, except for rare rerouting.

We assume that the round trip time is large compared to the spacing between the ack-
nowledgments. Hence, in the analysis, we treat the arrival of the packet pair as a single event,

55

which measures both the round trip time and the bottleneck service rate.

Finally, we assume that the measured round trip time in epoch k, denoted by RTT (k), is a
good estimate for the round trip time in epoch k +1. The justification is that, when the system is in
equilibrium, the queue lengths are expected to be approximately the same in successive
epochs. In any case, for wide area networks, the propagation delay will be much larger than
the additional delay caused by a change in the queueing delay. Hence, to a first approxima-
tion, this change can be ignored. This assumption is removed in §5.7.

5.3.4. Controller design
Consider the situation at the end of the kth epoch. At this time we know RTT(k), the round

trip time in the kth epoch, and S(k), the number of packets outstanding at that time. We also
predict µ̂(k+1), which is the estimator for the average service rate during the (k +1)th epoch. If the
service rate is ‘bursty’, then using a time average for µ may lead to problems. For example, if the
average value for µ is large, but during the first part of the control cycle the actual value is low,
then the bottleneck buffers could overflow. In such cases, we can take control action with the
arrival of every probe, as discussed in §5.7.

Figure 5.1 shows the time diagram for the control. The vertical axis on the left represents the
time of the source, and the axis on the right that of the bottleneck. Each line between the axes
represents a packet pair. Control epochs are marked for the source and the bottleneck. Note
that the epochs at the bottleneck are time delayed with respect to those at the source. We use
the convention that the end of the kth epoch is called ‘time k’, except that nb(k) refers to the
number of packets in the bottleneck at the beginning of the kth epoch.

We now make a few observations regarding Figure 5.1. The distance ab is the RTT meas-
ured by the source (from the time the first packet in the pair is sent to the time the first ack is
received). By an earlier assumption, the propagation delay for the (k +1)th special pair is the
same as for the kth pair. Then ab = cd, and the length of epoch k at the source and at the
bottleneck will be the same, and equal to RTT (k).

At the time marked ‘NOW’, which is the end of the kth epoch, all the packets sent in epoch
k −1 have been acknowledged. So, the only unacknowledged packets are those sent during
the kth epoch itself, and this is the same as the number of outstanding packets S(k). This can be
approximated by the sending rate multiplied by the sending interval, λ(k)RTT (k). So,

S(k) = λ(k)RTT(k) 5.1

The number of the conversation’s packets in the bottleneck at the beginning of the (k +1)th
epoch is simply the number of packets at the beginning of the kth epoch plus what came in
minus what went out in the kth epoch (ignoring the non-linearity at nb = 0, discussed in §5.5.6).
Since λ(k) packets were sent in, and µ(k)RTT (k) packets were serviced in this interval, we have

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT (k) 5.2

Equations (5.1) and (5.2) are the fundamental equations in this analysis. They can be combined
to give

nb(k +1) = nb(k) + S(k) − µ(k)RTT (k) 5.3

Now, nb(k +1) is already determined by what we sent in the kth epoch, so there is no way to con-
trol it. Instead, we will try to control nb(k +2). We have

nb(k +2) = nb(k +1) + (λ(k+1) − µ(k +1))RTT (k+1) 5.4

From (5.3) and (5.4):

nb(k +2) = nb(k) + S(k) − µ(k)RTT (k) + 5.5

λ(k+1)RTT(k+1) − µ(k +1)RTT (k+1)

The control should set this to B/2. So, set (5.5) to B/2, and obtain λ(k+1).

56

NOW

a

b

Epoch k

Epoch k

Epoch k+1Epoch k+1

nb(k)

nb(k+1)

SOURCE BOTTLENECK

Each line represents a packet pair

RTT(k)

RTT(k+1)

nb(k+2)

c

d

Figure 5.1: Time scale of control

nb(k +2) = B/2 = nb(k) + S(k) − µ(k)RTT (k) 5.6

+ (λ(k+1) − µ(k +1))RTT (k+1)

This gives λ(k+1) as

λ(k+1) =
RTT(k+1)

1hhhhhhhhh 5.7

[B/2 − nb(k) − S(k) + µ(k)RTT (k) + µ(k +1)RTT(k+1)]

Replacing the values by their estimators (which will be derived later), we have

λ(k+1) =
RTTˆ (k+1)

1hhhhhhhhh 5.8

[B/2 − n̂b(k) − S(k) + µ̂(k)RTT (k) + µ̂(k +1)RTTˆ (k+1)]

Since both µ̂(k) and µ̂(k +1) are unknown, we can safely assume that µ̂(k) = µ̂(k +1). Further, from an

57

earlier assumption, we set RTTˆ (k +1) to RTT(k). This gives us:

λ(k+1) =
RTT(k)

1hhhhhhh[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)] 5.9

This is the control law. The control always tries to obtain a queue length in the bottleneck equal
to B/2. It may never reach there, but will always stay around it.

Note that the control law requires us to maintain two estimators: µ̂(k) and n̂b(k). The effec-
tiveness of the control depends on the choice of the estimators. This is considered in sections 5
and 6.

5.3.5. Stability analysis
The state equation is given by (5.2)

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT (k) 5.10

For the stability analysis of the controlled system, λ(k) should be substituted using the control law.
Since we know λ(k+1), we use the state equation derived from (5.2) instead (which is just one
step forward in time). This gives

nb(k +2) = nb(k+1) + (λ(k+1)−µ(k+1))RTT(k+1)

Substituting (5.8) in (5.10), we find the state evolution of the controlled system:

nb(k +2) = nb(k +1) − µ(k +1)RTT(k +1) +
RTT(k)

RTT (k +1)hhhhhhhhhh

[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)]

By assumption, RTT (k) is close to RTT (k +1). So, to first approximation, canceling RTT (k) with RTT (k +1)
and moving back two steps in time,

nb(k) = nb(k −1) − µ(k −1)RTT(k −1) +

B/2 − n̂b(k −2) − S (k −2) + 2µ̂(k −2)RTT (k−2)

Taking the Z transform of both sizes, and assuming nb(k −2) = n̂b(k −2), we get

nb(z) = z −1nb(z) − z −2µ(z)*RTT(z) +

B/2 − z −2nb(z) − z −2S(z) + 2z −4 µ̂(z)*RTT (z)

Considering nb as the state variable, it can be easily shown that the characteristic equation is

z −2 − z −1 + 1 = 0

If the system is to be asymptotically stable, then the roots of the characteristic equation (the
eigenvalues of the system), must lie inside the unit circle on the complex Z plane. Solving for z −1,
we get

z −1 =
2

1±√ddddd1 − 4hhhhhhhhh =
2

1±i √dd3hhhhhhh

The distance from 0 is hence

√ddddd2
1hh

2

+
2

√dd3hhhh
2

= 1

Since the eigenvalues lie on the unit circle, the controlled system is not asymptotically stable.

However, we can place the pole of the characteristic equation so that the system is
asymptotically stable. Consider the control law

λ(k+1) =
RTT(k)

αhhhhhhh

[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)]

%

This leads to a characteristic equation

αz −2 − z −1 + 1 = 0

so that the roots are

z −1 =
2α

1± i√ddddddd4α − 1hhhhhhhhhhhh

The poles are symmetric about the real axis, so we need only ensure that

| z −1 | > 1

=> √dddddddd(
2α
1hhhh)

2

+ (
2α

√ddddddd4α − 1hhhhhhhh)2 > 1

=>
√ddα
1hhhh > 1 => α < 1

This means that if α < 1, the system is provably asymptotically stable (by the Separation Theorem,
since the system and observer eigenvalues are distinct, this stability result holds irrespective of the
choice of the estimators).

The physical interpretation of α is simple: to reach B/2 at the end of the next epoch, the
source should send exactly at the rate computed by (9). If it does so, the system may be
unstable. Instead, it sends at a slightly lower rate, and this ensures that the system is asymptoti-
cally stable. Note that α is a constant that is independent of the system’s dynamics and can be
chosen in advance to be any desired value smaller than 1.0. The exact value chosen for α con-
trols the rise time of the system, and, for adequate responsiveness, it should not be too small. Our
simulations indicate that a value of 0.9 is a good compromise between responsiveness and insta-
bility. Similar studies are mentioned in [30].

5.4. System non-linearity
This section discusses a non-linearity in the system, and how it can be accounted for in the

analysis. The state equation (5.9) is correct when nb(k +1) lies in the range 0 to B. Since the system
is physically incapable of having less than zero and more than B packets in the bottleneck
queue, the equation actually is incorrect at the endpoints of this range. The correct equation is
then:

nb(k +1) =
R
J
J
Q otherwise nb(k) + S(k) − RTT (k)µ(k)
if nb(k) + S(k) − RTT (k)µ(k) > B then B
if nb(k) + S(k) − RTT (k)µ(k) < 0 then 0

The introduction of the inequalities in the state equation makes the system nonlinear at the
boundaries. This is a difficulty, since the earlier proof of stability is valid only for a linear system.
However, note that, if the equilibrium point (setpoint) is chosen to lie inside the range [0,B], then
the system is linear around the setpoint. Hence, for small deviations from the setpoint, the earlier
stability proof, which assumes linearity, is sufficient. For large deviations, stability must be proved
by other methods, such as the second method of Liapunov ([102] page 558).

However, this is only an academic exercise. In practice, the instability of the system means
that nb can move arbitrarily away from the setpoint. In section 10.2, we show how window-
based flow control can be used in conjunction with a rate-based approach. Then, since nb can
never be less than 0, and the window flow control protocol ensures that it never exceeds B, true
instability is not possible.

Nevertheless, we would like the system to return to the setpoint, whenever it detects that it
has moved away from it, rather than operating at an endpoint of its range. This is automatically
assured by equation (9), which shows that the system chooses λ(k +1) such that nb(k +2) is B/2. So,
whenever the system detects that it is at an endpoint, it immediately takes steps to ensure that it
moves away from it.

59

Thus, the non-linearity in the system is of no practical consequence, except that the flow
control mechanism has to suitably modify the state equations when updating n̂b(k+1). A rigorous
proof of the stability of the system using Liapunov’s second method is also possible, but the gain
from the analysis is slight.

5.5. Kalman state estimation
A practical scheme is presented in §5.6. Having derived the control law, and proved its

stability, we now need to determine stable estimators for the system state. §5.5 presents a Kal-
man state estimator, and shows that Kalman estimation is impractical. We choose to use Kal-
man estimation, since it is a well known and robust technique [49]. Before the technique is
applied, a state-space description of the system is necessary.

5.5.1. State space description
We will use the standard linear stochastic state equation given by

x(k+1) = Gx(k) + Hu(k) + ν1(k)
y(k) = Cx(k) + ν2(k)

x, u and y are the state, input and output vectors of sizes n, m, and r, respectively. G is the nxn
state matrix, H is an nxm matrix, and C is an rxn matrix. ν1(k) represents the system noise vector,
which is assumed to be zero-mean, gaussian and white. ν2(k) is the observation noise, and it is
assumed to have the same characteristics as the system noise.

Clearly, u is actually u, a scalar, and u(k) = λ(k). At the end of epoch k, the source receives
probes from epoch k-1. (To be precise, probes can be received from epoch k-1 as well as from
the beginning of epoch k. However, without loss of generality, this is modeled as part of the
observation noise.) So, at that time, the source knows the average service time in the k-1th
epoch, µ(k −1). This is the only observation it has about the system state, and so y (k) is a scalar,
y (k) = µ(k −1) + ν2. If y (k) is to be derived from the state vector x by multiplication with a constant
matrix, then the state must contain µ(k −1). Further, the state must also include the number of
packets in the bottleneck’s buffer, nb. This leads to a state vector that has three elements, nb,
µ(k), and µ(k −1), where µ(k) is needed since it is part of the delay chain leading to µ(k −1) in the
corresponding signal flow graph. Thus,

x =
R
J
J
Qµ−1

µ
nb

H
J
J
P

where µ−1 represents the state element that stores the one-step delayed value of µ.

We now turn to the G, H, ν1, ν2 and C matrices. The state equations are

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT(k)

µ(k+1) = µ(k) + ω(k)

µ−1(k +1) = µ(k)

Since RTT (k) is known at the end of the kth epoch, we can represent it by a pseudo-constant, Rtt.
This gives us the matrices

G =
R
J
Q 0 1 0

0 1 0
1 −Rtt 0 H

J
P

H =
R
J
Q 0

0
Rtt H

J
P

ν1 =
R
J
Q0
ω
0 H

J
P

60

C = [0 0 1]

ν2 is simply the (scalar) variance in the observation noise. This completes the state space
description of the flow control system.

5.5.2. Kalman filter solution to the estimation problem
A Kalman filter is the minimum variance state estimator of a linear system. In other words, of

all the possible estimators for x, the Kalman estimator is the one that will minimize the value of
E([x̂(t) − x(t)]T[x̂(t) − x(t)]), and in fact this value is zero. Moreover, a Kalman filter can be manipu-
lated to yield many other types of filters [49]. Thus, it is desirable to construct a Kalman filter for x.

In order to construct the filter, we need to determine three matrices, Q, S and R, which are
defined implicitly by :

E
I
K
L

R
J
Qν2(k)
ν1(k) H

J
P
[ν1

T (θ)ν2(θ)]
M
N
O

=
R
J
QS

T R
Q S H

J
P

δ (t − θ)

(where δ is the Kronecker delta defined by, δ(k) = if (k = 0) then 1 else 0). Expanding the left
hand side, we have

Q = E
R
J
J
Q0 0 0
0 ω2 0
0 0 0 H

J
J
P

R = E (ν2
2)

S = E
R
J
J
Q 0
ων2

0 H
J
J
P

If the two noise variables are assumed to be independent, then the expected value of their pro-
duct will be zero, so that S = 0. However, we still need to know E(ω2) and E(ν2

2).

From the state equation,

µ(k +1) = µ(k) + ω(k)

Also,

µobserved(k +1) = µ(k +1) + ν2(k +1)

Combining,

µobserved(k +1) = µ(k) + ω(k) + ν2(k +1)

which indicates that the observed value of µ is affected by both the state and observation
noise. As such, each component cannot be separately determined from the observations alone.
Thus, in order to do Kalman filtering, the values of E(ω2) and E(ν2

2) must be extraneously supplied,
either by simulation or by measurement of the actual system. Practically speaking, even if good
guesses for these two values are supplied, the filter will have reasonable (but not optimal) perfor-
mance. Hence, we will assume that the values of the noise variances are supplied by the system
administrator, and so matrices Q, R and S are known. It is now straightforward to apply Kalman
filtering to the resultant system. We follow the derivation in [49] (pg 249).

The state estimator x̂ is derived using

x̂(k+1) = Gx̂(k) + K(k)[y(k) − Cx̂(k)] + Hu(k)

x̂(0) = 0

where K is the Kalman filter gain matrix, and is given by

K(k) = [GΣ(k)CT + S][CΣ(k)CT + R]−1

61

Σ(k) is the error state covariance, and is given by the Riccati difference equation

Σ(k +1) = GΣ(k)GT + Q − K(k)[CΣ(k)CT + R]K(k)T

Σ(0) = Σ0

where Σ0 is the covariance of x at time 0, and can be assumed to be 0.

Note that a Kalman filter requires the Kalman gain matrix K(k) to be updated at each time
step. This computation involves a matrix inversion, and appears to be generally expensive. How-
ever, since all the matrices are at most 3x3, in practice this is not a problem.

To summarize, if the variances of the system and observation noise are available, Kalman
filtering is an attractive estimation technique. However, if these variances are not available,
then Kalman filtering cannot be used. In the next section, we present a heuristic estimator that
works even in the absence of knowledge about system and observation noise.

5.6. Fuzzy estimation
This section presents the design of a fuzzy system that predicts the next value of a time

series. Consider a scalar variable θ that assumes the sequence of values

{θk} = θ1, θ2, . . . , θk

where

θk = θk−1 + ωk−1

and ωk (called the ‘system perturbation’) is a random variable from some unknown distribution.

Suppose that an observer sees a sequence of values

θ̃1, θ̃2,, θ̃k −1

and wishes to use the sequence to estimate the current value of θk. We assume that the
observed sequence is corrupted by some observation noise ξ, so that the observed values {θ̃k}
are not the actual values {θk}, and

θ̃k = θk + ξk

where ξk is another random variable from an unknown distribution.

Since the perturbation and noise variables can be stochastic, the exact value of θk cannot
be determined. What is desired, instead, is θ̂k, the predictor of θk, be optimal in some sense.

5.6.1. Assumptions
We model the parameter θk as the state variable of an unknown dynamical system. The

sequence {θk} is then the sequence of states that the system assumes. We make three weak
assumptions about the system dynamics. First, the time scale over which the system perturba-
tions occur is assumed to be an order of magnitude slower than the corresponding time scale of
the observation noise.

Second, we assume that system can span a spectrum ranging from ‘steady’ to ‘noisy’.
When it is steady, then the variance of the system perturbations is close to zero, and changes in {
θ̃k } are due to observation noise. When the system is noisy, {θk} changes, but with a time con-
stant that is longer than the time constant of the observation noise. Finally, we assume that ξ is
from a zero mean distribution.

Note that this approach is very general, since there are no assumptions about the exact
distributions of ω and ξ. On the other hand, there is no guarantee that the resulting predictor is
optimal: we only claim that the method is found to work well in practice.

62

5.6.2. Exponential averaging
The basis of this approach is the predictor given by:

θ̂k +1 = αθ̂k + (1−α)θ̃k

The predictor is controlled by a parameter α, where α is the weight given to past history. The
larger it is, the more weight past history has in relation to the last observation. The method is also
called exponential averaging, since the predictor is the discrete convolution of the observed
sequence with an exponential curve with a time constant α:

θ̂k =
i=0
Σ
k−1

(1−α)θ̃iαk−i−1 + αk θ̂0

The exponential averaging technique is robust, and so it has been used in a number of
applications. However, a major problem with the exponential averaging predictor is in the
choice of α. While in principle, it can be determined by knowledge of the system and observa-
tion noise variances, in practice, these variances are unknown. It would be useful to automati-
cally determine a ‘good’ value of α, and to be able to change this value on-line if the system
behavior changes. Our approach uses fuzzy control to effect this tuning [82, 152, 158].

5.6.3. Fuzzy exponential averaging
Fuzzy exponential averaging is based on the heuristic that a system can be thought of as

belonging to a spectrum of behaviors that ranges from ‘steady’ to ‘noisy’. In a ‘steady’ system (
ω<<ξ), the sequence {θk} is approximately constant, so that {θ̃k} is affected mainly by observation
noise. Then, α should be large, so that the past history is given more weight, and transient
changes in θ̃ are ignored.

In contrast, if the system is ‘noisy’ (ω∼∼ξ or ω>ξ), {θk} itself could vary considerably, and θ̃
reflects changes both in θk and the observation noise. By choosing a lower value of α, the
observer quickly tracks changes in θk, while ignoring past history which only provides old informa-
tion.

While the choice of α in the extremal cases is simple, the choice for intermediate values
along the spectrum is hard to make. We use a fuzzy controller to determine a value of α that
gracefully responds to changes in system behavior. Thus, if the system moves along the noise
spectrum, α adapts to the change, allowing us to obtain a good estimate of θk at all times.
Moreover, if the observer does not know α a priori, the predictor automatically determines an
appropriate value.

5.6.4. System identification
Since α is linked to the ‘noise’ in the system, how can the amount of ‘noise’ in the system be

determined? Assume, for the moment, that the variance in ω is an order of magnitude larger
than the variance in ξ. Given this assumption, if a system is ‘steady’, the exponential averaging
predictor will usually be accurate, and prediction errors will be small. In this situation, α should be
large. In contrast, if the system is ‘noisy’, then the exponential averaging predictor will have a
large estimation error. This is because, when the system noise is large, past history cannot predict
the future. So, no matter the value of α, it will usually have a large error. In that case, it is best to
give little weight to past history by choosing a small value of α, so that the observer can track the
changes in the system.

To summarize, we have observed that, if the predictor error is large, then α should be small,
and vice versa. Treating ‘small’ and ‘large’ as fuzzy linguistic variables [151], we can build a
fuzzy controller for the estimation of α.

63

5.6.5. Fuzzy controller
The controller implements three fuzzy laws:

If error is low, then α is high
If error is medium, then α is medium
If error is high, then α is low

The linguistic variables ‘low’, ‘medium’ and ‘high’ for α and error are defined in Figure 5.2.

1.0

0.0

0.5

1.0

LOW MEDIUM
HIGH

Linguistic variables to describe α

1.0

0.0 1.0

LOW MEDIUM
HIGH

0.7

Linguistic variables to describe the error

Figure 5.2: Definition of linguistic variables

The input to the fuzzy controller is a value of the error, and the controller outputs α in three steps.
First, the error value is mapped to a membership in each of the fuzzy sets ‘low’, ‘medium’ and
‘high’ using the definition in Figure 5.3. Then, the control rules are used to determine the applica-
bility of each outcome to the resultant control. Finally, the fuzzy set representing the control is
defuzzified using a centroid defuzzifier.

64

The error | θ̃ − θ̂ | is processed in two steps before it is input to the fuzzy system. First, it is con-

verted to a relative value given by error =
θ̃k

| θ̃k − θ̂k |hhhhhhhhh . It is not a good idea to use the relative error

value directly, since spikes in θ̃k can cause the error to be large, α would drop to 0, and all past
history would be lost. So, in the second step, the relative error is smoothed using another
exponential averager. The constant for this averager, β, is obtained from another fuzzy controller
that links the change in the error to the value of β. The idea is that, if the change in error is large,
then β should be large, so that spikes are ignored. Otherwise, β should be small. β and the
change in error are defined by the same linguistic variables, ‘low’, ‘medium’ and ‘high’, and
these are defined exactly like the corresponding variables for α. With these changes, the
assumption that the variance in the observation noise is small can now be removed. The result-
ing system is shown in Figure 5.3.

Exponential Averager

Exponential Averager

Fuzzy System

Fuzzy System

β

z −1

z −1

z −3

α

Observation

Proportional
error

Smoothed proportional error

Estimate
θ̃

θ̂

Figure 5.3: Fuzzy prediction system

Details of the prediction system, and a performance analysis can be found in reference [75].

65

5.7. Using additional information
This section describes how the frequency of control can be increased by using information

about the propagation delay. Note that n̂b(k+1), the estimate for the number of packets in the
bottleneck queue, plays a critical role in the control system. The controller tracks changes in
n̂b(k), and so it is necessary that n̂b(k) be a good estimator of nb. n̂b(k) can be made more accu-
rate if additional information from the network is available. One such piece of information is the
value of the propagation delay.

The round-trip time of a packet includes delays due to three causes:

g the propagation delay due to the finiteness of the speed of light and the processing at
switches and interfaces

g the queueing delay at each switch, because previous packets from that conversation
have not yet been serviced

g the phase delay, introduced when the first packet from a previously inactive conversation
waits for the server to finish service of packets from other conversations

The propagation delay depends on the geographical spread of the network, and for WANs, it
can be of the order of a few tens of milliseconds. The phase delay is roughly the same magni-
tude as the time it takes to process one packet each from all the conversations sharing a server,
the round time. The queueing delay is of the order of several round times, since each packet in
the queue takes one round time to get service. For future high speed networks, we expect the
propagation and queueing delays to be of roughly the same magnitude, and the phase delay
to be one order of magnitude smaller. Thus, if queueing delays can be avoided by the probe
packet, the measured round-trip time will be approximately the propagation delay of the
conversation.

An easy way to avoid queueing delays is to measure the round-trip time for the first packet
of the first packet-pair. Since this packet has no queueing delays, we can estimate the propa-
gation delay of the conversation from this packet’s measured round trip time (though it has a
component due to phase delay). Call this propagation delay R.

The value of R is useful, since the number of packets in the bottleneck queue at the begin-
ning of epoch k +1, nb(k +1), can be estimated by the number of packets being transmitted (‘in
the pipeline’) subtracted from the number of unacknowledged packets at the beginning of the
epoch, S(k). That is,

n̂b(k +1) = S(k) − R µ̂(k)

Since S, R and µ̂(k) are known, this gives us another way of determining n̂b(k+1). This can be used
to update n̂b(k+1) as an alternative to equation (2). The advantage of this approach is that
equation (2) is more susceptible to parameter drift. That is, successive errors in n̂b(k+1) can add
up, so that n̂b(k+1) could differ substantially from nb. In the new scheme, this risk is considerably
reduced: the only systematic error that could be made is in µ, and since this is frequent sampled,
as well as smoothed by the fuzzy system, this is of smaller concern.

There is another substantial advantage to this approach: it enables control actions to be
taken much faster than once per round trip time. This is explained in the following section.

5.7.1. Faster than once per RTT control
It is useful to take control actions as fast as possible so that the controller can react immedi-

ately to changes in the system. In the system described thus far, we limited ourselves to once
per RTT control because this allows us to use the simple relationship between S (k) and λ(k) given
by equation (1). If control actions are taken faster than once per RTT, then the epoch size is
smaller, and that relationship is no longer true. The new relationship is much more complicated,
and it is easily shown that the state and input vectors must expand to include time delayed
values of µ, λ and nb. It is clear that the faster the control actions are required, the larger the
state vector, and this complicates both the analysis and the control.

66

In contrast, with information about the propagation delay R, control can be done as
quickly as once every packet-pair with no change to the length of the state vector. This is
demonstrated below.

We will work in continuous time, since this makes the analysis easier. We also make the fluid
approximation [1], so packet boundaries are ignored, and the data flow is like that of a fluid in a
hydraulic system. This approximation is commonly used [8, 133], and both analysis [97] and simu-
lations show that the approximation is a close one.

Let us assume that λ, the sending rate, is held fixed for some duration J, starting from time t.
Then,

nb(t+J) = nb(t) + λ(t)J − µ(t)J 5.11

where µ is the average service rate in the time interval [t, t +J], and nb is assumed to lie in the
linear region of the space. Also, note that

nb(t) = S(t) − Rµ(t) 5.12

The control goal is to have nb(t+J) be the setpoint value B/2. Hence,

nb(t+J) = nb(t) + λ(t)J − µ(t)J = B/2 5.13

So,

λ(t) =
J

B/2 − S(t) + R µ̂(t) + J µ̂(t)hhhhhhhhhhhhhhhhhhhhhhhh 5.14

which is the control law. The stability of the system is easily determined. Note that n
.

b(t) is given
by

n
.

b(t) =
δ→0
limit

δ
nb(t+δ) − nb(t)hhhhhhhhhhhhhhh = λ(t) − µ(t) 5.15

From equation (5.13),

n
.

b =
J

B/2 − nb(t)hhhhhhhhhhhh 5.16

If we define the state of the system by

x = nb(t) − B/2 5.17

then the equilibrium point is given by

x = 0 5.18

and the state equation is

x
.

=
J

−xhhh 5.19

Clearly, the eigenvalue of the system is -1/J, and since J is positive, the system is both Lyapunov
stable and asymptotically stable. In this system, J is the pole placement parameter, and plays
exactly the same role as α in the discrete time system. When J is close 0, the eigenvalue of the
system is close to −∞ and the system will reach the equilibrium point rapidly. Larger values of J will
cause the system to move to the equilibrium point more slowly. An intuitively satisfying choice of
J is one round trip time, and this is easily estimated as R + S (k)µ(t). In practice, the values of R and
S (k) are known, and µ(t) is estimated by µ̂, which is the fuzzy predictor described earlier.

5.8. Practical issues
This section considers two practical problems: how to correct for parameter drift; and how

to coordinate rate-based and window-based flow control.

67

5.8.1. Correcting for parameter drift
In any system with estimated parameters, there is a possibility that the estimators will drift

away from the true value, and that this will not be detected. In our case, the estimate for the
number of packets in the bottleneck buffer at time k, n̂b(k), is computed from n̂b(k −1) and from
the estimator µ̂(k). If the estimators are incorrect, n̂b(k) might drift away from nb(k). Hence, it is
reasonable to require a correction for parameter drift.

Note that, if λ(k) is set to 0 for some amount of time, then nb will decrease to 0. At this point,
n̂b can also be set to 0, and the system will resynchronize. In practice, the source sends a special
pair and then sends no packets till the special pair is acknowledged. Since no data was sent
after the pair, when acks are received, the source is sure that the bottleneck queue has gone to
0. It can now reset n̂b and continue.

The penalty for implementing this correction is the loss of bandwidth for one round trip time.
If a conversation lasts over many round trip times, then this loss may be insignificant over the life-
time of the conversation. Alternately, if a user sends data in bursts, and the conversation is idle
between bursts, then the value of n̂b can be resynchronized to 0 one RTT after the end of the
transmission of a data burst.

5.8.2. The role of windows
Note that our control system does not give us any guarantees about the shape of the

buffer size distribution N (x). Hence, there is a non-zero probability of packet loss. In many appli-
cations, packet loss is undesirable. It requires endpoints to retransmit messages, and frequent
retransmissions can lead to congestion. Thus, it is desirable to place a sharp cut-off on the right
end of N (x), or, strictly speaking, to ensure that there are no packet arrivals when nb = B. This can
be arranged by having a window flow control algorithm operating simultaneously with the rate-
based flow control algorithm described here.

In this scheme, the rate-based flow control provides us a ‘good’ operating point which is
the setpoint that the user selects. In addition, the source has a limit on the number of packets it
could have outstanding (the window size), and every server on its path reserves at least a
window’s worth of buffers for that conversation. This assures us that, even if the system deviates
from the setpoint, the system does not lose packets and possible congestive losses are com-
pletely avoided.

Note that, by reserving buffers per conversation, we have introduced reservations into a
network that we earlier claimed to be reservationless. However, our argument is that strict
bandwidth reservation leads to a loss of statistical multiplexing. As long as no conversation is
refused admission due to a lack of buffers, statistical multiplexing of bandwidth is not affected by
buffer reservation, and the multiplexing gain is identical to that received in a network with no
buffer reservations. Thus, with large cheap memories, we claim that it will be always be possible
to reserve enough buffers so that there is no loss of statistical multiplexing.

To repeat, we use rate-based flow control to select an operating point, and window-based
flow control as a conservative cut-off point. In this respect, we agree with Jain that the two forms
of flow control are not diametrically opposed, but in fact can work together [67].

The choice of window size is critical. Using fixed size windows is usually not possible in high
speed networks, where the bandwidth-delay product, and hence the required window, can be
large (of the order of hundreds of kilobytes per conversation). In view of this, the adaptive win-
dow allocation scheme proposed by Hahne et al [54] is attractive. In that scheme, a conversa-
tion is allocated a flow control window that is always larger than the product of the allocated
bandwidth at the bottleneck, and the round trip propagation delay. So, a conversation is never
constrained by the size of the flow control window. A signaling scheme dynamically adjusts the
window size in response to changes in the network state. We believe that their window-based
flow control scheme is complementary to the rate-based flow control scheme proposed in this
chapter.

68

5.9. Limitations of the control-theoretic approach
The main limitation of a control-theoretic approach is that it restricts the form of the system

model. Since most control-theoretic results hold for linear systems, the system model must be
cast in this form. This can be rather restrictive, and certain aspects of the system, such as the
window flow control scheme, are not adequately modeled. Similarly, the standard noise
assumptions are also restrictive, and may not reflect the actual noise distribution in the target sys-
tem. These are mainly the limitations of linear control. There is a growing body of literature deal-
ing with non-linear control, and one direction for future work would be to study non-linear
models for flow control.

Another limitation of control theory is that, for controller design, the network state be
observable. Since a FCFS server’s state cannot be easily observed, it is hard to apply control
theoretic principles to the control of FCFS networks. In contrast, FQ state can be probed using a
packet pair, and so FQ networks are amenable to a formal treatment.

5.10. Related work and contributions
Several control-theoretic approaches to flow control have been studied in the past. One

body of work has considered the dynamics of a system where users update their sending rate
either synchronously or asynchronously in response to measured round trip delays, or explicit
congestion signals, for example in references [6, 9, 10, 27, 127]. These approaches typically
assume Poisson sources, availability of global information, a simple flow update rule, and
exponential servers. We do not make such assumptions. Further, they deal with the dynamics of
the entire system, and take into account the sending rate of all the users explicitly. In contrast,
we consider a system with a single user, where the effects of the other users are considered as a
system ‘noise’. Also, in our approach, each user uses a rather complex flow update rule, based
in part on fuzzy prediction, and so the analysis is not amenable to the simplistic approach of
these authors.

Some control principles have been appealed to in work by Jain [116] and Jacobson [63],
but the approaches of these authors are quite informal. Further, their control systems take multi-
ple round trip times to react to a change in the system state. In contrast, the system in §5.9.1
can take control action multiple times per RTT. In a high bandwidth-delay product network, this
is a significant advantage.

In recent work, Ko et al [79] have studied an almost identical problem, and have applied
principles of predictive control to hop-by-hop flow control. However, they appeal primarily to
intuitive heuristics, and do not use a formal control-theoretic model; hence they are not able to
prove the stability of their system. Further, we believe that our fuzzy scheme is a better way to
predict service rates than their straightforward moving-average approach.

A control-theoretic approach to individual optimal flow control was described originally by
Agnew [1], and since extended by Filipiak [38] and Tipper et al [133]. In their approach, a
conversation is modeled by a first order differential equation, using the fluid approximation. The
modeling parameters are tuned so that, in the steady state, the solution of the differential equa-
tion and the solution of a corresponding queueing model agree. While we model the service
rate at the bottleneck µ as a random walk, they assume that the service rate is a non-linear func-
tion of the global queue length (over all conversations), so that µ = G (nb), where G (.) is some non-
linear function. This is not true for a FQ server, where the service rate is independent of the
queue length. Hence, we cannot apply their techniques to our problem.

Vakil, Hsiao and Lazar [137] have used a control-theoretic approach to optimal flow control
in double-bus TDMA local-area integrated voice/data networks. However, they assume
exponential FCFS servers, and, since the network is not geographically dispersed, propagation
delays are ignored. Their modeling of the service rate µ is as a random variable instead of a ran-
dom walk, and, though they propose the use of recursive minimum mean squared error filters to
estimate system state, the bulk of the results assume complete information about the network
state. Vakil and Lazar [138] have considered the design of optimal traffic filters when the state is

69

not fully observable, but the filters are specialized for voice traffic.

Robertazzi and Lazar [119] and Hsiao and Lazar [60] have shown that, under a variety of
conditions, the optimal flow control for a Jacksonian network with Poisson traffic is bang-bang
(approximated by a window scheme). It is not clear that this result holds when their strong
assumptions are removed.

In summary, we feel that our approach is substantially different from those in the literature.
Our use of a packet pair to estimate the system state is unique, and this estimation is critical in
enabling the control scheme. We have described two provably stable rate-based flow control
schemes as well as a novel estimation scheme using fuzzy logic. Some practical concerns in
implementing the scheme have also been addressed.

The control law presented in §5.9.1 has been extensively simulated in a number of scenarios
and the results are presented in Chapter 6. The results can be summarized as

g The performance of the flow control with Fair Queueing servers in the benchmark suite
described in reference [23] is comparable to that of the DECbit scheme [117], but without
any need for switches to set bits.

g The flow control algorithm responds quickly and cleanly to changes in network state.

g Unlike some current flow control algorithms (DECbit and Jacobson’s modifications to 4.3
BSD TCP [63, 117]), the system behaves extraordinarily well in situations where the
bandwidth-delay product is large, even if the cross traffic is misbehaved or bursty.

g Implementation and tuning of the algorithm is straightforward, unlike the complex and ad-
hoc controls in current flow control algorithms.

g Even in complicated scenarios, the dynamics are simple to understand and manage: in
contrast the dynamics of Jacobson’s algorithm are messy and only partially understood
[156].

In conclusion, we believe that our decision to use a formal control-theoretic approach in
the design of a flow control algorithm has been a success. Our algorithm behaves well even
under great stress, and, more importantly, it is simple to implement and tune. These are not for-
tuitous, rather, they reflect the theoretical underpinnings of the approach.

5.11. Future work
This chapter makes several simplifications and assumptions. It would be useful to measure

real networks to see how far theory and practice agree. We plan to make such measurements in
the XUNET II experimental high speed network testbed [69]. Other possible extensions are to
design a minimum variance controller and a non-linear controller.

5.12. Appendix 5.A - Steady state
As a sanity check, consider the steady state where µ does not change. We prove that in

this case λ is set to µ, and that the number of packets in the bottleneck will be B/2.

In the steady state, any sensible estimator µ̂(k) will converge, so that µ̂(k) = µ̂(k+1) = µ. We will
assume that we are starting at time 0, that nb(0) = 0 and that α = 1.

In the steady state, the state equation (2) becomes

nb(k +1) = nb(k) + λ(k+1)RTT(k +1) − µ(k+1)RTT(k +1)

We assume that the estimators converge to the correct value, since there is no stochastic varia-
tion in the system. Hence,

RTTˆ = RTT for all k

This makes the control law

λ(k+1) =
RTT (k)

1hhhhhhh[B/2 − n̂b(k) − S(k) + µRTT (k) + µRTT(k)]

%

λ(k+1) = 2µ − λ(k) +
RTT (k)

1hhhhhhh[B/2 − n̂b(k)]

The first packet pair estimates µ, and, for simplicity, we assume that this is exactly correct.
Hence,

λ(1) = 2µ − µ +
RTT (1)

1hhhhhhh(B/2)

λ(1) = µ +
RTT(1)

B/2hhhhhhh

The buffer at the end of epoch 1 is given by

nb(1) = 0 + (µ +
RTT(1)

B/2hhhhhhh)RTT (1) − µRTT (1)

nb(1) = B/2

To check further, at time 2, we get

λ(2) = 2µ − µ +
RTT(2)

1hhhhhhh[B/2 − B/2]

and, since n̂b(k+1)(1) = B/2.

=> λ(2) = µ

And,

nb(2) = B/2 + µRTT (2) − λ(2)RTT (2)

nb(2) = B/2 5.A1

So, the buffer is B/2 at time 2. Let us see what λ(3) is when λ(2) is µ.

λ(3) = 2µ − µ +
RTT (3)

1hhhhhhh[B/2−B/2]

λ(3) = µ

So, if λ(k) = µ and nb(k) = B/2, λ(k +1) = µ, and λ is fixed from time 3 onwards. From (5.A1) we see
that if λ = µ and nb(k) = B/2 then nb(k +1) = B/2. Thus, both the recurrences reach the stable point
at (µ, B/2) at time 3. Thus, if the system is steady, so is the control. This is reassuring.

5.13. Appendix 5.B - Linear quadratic gaussian optimal control
This section considers an approach to optimal control, and shows that it is infeasible for our

system. We consider optimal control of the flow control system described in §5.5. One optimal
control technique that is popular in the control theoretic literature is Linear Quadratic Gaussian
(LQG) control. This technique provides optimal control for a linear system where the goal is to
optimize a quadratic metric in the presence of gaussian noise. We follow the description of LQG
presented in [102] (pg. 835).

The quadratic performance index to minimize is given by

J = xTQ x

where the state vector x is modified so that it reflects a setpoint of nb at B /2. Thus, minimizing the
expected value of J will keep the state close to the setpoint, so that the system is close to
optimal.

There is a problem with this formulation. Classical LQG demands that J include a term that
minimizes u (the control effort). In our case, we are not interested in reducing u, since a) increas-
ing u is not costly and b) in any case, the goal is to send at the maximum possible rate, and this
corresponds to maximizing u rather than minimizing it! If we impose this restriction, then we can
no longer do standard LQG.

71

We can get around this problem by modifying the criterion so that

J = xTQx + uTεIu

and then considering the control as ε → 0 (assume for the moment that the limit of the series con-
verges to the value of the control at the limit). However, note that the Kalman criterion for stabil-
ity of the optimal control is that:

rank [Q 2
1hhh *

| G*Q 2
1hhh *

| (G*)2Q 2
1hhh *

] = 3 5.B1

where Q 2
1hhh

is defined by Q = Q 2
1hhh

Q 2
1hhh

, and the * denoted the conjugate transpose operator. If we
want to minimize (nb − B/2)2, then

Q =
R
J
Q00 0
0 0 0
1 0 0 H

J
P

Thus, the rank of the matrix in (5.B1) is 1, which is less than 3. Hence, the Kalman stability criterion
is not satisfied, and the LQG optimal control is not stable.

Note that the problem with the control is not due to our assumption about R being εI.
Rather, this is because of the nature of the matrix Q. However, the nature of Q is determined
completely by the form of x and the nature of the control problem itself. We conclude that for
this system, stable LQG control is not feasible.

72

