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ABSTRACT

The allocation of resources in operating systems is currently
based on ad hoc heuristics and algorithms. Some well-known heuris-
tics have been developed in such areas as process scheduling,
memory management and network routing. The possibility that
better decisions could be made by an Intelligent Agent employing
expert system techniques is investigated in this report. The ability
to learn from experience and to deal with uncertainty are two
characteristics of expert systems that would be essential aspects of
such an Intelligent Agent.

As multiple processor systems become more widely available,
applications involving multiple concurrent processes will increase in
number and importance. This increased interdependency among
processes poses interesting problems in the area of processor schedul-
ing. How should the processes be scheduled to achieve some optimal
level of performance? A scheduler based on an expert system may
prove to be a viable alternative to those that have been proposed and
(in some cases) implemented so far.

This report describes the implementation of a learning mechan-
ism that attempts to handle the problem of processor scheduling in
such a multiprocessor environment. In effect, the Intelligent Agent
tries to "learn" its own set of heuristics for optimally scheduling a set
of co-operating processes. By simulating a relatively simple mul-
tiprocessor system we examine the merits of such an approach.
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1. INTRODUCTION

The scheduling of processes in a computer system is currently performed according
to ad hoc algorithmic techniques. Often the algorithms are found to perform less
than optimally and may require "fine-tuning" to achieve better performance. In
addition, scheduling disciplines that were appropriate in stand-alone uniprocessor
systems, such as round-robin, may not be as effective in dealing with today’s multi-
ple processor systems. In this category we include both shared-memory multipro-
cessor systems and distributed systems. The parallelism among processes in these
systems may dictate the use of alternative scheduling policies. A discussion of
some techniques for taking advantage of multiple processor architectures is
presented in a subsequent section. '

In this report, I argue that an Intelligent Agent, employing expert systems tech-
niques, has the potential for effectively performing processor scheduling. This is
not to say that such an Intelligent Agent should be incorporated into an operating
system under existing technology. It is well-known that the poor performance
characteristics of artificial intelligence systems make them unsuitable for use in
applications where very fast, real-time decisions have to be made. Rather, it is
advocated that a rule-based approach to processor scheduling has advantages over
an algorithmic approach, and may actually be effectively used in its stead in future
systems.

A particularly attractive feature of expert systems is the ability to learn. This pro-
vides a level of adaptability that does not exist in current scheduling disciplines.
Detecting a bad state, or a situation that leads to a bad state, and how to avoid it
is an example of the usefulness of such a learning capability. This report focuses
mainly on the learning aspect of our Intelligent Agent.

There are many problems involved in trying to optimally schedule a set of
processes. Section 2 examines some of these issues. Section 3 describes some
artificial intelligence techniques applicable to processor scheduling. In Section 4
we develop a model for our Intelligent Agent, henceforth referred to as an Expert
Scheduler. Section 5 outlines an implementation of the Expert Scheduler in a
simulated computing environment. In particular, we describe in detail the learn-
ing mechanism employed. Section 6 provides results on the performance of the
Expert Scheduler as well as comments about the limitations of our approach.

2. SCHEDULING ISSUES

During the course of its lifetime, a process will require a variety of system
resources, and its needs are likely to change over time. Among the resources it
may require are physical memory, /O devices, disk files and the CPU itself.
Scheduling processes in an optimal manner is a difficult problem due to the lack of
complete knowledge about their resource requirements. In addition, there may be
interdependencies among the processes which may complicate the scheduling deci-
sion. Thus, what may be optimal for a single process considered in isolation may
prove to be less than optimal when viewed globally.

The definition of an optimal schedule depends on the performance metric being
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used and this, in turn, may depend on the applications being supported. A comput-
ing environment may be designed to support batch processing, real-time applica-
tions, an interactive time-sharing system or a combination of the above. In a
batch processing system, job throughput and CPU utilization may be the perfor-
mance measures of interest. However, in an interactive time-sharing system, the
minimization of response time (or even of the variation in response time) may be
the performance criterion. Other criteria commonly used (also to be minimized)
are turnaround time and waiting time. The appropriateness of a scheduling policy
will also depend on the performance measure(s) we are trying to optimize.

CPU scheduling can take two forms: short-term scheduling and long-term schedul-
ing. The short-term scheduler deals with allocating the CPU to one of the
processes currently ready to be executed. The long-term scheduler determines
which processes should be allowed to enter the system. Load balancing in a distri-
buted system falls under this category. When a new process is created, we would
like to assign it to the machine which is the least loaded. If a process is not con-
strained to execute only on the machine to which it was originally assigned, we
may also consider process migration. In some operating systems, due to the
memory management mechanism, the long-term scheduler may also be required to
select an entire process to be swapped in or out of memory. One final consideration
in long-term scheduling may be to select a "good" mix of 1/O-bound and CPU-
bound processes. If we are not careful, we may, for instance, get a situation where
the majority of processes are I/0O-bound. As a result, the processor(s) may remain
under-utilized as the I/O subsystem becomes a bottleneck and reduces the system’s
processing rate.

As mentioned above, memory requirements and machine load are two possible cri-
- teria on which the long-term scheduler may base its scheduling decision. Factors
influencing the short-term scheduling policy include execution time requirements
and process interdependencies. The exact execution time of a process is difficult to
know a priori, but reasonable estimates can be made based on its past history or on
information supplied by the user. The interactions between processes can be in the
form of interprocess messages or, in shared memory systems, via locks and sema-
phores. In the former case, it may be advantageous to coschedule cooperating
processes as is done in Medusa [OUST80]. In the latter case, it may be preferable
not to remove a process from its processor if the lock on which it is waiting will
soon be released by a process executing on another processor. We would also like
to avoid descheduling a process while it holds a lock.

The problem we will be considering in the remainder of this report is that of
short-term scheduling. Some current approaches that have been proposed for
short-term scheduling are described in this and the following paragraphs. The
shortest-job-first (SJF) scheduling discipline selects the process with the smallest
execution time requirements. It is theoretically interesting because it is provably
optimal in that it provides the minimum average turnaround time. This method
has the disadvantage of requiring knowledge of at least an estimate of the
expected processing time. A scheduling algorithm not requiring any knowledge of
execution times is the round-robin discipline. This well-known algorithm cyclically
schedules each process for a pre-determined quantum of time. If the process does
not complete in its time quantum, it is suspended and assigned to the end of the
ready queue, to be serviced again at a later time. This policy is much fairer than
SJF in that long running processes cannot be starved by the continual arrival of
short running processes.
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A class of scheduling disciplines that attempts to favour short execution time
processes but still provide some service to long running processes is that of the pol-
icies based on multi-level feedback queues. Each queue is managed in first-in
first-out order and has associated with it a priority and a fixed time quantum: the
higher the priority the smaller the time quantum. When a process becomes runn-
able, it is assigned to the highest priority queue. Each time a scheduling decision
must be made, the processor selects a process from the highest priority queue that
is non-empty. If the process does not complete in its time quantum, it is reas-
signed to the next lower priority queue. In this manner, CPU-bound processes gra-
dually sink to queues with lower priority but with greater time quantums. In
order to prevent starvation, a process can be moved to a higher priority queue if it
has been waiting too long a time. Note that this feedback mechanism provides an
elementary form of learning by attempting to migrate processes to the most
appropriate queue.

The above algorithms do not support any mechanism to take advantage of multiple
processor architectures, and, in fact, make no distinction between uniprocessor and
multiprocessor systems. Current multiprocessor systems encourage the use of mul-
tiple concurrent processes to perform a single task. These processes often commun-
icate via messages. Ousterhout [OUST82] has proposed a technique that attempts
to reduce the context switching overhead encountered by naive scheduling policies.
When a process, A, must wait for an event to occur (e.g., the receipt of a message),
it is usually suspended by removing it from its processor. But if the event on
which it is waiting occurs very soon afterward (e.g., a process, B, executing on
another processor, sends a message to A), then we must perform two context
switches on A. Whereas, if we had kept A loaded and idled A’s processor for a
short time (termed a pause), we could have eliminated the context switches with
only a slight penalty in processor utilization. If the event does not occur within
the pause time, then the process can be removed from the processor. However, the
optimal value for the pause time may be difficult to determine. OQusterhout also
describes three different algorithms that attempt to coschedule those processes that
are known to be cooperating via message-passing. The intention is to improve the
likelihood that a process that wishes to receive a message will receive it while it is
assigned to a processor and hence reduce the number of context switches.

The problem of scheduling a set of concurrent processes constrained by precedence
relationships (i.e., where a process cannot execute until some set of predecessor
processes has completed) has been widely studied. The partial ordering among the
processes is often represented by a directed acyclic graph known as a precedence
graph, where the nodes represent processes and the arcs represent precedence con-
straints. This is in fact the process model that will be used to carry out our study.
Optimal algorithms that minimize the completion time, given the precedence con-
straints, have been discovered for particular cases [GONZ77]. For example,
Coffman and Graham [COFF72] have developed an algorithm which is provably
optimal in the two-processor case in which the execution times are known.
Although there is no known efficient algorithm for finding the optimal schedule in
the general case, in a study conducted by Adam et al. [ADAM74] the heuristic
known as Highest Levels First with Estimated Times (HLFET) was found to be near
optimal in over 95% of the cases. Again, in this heuristic, estimates of process exe-
cution times are assumed known and are used to label the nodes of the precedence
graph. Based on this labelling, the level of each process is computed as the sum of
its own execution time plus the longest path to a terminating process (a process
with no successors). Figure 1 shows an example of a precedence graph with the
nodes labelled with the execution times and the level for each process. The
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Figure 1: Precedence Graph

intention of the HLFET heuristic is to schedule as early as possible those processes
which lie in the critical path of the precedence graph.

3. EXPERT SYSTEMS

Expert systems have been successfully designed for a variety of applications. Some
notable examples include MYCIN, which is used in medical diagnosis, and Den-
dral, which has discovered previously unknown rules of chemistry [ANDRS83].
What makes an expert system potentially useful in managing an operating system,
and in particular, performing processor scheduling, is its ability to deal with uncer-
tainty and to adapt to changing conditions. Adaptability and the ability to learn
from experience are two features which are particularly attractive considering that
the workload in a computer system can exhibit large variability. Uncertainty may
manifest itself simply in not knowing the execution time requirements of a single
process or in a more complex problem, such as trying to discern the instantaneous
global state of a distributed system. There are many methods that have been pro-
posed to deal with uncertainty: among them are fuzzy logic [ZADEB83), certainty
factors [SHOR75] and techniques based on Bayes’ rule [GENE8&7].

Two other Artificial Intelligence techniques which may be appropriate in the
design of an expert scheduler are non-monotonic and temporal reasoning. In
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traditional systems, monotonic reasoning methods are employed whereby beliefs
are added to the knowledge base and new beliefs can be inferred from existing
ones. Non-monotonic reasoning [MCDES80] permits beliefs to be removed from the
knowledge base. In particular, the inference mechanism allows beliefs to be
inferred based on incomplete knowledge; that is, by making assumptions and using
default reasoning. If some new belief is later discovered that contradicts an exist-
ing one, the latter must be discarded. Such a technique seems appropriate to com-
puter systems where the environment may change significantly enough over the
course of time that a particular rule may no longer be valid. The other class of
reasoning methods, known as temporal logics [MCDE82] [ALLA81], which are in
fact a form of non-monotonic reasoning, also seem applicable to the problem of pro-
cessor scheduling. These logics include the element of time in their representa-
tions. Concepts such as causality, persistence and the relative timing between
events are the focus of these methods, thus making them well-suited for modelling
systems undergoing continuous change.

Pasquale [PASQ87] has investigated the use of a knowledge-based system to
manage a distributed computer system. Based on decentralized control, each node
in the system would contain an instance of a so-called Expert Manager. Each
Expert Manager attempts to infer the current global state of the distributed sys-
tem based on partial and uncertain information received over the network. As
information is received, hypotheses are generated to explain the observed evidence,
and then experiments are possibly performed to validate/invalidate competing
hypotheses. Hypotheses that are believed to be true beyond a certain threshold
become facts and are added to the knowledge database. Pasquale’s model also
incorporates a learning feature which attempts to detect what conditions lead to
bad states. The application of this approach to the problem of decentralized load
balancing is given in [PASQ88].

4. THE EXPERT SCHEDULER

Traditional expert systems require a human expert to impart his expertise into a
knowledge base. This function, also known as knowledge engineering, requires the
human expert to express his knowledge in terms of heuristics in some machine
acceptable format. This task is by no means trivial. However, in the application
which we are considering, there is no human expert to whom we can turn.
Although many useful heuristics have been derived for multiprocessor scheduling,
the problem is still far too complex due to the myriad factors involved. Our Expert
Scheduler is likely to require a greater capacity for learning in order to be success-
ful. Indeed, the ability to learn will be a critical part of the Expert Scheduler.

In addition, the Expert Scheduler will have functional components that have very
different real-time requirements. For example, scheduling decisions must be made
at context-switching speeds. The operation of much of the learning subsystem, on
the other hand, is not as time critical and can be relegated to "background” mode.
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4.1. An Architecture for the Expert Scheduler

The Expert Scheduler envisioned (see Figure 2) would be composed of at least the
following modules:

SYSTEM
SCHEDULER
MONITOR
. :
LEARNING INFERENCE
SUBSYSTEM ENGINE

KNOWLEDGE BASE

1)

2)

3)

4)

Figure 2: Expert Scheduler

Scheduler - The Scheduler would actually be responsible for assigning
processes to a processor. It would incorporate an inference engine which uses
the rules from the Knowledge Base to make its decisions.

System Monitor - This module monitors the activity in the system and records
its observations in the Knowledge Base for use by the Learning Subsystem.
Information such as process histories, queue lengths and other statistical
information could be recorded. '

Learning Subsystem - This part of the model consists of several components
(see Figure 3), and its function is described further in the next section.

Knowledge Base - This database serves as a repository for information (i.e.,
rules, statistics, hypotheses) required by each of the above modules.
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There are other components that could be incorporated into our model. For
instance, a hypothesis generator, such .as is used in Pasquale’s Expert Manager,
may prove to be useful. Such a mechanism could allow the Expert Scheduler to
experiment, such as by changing the size of a time quantum, in order to determine
its effect on the schedule.

TRAINING

TEACHER
EXAMPLES

CORRECT

PERFORMER ——7m— OUTPUT
OUTPUT
RULES

LEARNER CRITIC

Figure 3: Learning Subsystem



4.2. The Learning Subsystem

The Learning Subsystem permits the Expert Scheduler to try to improve its perfor-
mance. It is aware of the performance goals and attempts to generate heuristics
that will achieve those goals. As new heuristics are learned, they must of course
be passed to the Scheduler. The basic idea behind the learning mechanism is that,
as successive scheduling problems are presented to the Learning Subsystem,
heuristics will be generated that produce better schedules. The more scheduling
problems examined, the better the heuristics will be. In essence, the Expert
Scheduler will learn by experience. The components of the Learning Subsystem
and their functions are as follows:

1) Learner - This component is responsible for generating scheduling rules based
on training examples supplied by the Teacher and on feedback from the Cri-
tic.

2) Teacher - Using data collected by the System Monitor in the form of schedul-
ing problems, the Teacher generates the training examples. The selection of
"good" training examples is crucial to the success of the Learner.

3) Performer - The Performer actually uses the rules generated by the Learner
on the set of training examples.

4) Critic - The Critic compares the scheduling decisions made by the Performer
to the "correct" decision as specified by the Teacher. It is responsible for
evaluating the performance of a scheduling rule.

5. IMPLEMENTING AN EXPERT SCHEDULER

Although Pasquale [PASQ88] was able to prove the feasibility of using an expert
system approach to load balancing, given the nature of current Al techniques in
terms of space and time requirements, an Expert Scheduler attempting to perform
short-term scheduling in a real computer system may not be very feasible. Hence,
this section describes an implementation of the Learning Subsystem presented in
Section 4.2. Such an implementation would allow us to perform some experiments
and to answer some basic questions about machine learning. Can it be applied to
short-term processor scheduling? If so, how quickly does it take to converge on a
good scheduling heuristic? What kinds of problems may arise in this sort of appli-
cation?

5.1. The Computing Model

In order to keep the implementation relatively straightforward, many assumptions
and simplifications have been made. For instance, no attempt has been made to
model any I/O activity or context-switching overhead. The computing environment
which will be simulated and in which our Learning Subsystem will operate will be
based on a system of N identical processors in a tightly coupled arrangement.
Processes that are waiting to be allocated to a processor are placed in a single
ready queue accessible by any processor. Each processor executes its currently
assigned process for one time quantum. If the process completes its execution time
requirements in that time quantum, it is retired from the system; otherwise, it is
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returned to the ready queue. It is assumed that all the processors operate in syn-
chrony. That is, all processors simultaneously complete their time quantums and
make scheduling decisions. In this manner all runnable processes will be available
for selection at the same time.

The scheduling problems that the Learning Subsystem will attempt to solve are of
the type that can be represented by precedence graphs. The processes that enter
the system are assumed to arrive with known CPU time requirements, expressed
as an integral number of time quantums, as well as their precedence constraints.
Although the exact execution time requirements are generally unknown, reason-
able estimates can usually be made. We make the additional simplifying assump-
tion that these estimates are exact. There are no other dependencies between the
processes. In particular, we have not modelled any kind of interprocess communi-
cation. The performance measure that the Learning Subsystem will try to optim-
ize is the completion time.

5.2. The Teacher

In general, learning mechanisms employed previously were based on supplying a
learner with a set of training examples. Each training example consisted logically
of a problem and the correct solution. Armed with a sufficient number of these
training examples, the learner would attempt to derive a set of problem-solving
heuristics. Then, when presented with a completely new instance of the problem,
the learner would use its own heuristics to produce a hopefully correct solution.
The fundamental difference between our application and previous work is the lack
of a pre-defined set of training examples in our case. How then is our Expert
Scheduler to learn?

We still wish to supply our Learner with training examples and it is the job of the
Teacher to generate those training examples. The source of the training examples
will consist of the scheduling problems that occur at run time, hereafter referred to
as training problems. The generation of the training examples proceeds as follows,

The Teacher first finds an optimal or near-optimal solution to a training problem.
Although this problem is NP-complete, there are a variety of Al techniques that
the Teacher could employ to aid in this process. (This particular aspect of the
Teacher will be discussed in greater detail in a subsequent section). In our imple-
mentation, we have taken a simplistic approach, and found a solution by using an
exhaustive search. An exhaustive search is, of course, impractical in general
because of the combinatorial explosion of the search space that can result. How-
ever, in our simulations we have reduced the size of the search to an acceptable
level by limiting the size of the training problem. This is done by putting an upper
bound on the number of processes in the precedence graph. The search algorithm
used is a simple Breadth First Search, and included in the implementation is a
hard-coded limit, such that the search, if it exceeds this limit, is abandoned.

There are potentially multiple schedules that are good solutions to a training prob-
lem. One of these solutions is selected at random and, from it, the Teacher gen-
erates the training examples. In our computing model, each training example con-
sists of a set of runnable processes and an indication of which member(s) of the set
could be assigned to a processor to achieve optimal performance. Since we express
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a solution as a series of scheduling moments, where a scheduling moment
represents the subset of processes in the ready queue that were assigned to proces-
sors at a particular instant of time, it is a simple matter to create training exam-
ples from each of the scheduling moments. For example, suppose that in a 2-
processor system we have a scheduling moment such that there are four processes,
denoted p1, p2, p3 and p4, in the ready queue, and that p1 and p2 were assigned to
the two processors. Then two training examples are generated, one to correspond
to each processor, since each would have to make a scheduling decision in a real
situation. The training examples generated would take on a form similar to the
following:

Runnable Schedulable
training example 1.  pl, p2, p3,p4 pl,p2
training example 2.  p2, p3, p4 p2

In the original version of the Teacher, only pl would have been included as
schedulable in training example 1 above. This turned out to be a reasonably large
difficiency in the Teacher to the extent that a rule that would select the processes
in the opposite order, i.e., p2 followed by p1, payed an unfortunately high penalty.

In order to improve the "quality” of the training examples, not every scheduling
moment results in the generation of training examples. Only those scheduling
moments in which the number of runnable processes is greater than N, the number
of processors, are used as sources for training examples. Scheduling moments in
which the number of runnable processes is not greater than N are discarded. This
is done for the following reason. In order to be useful or "informative" to the
Learner, good training examples should give an indication not only of what
processes to schedule, but also of what processes not to schedule. This allows the
Learner to differentiate between what leads to a good schedule and what leads to a
bad schedule. The training examples that would result from scheduling decisions
in which the number of runnable processes is not greater than N would not be very
informative to the Learner, since all the runnable processes are being scheduled.

As mentioned earlier, there is likely to be more than one good solution to a train-
ing problem, with every schedule producing the same completion time being the
extreme case. In this extreme case, note that any heuristic would achieve the
same result if applied to this kind of training problem. Hence, selecting one of
these solutions at random could produce training examples which cause the
Learner to converge on a less than optimal heuristic. For this reason, training
examples are only generated from training problems in which the number of good
solutions is some reasonably small subset of the total number of solutions.

5.3. The Learner

The learning mechanism that has been employed is based on an algorithm known
as a Beam Search [FORS86]. It is based on the idea of starting with a rule that
applies to a specific training example, and then generalizing it until it handles
enough training examples to the satisfaction of the Critic. This is explained more
fully in the following paragraphs.

In each training example, each runnable process has associated with it a set of
attributes such as its CPU time requirements, the time since it entered the system,
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and so on. It is on the basis of these attributes that the Learner forms its schedul-
ing heuristics. Hence a rule might take on the following form:

if ready(process) && longest_waiting(process) && shortest_CPU_time(process)
then schedule(process)

In order to generalize a rule, we merely drop one of the attributes from the
scheduling rule. Thus

if ready(process) && shortest_CPU_time(process)
then schedule(process)

AND

if ready(process) && longest_waiting(process)
then schedule(process)

are both generalized versions of the first rule given above.

The algorithm initially selects ¢ training examples and generates rules that apply
specifically to those training examples. This set of rules we will refer to as the set
R. The Beam Search then proceeds along the following steps:

1. The Performer uses each rule in R on the set of runnable processes in each
training example. Depending on how the attributes are used, the scheduling
rule may potentially select zero, one or more than one process. The applica-
tion of a rule to a training example can result in four possible outcomes:

O1: The process(es) selected is correct.

Oz: No process is selected at all.

O3: None of the processes selected is correct.

O« Some of the processes selected are correct and some are incorrect.

2.  The performance of each rule is evaluated by the Critic, which assigns to each
rule a rating. The calculation of the rating is described in the next section.

3. The p rules in the set R with the best ratings are each generalized in all pos-
sible ways to form a new set R. Since it is possible that this new set may con-
tain rules that have been previously tested, these duplicate rules must be dis-
carded. If R is not empty, then go to step 1, otherwise continue on to step 4.

4. The q rules with the best overall ratings are saved as the result of the Beam
Search and constitute the learned heuristics.

Note that the parameters p, ¢ and ¢ are all easily adjustable.

The execution of the algorithm is shown graphically in Figure 4, where p has been
set to three. Each node represents a scheduling rule. The solid nodes at each level
indicate the p best rules that should be further generalized. The learned heuristics
would be selected from among all the rules represented by solid nodes.

Since the time to conduct the Beam Search grows exponentially with the number
of process attributes, these were kept to a minimum. The attributes initially
under consideration were:

. arrival time
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Figure 4: Beam Search

. amount of CPU time consumed (in integral number of time quantums)
‘ last time the process was assigned a processor

. estimate of the amount of CPU time remaining (which in our model, as
pointed out earlier, is assumed to be known exactly)

number of successor processes (i.e., number of processes that cannot exe-
cute until this one completes)

. level of the process as computed from the precedence graph

After some experimentation, it became obvious that some attributes would have no
effect on a good scheduling heuristic. They were initially included just to test the
correctness of the Learner. In order to minimize the execution time of the Learner,
all the results that follow are based on using only the last four attributes listed
above.

5.4. The Critic

The assignment of a rating by the Critic must be carefully considered, and is
indeed a difficult problem. If the evaluation technique used by the Critic is inap-
propriate, then the Beam Search may not converge upon the best heuristic(s). This
is a case of a more general class of problems common in Al theory, known as the
credit assignment problem. As was noted in the previous section, there are four
possible outcomes when a scheduling rule is applied to a training example. Based
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on the outcomes taken over all the training examples, the Critic computes the
rule’s rating, r, using the following formula:

r = ain1 + azn2 + asni + aang,

where
n1 = number of outcomes of type O1
n2 = number of outcomes of type Oz
n3 = number of outcomes of type O3
n+ = number of outcomes of type Os.

The ai's represent constant weights associated with the four possible outcomes. An
a: is set to a positive value if its associated outcome is favourable, and a negative
value if unfavourable.

The difficulty lies in assigning appropriate values to the a:.. Consider what each
outcome type means:

O1: The rule is performing well, and so a1 should be assigned a relatively large
positive value.

Oz Since the rule has failed to select any process, this probably is an indication
that the rule is too specific and needs to be generalized. Hence, a2 should be
assigned a negative value, although how large a negative value is open to
question.

03: The rule is performing as poorly as it possibly can in this case, and a3 should
be assigned a relatively large negative value.

Os This is the case which is the most difficult to deal with. The rule may have
been over-generalized at this point and, as a result, selected too many
processes. Another possibility is that the attributes used in the rule did not
serve .to differentiate the processes in this particular case (i.e., the attributes
took on the same value for many of the processes). If the rule has been over-
generalized, then a4 should be assigned a relatively large negative value since
the rule is essentially no good. If it is a matter of the attribute(s) having the
same value for each process, then either (a) the attribute(s) just may not have
any bearing on a good rule, in which case the Critic should discard the rule
(i.e., assign as a large negative value), OR (b) we have just come across an
unfortunate case in which the rule does not work very well, so as should be
assigned a small negative value.

It should also be noted that our training examples are not perfect. Because of the
way they are generated, there is no guarantee that a training example will lead
the Learner towards a good heuristic. This must also be taken into consideration
when assigning values to the a.. For instance, Os may be more the result of a poor
training example than of a poor rule.

6. RESULTS

The results of our study are based on simulations of 2, 3 and 4 processor systems of
the type described in Section 5.1. The simulation is actually broken up into three
separate components. In the first component, training problems are input to the
Teacher and a set of training examples are produced. In the second component,
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training examples are supplied to the Learner, which generates a scheduling
heuristic. The final component accepts as input a scheduling rule and a scheduling
problem, and computes the completion time by simulating an N-processor system.

All scheduling problems (and training problems) are in the form of trace files.
Each entry in the trace file supplies the following information for one process:

. arrival time
. CPU time requirements (in integral number of time quantums)
«  set of predecessor processes

To create the scheduling problems, a process generator (PG) program, that pro-
duced trace files in the requisite format, was written. The data required in the
trace files is generated randomly according to the following parameters:

. maximum CPU time requirements per process, T max

. minimum height of the precedence graph, Humia

. maximum height of the precedence graph, Hmax

. maximum number of processes per level, L max

. maximum number of predecessor processes per process, Pmax

The height of the precedence graph, the number of processes in each level, the
number of predecessor processes for each process, and the CPU time requirements
are all computed using a uniform distribution. The actual set of predecessors for
each process is selected at random from among the set of processes at lower levels.

6.1. Generation of Training Examples

As mentioned above, the training problems were generated using the process gen-
erator. However, the PG parameters had to be carefully selected. If the training
problems were too "simple”, i.e., had few or no interprocess dependencies, then the
Teacher had difficulty producing training examples because all the schedules for
the problem would often have identical completion times. For example, using the
2-processor training problems in the 3-processor simulations failed to produce any
training examples at all. We are thus faced with the following tradeoff: keeping
the problem size small at the expense of having to solve many training problems to
get a sufficient number of training examples OR allowing larger problems at the
expense of increased search times.

After some brief experimentation, two sets of training problems were generated for
each of the 2, 3 and 4 processor cases. Table I gives the PG parameters used for
Set A and Table II gives the parameters for Set B. Lmax, the maximum number of
processes per level, was set to one more than the number of processors in order to
increase the likelihood that there would be more runnable processes than proces-
sors. Note that the difference between Set A and Set B is that Pmax has been
increased from 3 to 4. This was done to determine what kind of an effect, if any,
different shapes of precedence graphs would have on the generation of training
examples.
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Set A
PG Parameter | 2-processors | 3-processors | 4-processors
T max 4 4 4
H min 3 3 3
Hmax 3 3 3
L max 3 4 5
Pmax 3 3 3 _
Table I
Set B
PG Parameter | 2-processors | 3-processors | 4-processors
T max 4 4 4
Hmin 3 3 3
Hwax 3 3 3
L omax 3 4 5
P max 4 4 4
Table II

Figures 5 and 6 show the number of training examples generated as a function of
the number of training problems for both sets. A sufficient number of training
problems were supplied to the Teacher until a minimum of 100 training examples
had been generated. It seemed to be generally true that, as the number of proces-
sors increased, it became more difficult to produce training examples. With more
processors a particular.scheduling decision is likely to have less impact on the
overall schedule. The training problems in Set B also produced a higher yield of
training examples. This was not unexpected, since the precedence graphs in Set B
tended to be slightly more complex and hence, were more "interesting" to the
Teacher. This, however, was achieved at the cost of longer search times. In fact,
in one of the 4-processor training problems the search limit was exceeded.

6.2. Performance of Learned Heuristics

Once the training examples had been generated, they were input to the Learner.
The number of training examples supplied to the Learner was varied, and the
learned heuristic in each case was applied to a set of 20 test scheduling problems.
The values assigned to the parameters of the Beam Search, p, ¢ and ¢, were 4, 2
and 4, respectively. The test problems were generated using the PG parameters
given in Table III. The effectiveness of the learned heuristic was measured by
comparing its completion time against that produced by the "optimal" schedule (for
the 2-processor, case the schedule produced by Coffman’s algorithm was used as the
optimal; for the 3 and 4-processor cases, the schedule produced by the HLFET
heuristic was chosen as the optimal).

Figures 7-12 show the performance of the learned heuristics as a function of the
number of training examples supplied to the Learner. The "percentage within
optimal” is the average value of this percentage over all 20 test cases, with 1.0
being perfectly optimal. As a further point of comparison, the performance of
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Test Scheduling Problems
PG Parameter Value
Tmnx 8
}Imm 3
Lmax 6
Pmax 5
Table III

round-robin and random scheduling is also shown in the graphs. The Learner con-
verges fairly quickly on an optimal scheduling heuristic, and, in fact, generally
requires far less than 100 training examples. Note also the relatively large down-
ward spike in Figure 12. This illustrates one of the deficiencies in the Beam
Search algorithm: if the initial set of training examples is poorly selected, a poor
heuristic will result. The chance of this occurring can be reduced, however, by
increasing the parameter ¢.

6.3. Credit Assignment

The setting of appropriate values for the a: was difficult to determine without some
initial experimentation. Different values for the a: could produce substantial
differences in the quality of the learned heuristics. It was found, however, that the
values of a2 and a4 had the greatest impact on the Learner. If |az| was small com-
pared to |as|, specific rules would be favoured over general rules. If |az| was large
compared to |a4|, the opposite would be true. Since the learned heuristic was to be
applied in all situations, a general rule seemed preferable, and so the latter was
chosen. One other consideration, the fear that the particular settings used for the
a: might lead the Learner along a path that would not allow it to converge on a
good general rule, turned out to be unfounded.

The actual values used for the a: are given in the first row of Table IV.

al a2 a3 a4
case A 8 -4 | -8 -1
case B 8 |-1|-8]-1
caseC | 8 | -1 | -8 | 4
caseD | 8 | -4 | -8 | -4

Table IV

To demonstrate the effect of changing the settings of the a:, Figure 13 shows the
performance of the learned heuristic, computed under each combination in Table
IV, for Set B in the 3-processor case. Depending on the application, the determina-
tion of the optimal values for the a. may require no more than generating learned
heuristics using a few combinations similar to those listed in Table IV, testing the
heuristic on a few sample problems, and selecting the final values for the a: accord-
ing to which case performs the best. If this is not sufficient, a more sophisticated
algorithm, such as hill-climbing, could be used. It is unclear, however, how an
appropriate starting point would be determined.
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6.4. Limitations of the Expert Scheduler

The computing system simulated in this study was necessarily simplistic, and
hence did not model many factors. The effects of interprocess communication, con-
text switching overhead, and so on, were all ignored; nor was the possibility of
satisfying multiple, and possibly competing, performance criteria considered. To
investigate more thoroughly the benefits of an Expert Scheduler requires more ela-
borate models. This would complicate the implementation of the Expert Scheduler,
but would not likely detract from the basic architecture.

The method used by the Teacher to generate training examples was adequate in
our simplified environment. However, an exhaustive search of a "small" training
problem may not be feasible in a more complex model. For instance, there may be
no such thing as a "small" problem. This area requires more careful study, but a
possible approach could be to use any existing learned heuristics to help guide the
search. In order to learn any new heuristics, the Teacher would also have to have
the capability to deviate from the existing heuristics, perhaps randomly, to find a
potentially better solution. Other Al techniques to help prune the search tree
could also be used here.

The heuristics generated by the Learner were also fairly simple. The same learned
heuristic was applied whenever a scheduling decision had to be made. Considering
the changing load conditions the Expert Scheduler would have to operate in, this
would seem insufficient. To make the Expert Scheduler more effective, the
Learner could generate multiple heuristics along with an indication of the cir-
cumstances under which each should be applied. In addition, "negative" heuristics
of the type "do not schedule process A when in state B" may be useful. Along the
same lines, the Teacher could produce "negative" training examples.

Although the Expert Scheduler has no initial knowledge of what a good scheduling
heuristic is, it must know what attributes a process possesses, for this is what it
bases its learned heuristics on. This is where a human expert is likely to be
needed, to supply useful process characteristics to the Expert Scheduler. This task
is not trivial. Irrelevant attributes will only slow down the functioning of the IA.
Relevant attributes may be non-intuitive or not directly observable (e.g., level
attribute used in our model).

In our particular computing model, we have made the assumption that each
process’s CPU time requirements are known exactly. In fact, the best that we can
generally hope for is a good estimate. To overcome this deficiency, the simulation
could be easily enhanced to accept CPU time requirements that are given as esti-
mates, with some non-zero probability that they will turn out to be incorrect. We
could, for example, model the time requirement as a Poisson distribution and use
the mean as the estimate.
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7. CONCLUSIONS

Much work remains to be done in this area before any definite conclusions can be
made. Machine learning has been successfully employed in other areas, but not in
the field of operating systems. The results presented here do not rule out its use in
processor scheduling. Certainly, the theoretical possibilities are attractive. Con-
sider a system that could detect bottlenecks and make corrections for them
automatically. Currently, this requires the use of performance monitoring tools
followed by human analysis.

Making efficient usage of CPU resources has always been an important operating
system design consideration. As applications attempt to take advantage of the
parallelism possible in multiple processor environments, the problem of processor
scheduling will only increase in complexity. This complexity may best be handled
by an Intelligent Agent. Of course, we must depend on the development of a suit-
able technology that can support such a system.
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