Tcl: An Embeddable Command Language

John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720
ouster@sprite.berkeley.edu

ABSTRACT

Tcl is an interpreter for a tool command language. It consists of a library pack-
age that is embedded in tools (such as editors, debuggers, etc.) as the basic
command interpreter. Tcl provides (a) a parser for a simple textual command
language, (b) a collection of built-in utility commands, and (c) a C interface
that tools use to augment the built-in commands with tool-specific commands.
Tcl is particularly attractive when integrated with the widget library of a win-
dow system: it increases the programmability of the widgets by providing
mechanisms for variables, procedures, expressions, etc; it allows users to pro-
gram both the appearance and the actions of widgets; and it offers a simple but
powerful communication mechanism between interactive programs,

This paper will appear in the 1990 Winter USENIX Conference Proceedings

The work described here was supported in part by the National Science Foundation under Grant
ECS-8351961.

Tcl: An Embeddable Command Language November 27, 1989

1. Introduction

Tcl stands for ‘‘tool command language’. It consists of a library package that programs
can use as the basis for their command languages. The development of Tcl was motivated by two
observations. The first observation is that a general-purpose programmable command language
amplifies the power of a tool by allowing users to write programs in the command language in
order to extend the tool’s built-in facilities. Among the best-known examples of powerful com-
mand languages are those of the UNIX shells [5] and the Emacs editor [8]. In each case a com-
puting environment of unusual power has arisen, in large part because of the availability of a pro-
grammable command language.

The second motivating observation is that the number of interactive applications is increas-
ing. In the timesharing environments of the late 1970’s and early 1980’s almost all programs
were batch-oriented. They were typically invoked using an interactive command shell. Besides
the shell, only a few other programs needed to be interactive, such as editors and mailers. In con-
trast, the personal workstations used today, with their raster displays and mice, encourage a dif-
ferent system structure where a large number of programs are interactive and the most common
style of interaction is to manipulate individual applications directly with a mouse. Furthermore,
the large displays available today make it possible for many interactive applications to be active
at once, whereas this was not practical with the smaller screens of ten years ago.

Unfortunately, few of today’s interactive applications have the power of the shell or Emacs
command languages. Where good command languages exist, they tend to be tied to specific pro-
grams. Each new interactive application requires a new command language to be developed. In
most cases application programmers do not have the time or inclination to implement a general-
purpose facility (particularly if the application itself is simple), so the resulting command
languages tend to have insufficient power and clumsy syntax.

Tcl is an application-independent command language. It exists as a C library package that
can be used in many different programs. The Tcl library provides a parser for a simple but fully
programmable command language. The library also implements a collection of built-in com-
mands that provide general-purpose programming constructs such as variables, lists, expressions,
conditionals, looping, and procedures. Individual application programs extend the basic Tcl
language with application-specific commands. The Tcl library also provides a set of utility rou-
tines to simplify the implementation of tool-specific commands.

I believe that Tcl is particularly useful in a windowing environment, and that it provides
two advantages. First, it can be used as a general-purpose mechanism for programming the inter-
faces of applications. If a tool is based on Tcl, then it should be relatively easy to modify the
application’s user interface and to extend the interface with new commands. Second, and more
important, Tcl provides a uniform framework for communication between tools. If used uni-
formly in all tools, Tcl will make it possible for tools to work together more gracefully than is
possible today.

The rest of this paper is organized as follows. Section 2 describes the Tcl language as seen
by users. Section 3 discusses how Tcl is used in applications, including the C-language interface
between application programs and the Tcl library. Section 4 describes how Tcl can be used in a
windowing environment to customize interface actions and appearances. Section 5 shows how
Tcl can be used as a vehicle for communication between applications, and why this is important.
Section 6 presents the status of the Tcl implementation and some preliminary performance meas-
urements. Section 7 compares Tcl to Lisp, Emacs, and NeWS, and Section 8 concludes the

paper.

Tcl: An Embeddable Command Language November 27, 1989

2. The Tcl Language

In a sense, the syntax of the Tcl language is unimportant: any programming language,
whether it is C [6], Forth [4], Lisp [1], or Postscript [2], could provide many of the same pro-
grammability and communication advantages as Tcl. This suggests that the best implementation
approach is to borrow an existing language and concentrate on providing a convenient framework
for the use of that language. However, the environment for an embeddable command language
presents an unusual set of constraints on the language, which are described below. I eventually
decided that a new language designed from scratch could probably meet the constraints with less
implementation effort than any existing language.

Tcl is unusual because it presents two different interfaces: a textual interface to users who
issue Tcl commands, and a procedural interface to the applications in which it is embedded.
Each of these interfaces must be simple, powerful, and efficient. There were four major factors in
the language design:

[1] The language is for commands. Almost all Tcl *‘programs’’ will be short, many only one
line long. Most programs will be typed in, executed once or perhaps a few times, and then
discarded. This suggests that the language should have a simple syntax so that it is easy to
type commands. Most existing programming languages have complex syntax; the syntax
is helpful when writing long programs but would be clumsy if used for a command
language.

[2] The language must be programmable. It should contain general programming constructs
such as variables, procedures, conditionals, and loops, so that users can extend the built-in
command set by writing Tcl procedures. Extensibility also argues for a simple syntax: this
makes it easier for Tcl programs to generate other Tcl programs.

[3] The language must permit a simple and efficient interpreter. For the Tcl library to be
included in many small programs, particularly on machines without shared-library facilities,
the interpreter must not occupy much memory. The mechanism for interpreting Tcl com-
mands must be fast enough to be usable for events that occur hundreds of times a second,
such as mouse motion.

[4] The language must permit a simple interface to C applications. It must be easy for C
applications to invoke the interpreter and easy for them to extend the built-in commands
with application-specific commands. This factor was one of the reasons why I decided not
to use Lisp as the command language: Lisp’s basic data types and storage management
mechanisms are so different than those of C that it would be difficult to build a clean and
simple interface between them. For Tcl I used a data type (string) that is natural to C.

2.1. Tcl Language Syntax

Tcl’s basic syntax is similar to that of the UNIX shells: a command consists of one or more
fields separated spaces or tabs. The first field is the name of a command, which may be either a
built-in command, an application-specific command, or a procedure consisting of a sequence of
Tcl commands. Fields after the first one are passed to the command as arguments. Newline char-
acters are used as command separators, just as in the UNIX shells, and semi-colons may be used
to separate commands on the same line. Unlike the UNIX shells, each Tcl command returns a
string result, or the empty string if a return value isn’t appropriate.

There are four additional syntactic constructs in Tcl, which give the language a Lisp-like
flavor. Curly braces are used to group complex arguments; they act as nestable quote characters.
If the first character of an argument is a open brace, then the argument is not terminated by white
space. Instead, it is terminated by the matching close brace. The argument passed to the com-
mand consists of everything between the braces, with the enclosing braces stripped off. For
example, the command

Tcl: An Embeddable Command Language November 27, 1989

set a {dog cat {horse cow mule} bear}

will receive two arguments: *‘a’’ and ‘‘dog cat {horse cow mule} bear’. This par-
ticular command will set the variable a to a string equal to the second argument. If an argument
is enclosed in braces, then none of the other substitutions described below is made on the argu-
ment. One of the most common uses of braces is to specify a Tcl subprogram as an argument to a
Tcl command.

The second syntactic construct in Tcl is square brackets, which are used to invoke command
substitution. If an open bracket appears in an argument, then everything from the open bracket
up to the matching close bracket is treated as a command and executed recursively by the Tcl
interpreter. The result of the command is then substituted into the argument in place of the
bracketed string. For example, consider the command

set a [format {Santa Claus is %s years old} 99]

The format command does printf-like formatting and returns the string ‘‘Santa Claus
is 99 years old”,whichis then passed to set and assigned to variable a.

The third syntactic construct is the dollar sign, which is used for variable substitution. If it
appears in an argument then the following characters are treated as a variable name; the contents
of the variable are substituted into the argument in place of the dollar sign and name. For exam-
ple, the commands

set b 99
set a [format {Santa Claus is %s years old} $bl

result in the same final value for a as the single command in the previous paragraph. Variable
substitution isn’t strictly necessary since there are other ways to achieve the same effect, but it
reduces typing.

The last syntactic construct is the backslash character, which may be used to insert special
characters into arguments, such as curly braces or non-printing characters.

2.2. Data Types

There is only one type of data in Tcl: strings. All commands, arguments to commands,
results returned by commands, and variable values are ASCII strings. The use of strings
throughout Tcl makes it easy to pass information back and forth between Tcl library procedures
and C code in the enclosing application. It also makes it easier to pass Tcl-related information
back and forth between machines of different types.

Although everything in Tcl is a string, many commands expect their string arguments to
have particular formats. There are three particularly common formats for strings: lists, expres-
sions, and commands. A list is just a string containing one or more fields separated by white
space, similar to a command. Curly braces may be used to enclose complex list elements; these
complex list elements are often lists in their own right, as in Lisp. For example, the string

dog cat {horse cow mule} bear

is a list with four elements, the third of which is a list with three elements. Tcl provides com-
mands for a number of list-manipulation operations, such as creating lists, extracting elements,
and computing list lengths.

The second common form for a string is a numeric expression. Tcl expressions have the
same operators and precedence as expressions in C. The expr Tcl command evaluates a string
as an expression and returns the result (as a string, of course). For example, the command

expr {($a < $b) 1] ($c != 0)}

returns ‘“1°’ if the numeric value of variable a is less than that of variable b, or if variable c is

Tcl: An Embeddable Command Language November 27, 1989

zero; otherwise it returns *‘0°’. Several other commands, such as if and for, expect one or
more of their arguments to be expressions.

The third common interpretation of strings is as commands (or sequences of commands).
Arguments of this form are used in Tcl commands that implement control structures. For exam-
ple, consider the following command:

if {Sa < $b} {
set tmp $Sa
set a $b
set b Stmp
}

The if command receives two arguments here, each of which is delimited by curly braces. If
is a built-in command that evaluates its first argument as an expression; if the result is non-zero,
i £ executes its second argument as a Tcl command. This particular command swaps the values
of the variables a and b if aislessthan b.

Tcl also allows users to define command procedures written in the Tcl language. I will refer
to these procedures as tclproc’s, in order to distinguish them from other procedures written in C.
The proc built-in command is used to create a tclproc. For example, here is a Tcl command
that defines a recursive factorial procedure:

proc fac x {

if {$x == 1} {return 1}

return [expr {$x * [fac [expr $x-1]1}]
}

The proc command takes three arguments: a name for the new tclproc, a list of variable names
(in this case the list has only a single element, x), and a Tcl command that comprises the body of
the tclproc. Once this proc command has been executed, fac may be invoked just like any
other Tcl command. For example

fac 4
will return the string ““24°".

Figure 1 lists all of the built-in Tcl commands in groups. In addition to the commands
already mentioned, Tcl provides commands for manipulating strings (comparison, matching, and
printf/scanf-like operations), commands for manipulating files and file names, and a com-
mand to fork a subprocess and return the subprocess’s standard output as result. The built-in Tcl
commands provide a simple but complete programming language. The built-in facilities may be
extended in three ways: by writing tclprocs; by invoking other programs as subprocesses; or by
defining new commands with C procedures as described in the next section.

3. Embedding Tcl in Applications

Although the built-in Tcl commands could conceivably be used as a stand-alone program-
ming system, Tcl is really intended to be embedded in application programs. I have built several
application programs using Tcl, one of which is a mouse-based editor for X called mx. In the rest
of the paper I will use examples from mx to illustrate how Tcl interacts with its enclosing applica-
tion.

An application using Tcl extends the built-in commands with a few additional commands
related to that particular application. For example, a clock program might provide additional
commands to control how the clock is displayed and to set alarms; the mx editor provides addi-
tional commands to read a file from disk, display it in a window, select and modify ranges of

-4-

Tcl: An Embeddable Command Language November 27, 1989

Control
break, case, continue, eval, for, foreach, if

Variables and Procedures
global, proc, return, set

List Manipulation
concat, index, length, list, range

Expressions
expr

String Manipulation
format, scan, string

File Manipulation
file, glob, print, source

Invoking Subprocesses
exec

Miscellaneous
catch, error, info, time

Figure 1. The built-in Tcl commands. This set of commands is avai'able to any application that
uses Tcl. Additional commands may be defined by the application.

bytes, and write the modified file back to disk. An application programmer need only write the
application-specific commands; the built-in commands provide programmability and extensibil-
ity ““for free’’. To users, the application-specific commands appear the same as the built-in com-
mands.

Figure 2 shows the relationship between Tcl and the rest of an application. Tcl is a C
library package that is linked with the application. The Tcl library includes a parser for the Tcl
language, procedures to execute the built-in commands, and a set of utility procedures for things
like expression evaluation and list management. The parser includes an extension interface that

may be used to extend the language’s command set.
To use Tcl, an application first creates an object called an interpreter, using the following
library procedure:
Tcl Interp * Tcl_Createlnterp()

An interpreter consists of a set of commands, a set of variable bindings, and a command execu-
tion state. It is the basic unit manipulated by most of the Tcl library procedures. Simple applica-
tions will use only a single interpreter, while more complex applications may use multiple inter-
preters for different purposes. For example, mx uses one interpreter for each window on the
screen.

Tcl: An Embeddable Command Language November 27, 1989

_Tel Application

Init

Parser [« Collect

Application-

Built-in
Specific
: Commands
H Commands

AR
Utilities

R

Figure 2. The Tcl library provides a parser for the Tcl language, a set of built-in commands, and
several utility procedures. The application provides application-specific commands plus pro-
cedures to collect commands for execution. The commands are parsed by Tcl and then passed to
relevant command procedures (either in Tcl or in the application) for execution.

Once an application has created an interpreter, it calls the Tcl_CreateCommand pro-
cedure to extend the interpreter with application-specific commands:

typedef int (*Tcl _CmdProc) (ClientData clientData,
Tcl Interp *interp, int argc, char *argv(]):;

Tcl CreateCommand(Tcl_Interp *interp, char *name,
Tcl CmdProc proc, ClientData clientData)

Eachcallto Tcl CreateCommand associates a particular command name (name) with a pro-
cedure that implements that command (proc) and an arbitrary single-word value to pass to that
procedure (clientData).

After creating application-specific commands, the application enters a main loop that col-
lects commands and passes them to the Tcl_Eval procedure for execution:

int Tcl _Eval(Tcl_Interp *interp, char *cmd)

In the simplest form, an application might simply read commands from the terminal or from a
file. In the mx editor Tcl commands are associated with events such as keystrokes, mouse but-
tons, or menu activations; each time an event occurs, the corresponding Tcl command is passed
to Tcl Eval.

The Tcl Eval procedure parses its cmd argument into fields, looks up the command
name in the table of those associated with the interpreter, and invokes the command procedure
associated with that command. All command procedures, whether built-in or application-
specific, are called in the same way, as described in the typedef for Tcl_CmdProc above.
A command procedure is passed an array of strings describing the command’s arguments (argc
and argv) plus the clientData value that was associated with the command when it was
created. ClientData is typically a pointer to an application-specific structure containing

-6-

o

Tcl: An Embeddable Command Language November 27, 1989

information needed to execute the command. For example, in mx the clientData argument
points to a per-window data structure describing the file being edited and the window it is
displayed in.

Control mechanisms like if and for are implemented with recursive calls to
Tcl Eval. For example, the command procedure for the if command evaluates its first argu-
ment as an expression; if the result is non-zero, then it calls Tcl_Eval recursively to execute
its second argument as a Tcl command. During the execution of that command, Tcl Eval
may be called recursively again, and so on. Tcl_Eval also calls itself recursively to execute
bracketed commands that appear in arguments.

Even tclprocs such as fac use this same basic mechanism. When the proc command is
invoked to create fac, the proc command procedure creates a new command by calling
Tcl CreateCommand as illustrated in Figure 3. The new command has the name fac. Its
command procedure (proc in the call to Tcl_CreateCommand) is a special Tcl library pro-
cedure called InterpProc, and its clientData is a pointer to a structure describing the
tclproc. This structure contains, among other things, a copy of the body of the tclproc (the third
argument to the proc command). When the fac command is invoked, Tcl Eval calls
InterpProc, which in tum calls Tcl_Eval to execute the body of the tclproc. There is
some additional code required to associate the argument of the fac command (which is passed
to InterpProc inits argv array) with the x variable used inside £ ac’s body, and to sup-
port variables with local scope, but much of the mechanism for tclprocs is the same as that for

any other Tcl command.
fac 5 proc fac x {...}
(e;J j:a)

Parser
b
M)) (®)
(d)
proc
InterpProc

Command Procedure

E ©

fac
Data Structure

Figure 3. The creation and execution of a tclproc (a procedure written in Tcl): (a) the proc
command is invoked, e.g. to create the fac procedure; (b) the Tcl parser invokes the command
procedure associated with proc; (c) the proc command procedure creates a data structure to
hold the Tcl command that is fac’s body; (d) fac is registered as a new Tcl command, with
InterpProc as its command procedure; (e) fac is invoked as a Tcl command; (f) the Tcl
parser invokes InterpProc as the command procedure for fac; (g) InterpProc re-
trieves the body of fac from the data structure; and (h) the Tcl commands in fac’s body are
passed back to the Tcl parser for execution.

Tcl: An Embeddable Command Language November 27, 1989

A Tcl command procedure returns two results to Tcl_Eval: an integer return code and a
string. The return code is returned as the procedure’s result, and the string is stored in the inter-
preter, from which it can be retrieved later. Tcl_Eval returns the same code and string to its
caller. Table I summarizes the return codes and strings. Normally the return code is TCL_OK
and the string contains the result of the command. If an error occurs in executing a command,
then the return code will be TCL ERROR and the string will describe the error condition. When
TCL_ERROR s returned (or any value other than TCL_OK), the normal action is for nested com-
mand procedures to retum the same code and string to their callers, unwinding all pending com-
mand executions until eventually the return code and string are returned by the top-level call to
Tcl Eval. At this point the application will normally display the error message for the user by
printing it on the terminal or displaying it in a notifier window.

Return codes other than TCL OKor TCL_ERROR cause partial unwinding. For example,
the break command retums a TCL BREAK code. This causes nested command executions to
be unwound until a nested for or foreach command is reached. When a for or
foreach command invokes Tcl Eval recursively, it checks specially for the TCL_BREAK
result. When this occurs the for or foreach command terminates the loop, but it doesn’t
retrn the TCL_BREAK code to its caller. Instead it returns TCL_OK. Thus no higher levels of
execution are aborted. The TCL_CONTINUE retum code is also handled by the for and
foreach commands (they go on to the next loop iteration) and TCL_RETURN is handled by
the InterpProc procedure. Only a few command procedures, like break and for, know
anything about special retum codes such as TCL_BREAK; other command procedures simply
abort whenever they see any return code other than TCL_OK.

The catch command may be used to prevent complete unwinding on TCL_ERROR
returns. Catch takes an argument that is a Tcl command to execute. It passes the command to
Tcl Eval for execution, but always retums TCL_OK. If an error occurs in the command,
catch’s command procedure detects the TCL_ERROR retumn value from Tcl_Eval, saves
information about the error in Tcl variables, and then returns TCL_OK to its caller. In almost all
cases I think the best response to an error is to abort all command invocations and notify the user;
catch is provided for those few occasions where an error is expected and can be handled
without aborting.

4. Tcl and Window Applications

An embeddable command language like Tcl offers particular advantages in a windowing
environment. This is partly because there are many interactive programs in a windowing
environment (hence many places to use a command language) and partly because configurability

Return Code Meaning String
TCL_OK Command completed normally Result
TCL_ERROR Error occurred in command Error message
TCL_BREAK Should abort innermost loop None
TCL_CONTINUE | Should skip innermost iteration None
TCL RETURN Should return from innermost procedure | Procedure result

Table I. Each Tcl command returns a code describing what happened and a string that provides
additional information. If the return code is not TCL_OK, then nested command executions
unwind and return the same code, until reaching top-level or some command that is prepared to
deal with the exceptional return code.

Tcl: An Embeddable Command Language November 27, 1989

is important in today’s windowing environments and a language like Tcl provides the flexibility
to reconfigure. Tcl can be used for two purposes in a window application: to configure the
application’s interface actions, and to configure the application’s interface appearance. These
two purposes are discussed in the paragraphs below.

The first use of Tcl is for interface actions. Ideally, each event that has any importance to
the application should be bound to a Tcl command. Each keystroke, each mouse motion or
mouse button press (or release), and each menu entry should be associated with a Tcl command.
When the event occurs, it is first mapped to its Tcl command and then executed by passing the
command to Tcl Eval. The application should not take any actions directly; all actions
should first pass through Tcl. Furthermore, the application should provide Tcl commands that
allow the user to change the Tcl command associated with any event.

In interactive windowing applications, the use of Tcl will probably not be visible to begin-
ning users: they will manipulate the applications using buttons, menus, and other interface com-
ponents. However, if Tcl is used as an intermediary for all interface actions then two advantages
accrue. First, it becomes possible to write Tcl programs to reconfigure the interface. For exam-
ple, users will be able to rebind keystrokes, change mouse buttons, or replace an existing opera-
tion with a more complex one specified as a set of Tcl commands or tclprocs. The second advan-
tage is that this approach forces all of the application’s functionality to be accessible through Tcl:
anything that can be invoked with the mouse or keyboard can also be invoked with Tcl programs.
This makes it possible to write tclprocs that simulate the actions of the program, or that compose
the program’s basic actions into more powerful actions. It also permits interactive sessions to be
recorded and replayed as a sequence of Tcl commands (see Section 5).

The second use for Tcl in a window application is to configure the appearance of the appli-
cation. All of the application’s interface components (‘‘widgets’ in X terminology), such as
labels, buttons, text entries, menus, and scrollbars, should be configured using Tcl commands.
For example, in the case of a button the application (or the button widget code) should provide
Tcl commands to change the button’s size and location, its text, its colors, and the action (a Tcl
command, of course) to invoke when the button is activated. This makes it possible for users to
write Tcl programs to personalize the layout and appearance of the applications they use. The
most common use of such reconfigurability would probably be in Tcl command files read by pro-
grams automatically when they start execution. However, the Tcl commands could also be used
to change an application’s appearance while it is running, if that should prove useful.

If Tcl is used as described above, then it could serve as a specification language for user
interfaces. User interface editors could be written to display widgets and let users re-arrange
them and configure attributes such as colors and associated Tcl commands. The interface editor
could then output information about the interface as a Tcl command file to be read by the applica-
tion when it starts up. Some current interface editors output C code which must then be compiled
into the application [7]; unfortunately this approach requires an application to be recompiled in
order to change its interface (or, alternatively, it requires a dynamic-code-loading facility). If Tcl
were used as the interface specification language then no recompilation would be necessary and a
single application binary could support many different interfaces.

5. Communication Between Applications

The advantages of an embedded command language like Tcl become even greater if all of
the tools in an environment are based on the same language. First, users need only learn one
basic command language; to move from one application to another they need only leam the
(few?) application-specific commands for the new application. Second, generic interface editors
become possible, as described in the previous section. Third, and most important in my view, Tcl
can provide a means of communication between applications.

-9.

Tcl: An Embeddable Command Language November 27, 1989

I have implemented a communication mechanism for X11 in the form of an additional Tcl
command called send. For send to work, each Tcl interpreter associated with an X11 appli-
cation is given a textual name, such as xmh for an X mail handler or mx . foo.c for a window
in which mx is displaying a file named foo.c. The send command takes two arguments: the
name of an interpreter and a Tcl command to execute in that interpreter. Send arranges for the
command to be passed to the process containing the named interpreter; the command is executed
by that interpreter and the results (return code and string) are retumned to the application that
issued the send command.

The X11 implementation of send uses a special property attached to the root window.
The property stores the names of all the interpreters plus a window identifier for each interpreter.
A command is sent to an interpreter by appending it to a particular property in the interpreter’s
associated window. The property change is detected by the process that owns the interpreter; it
reads the property, executes the command, and appends result information onto a property associ-
ated with the sending application. Finally, the sending application detects this change of pro-
perty, reads the result information, and retums it as the result of the send command.

The send command provides a powerful way for one application to control another. For
example, a debugger could send commands to an editor to highlight the current source line as it
single-steps through a program. Or, a user interface editor could use send 10 manipulate an
application’s interface directly: rather than modifying a dummy version of the application’s
interface displayed by the interface editor, the interface editor could use send to modify the
interface of a ‘‘live’” application, while also saving the configuration for a configuration file.
This would allow an interface designer to try out the look and feel of a new interface incremen-
tally as changes are made to the interface.

Another example of using send is for changing user preferences. If one user walks up to a
display that has been configured for some other user, the new user could run a program that finds
out about all the existing applications on the screen (by querying the property that contains their
names), reads the new user’s configuration file for each application, and sends commands to that
application to reconfigure it for the new user’s preferences. When the old user returns, he or she
could invoke the same program to restore the original preferences.

Send could also be used to record interactive sessions involving multiple applications and
then replay the sessions later (e.g. for demonstration purposes). This would require an additional
Tcl command called trace; trace would take a single argument (a Tcl command string)
and cause that command string to be executed before each other command was executed in that
interpreter. Within a single application, trace could be used to record each Tcl command
before it is executed, so that the commands could be replayed later. In a multi-application
environment, a recorder program could be built using send. The recorder sends a trace
command to each application to be recorded. The trace command arranges for information to
be sent back to the recorder about each command executed in that application. The recorder then
logs information about which applications executed which commands. The recorder can re-
execute the commands by send-ing them back to the applications again. The trace com-
mand does not yet exist in Tcl, but it could easily be added.

Send provides a much more powerful mechanism for communication between applications
than is available today. The only easy-to-use form of communication for today’s applications is
the selection or cut buffer: a single string of text that may be set by one application and read by
another. Send provides a more general form of communication akin to remote procedure call
[3]. If all of an application’s functionality is made available through Tcl, as described in Section
4, then send makes all of each application’s functionality available to other applications as
well.

-10 -

Tcl: An Embeddable Command Language November 27, 1989

If Tcl (and send) were to become widely used in window applications, I believe that a
better kind of interactive environment would arise, consisting of a large number of small special-
ized applications rather than a few monolithic ones. Today’s applications cannot communicate
with each other very well, so each application must incorporate all the functionality that it needs.
For example, some window-based debuggers contain built-in text editors so that they can
highlight the current point of execution. With Tcl and send, the debugger and the editor could
be distinct programs, with each send-ing commands to the other as necessary. Ideally, monol-
ithic applications could be replaced by lots of small applications that work together in exciting
new ways, just as the UNIX shells allowed lots of small text processing applications to be com-
bined together. I think that Tcl, or some other language like it, will provide the glue that binds
together the windowing applications of the 1990’s.

6. Status and Performance

The Tcl language was designed in the fall of 1987 and implemented in the winter of 1988.
In the spring of 1988 I incorporated Tcl into the mx editor (which already existed, but with an
inferior command language), and also into a companion terminal emulator called Tx. Both of
these programs have been in use by a small user community at Berkeley for the last year and a
half. All of the Tcl language facilities exist as described above, except that the send command
is still in prototype form and trace hasn’t been implemented. Some of the features described
in Section 4, such as menu and keystroke bindings, are implemented in mx, but in an ad hoc
fashion: Tcl is not yet integrated with a widget set. I am currently building a new toolkit and
widget set that is based entirely on Tcl. When it is completed, I expect it to provide all of the
features described in Section 4. As of this writing, the implementation has barely begun.

Table II shows how long it takes Tcl to execute various commands on two different works-
tations. On Sun-3 workstations, the average time for simple commands is about 500
microseconds, while on DECstation 3100’s the average time per command is about 160
microseconds. Although mx does not currently use a Tcl command for each mouse motion event,
the times in Table II suggest that this would be possible, even on Sun-3 workstations, without
significant degradation of response. For example, if mouse motion events occur 100 times per
second, the Tcl overhead for dispatching one command per event will consume only about 1-2%
of a Sun-3 processor. For the ways in which Tcl is currently used (keystroke and menu bindings
consisting of a few commands), there are no noticeable delays associated with Tcl. For
application-specific commands such as those for the mx editor, the time to execute the command
is much greater than the time required by Tcl to parse it and call the command procedure.

The Tcl library is small enough to be used in a wide variety of programs, even on systems
without mechanisms for sharing libraries. The Tcl code consists of about 7000 lines of C code
(about half of which is comments). When compiled for a Motorola 68000, it generates about
27000 bytes of object code.

7. Comparisons

The Tcl language has quite a bit of surface similarity to Lisp, except that Tcl uses curly
braces or brackets instead of parentheses and no braces are needed around the outermost level of
a command. The greatest difference between Tcl and Lisp is that Lisp evaluates arguments by
default, whereas in Tcl arguments are not evaluated unless surrounded by brackets. This means
that more typing effort is required in Tcl if an argument is to be evaluated, and more typing effort
is required in Lisp if an argument is to be quoted (not evaluated). It appeared to me that no-
evaluation is usually the desired result in arguments to a command language, so I made this the

-11-

Tcl: An Embeddable Command Language November 27, 1989

Sun-3 Time DS3100 Time

Tcl Command (microseconds) | (microseconds)

set a 1 225 57
list abc def ghi jkl 460 138
if {4 > 3} {set a 1} 700 220
proc fac x {

if {$x == 1} {return 1} 1280 380

return [expr {$x*[fac [expr $x-1]1]}]

}
fac 5 11250 3630

Table II. The cost of various Tcl commands, measured on a Sun-3/75 workstation and on a
DECstation 3100. The command fac 5 executes a total of 23 Tcl commands, for an average
command time of about 500 microseconds on a Sun-3 or 160 microseconds on a DECstation
3100.

default in Tcl. Tcl also has fewer data types than Lisp; this was done in order to simplify the
interface between the Tcl library and an enclosing C application.

The Emacs editor is similar to Tcl in that it provides a framework that can be used to con-
trol many different application programs. For example, subprocesses can be run in Emacs win-
dows and users can write Emacs command scripts that (a) generate command sequences for input
to the applications and (b) re-format the output of applications. This allows users to embellish
the basic facilities of applications, edit their output, and so on. The difference between Emacs
and Tcl is that the programmability is centralized in Emacs: applications cannot talk to each other
unless Emacs acts as intermediary (e.g. to set up a new communication mechanism between two
applications, code must be written in Emacs to pass information back and forth between the
applications). The Tcl approach is decentralized: each application has its own command inter-
preter and applications may communicate directly with each other.

Lastly, it is interesting to compare Tcl to NeWS [9], a window system that is based on the
Postscript language. NeWS allows applications to down-load Postscript programs into the win-
dow server in order to change the user interface and modify other aspects of the system. In a
sense, this is similar to the send command in Tcl, in that applications may send programs to the
server for execution. However, the NeWS mechanism is less general than Tcl: NeWS applica-
tions generate Postscript programs as output but they do not necessarily respond to Postscript pro-
grams as input. In other words, NeWS applications can affect each others’ interfaces, by control-
ling the server, but they cannot directly invoke each others’ application-specific operations as
they can with Tcl.

To summarize, the Tcl approach is less centralized than either the Emacs or NeWS
approaches. For a windowing environment with large numbers of independent tools, I think the
decentralized approach makes sense. In faimess to Emacs, it’s important to point out that Emacs
wasn’t designed for this environment, and that Emacs works quite nicely in the environment for
which it was designed (ASCII terminals with batch-style applications). It’s also worth noting that
direct communication between applications was not an explicit goal of the NeWS system design.

8. Conclusions

I think that Tcl could improve our interactive environments in three general ways. First,
Tel can be used to improve individual tools by providing them with a programmable command

-12-

Tcl: An Embeddable Command Language November 27, 1989

language; this allows users to customize tools and extend their functionality. Second, Tcl can
provide a uniform command language across a range of tools; this makes it easier for users to
program the tools and also allows tool-independent facilities to be built, such as interface editors.
Third, Tcl provides a mechanism for tools to control each other; this encourages a more modular
approach to windowing applications and makes it possible to re-use old applications in new ways.
In my opinion the third benefit is potentially the most important.

My experiences with Tcl so far are positive but limited. Tcl needs a larger user community
and a more complete integration into a windowing toolkit before it can be fully evaluated. The
Tcl library source code is currently available to the public in a free, unlicensed form, and I hope
to produce a Tcl-based toolkit in the near future.

9. Acknowledgments

The members of the Sprite project acted as guinea pigs for the editor and terminal emulator
based on Tcl; without their help the language would not have evolved to its current state. Fred
Douglis, John Hartman, Ken Shirriff, and Brent Welch provided helpful comments that improved
the presentation of this paper.

10. References

[1] Abelson, H. and Sussman, G.J. Structure and Interpretation of Computer Programs, MIT
Press, Cambridge, MA, 1985.

[2] Adobe Systems, Inc. Postscript Language Tutorial and Cookbook, Addison-Wesley, Read-
ing, MA, 1985.

[3] Birrell, A. and Nelson, B. ‘‘Implementing Remote Procedure Calls.”” ACM Transactions
on Computer Systems, Vol. 2, No. 1, February 1986, pp. 39-59.

[4] Brodie, L. Starting FORTH: An Introduction to the FORTH Language and Operating Sys-
tem for Beginners and Professionals, Prentice Hall, Englewood Cliffs, NJ, 1981.

[5] Kernighan, B.W. and Pike, R. The UNIX Programming Environment, Prentice Hall, Engle-
wood Cliffs, NJ, 1984.

[6] Kemighan, B.W. and Ritchie, D.M. The C Programming Language, Second Edition, Pren-
tice Hall, Englewood Cliffs, NJ, 1988.

[7] Mackey, K., Downs, M., Duffy, J., and Leege, J. ‘‘An Interactive Interface Builder for Use
with Ada Programs,”’ Xhibition Conference Proceedings, 1989.

(8] Stallman, R. GNU Emacs Manual, Fourth Edition, Version 17, February 1986.

[9] Sun Microsystems, Inc. NeWS Technical Overview, Sun Microsystems, Inc. PN 800-1498-
05, 1987.

-13-

