SpurBus Specification
SPUR, Symbolic Processing Using RISC, Project

Garth A Gibson
Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720
January 1989

SpurBus Specification
SPUR, Symbolic Processing Using RISC, Project

Garth A Gibson

1. Introduction

This documents specifies the design of a shared system bus for a synchronous multiprocessor based on
shared memory. The bus is called the SpurBus and it is part of the SPUR, Symbolic Processing Using
RISCs, project [Hill86,0uster88,Wood87].

SPUR is a multiprocessor workstation. Each processor is a RISC, Reduced Instruction Set Computer,
with a tagged architecture for supporting the LISP programming environment [Taylor86] and an instruc-
tion buffer to reduce instruction traffic across chip borders [Hill87]. Each node in the multiprocessor con-
tains a processor, a large cache (128 KB), a floating point coprocessor and a cache controller. The caches
are kept consistent by a ‘‘snooping cache protocol”” [Katz85a] implemented in the cache controller and
across the bus.

The goal of SPUR is to provide a low cost, fast uniprocessor with additional processors available for
research efforts into shared memory multiprocessing. The number of processors is small (6 to 12) so that
a low cost interconnect, the system bus, will be able to supply the required memory bandwidth. Concep-
tually, a system bus is a simple, flexible, reliable, convenient point of serialization for synchronization
and monitoring and, most important, its design can be borrowed from existing microcomputer system
buses.

The Texas Instruments NuBus was selected for SPUR [TI83,IEEE86,IEEE88]. The NuBus is described
in detail in this document. It is extended to provide for cache coherency and virtual memory mechanisms
in SPUR. Because these extensions are transparent to the NuBus subset, the SPUR project can use com-
mercial memory and I/O boards based on the NuBus protocol. The resulting design is called the
SpurBus. A programmer’s view of the SpurBus and memory system in general can be found in
[Wood87].

This specification is organized so that the SpurBus is presented as modifications to the NuBus. Section 2
presents the NuBus in detail. The SpurBus’ NuBus compliance is discussed in Section 3. Additional
features of the SpurBus are introduced and detailed in Section 4. Finally the details of the mechanical
backplane are presented in Section 5 and references are given in Section 6.

This document supercedes a draft specification [Katz85b] largely as a result of difficulties in the cache
coherency implementation and in the electrical characteristics of a multiple master NuBus backplane.
Modifications targeted at the latter are based on Draft 2.0 of the ANSI/IEEE NuBus specification
[IEEES6]. The SpurBus was finalized before ANSI/IEEE completed its standard [IEEES88]; in Section 3,
discrepancies are discussed.

2. NuBus Specifications

The description of the NuBus in this document was initially drawn from the Texas Instruments document,
““NuMachine NuBus Specification,”” [TI83]. Revisions based on the ANSI/IEEE standardization draft
““NuBus - a Simple 32-Bit Backplane Bus, P1196 Specification Draft 2.0,”” [IEEE88], have been made to
deal with slow backplane termination pullups in a multiple master system.

SpurBus Specification

System Board

System Board

NuBus Interface

NuBus Interface

.........

/ CLK/ . \

arbitration L ’

4 address/data L

Figure 2.1: NuBus Block Diagram
The NuBus provides 32 multiplexed addressidata lines, some control, arbitration, clock-
ing and unique identifiers to each backplane slot.

After the SpurBus specification stabilized, ANSI/IEEE completed its standardization [IEEE88]. The
NuBus subset of this SpurBus specification is not entirely compliant with the standard and is discussed in
Section 3.

2.1. Overview

Figure 2.1 shows an overview of a NuBus configuration. Each node has a NuBus interface connected to
the backplane. The NuBus provides each interface with a group of data transfer lines (address/data and
control), a group of arbitration lines, a central clock and an unique identifier.

Some of the major characteristics of the NuBus are:
Synchronous

All events are synchronized by a central clock; however, the number of cycles between events is
usually unspecified. In this way events are asynchronous in bus cycle units.

Bandwidth
The 10 MHz nominal cycle time coupled with block transfers gives a peak transfer rate of 37.5
Mbytes/sec, although available memory parts limit memory traffic to about 30 MBytes/sec.

Simple
The only operations on the bus are reads and writes. Interrupts and 10 transfers are memory
mapped into a large physical address space (4 GBytes)

Small consumption of backplane lines
Multiplexing address and data lines helps limit signal lines to a total of 49. With power and ground
lines included, only one 96 pin backplane connector is required by the NuBus.

Distributed configuration
Each of the 16 possible bus ports are provided with backplane identification. This eliminates board

—_2-

SpurBus Specification

“DIP’’ switches and allows distributed, parallel arbitration rather than daisy chain bus grants.

Multiprocessor support
The fair arbitration policy and the capability to lock the bus across distinct transfers provides basic
and effective multiprocessor support.

2.2. Connector Pins Description

All NuBus signals use negative logic; that is, the active state has a low voltage on the line and the inac-
tive state has a high voltage on the line. This is indicated in Table 2.1 by the suffix *‘/*’ on each signal
name. This means that a high value is a logic zero and a low value is a logic one. This document will use
the terminology ‘‘active’’ and ‘‘inactive’’ to indicate movement of data. An activated signal will usually
be a signal driven low; however, the address/data lines are activated whenever they are driven high or
low.

The NuBus defined backplane lines can be grouped as Clock, Control, Address/Data, Arbitration, Parity,
Utility, Reserved, and Power and Ground. Table 2.1 shows these groups, their member signals, the con-
nector pins they require and the electrical protocol of each. The Clock is described in the next section,
Utility is describe in its own section, Control, Address/Data and Parity are described in the section on
data transfer, and Arbitration is described in its own section. The electrical protocols are input-only, tri-

GROUP SIGNAL #OFPINS PROTOCOL
Clock CLK/ 1 input-only
Control START/ 1 tri-state

ACK/ 1 i-state

T™O/ 1 tri-state

™1/ 1 tri-state
Address/Data AD<31..0>/ 32 tri-state
Parity SP/ 1 tri-state

SPV/ 1 tri-state
Arbitration ARB<3..0>/ 4 open-collector

RQST/ 1 open-collector
Utility RESET/ 1 open-collector

1D<3..0>/ 4 input-only

Total Signals 49
Reserved RSVD/ 2 open-collector
Power/Ground | +5 11

-5.2 8

+12 2

-12 2

GND/ 22

Total Lines 96

Table 2.1: NuBus Backplane Lines
The NuBus defines the use of one 96 pin backplane connector for 49 signal lines plus
reserved, power and ground. The protocol of a signal refers to its driving characteris-
tics. The two RSVDI/ signals are defined in the ANSI/IEEE NuBus [IEEES88] as NMRQ/
and PFW/.

SpurBus Specification

state (drive on output, receive on input and high impedance otherwise) and open-collector (value is the
logic AND of all ports driving the signal as output).

2.3. System Timing

The NuBus clock, shown in Figure 2.2, has a nominal cycle time of 100 nsec. It has a 75% duty cycle;
that is, 75 nsec inactive and 25 nsec active phases. The low to high transition (clock assertion edge)
triggers changes in bus signals. The high to low transition (clock deassertion edge) triggers bus signal
sampling. The duty cycle of the central clock is asymmetric to provide increased time for propagation
and setup time while preserving enough time between signal sample and change to avoid skew problems.
Figure 2.2 also shows the setup, hold, propagation, assertion and release times relative to the clock
phases.

2.4. Physical Memory Map

The NuBus defines a large physical address space (4 GBytes). Each bus port, called a slot, has some of
this memory mapped to it. In total the top 16th (256 Mbytes) of the physical address space, called slot
space, memory maps the 16 possible bus ports. Figure 2.3 shows this organization of physical memory as
it applies to a node in slot 13.

The node at each bus port interprets reads and writes to its slot without constraint!. Processor nodes

99.99 - 100.01 ns |

|

| |

! 73-7T7ns ! l

! | Assertion Edge
I | Sample Edge | I
! 0-35ns l ! 0-35us I
| umon | | tumoff |
| | | !

Figure 2.2: Signal Timing
The NuBus has a synchronous design. The central clock, CLK/, has a 75% duty cycle
separating its sample and assertion edges. The selection of the 75% duty cycle provides
for greater relative emphasis on propagation and setup times while preserving freedom
from bus skew problems.

! This does not comply with ANSI/IEEE NuBus standard [[EEE88] in that a word read of the highest address
in the slot space must return either successful or error status and a configuration ROM immediately below the
highest addressable word is required to be present.

SpurBus Specification

16 MBytes 256 Mbytes 4 GBytes
FDFFFFFF «
FFFFFFFF Slot Space FFFFFFFF
F0000000
Slot 13 FDFFFFFF
FDO00000 /
slot 13 physical
interrupt It address
space space
¥ <
FD000000 F0000000 00000000

Figure 2.3: Physical Memory Layout
NuBus physical memory maps the top 256 MB to its 16 slots, 16 MB each. This slot
space is used to memory map interrupt and 1/0 transfers.

desiring interrupt capabilities associate interrupt registers with slot space addresses. They may also pro-
vide debug or status information through slot space addresses. Memory nodes may provide their RAM
through slot space and IO nodes can provide control, status and data ports through slot space. All nodes
should provide identification (type, revision, name, etc.) and configuration control registers through slot
space. The remaining physical memory (non-slot space) is not constrained by the NuBus specification.
Typically, memory nodes will allow their RAM addresses to be remapped to arbitrary locations.

2.5. Utility Signals

RESET/
This open-collector signal is used to synchronize the state of the system. If it is activated for one

cycle all NuBus interfaces are initialized. This is referred to as a Bus Reset?. If it is activated for
more than one clock period, then it should be activated for at least a millisecond (10000 cycles) and
the entire system is initialized to the power-up state. This is called a System Reset.

ID<3..0>/
These four bits name, in binary, the backplane slot that the reading node occupies. In addition to
uniquely naming each slot these lines are used for NuBus arbitration (see Section 2.7). These lines
are also used to determine whether a physical address is mapped to the local slot (addresses
FID)XXXXXX, X any hex digit, are mapped to the local slot).

2 In the ANSI/IEEE NuBus standard [IEEE88], Bus Reset has disappeared. This is a major non-compliance
because SPUR’s SpurBus implementation uses Bus Reset instcad of System Reset to deal with many error condi-
tions.

SpurBus Specification

2.6. Data Transfer

The NuBus defines read and write data transfers. These may move bytes, halfwords, words, doublewords,
quadwords, octwords and doubleoctwords. All units must be aligned in physical memory according to
their size (more precisely, starting address modulo size is zero). For small units, byte and halfword units,
data is returned as if the word enclosing them was read. It is up to the processor receiving the data unit to
justify the data as it wishes. For these sizes and the word size, one transfer across the backplane is all that
is needed. These are referred to as word reads and word writes. For the larger sizes, multiple transfers
across the backplane are needed. These are referred to as block transfers. This section describes word
and block transfers in detail.

Before a NuBus interface may begin a data transfer it must become the bus owner. This is the process of
arbitration. Once an owner, the interface must still wait for the possible current transfer to complete.
When it has obtained ownership and seen the end of the last owner’s transfer then the interface may ini-
tiate a new transfer.

To avoid system deadlock when backplane errors occur, the system is required to provide a ““watchdog
timer.”” This timer is started at the beginning of each transaction, reset each time a word is successfully
transferred and cancelled at the end of a transaction. If it reaches 256 cycles, then an error is very likely
and the watchdog generates a transfer termination (ACKY/) in error.

2.6.1. Control Signals
The signals START/, ACK/, TM0/, TM0/, AD<5..0>/ and SPV/ are data transfer control signals.

START
The START signal originates data transfers and triggers arbitration. When active, it has a one cycle
duration. This cycle is referred to as a START cycle. During a START cycle all possibly addressed
nodes, slaves to the current bus master, examine the remaining control lines and the address lines to
determine whether they are effected. Each START cycle is paired with exactly one ACK cycle.

ACK
The ACK signal terminates data transfers and triggers the current arbitration winner to take over bus
ownership. It also has a one cycle duration referred to as an ACK cycle. During an ACK cycle the
last word of data transferred is valid and the remaining control lines contain transfer status. There is
exactly one ACK cycle for each START cycle.

TMO and TM1
These are multi-purpose control lines. During a START cycle TM1 carries the transfer type
(inactive=read, active=write) and TMO determines whether the transfer unit size is a byte
(active=byte transfer) as shown in Table 2.2. During an ACK cycle they carry transfer status infor-
mation as shown in Table 2.4 in Section 2.6.4. Between a START and ACK cycle of a block
transfer TMO is used to strobe word transfers (activated means data lines valid for non-final word
transfer).

AD<1> and AD<0O>
During a START cycle these are used for control instead of addressing. Convenienty, if the
transfer unit is a byte, these can be interpreted as the byte offset. If the transfer unit is not a byte
they describe units of word, low halfword, high halfword and block transfer as shown in Table 2.2.
When block transfer is specified, AD<5..2> may also carry control information.

AD<5..2>
During a START cycle of a block transfer at least some of the low order address bits carry no infor-
mation because blocks are aligned. For example, the smallest block is a doubleword and is double-
word aligned. So its low order address bits (AD<2..0>) are 000. NuBus block transfer encoding,
shown in Table 2.3, specifies that if AD<2> is inactive then the transfer unit is a doubleword and
AD<5..3> are valid address bits. However, if AD<2> is active, then the transfer unit must be bigger

SpurBus Specification

T™™1/ | TMO/ | AD<l>/ | AD<0O>/ || Transfer
L L L L Write Byte 3
L L L H Write Byte 2
L L H L Write Byte 1
L L H H Write Byte O
L H L L Write Halfword 1
L H L H Write Block
L H H L Write Halfword O
L H H H Write Word
H L L L Read Byte 3
H L L H Read Byte 2
H L H L Read Byte 1
H L H H Read Byte O
H H L L Read Halfword 1
H H L H Read Block
H H H L Read Halfword 0
H H H H Read Word

Table 2.2: Transfer Mode Encoding
The type and size of a transfer unit are encoded in the Transfer Mode (TM) lines and the
low order address lines during a START cycle.

AD<5>/ | AD<4>/ | AD<3>/ | AD<2>/ || # of Words Address
X X X H 2 AD<31..3> 000
X X H L 4 AD<31..4> 0000
X H L L 8 AD<31..5> 00000
H L L L 16 AD<31..6> 000000

Table 2.3: Block Size Encoding
Transfer units must be aligned according to their size in memory. This forces some of the
low order bits of an address to zeroes. The encoding of block sizes larger than one word
takes advantage of these address bits with known values.

than a doubleword and AD<3> should be examined. This algorithm is applied to each of AD<3>
and AD<4> in tum. If AD<4> is active, then AD<5> is examined, but it must be inactive because
the largest transfer unit defined is 16 words long.

SPV
The signal SP carries an even word parity bit on any cycle that SPV is active. The AD lines are the
only lines covered by this parity mechanism.

In draft 2.0 of the ANSI/IEEE specification [IEEE86], it was made clear that the termination pullups on
tri-state lines can not be relied on to pull a released low signal to a high state in time for the sample edge
immediately after release (they can be relied on for the sample edge after the immediately following sam-
ple edge and they can be relied on to hold a released high signal in the high state). This introduces a
problem of falsely active tri-state control signals (this does not happen with open-collector signals). To
avoid this problem the current bus owner (most recent winner of an arbitration contest) is required to
drive START/ and ACK/ (usually to the inactive state) on the cycle after they have been activated. Dur-
ing START cycles, a bus master (owner) must also drive all other control lines. During ACK cycles, the
bus slave must drive all control lines except for START/. Between START and ACK cycles on block
transfers, a bus slave that cannot transfer every cycle must be sure to drive TMO0/ inactive after each word

7=

SpurBus Specification

POWER ON
TERMINATORS DRIVE ALL
FIRST ARB WON
o e
NEW BUS OWNER
NEW OWNER NOT READY ’] 1=
| | READY
PAUSE START CYCLE ATTENTION CYCLE
START/ INACTIVATED START/ ACTIVATED START/ ACTIVATED
ACK/ INACTIVATED ACK/ INACTIVATED ACK/ ACTIVATED
RQST/ ACTIVATED TMx/, SPY DRIVEN TMx/ DRIVEN
> RQST/RELEASED RQST/RELEASED
255 T
CYCLES n . T
MAX r
WAIT START/ INACTIVATED
ACK/ INACTIVATED
RESPONDING MODULE START/ INACTIVATED
|- - - - -TTT-T- =~ ACK/, TMx/, SPV/RELEASED l
+ ¥
ACK CYCLE ACK CYCLE START/ INACTIV ATED
ACK/ INACTIVATED
ACK/ ACTIVATED START/ INACTIVATED
TMx/, SPV/DRIVEN ACK/, TMx/, SPV/ RELEASED
* NO REQUESTS OR
|7AIJ.. SIGNALS RELEA.SEﬂ ARB IN PROGRESS ARB WON
ARB WON ' PARK
START/ INACTIVATED
<« ACK/INACTIVATED

TO START OR ATTENTION IF RQST/ INACTIVE

Figure 2.4: Signal Determinacy
Bus ownership implies responsibility to make sure that tri-state control signals have
determinate values on every cycle. This figure shows the signal driving responsibilities
of the bus owner.

is transferred. See Figure 2.4 for a flowchart of the bus owner’s signal driving responsibilities.

2.6.2. Single Transfer Operations

A single transfer operation is composed of a START cycle specifying a byte, halfword or word transfer
unit and its address followed by an ACK cycle specifying data and transfer status. Many cycles may pass
between these two events, as long as the watchdog timeout does not occur. During the START cycle the
transfer size is specified as shown in Table 2.2. If the operation type is read, TMI is inactive; if it is
write, TM1 is active. For byte transfers TMO is active and AD<1..0> used for addressing. For halfword
transfers TMO is inactive, AD<0> active and AD<1> used for addressing. For word transfers TMO is
inactive and AD<1..0> used for addressing (that is, both inactive).

2.6.2.1. Byte, Halfword and Word Read Protocol
In Figure 2.5, the protocol for single transfer read operations is shown.

R(1) The bus master drives the address and control lines (ACK, TMx, SPV and START) to signal a
START cycle. The TMx and AD<1..0> lines indicate the transfer unit size as shown in Table 2.2,

F(1) All potentially addressed slaves sample the control and address lines to determine if they are
affected.

SpurBus Specification

Figure 2.5: Word Read Protocol
Single transfer reads are composed of an addressimode cycle and a datalstatus cycle.
The duration of a single transfer read can be many cycles as long as it is less than the
system timeout period.

R(2) The master releases the address and control lines, drives START inactive, and waits for the ACK
cycle.

R(n) The selected slave drives the data and SPV lines, drives TMx with status, and activates ACK to sig-
nal an ACK cycle.

F(n) The master samples the data, status and ACK lines on all falling edges until it sees the ACK cycle.
R(n+1)
The selected slave releases the data and control lines for the next master to use. The next master

drives ACK determinate (inactive unless it is initiating an ‘‘attention’’ cycle, described in Section
2.6.5) and may initiate a START cycle.

(1) The parameter ‘‘n’’ will be less than the system timeout because a watchdog on the NuBus interface
will generate an ACK cycle with a *‘timeout’” status whenever the transfer takes too long.

2.6.2.2. Byte, Halfword and Word Write Protocol
The single transfer write operation protocol is shown is Figure 2.6.

R(1) The bus master drives the address and control lines (ACK, TMx, SPV and START) to signal a
START cycle. The TMx and AD<1..0> lines indicate the transfer unit size as indicated in Table
2.2,

F(1) All potentially addressed slaves sample the control and address lines to determine if they are
affected.

R(2) The master releases the TMx and ACK lines, drives the data and SPV lines, deactivates START,
and waits for the ACK cycle.

SpurBus Specification

R(D F(1) LIT)—S R(n) F@ R+l
w L LU U
i

| |
| |
| NS S
AD<31:0>/ <. ADDRESS v | DATA :>—
| | 2
|] 1
|]

oy —————Cwope S

S 5 \ S
ACK/ | 1 |

Figure 2.6: Word Write Protocol
A single transfer write operation appears very similar to a single transfer read. The im-
portant distinction is that the data must be valid on the first cycle after the address has
been issued.

R(n) The selected slave drives the control lines (TMx and ACK) to signal an ACK cycle. The TMXx lines
indicate the transfer completion status as shown in Table 2.4.

F(n) The master samples the status and ACK lines on every cycle until is sees the ACK cycle. The slave
may sample the data lines on or before the ACK cycle (F(2) through F(n)).

R(n+1)
The selected slave releases control lines and the master releases the data lines for the current owner
to use. The current owner (which may differ from the master that initiated this transfer because of
an overlapping arbitration) must ensure that ACK is determinate and may initiate the next START
cycle.

(1) The parameter ‘‘n’” will be less than the system timeout because a watchdog on the NuBus interface
will generate an ACK cycle with a ‘‘timeout’” status whenever the transfer takes too long.

2.6.3. Multi-Transfer Operations

A multi-transfer operation, commonly called a block transfer, is composed of a START cycle specifying
a transfer unit size and its address followed by enough intermediate data strobes to transfer all but the last
word of the transfer unit and finally an ACK cycle specifying the final word of data and the transfer
status®. The data in a block transfer is contiguous in physical memory and aligned according to the unit
size. Many cycles may pass during a block transfer, as long as the watchdog timeout does not occur.

3 The ANSI/IEEE NuBus standard [I[EEE88] defines an immediate ACK cycle (no intermediate ACK cycles)
with successful status as the correct reaction to a block transfer by a slave that does not support block transfers.
SpurBus nodes will not exhibit this behavior. In particular, SPUR’s implementation does not distinguish this type of
event from other forms of transaction error (parity, too few or too many transfers).

~10-

SpurBus Specification

During the START cycle the operation type and transfer size are specified. If the operation type is read,
TM1 is inactive; if it is write, TM1 is active. Because it is a block transfer TM0, AD<1> and AD<0> are,
respectively, inactive, active and inactive. The encoding of TMO as inactive in the START cycle is con-
venient because it forestalls a need for the slave to drive TMO inactive immediately after the START
cycle. As shown in Table 2.3, the transfer size is specified by one or more of the AD<5..2> lines: if
AD<2> is inactive then transfer 2 words, else if AD<3> is inactive transfer 4 words, else if AD<4> is
inactive transfer 8 words, else demand AD<5> to be inactive and transfer 16 words.

2.6.3.1. Block Transfer Read Protocol
The protocol of a block transfer read operation is shown in Figure 2.7.

R(1) The master drives an address with AD<5..0> encoding transfer size as shown in Table 2.3. It also
drives SP and SPV as appropriate, TMx according to Table 2.2, START active and ACK inactive.

F(1) All potentially addressed staves sample the address and control lines to determine whether they are
affected.

R(2) The master releases the address, TMx and SPV lines, inactivates START, and begins waiting on
TMO and ACK.

R(n) The slave drives the data, SPV and TMO lines. TMO active and ACK inactive indicate that an inter-
mediate word, not the last word, is valid on the data lines.

F(n) The master is continually sampling the data, TMx and ACK lines looking for TMO active and ACK
inactive. This is called an intermediate ACK cycle. The data lines contain a intermediate word on

......

R F1) RQ R(n) F(n) Rin+1) R(b) Fd) R+l

ax/ l_l
I | i | i

{ 1 i ! !

ot
| i |

|
s siocke
| |
| | | | | |
] | ¢ ¢ | | | |
e S
1 | I | |
| | 1 | | I
} | ¢ ¢ | ! ¢ ¢ l !
— ’
™Y | : 4 : : 22 [_STATUS
| | 1 f | I
| | Pl i | ¢ ¢ | |
START/ | 7 T T2 7 l 1
| 1 | | t
| | i | | {
| | ¢ ¢ 1 | ¢ ¢ | !
———— T T A

Figure 2.7: Block Read Protocol
Block transfers use the TMO line to strobe intermediate words across the backplane. The
slave controls the data and mode lines after the START cycle during a read.

-11-

SpurBus Specification

the transfer unit.

R(n+1)
If the slave cannot provide the next word on the immediately following cycle it drives TMO inac-
tive.

NOTE:
These intermediate stages (n) are repeated B-1 times where the size in words of the transfer unit is
B.

R(b) The slave drives the data, SPV, TMx (with a status code) and ACK lines to form the ACK cycle.

F(b) The master continually samples the data, TMx and ACK lines looking for intermediate or final
ACK cycles. On the ACK cycle, the data lines contain the last word of the transfer unit and the
TMx lines contain the transfer status. If this cycle occurs before the master believes that the last
word is due then the master must detect this and realize that its transfer is over (in error).

R(b+1) '

The slave releases the data and control lines for the next owner to use. The next owner must drive
ACK to a determinate state, possibly beginning the next START.

(1) The parameter ‘‘b’’ will be less than the system timeout because a watchdog on the NuBus interface
will generate an ACK cycle with a ‘‘timeout’’ status whenever the transfer takes too long.

2.6.3.2. Block Transfer Write Protocol
The protocol for a block transfer write operation is shown in Figure 2.8.

R(1) The master drives an address with AD<5..0> encoding transfer size as shown in Table 2.3. It also
drives SP and SPV as appropriate, TMx according to Table 2.2, START active and ACK inactive.

F(1) All potentially addressed slaves sample the address and control lines to determine whether they are
affected.

R(2) The master releases the TMx and SPV lines, inactivates START, drives the data lines with the first
word of the transfer unit and begins waiting on TMO and ACK.

R(n) The slave drives the TMO line indicating that it has sampled the data lines on a previous sample
edge or will sample the data lines on the next sample edge.

F(n) The master is continually sampling the TMx and ACK lines looking for an intermediate ACK cycle.
R(n+1)

The master must change the value on the data lines to the next word of the transfer unit. If the slave
cannot accept data on consecutive cycles it drives TMO inactive.

NOTE:
These intermediate stages (n) are repeated B-1 times where the size in words of the transfer unit is
B.

R(b) When the last word has been sampled or will be sampled on the next sample edge the slave drives
TMXx with a status code and ACK to the active state.

F(b) The master continually samples TMx and ACK lines looking for intermediate or final ACK cycles.
On the ACK cycle, the TMx lines contain the transfer status. If this cycle occurs before the master
believes that the last word is due then the master must detect this and realize that its transfer is over
(in error).

R(b+1)

The slave releases the control lines and the master releases the data lines for the current owner to

use. The current owner must drive ACK to a determinate state and possibly initiate the next
START cycle.

—12-

SpurBus Specification

R(l) F(1) R(2) R(n) F(n) R(n+l) R(b+1)
ak l > l S
DATA Dé
1

|
|
|
T
1 |
|
|
T
|
|

DATA D—

AVa RV 2N

|
|
|
T
| |
| |
I
T
|
l

DATA >—

|
DATA >€

1

|

i

Ll

|

‘(fﬁ
m—

|

|

A a R ¥aN

AVAY

i

STATUS

AVAN
A¥aY

| I
| |
| |
| |
| I
1 |
I |
t 1
| !
| !
1 |
1 |
i !

|

Figure 2.8: Block Write Protocol
A block write transfer is very similar to a block read transfer. The important difference,
like the single word transfer case, is that the master retains control of the data lines and
must be able to provide the next data word on the cycle after an intermediate ack-
nowledge or address transmission.

(1) The parameter ‘‘b’’ will be less than the system timeout because a watchdog on the NuBus interface
will generate an ACK cycle with a ‘‘timeout’’ status whenever the transfer takes too long.

2.6.4. Transfer Completion Status Codes

TM1/ | TMO/ || Status Message

L L Successful Completion
L H Unspecified Error

H L Bus Timeout Error

H H Try Again Later

Table 2.4: NuBus Status Codes
During the ACK cycle of any transfer the mode lines pass an overall status code. The
“try again later’’ code is intended to be used to resolve internal slave resource conflicts
(for example, deadlock in a bus-to-bus gateway).

-13-

SpurBus Specification

The status of each transfer according to the slave is reported to the master using the mode lines (TMx)
during the ACK cycle. Table 2.4 shows the encoding and status types.

Successful Completion
This indicates that the slave believes the transfer is successfully complete.

Bus Timeout Error
The NuBus specifies that a system timer (probably located with the system clock) will limit the
duration between START and ACK cycles. The timer expires after 256 cycles and the watchdog
logic will generate an ACK cycle with the ‘‘bus timeout error’” status. The typical reason for a bus
timeout is that the address transmitted during a START cycle is unimplemented by all available
slaves. The timeout value of 256 cycles should be large enough that any valid operation will com-
plete (ie., substantially longer than a reasonable transfer duration).

Try Again Later
If the addressed slave is unable to respond to the transfer request for a transient reason, it can gen-
erate a ‘‘try again later’’ ACK cycle. The master’s request is not in error and should be retried later.

Unspecified Error
This is the catch-all error status. Typical reasons for an ‘‘unspecified error’’ are bus parity error in
transit or memory parity/ECC error.

2.6.5. Attention Cycles

An attention cycle is any cycle during which START and ACK are both active. When this occurs no
information is passed on the data lines and the TMXx lines should both be active*. This type of cycle is
intended to reinitiate bus arbitration. The primary situation where this is required occurs when the bus is
requested and obtained, but the owner does not require a transfer.

2.6.6. Interrupts

Interrupts are not given special attention in a SpurBus system>. They are implemented as memory

mapped single transfer write operations with data 1 or -1. The destination of an interrupt write transfer
must be an address that a processor node will recognize as interrupt space. Typically part of a node’s slot
space will be used for this. Software can construct interrupt priorities and levels according the address of
the interrupt write transfer.

2.6.7. Parity

Parity can be used to protect the integrity of the address/data lines during any transfer. A pair of lines are
defined to implement the optional use of even word parity. One line, SP/, is inactive if an even number of
the lines AD<31> to AD<0> are active; otherwise, it is active. The other line, SPV/, is active if SP/ is
valid. Parity is optional on a cycle by cycle basis. Either master or slave may choose to ignore SP/, but
must drive SPV/ inactive when they are driving the AD<31..0> lines.

The following policies should be used when parity errors are detected:

During a START cycle
All slaves should ignore the transfer. The system timer will reinitiate arbitration if the master

4 The ANSI/IEEE NuBus standard [IEEE88] defines three types of attention cycles according to the TMx lines.
When both TMx lines are inactive, that specification declares the addressed slave to be internally locked; other
internal users of the addressed resource are blocked until a following attention cycle of the type the SpurBus defines.
The SpurBus attention cycle is used by the ANSI/IEEE NuBus as the SpurBus intends it and to clear resource locks.
The other two combinations of TMx are reserved.

5 In the ANSI/IEEE NuBus standard [IEEES8] there is a special low-cost, simple interrupt mechanism based
on the NMRQ/ line, a RSVDY/ line in SpurBus.

—14-

SpurBus Specification

doesn’t.

During transfers of a read operation
The master should ignore the data it receives and treat the transfer as in error once the ACK cycle
arrives.

During transfers of a write operation
The slave should generate an ACK cycle with an unspecified error status code.

2.7. NuBus Arbitration

NuBus arbitration is distributed across nodes that act as bus masters. It uses five ‘“‘open-collector’’ back-

plane lines® (RQST/ and ARB<3..0>/). Allocation of backplane bandwidth through NuBus arbitration
prevents the ‘‘starvation’’ of any particular requester. In this sense this scheme is ““fair’’. In the case of
light loading, each requester will receive the same fraction of bandwidth (in the case of heavy load, the
geographical contest resolution will bias bandwidth to nodes in higher numbered slots).

The NuBus arbitration mechanism resolves all contention between bus masters. When a bus master
requires the bus it begins by declaring it requirement for bus ownership. All masters that declare at the
same time form a ‘‘wave’’. One master at a time will be selected by an arbitration contest and gain bus
ownership. Within a contest the geographical position of backplane nodes is used to select a winner, The
winner uses, then releases the bus. The winner of the next contest within the original wave then gets the
bus. This continues until all masters in the original wave have been given the bus and the last has
released the bus. At this point a new wave is allowed to form. Because a new wave cannot begin until all
members of the previous have been served, it is guaranteed that a high priority master cannot preempt a
lower priority master.

2.7.1. Arbitration Specification

A bus master enters a wave by activating RQST/ (pulling it low). This is only allowed when RQST/ was
not active on the immediately preceding sample sedge; that is, a wave is formed by those masters that
activate RQST/ on the same clock cycle.

An example schematic for the arbitration logic on each bus master node is shown in Figure 2.9. In this
diagram the line arb/ and GRANT are internal to a bus master. The arb/ line indicates the master’s desire
to use the bus and the GRANT line indicates that bus ownership has been attained. This logic
corresponds to the following equations (where ARBx is the inverted value of ARBx/, ARBxo is the
driven value and ARBKxi is the read value):

ARB30 = arb * ID3

ARB2o0 = arb * ID2 * (ID3 + ARB3/i)

ARB1lo = arb * ID1 * (ID3 + ARB3/i) * (ID2 + ARB2/i)

ARBOo = arb * IDO * (ID3 + ARB3/i) * (ID2 + ARB2/i) * (ID1 + ARB1/i)

When a master enters arbitration by activating RQST/ it also activates the arbitration logic on its node.
The slot ID of the node is driven onto the ARB<3..0>/ lines and the contesters determine the highest
priority slot ID in parallel (slot zero has the lowest priority). After two clock cycles the arbitration logic
on all nodes must have settled and the winner is the node whose slot ID is still on the ARBx lines.

The winner of arbitration will be the next master to initiate a transaction, but it may not be able to this
immediately. Arbitration may be overlapped with the last winner’s last (or only) transfer so the new
winner may have to wait for this transfer to complete. At this point the new winner may begin a transfer.
Once it has begun a transfer, it can release ownership of the bus; that is, re-initiate arbitration among the
masters that lost to it.

6 An open-collector line implements a “‘wired-AND”’ logic function. The line will take a low value if any
master drives it low and it will take a high value if all masters drive it high.

—15-

SpurBus Specification

D3/ ARB3/ 1ID2/ ARB2/ ID1/ ARB1/ 1DO/ ARBO/

Figure 2.9: Possible Arbitration Schematic
An implementation of the distributed arbitration logic is shown here. The IDx lines are
backplane supplied and unique to each bus port. They contain the binary coded slot
number of that bus port. The open-collector ARBx lines are used to selected the slot
number of the next bus master from those that have activated arb/. The winner will see
GRANT active. Circuit design must guarantee that GRANT has settled within two clock
cycles (200 nsec) of the activation of arbl.

After a winner has been selected in arbitration, the winner and losers alike continue to activate RQST/ to
prevent new requesters from entering the wave. The losers will examine the ARBx lines again two cycles
after the next START cycle they see on the bus. If the current winner stops driving its slot ID onto the
ARBx lines by the end of the START cycle then a new winner will be selected. If the current winner is
going to stop driving its slot ID at the end of a START cycle it must release the RQST/ line at the begin-
ning of that START cycle. This ensures that nodes waiting to start a new contest may enter arbitration
during the transfer of the last winner in the current contest.

2.7.2. Bus Locking

An important feature of arbitration mechanisms is the provision of locked multi-transfer transactions. A
good example of this is the operation *‘test-and-set’’. In this operation a memory location is read and a
integer value of 1 is written back into it without any intervening operation by any other processor. This is
used to construct a variety of multiprocessor synchronization mechanisms. Notice that if an addressable
slave contains an internal alternate requester for its memory (as in the case of a processor with local

memory), bus locking may not lock out the internal requester7.
The NuBus arbitration mechanism specifies that a new winner within a wave will be selected two cycles
after each START cycle during that arbitration sequence. Usually the current winner will withdraw from

arbitration on the START cycle it generates after winning. This corresponds to a single transfer per tran-
saction (period of bus ownership). However, the current winner might not withdraw from the arbitration

7 So the ANSI/IEEE standard [IEEE88] defines resource lock and unlock events that should begin and end bus
locked sequences so that the addressed slave knows to lock out its internal requesters. The SpurBus does not define
resource lock and unlock cycles; SPUR’s implementation uses its cache coherency mechanism for ‘test-and-set’ so
it does not need bus locking [Wood87].

~16 -

[Ep—

SpurBus Specification

on its START cycle. Because it is the current winner and because no new contender is allowed into the
arbitration until all have withdrawn, the continued presence of the current winner ensures that it will win
again. In this way the current master can complete many consecutive transfers. In general it is not good
policy for a processor to hold the bus for too long because it increases the overall average time every pro-
cessor is blocked waiting for the bus.

2.7.3. Bus Parking

When there are a small number of bus masters in the system or when requests are generally rare, but
clustered, it is often the case that the last user of the bus will be the sole member of the next wave. When
this is the case it could be held up two cycles arbitrating without competition. This would add unneces-
sary latency to the transfer duration.

In the NuBus specification ‘‘bus parking’’ is defined to allow this problem to be reduced. A bus master is
parked on the bus if after withdrawing from arbitration there is no other contender (RQST/ becomes inac-
tive). This parked master remains parked until a new wave is formed. While it is parked it may begin a
transfer without arbitrating (note that it must still look at RQST/ to determine if it is still parked on the
bus). If a wave begins after the parked master has begun a transfer the new winner will wait for the
current transfer to end. The parked master will realize that it is no longer parked when it next wants to use
the bus. Figure 2.4 in Section 2.6.1 shows the transition of ownership in conjunction with the responsibil-
ity to ensure determinacy of START and ACK.

2.7.4. Arbitration Timing

FO RN K) R F@® R K R@) KH RO K R R K R+l Fos) R@2) Food)
w L] LT L L L L U
| | 1 /_lgqn_d_'_l_o_lo__ | boart #1111 starts waitirg for RQST/ I | | |
Rwl—_bﬂ w010 aloror l/ bosrd sot01__| | I ¢ ¢ | w
I i I T] 27 T | I T
ARBY ;Q(;;;;\ ! "J"M /////// : molfw:m)wmm;\aq : M/ :
\ | 1 L } i i t
ARBY w | AMAMN | ¢ ¢ | ! / ;:; ; ; ; ; i
| | I | 1 A i] |]
R \ N\ A\ /g S I
A } ! { ! i i I
azey AWM A/ | WA L e , [TI7T777
| ! | | | 27 | | |
START/ [! N 1/ 7 T2 7 I _____V_—___T"
I I I !) I t [
| ! Y —+ + —S S { [+ +
ALK/ T T I I | i N Y ! i

..................

Figure 2.10: Arbitration Timing Example

The behavior of the arbitration logic is demonstrated with this sample wave containing
nodes #10 and #5 followed by a wave containing only node #15. The bus is idle at the
time that the first contest begins. Board #10 wins after two cycles, begins its transfer and
releases bus ownership. This prompts #5 to arbitrate against itself, win and then wait for
the end of the current transfer. When #10 is finished with the bus, #5 starts its transfer
and releases bus ownership. This prompts #15 10 enter a wave and begin to arbitrate
against itself.

~-17-

SpurBus Specification

The timing of the arbitration logic is shown by example in Figure 2.10. The most important details are
that the ARBx lines are driven beginning on the sample edge instead of the assertion edge and that the
arbitration logic must settle within 200 nsec after starting.

In this example the bus masters on nodes in slot 5, 10 and 15 want to use the bus. Masters 5 and 10 go
after the bus together and master 15 comes after the bus a few cycles later. At the time masters 5 and 10
become interested in the bus it is idle; that is, the last transfer is finished and the RQST/ line is inac-
tivated.

F(0) Masters 5 (binary coded 0101) and 10 (binary coded 1010) notice that RQST/ is inactive and begin
driving the ARBx lines with their respective IDx lines immediately (note that the ARBX lines are
activated on the sample clock not on the assertion clock). Using the sample arbitration logic shown
in Figure 2.9, driving the ARBx lines corresponds to activating the arb/ line on their respective
nodes. The ARBx lines will be changing as the logic settles but must be stable early enough so that
the internal signal GRANT correctly reports the winning master after two cycles.

R(1) Masters 5 and 10 both activate RQST/ (form a wave) to stop further masters from entering arbitra-
tion late (specifically, master 15 will be blocked until both 5 and 10 release RQST/).

F(1) Arbitration continues.

R(2) Arbitration continues; that is, both masters continue to activate their arb/ and RQST/ lines.

F(2) The arbitration period is over. Masters 5 and 10 look at their respective GRANT lines to see who is

the winner. Master 10 sees an active GRANT and master 5 sees an inactive GRANT. Master 10 is
the winner. Both masters continue to activate RQST/ and their own arb/ lines.

R(3) Master 10 begins the START cycle of its transfer. Since it does not want to lock the bus it releases
its activation of RQST/, but it continues to activate its arb/ line. Master 5 continues to activate
RQST/ and its arb/ line.

F(3) Master 10 releases its local arb/ line which releases its activation of the ARBx lines. Master 5
detects the START cycle and begins waiting for this arbitration to settle.

R(4) Master 5 continues to activate RQST/ and its arb/ line.

F(4) Arbitration continues. Master 15 wants to use the bus and looks at RQST/. Since RQSTY/ is active,
master 15 is not allowed to arbitrate. It will poll RQST/ each cycle until it is inactive.

R(5) Arbitration continues; that is, master 5 continues to activate RQST/ and its arb/ line.

F(5) This arbitration is over. Master 5 sees its GRANT active and is the winner. Master 15 sees RQST/
still active.

R(6) Master 5 would like to begin its transfer, but master 10’s transfer is not finished. Master 5 will poll
the ACK/ line each sample edge waiting for the current transfer to end. It will continue to activate
RQSTY/ and its arb/ line so that it holds bus ownership until it can begin a transfer.

R(n) Master 10 finishes its transfer by activating ACK/. Master 5 is still activating RQST/ and its arb/.
F(n) Master 5 sees the ACK cycle. Master 15 still sees RQST/ active.
R(n+1)
Master 5 releases RQST/. This allows RQST/ to become inactive. Master 5 also begins the START
cycle of its transfer.
F(n+1)
Master 5 releases its arb/ line. Master 15 sees RQST/ inactive so it activates (immediately) its arb/
line. It also sees the START so it will monitor for the ACK to track the current transfer.
R(n+2)
Master 15 activates RQST/ to form a contest with itself only. This contest will be won in two
cycles and master 15 will proceed much as master 5 did after it won.

- 18 -

SpurBus Specification

3. SpurBus Compliance with NuBus

The SpurBus design is based on early NuBus specifications [TI83, IEEE86] and it is not in full compli-
ance with the ANSI/IEEE standard [IEEES88). Because the SpurBus was designed specifically for
SPUR’s implementation some NuBus features are not used. The SpurBus subset applies to SpurBus
nodes only; NuBus protocols not supported in SpurBus may still exist in a SPUR system.

3.1. SpurBus Non-Compliance with the ANSI/IEEE NuBus Standard

Early versions of Texas Instruments’ NuBus [TI83] and the SpurBus define a single cycle RESET pulse
as a Bus Reset. This feature is gone from the ANSI/IEEE standard. Because Bus Reset is used in
SPUR'’s implementation, it is a feature of the SpurBus that must remain in non-compliance.

3.2. SPUR Implementation Non-Compliance with the ANSI/IEEE NuBus Standard

This section summarizes material presented throughout Section 2. It is clear that these could be corrected
in future SpurBus implementations without rendering SPUR’s implementation incompatibie.

The pins for signals NMRQ/ and PFW/ from the ANSI/IEEE specification are not used (reserved) in
SpurBus.

SpurBus only generates the resource unlock form of attention cycle as defined by the ANSV/IEEE
specification.

Backplane pins A2 and C2 carry GND in SpurBus, but are reserved (RSVD) in the ANSI/IEEE NuBus.

SpurBus slaves that do not implement block transfers will respond to block transfers addressing their slot
space with an error status instead of a successful status with no intermediate ACK cycles.

A configuration ROM in the high addresses of a node’s slot space is not provided by SpurBus nodes.

3.3. NuBus Features Absent in SPUR {Woo0d87]

In SPUR’s implementation of the NuBus, data transfers have two possible transfer unit sizes: 1 word and
8 words (respectively, 4 bytes and 32 bytes). The 8 word unit corresponds to a SPUR cache block size
and most events will use this size unit. The 1 word size is provided for direct processor operations on
physical memory or device registers (bypassing the cache).

SPUR nodes do not generate or detect parity on the bus. Refer to the SPUR Design Rationale document
[Katz85b] for a discussion of this decision.

A SPUR node recognizes addresses in its slot space as interrupts if they fall within the low 1 MB; that s,
if the address begins ‘‘F(id)0’’ (hex) where ‘‘id”’ is the Slot ID of the SpurBus node. This space folds
around 16 unique interrupt addresses, all word aligned; that is, the four bits AD<S5,2> are used to fix the
interrupt type. The transfer unit size of a SpurBus interrupt is a word.

The SPUR processor cache controller design provides test-and-set operations on data obtained by the nor-

mal read for ownership cache operations. Because this operation is entirely carried out on data in the
cache (or brought into the cache for this operation) the bus locked multi-transfer facilities are not used.

4. NuBus Extensions for SpurBus

The SPUR project will use NuBus memory and peripherals; however, its cache consistency and virtually
addressed caches [Wood87,Wo0d86] make demands on the bus that the NuBus does not satisfy. An
extended NuBus design, called the SpurBus, supports the needs of SPUR more fully.

~-19-

SpurBus Specification

System Board System Board System Board

SpurBus Interface NuBus Interface SpurBus Interface

h A A 3 3 Y

A-14-+-F--—

¢ | arbitration ¥ Y . \

\ L 2 physical addr/data L 4 L 4 a / !

\ _ [2 virtual addr/data [2 _ I}

Figure 4.1: SpurBus Block Diagram
The SpurBus extends the NuBus design with a second data path. This second path is
used by SpurBus snooping caches to pass shared data among themselves. It has its own
control for transfers, but is synchronized to the NuBus data path for arbitration and
START cycles.

4.1. Snooping Caches’ Data Path

The SPUR system employs ‘‘snooping caches’ [Katz85a,Wo0d87] to provide cache consistency across
multiprocessor caches. In essence this means that each cache in the system must monitor all bus transfers
and be prepared to provide data from its RAMs whenever it has the most up-to-date copy. This is imple-
mented with state bits on each cache block that distinguish states ‘‘invalid’’, ‘‘owned private’’, ‘‘owned
shared’’ and ‘‘unowned’’. The concept of ownership provides a cache the privilege of writing its copy of
data and the responsibility for delivering its copy to other caches and main memory. There is at most one
cache in the system that owns a cache block. When a block is not owned by a cache, it is implicitly

owned by memory.

The implementation of a snooping cache requires bus bandwidth, the ability to monitor bus events, and
the ability to cancel memory operations. The NuBus specification and the memory nodes that are
currently available for NuBus racks (Texas Instruments products) do not make any allowances for cancel-
ling operations. The addition of a second data path in SpurBus allows inter-cache operations to occur in
parallel with memory operations without much loss of bandwidth. This way memory operations do not
need to be cancelled; they can be allowed to finish without delaying the inter-cache operation.

This second path also allows the inter-cache address to be different from the memory address. This is
important because it allows a SpurBus cache to be accessed by virtual addresses while the memory

—20-

SpurBus Specification

system is accessed by physical addresses. During the START cycle of most SpurBus events the virtual
address is sent on the inter-cache bus and the physical address is sent on the NuBus.

4.2. SpurBus Signals

The SpurBus extension to the NuBus design, shown in Figure 4.1, calls for an additional 48 backplane
lines, shown in Table 4.1. These are the address/data lines, VAD<32..0>, and control lines, VACK,
VTMO, VTM1, and VSACK for the inter-cache data path and 11 reserved lines®.

The use of the inter-cache data path is synchronized with the NuBus data path START cycles. This
means that only one set of arbitration logic and only one START line are needed. The master of the bus

CLASS | GROUP SIGNAL #OFPINS PROTOCOL
Shared Clock CLK/ 1 input-only
Arbitration ARB<3..0>/ 4 open-collector
RQST/ 1 open-collector
Utility RESET/ 1 open-collector
ID<3..0>/ 4 input-only
NuBus Address/Data AD<31..0>/ 32 tri-state
Parity SP/ 1 tri-state
SPV/ 1 tri-state
Control START/ 1 tri-state
ACK/ 1 tri-state
T™MO/ 1 tri-state
T™M1/ 1 tri-state
SpurBus | Address/Data VAD<32..0>/ 33 tri-state
Control VACK/ 1 tri-state
VTMO/ 1 tri-state
VTMY/ 1 tri-state
VSACK/ 1 open-collector
Total Signals 86
NuBus Reserved RSVD/ 2
SpurBus | Reserved RSVD/ 11
Power/Ground | +5 22
-5.2 14
+12 4
-12 4
GND/ 43
Total Lines 186
Table 4.1: SpurBus Backplane Lines

The SpurBus extends the NuBus backplane needs by 37 signal pins, 11 reserved pins and
42 power/ground pins. The resulting 186 pins define all but 6 pins on the two 96 pin con-
nectors.

8 In SPUR’s implementation 7 of these 11 reserved lines are used for debugging. One line, WAIT, is used to
block the issue of new START cycles; it is a backplane “‘single step.”” The other 6 lines are used to identify, with a
3 of 6 code, the responding third-party node in an inter-cache operation.

-21—

SpurBus Specification

always performs a NuBus operation and can optionally perform a related inter-cache operation at the
same time.

Some of the control for a NuBus operation applies to the inter-cache operation. Both data paths read or
write together; that is, the read/write characteristic of a NuBus operation applies to both paths.

4.3. Inter-cache Data Path Control

The inter-cache data path is composed of address/data lines, VAD<32..0>, an acknowledgement line,
VACK, a snooping flow control line, VSACK, and two multi-purpose control lines, VTMO and VTMI1,

VAD<32..0>
The inter-cache data path is VAD<31..0>. It has the same characteristics as the NuBus data path
except that it is used to move cache lines according to the snooping cache protocols. The inter-
cache data path is wider than the NuBus data path because of SPUR virtual addressing [Hill86].
Global virtual addresses in the SPUR system are 38 bits wide. Since cache lines are aligned on 32
byte boundaries the low order 5 bits are always zero and are not transferred. So inter-cache
addresses are 33 bits.

VACK
The VACK line on the inter-cache data path corresponds to the NuBus ACK line. When transfers
occur on the inter-cache data path (after an ownership ACK occurs on a snooping read) VACK ter-

minates the operation. A cycle that has VACK active is called a VACK cycleg.

VSACK
The VSACK line is an open-collector signal that all SpurBus snooping caches activate when they
wish to delay an inter-cache operation. This allows the internal processing of each snooping cache
to have differing timing. It defines the length of write for invalidation operations and defines the
window of applicability of an ownership acknowledgement after a snooping read.

VTMO and VTM1
These two control lines parallel the transaction mode lines on the NuBus data path. During a
START cycle VITMO is active if the inter-cache data path is being used. If a read is taking place
then VTM1 indicates the type of snooping required as shown in Table 4.2. VTM1 activated indi-
cates a ‘‘read for ownership’’ and VTM1 inactivated indicates a ‘‘read shared’’ operation.
After the START cycle of a snooping read all caches on nodes other than the current bus master
have a window of time to determine whether they should provide the requested data. This window
is controlled by VSACK. If a cache decides to provide the data it will activate VTMO for a cycle
before releasing VSACK. This is called an OACK (ownership ack) cycle.
After an OACK cycle VTMO is used to strobe data across the inter-cache data path in the same way
that TMO is used on the NuBus data path. When the last word of the cache line is transferred
VACK is activateed and VTMx carry operation status information as shown in Table 4.3. In the
status code VTMO indicates cache line clean/dirty state information. A cache line is *‘dirty”’ if the
memory copy of this data is not up-to-date (ie. a store into this block has not yet propagated to the
memory); otherwise, it is ‘‘clean.”’
During a *“write for invalidation’’ operation (indicated by a NuBus write with VTMO active) VTMO
and VTMI1 are not used after the START cycle.

4.4. Snoop Operations

Three operations are needed to support SPUR snooping caches. Two of these are modifications on the
NuBus block transfer read operation. The third is a non-NuBus operation for invalidating cache lines.

% The functions of VACK and VTM1 could be combined into one signal. They were originally split to provide
inter-cache error status codes that did not materialize in SPUR.

—22-

SpurBus Specification

VTMO/ | T™M1/ | VTMYV/ || Inter-cache Operation
H None
L L Write for Invalidation
L H H Read for Shared Copy
L H L Read for Private Cop

Table 4.2: Snooping Operation Encoding
During the START cycle of any NuBus operation the usage of the inter-cache data path is
determined from the VTMO, VTM1 and TM1 lines.

VTMO/ || Status Message and Cache Line Status

L Successful Completion; Line Dirty
H Successful Completion; Line Clean

Table 4.3: Snooping Operation Status Codes
During the VACK cycle of a snooping read on the inter-cache data path VTMO indicates
whether the data that came across the inter-cache bus matches its memory image (clean)
or has been written since memory was last updated (dirty).

4.4.1. Snooping Reads

“*‘Snooping reads’’ are variations on the NuBus block transfer read. In the START cycle of these opera-
tions the NuBus control describes a regular 32 byte read and the inter-cache control qualifies this as non-
snooped, snooped for a read-only copy (called ‘‘read shared’’) or snooped for a writable copy (called
“‘read for ownership’’). The NuBus operation is unaffected; the inter-cache bus carries the modifiers and
the potential inter-cache data.

Figure 4.2 shows the protocol for snooping reads.

R(1) The master drives AD<31..5> with a cache block physical address (in units of aligned 32 byte

blocks), SP and SPV as appropriatem, and VAD<32..0> with the virtual address of the same cache
block (also in units of aligned 32 byte blocks). As shown in Tables 2.2 and 2.3, it also drives the
control lines AD<4..0> to inactive, active, active, active and inactive, respectively, and TMO and
TM1 both to inactive. START, VSACK, and VTMO are activated'!, and ACK and VACK are inac-
tivated. If the operation is read for ownership, it also activates VTM1.

F(1) All potentially addressed slaves on the NuBus sample the AD<31..0> and TMXx lines to determine
whether they are affected. All SpurBus nodes sample the AD<4..0>, TMx, VAD<32..0> and VTMXx

10 The SpurBus inter-cache data path, VAD, should also have a parity and possibly a parity valid line. These
are missing because the SpurBus was designed for SPUR and it was known that SPUR was not going to support par-
ity.

1 The code choice of activating VTMO in the START cycle is unfortunate because VMTO has meaning in the
immediately following cycle (ownership acknowledgement). So some node must drive VIMO determinate in the
first cycle after START. The slaves are not a good choice because it is possible that no slave will respond or that a
slave may respond immediately. SPUR’s implementation avoided this because all slaves were known to require at
least two cycles to determine cache block ownership, so the master drives VTMO inactive on the cycle after the
START. Inverting the sense of VTMO in the START cycle encoding is the right solution because non-SpurBus
reads could still be distinguished by inactivation of VSACK.

—23-—

SpurBus Specification

............

........................

mxs»wmmm@ﬂmmwmm;

]
! 5 5 — S — —t 5 '
VACK/ { | .)] |) ! | | ;
I i i t I I ! I I i o
VSACK/ e e | e e e e | P P YV
2 I —> J T > 7 g PR ™2 7 :

..

Figure 4.2: Snooping Read Protocol

A SpurBus snooping read may result in a cache-to-cache transfer of a shared data cache
block on the inter-cache data path. There will be at most one cache responding and it
will generate an ownership acknowledgement before VSACK is inactivated to indicate
that it will reply. The address sent on the inter-cache bus is the virtual address of the
block in the master's cache (less the block offset bits). The two transfers proceed with
distinct control and may end at different times. In particular, the NuBus transfer may
end before the inter-cache transfer; thereby, allowing the next NuBus owner, if it is not a
SpurBus node, to begin an overlapping but independent NuBus-only event.

lines and check their cache block states to determine whether they are affected and should reply
with a cache block of data.

R(2) All potentially affected slaves activate VSACK indicating that they are processing the inter-cache
operation. When VSACK is eventually deactivated, the master knows that all slaves have com-
pleted inter-cache event processing and are ready to proceed with the next event. The master
releases the ADx, TMx, SP, SPV, ACK, VADx, VTM1, VACK, and VSACK lines. It deactivates
START and VTMO (see footnote on R(1)). It will now wait on the TM0, ACK and VTMX lines.

NOTE:
The transfers on the NuBus data path and inter-cache data path are decoupled. In the following
descriptions, events pictured sequentially must be sequential only if they apply to the same data
path; otherwise, they may occur together or in either order. That is, R(i) must follow R(k), but R(n)
could overlap either R(k) or R().

R(k) If a cache on a SpurBus slave decides to respond with a cache block on the inter-cache data path it
activates VIMO for a cycle. This is called an OACK cycle (ownership ack).

F(k) The master samples the VTMXx lines, sees the OACK, and determines that a inter-cache transfer will
take place. For OACK to be meaningful, the master must also see VSACK active. This implies
that data arriving on the NuBus data path is to be thrown away. The master then starts sampling the
VADx, VTMx, VACK, and VSACK lines for data and completion status.

—24-—

SpurBus Specification

R(k+1)
If the responding inter-cache slave does not have the first word ready on immediately, it drives
VTMO inactive.

R(n) The addressed NuBus slave drives the ADx with data, TMO, SPV (and SP as appropriate) lines.
This is one of the first B-1 words of the B word block.

F(n) The master sees the intermediate ACK on TMO and captures the data from the ADx lines (if it has
not decided to throw away this data in preference for inter-cache data).

R(n+1)
If the NuBus slave cannot transfer the next word immediately, it drives TMO inactive.

NOTE:
These NuBus intermediate stages (n) are repeated B-1 times where the size of the transfer unit in
words is B.

R@) The responding inter-cache slave drives VADx with data and activates VTMO. This is one of the
first B-1 words of the B word block.

F(i) The master sees VTMO active and captures data from the VADx lines. It will keep this data in
preference over data from the NuBus data path.

R@+1)
If it cannot generate the next word immediately, the responding cache drives VTMO inactive.

NOTE:
These inter-cache intermediate steps (i) are repeated B-1 times where the size of the transfer unit in
words is B.

R(b) The addressed NuBus slave drives the ADx lines with the last word of the line, drives the TMx lines
with a status code and activates the ACK line.

F(b) The master captures the final word of the NuBus data (if not overridden by inter-cache data) and the

status code. Non-successful status codes on the NuBus data path should be forwarded to the
master’s processor even if an inter-cache transfer overrides NuBus data.

R(b+1)
The NuBus slave releases the ADx, SPV, TMx and ACK lines for the next NuBus owner to use.
The next owner must drive ACK determinate. If the next owner is a SpurBus node, it will not begin
a START cycle until VSACK has been deactivated. However, if the next SpurBus owner is a non-
SpurBus NuBus node, it may begin an independent NuBus-only event before the current inter-cache
event is completed. In this case SpurBus nodes must be prepared to be addressed on the NuBus

while still handling an inter-cache transfer'2.

R(v) The responding cache drives the VADXx lines with the last word of the block, drives the VTMx lines
with a status code, activates the VACK line and activates the VSACK line one last time!®. The
status code!* tells the master if the inter-cache block agrees with memory, VITMO inactive, or

12 SPUR’s implementation of the SpurBus handles this case by stalling the overlapping NuBus-only event until
the inter-cache transfer is over.

13 Since a new SpurBus event cannot begin until VSACK has been seen inactive, activating VSACK on the
VACK cycle ensures that the cycle after the VACK will not be used by a following SpurBus event. This is done so
that the inter-cache slave knows that it can deactivate VTMO and VACK on the next cycle. If VSACK was deac-
tivated on this cycle then the next owner would be responsible for deactivating VTMO, and if that node was non-
SpurBus, its NuBus-only event would not drive VIMO. In this way a false SpurBus event might be seen by
SpurBus nodes.

14 There should be an error status associated with inter-cache transfers. It is missing because the SpurBus fol-
lows the SPUR implementation and the SPUR implementation does not detect any errors on the responder’s side of

~25-

SpurBus Specification

disagrees with memory, VTMO active. This is needed if the master will become the owner of the
block; thereby, assuming responsibility for updating memory before replacing the block in its cache.

F(v) The master captures the final word of inter-cache data and associated status code.
R(v+1)
The responding inter-cache slave releases the VADx and deactivates the VTMx, VACK, and

VSACK lines for the next owner to use. If the NuBus side is already idle and the next owner is a
SpurBus node, it will not begin its START cycle until after it has seen VSACK inactive.

(1) The parameter ‘‘b’’ is constrained to be less than the system timeout on transfers. If the timeout
fires the transfer will be aborted by a *‘timeout’’ ACK cycle generated by the system logic.
4.4.2. Write For Invalidate

The third operation needed to support snooping caches is called ‘‘write for invalidation.”’ It is used by a
cache with a non-private copy of a block that it wants to write. It must cause all other caches to

R(1) FQ1) R(2 R(w-1) P(w-1) R(w) F(w) R(wﬂ)g
K l HpRall I L

{
T R e
|

£
P4

I

4
2

I

I I
1 T
I I
1 C !
START/ I\ / > 5 1
| I
i

T

|

1

|

1

|

1

\1'\

VADSB2:05/ VADDRESS | —
<
7

Y
\1’\

I

X

Figure 4.3: Write For Invalidation Protocol

A SpurBus write for invalidate operation is used to invalidate remote copies of a cache
block while transferring ownership to the issuing cache’s copy. It employs a NuBus
word write whose address points back into the generating node’s slot space (but not into
interrupt locations) so that other NuBus slaves will not be involved. The invalidation in-
formation is the virtual address of the cache line to invalidate and is carried on the
inter-cache data path. The duration of the operation is controlled by the VSACK line;
after VSACK is deactivated, the originating master issues itself an ACK cycle to ter-
minate the NuBus event.

an inter-cache transfer.

— 26~

SpurBus Specification

invalidate (throw away) their copies of that cache block. This requires a bus operation, but it doesn’t
correspond to a useful parallel NuBus operation. The SpurBus uses a NuBus single word write to an
non-interrupting address in the owner’s own slot space to implement the write for invalidation. The
invalidation information is transmitted during the START cycle. The operation lasts long enough for all
caches to process it, then the master generates an ACK cycle to itself.

The protocol for an write for invalidation operation is shown is Figure 4.3.

R(1) The master drives the ADx lines with ‘‘F(id)FO0000°’ (hex) where *‘id"’ is the slot ID of the issuing
master. This is a dummy physical address that falls into the master’s own slot space. This guaran-
tees that no other NuBus slave will respond to this operation. The master will complete this opera-
tion itself after VSACK is deactivated. Also driven by the master during the START cycle is TMx,
VTMx, VACK, VSACK and the VADx lines as shown in Figure 4.3. This makes the operation a
snooped word write. The VADX lines carry the virtual address of a cache block to be invalidated by
other snooping caches.

F(1) All SpurBus snooping caches determine that a write for invalidation is active and look into their
caches to see if they have the block to be invalidated.

R(2) All affected SpurBus slaves activate VSACK to indicate that they are in the process of handling the
write for invalidation. The master releases the ADx, VADx, VTMx, TMx and VSACK lines. It
will delay as long as VSACK remains active.

R(w-1)

The last SpurBus node to complete the write for invalidation releases VSACK causing it to become
inactive.

F(w-1)

The master polls VSACK each cycle until it observes VSACK inactive. This should occur in less
than the NuBus watchdog timeout period.

R(w) The master completes its own operation by driving a successful status code on the TMx lines and
activating ACK to form an ACK cycle.

R(w+1)
The master releases the TMx and ACK lines for the next owner. The next owner must drive ACK
determinate, possibly initiating the next START cycle.

5. Mechanical Specifications

5.1. Boards

The mechanical structure of NuBus/SpurBus nodes follows the ‘‘Eurocard’’ design. They are triple
height IEC boards (9U high where U = 1.74in) and have triple depth (11.024in).

5.2. Backplane Connectors

There are three 603-2-IEC-C096-M connectors mounted on each board. These are referred to as P1, P2
and P3 from top to bottom respectively. NuBus defines the pins on P1. SpurBus additionally defines
some of the P2 pins. See Tables 5.1 and 5.2 for the pin assignments.

—27-

SpurBus Specification

PinfRow | Col. A | Col.B | Col. C Pin/Row | Col. A Col.B | Col.C
1 -12 -12 RESET/ 17 AD23/ | GND AD22/
2 GND GND GND 18 AD25/ | GND AD24/
3 SPv/ GND +5 19 AD27/ | GND AD26/
4 SP/ +5 +5 20 AD29/ | GND AD28/
5 ™1/ +5 T™O/ 21 AD31/ | GND AD30/
6 AD1/ +5 ADO/ 22 GND GND GND
7 AD3/ +5 AD2/ 23 GND GND RSVD/
8 AD5/ -5.2 AD4/ 24 ARBI1/ | -5.2 ARBO/
9 AD7/ -5.2 AD6/ 25 ARB3/ | -5.2 ARB2/

10 AD9/ -5.2 ADg8/ 26 ID1/ -5.2 1DO/

11 ADI11/ | -5.2 ADI10/ 27 ID3/ -5.2 1D2/

12 AD13/ | GND AD12/ 28 ACK/ +5 START/
13 ADI15/ | GND AD14/ 29 +5 +5 +5

14 AD17/ | GND AD16/ 30 RQST/ | GND +5

15 AD19/ | GND AD18/ 31 RSVD/ | GND GND

16 AD21/ | GND AD20/ 32 +12 +12 CLK/

and pin A31 is NMRQ/.

Table 5.1: P1 Connector Assignments
The P1 connector on a NuBus node has these pin assignments. The connector is type
603-2-1EC-C096-F. Column B is optional, allowing a 64 pin minimum power subset. In
the ANSI/IEEE NuBus standard [IEEES8], Pin A2 and C2 are RSVD/, pin C23 is PFW/

Pin/Row | Col. A Col.B Col. C Pin/Row | Col. A Col.B | Col.C

1 -12 -12 VSACK/ 17 VAD23/ | GND VAD22/
2 GND GND GND 18 VAD25/ | GND VAD24/
3 - GND +5 19 VAD27/ | GND VAD26/
4 - +5 +5 20 VAD29/ | GND VAD28/
5 VTMYV/ +5 VTMO/ 21 VAD31/ | GND VAD30/
6 VAD1/ +5 VAD(/ 22 GND GND GND
7 VAD3/ +5 VAD2/ 23 GND GND VAD32/
8 VADS/ -5.2 VAD4/ 24 RSVD/ -5.2 RSVD/
9 VAD7/ -5.2 VAD6/ 25 RSVD/ -5.2 RSVDY/

10 VADY/ RSVD/ | VADS/ 26 - -5.2 -

11 VAD11/ | RSVD/ | VADI(/ 27 - -5.2 -

12 VADI13/ | GND VADI12/ 28 VACK/ +5 RSVD/

13 VADI15/ | GND VADI14/ 29 +5 +5 +5

14 VADI17/ | RSVD/ | VADI16/ 30 RSVD/ GND +5

15 VADI19/ | RSVD/ | VADI1§/ 31 GND GND GND

16 VAD21/ | GND VAD20/ 32 +12 +12 RSVD/

Table 5.2: P2 Connector Assignments
The P2 connector on a SpurBus node has these pin assignments. The connector is type
603-2-IEC-C096-F. Column B is optional, allowing a 64 pin minimum power subset. In
the ANSI/IEEE NuBus standard [IEEE88], pin B10 is -5.2EN, B11 is -5.20UT, B14 is
+12EN and B15 is +120UT.

_ 28~

SpurBus Specification

Pin/Row | Col. A | Col. B Col. C || Pin/Row | Col. A | Col. B Col. C
1 - - - 17 - - -
2 - GND - 18 - - -
3 - GND - 19 - GND -
4 - - - 20 - RSVD/ | -
5 - +5 - 21 - RSVD/ | -
6 - +5 - 22 - - -
7 - +5 - 23 - GND -
8 - - - 24 - - -
9 - - - 25 - - -

10 - RSVD/ | - 26 - - -
11 - RSVD/ | - 27 - - -
12 - GND - 28 - +5 -
13 - - - 29 - - -
14 - RSVD/ | - 30 - GND -
15 - RSVD/ | - 31 - GND -
16 - GND - 32 - - -

Table 5.3: P3 Connector Assignments
The P3 connector on a NuBus node should have these pin assignments. The connector is
type 603-2-IEC-C096-F. In the ANSI/IEEE NuBus standard [IEEES8S], pin BI0 is
-5.2EN, Bl is -5.20UT, Bl4 is +12EN, BI5 is +120UT, B20 is -120UT and B21 is
-12EN.

6. References

[Hill86] Hill, M.D., et al, ‘‘Design Decisions in SPUR,”” IEEE Computer, vol. 19, no. 11, November
1986.

[Hill87] Hill, M.D., ‘‘ Aspects of Cache Memory and Instruction Buffer Performance,’’ Computer Science
Division Technical Report UCB/CSD 87/381, University of California, Berkeley, November 1987.

[IEEES6] IEEE, ‘‘NuBus - a Simple 32-Bit Backplane Bus, P1196 Specification Draft 2.0,”’ The Institute
of Electrical and Electronics Engineers, New York, NY, December 1986.

[IEEES88] IEEE, ‘‘IEEE Standard for a Simple 32-Bit Backplane Bus: NuBus,”’” The Institute of Electrical
and Electronics Engineers, New York, NY, August 1988.

[Katz85a] Katz, R.H., et al,*‘Implementing a Cache Consistency Protocol,”” Proc. Twelfth International
Symposium on Computer Architecture, June 1985, pp 276-283.

[Katz85b] Katz, R.H. ed., Proc. of CS292i: Implementation of VLSI Systems, Computer Science Division
Technical Report UCB/CSD 86/259, University of California, Berkeley, September 1985.

[Ouster88] Ousterhout, J.K., et al, ‘“The Sprite Network Operating System,’’” IEEE Computer, vol. 21, no.
2, February 1988.

~29—

SpurBus Specification

[Taylor86] Taylor, G.S., et al, ‘‘Evaluation of the SPUR Lisp Architecture,”’ Proc. Thirteenth Interna-
tional Symposium on Computer Architecture, June 1986.

[TI83] Texas Instruments, NuMachine NuBus Specification, Part number TI-2242825-0001, 1983.

[Wood86] Wood, D.A., et al, ‘‘An In-Cache Address Translation Mechanism,’” Proc. Thirteenth Interna-
tional Symposium on Computer Architecture, June 1986, pp 358-365.

[Wood87] Wood, D.A., S.J. Eggers, G.A. Gibson, ‘‘SPUR Memory System Architecture,”” Computer
Science Division Technical Report UCB/CSD 87/394, University of California, Berkeley, December
1987.

-30-

