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Abstract

The scale-space technique introduced by Witkin involves generating coarser reso-
lution images by convolving the original image with a Gaussian kernel, or equiv-
alently by using the original image as the initial condition of a diffusion process.
This approach has a major drawback: it is difficult to obtain accurately the lo-
cations of the ‘semantically meaningful’ edges at coarse scales. In this paper we
suggest a new definition of scale-space, and introduce a class of algorithms that
realize it using a diffusion process. The diffusion coefficient is chosen to vary
spatially in such a way as to encourage intra-region smoothing in preference to
inter-region smoothing. It is shown that the ‘No new mazima should be generated
at coarse scales’ property of conventional scale space is preserved. As the region
boundaries in our approach remain sharp, we obtain a high quality edge detector
which successfully exploits global information. Erperimental results are shown on
a number of images. The algorithm involves simple, local operations replicated
over the image making parallel hardware implementation feasible.



1 Introduction

The importance of multi-scale descriptions of images has been recoguized from the
early days of compnter vision e.g. Rosenfeld and Thurston [18]. A clean formalism
for this problem is the idea of scale-space filtering introduced by Witkin [19] and
further developed in Koenderink[10], Babaud, Duda and Witkin[l], Yuille and
Poggio[20], and Hummel[7].

The essential idea of this approach is quite simple: embed the original image
in a family of derived images I(z,y,t) obtained by convolving the original image

Io(z,y) with a gaussian kernel G(z, y;t) of variance t:

I{z.y,t)= Io(r,y)+ G(z,y;1) (1)

Larger values of ¢, the scale-space parameter, correspond to images at coarser
resolutions. See Fig. 1.

As pointed out by Koenderink {10}, and Hummel [7] this one parameter family
of derived images may equivalently be viewed as the solution of the heat conduc-
tion or diffusion equation

It=C‘AI=C'(Izz+Iyy) (2)

with the initial condition I(z,y,0) = Io(z,y) , the original image.
Koenderink motivates the diffusion equation formulation by stating two cri-
teria :

1. Causality : Any feature at a coarse level of resolution is required to possess
a (not necessarily unique) “cause” at a finer level of resolution although
the reverse need not be true. In other words, no spurious detail should be
generated when the resolution is diminished.

2. Homogeneity and Isotropy : The blurring is required to be space invariant.

These criteria lead naturally to the diffusion equation formulation. It may be
noted that the second criterion is only stated for the sake of simplicity. We will
have more to say on this later. In fact the major theme of this paper is to replace
this criterion by something more useful.

It should also be noted that the causality criterion does not force uniquely the
choice of a Gaussian to do the blurring, though it is perhaps the simplest. Hummel
[7] has made the important observation that a version of the maximum principle
from the theory of parabolic differential equations is equivalent to causality. We
will discuss this further in section 4.1.

This paper is organized as follows: section 2 critiques the standard scale space
paradigm and presents an additional set of criteria for obtaining ‘semantically
meaningful’ multiple scale descriptions. In section 3. we show that by allowing the
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diffusion coefficient o be anisotropic, one can satisfy these criteria. In section 4.1.
the maximum principle is reviewed and used to show how the causality criterion is
still satisfied by our scheme. In section 5 some experimental results are presented.
In section 6 we compare our scheme with other edge detection schemes. Section 7
presents some concluding remarks.

2 Weaknesses of the standard scale-space paradigm

We now examine the adequacy of the standard scale-space paradigm for vision
tasks which need ‘semantically meaningful’ multiple scale descriptions. Surfaces
in nature usually [12] have a hierarchical organization composed of a small discrete
number of levels. At the finest level, a tree is composed of leaves with an intricate
structure of veins. At the next level, each leaf is replaced by a single region, and
at the highest level there is a single blob corresponding to the treetop. There is a
natural range of resolutions (intervals of the scale-space parameter) corresponding
to each of these levels of description. Furthermore at each level of description,
the regions (leaves, treetops or forests) have well-defined boundaries.

In the standard scale-space paradigm the true location of a boundary at a
coarse scale is not directly available at the coarse scale image. This can be seen
clearly in the 1-D example in Figure 2. The locations of the edges at the coarse
level t; are shifted from their true locations. In 2D images there is the additional
problem that edge junctions, which contain much of the spatial information of the
edge drawing, are destroyed. The only way to obtain the true location of the edges
that have been detected at a coarse scale is by tracking across the scale space to
their position in the original image. This technique proves to be complicated and
expensive [5].

The reason for this spatial distortion is quite obvious-Gaussian blurring does
not ‘respect’ the natural boundaries of objects. Suppose we have the picture of a
treetop with the sky as background. The Gaussian blurring process would result
in the green of the leaves getting ‘mixed’ with the blue of the sky, long before
the treetop emerges as a feature (after the leaves have been blurred together).
Figure 3 show a sequence of coarser images obtained by Gaussian blurring which
illustrates this phenomenon. It may also be noted that the region boundaries are
generally quite diffuse instead of being sharp.

With this as motivation, we enunciate [17] the criteria which we believe any
candidate paradigm for generating multi-scale ‘semantically meaningful’ descrip-
tions of images must satisfy:

1. Causality : As pointed out by Witkin and Koenderink, a scale-space rep-
resentation should have the property that no spurious detail should be gen-
erated passing from finer to coarser scales.



Figure 1: A family of 1-D signals, I(x,t), obtained by convolving the original one
(bottom) with Gaussian kernels whose variance increases from bottom to top.
(Adapted from Witkin [19]).
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Figure 2: Position of the edges (zeros of the Laplacian with respect to x) through
the linear scale space of fig. 1 (Adapted from Witkin [19]).



Figure 3: Scale-space (scale parameter increasing from top to bottom, and from
left to right) produced by isotropic diffusion. Compare with figure 11.
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Immediate Localization : At each resolution, she region boundaries
should be sharp and coincide with the semantically meaningful boundaries
at that resolution.

. Piecewise Smoothing: At all scales. intra—region smoothing should occur
oreferentially over inter—region smoothing. In the tree example mentioned
earlier, the leaf regions should be collapsed to a treetop before being merged
with the sky background.

(@)

In the next section we will outline a framework for achieving these objectives.

3 Anisotropic diffusion

There is a simple way of modifying the scale-space paradigm to achieve the ob-
jectives that we have put forth in the previous section. In the diffusion equation
framework of looking at scale-space, the diffusion coefficient ¢ is assumed to be
a constant independent of the space location. There is no fundamental reason
why this must be so. To quote Koenderink [10], (pg. 364, left column, 1. 19
from the bottom) “... I do not permit space variant blurring. Clearly this is not
essential to the issue, but it simplifies the analysis greatly”. We will show how a
suitable choice of ¢(z,y,t) will enable us to satisfy the second and third criteria
listed in the previous section. Furthermore this can be done without sacrificing
the causality criterion.
Consider the anisotropic diffusion equation

I, = div(c(z,y,t)VI) = c(z,y,t) AT + Ve - VI (3)

where we indicate with div the divergence operator, and with V, and A the gradi-
ent, and laplacian operators with respect to the space variables. It reduces to the
isotropic heat diffusion equation I; = ¢AI if ¢(z,y,t) is a constant. Suppose at
the time (scale) t, we knew the locations of the region boundaries appropriate for
that scale. We would want to encourage smoothing within a region in preference
to smoothing across the boundaries. This could be achieved by setting the con-
duction coefficient to be 1 in the interior of each region and 0 at the boundaries.
The blurring would then take place separately in each region with no interaction
between regions. The region boundaries would remain sharp.

Of course, we do not know in advance the region boundaries at each scale (If
we did the problem would already have been solved!). What can be computed is
a current best estimate of the location of the boundaries (edges) appropriate to
that scale.

Let E(z,y,t) be such an estimate: a vector valued function defined on the
image which ideally should have the following properties:

1. E{(z,y,t) = 0 in the interior of each region.



2. E(z,y,t) = Ke(z,y,t) at each edge point. where e is a unit vector normal
to the edge at the point, and K is the local contrast (difference in the image
intensities on the left and right) of the edge.

Note that the word edge as nsed above has not been formally defined-we
mean here the perceptual subjective notion of an edge as a region boundary. A
completely satisfactory formal definition is likely to be part of the solution, rather
than the problem definition!

If an estimate E(z,y,t) is available, the conduction coefficient ¢(z,y,t) can
be chosen to be a function ¢ = g(||E||) of the magnitude of E. According to the
previously stated strategy g(-) has to be a nonnegative monotonically decreasing
function with g(0) = 1. This way the diffusion process will mainly take place
in the interior of regions, and it will not affect the region boundaries where the
magnitude of E is large.

It is intuitive that the success of the diffusion process in satisfying the three
scale-space goals of section 2 will greatly depend on how accurate the estimate
E is as a “guess” of the position of the edges. Accuracy though is computation-
ally expensive and requires complicated algorithms. We are able to show that
fortunately the simplest estimate of the edge positions, obtained by looking at
the gradient of the brightness function i.e. setting E(z,y,t) = VI(z,y,t), gives
excellent results.

There are many possible choices for g(-), the simplest being a binary valued
function. In the next section we show that in case we use the edge estimate
E(z,y,t) = VI(z,y,t) the choice of g(-) is restricted to a subclass of the mono-
tonically decreasing functions.

4 Properties of anisotropic diffusion

We start in section 4.1 by recalling a general result of the partial differential equa-
tion theory that guarantees that the causality criterion of scale-space is satisfied
by anisotropic diffusion.

In section 4.2 we will show that a diffusion in which the conduction coefficient
is chosen locally as a function of the magnitude of the gradient of the brightness
function, i.e.

c(zvyat)=g(”VI($’yvt)“) (4)
will not only preserve, but also sharpen, the brightness edges if the function g(-)
is chosen properly.

4.1 The maximum principle

In this section we show that the solutions to the anisotropic diffusion equation
respect the maximum principle, and argue that this implies compliance with the
causality requirement.
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Call Q an open bounded set of R™ { in our case Q is the plane of the image,
a rectangle of R? ), and T = (a,b) an interval of R. Let D be the open cylinder
of R™**+! formed by the product D = @xT = {(z.t):z € Q,t € T}. Call D the
boundary of D, D it's closure, and 9'D. and 3”D the side-bottom. and the top
portions of 9D:

D = {(z,t): z € Q,t = a}| J{(2,t) : 2 € It € T}

"D = {(z,t):z € Q,t = b}

The following theorem holds:

Theorem.
Consider a function U : R**! — R that is continuous on D, and twice

differentiable on D |J8”D. If U satisfies the differential inequality
C(z,t)Us — c(z,t)AU = Vc-VU <0 (5)

on D, with: C : R**! — R* continuouson D, and ¢ : R**! — R* continuous
on D, and differentiable on D |J8”D , then it obeys the maximum principle, i.e.

max U = max U

D 'D
The following proof is adapted from John [9].

Proof.
First consider U satisfying the stricter condition

C(z,t)Us — ¢(z,t)AU = Vec-VU <0 (6)

By hypothesis U is continuous on D, a compact set, hence it has a maximum in
it. Call p = (y, ) this maximum.

Suppose that p € D. Since U is twice continuously differentiable in D all the
first derivatives of U are equal to zero at p, and the second derivatives in the
laplacian are negative, or equal to zero ( it is easy to convince oneself that this is
true by looking at the Taylor expansion of U about p ). This would mean that
at p

Clz, 1)Uy - c(p)AU - Ve -VU 20

contradicting the hypothesis.

Similarly, if p € 8”D the first derivative with respect to ¢ of U could only be
positive or equal to zero, while the first derivatives with respect to the z variables
would have to be equal to zero, and the second derivatives with respect to the z
variables could only be equal to zero or negative, giving the same inequality at p
as above. This would again contradict the hypothesis. So, if U satisfies equation
(6), then it obeys the maximum principle.



If U satisfies
C(z, ) Uy — (2, )AU = Ve - VU <0

the function V = U — A(t — a) satisfies equation (6), and hence the maximum
principle, for any A > 0. Observe that I/ = V4 Mt ~a) <V + A(b—a) on D,
and because of this

max U < max (V+AXb—-a)) =
D D

= max (V+XMb-a)) < max (U4 A(b-a))
D o'D

Letting A — 0 we obtain the thesis. O

Notice that the maximum principle also guarantees that there are no local
maxima of U in D |J8”D. One can in fact use the same technique as in the proof
to see that the existence of one at p € D|J8”D would violate the differential
inequality. '

If a function U satisfies the differential equation

C(z,t)U; — c(z,t)AU = V- VU =0 (7)

with the hypotheses already stated on the functions C(-) and ¢(-), the arguments
above can be run for U and W = —U proving that both a maximum and minimum
principle have to be satisfied.

The diffusion equation (3) is a special case of equation (7) (set C(z,t) = 1,
and U = I), hence the scale-space brightness function I(z,y,t) obeys the the
maximum principle provided that the conduction coefficient ¢ never takes negative
value (in fact the condition that ¢ does not take negative value where U has a
maximum is sufficient) and is differentiable. This is relevant to our discussion
because if we identify “features” in the images with “blobs” of the brightness
function I(z,y,t) for different values of the scale parameter, then the maximum
principle guarantees that no new features are created for increasing t. In fact the
birth of a new “blob” would imply the creation of a maximum, or a minimum,
that would have to belong either to the interior or the top face 8”D, of the domain
of interest in the scale space.

Solutions U of equation (3) have an additional property if the conduction
coefficient is constant along the space axes: ¢ = ¢(t). Any spatial derivative of
U is then a solution of equation (3) too and thus satisfies the hypotheses of the
maximum principle. So the causality criterion is satisfied by all such functions:
the components of the gradient, the Laplacian etc. . It is important to notice
that this is not true in general for solutions of equation (3) when the conduction
coefficient varies in space. We will show in the next section that in fact anisotropic
diffusion can increase the contrast (i.e. the magnitude of the gradient) of edges
in the image.



4.2 Edge Enhancement

With conventional low-pass filtering and diffusion the price payed for eliminating
the noise, and for performing scale space, is the blurring of edges. This causes
their detection and localization to be difficult. An analysis of this problem is
presented in [4].

Edge enhancement and reconstruction of blurry images can be achieved by
high-pass filtering or running the diffusion equation backwards in time. This
is an ill-posed problem, and gives rise to numerically unstable computational
methods, unless proper regularization is employed [8].

We will show here that if the conduction coefficient is chosen to be an ap-
propriate function of the image gradient we can make the anisotropic diffusion
enhance edges while running forward in time, thus enjoying the stability of dif-
fusions which is guaranteed by the maximum principle.

We model an edge as a step function convolved with a Gaussian. Without
loss of generality, assume that the edge is aligned with the y axis.

The expression for the divergence operator simplifies to:

div(e(z,y,)V]) = 5-(e(z,3, 1))

We choose ¢ to be a function of the gradient of I: ¢(z,y,t) = g(Iz(z,y,t)) as
suggested by equation (4). Let ¢(-) denote the product c- I : &(I;) = g(I3) - I.
Then the 1-D version of the diffusion equation (3) becomes

a
I = —o(l, 8
t= 57 o(1;) (8)
We are interested in looking at the variation in time of the slope of the edge:
%(II). If ¢(-) > O the function I(-) is smooth, and the order of differentiation

may be inverted:

7] a a
EE(II) = E(It) = %(%Qﬁ(-[x)) = ¢” ' I1‘1‘2 + ¢I 3 . (9)
Suppose the edge is oriented in such a way that I > 0 (see Fig.4). At the point of
inflection Iz = 0, and I;5; < 0 since the point of inflection corresponds, or is very
close, to the point with maximum slope (see figure 4). Then in a neighbourhood
of the point of inflection %(Ix) has sign opposite to ¢'(I;). If ¢'(I;) > 0 the slope
of the edge will decrease with time; if, on the contrary ¢'(I;) < 0 the slope will
increase with time.

Notice that this increase in slope cannot be caused by a scaling of the edge,
because this would violate the maximum principle. The edge becomes sharper.

There are several possible choices for ¢(+), for example, g(I;) = ng with
K

o > 0 (see fig. 5). Then there exists a certain threshold value related to K, and
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Figure 4: A mollified step edge and its derivatives.

Figure 5: A choice of the function ¢(-) that leads to edge enhancement
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«, below which o(-) is monotonically increasing, and beyond which ¢(-) is mono-
tonically decreasing, giving the desirable result of blurring small discontinuities
and sharpening edges.

5 Experimental Results

Our anisotropic diffusion, scale-space, and edge detection ideas were tested using
a simple numerical scheme that is described in this section.

Equation (3) can be discretized on a square lattice, with brightness values
associated to the vertices, and conduction coefficients to the arcs. A 4-nearest-
neighbours discretization of the Laplacian operator was used:

I“H—I' +Men - InI+es Vsl +ce-Veltew: vwlli; (10)

where A < 1 4 for the numerical scheme to be stable, N,S,E W are the mnemonic
subscripts for North, South, East, West, the superscript and subscripts on the
square bracket are applied to all the terms it encloses, and the symbol 7 indicates
nearest-neighbour differences:

Unlij=Lic; — L
Vslij =l - Lij
Vel = L -1
Vwlij = Lijo1— Iij (11)
The conduction coefficients are updated at every iteration as a function of the
brightness gradient (equation (4)):

= o(I(VD)E 1)
c‘s..,,. = g(IvD!_y )
k., = 9(I(VD)E 11D
ey, = oIV 5y ) (12)

The value of the gradient can be computed on different neighbourhood struc-
tures achieving different compromises between accuracy and locality. The sim-
plest choice consists in approximating the norm of the gradient at each arc location
with the absolute value of its projection along the direction of the arc:

chvi; = 9(IVNT 5D
Cts.,j = g(leIit,jl)
55.,1 = g(IVEIx‘t,jl)
s = g(owlt,) (13)
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Figure 6: The structure of a network realizing the implementation of anisotropic
diffusion described in section 5, and more in detail in [16]. The charge on the
capacitor at each node of the network represents the brightness of the image at
a pixel. Linear resistors produce isotropic linear diffusion. Resistors with an I-V
characteristic as in Figure 5 produce anisotropic diffusion.

This scheme is not the exact discretization of equation (3), but of a sim-
ilar diffusion equation in which the conduction temsor is diagonal with entries
g(} I |) and g(] I |) instead of g(}|VI||) and g(IIVI]}). This discretization scheme
preserves the property of the continuous equation (3) that the total amount of
brightness in the image is preserved. Additionally the “fux” of brightness through
each arc of the lattice only depends on the values of the brightness at the two
nodes defining it, which makes the scheme a natural choice for analog VLSI im-
plementations [16]. See fig. 6. Less crude approximations of the gradient yielded
perceptually similar results at the price of increased computational complexity.

The numerical scheme used to obtain the pictures in this paper is the one given
by equations (10), (11), (13), using the original image as the initial condition, and
adiabatic boundary conditions, i.e. setting the conduction coefficient to zero at
the boundaries of the image. A constant value for the conduction coefficient ¢
(ie. g(-) = 1) leads to Gaussian blurring (see figure 3).

Different functions were used for g(-) giving perceptually similar results. The
images in this paper were obtained using

g(vI) = e~
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(Fig. 8), and

1
V)= —————
9(VI) i
(Fig. 11,13). The scale-space generated by these two functions is different; This
point will be analyzed in a forthcoming paper.

The constant A was fixed either by hand at some fixed value (See Fig. 7, 8, 13),
or using using the “noise estimator” described by Canny [4]: a histogram of the
absolute values of the gradient throughout the image was computed, and K was
set equal to the 90% value of its integral at every iteration (see Fig. 11(b)).

The computational scheme described in this section has been chosen for its
simplicity. Numerically efficient implementations of anisotropic diffusion are un-
der study and will be described in a future paper.

6 Comparison with other edge detection schemes

This section is devoted to comparing the anisotropic diffusion scheme that we
present in this paper with previous work on edge detection, image segmentation
and image restoration.

We will divide edge detectors in two classes: fixed-neighbourhood edge detec-
tors, and energy/probability “global” schemes.

6.1 Fixed neighbourhood detectors

This class of detectors makes use of local information only-they typically examine
a small window of the image and try to be clever about deciding if and where
there is an edge. This decision is ambiguous and difficult. In our approach, the
image is being blurred in such a way that the pixel values at an edge come to
reflect the values of their near and distant neighbors from the same region.

We pick Canny’s scheme [4] as a representative of this class of detectors. The
image is convolved with directional derivatives of a Gaussian - the idea is to do
smoothing parallel to the edge and thus reduce noise without blurring the edge
too much. There are two major difficulties: (a) the inevitable tradeoff [4] between
localization accuracy and detectability that comes from using linear filtering; (b)
the complexity of combining outputs of filters at multiple scales. Anisotropic
diffusion is a nonlinear process, hence in principle is not subject to limitation
(a). The complication of multiple scale, multiple orientation filters is avoided by
locally adaptive smoothing.

We can thus summarize the advantages of the scheme we propose over linear
fixed-neighbourhood edge detectors:

Locality - The shape and size of the neighbourhood where smoothing occurs are de-

termined locally by the brightness pattern of the image, and adapt to the

14
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Figure 7: Effect of anisotropic diffusion (b) on the Canaletto image (a) (3].
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Figure 8: Two intermediate diffusion stages on the Canaletto image.
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Figure 9: Edges detected using (a) anisotropic diffusion and (b) Gaussian smooth-
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Figure 10: Scale space obtained with anisotropic diffusion. The diffusion was
performed in 2D on the Canaletto image of which one line ( the horizontal line
number 400 out of 480 - just above the gondola ) is shown. Notice that the edges
remain sharp until their disappearance.
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Figure 11: From top to bottom: (a) original image, (b) scale-space using
anisotropic diffusion (10, 20, 80 iterations), (c) edges of the same, (d) edges
at comparable scales detected using the Canny detector (convolution kernels of
variance 1, 2, 4 pixels). 19
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Figure 12: Scale-space using anisotropic diffusion. Three dimensional plot of the
brightness in figure 11.
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Figure 13: Scale-space using anisotropic diffusion. Original image (top left) and
coarser scale images after (left to right, top to bottom) 20, 60, 120, 160, 220, 280,
320, 400 iterations.
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Figure 14: Scale-space using linear convolution. The edges are distorted and the
junctions disappear. Images generated using the Canny detector and smoothing
Gaussian kernels of variance (top left to bottom right) 1/2, 1, 2, 4, 8, 16 pixels.
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Figure 15: Edges detected by thresholding the gradient on figure 13. Linking is
not necessary. Thinning is only for the finer scales. Compare with figure 16 where
thinning and linking have been used.
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Figure 16: Edges detected on figure 13 using a thinning and linking stage [4].
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shape and size of the regions within which smoothing is required. In schemes
based on linear smoothing or fixed-neighbourhood processing the shape and
size of the areas where smoothing occurs are constant throughout the image.
This causes distortions in the shape of the meaningful regions, and in the
loss of structures like edge junctions (see Fig. 9(b), 11(d),14) which contain
much of the information that allows a three dimensional interpretation of
the edge line-drawing [11].

Simplicity - The algorithm consists in identical nearest-neighbour operations (4-8 differ-
ences, a function evaluation or a table look-up, and 4-8 sums) iterated over
the nodes of a 4 (8) connected square lattice. By comparison the Canny
detector requires a number of convolutions (each involving large neighbour-
hoods at a time) as a pre-processing stage, and a stage of cross-scales match-
ing. Moreover with our algorithm the edges are made sharp by the diffusion
process discussed in section 4.2, so that edge thinning and linking are almost
unnecessary, especially at coarse scales of resolution (compare Fig. 16 with
Fig. 15). For edge detectors based on convolution this is an essential, deli-
cate, and expensive step since linear low-pass filtering has the effect of blur-
ring the edges. The simplicity of the computations involved in anisotropic
diffusion makes it a good candidate for digital hardware implementations.

Parallelism- The structure of the algorithm is parallel which makes it very cheap to run
on arrays of simple parallel processors.

On sequential machines, anisotropic diffusion is computationally more expen-
sive than convolution-based detectors. This is because in the diffusion process a
continuum of scales are generated instead of a small fixed number.

6.2 Energy-based methods for image reconstruction and seg-
mentation

A number of methods have appeared in the literature where the edge detec-
tion/image segmentation process is performed by the minimization of an energy
function of type

U= Y. V(z)+y Wils) (14)

iel,7eN() i€l

with I indicating the set of the nodes of a lattice, N(7) € I indicating the nodes
neighbouring node i, and z a function defined on the lattice, typically the bright-
ness function [6,15,2]. An equivalent formulation is based on finding maxima of
a Markov probability distribution function defined on the space of all images:

1
Pz(2) = EC“U(E) (15)
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where the function U(-) has the form of equation (14) [6.14]. Because the expo-
nential function is monotonic the maxima of the probability distribution and the
minima of the energy function coincide, and we can limit our attention to the
schemes based on minimizing the energy.

The energy function ( 14) is the sum of two terms: the “a priori” term (the
sum of the “clique” functions V containing the “a priori” knowledge about the
image space — see any one of [6,15,2] for a complete discussion), and a term
depending on the data available (the sum of the functions W;). V(.,-)is typically
an even function depending only on the value of the difference of its arguments
(with abuse of notation V(zi,z;) = V(2 — 2;)). It has minimum at zero and it
is monotonic on the positive and negative semilines assigning higher energy (&
lower probability) to the pairs :,j of lattice nodes whose brightness difference
llzi — 2;|| is bigger. We will show that the simple approximation of anisotropic
diffusion that we suggest in section 5 may be seen as a gradient descent of the “a
priori” part of the energy function

U= >, Vizz) (16)

i€l jeN()

The steepest descent strategy for finding minima of a function comsists of
starting from some initial state, and then changing iteratively the state following
the opposite of the gradient vector. The gradient of the energy function, which
may be computed from equation (16) differentiating with respect to the z;, is the
vector of components

VU(z)=2 ) V(z-2) (17)
JEN()
therefore the gradient descent algorithm is
iz =-A4- Z V(z — 24) (18)
at™" L T
F€NG)

where A is some “speed” factor.

Suppose that V(.) is differentiable in the origin and define ¢(-) = ~V. Since
V() is even, 4(-) is an odd function and ¢(0) = 0. Then we may write o(s) =
s - ¢(s) for some function ¢(-) even and positive. Substituting into equation (18)
we obtain:

9. _
ot

A- Z e(z5 — zi) - (25 — ) (19)
jEN()

which is exactly the anisotropic diffusion algorithm defined by equations (10),

(11), (13) if the neighbourhood structure is given by natural nearest-neighbour

cliques of a square lattice. The flux functions obtained by differentiating the local

energy functions V(-) of [6,13,2] are very similar to the shape of flux function that

the analysis in section 4.2 suggests. See figure 17.
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To summarize: anisotropic diffusion may be seen as a gradient descent on
some energy function. The data (the original image) are used as the initial con-
dition. In the energy-based methods [6,15,2] the closedness of the solution to the
datais imposed by a term in the energy function. This makes the energy function
non-convex and more complicated optimization algorithms than gradient descent
are necessary. Most of the algorithms that have been proposed (simulated an-
nealing for example) appear too slow for vision applications. Perhaps the only
exception is the GNC algorithm proposed by Blake and Zisserman [2] which does
not guarantee to find the global optimum for generic images, but appears to be
a good compromise between speed and accuracy.

7 Conclusion

We have introduced a tool, anisotropic diffusion, that we believe will prove useful
in many tasks of early vision. Diffusion based algorithms involve very simple,
local, identical computations over the entire image lattice. Implementations on
massively parallel architectures like the connection machine would be almost triv-
ial. Implementations using hybrid analog-digital networks also seem feasible.

We have shown that a very simple version of anisotropic diffusion can be
applied with success to multiscale image segmentation. As a pre-processing step
it makes thinning and linking of the edges trivial to realize, it preserves the edge
junctions, and it does not require complicated comparison of images at different
scales since shape and position are preserved at every single scale.

In images in which the brightness gradient generated by the noise is greater
than that of the edges, and the level of the noise varies significantly across the
image the scheme that we have described proves insufficient to obtain a correct
multi-scale segmentation. This is because a global noise estimate does not provide
an accurate local estimate, and the local value of the gradient provides too partial
a piece of information for distingushing noise-related and edge-related gradients.
Moreover the abscissa K of the peak of the flux function ¢(-) has to be set
according to the typical contrast value. If this changes considerably through the
image the value of K has to be locally adapted.

In a forthcoming paper we study methods to overcome these two difficulties.
These methods are still based on the diffusion equation, and the algorithms we
suggest preserve the inherent parallelism of anisotropic diffusion.
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(c) (d)

Figure 17: (a) The local energy function proposed by [6,2,15] typically is equal to
the square of the nearest-neighbour brightness difference, and saturates at some
threshold value. (b) The first derivative of the energy function (a). (c) (d) The
anisotropic diffusion conduction coefficient and flux function as a function of the
brightness gradient magnitude, proportional to the nearest neighbour brightness
difference in the discrete case. (b) and (d) have the same role (see text in sec-
tion 6.2).
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