Read-only Sharing in Operating Systems

Ramesh Govindan

Computer Science Division
Department of Computer Science and Engineering
University of California
Berkeley, CA 94720

ABSTRACT

Sharing read-only code and data between address spaces reduces
physical memory usage as well as paging 1/O and disk space. In this
paper, we study mechanisms for read-only sharing in operating systems.
Our work consists of three parts. First, we discuss the issues that arise in
the design and implementation of such mechanisms. We examine the
solutions adopted by different operating systems. Second, we analyze
memory and disk space savings obtained by sharing programs in 4.3 BSD
Unix. We show that introduction of a more general sharing mechanism
in 4.3 BSD has potential for substantial savings. Finally, we analyze the
efficiency of different sharing mechanisms. The read-only sharing
mechanism in DASH is shown to be as efficient as the Unix mechanism
for program code sharing. Moreover, the DASH approach allows for
general read-only sharing (such as shared libraries), not just program
code.

November 16, 1989

This research has been supported in part by the University of California with a MICRO program grant, Cray
Research, Inc., Hitachi Ltd., IBM Corp., Ing. C. Olivetti & C., S.p.A., and the International Computer Science In-
stitute. The views and conclusions contained in this document are those of the author, and should not be inter-
preted as representing official policies, either expressed or implied, of any of the sponsoring organizations.

Table of Contents

1. INTRODUCTION ..ottt sase s s ssassssssssesssssessssssssssssessssssen 1
2. BENEFITS OF READ-ONLY SHARING ...ttt ssssecssessnene 2
3. TERMINOLOGY ..oeirreiececritcencsssssssnsnssesssssssssssinsssasssaesssn s sassesssssssssesssssessaseseosas 2
4. ISSUES IN READ-ONLY SHARING ...ttt 3
4.1. Resolution of Inter-Segment References ..., 3
4.2. Address Assignment t0 SEZMENLScveeerieisininiennicenrinisisieesiaeessessenessesenens 6
4.3. Segment Naming and Referencing ...t 7
4.4. Version Management ... eceeeeseeeneeenn s e e s s sens 8
4.5. Private Data of Code SEZMENLScovurrirerireriernseiiiniiiniineessseessssssssesssssesens 10
4.6. Dynamic Loading of Segments ...t esssesssssesene 10
4.7. Sharing BOUNAATY ...t sresenss s sssestsssssse e sesessassssns 11
5. MEASUREMENTS ...ttt netntetenssesesssenssssssssssssassssssssnssssssans s sssossesssssosess 11
5.1. Extent of ShATING ...ttt s ea st sessbssanenes 12
5.2. Potential Savings from Sharing ... ssssseesense 13
5.3. Work Done at Compile TImMecccivcieiiniiiiincssnsi s esssssesesisnessessnecscees 14
5.4. Work Done at Run TIME ...ttt ssenes e s 15
5.5, SUMIMATY oottt ettt seseses ettt sesaesssess e sese st scntnsesenesssasesasessons 17
6. CODE SHARING IN DIFFERENT SYSTEMSccooommrnnnreneneneescncneseiniesecaenes 18
6.1. 4.3 BSD UNIX vttt st s sasbssscnen s sesnsasesess s s se e secs 18
6.2. SYStEM V UNX uveeretictettctcrnes ettt sssnstsssesss s sesensn s seseesaesesnsenecs 18
6.3. SUNOS 4.0 oottt s ss s ss st s as s s eses st s sea st s s e e s bt 18
8.4, MULLICS ...ttt s b sn s s e s e enen 19
6.5. COAAT ...ttt bbb e ese ettt s et e st 19
6.6, DASH ...t b e e st et s et e 20

Read-only Sharing in Operating Systems

Ramesh Govindan

Computer Science Division
Department of Computer Science and Engineering
University of California
Berkeley, CA 94720

1. INTRODUCTION
Physical memory is shared between address spaces for one of two reasons:

e Read-write sharing: The shared physical memory is used to communicate between
processes executing in the address spaces.

® Read-only sharing: Sharing read-only code and data reduces physical memory usage
as well as paging I/O and disk space (Section 2).

In this paper, we study the latter kind of physical memory sharing.

Our work consists of three parts. First, we list issues that arise in the design and
implementation of a mechanism for read-only sharing in operating systems. When and
how references from shared code and data are resolved is one example of such an issue.
Management of updates to shared code and data is another. We qualitatively examine
solutions to these issues. We also show how the following systems have solved some of
these issues: 4.3 BSD Unix [7], SunOS 4.0 [5], System V Unix [2], Multics [9], DASH [1]
and Cedar [10].

Second, we analyze the memory and disk space savings obtained by sharing pro-
grams and libraries in 4.3 BSD Unix. Different processes executing the same program
share the read-only code of the program in 4.3 BSD. We show that in a typical 4.3 BSD
system, about 30% of the programs are shared by two or more processes at any given
instant. About 4 times as much physical memory would be used if read-only program
code were not shared. We also show that with the introduction of shared libraries, there
is potential for doubling the physical memory savings. Further, at least 40% of the disk
space used by programs can be saved. These results show that substantial savings can
be obtained with the introduction of a more general sharing mechanism in 4.3 BSD.

Finally, we analyze the efficiency of different read-only sharing mechanisms. We
show that a more general sharing mechanism need not necessarily tradeoff efficiency for
generality. Our experiments prove that the DASH read-only sharing mechanism is as
efficient as the Unix mechanism for program code sharing. Moreover, DASH allows for gen-
eral read-only sharing (such as shared libraries), not just program code.

This research has been supported in part by the University of California with a MICRO program grant, Cray
Research, Inc., Hitachi Ltd., IBM Corp., Ing. C. Olivetti & C., S.p.A., and the International Computer Science In-
stitute. The views and conclusions contained in this document are those of the author, and should not be inter-
preted as representing official policies, either expressed or implied, of any of the sponsoring organizations.

-2-

The structure of the paper is a follows. In Section 2, we list some of the benefits
that a read-only sharing mechanism can provide. Section 3 lays down some terminol-
ogy used in the rest of the paper. Section 4 discusses, in some detail, the issues involved
in the design and implementation of a read-only sharing mechanism. Section 5 lists the
experiments we conducted and draws conclusions from the results obtained. Section 6
shows how different operating systems solve those issues. Finally, we present our con-
clusions in Section 7.

2. BENEFITS OF READ-ONLY SHARING
The following are some of the benefits of read-only sharing:

e Physical memory savings: In the absence of read-only sharing, each address space
uses its own physical copy of read-only code or data. Thus, physical memory is
saved with read-only sharing (Section 5.1).

e Reduction in I/O: For the same reason, read-only sharing is responsible for a reduc-
tion in I/O (paging traffic from local disk or network).

e Disk space savings: If libraries can be shared between address spaces, the disk
images of programs need not contain copies of the shared library code. This results
in disk space savings (Section 5.2).

Most existing multi-user systems (e.g. 4.3 BSD Unix) provide mechanisms for shar-
ing read-only code of programs. The benefits of sharing program code decrease in an
environment of networked single-user workstations. This is because the probability that
two or more processes execute the same program program simultaneously is low. More
general read-only sharing mechanisms (e.g. shared library mechanisms) offer potential
for greater benefits (Section 5.2).

Trends in software structure also indicate the need for more general read-only
sharing mechanisms. Operating systems designers nowadays tend to provide only
minimal mechanism at the kernel level. This increases the complexity of application
programs. Much of this complexity is hidden from application programmers in toolkits
and libraries. Sharing of libraries and toolkits, therefore, offer promise of substantial
savings in physical memory, disk space and 1/0O.

3. TERMINOLOGY

Read-only sharing refers to the sharing of read-only code and data between different
address spaces or between different processes in the same address space. We use code to
refer interchangeably to executable machine instructions and high-level language state-
ments. The exact usage will be clear from the context.

A segment is a range of virtual memory representing a logical unit of code or data
or both. Associated with every segment is backing store containing the disk image of the
segment. The term segment is used to refer interchangeably to a range of virtual memory
as well as its associated disk image. The exact usage will be clear from the context.

A segment has the following attributes: a name for the disk image, a set of entry
points (starting addresses of functions or base addresses of data structures) and embed-
ded references (inter-segment references) to other segments of the form <segment name,
entry point>. Segments may be read-write or read-only, data segments or code segments.
A read-only segment is the unit of sharing between address spaces.

-3-

An example of a segment in 4.3 BSD Unix is program code, which forms a read-
only segment (called the text segment). The disk image of the text segment is part of the
program file (the file also contains some initialized data). The text segment is shared
between address spaces.

The creation of the disk image of a segment is called segment compilation. The crea-
tion of a segment and association with its disk image is called segment loading. Load time
refers to the interval of time during which a segment (and, in some cases, other seg-
ments it references) is loaded. Compile time refers to the interval of time during which
the disk image of a segment is created. Run time refers to the interval of time during
which a process actually executes a code segment.

In some systems, when segments are loaded into an address space, an initialization
routine needs to be executed. Segment inclusion is the process of loading a segment and
execution of its initialization routine. The term is sometimes used interchangeably with
loading.

4. ISSUES IN READ-ONLY SHARING

The following are the issues that arise in the design and implementation of a read-
only sharing mechanism:
e Resolution of inter-segment references: What is the latest instant when intersegment
references can be resolved — at compile, load or run time?

e Address assignment to segments: Do segments have to have fixed load addresses or
can they be arbitrarily relocated? In particular, can shared segments be loaded at
different addresses in different address spaces?

e Segment naming and referencing: How are segments named? Once intersegment
references are resolved, how are functions within segments referred to?

o Version management: How are updates to segments dealt with? Are versions of seg-
ments maintained, and, if so, how are versions named and specified?

e Private data of code segments: How is read-write data referenced by read-only code
(private data) handled?

e Dynamic inclusion of segments: Can segments be included dynamically in address
spaces or must the entire collection of segments be loaded before program execu-
tion can begin?

e Sharing boundary: Does the operating system allow multiple processes per address
space so that segments can be shared within the same address space by different
processes (intra-address space sharing)? Can segments be shared only between
address spaces (inter-address space sharing)?

In this section, we discuss these issues in detail. Solutions to the issues are outlined and
the tradeoffs between the different solutions examined. A similar list of issues may be
found in [6].

4.1. Resolution of Inter-Segment References

Resolution is the process of replacing a symbolic inter-segment reference (Section 3)
by a memory address. Resolution can be performed at the latest at compile time, load
time or run time. The choice of when and how references are resolved impacts the

-4-

nature and extent of read-only sharing possible in systems. In this section, we discuss
mechanisms for resolution of references and list their merits and demerits. The discus-
sion specifically refers to shared code segments. It is also valid for shared data segments
which may contain inter-segment references.

Compile Time Reference Resolution

In this scheme, all references are resolved during program compilation. Compile
time reference resolution can be done in one of two ways. One solution ensures that
there are no inter-segment references left unresolved when the disk image of a segment
is created. If functions or data are referenced by a segment, those functions are included
in the disk image. The program loader merely includes this image into the address
space. The sharing mechanism is simplified by the absence of inter-segment references.
No run time reference resolution costs are incurred. However, code that is common to
two segments cannot be shared since each segment gets its own copy of the code.

Another solution assigns a fixed range of addresses to segments (Section 4.2).
Inter-segment references can be resolved at compile time. Sharing is at the level of indi-
vidual segments. The loader includes all the segments referenced by the program into
the address space. Since segments are assigned a fixed range of addresses in all address
spaces, no code relocation is necessary. The only overhead involved is that of including
(at load time or run time) the segments in the address space. This is relatively high for
the first inclusion, but, since the segment is shared, lower for subsequent inclusions.

Load Time Reference Resolution

In this scheme, references may remain unresolved after program compilation. At
load time, all referenced segments are included in the address space and references
resolved. Symbolic references are reduced to absolute addresses by searching the
included segments.

If segment addresses are fixed, references can be resolved at compile time. If refer-
ences are resolved at load time, segments can be assigned different addresses in dif-
ferent address spaces. Code cannot be altered to reflect the binding of the inter-segment
reference to a memory address (the purity constraint for shared code).

A linkage table (Figure 1) is used to resolve references at load time. The linkage
table is a read-write segment. Inter-segment references are indirected through an entry
in the linkage table. All entries in the table are initially null. At load time, those table
entries are filled in with the actual address corresponding to the reference. The linkage
table itself is referenced via a linkage base register.

This mechanism incurs the overhead of reference resolution at load-time. A search
is involved to resolve an inter-segment reference. The cost of including the segment in
the address space (finding a suitable address range and performing the mapping) is also
incurred. Locating a segment in the name space (Section 4.3) is, however, a one time
cost.

Address space A Address space B
0 0

Linkage base
Oxffffff Oxffffff
- Intersegment references indirected through a linkage table -

T

-
!
t
[

- Segment referencing shared segment
Shared segment Linkage table

Figure 1
The linkage table
The linkage table is a read-write per address space segment through which
all inter-segment references are indirected. In the figure, only the code
of the shared segment is shared between address space A and address space B.

Run Time Reference Resolution

Mechanisms for run time reference resolution are similar to those for load time
resolution. The linkage table mechanism (Figure 1) is also used here to ensure sharabil-
ity of segments. At run time, an unresolved inter-segment reference (recognized by a
special bit in the linkage table entry) generates a trap. The operating system then locates
the segment and includes it in the address space. The inter-segment reference is
resolved by filling the linkage table with the appropriate value.

Segments are only loaded when they are actually referenced. The scheme is
efficient when the number of segments actually referenced is small compared to the
number of inter-segment references.

However, an individual reference resolution is more expensive than if the reference
were resolved at load time. Every inter-segment reference incurs the additional over-
head of a trap.

4.2. Address Assignment to Segments

The problem of assigning address ranges to segments reduces to deciding whether
a segment is loaded in the same address range in all address spaces or not. Assigning a
fixed address range to a segment is called the uniform addressing solution [3]. Non-
uniform addressing implies that segments can be loaded at arbitrary and, in particular,
different address ranges in different address spaces. In this section, we qualitatively dis-
cuss the two approaches to this problem. This discussion specifically refers to shared
code segments. It is also valid for shared data segments which may contain inter-
segment references.

Non-uniform Address Assignment

Under this solution, segments can have arbitrarily different addresses in different
address spaces. Address space management is not a problem. This leads to better utili-
zation of the address space resource than is possible with the uniform address space
solution.

However, the solution is expensive in performance terms. Since segments are
loaded at different addresses, inter-segment references cannot be embedded into seg-
ment code. A separate segment called the linkage table (Section 4.1), is used for indirect-
ing inter-segment references. Sometimes, the linkage table forms part of the data seg-
ment of every shared code segment. Thus every inter-segment reference incurs the extra
cost of an indirection.

The code of shared segments has to be position independent (PIC). Normally, posi-
tion independent references are relative to the program counter. This solution imposes a
performance penalty on data and code accesses.

Moreover, under the non-uniform addressing scheme, shared segments are
included in the address space at load time or run time. Since the addresses of segments
are not known at compile time, inter-segment references have to be resolved when seg-
ments are included. Section 4.1 discusses the overhead incurred by load and run time
reference resolution.

Uniform Addressing

Under uniform addressing, all segments are assigned a fixed address range. Seg-
ments are loaded at the same address in all address spaces. All entry points to a seg-
ment can be assigned fixed addresses. Thus, intersegment references can be resolved at
compile time. References need not be indirected through a linkage table. Intra-segment
references can be in terms of absolute virtual addresses and need not be position
independent. The private data of code segments is also assigned a fixed range of
addresses. Hence, the code sharing mechanism is extremely efficient.

The complexity of code sharing appears in a different guise, namely address space
management. It now becomes necessary to assign a fixed range of addresses to every
segment that is sharable. However, since this is not done dynamically, solutions need
not be efficient.

Fixed allocation of address space ranges to segments is an inefficient use of address

space resources. If two segments can possibly be co-resident in memory, they must be
assigned disjoint ranges of addresses. The two may not actually be co-resident at any

given instant of time.

A simple solution is possible in systems where code sharing is restricted to specific
segments (such as libraries). An administrator statically assigns a range of addresses in
every address space for different kinds of libraries — the standard C library, window
system libraries, database libraries etc. It is unlikely that two different libraries perform-
ing the same function will be referenced by a segment at the same time (if necessary, one
of them could be compiled along with the program). Thus, all libraries that perform the
same function are assigned the same range of addresses.

In systems where sharing can be more general, each segment has to be assigned a
fixed range of addresses. The problem of assigning address ranges to all segments
system-wide is a formidable one, since the interdependencies between segments may be
arbitrarily complicated. One way to simplify the problem is to split up segments into
two classes — segments which may be shared system wide (standard libraries and util-
ity programs) and those which may be shared among smaller groups of users. The two
classes can then be handled separately.

Address assignment for the system-wide shared segments may be done by a sys-
tem administrator. For those segments which may be used by a small group of people
(working on the same project, for instance), the administration of the address space is
left to the group. User level tools may be provided to manage the address range alloca-
tion.

Thus, uniform and non-uniform address assignment represent a trade-off between
performance and flexibility. However, under the assumption that virtual address space
as a resource is abundant, the uniform addressing solution is attractive from an
efficiency viewpoint.

4.3. Segment Naming and Referencing

A segment name is a user-visible entity used to locate and identify disk images of
segments. A segment reference is a machine-level entity used to access code within seg-
ments. For instance, a segment can be named by a path name of the form a/b/c/d
while it can be referenced in program code by an absolute memory address such as
0x2£000. In this section, we consider the design choices in naming and referencing seg-
ments.

Naming

Segments usually form part of the file system name space. In distributed file sys-
tems, different parts of the name space may be implemented on different file servers.
Hence, segment location (file name resolution) in these systems can be quite expensive.
However, if a segment is already in use, another reference to the segment does not incur
the cost of name resolution. Thus, for actively shared segments, the cost of name resolu-
tion may be amortized over the number of address spaces sharing the segment.

Where the sharing facility is restricted to libraries alone, they may form a separate
name space that can be more efficiently managed. Libraries are mostly-read and rarely
updated. Use of this property may be made by keeping separate copies of libraries on
local disks to speed up access.

Referencing

In systems where segments have fixed addresses, segment members are referred to
by their virtual addresses. A separate mechanism ensures that segments are included in
the address space before the reference is made. One solution lists all libraries referenced
by the program in the file header. The loader ensures that referenced libraries are
mapped into the address space before execution commences. Another solution is to
have explicit system calls to include referenced segments (see Section 4.6). This solution
is more expensive, since a system call is incurred for every segment inclusion.

In systems where segments can be assigned arbitrary addresses, intersegment refer-
ences are indirected through an entry in the linkage table (Section 4.1). The table entry
may contain the name of the segment before the reference is resolved. At run time,
when the reference is made, a trap is incurred and the segment is included in the
address space. Alternately, the table entry is marked unresolved. The file header con-
tains the list of segments referenced. The loader includes the segments and fills up the
linkage table.

4.4. Version Management

One of the benefits of sharing code among different address spaces is convenient
update propagation (Section 2). Updates to shared code and data are available to users
without the need to recompile their programs. Code segment updates can involve
changes and extensions to the segment interface and improvements to the implementa-
tion of the interface. Each update to a segment creates a new version of the segment.
Two versions are compatible if all programs that execute correctly with one version exe-
cute correctly with the other and vice versa.

Versions of a segment can, in general, form a tree. The root of the tree represents
the original segment. Nodes at each level represent updates made to their ancestors in
the version tree. Figure 2 shows a version tree for a standard C library.

Design of a mechanism to manage version trees of segments (version management)
involves two issues. The first issue is how versions are designated. The second issue is
at what level (user- or kernel-) the versioning mechanism is implemented.

In this section, we discuss version management with specific reference to shared
libraries. The discussion is equally valid for code and data sharing in general.

Version Designation

The most generic designation is the Dewey decimal format, x.y.z.w..., where
x, y, zand w are integers (Figure 2). In the degenerate case, a single integer can be
used to designate versions. This corresponds to a two level version tree with the leaves
of the tree representing updates to the original segment.

A common approach is a two component version designation of the form x.y.
This corresponds to a three level version tree. Versions of the form x.y and x.z (those
that are children of the same version of the original) are compatible. Versions that differ
in the first component (those versions that do not have the same parent) are incompati-
ble.

dummy root @) /lib/libc.a

Original Standard Clib Without getpid () With new function getsid ()

O
Changes to printf () Additional opuons to £seek () Reimplemented putchar ()
1.1 / \
Reimplemenged fseek () proved stem()
1.2.1 1.2. 2
Figure 2

Version tree for standard C library
Each path in the version tree specifies a sequence of changes made to
the original segment. Each circle represents a version and the numbers
represent the Dewey decimal version numbers.

User or Kernel Level Versioning Mechanisms

Most operating systems provide no explicit support for versions of shared code.
User-level tools are provided for version management [11]. Such tools provide support
for versioning large software systems, where many developers may be simultaneously
altering files.

However, it is difficult to extend them to provide support for versions of shared
code. Libraries can potentially be shared by every program in the system. The version
management system cannot keep track of the dependencies between programs and ver-
sions of the libraries they reference.

The fundamental problem in versioning libraries lies in the naming mechanism. In
most cases, libraries form part of the name space of the file system (Section 4.3). Pro-
grams are embedded with the name of the file representing the shared library segment.
Suppose that a program references /1ib/libc.a, the standard C library. A new ver-
sion of the C library would also have the same name, otherwise all programs would
have to be changed. Thus, programs cannot specify access to a particular versions. All
programs would have to use the same (e.g. the latest) version.

-10 -

One solution to the problem embeds knowledge of a versioning mechanism within
the operating system. The program loader knows about versions of libraries. The loader
implements the semantics of the versioning mechanism when including versions of the
libraries.

This solution lacks flexibility. The trend in modern day operating system design is
to provide minimal mechanism within the kernel, so that different policies may be
implemented at the user level.

User-level library versioning mechanisms are difficult to build in traditional sys-
tems because a name in the name space implies a single unique entity. Some systems
have extended the concept of a name space to include services as nodes. Whenever a
path traversal reaches a service node, a server implementing the service completes the
traversal using the remaining components of the name.

Such a mechanism can be used to design a user-level file system with versioning.
The file system is implemented as a service. The service can implement the semantics of
the versioning mechanism without kernel intervention. For instance, a service imple-
menting the two-component version designation (Section 4.4), when asked for version x
can access version x.y such that y is the largest numbered child of x in the version
tree (i.e. the most recent compatible version).

4.5. Private Data of Code Segments

While code can be shared, read-write data accessed by the code must necessarily be
private to the address space. Usually, private data of a code segment forms a separate
segment. Reference to data constitutes an inter-segment reference. If segment addresses
are fixed, inter-segment references are absolute addresses. If load or run time reference
resolution is employed, references to data segments are bound dynamically. All data
references must be indirected through a linkage table (Section 4.1).

In systems that have single address space per machine, there is no notion of data
private to an address space. Segment code as well as data is shared between processes,
executing in the single address space. Access to shared data is regulated by some
mutual exclusion mechanism.

4.6. Dynamic Loading of Segments

Some systemns permit segments to be loaded at run time. Dynamic loading (also
called dynamic inclusion) is independent of when inter-segment references are resolved.
For instance, it is possible to resolve all references at compile-time and yet dynamically
load the segment.

Mechanisms for dynamic loading of segments can either be explicit or implicit.
Implicit dynamic loading occurs when an inter-segment reference to an unloaded seg-
ment generates a trap. This mechanism requires hardware support. Explicit dynamic
loading mechanisms usually provide a system call to the loader for including the seg-
ment.

Dynamic loading incurs the extra cost of a system call or a trap. If the segment is
not shared, the cost of segment inclusion is largely in locating the segment and loading it
into the address space. When code is shared, the cost of the second and subsequent
inclusion is small; it is just the overhead of the system call or trap. However, only

-11-

segments that are actually referenced are included.

4.7. Sharing Boundary

A peripheral issue is whether segments can be shared between processes in an
address space as well as between address spaces. In this section, we examine how the
sharing boundary affects the code sharing mechanism.

Intra-address Space Sharing

Multiple processes in an address space can share the code and data of a segment.
No extra mechanism is required except the ability to start up multiple processes in an
address space.

No kernel overhead is involved in this type of sharing. However, processes must
use some synchronization mechanism for accesses to shared data. Hence, this type of
sharing is not transparent to the programmer. Moreover, sharing is on an all-or-nothing
basis. All processes have the same privileges since the address space defines a protection
boundary.

Inter-address Space Sharing

In this type of sharing, segments are shared across address spaces. If code seg-
ments are shared, each address space gets a private copy of the read-write data associ-
ated with the code. It is possible for a segment to be both intra- and inter-address space
shared.

Additional mechanism is needed within the kernel to accommodate inter-address
space sharing. This takes the form of data structures for keeping track of segments
currently loaded in an address space. The copy of the segment in physical memory is
reused after the first time it is included in the address space. However, that code is
being shared is largely transparent to the programmer.

5. MEASUREMENTS
We conducted a set of experiments designed to answer the following questions:

e Extent of sharing: What is the extent of read-only sharing in an operating system
such as 4.3 BSD Unix? How much reduction in physical memory does this level of
sharing provide? We chose 4.3 BSD since it provides a very simple form of read-
only sharing (see Section 6.1).

e Potential savings from sharing: What additional savings can be obtained by allowing
a greater degree of sharing in 4.3 BSD Unix? For example, if library sharing were
introduced in 4.3 BSD, how much reduction in physical memory and disk space
can be expected?

o Work done by different sharing mechanisms: How much work is done by different

sharing mechanisms at compile time and how much at load and run time? We use
this as a yardstick for the efficiency of read-only sharing mechanisms.

The first two sets of questions are motivational in that they seek to establish whether a
sharing mechanism is needed at all. The last set tries to quantify the efficiency of dif-
ferent sharing mechanisms.

-12-

This section discusses the design and outcome of these experiments. In designing
the experiments, we strove for simplicity and ease of implementation. The numbers
obtained give a feel for the quantities they represent. In some cases they provide lower
or upper bounds but are not necessarily very accurate.

5.1. Extent of Sharing

The first experiment estimates the extent of read-only sharing in a “typical” multi-
user 4.3 BSD Unix system. We loosely define a typical system to be one which is
moderately to heavily utilized. The advantages of sharing manifest themselves under
these load conditions.

Methodology

Text segments of programs may be shared between processes in 4.3 BSD Unix (see
Section 6.1). The extent of sharing is defined as the ratio of programs shared to the total
number of programs in memory at any given instant.

To compute this ratio, we sampled a typical 4.3 BSD Unix system (ernie, a VAX-
11/785 at the Computer Science Division of the University of California at Berkeley) at
regular intervals. The samples were taken during the busiest periods of the day (defined
as being from 9 am to 12 noon and from 1pm to 4pm on working days). The experiment
is described in greater detail below.

System statistics in 4.3 BSD Unix may be obtained using pstat. pstat -x lists
the text table, which keeps track of the text segments of programs in use by processes.
For each text table entry, pstat -x lists the number of processes using the text seg-
ment, number of physical pages occupied by the segment, and whether the text segment
is currently in physical memory. If more than one process is using a text segment, the
text segment is read-only shared between those processes.

Using the above information, we can compute the number of ““active” segments
(the text segments currently in physical memory) and the number of “shared” segments.
The ratio of these quantities gives the extent of sharing in the system. We can also com-
pute the ratio of the physical memory that would have been occupied by the text seg-
ments without sharing to that with sharing. This ratio (the memory savings ratio) indi-
cates the physical memory savings that this mechanism provides.

Results and Discussion

Table 1 shows the result of this experiment. The experiment was conducted with
different sampling rates and for different periods of time. The average extent of sharing
over all samples is about 30%. Multics was found to have a much smaller extent of shar-
ing [8]. Only 12% of the segments are in shared in Multics.

The memory savings ratio is found to be about 4. This ratio also indicates how
many processes, on an average, share a text segment. For instance, under some assump-
tions made in Section 5.2, we can show that the memory savings ratio is 1.3 when each
“shared” segment is shared between exactly 2 processes. With 3 processes sharing a
“shared” segment, the figure rises to 1.6.

The above results show that a significant fraction of text segments are shared in 4.3
BSD Unix. Moreover, each text segment is shared by more than 2 processes, on the

-13-

average.

Thus, even with a very simple sharing mechanism, the extent of sharing and the
benefits thereof are significant.

Extent of sharing 0.298
Memory savings ratio | 4.12

Table 1
Sharing in a typical 4.3 BSD system
The extent of sharing is defined as the ratio of the
number of shared segments to the number of active segments.
The memory savings ratio is defined as the ratio of physical memory
without text segment sharing to that with text segment sharing.

5.2. Potential Savings from Sharing

The second experiment was designed to estimate the fraction of library code in dif-
ferent sets of 4.3 BSD Unix programs. The programs in /bin, /usr/ucb, and
/usr/bin on a 4.3 BSD system were examined for C library code. The X10 and X11
client application programs were examined for X library code.

For each set of programs, two fractions called the code fraction and the disk space
fraction were computed. The code fraction is the ratio of library code to the total code in
all programs in the set. The disk space fraction is the ratio of library code to the total disk
space occupied by all programs in the set. These fractions indicate how much physical
memory and disk space savings could be obtained by sharing libraries in 4.3 BSD.

Methodology

The list of all symbols in a library may be obtained from its name list (nm -n). The
name list of a binary can be scanned to find out which of its symbols is from the library.
The scan also yields the total memory occupied by the library code. This can be used to
compute the disk space fraction and the code fraction.

Results and Discussion

The results of this experiment are tabulated in Table 2. The largest code fraction is
for the set of X11 programs (82%). In fact, some individual programs in this set have
code fractions of up to 96%. X10 programs have the smallest code fraction. Commonly
used 4.3 BSD Unix system programs in /bin, /usr/ucb and /usr/bin have code
fractions between 60-75%.

X11 programs also have the highest disk space fraction (55%). The disk space frac-
tion for 4.3 BSD Unix programs ranges from 39% to 48%. X10 programs would gain
least by the introduction of shared libraries. The disks space savings computed above
actually give a lower bound. This is because memory occupied by library data is
difficult to estimate.

-14-

Almost half the disk space used by programs would be saved with shared libraries
in 4.3 BSD. The savings in physical memory are equally dramatic as illustrated by the
simple calculation below.

Suppose that at any given instant there are n active text segments. 30% of these are
shared among processes (using numbers from Section 5.1). Suppose also that each text
segment occupies k pages. Hence the total memory occupied when texts are shared is
nk. Suppose further that each shared segment is shared by exactly 2 processes. If texts
were not shared, the memory occupied would be

nk+0.3nk.

Assume that 60% of the n text segments is library code. If library code is also shared, the
physical memory occupied by the text segments is

0.6k +0.4nk.

The ratio of physical memory without sharing to that with simple text segment sharing
is 1.3. The ratio of physical memory without sharing to that with library sharing is

1.3nk /(0.6k+0.4nk).
This fraction is about 3.25 for even moderate values of n. Thus, shared libraries can
more than double the physical memory savings obtained from simple text sharing.

In the computation, we assume that exactly 2 processes share a segment. This gives
a pessimistic estimate of the memory savings with shared libraries.
From the above results, we conclude that shared libraries can provide significantly

more savings than sharing text segments as a whole. However, the mechanism for shar-
ing libraries must be efficient. We examine this problem in the next section.

Program set | Code fraction | Disk space fraction | Number of programs |
x10progs 0.51 0.27 22
x11progs 0.82 0.55 69
/bin 0.76 0.48 45
/usr/ucb 0.60 0.40 64
/usr/bin 0.60 0.39 87
Table 2

Library code in different sets of programs
The code fraction is the ratio of library code to total code in a program.
The disk space fraction is the ratio of library code to disk space.

5.3. Work Done at Compile Time

Different sharing mechanisms employ different reference resolution schemes (see
Section 4.1). These schemes influence the efficiency of code sharing mechanisms. We
compared compile time reference resolution in SunOS 4.0, load /run time reference reso-
lution in SunOS 4.0 (with shared libraries) and the fixed virtual address scheme in

-15-

DASH. The overhead involved in resolving references can be used as yardsticks for the
efficiency of sharing mechanisms.

Methodology

In order to compare resolution of library references, we created a dummy library
with 1000 null functions. The members in the DASH library had fixed addresses. For
SunOS, both static and dynamic (shared) versions of the library were created.

Our benchmark consisted of a suite of 20 programs which made 50, 100, 150,,
1000 library function calls. We computed the time taken to resolve the library references
for each benchmark program on the different systems. The experiments were all carried
out on a Sun-4. (Although DASH runs on Sun-3s, programs for DASH, at the moment of
writing, are compiled on 4.3 BSD Unix machines. We linked the DASH benchmarks on a
Sun-4 for ease of comparison).

The times obtained were for a warm start (disk accesses were factored out as much
as possible). The experiment was repeated a sufficient number of times to give a 95%
confidence interval for an error less than 5% [4].

Results and Discussion

Figure 3 shows the time taken to link a program as a function of the number of
library functions it references. The time taken to link a program statically is more than
the time taken to link the program dynamically. The DASH benchmark was the fastest
since all references have fixed addresses and there is no overhead for reference resolu-
tion. Clearly, the DASH approach is the most efficient.

The curves are nearly identical upto 200 references because the overhead of reading
the object file is greater than the reference resolution overhead till that point. In our
case, the dummy library contained null functions. With a real library, the curves would
diverge earlier.

It is not unusual to have programs with 1000 library references. Similar numbers of
library references are found in some client applications of the X11 window system.

5.4. Work Done at Run Time

Some systems (SunOS, Multics) complete reference resolution during load time and
run time. The execution time of a program depends on the reference resolution scheme.
It is likely to be higher for systems that resolve references at run-time than for those that
do not. In this experiment, we compared the execution times of the benchmarks
described in Section 5.3.

Methodology

The methodology used is similar to that in Section 5.3. Each benchmark program
was compiled with the SunOS static and dynamic libraries and the DASH library. The
resulting binaries were executed on the respective systems; the SunOS binaries on a
Sun-4 and the DASH binaries on a Sun-3/50.

As in Section 5.3, the numbers obtained here are for a warm start. The experiment
was repeated a sufficient number of times to give a 95% confidence interval for an error
less than 5%.

-16 -

2.201
2.004
1.804
1.601
1.401
1.204
1.00- S
0.80 T T Y T v
0 200 400 600 800 1000
Number of references
y-axis = time taken to resolve references in secs
-------- = SunOS 4.0 without shared libraries (Sun-4)
- - - = DASH (compiled on Sun-4 for ease of comparison)
= 5unOS§ 4.0 with shared libraries (Sun-4)

Figure 3
Reference resolution time as a function of number of references
Static reference resolution is costlier than dynamic reference resolution.
The DASH approach of fixed addresses for entry points of segments is the
most efficient.

Results and Discussion

Figure 4 shows the execution times of the benchmarks as a function of the number
of references. Shared libraries on the Sun-4 impose substantial execution overhead.
Each functional library reference is resolved at run-time (see Section 6.3). On the other
hand, no reference resolution is involved if the library functions are compiled into the
program and the runtimes are approximately constant. The time taken to actually exe-
cute the functions is negligible since they are all null functions.

In DASH all library references have fixed virtual addresses. Hence the time taken
to execute all programs in the benchmark suite is almost constant. Actually, the DASH
execution times are comparable to the SunOS static resolution benchmarks. The DASH
benchmarks were executed on a Sun 3/50 and the SunOS 4.0 benchmarks on a Sun-4. A
simple experiment shows that the two systems have a MIPS ratio of approximately 2.5-3
(the Sun-4 being faster).

-17-

Thus, the DASH sharing mechanism is as efficient as the Unix sharing mechanism,
while being more general.

OB,SW
0.30+
0.251
0.201
0.151
0.104 .
005
0.00 v v v v]
0 200 400 600 800 1000
Number of references
y-axis = execution time in seconds
------- = SunOS 4.0 with no shared libraries (Sun-4)
- - =DASH on Sun 3/50
— = SunOS 4.0 with shared libraries (Sun-4)

Figure 4
Runtime as a function of the number of references
Dynamic reference resolution causes a dramatic increase in the execution
time of programs. The execution times for DASH are actually comparable to
those for the statically resolved benchmarks, once the numbers are normalized
to account for hardware differences.

5.5. Summary
Our experiments lead us to the following conclusions:

e Sharing is significant in 4.3 BSD Unix, which has a relatively restrictive sharing
mechanism (only text segments of programs may be shared).

e Introduction of a more general sharing mechanism (such as shared libraries) hold
the promise of greater benefits.

e A more general sharing mechanism need not trade off efficiency for generality. In
particular, the approach taken in DASH performs as well as the sharing mechanism
in Unix, but is more general.

-18 -

6. CODE SHARING IN DIFFERENT SYSTEMS

Different operating systems tackle the issues discussed in Section 4 differently. In
this section, we tabulate (Table 3, Table 4) the solutions adopted by the systems for each
of the issues discussed above. We also discuss, in some detail, the more interesting
aspects of some solutions.

6.1. 4.3 BSD Unix

In 4.3 BSD Unix, there is a one-to-one mapping between a process and an address
space. The exec system call is used to load a segment into a new address space, overwrit-
ing the previous contents of the space. The exec call is usually preceded by a fork system
call which initializes a new address space and starts up a child process in the space.

The mechanism for sharing segments in 4.3 BSD Unix is quite simple. Every pro-
gram in 4.3 BSD Unix consists of three segments - the text segment, the data segment
and the stack segment. The virtual memory resources allocated to the text segment of a
program are maintained in a text structure [7]. When a process exec’s a program whose
text segment is already in use, the kernel reuses the same physical copy of the text seg-
ment for the new process.

6.2. System V Unix

System V Unix uses the same mechanism for read-only sharing as in Section 6.1.
Additionally, it has a shared library capability [2].

Shared libraries in System V have fixed addresses determined at the time the:
libraries are created. Therefore, resolution of inter-segment references can be completed
at compile time. The disk image of a segment contains a list of libraries that it recur-
sively references. Library segments are loaded using this list when a segment is loaded.

Only the latest version of libraries is maintained. Any changes to a library while it
is in active use by other processes is prevented by the file system.

6.3. SunOS 4.0

In addition to the read-only sharing capability of Unix, SunOS has a shared library
capability built into the operating system [5].

Resolution of inter-segment (shared library) references is completed at load time.
The disk image of a segment contains a list of library segments referenced. When the
main segment is loaded, the system also loads the library segments and resolves all data
references. Procedural references are dynamically resolved. This is done by having the
procedure linkage table access the dynamic loader when the reference is first made. The
linkage table entry is then filled up with the absolute virtual address once the reference
has been resolved.

Library segments are loaded at arbitrary locations in the address space of the pro-
cess. In general, therefore, they may appear at different locations in different address
spaces.

The SunOS system supports versioning of libraries. Versions of libraries are desig-
nated by two version numbers — a major version number and a minor version number.
Changes in the major version number reflect changes in the interface — versions of

-19-

libraries with different major version numbers are incompatible. Changes in the minor
version number represent compatible changes to the library. Library file names are
suffixed by their version numbers.

Library segments are compiled into position independent code (PIC) so that no
relocation need be done when they are loaded.

6.4. Multics

In Multics, a process represents a thread of execution and an address space is a col-
lection of segments [9]. The address space is organized as a table of segment descriptors.

Multics segments can be dynamically loaded into the address space of a process —
at run time, segments are loaded into the address space on first reference.

Resolution of references can be delayed until run-time. This feature is supported
by the unknown-segment trap. When a segment refers to another segment which has not
been included (loaded) in the address space (i.e. is not “known” to the process), this trap
is invoked. The trap handler searches for the referenced segment and ““makes it known”’
to the process. This involves loading the segment into the process’ address space by
finding an empty descriptor word in the segment descriptor table for the process.

Segments may be included in any available descriptor word, that is, a segment may
be assigned arbitrary addresses. In particular, a segment may appear in different
addresses in different address spaces. In order for sharing of segments to be possible, a
linkage table is associated with each process. All references to segments are made
indirectly through an entry in the linkage table. This entry is filled up when the segment
is made known to the process.

6.5. Cedar

In Cedar, each machine contains a single virtual address space. All segments are
loaded and executed within this single address space [10]. Multiple processes can be ini-
tiated within an address space.

Each Cedar module imports a number of interfaces and implements another inter-
face, part of which it may then export. A module is equivalent to a segment (Section 3)
and import of a segment is equivalent to an inter-segment reference. Modules in Cedar
are shared by different processes within the same address space.

Binding of modules to the modules which they import can be done before loading
or when the program is being loaded. Each compiled module has a list of modules
whose interfaces it imports. When a module is being loaded, this list is examined. If the
referenced module has already been loaded, then the image of the module is used. Oth-
erwise, the required module is mapped into the machine’s address space.

Modules are loaded into arbitrary addresses. The compiler for Cedar produces
position independent code so that the loader need not perform any static relocation.
References to modules which are loaded dynamically are indirected through a linkage
table.

It is possible to include modules dynamically in the address space of the machine.

-20-

6.6. DASH

A virtual address space in DASH [1] is statically divided into three regions each of
which performs one function. The shared segment region is a read-only region of the vir-
tual address space and is used for loading read-only code of programs and libraries.
The general region is used to map the data portion of programs and libraries. The
shared-segment region is further subdivided into the homogeneous subregion and the
heterogeneous subregion.

Multiple processes may execute within a virtual address space. Hence it is possible
to share a segment among different processes within a virtual address space as well as
among different address spaces.

All segments are allocated a fixed range of addresses in either the homogeneous
subregion or the heterogeneous subregion. All programs in the homogeneous subregion
are allocated disjoint address ranges. This is not true of the heterogeneous subregion.
Two programs in the heterogeneous subregion may be assigned overlapping address
ranges if they can never be co-resident in memory. Binding of an intersegment reference
takes place at compile time since the target addresses are fixed.

Segments can be dynamically loaded into a virtual address space. This process is
called segment inclusion. When a segment is included in an address space, an initializa-
tion routine [1] is executed, during which the segment may include any other segments it
references. A system call interface is also provided for dynamically loading segments
into an address space.

Each virtual address space gets a private copy of the data of a shared segment.
Within a virtual address space, all processes share the same copy of the data.

Operating Reference Naming and Version Address
System Resolution Referencing Management | Assignment
4.3 BSD Unix compile file system none arbitrary
time absolute address
System V compile file system none fixed
time absolute address,
segment list in header
SunOS load/run file system kernel-level arbitrary
time linkage table
Multics run file system none arbitrary
time linkage table
Cedar load file system none arbitrary
time linkage table
DASH compile file service user-level fixed
time absolute address
Table 3

Issues in read-only sharing mechanism design

-21-

Operating Private Dynamic Sharing
System data loading boundary
4.3 BSD Unix separate no inter-address
space
System V separate no inter-address
space
SunOS separate no inter-address
space
Multics separate yes inter-address
space
Cedar not separate yes intra-address
space
DASH separate yes intra- and intra-
address space

Table 4
Issues in read-only sharing mechanism design (contd.)

7. CONCLUSIONS

A general read-only sharing mechanism holds out the promise of significant physi-
cal memory, disk space and I/0 reductions. The design of a read-only sharing mechan-
ism need not sacrifice efficiency for generality. The DASH Project has designed an
efficient yet general read-only sharing mechanism that does not perform worse than the
Unix program code sharing mechanism.

There are many issues in the design of a read-only sharing mechanism. These
range from reference resolution to version management. Each of these issues may be
tackled in a variety of ways — the approaches range from the extremely flexible to the
restrictive. If the solution to each of these issues is carefully selected, it is possible to
design a general and efficient read-only sharing mechanism.

REFERENCES
1. D. P. Anderson, S. Tzou and G. S. Graham, The DASH Virtual Memory System,
Technical Report, UCB, Sept 1988.

2. J. Q. Amold, Shared Libraries on UNIX System V, USENIX Summer Conference
Proceedings, 1986, Atlanta, GA, 1986, 395-404.

3. R S. Fabry, Capability-Based Addressing, Communications of the ACM 17,7 (Oct
1973), 613-625.

4. D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

10.

11.

-22-

R A Gingell, M. Lee, X. T. Dang and M. S. Weeks, Shared Libraries in SunOS,
Proc. of the USENIX 1987 Summer Conference, Phoenix, AZ, June 1987, 131-145.

R. A. Gingell, Shared Libraries, Unix Review 7,8 (Aug 1989), 56-66.

S.]. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman, Design and

Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, Reading,
MA, May 1989.

W. A. Montgomery, Measurements of sharing in Multics, Proc. 6th Symposium on
Operating Systems Principles 11,5 (Nov 1977), 85-90.

E. I. Organick, The Multics System: An Examination of Its Structure, The MIT Press,
Cambridge, MA, 1972.

D. C. Swinehart, P. T. Zellweger and R. B. Hagmann, The Structure of Cedar, ACM
SIGPLAN Notices Notices 20,7 (July 1985), 230-244.

W. F. Tichy, Design, Implementation, and Evaluation of a Revision Control
System, Proc. 6th International Conference on Software Engineering, Tokyo, Sep 1982.

