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Abstract

The interreflection of light between surfaces is gov-
erned by an integral equation. Existing radiosity al-
gorithms approximate the solution of this integral
equation by transforming it into a system of linear
equations. It is shown that such algorithms are sim-
ple applications of the finite element method.
Techniques are presented for applying more ad-
vanced finite element techniques to the global illu-
mination problem in order to yield more accurate
results. First, piecewise-linear, piecewise-quadratic,
and higher order elements are discussed as a supe-
rior alternative to current piecewise-constant radios-
ity assumptions. Second, Galerkin techniques are a
more robust alternative to current point collocation
(point sampling) techniques. Finally, occlusions in
a scene give rise to discontinuities such as shadow
edges in the solution function. Discontinuity meshing
is introduced as a technique for resolving these dis-
continuities by adaptive placement of element bound-
aries. Illustrations, algorithms, and results are given
for two-dimensional radiosity in flatland problems.

1 Introduction

Many applications in computer graphics require re-
alistic image synthesis. Lighting design for architec-
tural CAD, product design, and special effects for
entertainment all strive toward realistic simulation
of illumination in complex three-dimensional scenes.
One of the most difficult aspects of realistic image
synthesis is the accurate and efficient simulation of
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global illumination effects: the illumination of each
object by every other object in the scene.

Previous methods for global illumination generally
fall into three classes: ray tracing methods, radios-
ity methods, and hybrid methods. Ray tracing algo-
rithms are generally best suited to scenes of specular
reflecting and transmitting surfaces [Whi80], while
radiosity methods are generally limited to diffuse
scenes [SHSI,GTGB84,NN85,CG85]. Ray tracing
methods can be generalized to diffuse environments
[Kaj86,WRC88], and radiosity methods can be gener-
alized to specular environments [ICG86], but to date
these extensions have not resulted in very efficient al-
gorithms. The third class of algorithms are hybrids
of ray tracing and radiosity techniques, typically em-
ploying multiple passes [WCG87,SP89,5hi90,Hec90].

These methods can be viewed as numerical ap-
proximation methods for solving the integral equa-
tion governing light transport. This integral equa-
tion is called the rendering equation in the computer
graphics literature [Kaj86], or the mutual illumina-
tion equation in computer vision [KvD83]. Ray trac-
ing solves the integral equation using point sampling
and Monte Carlo integration, while radiosity methods
solve the problem as a system of linear equations.

Parallel to this computer graphics research, many
of the same problems have been studied in the ther-
mal radiation literature, although with different em-
phasis. Thermal radiation problems typically are less
concerned with appearances and details than with ac-
curate measurements of light level or temperature, for
example, so they typically do not admit the complex
3-D scenes encountered in graphics rendering algo-
rithms. Instead, the early thermal radiation litera-
ture has focused on the simulation of simple scenes
using analytic techniques [SH81]. More recently, ap-
plication of the finite element method has facilitated
the extension to more complex problems involving
conduction and convection in addition to radiation.



Such problems are governed by integro-differential
equations [Chu88]. Some of these techniques have
recently been applied to computer graphics problems
for the simulation of absorption and scattering in par-
ticipating media [Rus87].

Previous research on image synthesis has typically
pursued one of the two goals: speed or visual realism.
The speed of radiosity algorithms has been improved
dramatically by the introduction of progressive ra-
diosity techniques [CCWGSS]. Visual realism, a sub-
jective measure of image quality, has been pursued for
applications in special effects for film and television.
There has been relatively little emphasis among com-
puter graphicists of objective, numerical accuracy
(with a few exceptions: [WRC88,BRW89,HS90]).
The relevance of accuracy in image synthesis will
grow as computer graphics techniques increasingly
come to be used for interdisciplinary scientific and
engineering simulations.

Our goal in this paper is to develop more accu-
rate algorithms for the simulation of global illumina-
tion. To achieve an accurate result, we must combat
all significant sources of error, including those arising
in the stages of problem statement, discretization or
sampling, and solution.

Global illumination problems have a different char-
acter from many integral equations studied in en-
gineering, because of the importance of occlusions.
Occlusions in a scene cause discontinuities such as
shadow edges in the resulting intensity function.

We borrow three main techniques from the finite
element literature: the use of higher order elements
to more accurately represent solution functions, ma-
trix formulation techniques for robustly transform-
ing an integral equation into a systemn of equations,
and a priori meshing techniques to choose a finite el-
ement (subdivision) mesh sensitive to discontinuities
and singularities in the problem.

Most of the techniques described in the paper are
quite general and can be applied to global illumi-
nation problems involving diffuse and specular sur-
faces, participating media, and wavelength and time-
dependence. Equations are given in their most gen-
eral form, where possible, but to help intuition, some
of the discussion is limited to the simulation of ra-
diosity in a two-dimensional flatland world.

The remainder of the paper consists of the fol-
lowing parts. First, the integral equation governing
global illumination is reviewed, and its properties are
discussed. Then general approximation techniques
and finite element techniques are reviewed and ap-
plied to the global illumination problem. Techniques
for solving the equations and for intelligent meshing
are then discussed. Finally, results and conclusions

are given.

2 Physical Foundation

The primary source for the underlying equations
used in radiosity work to date is the thermal engi-
neering literature based on classical electromagnetic
theory[SH81]. Unfortunately, in practice, the engi-
neering accuracy requirements have been quite dif-
ferent from those needed for high quality renderings.
In particular, discrete bulk transfer quantities under
many simplifying assumptions are sufficient for many
engineering calculations, while continuous quantities
are desirable for computer graphics. To achieve this
latter accuracy goal it is necessary to start from a
more general physical model and carefully choose the
allowable simplifications and approximations.

Consider the problem of global illumination by par-
ticipating media in a closed domain §2 with boundary
T in ®3. To reduce complexity, geometric optics is
assumed (A = 0), thus ignoring the effects of inter-
ference and diffraction. In general, all of the terms
considered may have spectral, spatial, angular, tem-
perature and time dependences. For many graphics
needs, it is often possible to ignore many of these
physical dependences.

2.1 Conservation of Energy

Conservation of energy at a boundary in the domain
provides the definition for the outgoing intensity of
light Iy, of wavelength A, at position x, in outgo-
ing direction @gy, at time ¢, due to the emission,
reflection and transmission:

Iouc(A’ X, Oout; t) = C(Aa x, Oout, t) (1)
+ /abd(A) X, Oy, eout, t)Iin(Aa X, G)ixn t) COS(B'm) d“)in

where the surface quantities at x are:

SYMBOL MEANING
€ emissivity
w solid angle domain

for all incoming radiation

Obd bidirectional scattering function
Ly incoming light intensity

Oin incoming direction

6in angle between the incoming

direction and surface normal

The scattering function opq combines the bidirec-
tional reflectivity, ppa, and the bidirectional trans-
missivity, Tpa. See [SH81,Kaj86,Rus87,Rus89)] for a
complete derivation.



In a closed domain, Eq (1) may be simplified by a
change of variable: the integral of incident directions,
w, becomes an integral over all surfaces I, with the
introduction of the visibility factor V, in the inte-
grand:

Iout(A’ x, Ogut, t) = C(A’ x, O outs t)
<+ /Ubd(A, X, Oin, Oout, t)Iont(Av X, c:)onta t)
r

Cos(g'm)cos(éout) d%
llx — |

V(x, %) (2

where @,y and 6., are evaluated in the context
of the surface at X. In the two-dimensional case,
the change of variable results in a denominator of
2|Ix — %|| instead of ||x — %||*.

In general, the visibility factor accounts for inten-
sity gain or attenuation by any intervening partici-
pating media and requires a path integral. This re-
sults in an integro-differential equation system for the
intensity in the domain [SH81,Rus87,Chu88]. When
no participating media is present, V may be simply
defined as

1 if x is visible from x

V(ix,%) = .
(x, %) 0 otherwise

and the energy conservation Eq (2) reduces to integral
equation form.

2.2 The Integral Equation

Eq (2) is a Fredholm integral equation of the second
kind in x [KvD83,Kaj86,DM85] and may by written:

u(x) = e(x) + /rrc(x, X)u(X)dx 3

where the integral kernel, «, is given by

n(x, i) = Ubd(/\a X, OQin, Oouts t)
c0s(6in) c08(Bout)

Vix, %
e —

and u and e correspond to Iyt and € respectively.
For the case of perfect diffuse scattering {(opq in-
dependent of ®) the correspondence traditionally in-
cludes a factor of » to account for the constant angu-
lar dependence and u is termed radiosity: u = Tlou.

Eq (3) is often abbreviated as
u=e+ Ku (4)

where Ku denotes the integral operator

(Ku)(x) = /rx(x, X)u(X) dx

H
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Figure 1: Flatland test scene. All edges are reflective
except dashed edge BC at top, which is a light source,
and angled edge, which is black. The angled obsta-
cle causes a sharp shadow edge at p and a gradual
penumbra at q.

3 Understanding the Integral
Equation in Flatland

In a three-dimensional world, it is difficult to visu-
alize the global illumination equation and to test al-
gorithms for its solution because of the high dimen-
sionality of the functions involved. In full general-
ity, intensity is a function of three-dimensional posi-
tion x, two-dimensional direction ©,,¢, wavelength,
and time, for a total of seven variables. The kernel
x for such a problem would have even more dimen-
sions. Clearly it is difficult to understand such com-
plex functions.

To simplify the problem, we temporarily re-
strict our attention to rediosity in flatland: a two-
dimensional world consisting of opaque, diffuse ob-
jects [Abb84]. For now, we will restrict ourselves fur-
ther to a static scene with closed polygonal shapes,
diffuse light sources, no wavelength-dependence (i.e.
grayscale), and no participating media.

In this flatland world the global illumination prob-
lem reduces to the determination of the radiosity
(a scalar) at each point on the edges of the poly-
gons. A flatland scene is shown in Fig 1. Instead
of shading two-dimensional surfaces and computing
two-dimensional integrals, as we do in 3-D graphics,
in flatland graphics we shade one-dimensional edges
and compute one-dimensional integrals. Relative to
three-dimensional worlds, in flatland one finds that
analytic results are easier to come by, algorithms are
easier to debug, brute force techniques such as Monte
Carlo integration converge faster, and it is possible to
compute approximate solutions so accurate that they
can be regarded as exact. This facilitates the use of
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Figure 2: Radiosity as a function of arc length along
the non-black edges of test scene. Note the sharp
shadow edge at p and the gradual one at q.
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Figure 3: Visibility geometry for edge points with
parameter values s and t.

quantitative error metrics for the objective compari-
son of algorithms.

3.1 Integral Equation for Radiosity
in Flatland

Suppose the scene consists of m edges, and the
length of edge i is L;. Each edge i is parameterized
by a variable s;, which runs from 0 to L;, and the
radiosity along each edge is given by u;(s;). For con-
venience, we abut the domains of these functions in
arbitrary order to create a single function u(s) param-
eterized by s, which runs from 0 to L =3 ; L;. Note
that this concatenation introduces explicit disconti-
nuities at edge endpoints. The radiosity function can
now be plotted as a piecewise-continuous function as
shown in Fig 2.

For simplicity, we assume that each edge has con-
stant reflectivity p and constant emittance e. Edges
are reflectors if p > 0, and light sources if e > 0, and
occasionally both. Reflectivity is a unitless quantity
between 0 (black) and 1 (perfect white). Generally,
because it is difficult to keep surfaces clean, the max-
imum practical value for p is .85 .

In flatland, radiosity is determined by the Fred-

holm integral equation

cosd(s,t) cosb(s, )V (s,t)

L
() = ele)ale) [ deute) XD

(5)
which is a special case of Eq (2). This integral equa-
tion can be written in the general form of second-kind
equations (Eq (4)) by defining the kernel:

cosd(s,t) cosf(s,t) V(s,1)

K(s,t) = p(s) 2r(s, 1)

Since we have abutted the domains of the edges in
the scene, the kernel’s domain consists of rectangular
blocks corresponding to pairs (i, j) of edges. The ker-
nel is discontinuous at the boundaries of the blocks,
and also along occlusion curves that trace out hy-
perbolas in st space, (see Fig 15). Note also that the
kernel is singular at reflex corners in the scene (where
touching surfaces face each other), because kK — oo
asr— 0.

3.2 Properties of the Solution Func-
tions

We can derive many of the qualitative properties of
the exact solution function u(s) from the properties of
the kernel and the geometry of the scene, even with-
out solution algorithms. Eq (5) has a unique solution
if the integral of the kernel is bounded [DM85].

We call discontinuities in the kth derivative of a
function D* discontinuities. A function has a D
discontinuity at a point if it is C¥~! there but not
C*. Shadows due to a point light source can cause
DO discontinuities in the value of the radiosity. Area
light sources cast hard shadows with DP discontinu-
ities when objects touch, and soft shadows with D!
discontinuities when objects do not touch (Fig 4).
The pattern generalizes to higher order discontinu-
ities. If there is a D* discontinuity at a point on
one edge, then it can cause D* discontinuities at all
touching points visible to it, and D*+! discontinuities
at the projection of all of the silhouette points from
its point of view. A D* discontinuity in the normal of
a curve can cause a D* discontinuity in the radiosity
at that point. If there are no occlusions in a scene
then there are no shadows and the only discontinu-
ities come from the edge endpoints.

3.3 Neumann Series Approximation

There is no cookbook solution method for integral
equations; most cannot be solved analytically. Ex-
act solutions to equation Eq (5) are known only in
the simplest geometries. Even the case of two unit,
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Figure 4: D! and D° discontinuities caused by area
light source at top illuminating an occluded edge at
bottom. D! discontinuities delimit the penumbras at
a2’, al’, b2’, and b1’. D? discontinuity at the hard

shadow edge cl’.

reflective edges forming a right-angle corner, illumi-
nated from infinity, has no known analytic solution
[Hor77).

Approximate solutions to many integral equations
can be found iteratively. Starting with some initial
guess u(%)(s), subsequent approximations are defined
by

u® = e + Kuli-1)

If we start with u(®) = e, then the ith approximant
is the truncated series

u® = e+ Ke+ K?e+ -+ K'e

where K* denotes i successive applications of the in-
tegral operator K. If the kernel x has largest eigen-
value with magnitude less than 1, then the sequence
u(¥) converges [DM85], and the exact solution is given
by the Neumann series

w .
u=ul® = ZKZ'e

s=0

(6)

For global illumination, the ith term (K‘e)(s) is the
light that reaches the point s after exactly i ‘hops’
[Kaj86], where a hop is an unoccluded straight-line
path between surfaces. The approximant u(")(s) is
the light that reaches point s in ¢ hops or fewer.

Figure 5: Propagation of discontinuities. Solid lines
show edges in scene; dotted lines show rays of light
leading to discontinuities.

Early illumination models (what Kajiya called the
‘Utah approximation’) simulated only direct illumi-
nation u(}) = e + Ke; global illumination attempts
to compute u(®), Unfortunately, it appears impossi-
ble to perform the multiple integrals K'e analytically
even for radiosity in flatland.

3.4 Propagation of Discontinuities

Using the Neumann series, however, we can discover
more qualitative properties of the solution function.
Earlier we noted that shadows from point and area
light sources cause D° and D' discontinuities, re-
spectively. Using the Neumann series we can show
how higher order discontinuities arise after additional
hops of light.

Theorem: There can be an infinite number of dis-
continuities of various orders in the radiosity func-
tion.

Proof: This is proven with an example. Consider
the scene in Fig 5 that consists of three reflective and
emissive edges in a triangle and m — 3 black edges
on a line in their interior. Let ¢; denote the num-
ber of D’ discontinuities in u(¥). If each triangle edge
has a different emittance, then go = 3. After one
hop, each corner creates one D' shadow edge from
each end of the interior edges, so ¢; = 3 x 2(m — 3).
After subsequent hops, each I’ discontinuity creates
2(m — 3) D*+! shadow edges, but one of these is coin-
cident with its ‘grandparent’ D*~! discontinuity, and
in general the remaining 2m — 7 shadow edges will
not be coincident with lower order discontinuities, so
¢i = 6(m — 3)(2m — 7)*=1 for i > 1. The exact solu-
tion u(°) will have all of these discontinuities. The
number of discontinuities of all orders is thus infinite.

The preceding scene achieves the asymptotic upper



bound on the number of discontinuities of each order.
In any scene, any endpoint can cause at most 2m
shadow edges, so ¢; < 2mg;.,, and g; = O(m).

The possibility of so many discontinuities suggests
that no analytic solution to the integral equations for
global illumination is possible in general. We there-
fore turn to numerical approximations.

4 Approximation Techniques

In the ensuing discussion of approximation techniques
the assumptions made by existing radiosity algo-
rithms will be identified and more advanced tech-
niques introduced.

The underlying functions in the solution approxi-
mation subspaces are frequently referred to as basis
functions. These functions may provide global sup-
port (non-zero anywhere) as typified by the Rayleigh-
Ritz or spectral techniques [Fle84]. Alternately, tech-
niques based on functions with only local support
(non-zero only in a small portion of the domain) such
as spline based or finite element methods are possible.
These latter techniques have gained increasing popu-
larity for their computational robustness and ability
to easily model complex geometry.

Consider an approximate solution function # de-
fined by a linear combination of a finite number, neq,
of linearly independent basis functions Nj:

fleq

t=tu N1+ tuNo+--- = Eﬁ.‘N,’
s=1

where the i; are unknown generalized coefficients.
The interpolation basis functions are not limited to
spatial dependence but in fact may be functions of
x, A, O, t, etc. For simplicity in the following pre-
sentation only spatial dependence will be considered
(shapes = N;(x)) and the domain will be restricted
to . For global illumination in the absence of partic-
ipating media the domain may be further restricted
to I. Furthermore, the presentation is limited to lin-
ear Fredholm integral equations of the second kind.
The generalization to nonlinear equations and their
associated solution using iterative techniques such as
Newton-Raphson iteration is quite straightforward.

In general, no combination of #; values will exactly
satisfy the governing equation Eq (2), since the space
of all such i is a proper subspace of the space of all
piecewise-continuous functions. The residual error of
the approximate solution # is defined as:

r(x) = e(x) + Ax(x, X)a(X) dx — G(x)

The exact solution has a residual that is identically
zero. A “good” approximation is one for which r is
small everywhere in €.

The following subsections define different ap-
proaches to determining the unknown coefficients to
minimize the resultant residual error. The method
of weighted residuals is the general approximation
technique from which point collocation and Galerkin
methods may be derived.

4.1 Method of Weighted Residuals

The method of weighted residuals forces the resid-
ual error due to the approximate solution to be as
small as possible with respect to a specified set of
weighting functions {Fin72]. Requiring the residual
to be orthogonal to a given set of weighting functions
w;(x) over { results in

0= Ar(x)w.»(x) dx
= ./n[e(x) +/nn(x, X)u(x)dx — ﬁ(x)] w;(x) dx

After performing the double integration over the do-
main, the solution of the resulting algebraic equations
in the generalized coefficients provides the approxi-
mate solution. For the linear finite dimensional case
the problem may be expressed in equivalent matrix
form as

G

where i consists of the unknown coefficients {;} and
the generalized stiffness matrix is composed of two
terms

(8)

Au=¢

A=M-K
the first part, M, given by a single integral

M;; = Lw.-(x)N,-(x) dx

and the second, K, requiring double integration

K;; = Lw,-(x) /nfc(x, X)N; (%) dx dx

Finally, the right-hand-side or forcing vector, &, is
given by

&= /e(x)w.-(x) dx 9
0

4.2 Point Collocation Method

In point collocation techniques the residual is forced
to zero at a given set of points X3, X2 ..., Xn,, €qual



in number to the number of unknowns in the approx-
imate solution {BD89]. This is equivalent to choosing
weighting functions composed of Dirac deltas located
at the collocation points, wi(x) = §(x—x;), resulting
in neq equations r(x;) = 0 in neq unknowns:

a(x;) = e(xi) + /nle(x;,i)ﬁ(i) dx (10)
Note that one level of integration over the domain
has been eliminated, substantially reducing the com-
putational effort.

In principal, any arbitrary distribution of points
may be used. Typically, the points are distributed
uniformly with respect to basis function support.
This improves the conditioning of the resultant ma-
trix system. For radiosity problems, some care must
be taken in the choice of collocation points as points
near reflex corners may lead to evaluations of singular
kernels.

Traditional radiosity algorithms in computer
graphics [GTGB84,CG85,CCWG88] employ numer-
ical approximations that correspond to elementary
point collocation techniques with piecewise-constant
basis functions. With these restrictions, the #;
may be interpreted as polygon radiosities and M
is the identity: M = I Typically the matrix K
is computed by rendering the scene from the point
of view of the polygon centers, which are used as
the collocation points. Rendering can be done us-
ing either a hemicube [CG85] or by ray tracing
[Kaj’86,WEH89,BF89]. Both are a form of numeri-
cal integration of the kernel in Eq (10). In certain
geometries, it is possible to compute the integrals an-
alytically [BRW89].

The vector & is a point sampling of e(x;), corre-
sponding to the constant emittance of each polygon.

After the system of equations is solved, the results
are often displayed using Gouraud shading, yielding
an image that is piecewise-linear in intensity. This is
really just a display hack that helps conceal the errors
of a piecewise-constant radiosity solution. The results
may be free of artifacts and subjectively acceptable,
but they will be much less accurate objectively than
those of a true piecewise-linear formulation [Hec91].

4.3 Galerkin Method

In the Galerkin method the weighting functions are
chosen equal to the basis functions for the solution
[Fle84).

wi = Ny

(11)

The result is an approximate solution whose resid-
ual error is orthogonal to the space of solutions and

thus to the solution itself. A desirable byproduct of
this choice is that it generally minimizes the error in
the natural energy norm. Additionally, for symmetric
kernels the resultant equation system is also symmet-
ric A;; = Aji. This both reduces the computational
workload and considerably improves the robustness
of associated numerical algorithms [Chu88]. Galerkin
methods provide consistently accurate, robust solu-
tions to a wide variety of engineering problems and
will be used as the foundation for the finite element
solution technique developed in the next section.

5 Finite Element Techniques

The preceding approximation techniques placed lit-
tle restriction on the basis functions N;. In this sec-
tion the effect of constraining the basis functions to
the finite element form is considered. The finite ele-
ment method provides a comprehensive and system-
atic technique for the construction of piecewise inter-
polation functions over arbitrary domains [BCO81,
Hug87). When simulating global illumination with
participating media, one uses volumetric finite ele-
ments, but when simulating non-participating media,
as in our examples here, one uses two-dimensional el-
ements embedded in a three-dimensional space, and
the matrix formulation and computational procedure
most closely resemble the doundary element method
[Fle84,BD89]. In either case, the same basic steps
apply.

In particular, the solution domain, Q, is discretized
into a finite element mesh, a collection of n¢ subdo-
mains or elements, ¢, and their associated nodes.
As in the previous section, I' may be substituted for
Q if no participating media are present. Nodes are
special points within or on the boundary of elements
that facilitate mesh construction and basis function
definition. The piecewise basis functions are then lim-
ited to local support, i.e. they are only non-zero in
the elements connected with their associated nodes.
In finite elements these are often referred to as shape
functions. Within each element, simple polynomial
forms are typically used.

Unfortunately, a great deal of notation is required
to precisely describe the relationships between global
and element quantities and their associated calcu-
lations [Hug87]. The enormous payoff, however, in
generality and ease of implementation is well worth-
while, and the bookkeeping required is quite straight-
forward.

For example, one-dimensional line elements (neq =
1) are defined in terms of a sequence of element end-
points (nodes), z;, where 0 = z<z;<...<z, = L.
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Figure 6: Piecewise-constant (box) and piecewise-
linear (hat) functions.

These points are analogous to knot vectors for splines
[BBB87]. The simplest basis functions, and those
currently used by the majority of radiosity solution
algorithms, are the piecewise constant (box) func-
tions: £
N(O) = 1 2, <z<Zi41
(@) 0 otherwise

The next order higher, and more familiar to the aver-
age finite element user, are the piecewise linear (hat)
functions given by:

!7-.1‘2‘._1 1 . .

N P ife;1<z<z;
A ) = Ty41—T . 5 A

;=) P ifzj<z<zin

otherwise

Examples of these function classes are shown in
Fig 6, generalization to higher polynomial powers is
straightforward.

The property of local support substantially reduces
the computational effort required to evaluate the inte-
grals in the preceding section. The integrals over the
continuous domain 2 become sums of integrals over
the set of elements ¢, which in turn only require
evaluation for their associated basis functions since
all other basis functions will be zero within that Q¢.

To guarantee sufficient conditions for convergence
as the mesh of elements is refined the following three
requirements on the basis functions are imposed:
smoothness on the interior of each element 9°; con-
tinuity across the boundary of each element I'*; and
spanning of linear functions. Less necessary but still
desirable attributes include well graded meshes (no
abrupt changes in adjacent element areas) composed
of elements with good aspect ratios (no slivers). In
practice these conditions impose significant restric-
tions on the form of the finite element mesh. In fact,
the vast majority of polygonal meshes constructed for
radiosity solutions to date are inappropriate for finite
element based solution techniques. In particular, due

to poor mesh construction, attempts to use higher-
order interpolation will violate the second continuity
requirement wherever T-vertices occur [BMSW91].

By default, most meshes are constructed by max-
imally connecting the degrees-of-freedom of adja-
cent elements at shared nodes. This introduces an
element-dependent degree of continuity in the solu-
tion. Optionally, selected adjacent elements may be
connected with lower degree continuity in a manner
similar to the use of double knots in splines. This
proves to be a crucial capability for supporting the
necessary D* meshing discussed later. In radiosity
solutions, the equations remain well posed even with-
out any element connectivity. However, the effort re-
quired to obtain the solution may increase.

5.1 Isoparametric Elements

Isoparametric elements satisfy the above require-
ments and additionally provide a valuable degree of
flexibility in modeling and programming convenience.
Isoparametric elements use the same parametric basis
functions for both the spatial and radiosity solution
interpolation. A simple n.q-dimensional domain, O,
provides the master parametric domain for element-
level function mapping and evaluation. In two di-
mensions for example, neg = 2, O is chosen to be
the bi-unit square, £ € [-1,1] x [-1,1]. The spa-
tial coordinates, x € R™<¢, within an element, e, are
interpolated by

fen

x(6) = Y _ Na(£)xS (12)
a=1

where n., is the number of element nodes, N, are
the local element basis functions and x¢ are the local
nodal coordinates. Isoparametric elements interpo-
late the corresponding local approximate solution by

Nen

W(€) =Y _ Na(O)ig (13)
a=1

where 4 are the local nodal solution values. An
example of the mapping for the simplest two-
dimensional isoparametric element, the bilinear
quadrilateral, is shown in Fig 7. Note that for valid
invertible mappings neq < n,q and the element must
be convex.

Implicit in the above definition is the standard
finite element local-to-global index relationship, L.
More specifically, global index is related to the local
element index by i = L(a,e). In theory, the L rela-
tionship may be expressed as a large sparse Boolean
matrix. In practice, all element calculations may be
performed in the small (a,e)-space and the results
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Figure 7: Isoparametric map for bilinear quadrilat-
eral element.

assembled into the global space through indirection.
This is one of the fundamental advantages of the fi-
nite element technique.

An advantage of the use of isoparametric interpola-
tion becomes immediately apparent in the evaluation
of element-level integration. A simple change of vari-
ables allows the integration to be performed over the
fixed master domain:

[ 1ax = [ 1)1 e

where f(x) is an arbitrary function and J(£) is the
Jacobian determinant of the spatial mapping J(§) =
det(9x/8£). Other forms of parametric mappings
in which the order of the spatial interpolation is
lower (subparametric) or higher (superparametric)
than that used for the solution interpolation are also
possible. Additionally, the use of higher order spatial
interpolation provides a natural mechanism for the
geometric approximation of curved surfaces.

Finally, it should be noted that the basis functions
are not limited to simple polynomial form (Lagrange
family) but may be constructed in a variety of ways
(Serendipity, rational, or Hermite families). However,
the degree of polynomial completeness directly con-
tributes to the overall accuracy of the element.

5.2 Numerical Integration Methods

For simple interpolation functions and constant Jaco-
bian mappings it is possible to compute point to area
integrals analytically [BRW89]. As the scene becomes
more complex, and the basis functions higher order,
analytic evaluation becomes infeasible. A variety of
numerical integration techniques exist for evaluation
of multi-dimensional integrals. The most common

form for finite element domain integration involve
the cartesian product of one-dimensional numerical
Gaussian integration rules. Integration of an arbi-
trary function, f, on an isoparametric element in a
one dimensional domain is optimally approximated
by

Npts

[ 5mdx = [ 5x(©)7 de = Y 0,1 x(E)IE)
" ; = (1)

where np, is the number of Gaussian integration
points and @, and f; are the corresponding weights
and locations. The np, rule provides exact results for
polynomials up to degree 2np¢ + 1. For the multi-
dimensional case, ney > 1, one-dimensional rules are
applied repeatedly for each dimension. The multiple
indices, products of weights, and summations can be
remapped into a single index 1,...,n;‘3, = (Npts)"ee
for simplicity.

Recent boundary element research has investigated
adaptive subdivision strategies for accurate evalua-
tion of singular integrands. Experience indicates that
the lowest order Gauss rules generating non-singular
matrices are sufficient for the majority of the element
to element calculations. Analytic or adaptive integra-
tion is needed for the special edge and corner cases
or where elements are in close proximity [BRW89].
Fully adaptive methods based on a posteriori integra-
tion error estimates typically require many additional
integrand evaluations even for the most common case
in which adaptation is terminated at the lowest level
of refinement. Hybrid adaptive strategies in which
integration order is predicted a priori based on el-
ement proximity indicators provide reasonable cost
alternatives.

5.3 Element Matrix Formulation

Combining Galerkin approximation methods with
isoparametric finite element basis functions and nu-
merical integration, Eqs (7)—(9), (11), (12), (13), and
(14), allow us to approximate radiosity problems us-
ing basis functions of arbitrary order and Galerkin
techniques. The approximation yields a system of lin-
ear equations: Ati = & where A = M — K. M may
be computed using an assembly of small element level
matrices, M¢,

el
M= 4 M®
e=1

where the assembly operator .4 combines summation

and local to global index transformation using L.
Each element level contribution may be computed

independently, thus M may be assembled one element



at a time using M*¢ approximated by:

ncd

Pls
My =Y BpNa(§E)No(£7)
p=1
where a and b are limited to 1,...,n¢p.

Similarly, the element level K¢/ relating two ele-
ments e and f at a time is approximated as

n;il V ";2-
K =3 @, No(E) Y wer(Es, E)No(E])
p=1 q=1

and can be assembled into global form using

Net Nel
K=A4 A
ex] f=1

K¢/

Finally, & is formed by assembling the &° approxi-
mations given by

ned

pts
&~ Y Bpe(§)Na(§y)
p=1
Only one element at a time need be processed.

In practice, the small dense element level quanti-
ties are computed one at a time and assembled on
the fly into the large sparse global equivalents. This
elegantly structured “element view” of the problem
tremendously simplifies the calculations and permits
very fast, robust and general implementations. Care
should be take to choose the lowest order rule provid-
ing sufficient accuracy since the worst case K evalu-
ation cost is O((nangs)?).

6 Solving Radiosity Systems

Many techniques are known for solving the resulting
system of equations Afl = & (see [GVL89]), but the
fastest, most accurate methods must exploit the spe-
cial properties of radiosity equations.

6.1 Radiosity Matrix Properties

The properties of the matrix A = M - K (Eq (8))
depend on the choices fofor mesh, basis, and formula-
tion. When point collocation techniques and constant
or linear elements are used, M = I, and the radiosity
matrix has a particularly simple form: A = I~ K.
The elements of K in this case are proportional to
the form factors commonly referred to in the radios-
ity literature.

The radiosity matrix A for a flatland scene is shown
in Fig 8. Since the matrix K is derived from the
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Figure 8: Nonzero elements of the sparse matrix I— K
for our test scene, with neq = 60 equations. Diagonal
elements (open circles) are all 1; off-diagonal elements
are shown with dot area proportional to magnitude.
White areas are zeros. Large dots indicate large form
factors at reflex corners.

kernel x, many of its properties are analogous to those
of the kernel.

The matrices A encountered in radiosity problems
are usually large, moderately sparse, diagonally dom-
inant, non-symmetric positive definite, with largest
eigenvalue less than 1. They are moderately sparse
since, for most scenes of interest, each surface can
“gee” only a small fraction of the other surfaces. If
a systematic element ordering scheme is used, then
the radiosity matrix will have block character, where
blocks containing nonzeros correspond to surfaces
that are inter-visible. A block that is entirely nonzero
comes from a pair of surfaces with no intervening oc-
cluders, while a block that is only partially nonzero
comes from a pair of surfaces that are partially oc-
cluded and partially inter-visible. In flatland, the
boundaries of the regions of zeros trace out hyper-
bolas in the matrix, just as in the kernel. Except for
the block boundaries, and occlusion discontinuities,
the kernel and hence the matrix values vary smoothly.

Any physically valid scene will have a diagonally
dominant radiosity matrix A. Physical validity con-
strains the range of reflectivity (0 < p< 1), which im-
plies that integrals of the kernel are bounded and that
the largest eigenvalue is less than one. This condition
implies that the Neumann series (Eq (6)) converges.



The above properties apply to radiosity matrices
coming from a point collocation formulation. The
matrices created by Galerkin and higher order finite
element techniques are more difficult to characterize.

6.2 Linear System Solving

Systems of equations can be solved by either di-
rect methods, indirect methods, or iterative methods
[GVL89]. Direct methods such as Gaussian elimina-
tion do not exploit the sparseness of matrices as well
as some other methods, so they are most suited to
small or low-sparsity systems.

Indirect methods such as the conjugate gradient
method generate a sequence of approximate solutions
that are guaranteed to converge after n iterations,
for n x n systems, and usually find accurate solu-
tions far sooner. The conjugate gradient method is
best suited to symmetric systems, but many radios-
ity problems can be preconditioned into symmetric
form by the substitutions K = PK* and i = Pa”,
where P = diag(p1, P2, '+ Pn). The matrix K* is
symmetric, so these substitutions transform the non-
symmetric system (I — K)ii = & into the symmet-
ric system (P — PK*P)a* €. This approach is
an example of the preconditioned conjugate gradient
method.

With iterative techniques, the third class of solu-
tion methods, convergence is guaranteed when the
eigenvalues of the matrix satisfy certain conditions
[GVL8Y9]. For extremely sparse matrices iterative
methods are often the fastest. The matrices that are
encountered in radiosity problems have well-behaved
eigenvalues, but they are not very sparse; not nearly
as sparse as those for many multidimensional prob-
lems.

The simplest iterative algorithm is Jacobi’s
method, which, when applied to problems of the form
(I-K)i1 = &, computes the sequence of approximants

&) = g+ Ka(-V

for some initial guess @(®). When applied to radios-
ity matrices of this form, Jacobi’s method is a dis-
crete approximation to the Neumann series. Asin the
Neumann series, the approximant @(*) for a radiosity
problem consists of the light reaching each point in 1
hops or fewer. The Gauss-Seidel iterative method is a
simple variant of Jacobi’s method, which, for a large
class of matrices, converges twice as fast as Jacobi. A
trivial extrapolating variation of Gauss-Seidel called
successive overrelazation accelerates convergence fur-
ther. Even faster solution methods exist for specific
problem domains [GVL89].
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6.3 Radiosity-Specific Techniques

An advantage of many iterative techniques is that the
only use they make of the matrix is the computation
of matrix-vector products. Consequently, the matrix
need not be stored explicitly, but can be computed
on the fly, row-by-row, as the matrix product is com-
puted.

The progressive radiosity approach is a radiosity-
specific solution method of this type [CCWGSS]. It
computes selected columns of the radiosity matrix,
using these to iterate toward convergence. Unfortu-
nately, no rigorous theoretical analysis of progressive
radiosity has been done to date.

Hanrahan’s radiosity solution technique is another
novel approach [HS90]. Instead of using a fixed
mesh, shooting surfaces are subdivided adaptively
relative to their distance to receiving surfaces. This
method avoids the matrix formulation altogether, in-
stead sampling the kernel adaptively in a quadtree-
like pattern. For unoccluded environments of m poly-
gons, the method has time cost O(m). It has not yet
been demonstrated for environments with occlusions,
where the discontinuities in the kernel would compli-
cate matters, but it holds promise as a fast, accurate
solution technique.

7 Meshing

Early research in radiosity focused on the computa-
tion of form factors and efficient solution of the sys-
tem of equations, but the issue of meshing or dis-
cretization of surfaces was little discussed; until re-
cently it has remained a black art and a manual pro-
cess for the most part [BMSW91].

7.1 Comparison of Meshing Tech-
niques

Meshing techniques can be classified as either uni-
form or nonuniform (also known as adaptive). Simple
radiosity systems typically employ uniform meshes;
subdividing rectangular polygons into a uniform grid
of rectangular elements, for example. Non-uniform
meshing can be either a priors, in which the mesh is
chosen before the solution is found, or a posteriors, in
which a mesh is chosen based on a previous solution,
a new solution is found, and the cycle is repeated as
necessary.

A priori methods attempt to predict where addi-
tional subdivision is needed beyond a uniform mesh.
Campbell’s grid generation scheme predicts the lo-
cation of shadow edges by approximating the light



sources by one or more points and projecting all sil-
houette edges onto other surfaces in the scene [CF90].
This technique is a valuable step toward better mesh-
ing, but it will usually find lines down the center of a
penumbra, rather than the boundaries of the penum-
bra, where the discontinuities occur. Subdividing
near a discontinuity improves the potential accuracy,
but does not improve it as much as subdivision di-
rectly on the discontinuity. The method we present
shortly, discontinuity meshing, attempts to position
element boundaries to best resolve any such discon-
tinuities in the solution.

A posteriori methods for global illumination have
been examined more fully for ray tracing algorithms
than for radiosity algorithms. In ray tracing algo-
rithms one typically does not work with a mesh of
elements chosen before solution, but with a set of
samples that are accumulated during the course of
the algorithm. Ward observed that the coherence of
the diffuse component of surface radiance could be
exploited by saving radiance samples at a scattering
of points across each surface [WRC88]. Ward’s al-
gorithm samples most densely at corners and other
regions where surfaces are in proximity. Radiosity
information can also be regarded as a texture that
is mapped onto the surface. Ray tracing algorithms
can be used to adaptively subdivide and sample more
densely near shadow edges [Hec90].

Another class of a posteriori methods are the multi-
grid methods. Multigrid methods, common in finite
difference and finite element techniques, solve the sys-
tem on a succession of scales, propagating low spatial
frequency, slowly-varying components from coarse
grids to fine grids, and propagating high-frequency,
rapidly-varying components from fine grids back to
coarse [PH85]. For many classes of partial differen-
tial equations, they provide the fastest known solu-
tion methods.

Cohen’s substructuring method for radiosity is
essentially a simple form of multigrid method
[CGIB86]. The substructuring method first chooses a
coarse mesh, solves for radiosities on the coarse mesh,
then refines the mesh where the coarse solution sug-
gests high gradients, and re-solves on the finer mesh
using the coarse solution as a starting point. Sub-
structuring typically solves the problem on only two
grids, while multigrid methods solve the problem on
a pyramid of grids.

7.2 Discontinuity Meshing

Radiosity problems are more complex than many fi-
pite element problems due to the discontinuities in
the solution caused by occlusion.

Figure 9: Left: Mesh does not resolve the discontinu-
ity (dashed curve). Right: Mesh resolves discontinu-
ity.

Discontinuity meshing is an approach to meshing
that attempts to accurately resolve the most signifi-
cant discontinuities in the solution by optimal posi-
tioning of element boundaries. In general, an approx-
imation using polynomial elements will have disconti-
nuities at element boundaries only. Different element
families have different orders of boundary discontinu-
ity. For a degree p element, the boundary disconti-
nuities can range in order from D° to DP. Lagrange
elements are D! at their borders for all element or-
ders, while Hermitian elements are D(P+1)/2 at their
borders for elements of degree p [BCO81].

When discontinuities in the true solution fall on
element boundaries, the mesh is said to resolve the
discontinuity (Fig 9). Elements cannot resolve dis-
continuities of orders above their degree. All dis-
continuities that can be resolved should be resolved.
When using constant elements, discontinuity mesh-
ing should attempt to resolve all D° discontinuities.
For linear elements, discontinuity meshing should at-
tempt to resolve all D® discontinuities with double
nodes [Hug87), and D! discontinuities should be re-
solved with a single node.

In general, to resolve a DP discontinuity, elements
of degree p or higher must be used, and a node must
be placed at this point. The derivatives of order p—1
or less may be coupled across the element boundary
at this point, but this is not necessary. It is not fruit-
ful to resolve discontinuities of degree higher than the
element degree because the errors caused by failure
to resolve discontinuities are swamped by the discon-
tinuities introduced at element boundaries.

The placement of mesh boundaries is especially im-
portant for problems such as radiosity, since its so-
lution function contains discontinuities. Failure to
resolve the discontinuities with the mesh will result
in poorer solutions. For a given element size, dis-
continuity meshing will give a more accurate result
than non-discontinuity meshing. For a given accu-
racy, discontinuity meshing does not require a mesh
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Figure 10: f is a critical point caused by the critical
ray through endpoints p and q.

as fine as that of non-discontinuity meshing, and thus
runs faster. The differences in accuracy and speed are
both qualitative and quantitative in nature, as illus-
trated later in the results.

7.3 Flatland Discontinuity Meshing
Algorithm

In flatland, discontinuity meshing can be done quite
easily. As before, assume a scene consisting of m
opaque line segments. We first locate D° disconti-
nuities, then D! discontinuities, and so on up to the
degree of the elements being used.

First, D® meshing is performed: meshing at all
D° discontinuities. D° discontinuities come from in-
tersecting edges or from the projection of silhouette
points from point light sources. Intersecting edges
can be found in O(mlogm) time. To maintain the
invariant that all D° discontinuities occur at edge
endpoints, we split each intersecting edge into two
edges at an intersection point. Point light sources
are dismissed as non-physical. With this restriction,
all remaining shadow edges will be soft penumbras
(i.e. D'), not hard (D°).

Next, D! meshing is done (unless constant ele-
ments are used, in which case we can stop here). D
discontinuities all result from remote changes in visi-
bility, where an edge endpoint becomes occluded. An
edge point which is collinear with two edge endpoints
visible from it is called a critical point and the line
along which they lie is called a critical line (Fig 10).
As proven earlier, there are O(m?) critical points in
a scene. In practice, the number is often far smaller
than this upper bound. A critical point will not cause
a D! discontinuity if it is on a black edge (p = 0).

All critical points can be found as follows:

for each node p
for each node q
if no edge intersects line segment pq then {
e = trace_ray(p, p-q)
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£ = trace_ray(q, q-p)

if ¢<>NULL then critical_point(e)

if £<ONULL then critical_point(f)
}

The routine trace_ray(p, d) traces a ray from
point p in direction d and returns the first edge
point hit, if any. The above algorithm, implemented
straightforwardly, has O(m3) time cost. This can be
reduced to O(m? logm) by performing a visibility de-
termination for each point p using a radial sweepline
algorithm.

Higher order discontinuities can be located in a
similar fashion. To find all D* discontinuities, one
loops over all D¥-1 discontinuities, tracing rays from
that point through all edge endpoints which are sil-
houettes with respect to that point. The point on the
first edge hit by such a ray is called an order k critical
point, as it can be the site of a D* discontinuity.

8 Results

We have implemented two programs for testing the
ideas described above. The first focuses on discon-
tinuity meshing in general flatland scenes using lin-
ear elements and point collocation techniques, and
the second focuses on Galerkin formulations with
elements of arbitrary degree for simple scenes con-
sisting of two edges. The accuracy of the solutions
achieved with these algorithms is measured with an
error norm.

8.1 Error Measures

The error estimate used in this study is based on the
L, norm of the difference between a reference (ex-
act) solution u and the finite element approximation
t. The measure is sensitized by only considering the
non-emitted radiosity field, u — €. The relative error
measure for the approximate solution is defined as:

Fan < 1= 0 = @ =),
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To study the limiting case as the mesh is refined
consider the asympotic estimate of error given by
||Erms|| < ChP where h is the varying mesh parame-
ter (a measure of element size), p an indicator of the
rate of convergence and C is a model-specific con-
stant. The rate of convergence is strongly dependent
on the polynomial completeness of the basis func-
tions. For isoparametric elements in this error norm

where



the optimal rates of convergence are p = 1 for piece-
wise constant, p = 2 for piecewise linear and p = 3
for piecewise quadratic.

8.2 Discontinuity Meshing Experi-
ments

The first program was written for experimentation
with a priori discontinuity meshing. This pro-
gram simulates diffuse interreflection among non-
intersecting, simple polygons, with colored, diffuse re-
flecting and/or emitting edges. The program solves
for radiosities using a collocation formulation with
analytic form factors (no numerical integration) and
linear elements. Either uniform or D! discontinuity
meshing can be used. Critical points on the m edges
are found with the O(m3) ray tracing algorithm de-
scribed above. Form factors are calculated with an
object space visible edge algorithm using an O(m?)
radial sweepline technique. For a scene discretized
into n elements, the total cost of computing the ma-
trices is O(nm? + an?), where a is the fraction of
nonzero elements in the sparse matrix. The systems
of equations are solved with successive overrelaxation.
In the current implementation, the memory require-
ments are 6an? bytes for each of the three (R, G, B)
components. For the scenes tested, matrix density o
typically ranged between 10% and 40%.

Three display views are supported, an interactive
flatland view, which is a top view of the scene, a
graph of the red, green, and blue solution curves as a
function of arc length, and a schematic of the radios-
ity matrix. The program runs on a Silicon Graphics
workstation, and is able to re-solve and redisplay a
scene consisting of 100 elements in about one second,
while scenes containing 1000 elements require several
minutes.

Fig 15 is a snapshot of the program running on
the scene in Fig 1. In the upper left is the top view
of flatland, with thick shaded edges (colored on the
screen). The white edge at top is a light source, the
top right edge is cyan, the edge at right is yellow, the
occluder in the middle is black, and the other edges
are white. The thin lines and dots show the critical
lines and points, respectively. The upper right win-
dow is the radiosity matrix (for a coarse mesh) with
blocks boundaries and hyperbolic occlusion curves
drawn in with lines. Dot area is proportional to |A ;;|
here. The largest off-diagonal dots (matrix elements)
come from reflex corners in the scene such as the up-
per left and upper right, which lie at singular points
in the kernel of the system. The bottom window is
the plot of the red, green, and blue solution functions
as computed with a fine discontinuity mesh. White

tick marks at bottom show the elements, and verti-
cal red lines (very faint) mark critical points. The
shaded strips at bottom are the edge colors.

Since analytic solutions are not known for radiosity
problems involving interreflection, the “exact” solu-
tion u is taken to be the approximate solution re-
sulting from an extremely fine mesh. Both uniform
and discontinuity meshing converge to this solution,
verifying that it is a valid reference.

When the test scene of Fig 1 was simulated with
discontinuity meshing with neq = 91 equations, it re-
quired 73K bytes of memory and 1.3 seconds of CPU
time. To achieve the same accuracy with uniform
meshing required neq = 775 equations, 4.5M bytes
of memory, and 74 seconds. Discontinuity meshing,
for this test case, gave results of the same quality as
uniform meshing using about 1/60th the time and
1/60th the memory. The above experiment used
point collocation on linear elements. Further experi-
ments are needed to determine the relative speed and
accuracy of Galerkin techniques and higher order el-
ements.

8.3 Galerkin Experiments

The majority of interesting two-dimensional solu-
tion characteristics may be adequately addressed by
studying simple cases of the interaction between two
“surfaces”. Our second program allows experimenta-
tion with Galerkin solutions with either uniform or
discontinuity meshing on such a two-edge scene, us-
ing elements of various degrees. To permit the exact
solution to be accurately approximated by alternate
means, the surface properties for a perfect diffuse
emitter, p = 0 and ¢; = 1, and perfect diffuse re-
flector p; = 1 and ¢; = 0 are chosen. The geometry
and solution for the three cases considered are shown
in Fig 11.

The first and by far the easiest case, the parallel-
model, is that of two finite parallel surfaces. Sec-
ond, the perpendicular-model, a geometry in which
the emitter self shadows a portion of the receiver
from a distance is considered. Finally, the T-corner-
model, a “T”-like geometry in which the emitter in-
tersects the receiver and introduces the kernel sin-
gularity is analyzed. For each of the three models
the convergence rate of the Galerkin approximation is
considered for each of three element types: piecewise-
constant (traditional radiosity), piecewise-linear, and
piecewise-quadratic.

In the parallel-model, the solution is very smooth
and well behaved. Only minimal low order (three
point) Gaussian integration rules are required. The
results are as expected, uniform convergence of all
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Figure 12: Convergence of parallel-model.

three solutions as the mesh is refined. The datapoints
for the piecewise-constant (Const), piecewise-linear
(Lin) and piecewise-quadratic (Quad) solutions along
with the associated asympotic convergence rates are
shown in Fig 12. Optimal convergence rates are
achieved without special meshing. The accuracy ad-
vantage of higher order elements is quickly apparent
for this model.

In the perpendicular-model a new and important
wrinkle is added, D! discontinuities on the reflecting
surface due to self-shadowing by the emitter from a
distance. The piecewise-constant element maintains
its slow steady O(h) rate of convergence unperturbed
by the introduction of additional higher order discon-
tinuities. However, unless special care is taken, some
of the additional accuracy advantage of the higher
order methods may be lost. In particular, the con-
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Figure 13: Convergence of perpendicular-model.

vergence rate for non-D'-meshes using higher order
elements is shown by datapoints labeled ’Lin’ and
'Quad’ in Fig 13. Although the higher order ele-
ments retain better absolute accuracy, they no longer
achieve their optimal convergence rates. Using D!
discontinuity meshing the ideal rates of convergence
may be maintained as shown by the datapoints la-
beled ’D1-Lin’ and 'D1-Quad’ in Fig 13.

Finally, in the T-corner-model two new behaviors
are introduced. First, by locating one end of the
emitter at the center of the reflector the disconti-
nuity introduced by self shadowing is intensified to
D°. Second, although the exact solution is smooth
and well behaved, the reflex corner necessitates addi-
tional effort to accurately integrate the singular ker-
nel. These two solution features present a consid-
erably more challenging numerical problem. To in-
tegrate the corner singularity combinations of both
high and low order Gauss rules were utilized. For
non-D° meshes, all of the solutions display poor con-
vergence as shown by datapoints *Const’, 'Lin’, and
’Quad’ in Fig 14. With the introduction of DO dis-
continuities, even the piecewise-constant solution, the
traditional radiosity workhorse, loses any pretense of
accuracy. The higher order solutions exhibit Gibbs
phenomena around the discontinuity and the results
are no better then those of lower order. Once again
the expected rates of convergence may be regained
through the use of D° meshing as shown in data-
points *D0-Const’, ’D0-Lin’ and *D0-Quad’ in Fig 14.
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Figure 14: Convergence of T-corner-model.

9 Conclusions

The accuracy of global illumination simulations can
be improved using finite element methods. Exist-
ing radiosity techniques correspond to the simplest
finite element techniques: constant elements formu-
lated with point collocation on a uniform mesh. This
approach can be improved upon in several ways.
First, the use of linear, quadratic, or higher order
elements allows the solution function to be fit more
accurately for a given number of elements. Second,
the use of Galerkin methods instead of point collo-
cation extracts more information from the kernel of
the integral equation, yielding a discretized system
of equations that represents the problem with higher
fidelity. Third, the solution to many global illumi-
nation problems contain infinite numbers of discon-
tinuities caused by occlusion. Shadows are the most
obvious example. In order to achieve the theoreti-
cal accuracy limited by the chosen element degree,
it is necessary to perform discontinuity meshing: lo-
cating mesh boundaries on low-order discontinuities
in the solution. These three tools could be used in-
dependently, but higher order elements and Galerkin
formulations will have reduced effect without discon-
tinuity meshing.

Formulas and algorithms have been given for all
three techniques. Higher order elements and Galerkin
techniques can be applied to radiosity problems us-
ing numerical integration methods. Gaussian inte-
gration in combination with ray tracing for visibility
testing has provided accurate numerical results. The
hemicube could also be used, but it is less accurate
than Gaussian integration.
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Algorithms have been given for discontinuity mesh-
ing in two dimensions. Discontinuity meshing in 3-D
is more complex [Hec91]. In three dimensions, D!
discontinuities lie along curves. In a polyhedral en-
vironment, these critical curves can arise from edge-
vertex events, and edge-edge-edge events, giving rise
to straight line and conic discontinuity curves, respec-
tively [GM90]. Discontinuity meshing in 3-D remains
a challenging research problem.

Our experiments show that careful selection of el-
ement degree, formulation, and mesh give dramatic
speed-ups for flatland scenes, suggesting that simi-
lar acceleration would be possible in 3-D. However,
speed and accuracy comparisons against existing pro-
gressive and hierarchical radiosity algorithms remain
to be done.

We expect that the finite element approach will
provide a path toward very accurate radiosity solu-
tions. In applications requiring only low-accuracy re-
sults, cheaper techniques such as progressive radios-
ity with hardware-assisted hemicube may yield faster
results, but for high-accuracy results, as might be re-
quired for lighting design or thermal radiation simula-
tions, the finite element approach appears promising.
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Figure 15: Screen snapshot of flatland radiosity program.
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