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Abstract

Bus bandwidth ultimately limits the performance, and therefore the scale, of bus-based, shared
memory multiprocessors. Previous studies have extrapolated from uniprocessor measurements and simula-
tions to estimate the performance of these machines. In this study, we use traces of parallel programs to
evaluate the cache and bus performance of shared memory multiprocessors, in which coherency is main-
tained by a write-invalidate protocol. In particular, we analyze the effect of sharing overhead on cache miss
ratio and bus utilization.

Our studies show that parallel programs incur substantially higher miss ratios and bus utilization than
comparable uniprocessor programs. The sharing component of these metrics proportionally increases with
both cache and block size, and for some cache configurations determines both their magnitude and trend.
The amount of overhead depends on the memory reference pattern to the shared data. Programs that exhi-
bit good per-processor-locality perform better than those with fine-grain-sharing. This suggests that paral-
lel software writers and better compiler technology can improve program performance through better
memory organization of shared data.






1. Introduction

The cache behavior of uniprocessor programs has been extensively analyzed (e.g.,
[Agar88a, Alex86, Good87, Hill87, Przy88, Smit85, Smit87]), and the effect on performance of changing cache
parameters is now well understood. For small and medium sized caches, increasing the cache size, despite the addi-
tional cache access time, causes a drop in the miss ratio that is substantial enough to reduce the effective memory
access time. For very large caches, the miss ratio still falls; but the balance reverses between the decreasing miss
ratio and an increasing cache access time, and the effective access time begins to rise. The miss ratio trend for
increasing block size is not as consistent. A larger block size also reduces miss ratios, but only up to a certain size.
After reaching this memory pollution point, miss ratios begin to climb. But even the declining miss ratio does not
always increase performance, because of additional bus traffic latency caused by the larger transfer block.

Cache and bus metrics of parallel programs should be higher than those of uniprocessor programs, because
additional bus traffic is required to maintain coherent caches. This is a critical performance issue in single-bus mul-
tiprocessor design, since bus bandwidth is the limiting performance factor in such a system. If the cache and bus
behavior of parallel programs, varying across cache and block sizes, is radically different from uniprocessor pro-
grams, then new rules of thumb are needed to design memory systems for muitiprocessors.

The goal of this research is twofold: first, to analyze (via trace-driven simulation) the cache and bus behavior
of parallel programs running under write-invalidate coherency protocols; and second, to compare this behavior to
that of their uniprocessor counterparts. In particular, we study parallel programs that (1) execute on single-bus,
shared memory multiprocessors, in which cache coherency is maintained in hardware by a write-invalidate
coherency protocol, and that (2) use a programming paradigm with large grain parallelism, i.¢., a process.

Our research shows that parallel programs do have different cache and bus behavior than uniprocessor pro-
grams; and that it is the references to shared data that are responsible for the difference. The results are most
dramatic for increasing block size. Here the proportion of sharing-related misses to total misses rises, and either
elevates miss ratios without changing their declining trend, or sometimes reverses the trend. Sharing also worsens
the miss ratios when increasing cache size; again, the effect is more pronounced with larger cache sizes. For most
programs sharing-related bus traffic dominates bus utilization cycles with large caches (128K bytes and up) and all
block sizes studied (4 to 32 bytes). At these cache configurations it is the sharing traffic that creates the multipro-
cessor bus bottleneck.

These results indicate that larger caches and block sizes, the traditional techniques for improving cache per-
formance, are less effective with parallel programs than uniprocessor programs. However, additional performance
improvements can still occur using software techniques. For the programs analyzed, the amount of sharing over-
head depended on the intra-block memory reference pattern for shared data. Programs that exhibit good per-
processor-locality performed better than those with fine-grain-sharing. If programmers (or compilers) are aware of
memory reference behavior when writing (generating) parallel code, they can attain better program performance by
altering the memory organization of the shared data.

In previous work we have characterized the pattern of references to shared data; in this paper we analyze its
effect on cache and bus performance. The remainder of the paper begins with three background sections: the first
covers aspects of the methodology and the workload; the second introduces write-invalidate protocols and the type
of sharing costs they induce; and the third characterizes memory references of parallel programs and discusses how
they affect write-invalidate sharing costs. Sections 5 and 6 contain studies of the cache and bus behavior of parallel
programs, each investigating the effects of changing both block and cache size. The last section summarizes the
results; the summary discusses the implications of cache and bus performance of the paraliel programs, both for
multiprocessor cache design and software design.

2. Methodology and Workload

We used trace-driven simulation in our analysis. Our simulator emulates a simple shared memory architec-
ture, in which a modest number of processors (five to twelve) are connected on a single bus. The CPU architecture
is RISC-like [Pat85], assuming one cycle per instruction execution. Not all instructions follow this model, e.g.,
multiply and divide; therefore the bus utilization results will be slightly overestimated, because the simulation pro-
cessors return to use the bus more quickly than in a real machine. With the exception of those cache parameters that
are varied in the studies, the memory system architecture is roughly that of the SPUR multiprocessor [Hill86]. The
simulator’s board-level cache is direct mapped, with onecycle reads and two-cycle writes. Its cache controller
implements the Berkeley Ownership cache coherency protocol [Katz85], in-cache address translation [Wood86],



segment-based addressing, no fetch-bypass on reads, a test-and-test-and-set sequence for securing locks [Wood87],
and many of the timing constraints of the actual SPUR implementation. Bus activity is implemented using a
modified NuBus protocol [Gibs88], and bus contention is accurately modeled.

The inputs to the simulator are traces gathered from four parallel CAD programs, developed for single-bus,
shared memory multiprocessors (see Table 2-1). The choice of application area was deliberate, so that the workload
being analyzed was appropriate for the underlying architecture. One program is production quality (SPICE); the
others are research prototypes. Two of the programs are based on simulated annealing algorithms. CELL [Caso86]
uses a modified simulated annealing algorithm for IC design cell placement, and placed twenty-three cells in our
trace. TOPOPT [Deva87] does topological compaction of MOS circuits, using dynamic windowing and partitioning
techniques. Its input was a technology independent multi-level logic circuit. VERIFY [Ma87] is a combinational
logic verification program, which compares two different circuit implementations to determine whether they are
functionally (Boolean) equivalent. The final program, SPICE [McGr86], is a circuit simulator; it is a parallel ver-
sion of the original direct method approach, and its input was a chain of 64 inverters.

All applications use the same programming paradigm for carrying out parallel activities. The granularity of
parallelism is a process, in this case one for each processor in the simulation. The model of execution is single-
program-multiple-data, with each process independently executing identical code on a different portion of shared
data (see Figure 2-1). The shared data are divided into units that are placed on a logical queue in shared memory.
Each process takes a unit of work from the queue, computes on it, writes results, and then returns the unit of work to
the end of the queue.

The traces were generated (via software trace generators) On a per-processor basis. The number of processors
in the simulations depends on the number of processors that were used in trace generation. For SPICE this number
is 5, and for the Sequent traces either 11 or 12. Each per-processor trace is a separate input stream to the simulator.
Synchronization among the streams depends on the use of locks and barriers in the programs and is handled dynam-
ically in the simulator. Statistics are generated from approximately 300,000 references per processor, after steady
state has been reached. (See [Egge88] for a more detailed discussion of the methodology.)

3. Write-invalidate Cache Coherency Protocols

We have chosen to support coherency with a hardware cache coherency protocol. We believe that a hardware
technique will have better performance on single-bus, shared memory multiprocessors than known solutions in
software. Write-invalidate is a type of distributed, hardware protocol, that is implemented on each cache controller
in the multiprocessor. It maintains coherency by requiring a writing processor (o invalidate all other cached copies
of the data before updating its own. It can then perform the current update, and subsequent updates (provided there
are no intervening accesses by other processors) without either violating coherency or further utilizing the bus. The

Parallel Applications
Trace Name Architecture, Program Description Number of
Operating System Processors
CELL Sequent Balance, Unix simulated annealing algorithm 12
for cell placement
TOPOPT Sequent Balance, Unix simulated annealing algorithm 11
for topological optimization
VERIFY Sequent Balance, Unix logic verification 12
SPICE ELXSI 6400, Embos direct method circuit simulator 5

Table 2-1: Traces Used In the Simulations. The traces used in the sharing simulations were gathered from parallel programs
that were written for shared memory multiprocessors. The programs are all "real”, being either production quality (SPICE) or
research prototypes.
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Figure 2-1: Flow Chart of the Parallel Programming Paradigm. This simplified representation illustrates the programming
paradigm of the parallel programs. The parent process starts and ends the program, and forks child processes that do the parallel
portion of the computation. Each child process executes the same code. At certain points in the parallel computation, the chil-
dren resynchronize and then repeat the computation. Within each iteration, the children process different portions of the work
queue, which resides in shared memory. For example, in a parallelized circuit simulator the circuit would be divided into groups
of devices (nodes). In each iteration, each child would process a particular node. Data sharing occurs because the inputs and out-
puts of the nodes interconnect, and a node may be processed by different child processes in different iterations.

invalidation is accomplished by an invalidating bus operation. Caches of other processors monitor the bus via the
snoop portion of their cache controllers. When they detect a match between the address associated with the invali-
dation signal and one of their cache tags, they invalidate the entire cache block containing the address.

In write-invalidate protocols, there are two sources of bus-related coherency overhead. The first is the invali-
dation signal needed to maintain coherent caches. The second is the cache misses that occur when processors need
to rereference invalidated data. These misses, called invalidation misses, would not have occurred had there been
no sharing. They are present because the shared data had previously been written, and therefore invalidated, by
another processor. They are additional to the customary, uniprocessor misses (for example, first-reference misses
and those necessitated by block replacements). (A more detailed description of the write-invalidate protocols
appears in [Arch86].)

4. Characterizing the Memory Reference Behavior of Shared Data

The pattern of references to shared data can be characterized by two distinct modes of behavior. In the first,
per-processor-locality within the cache block, a particular processor makes multiple, consecutive writes to the
words within a block, uninterrupted by accesses from other processors. In the other, fine-grain-sharing, processors
contend for one or more words within the block, and the number of per processor consecutive writes is very low.

Whether a program exhibits per-processor-locality or fine-grain-sharing affects the amount of coherency
overhead incurred. Per-processor-locality reduces coherency overhead by decreasing both the number of invalida-
tions and the number of invalidation misses. Conversely, when there is fine-grain-sharing, the number of invalida-
tions and invalidation misses is higher. For both types of memory reference behavior, the larger the cache block,
the more pronounced the effect on coherency overhead. (See [Agar88b,Egge88] for additional discussion on the



characterization and analysis of sharing.)

Per-processor-locality can benefit both the writer and the readers of a cache block containing a shared
address. For example, after an invalidation, a writing processor possesses the only cached copy of the block. It
pays the coherency overhead (the invalidation signal) for the first write to the block, but can update the remaining
words without additional bus operations. An analogous situation exists for the readers. In this case the invalidation
miss penalty is paid only for the first read to the block. All other reads are cache hits, and, from the point of view of
coherency overhead, are free.

The performance loss of fine-grain-sharing also occurs for both writers and readers of the shared data. Alter-
nating writes by different processors to the different words within a block produce separate invalidations for each
write. The increased number of invalidations is responsible for a subsequent rise in invalidation misses. The
greater the number of processors contending for an address, the greater the number of invalidation misses.

5. The Effect of Sharing on Miss Ratios

5.1. Varying Block Size

Cache miss ratio studies of uniprocessor programs have indicated that for a fixed size cache, the miss ratio ini-
tially drops as the block size of the cache increases [Agar88a, Alex86, Good87, Hill87, Przy88, Smit87]. The decline
is due to improved cache hits because of locality of reference. However, as block size continues to increase, the
decrease in the miss ratio tapers off. For small and medium sized caches, those in the range of 4K bytes to 16K
bytes, the miss ratio decline may terminate at some particular block size (in [Good87], it is 32 bytes and 128 bytes,
respectively), after which the miss ratio begins to rise. The termination is known as the memory pollution point.! As
cache size grows, the pollution point shifts to an increasingly larger block size. For 128K bytes caches, [Agar88a]
reports that the pollution point is not reached with block sizes up to 32 bytes (the configurations in this study).
Therefore, for uniprocessor programs, the miss ratios should continue to decline until that point.

Analysis of the parallel traces indicates that their miss ratios do not always follow the trend of uniprocessor
programs (see Figure 5-1). CELL and SPICE consistently exhibit the expected decline; but the miss ratios for
TOPOPT and VERIFY actually increase. Their rise is slight, and, for one of the traces, not continuous across all
block sizes. However, their behavior was completely unexpected, given the uniprocessor literature. Miss ratios for
the shared references only,? depicted in Figure 5-2, indicate almost identical behavior, but at higher miss ratios.
Due to the poorer locality of reference for shared data, miss ratios for shared data were 5 to 7 times greater than
total miss ratios, depending on the particular trace and block size.

Eliminating invalidation misses from the miss ratio calculation leaves a uniprocessor component that approxi-
mates uniprocessor miss ratios. When the invalidation misses were excluded from this analysis, the uniprocessor
miss ratio component for all traces corroborated results from previous cache studies of uniprocessor programs. In
other words, the uniprocessor miss ratio component declined as block size increased, and the marginal rates of
decline also decreased with block size (see Figure 5-3). The actal miss ratio values were less than the multipro-
gramming miss ratios reported in [Agar88a); however, this is t0 be expected, since the traces contain applications
references only. The miss ratio trend of SPICE is most typical of the results of the composite applications workload
reported in [Good87].

The predictable trend of the uniprocessor component of the miss ratios suggests that it is the invalidation
misses that are responsible for the variable miss ratio behavior of the parallel programs. A more detailed examina-
tion reveals that two interacting factors determine the miss ratio trends (see Figure 5-4). First, as block size
increases, invalidation misses become a larger fraction of total misses. Therefore they become an increasingly
significant determinant of miss ratio behavior. Second, at small block sizes, the uniprocessor misses dominate.
However, at larger block sizes the number of invalidation misses is either a substantial (CELL, VERIFY and
SPICE) or overwhelming (TOPOPT) proportion of the total. The combination of these factors forces the miss ratios
to follow the trend of the invalidation misses. For many block sizes the invalidation misses are the single most

! For a fixed sized cache, a larger block size results in fewer cache lines. The pollution point occurs because memory references take place
10 noncontiguous data that do not reside in the cache, while contiguous, but unreferenced, data remain in the larger biock. Until the pollution
point is reached, the larger block size implicitly prefetches data that will be referenced in the near futre.

2 The shared miss ratio is the number of misses 1o shared data divided by total references to shared data.
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Figure 5-1: Miss Ratios

Parallel traces exhibit two miss ratio trends as block size in-
creases. Miss ratios decline for programs with per-
processor-locality (CELL and SPICE); however, for programs
with fine-grain-sharing (TOPOPT and VERIFY), they are
dominated by the misses caused by intra-block contention for
shared data, which produce a rising curve.
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Figure 5-2: Shared Miss Ratios
The shared miss ratios (misses 1o shared data divided by total
references to shared data) follow the trend of the total miss ra-
tios, but have a value that is 5 to 7 times higher. The higher
figures reflect the poorer locality of shared data. (All block
size graphs are for a 128K byte cache.)
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Figure 5-3: Uniprocessor Component of the Miss Ratio
The uniprocessor component of the miss ratio for parallel pro-
grams mimics the declining miss ratio behavior of uniproces-
sor programs. This suggests that the variability of the miss ra-
tio curves for parallel programs is caused by the invalidation
misses
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Figure 5-4; Ratio of Invalidation Misses to Total Misses
The ratio of invalidation misses to total misses increases as
block sizes increase. At larger block sizes the invalidation
misses of three of the traces comprise a substantial portion of
the total; and for TOPOPT they dominate the miss ratio
behavior. (The numbers are the geometric mean of the ratio
of invalidation to total misses, across all processors.)




determining factor in miss ratio behavior.

The traces exhibited two distinct invalidation miss trends.? For programs whose memory reference pattern for
shared data is dominated by per-processor-locality, such as CELL and SPICE, the number of invalidation misses
declines as block size is increased (see Figures 5-5 and 5-6). In these traces the processors tended to read several
contiguous words in succession, all of which had been previously invalidated. For example, consider a 32 byte and
4 byte block size; with the larger block size, the invalidation miss penalty is incurred only for the first of eight
words; with the smaller block, it is incurred for each. Because the invalidation miss trend reinforced that of the
uniprocessor miss ratios, the miss ratios declined. SPICE, in particular, had good locality of reference. Its data
structures had been sized to the ELXSI 6400 64 byte cache block, explicitly to avoid fine-grain-sharing for
addresses within the block. Therefore for block sizes considered in this study (up to 32 bytes), little contention was
observed.

For programs with fine-grain-sharing within a block, such as TOPOPT and VERIFY (see Figures 5-7 and 5-
8), the declining uniprocessor miss ratio was offset by the increase in the number of invalidation misses and their
large proportion within total misses. Invalidation misses had the largest effect on TOPOPT, and for two reasons;
first, the trace had the most fine-grain-sharing, and second, it had a low uniprocessor miss ratio, because its working
set fit into the 128K byte cache.

A short note should be made about the miss ratio behavior of the components of shared data, i.e., locks and
the shared applications data they protect. The applications data are responsible for the high shared miss ratio dep-
icted in Figure 5-2. Miss ratios for the locks were considerably lower, indicating that sharing in all programs was
very sequential, i.e., there was little contention for locks. This behavior is partially determined by the programming
paradigm. When the programs first begin execution, there is unusual contention for the locks protecting the queue
of work, since all child processes try to take their first unit of work simultaneously. However, only one process will
obtain access (o the queue at a time. Since each process does a comparable amount of computation, they will
thereafter access the queue in the same order, spaced in time by the execution time of the critical section. This self-
scheduling is disrupted by synchronization barriers, which are used to separate phases in the computation. The disr-
uption causes more busywaiting and therefore an increase in references to the locks. However, it occurs infre-
quently, particularly when compared to the longer periods of self-scheduling.

5.2. Varying Cache Size

The benefits of increasing cache size on miss ratio for uniprocessor programs are well known. Numerous
trace-driven studies over a variety of workloads have all confirmed that miss ratio drops as cache size is increased,
but that the improvements diminish for large caches [Agar88a, Alex86, Good87, Hill87, Przy88, Smit87].

Shared programs do not experience the same miss ratio benefits of increasing cache size. While it is true that
their uniprocessor-related misses decline with larger caches, their invalidation misses either rise or, at best, remain
constant. The combination produces a miss ratio that declines with cache size, but is higher than for comparable
uniprocessor programs.

The parallel traces support this analysis. For all traces, miss ratios decline with increasing cache size (see
Figure 5-9), and total miss ratios are higher than their uniprocessor components (see Table 5-1). The discrepancy
increases with cache size, because the uniprocessor miss ratio declines more steeply. The exact figures range from
1.02 to 2.2 higher for SPICE, 1.1 to 2.5 higher for VERIFY, 1.1 to 4.7 higher for CELL and 1.7 to 15.4 higher for
TOPOPT, as cache size increases from 16K bytes to 512K bytes. (See comparative curves for different types of
misses for two of the traces, TOPOPT and VERIFY, in Figures 5-10 and 5-11, respectively.) These results indicate
that the benefits of increasing cache size are less pronounced for parallel programs than uniprocessor programs.

The reason is the presence of invalidation misses. The number of invalidation misses is inversely propor-
tional to the number of block replacements. At small cache sizes, the number of block replacements is relatively
high. If we assume that shared data are replaced at the same rate as private data or instructions, then a proportion of
shared data blocks, equivalent to the percentage of blocks replaced, will be eliminated from the cache. They there-

fore cannot be invalidated and, consequently, will not incur invalidation misses.* As cache size increases, the

3 The write run results in [Egge88] and tracking cache block behavior with our simulator corroborate the difference in behavior between the
two groups of traces.

* They will, however, like all data and instructions, incur replacement or capacity misses [Hill87). However, this is a consequence of the
smaller cache size, rather than the type of data (shared), and will occur for afl data and instructions. As caches get larger, some of the capacity
misses become invalidation misses. No matter which category they fall in, i.¢., no matier what the cache size, they still contribute to the miss ra-
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Figure 5-5: Classification of Misses for CELL
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Figure 5-6: Classification of Misses for SPICE

The memory reference pattern of shared data in both CELL and SPICE is one of per-processor-locality. Therefore invalidation and uniprocessor
misses both decline, producing miss ratio curves that are similar to uniprocessor programs.
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Figure 5-7: Classification of Misses for TOPOPT
TOPOPT is the trace in which the invalidation misses had the
most effect and for two reasons: first, it exhibited the most
intra-block fine-grain-sharing; and, second, the uniprocessor
miss ratio was low, because the working set fit into the 128K
byte cache.
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Figure 5-8: Classification of Misses for VERIFY
Although VERIFY's memory reference pattern was one of
fine-grain-sharing, the uniprocessor misses were proportionate-
ly high, panticularly at small block sizes. Therefore the miss
ratio at first declined, then rose. (Since the individual proces-
sor figures for VERIFY were widely skewed, the mtio of in-
validation misses to total misses does not maich the geometric
means in Figure 54.)
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Figure 5-9: Miss Ratio
Increasing the cache size causes the miss ratio for parallel
programs to decline. However, the miss ratio is higher than
for uniprocessor programs, because of invalidation misses.
(All cache size graphs assume a 32 byte block.)
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Figure 5-10: Classification of Misses for TOPOPT
Of all the traces TOPOPT has the most fine-grain-sharing
within the cache block. The effects of that intra-block conten-
tion are manifested by the distortion to the miss ratio caused
by the number of invalidation misses. (Note that the scale of
the y-axis is roughly one_sixth that of VERIFY in Figure 5-
11.)
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Figure 5-11: Classification of Misses for VERIFY
Miss trends for VERIFY typify the effect of sharing with in-
creasing cache size. The presence of invalidation misses
causes the total number of misses (and hence the miss ratio)
1o be higher than for a uniprocessor program. Their rise, as
cache size increases, widens the gap between the total and
uniprocessor miss ratio. CELL and SPICE have similar
curves, although fewer misses in absolute and fewer invalida-
tion misses proportionately. Their lower figures are due to
per-processor-locality.
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Figure 5-12: Ratio of Invalidation Misses to Total Misses
The ratio of invalidation misses to total misses increases with
increasing cache size. The rise is much steeper than with in-
creasing block size for the traces with per-processor-locality,
CELL and SPICE. (The numbers are the geometric mean of
invalidation to total misses, across all processors. Since the
individual processor figures for VERIFY were widely
skewed, their geometric mean does not match the absolute
misses in Figure 5-11.)



Percentage Change in Miss Ratio
Trace Miss Ratio Cache Size Spread (in bytes)
Type 16K-32K | 32K-64K | 64K-128K | 128K-256K | 256K-512K

CELL Total -35.193 -41.487 -26.267 -25.147 -18.225
Uniprocessor -39.832 -50.511 -41.174 -49.245 -84.467
SPICE Total -29.444 -29.770 -68.364 -42.592 -1.324
Uniprocessor || -31.566 -32.189 -75.871 -61.098 -7.120
TOPOPT Total -35.647 -5.812 -12.197 0.000 0.000
Uniprocessor -72.467 -26.663 -70.330 0.000 0.000
VERIFY Total -38.203 -27.167 -11.596 -15.354 0.000
Uniprocessor -47.062 -43.031 -25.338 -35.544 0.000

Table 5-1: Percentage Change in Miss Ratio with Increasing Cache Size

This table contains the incremental miss ratio decline as cache size increases. Note that for all programs and all cache sizes, the uniprocessor miss
ratios declined more steeply (bold) than total miss ratios. This indicates that uniprocessor programs obtain a greater benefit from increasing cache
size.

percentage of block replacements drops. Shared data tend to remain in the cache for a longer period of time, has
more opportunity to be invalidated, and, consequently, rereferenced via invalidation misses. The number of invali-
dation misses should be higher with each successively larger cache, approximately by the percentage decrease in
block replacements.’ For very large cache sizes, in which the program’s working set fits into the cache, the incre-
mental number of block replacements is negligible, and the invalidations will tend to level off. Again, the traces
confirm the analysis. For all traces, the number of invalidation misses rises with increasing cache size. The
increase is most pronounced at smaller cache sizes, at which the change in block replacements is also greater (table
not shown).

As was true with the block size figures, the proportion of invalidation misses becomes larger as cache size
increases (see Figure 5-12). For the traces with per-processor-locality (CELL and SPICE), the effect of the invali-
dation misses is more pronounced with larger cache sizes than with larger block sizes. Invalidation misses cause the
greatest perturbation for TOPOPT, the trace with the most fine-grain-sharing. Here the proportion of invalidation
misses to total misses ranges from 42 to 93 percent, as cache size increases from 16K to 512K bytes. This causes
the total miss ratio to be 1.7 to 15.4 times greater than its uniprocessor component (again, see Figure 5-10).

The working sets of TOPOPT and VERIFY fit into the larger sized caches. Once the caches were filled, the
number of uniprocessor misses remained constant. The invalidation misses also remained constant, because there
was no more block replacement effect.

6. The Effect of Sharing on Bus Utilization

The critical system bottleneck in a single-bus, shared memory multiprocessor is the bandwidth of the system
bus. Relatively few processors can be attached to the bus, unless caching is used to reduce their bandwidth require-
ments. For a single-bus multiprocessor, the most important consideration for cache organization is how well it lim-
its bus utilization. As was implied by the higher miss ratios in the last section, the bandwidth requirements are
greater in parallel programs than uniprocessor programs because of the sharing traffic. With large caches and large
block sizes, we expect the sharing traffic to dominate the bandwidth and, consequently, dictate the number of pro-
cessors that can be effectively attached to the bus.

5 The rising cost of sharing with larger caches is & problem usually associated with write-broadcast coherency protocols (see [Egge]: it is
interesting that the problem occurs with write-invalidate as well. (Under writc-broadcast protocols, all processors write through for shared data;
therefore caches always contain the current value for any shared address.)



6.1. Varying Block Size

Several uniprocessor studies [Przy88, Smit87] have shown that, up to a certain size, increasing the block size
can improve bus performance. Two factors are responsible for the improvement: (1) a decreasing miss ratio as
block size increases; and (2) a decreasing mean memory delay per memory reference, because memory latency is a
proportionately smaller overhead at larger block sizes. The improvement occurs when both factors are substantial
enough to counterbalance the increase in bus traffic that also accompanies larger block sizes [Good87, Smit87]. The
breakeven point is found where the decrease in the miss ratio is offset by the increase in the average number of
cycles per transfer. Results in any bus utilization study are highly dependent on the cycle assumptions for both
memory accessing and bus transfer overhead. But, for caches of the size under study, i.e., 128K bytes, and up to 32
byte blocks, at least one study has shown that the average memory access time declines with increasing block size
[Agar88a].

Sharing alters bus utilization in two ways. First, invalidation signals and invalidation misses are sources of
additional bus traffic, since they do not exist in uniprocessor systems. They cause bus utilization to be higher in
parallel programs. Second, the slope of the bus utilization curve is determined by the memory reference pattern to
shared data. Programs with fine-grain-sharing have miss ratios that increase rather than decrease with block size.
Therefore their miss ratios compound the increase in bus traffic caused by the larger transfer unit, and bus utilization
increases. For programs that exhibit per-processor-locality, miss ratios decline, and the marginal miss ratios (as
block size increases) are comparable to those for uniprocessor programs. In this case, bus utilization could proceed
in either direction, depending on whether the change in the miss ratio is great enough to offset the increase in the
average number of cycles per ransfer.

The traces under study reflected these effects. For all traces, bus utilization was higher than its uniprocessor

component.® (The ranges for the individual traces are: 1.9 to 2.2 higher for CELL, 1.7 to 1.8 for SPICE, 2.3 to 17.7
for TOPOPT and 1.3 to 2.6 for VERIFY.) For the most part, the per-processor-locality of CELL and SPICE pro-
duced a miss ratio that decreased enough to offset the increase in the average cycles per transfer. The result was bus
utilization that decreased over most of the block size spectrum (4 bytes to 32 bytes) (see Figure 6-1). TOPOPT and
VERIFY are programs with a fair amount of fine-grain-sharing. The resulting increase in their miss ratios (or a very
small decrease for some block sizes for VERIFY), plus the normal ris¢ in the average number of cycles per transfer,
produced the increasing bus utilization figures (again, see Figure 6-1). ([Cher88] has also noticed the effect of fine-
grain-sharing on bus traffic. In simulations done on a four-processor multiprocessor, in which management of the
256K byte cache was done under software control, two traces exhibited an increase in bus operations per reference,
as block size was increased.)

For three of the traces sharing-related bus overhead comprised a substantial portion of total bus cycles across
all block sizes but one (4 bytes for VERIFY). For the fourth trace, TOPOPT, they totally dominated bus activity.
The ranges are 56 to 94 percent for TOPOPT, 45 10 61 percent for VERIFY (excluding the exception), 47 to 54 per-
cent for CELL, and 40 to 44 for SPICE (see Figure 6-2). (The proportions are higher than the proportions of invali-
dation misses to total misses, because the cycle figures include cycles for invalidation signals as well as invalidation
misses.) The curves clearly show that for 128K byte caches bus bandwidth requirements are determined by the shar-
ing traffic.

Because sharing-related bus overhead is such a large proportion of total bus cycles, its behavior as block size
increases can dictate the bus utilization trend. TOPOPT is the most extreme example. It has the largest proportion
of sharing cycles, and their rate of increase is steep (see Figure 6-3). Although the uniprocessor cycles decline with
increasing block size, their rate of decline is more moderate, and they are a very small proportion of total bus cycles.
Therefore TOPOPT’s total bus utilization curve rises. The other three traces exhibit similar effects, although for the
programs with per-processor-locality, the sharing cycle trends pull total bus utilization downwards. (An example
appears in Figure 6-4.)

6.2. Varying Cache Size

Increasing cache size is an important design technique for improving bus utilization. With the exception of
enlarging either an extremely small block size or a very large cache,” it provides a larger performance boost than

¢ Uniprocessor bus utilization is determined by excluding the cycles used for invalidation signals and invalidation misses.

7 Doubling a very small block, say 4 bytes in size, produces a good performance improvement; increasing an already large cache provides
little additional benefit.
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Figure 6-1: Effect of Block Size on Bus Utilization

Bus utilization is calculated as the number of cycles during
which a bus operation took place, divided by the total cycles
in the simulation. The bus cycles include cycles for the over-
head of bus operations, in addition to those counted in bus
wraffic figures. The per-processor-locality of CELL and
SPICE produced the declining or flattened bus utilization
curves; the fine-grain-sharing of TOPOPT and VERIFY exa-
cerbated their already rising average cycles per transfer,
resulting in increasing bus utilization.
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Figure 6-2: Ratio of Shared to Total Bus Cycles
The cycles needed for invalidations and invalidation misses
were a substantial portion of or completely dominated total
bus cycles, over most block sizes. This indicates that efforts
to reduce bus bandwidth demands should concentrate on the
sharing-related traffic. (All block size graphs are for a 128K
byte cache.)
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Figure 6-3: Classification of Bus Cycles for TOPOPT
The proportion of sharing-related bus cycles for TOPOPT
ranged from 56 to 94 percent. Because they were such a ma-
jority of total bus cycles, their behavior forced bus utilization
to follow suit.
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Figure 6-4: Classification of Bus Cycles for SPICE
SPICE was typical of programs with per processor locality.
The decline in sharing-related bus cycles reinforced a
corresponding drop in uniprocessor bus cycles, producing a
falling bus utilization curve.
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increasing either block size or set associativity [Przy88]. There are two factors that contribute to the greater
improvement. First, the miss ratio is more responsive to cache size than to increases in the other two parameters.
Second, the longer cache access time of larger caches is less severe a penalty to effective access time than the cost
of increasing either of the other parameters, particularly, the increase in bus traffic with a larger block size.

All of the traces exhibit the expected falling bus utilization (see Figure 6-5), and for the usual reason: a miss
ratio that declines with increasing cache size (see Figure 5-9). The decline is particularly sharp for the programs
with per-processor-locality, CELL and SPICE, and their bus utilization curves reflect the drop. The decrease in the
miss ratios did not translate directly into a comparable change in bus utilization, because of a rise in both the
number of cache-to-cache transfers and the number of invalidations. Under the Berkeley Ownership cache
coherency protocol, cache-to-cache transfers are the mechanism for satisfying processor reads to write shared data.
As cache size increases, the number of cached write shared blocks also increases, and therefore the number of
cache-to-cache transfers goes up. In the simulator’s memory system (and the implementation of SPUR as well),
cache-to-cache transfers require more cycles than memory transfers. The shift to the more expensive type of data
transfer, as cache size increases, flattens the bus utilization curve. A more optimized cache controller implementa-
tion or a slower memory would have produced a steeper drop. (The effect of invalidation signals on bus utilization
was discussed in Section 6.1.)

The proportion of sharing-related bus cycles to total bus cycles is depicted in Figure 6-7. For all traces, cycles
due to invalidation signals and invalidation misses rise sharply with cache size. For large caches (128K bytes and
up), they dominate bus bandwidth demands. (Results in [Site88] also indicate a rising proportion of sharing traffic
with increasing cache size, although the sharing traffic does not dominate, even with one megabyte caches. Traces
for their study are concatenated samples of memory references of CAD and expert systems applications running
under MACH, in a two processor multiprocessor.)

7. Concluding Discussion

7.1. Implications for Cache and Bus Designers

Cache design is an optimization problem. Its goal is to minimize effective access time by changing various
cache parameters. The difficulty is that these parameters alter cache performance in conflicting ways. For example,
increasing cache size decreases the miss ratio, but at the expense of a larger cache access time. Increasing the block
size also decreases the miss ratio, but only until the pollution point is reached. After that, larger blocks sizes pro-
duce a rising miss ratio. An additional drawback of all block size increases is the accompanying increase in the
amount of data that are transferred in a single bus operation. The increase in the average cycles per transfer can
cause bus utilization to rise even before the pollution point is reached.

Parallel programs, running under write-invalidate coherency protocols, complicate cache design by introduc-
ing another factor into the optimization problem: invalidation misses. The studies in this paper have shown that
invalidation misses increase miss ratios, sometimes enough to reverse declining miss ratio curves produced by the
other factors. For example, as cache size increases, the number of invalidation misses also increases. Invalidation
misses occur in smaller caches as well, but in the guise of replacement misses. With larger caches, some replace-
ment misses for instructions and private data are eliminated; those to shared data can only be converted 0 invalida-
tion misses. The result is a miss ratio that, for most of the traces, ranges from 2.2 to 4.7 times greater than its
uniprocessor component, and 15 times greater in the worst case.

Sharing references also derive less benefit than uniprocessor references from a larger block size. Increasing
block size either increases the number of invalidation misses or decreases them at a rate that is less than for unipro-
cessor misses. The type of miss behavior depends on whether the program exhibits per-processor-locality or fine-
grain-sharing. . In the former, invalidation misses decline with block size, and produce a miss ratio that is higher than
comparable uniprocessor programs. When there is fine-grain-sharing, the number of invalidation misses rises
dramatically with block size. The increase is enough to reverse the declining miss ratio that occurs with uniproces-
sor programs in caches of this size (128K bytes).

In all cases the miss ratio is higher than in uniprocessor caches. Therefore designers must use larger or more
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As is true for uniprocessor programs, bus utilization for the Bus utilization was higher than its uniprocessor component.
parallel programs declined with increasing cache size. The The ranges for the individual traces are: 1.04 to 3.1 for
benefit of enlarging the cache was greatest for the two pro- SPICE, 1.2 to 3.7 for VERIFY, 1.1 to 5.1 higher for CELL
grams with per-processor-locality, CELL and SPICE. (All and 1.9 to 17.7 for TOPOPT.
cache size graphs assume a 32 byte block.)
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Figure 6-7: Ratio of Sharing Bus Cycles to Total Bus Cycles.

The proportion of sharing-related bus cycles to total cycles rises sharply with increasing cache size. For large caches, they comprise the largest
component of bus utilization.

complex caches® to obtain the same performance in multiprocessors; even then, they might not be able to obtain this
level, because some costs of sharing are inherent in the algorithm, and are unaffected by cache design changes.

* For example, greater associativity, multi-level caches, etc.
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The choice of block size is dependent on the anticipated workload mix, in particular the balance between programs
that exhibit per-processor-locality or fine-grain-sharing.

The additional cache misses, of course, increase bus utilization. Moreover, sharing under write-invalidate
protocols introduces another type of bus operation, the invalidation signal, which further increases bus utilization.
Bus wilization was 1.04 to 17.7 times higher with increasing cache size, and 1.3 10 17.7 times higher with increasing
block size. Even for the small-scale multiprocessors studied, the bus was well utilized, with typical bus utilization
figures ranging from 30 to 70 percent. The implication for bus design is a need for additional speed in order to sup-
port a larger scale, single-bus multiprocessor. Fast bus architectures (for example, split transaction bus protocols)
and faster bus implementations (for example, bipolar and optics) are even more important in multiprocessors than
uniprocessor systems.

72. Implications for Parallel Software Writers

The performance of parallel programs may be improved by a variety of software techniques for restructuring
shared data. The techniques can be used by applications programmers and operating system designers, or compiler
Wwriters.

We have seen that shared references were responsible for considerable overhead in the cache and bus perfor-
mance. Invalidation misses comprised a substantial proportion of total misses for moderate block sizes (16 and 32
bytes, and even smaller for some traces) and large cache sizes (128K bytes and up). For all block sizes and large
caches, sharing-related bus traffic accounted for the majority of total bus cycles.

As multiprocessor caches continue to increase in size, uniprocessor misses will become a decreasingly smaller
proportion of total traffic; and a correspondingly larger proportion will be due to sharing. Adding processors 10 such
systems will increase sharing traffic in absolute terms. The bottom line is that it is the sharing traffic that will deter-
mine bus bandwidth demands, and will eventually limit the scale of the single bus multiprocessor by creating a bus
bottleneck.

Given that multiprocessors already have large caches, the bottleneck can only be postponed by improving the
cache and bus performance for the shared data portions of the parallel programs. One observation of the programs
studied here is that their amount of locality within the cache block largely determined the coherency cost, and there-
fore their miss ratios and bus utilization. Good per-processor-locality reduces the number of invalidation signals
and invalidation misses, which lowers these metrics. On the other hand, fine-grain-sharing, i.e., poor per-
processor-locality, has the opposite effect. Thus better memory organization for shared data can improve program
execution. If shared data accessed by different processors are allocated to separate cache blocks, then programs
with fine-grain-sharing should obtain lower coherency costs, and an improvement in overall performance.

Better data alignment can occur by at least two different means. The first is through explicit programmer
specification of the organization of shared data and runtime support for its allocation in shared memory on cache
block boundaries. Currently, shared variables may be dynamically allocated by a system runtime routine that makes
the data visible to all processes. In our proposed data alignment scheme, the programmer would be responsible for
grouping those shared variables that are used by different processors via separate system calls. The routine itself
would allocate the shared data in each invocation on cache block boundaries, padding out the block when necessary.
The advantage of this approach is the simplicity of its implementation; it is a very straightforward technique for
reducing bus traffic under software control. Its disadvantages are that it places the responsibility for optimal run-
time memory usage of shared variables entirely on the programmer and requires that the runtime system be aware of
the cache block size.

A second method for improving the memory organization of shared data addresses the issue of programmer
responsibility, but at an extremely high cost in implementation complexity. The approach involves the automatic
compiler detection and consequent memory allocation of per processor shared variables. The techniques involved
are similar to those used for the lifetime analysis of objects to reduce garbage collection overhead [Rugg88]. The
problem is difficult, because the compiler must analyze references to pointers rather than discrete variables. The set
of objects that are linked by pointers may be arbitrarily complex, and it is difficult to detect their dynamic relation-
ship. A precise solution is intractable; in practice, the technique could probably only be used for a subset of easily
recognizable structures. Moreover, a compile time analysis produces a conservative, worst-case estimate that may
not reflect the actual execution behavior of the program. This can lead to wasted memory and additional bus traffic,
because small objects would be allocated to larger cache block units. At this point, automatic compiler detection of
shared data that is actually used by a single processor is an open research question; it is not clear that freeing the
programmer of the responsibility for optimally allocating shared data is worth the complexity of the automatic
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solution. The programmer-initiated solution should be tried first to determine whether it can produce the perfor-
mance benefits of good per-processor-locality.
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