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ABSTRACT

Objects passing an observer at a speed that is a significant fraction of the speed of
light appear distorted to that observer. There are two contributions to this distortion.
The first is the Lorentz contraction which reflects the fact that time and space get inter-
preted differently in two coordinate systems that move with respect to one another. The
second one results from the fact that the photons that bring visual information from the
object to the observer have different flying times and thus correspond to different posi- |
tions of the object in the past. In addition, there are color and brightness changes due to
the Doppler effect and due to the differences in photon flux from different parts of the
object.

Two renderers implementing these effects have been developed. Their rendering
techniques are presented and discussed.
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1. Introduction

When an object passes an observer at relativistic speeds, it appears distorted to that
observer. The distortion is due first to the Lorentz contraction in the traveling direction
of the object, and second to the different flying times of the photons from the object to
the eye of the observer. The Lorentz contraction results from the fact that time and space
get interpreted differently in two coordinate systems that move with respect to one
another [Fey63,For74,Eis74]. The second source of distortion arises because different
photons that bring the visual information of the object to the observer’s eyes have dif-
ferent times of flight and therefore correspond to different positions of the object in the
past. In addition to the geometrical image distortion, there are color and brightness
changes due to the Doppler effect and due to the differences in photon flux from different
parts of the object.

Two renderers that implemented these effects have been developed. In order to
keep maximum flexibility in choosing the most suitable presentation of results, such as
the color mapping between wavelength and hue, the first relativistic renderer has been
implemented as a preprocessor. This program maps the geometry of the moving object
into a new set of distorted vertex coordinates and assigns new color identifiers to these
- vertices. This modified scene can then be rendered by standard rendering techniques.
One of the Berkeley UniGrafix renderers, UgDisp [Gal86] was enhanced to extend its
Gouraud shading capability to the newly introduced vertex color identifiers.

For transparent objects or objects with reflective surfaces, we need an approach
more general than the one just described. A second renderer was therefore implemented
employing standard ray-tracing mechanisms [Whi80]. In this approach, the vision ray is
cast through the scene at the proper speed corresponding to the velocity of light, then its
intersection with moving objects is analyzed. This would take care of the distortion due
to different flying times of the photons. The Lorentz contraction mentioned above is
dealt with in a separate transformation step. The Doppler effect and brightness variations
due to changes in photon flux are computed when the vision ray interacts with a moving
surface. The relativistic effects on the reflection from or refraction through a moving
object are also properly taken into account.

This report is organized as follows: Chapter 2 discusses the mathematics of the dis-
tortion effects. Chapter 3 computes the Doppler effect and the brightness change.
Chapter 4 presents in detail the implementation of the relativistic renderer preprocessor.
Chapter 5 presents the implementation of a Relativistic Renderer and the mathematics
behind it. Finally, chapter 6 gives the conclusions and discusses possible future improve-
ments.
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2. Distortions

This chapter discusses in detail the two factors of distortion described in the intro-
duction section: the Lorentz Contraction and the distortion due to time-of-flight differ-
ences of the photons.

2.1. Lorentz Contraction

According to Special Relativity Theory, time and space get interpreted differently in
coordinates systems that travel at different speeds with respect to one another. Suppose
that there is a spaceship moving at a speed ¥ with respect to some observer A. For con-
venience, the observer A’s coordinates system is chosen in such a way that the velocity
vector V is in +x direction. Let Ax, Ay, Az and At be the space and time differences
between a pair of events measured by A, and Ax’, Ay’, Az’ and At’ be the space and time
differences between the same pair of events but measured by some observer B on the
moving spaceship. Then their relationship is given by the Lorentz transformation
[For74]:

’ 7.2
At = At" + (VAX'[c?) (2.1.1)
V1 - (v¥/c?)
Ax’ + vAY
AX e {2'1.2}
V1 - v¥c?)
Ay = Ay’ {2.1.3}
Az = A7 {2.1.4}

At any instant in time, the observer A looks at two points on the moving spaceship
and notes their space difference as Ax, Ay, Az, while At=0. Substituting At=0 into
{2.1.1} and solving for At’, we get

—-vAx’

C2

At =

Substituting this equation into {2.1.2}, we then obtain

2
Ax = Ax’\/l —V—z (2.1.5)

C

From {2.1.3} and {2.1.4} we still obtain
Ay = Ay’ {2.1.6}
Az = A7 {2.1.7}
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Thus, Ax is a shortened view of Ax’ by a factor ‘/1 - (vz/cz), while Ay and Az are
unchanged. It should be noted that Ax’, Ay’, Az’ are the measurements of the space
difference between the two chosen points on the spaceship in the ship coordinates ,i.e., as
perceived by observer B on the spaceship. In summary, when an object is moving at
speed v with respect to an observer, its dimension in its direction of motion appears shor-
tened by a factor ‘/1 — (v¥/c?) {5.1.8). This effect is called the Lorentz Contraction. Itis
simply a non-uniform scaling in the traveling direction with the factor given in {5.1.8}.

2.2. Distortion due To Time-of-Flight Differences of the Photons

Before we can compute the observed distortions of a moving object, we need to
define precisely how the visual impressions are recorded. To keep matters simple and
unambiguous, we will use a pinhole camera with very short exposure time. In other
words, all photons recorded in the image must go through the same point (the pinhole) at
the same instant in time. Using such an ideal camera, the distortion can be easily investi-
gated by tracing back the history of these photons as follows [Seq89].

In the past, all photons that have made it through the shutter have occupied spheri-
cal shells around the pinhole of the camera. The size of these shells varies with time.
The radius of the shell at time t in the past (t < 0) is ct, where c is the speed of the pho-
tons or the speed of light. In the 3D space coordinate system centered at the pinhole, the
shell’s equation is

x2+y2+22 = (ct)? (2.2.1)

For convenience, let w = ct (w can be thought of as a renormalized time axis),
equation {2.2.1} then becomes

X2 + y2 +22 = w? {2.2.2}

All of the above photons must have been emitted from some part of the spaceship at
a time when that part coincided in space and time with one of these spherical shells of
possible photon positions. In particular, we need to look for all points where the time on
the shells matches with the time of a particular part position. Only those events can send
out photons at the right time to make it through the shutter. Let Py = (XY, 2¢) be some
point on the spaceship at time t = 0. At time t, it is at position

ﬁ=f}’0+t7 {223}

where ¥ is the velocity vector of the ship. For convenience, let @ = V/c, then equation
{2.2.3} becomes
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or
7 = Po+wU (2.2.4}

If P = (x,y,2) is the intersection point that we are looking for, it must satisfy both
equations {2.2.2} and {2.2.4}, that is

1712 = w? (from equation 2.2.2)
1o + w12 = w? (from equation 2.2.4)
pol + 2WP, * T+ whu? = w? (2.2.5)

Solving for w, we obtain

_ To*u- ‘/(T”o * )2 + (1 — u?)py?

1-u?

w {2.2.6})

Note that the positive solution of w is discarded because w must lie in the past (w =
ctwherec>0,t<0).

Substitute w from equation {2.2.6} into equation {2.2.4}, we finally have

. ) N
5 =g+ | PV V@, m;(l LR (22.7)

1-u

This is the transformation that must be applied to all the points on the ship. The
transformed points define the apparent distorted geometry of the spaceship.



.5

3. Brightness and Hue Changes

Two observers moving with respect to one another may perceive different colors on
the same object. The hue of the emitted photons is different, first, because their
wavelengths are measured differently by the two observers just as time and space get dif-
ferent interpretations, and second, because the photons emitted from a moving object are
bunched together in front of the object and spaced out behind it. These effects also
change the brightness of an object. Thus, in general, an approaching object appears
brighter and bluer while a receding objects appears dimmer and redder.

3.1. Doppler Effect

observer A

Figure 3.1.1

Figure 3.1.1 shows an object moving at velocity ¥ with respect to the observer A.
The spacing between the crests of light waves emitted from the moving object, A, shor-
tened in front of the object by a factor of (¢ — v)/c, and lengthened behind the object by a
factor (c + v)/c. In the direction which makes an angle 6 to the velocity ¥ (figure 3.1.1),
the factor is (c — vcosB)/c. Thus the wavelength of the light emitted from the object is
seen by the observer as

» = ple-veosd) l’[l—%cose] (3.1.1}

C
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where A’ is the wavelength measured in object’s coordinates. This is the "classical”
Doppler effect where the relativistic effect is ignored. Because the time interval, that is,
the period of the wave, is also altered, the time dilation (equation {2.1.1} with Ax" = 0)
must be taken into account. The equation {3.1.1} will then become

_ ~s (1 =vcosBfc)
A=A ——————m {3.1.2}

Since the frequency f is inversely proportional to the wavelength A (fA = ¢ =
constant in all frames of reference), the equation {3.1.2} can be rewritten as

‘ll —v¥c?

£= (1 — v cosB/c)

{3.1.3}

This formula describes the Doppler Effect on the light emitted by the object. There
are three special cases of interest:

Case 1: The object moves directly toward the observer.

Here, 9 = 00, or cos® = 1, equation {3.1.3} becomes

f = /A

The observed frequency will appear higher, or bluer than the actual source fre-
quency. This is called the blue-shift.

Case 2: The object moves directly away from the observer.

Here, 8 = 1800, or cos® = -1, equation {3.1.3} becomes

1-v/c
1+v/c

foehina =
The observed frequency will appear lower, or redder than the actual source fre-
quency. This is called the red-shift.

Case 3: The observer sees the light at 90° or 270° to the direction of motion.

Here, cos® = 0, equation {3.1.3} becomes

2
\4
fperpend = fh\/l - ;‘2—

This is known as transverse Doppler effect. It is a consequence of the Lorentz
transformation and has no counterpart for the case of "classical" Doppler effect.




3.2. Photon Flux

Let’s assume that an object is moving at velocity ¥ with respect to observer A while

emitting photons uniformly in all directions.

Due to the object’s motion, these photons will be bunched together or spaced out
from each other in the same manner as the crests of light waves discussed in the last sec-
tion behave. When the relativistic Lorentz factor is taken into account, the density of
these photons is subject to the same compression or dilation as their frequency [Seq89].
Thus, the brightness perceived by the observer A is

=T \/1 —v¥c?

= (—chos_é'/(:_) {3.2.1}

where I’ is the brightness of the photons measured in the moving object’s coordi-

nates.

3.3. Hue and Wavelength Mapping

In order to show the Doppler effect, a mapping between the calculated wavelength
and the displayed hue is required. In particular, the specified hue of a given surface is
converted to a corresponding wavelength where the Doppler effect can be computed,
then the resulting wavelength is mapped back to a hue value to be displayed on a color

monitor.
Wavelength  (Symbolic Names) | Hue Comment

780.0 nm (MAXW) -60 | Upper limit of visible range
700.0 nm (RED) 0 | Standard CIE spectral RED
605.0 nm (YELLOW) 60 | Chosen point for YELLOW
546.1 nm (GREEN) 120 | Standard CIE spectral GREEN
505.0 nm (CYAN) 180 | Chosen point for CYAN
435.8 nm (BLUE) 240 | Standard CIE spectral BLUE
380.0 nm (MINW) 300 | Lower limit of visible range

Table 3.3.1. Control Points for Wavelength and Hue Mapping.

The mapping is made non-linear in order to generate a good looking "rainbow" on
the display monitor. We used a uniform cubic Hermite interpolation through the sam-
pling points listed in Table 3.3.1. Then we adjusted the rainbow (displayed on Tek 4129
- it may look different on other monitors) by varying the derivatives at the seven chosen



control points.

AHue / AWavelength Comment

120
180
240
300

1.0*60/(RED-MAXW)

1.0*60/(MINW-BLUE)

1.0%120/(YELLOW-MAXW) | dir. from MAXW to YELLOW

0.5*%120/(GREEN-RED) stretch YELLOW by factor 2
1.33*120/(CYAN-YELLOW) | reduce GREEN band by factor 0.75
0.5*120/(BLUE-GREEN) stretch CYAN band by factor 2
1.0*120/(MINW-CYAN) dir. from CYAN to MINW

dir. from MAXW to RED

dir. from BLUE to MINW

Table 3.3.2. Control Slo

pes for Wavelength and Hue Mapping

The chosen derivative values are given in Table 3.3.2. The resulting mapping is
illustrated in Figure 3.3.1.

120

180

300!

380nm

BLUE CYAN GREEN YELLOW RED 780nm

Figure 3.3.1

The human eyes can only "see" electromagnetic waves with wavelengths within a

certain range. Our eyes are senseless to "colors” outside this range, and less sensitive to
the colors near the boundary of the visible range than those in the middle of the range.

To approximate this effect, we chose to attenuate the color intensity according to its
wavelength. The attenuation function used in this project is illustrated in figure 3.3.2.
The colors in the range [BLUE, RED] will not be affected, colors outside the range
[380nm, 480nm] have intensity zero, and for the transition zones (BLUE - 380nm) and
(RED - 780nm) we use linearly declining attenuation function.



N Intensity
1.0 1

i S

7
380nm BLUE CYAN GREEN YELLOW RED 780nm wavelength

Figure 3.3.2

In the relativistic ray-tracing process (chapter 5) where multiple Doppler effects can
occur (from the light source to the moving object, and from the object to the observer),
all computation is carried out in the wavelength domain, after initial conversions of the
specified hues of all the lights and objects. Only at the very end, when the wavelengths
are converted back to hues is the physiologically motivated attenuation applied.
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4. Relativistic Renderer Implemented as Preprocessor

The relativistic renderer described in this chapter was implemented as a preproces-
sor. The preprocessing program maps the geometry of the moving object into a new set
of properly distorted vertex coordinates, and assigns proper colors due to Photon Flux
and Doppler effects to these vertices. The new scene now can be rendered with standard
rendering techniques. One of the Berkeley UniGrafix renderers, UgDisp [Gal86] was
modified for this purpose. Itis a fast scanline based renderer. Its Gouraud shading capa-
bility was extended to linearly interpolate vertex colors in HSV space. The preprocessor
and this standard renderer together form a simple relativistic renderer.

4.1. Preprocessors

The preprocessor has to perform two independent tasks: distortion computations and
color change computations. Due to their independence, they were designed as two
separate modular preprocessors, which were then piped together.

In brief, the first preprocessor computes the distorted vertex coordinates of all ver-
tices while maintaining the topological connectivity of the polygons as originally given.
The second preprocessor determines new colors for the modified vertices. There is a
potential problem for this scheme. Suppose that a vertex is shared by different polygons
having different surface colors. The question is what color should be assigned to this
vertex. Emulating a Gouraud vertex shading computation, one would mix the colors of
all adjacent polygons in the RGB space. Each R,G, and B component of the vertex color
is the average of the adjacent surfaces’ corresponding color components. The weighting
factor for each face is the angle of the face corner at that vertex. However, this is not a
good solution if the user intends to assign different colors to adjacent polygons, yet still
wants to have smooth shading across them. For example, a sphere with the top half
painted red and the bottom half painted green. The preprocessors developed for this pro-
ject are therefore enhanced to take an option of specifying this situation. In that case, the
vertex is repeated for each face, but in order to retain the smooth shading, a common ver-
tex normal is calculated by averaging the surface normals of all adjacent faces with their
angles as the weight factors and assigned to each copy of the vertex (UgDisp was
modified to accept these normal vectors).

4.1.1. Distortion Computations

As described in Chapter 2, there are two kinds of distortions: the Lorentz contrac-
tion and the distortion due to different flying times of Photons. They will be discussed in
turn here.
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4.1.1.1. Lorentz Contraction Computation

Recall from section 2.1 that the Lorentz Contraction is simply a non-uniform scal-
ing in the traveling direction with the Lorentz factor \/1—(v2/c2). Since this scaling
applies with respect to the eyepoint (camera pinhole), a translation T is performed if
necessary. A rotation transformation R is used to align the velocity vector V along the +x
direction, before the scaling with the Lorentz factor along the x direction is carried out
(no scaling in y or z direction). R could be implemented as two rotations about two major

axes; however, there is a more direct way to compute R:

A
A
?
v
s
D¢

Figure 4.1.1.1.1

Figure 4.1.1.1.1 shows the velocity vector ¥ in the original coordinate system xyz.
Let’s define a new coordinates system uwt so that the positive u direction is in the direc-
tdon of vector V. Also let @, W, Pbe the unit basis vectors of the new coordinate system
(figure 4.1.1.1.1), and assume that in the old coordinates, they are T = <u,, uy, u,>,

W = <Wy, Wy, W,>, T = <ty, t,, t,>, then the ransformation R is given by

y,

[uy Wy I q
Uy Wy ty 0
R = u, W, t, 0 {4.1.1.1.1}

LOOOI

The vectors T, W, T can be computed from ¥V and X, ¥, Z (unit basis vectors for xyz
coordinates) from these equations.

v
T = —— 4.1.1.1.2
19 { )
o = _Zxd (4.1.1.1.3})

1Zx !



-12-

- _Exw (4.1.1.1.4)
T x W
Care must be taken if ¥ and Z are parallel. In this case, then T, W, T are redefined to
be
T=Z {4.1.1.1.5}
wW=x {4.1.1.1.6}
t=7y {4.1.1.1.7)

Since R is an orthogonal matrix, its inverse is simply its transpose
R =RT

After the affine scaling in x, the inverse matrix R! (or RT) is applied to undo the
rotations. Finally the inverse translation T ! is performed. However, since the next step
is the computation of the distortion due to different flying times of photons which also
requires the eyepoint at the origin, this inverse translation is postponed until the prepro-
cessor finishes.

4.1.1.2. Computation of the Distortion due to Time-of-Flight

Because the distortion transformation described in section 2.2 maps straight lines
into conic sections, the renderer must be able to deal with conic sections directly, or
edges must be subdivided enough so that they will be rendered as smooth curves. The
renderer used in this project can only take objects consisting of planar polygons as input;
therefore, the latter approach must be used. First, the polygons are subdivided by insert-
ing new vertices. Then the transformation given in {2.2.7} is applied to all vertices to
create a new scene containing distorted polygons. This scene can now be passed to the
preprocessor which computes the color changes. If this preprocessor is implemented
independently of the distortion computation, then the inverse translation mentioned in the
last section is performed at this time.

4.1.2. Brightness and Hue Changes Computations

This preprocessor is responsible for computing the vertex colors based on the dis-
torted vertex coordinates, their velocities, and their original colors. In other words, it
computes the Doppler effect and photon flux effects derived in chapter 2. It then passes
all this information to a standard renderer for the actual display.

There are some issues to be discussed here:
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Real objects usually reflect lights over a range of wavelengths with varying inten-
sity. To compute the Doppler Effect, all these wavelengths must be appropriately shifted
and convolved with the spectrum of the light source, and the result must be shifted again
and convolved with the sensitivity function of the observer. To simplify the problem, we
assume all surfaces to be of pure spectral (reflecting only a single wavelength). In this
particular project, the color must be specified in the HSV color space. Its hue value is
then converted to some single wavelength value by the mapping mechanism mentioned
in section 3.3. Only this wavelength is considered for the Doppler effect, the saturation
value, S, which determines how much white light is contained in the color is left
untouched, and the intensity value, V, is adjusted according to the equation of the bright-
ness change {3.2.1}.

Under the Doppler shift, some wavelength may be shifted out of the visible range of
human eyes. If this happens then the attenuation function of section 3.3 is used to adjust
the color intensity. As the result, the rendered images give us a general idea what people

would see.

If the object is moving towards the eyepoint, the resulting brightness for some faces
may exceed 1. In such case, the image can be normalized by globally scaling all the
intensities (this corresponds to an iris adaptation in the human eye’s). If multiple bright-
ness changes may occur (e.g., in relativistic ray-tracing where reflection and refraction
are considered), then the normalization or truncation is delayed until the result is ready to
be displayed.

The rest of this section describes the operation of the color preprocessor.

~ Again, a translation that brings the eyepoint to the origin is performed if necessary.
In order to minimize the number of color statements output by the preprocessor, we keep
track of all colors we generate. A new color statement is output only if the new color
does not match with one of the colors we already generated. For each vertex, the follow-
ing steps are carried out:
‘/1—v2/02

(1) The factor m of both equations {3.1.2} and {3.2.1} is calculated.

To ease the computation, it is rewritten as
‘/1—v2/c2
(1-v*Tc?)

where T is the light vector in the direction from the vertex to the eyepoint.

) If the vertex color ID matches with one of the colors previously defined and
the factor in step (1) is within a certain interval with that color, then we skip
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the next three steps.

3) The original hue value is mapped to its corresponding wavelength which will
then be divided by the factor in step (1) to yield the wavelength under the
Doppler Effect (section 3.1). The resulting wavelength is finally converted
back to the hue value before it is written out.

4) The original intensity value (V component) is multiplied by the factor in step
(1) to yield the new brightness (section 3.2).

&) Values from steps (3) and (4) along with the original saturation value form a
new color for which, a color statement is generated. The color ID for the
new color statement is chosen to be the original color ID appended with the
factor given in step (1). The new color is recorded for future comparisons.

It is important to note that the attenuation function is not applied here. Such

attenuation will be postponed until the color is ready to be displayed by UgDisp.

4.2. UgRainbow - A Modified UgDisp

The renderer chosen for this project was UgDisp [Gal86], a Berkeley UniGrafix
renderer. It is scanline based, able to display intersecting objects, and able to perform
fast Gouraud smooth shading. It accepts scene descriptions written in the UniGrafix
language [SeS83].

In general, the UniGrafix language is a simple language capable of describing 3-D
polyhedral objects in boundary representation [Seq83]. Syntactically, a UniGrafix file
consists of statements starting with a keyword and ending with a semicolon. There are
about a dozen different types of statements, and small additions are made from time to
time in a judicious manner. UgDisp, in particular, recognizes eleven of these statements
[Gal86]. For our purposes, the syntaxes and meanings of all statements were kept the
same, except for the vertex statement. This statement which is used to define a vertex ID
and vertex coordinates was extended to accept a color ID and an optional vertex normal
specification (see section 4.1). The enhanced UniGrafix language is employed by the
preprocessors to pass all necessary information to the modified UgDisp.

The modifications made to the UgDisp were moderate. First, the parser must be
able to accept the extended vertex statement. Second, the existing data structures must be
modified to contain extra information for each vertex, i.e. its color and vertex normal.
Finally, the Gouraud shading was enhanced to linearly interpolate vertex colors in HSV
space. Only this change was significant enough to be discussed here in more detail.
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The color statement in the UniGrafix language specifies a color by its HSV values.
In UgDisp, the Gouraud shading module only interpolates the illumination value (how
much light is received by each surface point). The shaded color is equal to the original
color with its intensity modified by this illumination. The UgRainbow program uses the
same basic method, except that all three components of the original color are interpolated
as well. With the chosen non-linear mapping between hue and wavelength, the interpola-
tion of wavelengths will yield different results from the interpolation of hues. The
wavelength interpolation method was implemented as an option to UgDisp. After the
color for each pixel is determined, its wavelength is used to find the attenuation factor (in
case of the hue interpolation, the mapping is needed to yield the wavelength for the same
purpose). The attenuated color in which the wavelength is transformed to the hue is

passed to the device driver for display.
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5. Relativistic Ray-Tracing

Ray-tracing is a simple but slow algorithm that can display realistic computer-
generated images [Whi80]. Many optimization techniques have been developed to speed
up ray-tracing, but in this project we are only concerned with the question how ray-
tracing is applied to relativistic scenes.

The idea of ray-tracing is to determine the intensity for each pixel, one at a time, by
following a ray from the eyepoint backwards through the pixel into the scene space. The
intersection of the ray with every object in the scene is then calculated. If none is
encountered, then the pixel is assigned a background color. If the ray intersects more
than one object, then the intersection closest to the eye will determine the color of the
pixel.

Once the first intersection points have been identified for each pixel, ray-tracing
allows us to calculate realistic shading effects using the same mechanisms. As shown in
figure 5.1, the light intensity I, passed to the eyepoint from a point on the surface, con-
sists of three basic components : the specular reflection S, the transmission T, and a dif-
fused component D (not shown in the figure). The diffuse reflection can be computed
using a conventional shading model [Gou71, Pho75, Bli77]. Shadows can be calculated
by generating new rays fi between the visible surface point and each light source. If
these rays intersect any opaque object before they reach the light, then the surface point
is in shadow with respect to the corresponding light source, and that light source will
contribute no intensity to the surface point.

Eye

Figure 5.1
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If the surface is reflective, the reflection S can be calculated by creating a new ray in
the reflection direction R. This direction can be determined by the simple rule that the
angle of reflection must equal the angle of incidence, and that it must lie in the same
plane with the observer ray and the surface normal. Similarly, if the surface is tran-
sparent, the transmission T can be computed by casting a new ray in the refraction direc-
tion B. The direction of this ray must obey Snell’s law.

Note that the reflection and refraction rays can be viewed as new observer rays
equivalent to the the original ray, so the process of ray-tracing can be continued recur-
sively until none of the new rays intersects any transparent or reflective objects, or the
new ray is expected to contribute an insignificant amount to the surface point. The latter
condition arises due to the fact that the light intensity is attenuated by reflection, refrac-
tion, and also by traveling through an absorbing medium. In a practical program, one
often simply limits the depth of recursion.

To consider relativistic effects, conventional ray-tracing must be modified some-
what. One approach is to generate an event scene in a 4D space where the 4th dimension
is event time. The rays which are cast backwards in time dimension can be traced
through this 4D space just as the rays in the ordinary ray-tracing in 3D space. This
method was attempted at first. However, it is rather inefficient to search a 4D space for
intersection points, when all objects travel at more or less constant speed. Moreover, it

requires complicated data structures to represent arbitrary event scenes.

A more efficient approach is to trace the rays through the 3D space scene at the
proper speed corresponding to the light velocity in the particular medium and to analyze
the intersections with various moving objects. The rays can only intersect the objects at
the points where the ray time and the object time match exactly. In ordinary ray-tracing,
it is usually easier to compute the intersections by using some parametric value t. This
value is also used to solve the hidden surface problem, as the closest intersection point
must have the smallest value of t. In our relativistic approach, the parameter t is replaced
by a variable that records the time of the intersection (the two parameters are not quite
the same as will be seen in section 5.1) and it is used to solve the ray intersection prob-

lem in a way similar to the normal ray-tracing approach.

According to the special relativity theory, an observer at a stationary eyepoint does
not see equal incident and reflected angles when light is reflected from a moving object.
However, for a person on the moving object the reflection law are still obeyed, and this
fact is exploited to compute the reflection direction. Similar statement can be made about
refracted light.
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The shading computation must also take into account relativistic effects. When a
vision ray interacts with a moving surface, the relative velocities are calculated and used
to compute the Doppler shift and the changes in photon flux.

The motions of objects in the scene are expressed with respect to the coordinate
frame of the camera (eyepoint). Thus the proper Lorentz’s transformation (section 2.1),
resulting in object distortions and time dilation effects, can be carried out easily in this
reference frame; this is done right after the 3D space scene is read in.

5.1. Ray/Polygon Intersection

In the scope of this project, different polygons may travel at different velocities, but
all vertices of the same polygon are restricted to have the same constant velocity (i.e.,
polygons cannot rotate). It is conceptually not too hard to extend this approach to the
general case, and possible extensions will be discussed later. The face statement of
UniGrafix language is extended to take an optional velocity vector whose default value is
<0,0,0 > (Appendix B).

Another assumption should be addressed here. The coordinates of objects in the

scene read in from the input are assumed to be those at time t = 0 when the shutter of the
camera briefly opens.

The ray/polygon intersection calculation consists of two steps. First, the intersec-
tion event (x,y,z,t) of the ray with the moving plane containing the polygon is computed.
Second, the point of intersection is determined to be inside or outside of the polygon
located at its position in the past that corresponds to the intersection time.

5.1.1. Ray/Plane Intersection

For simplicity, let us first consider the primary rays which originate from the
eyepoint, then extend the discussion to the general rays.

Let _ﬁo be the position of the eyepoint (it is usually convenient to make ﬁo =
<0,0,0>, i.e., perform a world-to-eye-transformation). And let ﬁ’d be the velocity vector
of the photons that eventually reach the eyepoint at time t = 0. The direction of ﬁd is
from a given pixel to the eyepoint and its magnitude is c, the speed of light in the
medium considered (see figure 5.1.1.1).
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Figure 5.1.1.1

If B is the intersection point of the ray with the moving plane, and t is the intersec-
tion time, or the time in the past when the photon, which will eventually make to the
shutter, is emitted from the polygon, then

P =R,+WRy, t<0 (5.1.1.1}

Let 6 be a point on the plane at the time the photon is emitted, then
B-Q*m=0 (5.1.1.2)

where T is the normal vector of the plane which is constant in time in our model. It
should be noted that since T is the normal vector of the polygon when it is at rest, T must
be calculated before the Lorentz transformation is applied to the vertices of the polygon.

Arbitrarily, we choose 6 to be one of the polygon’s vertices:

d=3+w (5.1.1.3)
Here, Q)O is some vertex which is read in directly from the scene description.
Substituting {5.1.1.1} and {5.1.1.3} into {5.1.1.2}, we obtain

®o+ Ry *8 = Qo+ *7

((_2)()‘§)0)"‘ﬁ
= t= —
Rq—-V *7°
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If the denominator of this equation is zero, then no intersection is possible. The
intersection test can also be aborted if t = O (the intersection is behind the eye), or if tis
smaller than the largest value of t computed for previously tested polygons that intersect
the ray, since the intersection point is hidden by some other polygon. Otherwise, t can be
substituted into equation {5.1.1.2} to yield the coordinates of the intersection. The value
of t is then saved, because it will be needed later when the secondary rays are generated
(see below).

Now, let us consider a general ray. ﬁg, R, B, G, Gy, T, ¥ are defined as before.
Furthermore, let t; be the time associated with ﬁo. It is the time when the photons reach
the point ﬁo (it is 0 in the case of a primary ray). For the general ray, only P is different
from its previous equation. It is now

P =FRy+(t-tx)R;, t<0 {5.1.1.4)

Solving for t by substituting {5.1.1.3} and {5.1.1.4} into {5.1.1.2}, we obtain

o @y - Ry + Ry * 7
Ry -V *1

{5.1.1.5})

5.1.2. The Inside/Outside Test

Once we find that a ray intersects the plane of a moving polygon, its intersection
time is used to calculate the position of edges of the polygon at that particular time.
Then we determine whether the intersection point is inside or outside these edges of the
polygon.

The testing method employed in this project requires the projection of the polygon
and the intersection point onto some plane where the inside/outside test can be performed
conveniently. The projected plane is one of xy, xz, and yz planes. To reduce numerical
error, the plane in which the projected polygon covers the most area is chosen. This can
be done by examining the three components of the polygon’s normal vector. Once the
polygon and the intersection point have been projected onto one of the three major coor-
dinate planes, a half line is generated from the projected intersection point (the direction
is arbitrarily chosen to be +x, +y, or +z if the projection plane is Xy, yz, or xz, respec-
tively). The inside/outside test can then be performed simply by counting the number of
times the projected edges of the polygon cross the half line. If the number of crossings is
odd, the point is inside the polygon; otherwise, it is outside [Har87].

The inside/outside test can be speeded up [Mar87], but as mentioned earlier,
efficiency is of little concern in this project.
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5.2. Shading

The shading method plays a major role in determining the quality and realism of the
final image. Once an intersection has been identified to be visible, its intensity and color
have to be calculated. There exists a wide variety of shading models and they usually
exhibit a trade-off between realism and efficiency. In this project, a basic shading
method often used in ray-tracers is employed: a Phong shading model enhanced with the
necessary rays to model shadows, reflections, and refractions. In this section, certain
techniques which are quite different from normal ray-tracing will be emphasized, e.g.,
how to determine the direction of reflected or refracted rays.

5.2.1. Smooth Shading

There are two basic strategies for obtaining smooth shading: Gouraud shading
[Gou71] and Phong shading [Pho75]. They are briefly outlined as follows:

In the Gouraud shading method, a vertex normal is calculated at each vertex as a
function of the surface normal vectors of all polygons that contain the vertex. Then for
all polygons in the scene, the vertex normal at each vertex is used to calculate the vertex
shade. The shade of a given point within a polygon is then determined by double inter-
polation of the vertex shades: once along the edges, and once between two points on two

edges (e.g., on the same scan-line).

In the Phong shading method, vertex normals are computed as above, but the sur-
face normal vector itself is interpolated instead of the shading value. Thus, in order to
calculate the shade of a given point, its surface normal must be computed before the
shade can be determined.

The Phong shading model was chosen in this project for a number of reasons. First,
care must be taken in the use of the Gouraud shading when one vertex is in shadow and
another is not. The linear interpolation is also incorrect if a surface reflects the light
source. Moreover, if reflections and refractions are modeled, the surface normals at
intersection points have to be calculated anyway. Since the Gouraud shading method is
simpler and faster than Phong’s, it is most appropriate when the surfaces are not
reflective, and when shadows are ignored. This can be easily added to the existing pro-
gram.

Because the objects in the scene are restricted to have constant velocity, all surface
normals are also constant with time. The vertex normals, therefore, can be preprocessed
before the intersection times are calculated. After the scene description is read in, all
vertex normals are computed by averaging the surface normals of all the faces that con-
tain the vertex. The weighting factor for each face is the angle of the face corner at that
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vertex. When an intersection point is found, it is always mapped to its original position
in the scene description (i.e., its position at t = 0) where the linear interpolation of normal

components can be conveniently performed.

5.2.2 Direct llumination by Directional Light

When the diffusely and specularly reflected components are computed, each light
source in the scene must be considered and their results summed up [Pho75]. In this pro-
ject, directional light sources are modeled as infinitely distant point light sources, and the
implementation of the local light sources is left for future work.

toward light source

reflective surface

Figure 5.2.2.1

A light source contributes to the light intensity reflected from a surface in the view-
ing direction if it illuminates the same side of the surface that the viewing ray hits (figure
5.2.2.1). In ordinary ray-tracing, the sign of the dot product between the ray vector ﬁd
and the surface normal T (i.e., l_i)d *1) is computed. If the dot product between T and a
vector toward the light source ﬁd (i.e., fd * ) generates the same sign, the light source
illuminates the surface. If the opposite sign is generated, then the light source can only

illuminate the opposite side of the surface, and the light source contributes no intensity to
the surface.

In relativistic ray-tracing, some modifications to the above technique are needed. A
photon which is moving in the direction of a viewing ray l—{)d is observed to be moving in
some other direction R with respect to a person on the surface that travels with velocity ¥
(figure 5.2.2.2). In other words, the photon must be ejected in the R direction with
respect to the moving surface in order to travel in the direction of the viewing ray I_l)d.
Thus, the dot product R *Tis used in place of (ﬁd * 7). Similarly, the vector toward the

light source L is observed by a person on the moving surface as some vector L. In
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summary, if the sign of R * 1 is the same as L * T, then the light source illuminates the
surface; otherwise, the light source is ignored in the direct illumination calculation.

viewing ray

Figure 5.2.2.2

The vectors R and L can be obtained by using the Lorentz velocity addition [Eis81]
which will be explained in detail in Section 5.2.4. Here is an overview.

g
R, Ry
A >—>
] v
é’ -------------------- Ry
............... R
R, K

Figure 5.2.2.3
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Let’s define a 2D Cartesian coordinate system xy in the plane containing vectors ﬁd
and ¥ in such a way that the vector V' is in +x direction (figure 5.2.2.3). The vector R in
this coordinate system has the components [Eis81]

-v
R, = -;Rfl—z {5.2.2.1}
1-vRy/c
V1 - v3/c?

R — R {5.2.2.2}
4 1- dex/c2 %

This calculation is extremely time consuming. Since ﬁd and ¥ are expressed in eye
coordinates, it requires some transformation into the 2D coordinates just mentioned.
Then, after the vector R in this coordinate system is computed, a projection back into the
eye coordinate system is required. Note that if v << c then the square root term in for-
mula {5.2.2.2} can be omitted and vector R will become

1
R, = ————=Ry - V)
* l—VRdx/CZ %
1
R, = ———R
Y 1ovRg P Y

Vector R now has the same direction as (id -7) as expected from Galilean rela-
tivity theory. Thus if v << c, the classical vector (Ry—7V) is used instead in order to

reduce the running time.

5.2.3. Shadows

As mentioned earlier, when the diffuse and specular reflections are computed, each
light source in the scene must be considered. If, however, a surface area is in shadow
with respect to some light source, then that light source can be eliminated from the light-
ing calculation of this area. That is because that light source contributes no direct inten-
sity to the area.

A surface point is illuminated by some light source if and only if the photon that is
ejected from the light source towards the surface point and that is expected to eventually
make through the camera shutter is not blocked in the past by some object (possibly
moving).



=25 -

light source

Nt

ST

R, (tp)
R4
Figure 5.2.3.1

Figure 5.2.3.1 shows point ﬁ)o in shadow with respect to the light source L. During
the ray-tracing process, the point ﬁo is somehow encountered by an observer ray and its
illumination needs to be determined. Let t, be the intersection time corresponding to the
intersection point _R)o. (Note- that the photon that reaches ﬁo at time ty is expected to
make it through the shutter). To determine if ﬁo is illuminated by L, the shadow ray
from 1_2)0 towards the light source L is cast backwards in time starting from t;. Equation
{5.1.1.5} and the inside/outside test are used to decide if it intersects any polygon in the
scene. 1_1)0 is in shadow if such an intersection is found and if the intersected polygon

represents an opaque surface.

If the scene contains transparent objects, there exists a problem that is also encoun-
tered in ordinary ray-tracing. If the shadow ray intersects a transparent object then the ray
is bent by the object’s refractive material. The bending pulls the shadow ray away from
the direction of the light source; therefore, it is no longer the actual "shadow" ray (figure
5.2.3.2). The correction of this problem represents an almost impossible computational
expense. The program written for this project simply ignores this problem and pro-
pagates the shadow ray without bending.
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light source

_Q_
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the resulting
ray cast in
the direction
of Rd

from Ro

Figure 5.2.3.2

Yet another simplification concerns the propagation of light rays through absorbing
media. Theoretically, the light intensity must by attenuated according to its traveling dis-
tance within the transparent object. For this project this volume absorption has been
ignored, and the light intensity is attenuated only at the surface of a transparent object by
the coefficient of transmission k,.

5.2.4. Specular Reflection From Other Surfaces

This section does not discuss how to calculate specular reflection from a light
source. Such discussion can be found in [Pho75]. This section however focuses on the
specular reflection of other objects.

During the ray-tracing process, if a viewing ray intersects a reflective surface then
the reflection in this surface can be modeled by tracing a new ray in the direction of
reflection. If the new ray intersects a second surface, this surface will be seen reflected in
the first surface. Multiple reflections can be modeled by repeating this process recur-
sively.

If the color returned by the reflected ray is C, then the reflection contributes to the
reflective surface an amount of Ck,, where k; is the reflection coefficient that specifies
what fraction of incident light is reflected. This is the same as the specular reflection
coefficient in the Phong shading model. The value of k, depends on the angle of
incidence [Pho75]1, but for simplicity, we use a fixed value.

The major difference from normal ray-tracing in modeling the specular reflection of
an object is how the reflection direction is calculated. In non-relativistic ray-tracing, the
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reflective surface has the property that the angle of incidence is equal to the angle of
reflection. This is not true for an outside observer watching a surface moving at relativis-

tic speed.

Figure 5.2.4.1

Figure 5.2.4.1 shows a reflective surface s moving with velocity V. The light vector
ﬁe incident to s will be seen as vector —ﬁs to an observer on the moving surface. Accord-
ing to Einstein’s first postulate, the reflection law is still observed in the inertial frame of
reference associated with the surface itself [For74]. In other words, the reflected ray ﬁ)s
seen by the observer on surface s has the angle of reflection the same as the angle of
incidence from vector I_:s. Vector ﬁe which is the reflected ray in the eye coordinates is,
in fact, the vector is but in a different frame of reference. The mapping between I_:S Vs,
fe and ﬁs VvSs. ﬁ’e is called Lorentz velocity transformation [Eis81] and is described

below.

>
»

>
»

Figure 5.2.4.2
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Figure 5.2.4.2 shows two observers O and O” with the primed observer moving rela-
tive to the unprimed observer at a constant velocity v. For simplicity, we choose the two
frames of reference in such a way that the axes x,y, z and x’, y’, z’ are mutually parallel,
and the relative velocity Vis in the +x direction.

If <vy, vy, V,> and <v'y, V'y, v/;> are the velocities of some object P measured in the
unprimed frame and the primed frame, respectively, then they are related according to

the following formulas:

Ve~V

vy = m‘z— {5.2.4.1}
X
V1 = v2/c2
v, = Tl_v%-z-vy (5.2.42)
- VV¥x
V1 = v2/c2
2 = ————11 V;CZ 2 (5.2.4.3)
—vv,/c
Equivalently,
VitV
VX = -1—+——T2" {52.4.4}
v, /c
V1 = v2/e2
v, = -l—i—-%v'y (5.2.4.5)
v /c
V1 = v2/c2 ,
v, = VI . (5.2.4.6)
1+ v, /c?

Note that the above formulas require a special arrangement of the two frames of
reference. In particular, their +x and +x” direction must coincide with the direction of
velocity V. Let us call the transformation performing this task T,. The calculation of the

reflection direction then consists of these steps:
1) Apply transformation T, on vector _Ii)e
2) Use formulas {5.2.4.1} through {5.2.4.3} to compute I—is.
3) Apply reflection law to compute I_,)S from R:
4) Use formulas {5.2.4.4} through {5.2.4.6} to compute I_:e

5) Apply inverse transformation T, on vector fe
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In order to speed up this calculation, these five steps are expressed in terms of

matrix multiplications, then combined into a single transformation matrix.

Formulas {5.2.4.1} through {5.2.4.3} can be expressed in homogeneous coordinates

as
l:v'x vy v, v'{' = [vx vy v, v{l M,
where
[ 1 0 0  —v/c?
v 0 Vi—v¥c: 0 0
= 1o o V12 o
-V 0 0 1
Similarly, formulas {5.2.4.4} through {5.2.4.6} can be expressed as
[vx vy Vg v{l = [v'x vy Vv, v'[} M,
where
10 0 v/
y oViv¥2 0 0
27 lo 0o Vi-v¥? o
v 0 0 1

{5.2.4.7}

{5.2.4.8}

Note that MM, = (1 - v2/c®I (identity matrix). This is no surprise, because the

same vector is obtained if all its components in homogeneous coordinates are multiplied

by the same factor (in this case (1 — v2/02)), and because M, and M, are inverses of each

other.

Figure 5.2.4.3
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Now, let’s consider the transformation for step 3. Let T be the unit normal vector
of the reflective surface s. Define 1 and ? to be the incidence and reflection rays, respec-
tively (figure 5.2.4.3), then

T=P-2@* M) (5.2.4.9)

Equation {5.2.4.9} can be rewritten as
iy = Iy — 2(ngry + NyTy + 0,100,

{1y = 1y = 2(nyry + nyry + 0,1,)0y

1, — 2(n,1y + Ny, +0,1,)0,

In matrix form, it is

2

where

[ 1-2n,2 -2n,ny -2n,n, 0]

-2n,n 1—2ny2 —2nyn, 0

y
—2n,n, —2nyn, 1—2nz2 0
0 0 0 1

L .

It is important to note that the vector T must be measured in the uwt coordinates of
the moving surface. If , is the surface normal in eye coordinates, then its vector in uwt
coordinates is @ = ®,T,. Moreover, since the vector T, is the normal vector of the
polygon when it is at rest, T, should be calculated before the Lorentz transformation is

applied to the vertices of the polygon.

Finally, let’s compute the transformation matrix T, which brings the velocity vector
¥ into the +x direction. This requires two rotations; however, there is a better way to
compute T,. The computation is exactly as that shown in section 4.1.1.1. Matrix T; is
the same as matrix Rin {4.1.1.1.1} and is recalled here :

ru, w, te 0]

uy, Wy ty 0
T, = u, W, t, 0 {5.2.4.10}

0 001
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where vectors @, W, Pare given in equations {4.1.1.1.2},{4.1.1.1.3}, and {4.1.1.1.4}
(or in case ¥ and Z are parallel, equations {4.1.1.1.5}, {4.1.1.1.6}, and {4.1.1.1.7})

Because T, is an orthogonal matrix, its inverse is simply its transpose.

T

v

ST (5.2.4.11)

The direction fe can now be computed from vector ﬁe:

L.=R,.T,.M;.R.M,. T,T

While matrices T,, M, and M, depend only on ¥, matrix R depends on both V and @
- the surface normal vector in eye coordinates. For each surface in the scene, these
matrices are clearly defined; therefore, they can be computed and then multiplied into a
single matrix, M = T, .M; .R. M. TVT, during polygon preprocessing. M is then
available for fast calculation of the reflection direction.

5.2.5. Refraction

If a viewing ray intersects a transparent object then the refraction through this object
can be modeled by casting a new ray in the direction of refraction. If the color returned
by this ray is C, then the transmitted light contributes an amount of intensity Ckc,, where
k, is the transmission coefficient and c is the color of the intersected object. The value of
k, depends on the incident angle, and in some cases, the index of refraction of the tran-
sparent material. However, for simplicity, we use a fixed value. Also note that no
volume attenuation is performed in this project.

The direction of the transmitted ray is computed in a manner similar to that of the
reflected ray. If Te is the vector of the viewing ray then the vector E’e of the transmitted

ray is
L,=T,.T,.M.R.M,.T,T
where T,, M;, M, are the matrices defined in the last section. The matrix R is discussed

here.

The matrix R depends on the normal vector T of the surface and the indices of
refraction ny and n; of the mediums of the viewing ray and the transmitted ray, respec-
tively.

If ny=n; then the transmitted ray vector is the same as the incident viewing ray
vector. Thus R =1 in this case.
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If ny # n;_ then we observe Snell’s law (figure 5.2.5.1).

Sinor _ I, (5.2.5.1)
sinog,  ng _ T

Figure 5.2.5.1

Since the sin terms in the equation {5.2.5.1} are nonlinear, there is no single matrix
R that can perform the required transformation. The formula {5.2.5.1} must be used to
compute vector T from vector T. Because light travels at different speeds in mediums
with different indices of refraction, the factor (%) is used to adjust its magnitude (i.e., to
T
adjust vector f).

5.2.6. Doppler Effect and Photon Flux

When photons reflect (or refract) between moving surfaces, Doppler effect and pho-
ton flux changes must be calculated for each interaction of all rays that we trace. Sup-
pose that an observer ray passes through some point i’o and points into direction ﬁ)d.
Suppose further that this ray intersects some surface at point P (if no intersection is
found, the ray can be discarded), then the color returned by the ray must be modified to
take into account the Doppler effect and the photon flux change. In detail, the relative
velocity of P and ﬁ’o is calculated, then used to adjust the hue and brightness of the
returned color. The adjustment computation can be found in chapter 3. The calculation
of the relative velocity is very similar to what described in section 5.2.4. Let ¥V, be the
velocity of point P and ¥ be the velocity of point ﬁ’o measured in the eye coordinates
(figure 5.2.6.1). Then the velocity ¥, of point P seen by an observer at I_io is
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vV, =%,.T,.M;.T,T

where Tv and M, are matrices {5.2.4.10} and {5.2.4.7} of section 5.2.4.

Figure 5.2.6.1
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6. Conclusions and Future Improvements

Some relativistic effects experienced by objects moving at high speed were
described and discussed. Rendering techniques that implement these effects were also
presented. In particular, two relativistic renderers were developed to allow the user to
"see" what objects passing at high velocity look like.

Possible future improvements and extensions of these renderers are briefly dis-
cussed below. We only present those techniques unique to the relativistic rendering pro-
cess and ignore enhancements such as anti-aliasing, good shading model, etc,... found in

standard rendering processes.

If objects are allowed to move in arbitrary ways, including rotations and even
accelerations, the simple formulas derived in chapter 2 and chapter 5 are no longer valid.
The Lorentz contraction turns out to be complicated because no fixed frame of reference
can be assigned to a particular object. The amount of contraction is a function of time
just as the velocity is. The distortion derived in section 2.2 and 5.1.1, however, needs
just a little modification. The moving path of a point on the object is no longer a line
(equation {2.2.4} and {5.1.1.3}) but some other time dependent path. The intersection
point now lies on a possibly curved surface, and the equations to be solved are more
complicated requiring iterative numerical methods. Doppler effects and intensity
changes are easily calculated once the instantaneous velocity at the intersection point is
deduced from the intersection time.

The introduction to chapter 5 mentioned another possible approach to relativistic
ray-tracing. It suggests that a 4D space scene is created, and the rays are traced in this
scene just as rays in the ordinary 3D ray-tracer. This idea was rejected mainly because
our data structures were too complicated for the simple case of linear motion. For the
general case of arbitrary motions, this 4D ray-tracing approach looks more attractive and
should therefore be investigated further.

As mentioned from time to time in this report, the running times of these renderers
were of little concern. The renderer implemented as a preprocessor runs sufficiently fast,
and there seems to be no opportunity to greatly improve it. The relativistic ray-tracer, on
the other hand, can be speeded up significantly. Techniques routinely used to improve
the running time of ordinary ray-tracing can also be applied here with some precautions.
One of the Berkeley UniGrafix renderers, UgRay employs a uniform spatial subdivision,
which cuts the computation cost of ray-tracing dramatically [Mar87]. The same basic
approach can be applied here.
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In brief, the uniform spatial subdivision algorithm subdivides the space containing a
scene into small regions. When a ray enters a region, intersection tests are performed
against all primitives (e.g., polygons) that are intersecting that region. If no intersections
are found, the ray is propagated into the next region intersected by the ray [Dip84].
Applying this approach to relativistic ray-tracing, a subdivision of 4D space (space and
time) is an appropriate solution. These event-cells can be thought of as moving spatial
regions. Thus time coordinates must be considered when the ray propagates from region
to region. There is, however, a simpler technique that does not require the subdivision of
4D space. Even though it is not as fast as the above 4D method, its running time is good
enough so that we have chosen to use this technique in this project; furthermore, it
required very little modification to the standard ray-tracer algorithm and portions of
UgRay could be used for this purpose. In this method, the subdivision is carried out in
3D as usual. The propagation of rays through the regions is also unchanged. The only
change that had to be made was in the algorithm that inserts polygons into the spatial

/
/7

]

subdivision.

/

Figure 6.1 Figure 6.2
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In the standard ray-tracer, the polygon P is inserted into a cell C if it touches that
cell (figure 6.1). In our new method, the insertion is performed if the cell intersects with
the prism swept out by the moving polygon P (figure 6.2). In order to reduce the number
of ray/plane‘ intersection tests further, for each subdivided region, we compute the
minimum and maximum time coordinates where any ray originating from the eyepoint
can enter and leave the region, by finding the shortest and longest distances from the eye
to the sphere surrounding the cell. This time interval shortens the length of the prism that
needs to be inserted into the subdivision cell structure (figure 6.3). However, if we want
to consider reflected, refracted, or shadow rays, there is no bound on t_,, since secondary

ray paths can be arbitrarily complicated.

Figure 6.3
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UGLORENTZ (UG) UNIGRAFIX User’s Manual UGLORENTZ (UG)

NAME
uglorentz — compute relativistic geometry distortions of moving objects.

SYNOPSIS
uglorentz [ options ] [ <scene ]

DESCRIPTION
Uglorentz reads in a UNIGRAFIX object description and the velocity of the object
(specified with option -vel), computes the Lorentz contraction and the distortion due to
Time-Of-Flight Differences of the Photons, then outputs a standard UNIGRAFIX scene
description of the distorted object. The output of uglorentz should be sent to ugdoppler.

INPUT
Uglorentz accepts UNIGRAFIX scene descriptions of moving objects.

OPTIONS
Options begin with a dash '’ followed by two or three lower-case letters.

-vel xy:z
Velocity of all objects in the scene. x, y, z must be expressed as the fraction of
the speed of light. Default value is <0 0 0>.

-fi input-file .
Read input scene from file input-file. If this option is not specified, the standard
input is read.

-fo output-file
Write output to file output-file. If this option is not specified, the standard output

is used.
SEE ALSO
ugdoppler(UG) compute doppler effects and brightness changes of moving objects.
ugrainbow(UG) render UNIGRAFIX scene produced by ugdoppler.
AUTHOR
Huu Phu Nguyen
huuphu@miro.Berkeley. EDU

Release 1988 1988-12-19 1



UGDOPPLER (UG) UNIGRAFIX User’s Manual UGDOPPLER (UG)

NAME

ugdoppler — compute color changes of moving objects.
SYNOPSIS

ugdoppler [ options ] [ <scene ]
DESCRIPTION

Ugdoppler reads in a UNIGRAFIX object description produced by uglorentz and the velo-
city of the object (specified with option -vel), computes the Doppler effects and bright-
ness changes, then assigns a proper color for each vertex in the scene. The output of
ugdoppler should be sent to ugrainbow.

INPUT
Ugdoppler accepts UNIGRAFIX scene descriptions of moving objects.

OPTIONS
Options begin with a dash *—’ followed by two or three lower-case letters.

-vel xyz
Velocity of all objects in the scene. x, y, z must be expressed as the fraction of
the speed of light. Default value is <0 0 0>.

-fi input-file -
Read input scene from file input-file. If this option is not specified, the standard
input is read.

-fo outputr-file
Write output to file output-file. If this option is not specified, the standard output
is used.

-fm message-file
Write warmning messages such as 'max intensity is 1.2, clip to 1.0" to file
message-file. If this option is not specified, messages are sent to the standard
erTor.

-gw  Write wavelength in place of hue in the output color statements. Should be used
if some colors are outside of the visible range.

SEE ALSO
ugrainbow(UG) render UNIGRAFIX scene produced by ugdoppler.
uglorentz(UG) compute relativistic geometry distortions of moving objects.
AUTHOR
Huu Phu Nguyen
huuphu@miro.Berkeley. EDU

Release 1988 1988-12-19 1



UGRAINBOW (UG) UNIGRAFIX User’s Manual UGRAINBOW (UG)

NAME

ugrainbow — a relativistic renderer for UNIGRAFIX
SYNOPSIS

ugrainbow [ options ] [ <scene ]
DESCRIPTION

Ugrainbow is a relativistic renderer for viewing UNIGRAFIX scenes consisting of objects
moving at high speed. Itis a derivative of ugdisp.

INPUT
Ugrainbow accepts UNIGRAFIX scene descriptions produced by ugdoppler. Scene
descriptions are written in the UNIGRAFIX language with an extension to the vertex state-
ment:

Extended Vertex Statement
The extended vertex statement accepts a color ID. It has the syntax:

v ID xyz colorID;
The colorID must be given or an error will occur.

OPTIONS
Ugrainbow accepts all Ugdisp’s options. It understands extra options given below.

-th Interpolate vertex colors in the hue domain, in addition to saturation, and value.

-iw  Interpolate vertex colors in the wavelength domain, in addition to saturation and
value. Default is -ih.

-wi  Hue values in color statements read from input are interpreted as wavelengths.
This option allows the user to specify invisible colors such as ultra-violet. See
option -gw of ugdoppler. Option -wi implies option -iw.

-dp  Write output in PostScript language format (Black and White only). Output file is
POSTSCRIPTFILE. It is not sent to any PostScript printer.

BUGS
All those found in Ugdisp.
SEE ALSO
ugdisp(UG) render a UNIGRAFIX scene on a screen or plotter.
ugdoppler(UG) compute doppler effects and brightness changes of moving objects.
uglorentz(UG) compute relativistic geometry distortions of moving objects.
AUTHOR
Huu Phu Nguyen
huuphu@miro Berkeley. EDU

Release 1988 1988-12-19 1



UGPHOTON (UG) UNIGRAFIX User’s Manual UGPHOTON (UG)

NAME
ugphoton — a relativistic ray-tracing renderer for UNIGRAFIX

SYNOPSIS
ugphoton [ options ]

DESCRIPTION
Ugphoton is a relativistic ray-tracing renderer for viewing UNIGRAFIX scenes consisting
of objects moving at high speed. It is similar to ugray.

INPUT
Ugphoton accepts scene descriptions in ugray format with an extension to the face and
instance statements:

Extended Face and Instance Statements
The extended face and instance statements accept an optional velocity. If the velocity is
not given, it defaults to <0 0 0>. For the instance statement, the velocity is applied to all
faces associated with the instance call.

f [ID] (viv2..vn) [colorID] [illum] <xyz>;
i [ID] (defID [colorID] [xforms]) <xyz>;
X, y, z must be expressed as the fraction of the speed of light.

OPTIONS
Ugphoton accepts all Ugray’s options. It understands an extra option given below.

-vel xyz
If this option is given, all objects in the scene have velocity <Xy z>. x, y, z must
be expressed as the fraction of the speed of light.

BUGS
All those found in Ugray.

Option "-cn n" does not work (see ugray). n always takes value of -1 which means the
spatial subdivision techniques can not be used.

The shading equation used is somewhat different from that of ugray.

SEE ALSO

ugray(UG) a ray-tracing renderer for UNIGRAFIX.
AUTHOR

Huu Phu Nguyen

huuphu@miro.Berkeley. EDU

Release 1988 1988-12-19 1
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Figure 1. The rainbow resulting from our color mapping.
Here, the wavelength linearly increases from 380nm (far left) to 780nm (far right).



2(a) 2(b)

2(c) 2(d)

Figure 2. The resulting distortions for ships traveling at different speeds:
2(a) atrest, 2(b) at 0.3c, 2(c) at 0.6¢, 2(d) at 0.9¢c.



3(c) 3(d)

Figure 3. The same set-up as in Figure 2, but this time

the images were rendered with reflections.



4(a) 4(b)

4(c) 4(d)

Figure 4. The same set-up as in Figure 2, but this time

the images were rendered with refractions and reflections.





