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ABSTRACT

Datakit, a virtual-circuit switch developed at AT&T Bell Laboratories, is
intended to provide efficient data communication over both local-area and wide-
area configurations. In the wide-area case, its switching engine and the queuing
disciplines it employs at the trunk interfaces try to balance the opposite
requirements of low-delay interactive traffic and high-throughput data-transfer
trafic. In order to experiment with distributed applications over Datakit
technology, AT&T Bell Laboratories has installed an Experimental University
Network (XUNET) that connects computers of the Berkeley Computer Science
Division to machines at other universities and to machines at Bell Laboratories
locations in New Jersey through 1.5 Mb/s T1 lines and Datakit nodes.

We measured the delay and throughput performance of XUNET. The window
size and the small memory available in each host interface were the primary
factors affecting the throughput. The queueing delays at each host affected the
delays for small messages. We isolated and characterized potential bottlenecks in
the network, and other sources of delay, to enable the network’s designers to
improve its performance. We provided a mathematical model for the delay and
throughput characteristics of long-distance Datakit communication. The
parameters of the model included protocol window size, source and destination
distance, and line and interface speeds.
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1. INTRODUCTION

Datakit, a virtual-circuit switch developed by AT&T Bell Laboratories, is intended to
provide efficient data communication over both local-area and wide-area
configurations. In the wide-area case, the switching engine and the queueing
disciplines it employs at the trunk interface try to balance between the conflicting
requirements of interactive traffic and data-transfer traffic. To experiment with
distributed applications over Datakit technology, AT&T Bell Laboratories has installed
an Experimental University Network (XUNET) (described in the next section), that
connects computers of the Berkeley Computer Science Division to machines at other
universities and Bell Laboratories locations in New Jersey through 1.5 Mb/s T1 lines
and Datakit nodes. This report describes the results of delay and throughput
performance tests performed on this network during the summer of 1988.

The tests consist of user level measurements of the delay and throughput for an
unloaded network, the delay of a loaded network, and the network’s performance when
a broad range of processes generating traffic are run simultaneously. The goal of our
tests is to provide a mathematical model for the delay and throughput characteristics
of long-distance Datakit communication, to be used by the network’'s designers to
improve its performance. It will be of interest to locate the potential bottlenecks, and
other sources of delay, in the network. We anticipate that the window size and the
small memory available in each host machine are the primary factors affecting the
throughput. This report deals with timing measurements after a circuit is set up, that
is, after the connection is made between the source and the destination. For a timing
analysis of call set up and performance characterization of remote execution calls,
see the report by Ron Arbo[ARBO88].

1.1 Experiment Environment

The Experimental University Network (XUNET) currently connects Bell Labs at Murray
Hill, N.J. with the University of Illinois at Urbana-Champaign, the University of
Wisconsin at Madison and the University of California at Berkeley. Each university has
a small local area network with a Datakit switch at its hub. A wide area network,
composed of Datakit switches at Oakland and Chicago connected by a 1.5 Mb/s trunk,
forms the backbone of XUNET. The universities are connected to the backbone by 1.5
Mb/s trunks, as depicted in Figure 1[XUNEB88].

Machines at all four locations were used to obtain the results presented below. At
Berkeley, two machines were used, namely, Vangogh, a VAX 8600, and Monet, a VAX 750.
The Wisconsin host, Pokey, and the Bell Labs machine, Fishonaplatter, are also VAX
750's. The Illinois host we began our experiments on was a VAX 750, but, during the
course of our testing it was changed to a VAX 780. In the remainder of this report,
UTUC will refer to the VAX 750 at Illinois and UTUC* will refer to the VAX 780.

Devices connected to Datakit communicate through interface boards connected to a
bus. For example, each T1 trunk is terminated by one of these interface boards. The
following is a brief description of the data path through a Datakit node. A VAX host
communicates over Datakit through a KMC interface board. The KMC handles all
Datakit URP protocol processing [FRAS83], and communicates with the CPU using a
very simple protocol. The URP protocol also negotiates the window size between the
source and the destination; in our experiments, URP set the window size at 1024 bytes.
The CPU notifies the KMC that it has data to send, at that point a DMA transfer is
initiated to the KMC's local on-board memory. Next, all protocol processing is
performed independent of the CPU’s control, and the data is transmitted. When data
arrives from a T1 line to a Datakit interface, it is queued until that interface can gain
access to the backplane. Once the data can access the backplane, it transmits the
data onto the bus to the appropriate destination interface within the same Datakit
node. For a more detailed description of Datakit, see [FRAS83].
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2. DELAY MEASUREMENTS

This chapter describes the first of several tests designed to determine the
performance of the XUNET Datakit network. The goal of this experiment is to
formulate a mathematical model of packet delays at low load. The evolution of the

experiment is followed, from its design to the resuits, and finally a discussion of those
results. :

2.1 Software

The software used to conduct this experiment consists of two programs, a packet
generating program and a packet receiving program The packet receiving program,
dkbenchs (Datakit benchmark server), simply reads the packets from the network and
writes them back to their originator. It continues until it reads an 'end of
transmission’ (EOT) in the first byte of an incoming packet. The behavior of the

1. Courtesy of XUNET planning meeting, Chicago, lllinois, January 1888.



packet receiving program can be described in pseudo Pascal code as follows:

repeat
read packet from network
write packet back to sender
until packet[1] = EOT

The packet generating program, dkbench (Datakit benchmark), works as follows: it
sets up a connection to the specified destination and sends a predetermined number
of packets of constant and given size. The program reads the clock, and immediately
writes the packet to the destination. It reads the clock again after it has read the
same packet from the network. The difference between the two clock readings is the
round trip time (RTT). The behavior of our packet generating program can be
described in pseudo Pascal code as follows:

N = number of repetitions

count = 0
while count < N do
begin

read the clock
write 'packet’ to destination
read 'packet’ from network
read the clock again :
round trip time = second clock reading - first clock reading
count = count + 1
end

Note that only one packet is outstanding on the network at any time. Thus, there is no
chance of reading the clock, transmitting a packet to the destination, and incorrectly
taking the second reading of the clock for a different packet. Additionally, having only
one packet on the network reduces the chances of local bus or network contention
due to the traffic generated by the experiment to zero.

In addition, each program forked a process on each machine to monitor the source
and destination load while RTT measurements were underway. The load averages on
both the source and destination hosts were recorded every five seconds to ensure that
the host loads did not change drastically during the experiment. If a significant
change in the load average of the local host or the remote host was observed for a
particular test run using our software, it was omitted and the test repeated. Thus, the
results to be presented were collected with minimal variations in the load averages.

2.2 Packet sizes

The nine data packet sizes we used for the tests were: 1, 2, 16, 17, 112, 113, 1023, 1024
and 1025 bytes. This range of packet sizes was chosen to represent the type of traffic
that may be present on the network, and also to exercise the buffer management
schemes provided by the protocol implementation. The smallest sizes of 1 and 2 bytes
represent character-at-a-time user process transactions, and indicate the minimum
message transaction delay. The network’s response time, that is, the time to send a
short message and receive the reply, is measured with small packet sizes. The packet
size of 16 bytes is chosen because the back plane of a Datakit node breaks the byte
streams into short packets of fixed length, each packet containing up to 16 bytes of
user data [FRAS83]. A seventeen byte packet requires two accesses to the back plane,
and we may experience a slightly higher delay. The 112 byte size represents individual
lines of text, such as program listings or documentation, as might be output by some



user process. Also, 112 bytes is the maximum user data packet size that can fit into
one 128 byte 'mbuf’ (in mbufs, 8 bytes are used for link pointers, 4 bytes for the data
offset, 2 bytes for the size, and 2 bytes for the type) [CABR84]. The 113 byte packet
represents 2 mbufs and we intuitively expect a slightly higher RTT with packets of this
size.

The 1024 byte packet represents a single mbuf page. In UNIXt 4.3 BSD a logical page of
data consists of 1024 bytes. Data not page-sized is normally stored in chains of the
smaller size buffers. Thus, a series of 'copy’ instructions from user space into the
system’s small mbufs is required. The one kilobyte buffers are passed by the network
protocol software to the network driver by simply augmenting a reference count,
whereas the chains of the smaller buffers must be assembled into one contiguous
buffer before being given to the network driver. Therefore, if the data is page sized, a
copy operation can be avoided [CABRB4]. Also, 1024 bytes is our anticipated URP
window size. The packet size of 1023 bytes is selected because a chain of the smaller
mbufs is required to transmit such a packet. The packet size of 1025 bytes requires
two URP windows.

In summary, packet sizes were chosen to correspond to those of the kernel's internal
buffers and also to those used by the Datakit for communication.

2.3 Determination of repetition count

Each XUNET test consisted of sending a fixed size packet a predetermined number of
times. The 'Repetition count’ is the number of times each packet is to be sent
[CABR84]. For our tests, we chose a repetition count of 350.

We want to find a repetition count large enough to yield accurate results, yet also
small enough such that the experiments can be conducted within a reasonable amount
of time. UIUC was arbitrarily selected to be the location to determine a suitable
repetition count. Dkbench ran from Vangogh to UIUC for various packet sizes with
repetition counts of 50, 200, 350, and 500. The results of these experiments are
displayed in Figure 2. Figure 2 shows that the standard deviation of the round trip
times is roughly the same except the case in which the repetition count is 200. We did
not want to choose a repetition count which would yield results with a large standard
deviation for the round trip times. Therefore, we did not select a repetition count of
200 or below for the XUNET tests. We selected the repetition count of 350 because the
standard deviation among the results was consistently low. Finally, the amount of time
necessary to conduct the tests with this repetition count was still felt to be
reasonable.

2.4 Expected resulits

The user process network latency is defined as the minimum cost to complete a 1 byte
network transmission from a source to a particular destination. Thus, minimum
latency is represented by the minimum time required to successfully send a single
byte of data, i.e., the propagation delay. The minimum user process network latency
to Fishonaplatter, given that the maximum speed at which information can propagate
is 2/3 the speed of light and assuming the distance to this machine is 3,000 miles, is :

+ UNIKXis a trademark of AT&T Bell Laboratories.
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Thus, neglecting each machine’s processing time, we expect the response time for a
one byte packet, i.e. the time to travel from Vangogh to Fishonaplatter and back, to be
approximately 48 ms. If similar calculations are made for UIUC (approximating the
round trip distance from Berkeley to Illinois at 3,900 miles), we obtain a response time
of 32 ms. Finally, for the local case (Vangogh to Monet), the propagation delay is
minimal and can be assumed to be zero. The nonzero values in the local case are due
to processing time and bus contention. The propagation delay in the local case has
negligible effect on our results.

We would also like to predict the round trip time of packets utilizing the expected full
window of 1 KB. The transmission time is the time required for the host machine to
place the packet onto the wire. It is dependent upon the transmission rate of the wire
and also the size of the packet. XUNET is composed of T1 lines utilizing a 1.544 Mb/s
transmission rate; however, at present, constraints limit this rate to about 7/8 of the
bandwidth, i.e., 1.344 Mb/s [FRAS83]. At this rate, the transmission time for a 1024
byte packet is:

bits
byte

1024 bytes z 8

1.344 Mo
s

=6.1ms [2]

The round trip time can be approximated as:



2 z transmission time + response time = round iTip time [3]

This equation is arrived at by the following reasoning: the sender places the packet
onto the wire (i.e., the transmission time), the packet travels to the receiver, and the
receiver sends the packet back to the local host. Therefore, the absolute minimum
round trip time for a 1024 byte packet traveling from Vangogh to Fishonaplatter and
back is: 2 x 6.1 + 48.3 = 60.5 ms. Similar calculations for the same packet size to UIUC
yield a round trip time of 44.2 ms. Again, we would like to reiterate that these back-
of-the-envelope calculations only correspond to network delay, that is, we are not
including the execution time on either the local or the remote machines. However,
performing these quick calculations enables us better to interpret the accuracy of our
results.

2.5 Analysis of results

The goal of these tests was to develop an equation for the round trip time of various
packet sizes sent from Vangogh to remote locations. We are interested in the
minimum values gathered from each test suite. The minimum values give us the best
characterization of an idle network with lightly loaded source and destination
machines. In addition, the statistics of minimum values normally show smaller
deviations than the means.

2.5.1 Small packet sizes performed well

The initial results for the response time measurements correspond extremely well to
our back-of-the-envelope calculations. For example, the response times of a 1 byte
message to Fishonaplatter are approximately 54 ms, only 6 ms above our lower bound.
UIUC also displays promising results for a 1 byte message. The minimum round trip
time to UIUC is 43 ms in comparison to our theoretical value of 32 ms. Finally, Monet,
in the local case, has a 1 byte minimum round trip time (response time) of 5 ms.

However, as we increase our packet size the results begin to deviate very drastically
from the theoretical results. At Fishonaplatter, for example, the minimum time to
send and receive the echo back of a 112 byte packet is 156 ms, and, for a packet size
of 1024 bytes, the minimum round trip time is measured at 1266 ms. (Once again, the
theoretical time for a 1024 byte packet is 60 ms, a 2000% difference.) We do not think
our software is responsible for the large values, primarily because it appears to
function properly for the small packet sizes of 1, 2, 16, and 17 bytes. Thus, we need to
find the causes of these discrepancies.

2.5.2 The 84 byte window problem

We have determined after running the tests at very specific packet sizes, that
multiples of 84 bytes cause large increases in our round trip times. Figure 3 displays
the results of this experiment depicted on a log-log graph. Why is there an increase in
the round trip time at 84 byte multiples? The answer lies within the KMC. The KMC is
programmed to use either small or large buffers, the small buffer holding 84 bytes of
user data, and the larger one 756 bytes of data. The driver in each host dictates to
the KMC which buffer to use. The current implementation uses the 84 byte buffer,
thus we are dealing with an 84 byte window! For example, if we want to transmit 1 KB
of data, the KMC transmits 84 bytes, copies them into a buffer, and transmits another
84 bytes only after receiving an acknowledgement for the first 84 bytes.

To further clarify what is happening within the KMC, there can be 3 outstanding blocks
of data in a window. The KMC currently incorporates blocks of 32 bytes with 4 bytes of
overhead per block, yielding 28 bytes of data per block. Thus, 84 data bytes is our



current window. We alerted the various Datakit locations about the 84 byte window
problem; in Section 2.5.3 we present the improved results using the larger 756 byte
buffers.
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Fishonaplatter requires a minimum round trip time of 57 ms for 84 bytes, yet 155 ms
for an 85 byte packet, an increase of approximately 100 ms or two round trip times.
The reason there is such a large increase for only one extra byte is due to a
combination of the underlying protocols and the experimental software. We now follow
the events occurring in the cases of 84 and 85 byte packets. In an 84 byte packet, the
entire packet fills the window in one transmission. The remote host, after receiving
the 84 bytes, sends the 84 bytes back to the sender, and the underlying protocol
piggybacks an acknowledgement on the same packet. Thus, the transaction requires
one round trip time.

Next, we examine the case of 85 bytes by displaying what happens in each round trip
time.

First Round Trip Time
First, the sender transmits 84 bytes to the receiver. The underlying protocol
at the receiver sends an acknowledgement for the first 84 bytes which in
turn opens up the window for the sender to transmit the remainder of the
message. The program at the remote host is still waiting to receive the
entire packet. The remote program does not write back the packet to the
sender until the entire packet is received at the remote host.

Second Round Trip Time
The sender transmits the final byte and the destination host (e.g.,



Fishonaplatter) has now received the entire packet and begins to write the
packet back to Vangogh, starting with the first 84 bytes.

Third Round Trip Time
Vangogh acknowledges receiving the first 84 bytes, thereby opening the
window for Fishonaplatter and enabling it to transmit the final byte.

Hence, the entire message transaction requires about three round trip times. Note
that the same increase occurs from 168 bytes to 169 bytes, and multiples of 84 bytes
thereafter. Also, UIUC exhibits the same increases, but Monet does not, because the
propagation time is negligible and the small window does not affect the results.

2.5.3 nproved results with 756 byte window

Figure 4 displays the results of the same tests repeated after some of the hosts
switched to a 756 byte window. Vangogh, Fishonaplatter, and Monet made the
necessary driver changes, enabling the KMC at each location to use the larger buffer
of 756 data bytes. On the date the tests were reconducted, UIUC did not have their
changes instituted in the driver code to utilize the larger window. Each of the three
outstanding blocks of data was 256 bytes instead of 32 bytes. A 4 byte trailer was
again incorporated into each block, yielding 252 bytes of user data per block. Note in
Figure 4 the drastic improvement in the round trip times to Fishonaplatter. The jumps
are now at 756 byte multiples of two round trip times, as we anticipated. A comparison
of Figure 4 with Figure 3 shows that UIUC's results are better because the window
from Vangogh to UIUC is 756 bytes even though the window from UIUC to Vangogh
remains at 84 bytes. There are still jumps in the delay times at 84 byte multiples, but
the increases are only by one round trip time and not two round trip times as in
Figure 3. The sender now transmits an entire 85 byte packet in one transmission,
whereas in the previous case the local host required two transmissions to write a
packet of size 85 bytes to the destination.

The minimum round trip times to Monet demonstrate marginal improvement; i.e., the 1
KB packet, which previously had a minimum round trip time of 24.7 ms, now achieves a
minimum of 22.7 ms. This marginal improvement accentuates the notion that the
small window in the local case has practically no effect on the results.

2.5.4 Inpact of packet sizes

We now discuss the impact, if any, packet sizes had on the experiment’s results. We
focus this section on the results obtained in the local case, as we do not want the
eflects of propagation to overshadow the impact of the various packet sizes. The
Monet curves in Figures 3 and/or 4 depict the results discussed below.

For the cases of 1 and 2 bytes the results are indifferent. The times with these values
give us a representation of an idle network’s response time. Although we expect a
slight increase in the minimum RTT from 16 to 17 bytes, none is clearly evident. Thus,
a packet that requires two, versus one, access to the Datakit backplane does not
appear to be an additional source of delay. There is no consistent increase in the RTT
from 112 to 113 bytes packets: therefore using one mbuf as opposed to two mbufs
does not create additional delay. Both of these conclusions (16 to 17 bytes and 112 to
113 bytes) are important because, as the Datakit hardware and the kernel are
redesigned to reduce delays, knowing that the backplane and the mbufs are not
prominent sources of delay can be very beneficial.

Although a packet size of 1023 bytes requires a chain of the smaller mbufs to transmit
(as opposed to a packet size of 1024 bytes which fills a single mbuf page), no increase
in the RTT is evident between the two packet sizes. However, a consistent increase in
RTTs from 1024 to 1025 bytes is observed. A packet of 1024 bytes fits into a single URP
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window, whereas a packet of 1025 bytes requires two windows and causes substantially
higher round trip times. The additional delay is consistently on the order of two
round trip times for packet sizes of 1024 bytes and 1025 bytes.

2.6 Delay formula

The goal of this chapter is to formulate a mathematical model of round trip time valid
for a lightly loaded network like XUNET. The primary factor the round trip time is
dependent on is the window size. Through examining the initial results using the 84
byte window, the round trip time can be characterized by:

PacketSize . . L.
o Gige T Tesponse time z 2 + response time = round trip time (ms) [4]
Our formula for small windows can be interpreted as follows: if the packet fits within
one window, the round trip time is simply the response time. However, if the packet is
greater than one window, the round trip time our formula generates is the response
time plus the number of additional windows necessary to completely send the message
times two response times for each of these additional windows. This formula holds for
wide-area configurations involving a significant propagation delay between the sender
and the receiver.

Our initial formula for the round trip time does not include any processing time, it is
dependent solely upon the response time and the packet size. This simple formula
yields the round trip time with an accuracy of 8%, it is consistently 6% above the true
value. All values within the same window size (i.e. 1-84 bytes and 85-168 bytes) will
yield the same RTT. We would like to reiterate this formula is to send a packet to a
destination and back, thus, it would not hold a one way transfer applications (i.e., file
transfer).
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The local case yields a different formula for round trip time. For Monet, our formula
clearly does not hold as increases are not evident at 84 bytes by multiples of two
round trip times. The index is primarily dependent upon the processing time of each
packet. The Vangogh/Monet tests show a processing time of approximately 0.02
ms/byte. Thus, the local case round trip time formula is:

ms
byte

PacketSize z 0.02 + response time = round trip time (ms) [5]

The 0.02 ms/byte processing time includes all the Datakit bus contention times, two
transmission times, and also the small propagation time, which we consider negligible.

Equation 4 does not hold for the tests involving the improved window of 756 bytes
because the window is no longer the predominant factor in determining the round trip
time. Processing time is also a factor. In the previous case, the small window
overshadowed most of the effects of bus contention and transmission time. However,
with a larger window, these delays become more evident. Equation 5 holds, however,
holds up to one window for Fishonaplatter. For example, using Equation 5 the round
trip time for a 756 byte packet is:

ms_

756 bytes z 0.02 byte

+ 54.64 ms = 69.76 ms

The actual time measured was 69.97 ms. Taking into effect the transmission time and
all other delays, the round trip time formula for packet sizes of one window (756
bytes) or less to Fishonaplatter is:

response time + 2 z packetSize z 8 + packetSize z 0.008 S _ RTT (ms) [6]
40 2 buie
’ s

The final parameter in the equation states there is a 0.008 ms/byte additional delay
factor. This delay is to be attributed to CPU execution time, queueing delays, and bus
contentions. None of the 0.008 ms/byte should be attributed to the network because
we have taken the response time to be our measured response time for a 1 byte
packet, and not the theoretical minimum. To further reduce this 0.008 ms/byte delay
factor, it is due to both the local and remote machines processing the data; thus, each
host experiences a local additional delay of only 0.004 ms/byte, or 4 microseconds per
byte of additional delay.

2.7 Verification of results using different software

In this section, we verify that the software used in the experiments described above
functions properly. We do so by presenting the results of a similar experiment
performed with software designed by Gary Murakami of the University of Illinois. The
software, dkxload, is a highly modified version of software from AT&T for
benchmarking Datakit networks and Datakit host interfaces. Processes again set up
full-duplex connections. The local process sends/writes data to the remote side as
fast as the protocol’s configuration and systems permit [MURAB88]. Slight modifications
were made to that software to enable the tests to be performed from UC Berkeley.

In this section we describe the "Round Trip Time" (RTT) test, although the software
does perform various types of tests. The overall design of the RTT test is similar to our
dkbench software. The test measures the round trip time for various packet sizes.
The local sending process sends a packet and then waits for the echo from the remote
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process. Unlike our software, which for each packet size we sent 350 packets, dkxload
sends packets of each size for three minutes and records the total number of packets
transmitted. Thus, the values we present are the mean RTTs as opposed to the
minimum times presented in Section 2.5. We expect the means to be only slightly
higher than the minimum round trip times because of the large number of packets
that are sent with each iteration. For example, the dkxload tests to Fishonaplatter
send between 600 and 3,300 packets depending on the size of the packet. Obviously,
smaller packets are transmitted in larger numbers in a three minute time period than
larger ones.

2.7.1 Analysis of results

Table I
"RTT" test to Fishonaplatter using dkxload

Packet Packets | Kbytes | Mean KTT Dkbench
size(bytes) | per sec | per sec (ms) results (ms)
1 18.07 0.018 55.33 54.64
2 18.07 0.036 55.32 54.29
16 17.94 0.287 55.73 55.14
17 17.88 0.304 55.94 55.13
84 17.51 1.470 57.12 56.88
85 17.49 1.487 57.18 56.52
112 17.21 1.927 58.12 57.34
113 17.28 1.952 57.88 57.14
168 16.88 2.836 59.23 58.41
169 16.95 2.865 58.98 58.60
756 13.21 9.087 75.69 69.97
757 5.76 4.361 173.6 160.52
1024 5.79 5.928 172.7 166.35
1025 3.68 3.780 271.5 267.36

The results for Fishonaplatter are presented in Table I. The final column in the table
lists the minimum values obtained from the dkbench software. As we anticipated,
because dkxload presents the mean values, the dkxload results are consistently
slightly higher than the dkbench results. We conclude from this table that our
software functions properly, or, both tools are faulty in similar ways. With dkxload, as
with dkbench, we have an increase in the RTT of approximately two minimum round
trip times from 756 to 757 bytes because of the windowing effect.

In addition to verifying our software, the dkxload test also offers two additional pieces
of information: the number of packets sent per second and the number of kilobytes
transmitted per second. Referring once again to Table I, we see that the number of
packets sent per second declines as the packet size is increased. _This is an obvious
conclusion. As the packet size increases, the time necessary to transmit the packet
also increases, as does the number of accesses to the Datakit backplane, and more
mbufs are required to hold the data. Thus, the number of packets sent per second
decreases. Notice the drastic eflect the windowing has on the number of packets
transmitted per second. A full window of 756 bytes transmits 13.21 packets/sec, yet,
with a packet size of 757 the network only transmits 5.76 packets/sec for this round
trip time test in which the packet is being echoed back to the sending process.

The number of kilobytes transmitted per second peaks at a full window of 756 bytes.
From one byte to the window of 756 bytes, the number of kilobytes transmitted per
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second increases. However, again notice the drastic effect the windowing has on these
results, in which there is a large propagation time between the source and destination.
The effect due to windowing causes the number of bytes transmitted per second to
drop from approximately 10 Kb/s at a full window to under 4.4 Kb/s for a packet size
one byte greater than the window size. The significance of the values for the number
of kilobytes transmitted per second is discussed in the next chapter. However, note
that the number of kilobytes transmitted per second (i.e., the throughput) of a lightly
loaded network from Vangogh to Fishonaplatter with echoing peaks at 9.987 Kb/s.

3. LOADED NETWORK MEASUREMENTS

In this chapter we measure several performance parameters of the Datakit network,
specifically the mean RTTs with background traffic and the throughput. The goal of
this experiment is to determine the effectiveness of a loaded Datakit network, and the
potential bottlenecks in the network.

3.1 Software

In addition to dkbench and dkbenchs, we use two other programs designed to load the
network. One of the programs again resides on the local host, and the other is
stationed on the remote host. The local program, trafgen (traffic generator), works as
follows:

virtual circuit connection established
read the clock
repeat
write 'packet’ to destination
until 1 MB sent
read the clock again
transfer time = second clock reading - first clock reading

The program writes 1 MB to the destination as fast as it can. The user program is
never reading from the network (i.e., the remote program does not echo back the 1 MB
of data), and all error corrections and retransmissions are left to the underlying
protocol. The time we obtain to transfer the data does not include call set up time or
the call take down time, because the virtual circuit connection is established prior to
reading the clock. The clock is read immediately before the first packet of the 1 MB is
sent to the destination and the clock is read again directly after the last packet is
transmitted to the remote machine.

In determining an appropriate packet size to send to the destination, preliminary
trials were conducted with packet sizes of 1024, 2048, and 4096 bytes. The results
were indifferent to changes in the packet size: in all cases approximately the same
time was required to transfer the 1 MB of data. We conjecture the reason for this is
that all the packet sizes are multiples of the URP window size of 1024 bytes.
Therefore, we decided to use a packet size of 1024 bytes. :

The remote program, trafgens (traffic generator server), simply reads the packets
from the network and discards them as fast as possible. It continues until it reads an
EOT in the first byte of a packet. Once it receives the EOT, the program exits.

3.2 Methodology

As in the previous experiments, the source host was Vangogh; for the remote host, we
primarily used Fishonaplatter. We measured mean round trip times with background

g
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traffic and throughput at the maximum distance of 3,000 miles, to determine whether
the results would be in accordance with the theoretical ones.

Each test consisted of measuring the mean round trip times using dkbench, while a
variable number of trafgen processes are running simultaneously in the background.
We accomplish this through the use of shell scripts. The scripts start up between one
and fifteen trafgen programs and then sleep for approximately five seconds. Next,
dkbench transmits 100 packets with sizes of either 1 byte or 756 bytes to the same
destination. One byte is chosen to represent character-at-a-time transactions, and
756 bytes to fill a window, emulating a user transferring large amounts of data. The
repetition count of 100 is picked so that the dkbench program can start and finish
while the trafgen programs are running. We reduced the repetition count from 350 to
100 because we were interested in the mean values and not in the minimal ones. To
calculate a good estimate of the mean, we omit the few outliers in each trial.

For each trial, the minimum, mean, and standard deviation of the round trip times
from the packets generated by dkbench are recorded, and for trafgen we record the
start times, end times, and the total number of bytes transferred per second. From
the trafgen program we calculate the total background traffic being transferred while
the dkbench program is running. Although not all the trafgen programs start and end
at exactly the same time, we consider these discrepancies to be negligible because the
differences among the start times of the various trafgen processes and those among
their end times are insignificant in comparison to their total running time. Finally, as
with the experiments in Chapter 2, all tests were run at unsocial hours during the
night to minimize the effects of unwanted network traffic and of host loads on the local
and remote machines.

3.3 Expected results

Intuitively, we expect the minimum values for the packets generated by dkbench to be
independent of the background traffic and the mean values to increase as the amount
of background traffic generated increases. We anticipate the minimum times to be the
same because the case always exists in which the packet is unaffected by the
background traffic and receives service immediately. Whereas in the previous chapter
we were interested in the minimum values for a non-loaded network, in this chapter
we are interested in the average RTTs caused by a loaded network. Clearly, as the
number of processes transferring background traffic increases, we conjecture that
our mean RTTs to also increase.

3.4 Analysis of results

Figures 5 and 6 display the results from the first test in our experiment. For this test,
dkbench and all trafgen software were on Vangogh and dkbenchs and trafgens
programs resided on Fishonaplatter. These figures were obtained by having dkbench
send 100 packets of 756 bytes each. Figure 5 displays the mean and minimum RTTs as
functions of the number of background trafgen processes running simultaneously
with the dkbench generated packets. As we anticipated, the minimum values did not
fluctuate at all throughout this test.

The mean RTTs, however, show significant increases over the minimum values
especially when seven or more trafgen processes are running simultaneously in the
background. With six and below simultaneous background processes running while
the dkbench measurements are being taken, the mean and the minimum correspond
very closely to one another. Why do the increases start at approximately seven
background processes? To help us answer this, Figure 6 displays the results from the
same test as functions of the total background traffic being created by the trafgen
processes. Up to background traffic of about 60,000 bytes/s, the mean delays
correspond very closely to the minimum values obtained.
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Is the line speed of the T1 lines causing increases in the mean round trip times? Is
the network congested?

The answer is clearly no. The effective speed of the T1 line is 1.344 Mb/s, or 168 kB/s.
We achieve a background throughput of less than half the potential throughput of the
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network. Thus, the bottleneck is clearly not the speed of the network. The reasons
for the increases in the mean round trip delays must therefore lie within the Datakit
hardware. '

Are the increases in the mean RT times caused by congestion and queueing in the host
interface?

To answer this question, we have repeated the test with dkbench on a different
machine. Figures 7 and 8 display the results from the second test in our experiment. .
For this test, the server programs are once again on Fishonaplatter and all trafgen
software is run from Vangogh; however, the dkbench software resides on Monet. These
figures display the results obtained by sending 100 packets of 1 byte each. These
results are similar to the results from the first test in several ways. The mean RTT
does not vary significantly over the minimum for less than seven simultaneous
background processes and a total background throughput of 60,000 bytes/s. Since
both tests yielded similar results, we conclude that the local host interface is not
causing the increases in the mean RTTs.

Is the bottleneck the trunk interface?

Our hypothesis is that the trunk interface is indeed the bottleneck due to the overflow
and packet loss it causes beyond a certain threshold of load. Data is arriving from the
Datakit backplane at a rate of 8 Mb/s to a FIFO queue connected to the trunk. Data
waits on the queue until it can be sent over the trunk. The speed of the trunk is only
1.5 Mb/s. Thus, the FIFO is growing at a rate of 8 Mb/s - 1.5 Mb/s = 6.5 Mb/s. Also,
data in the FIFO queue is stored in 16 byte chunks as it arrives from the broadcast
bus. Consecutive chunks stored in the queue are not necessarily all from the same
process. Since the trunk empties the FIFO queue, the traffic on the trunk is highly
multiplexed, and large amounts of data from a single source have interleaved amongst
them characters from other sources. In addition, this procedure burdens the remote
host interface as it tries to demultiplex the incoming byte stream into separate
buffers. Thus, at the remote host, overflow may occur which results in packet loss. A
potential future experiment, beyond the scope of this paper, could be to determine
whether the losses are caused more by the local host or the remote host.

This also explains the reason the network does not achieve a maximum throughput
and maintain it. The total trafgen traffic peaks at about 8 processes and then begins
to decline. This can be explained by an argument similar to the above: the greater
the number of simultaneous processes, the higher the degree of multiplexing on the
trunk, and the heavier the burden at the remote host interface. Hence, a reduction of
total throughput is the outcome.

3.5 Measured throughput for a single process

This section describes an experiment designed to measure the throughput achievable
by a single process. We first discuss the maximum achievable throughput based upon
our minimum RTT measurements in Chapter 2. Next, we compare the maximum
throughputs to the measured throughputs, and determine the effective window size as
opposed to the actual window size. Finally, we measure the correction factor, the
additional delay incorporated with each window sent, and conjecture about the
sources of this delay. '

3.5.1 Methodology

This experiment involves various sources and destinations. Each test consists of
measuring the time to do a file transfer (i.e.,, a 'push’ in Datakit) from the source to
the destination. However, we want to factor out the time to do call set up and call take
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down to obtain the throughput of an established connection. In order to factor out
this time, ten transmissions of a zero length file are made from the source to the
destination, and the minimum time is recorded.

Second, a large (~300 KB) file if transferred ten times from the source to the
destination, and the minimum values of the transfer times are recorded. Transferring
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a large file gives us a good indication of the throughput (the number of bytes
transmitted per second). All times are recorded with the UNIX ¢ime command.
Although the accuracy of this command is only to the second, multiple repetitions of
the tests were conducted and all the values obtained were very consistent. Also, as
with all of our other experiments, all tests are run at unsocial hours of the night to
minimize the effects of unwanted network traffic and host loads on the local and
remote machines.

Once the minimum times to transfer the zero length file (called ZERO in this section)
and the large file (called LARGE hereafter) are recorded, the measured throughput of
the network is obtained by dividing the size of LARGE by the difference of the transfer
times of LARGE and ZERO, or:

SiZQOfLARGE [7]
transfer time of LARGE) — (transfer time of ZEFRO)

Measured throughput = (

Next, the measured throughput is compared to the maximum throughput. The
maximum throughput for a single process is:

WindowSize (8]

Mazimum throughput = Minimum round trip time

where the minimurd round trip time is the one obtained in Chapter 2. This formula is
arrived at by the following: the most amount of data a process can transmit is a full
window, and before the process can transmit another window, it must wait for an
acknowledgement. Thus, the maximum number of bytes transmitted per second (i.e.,
the throughput), is dependent upon the window size, and the time to receive the
acknowledgement.

Finally, we compute the effective window based upon the measured throughput, and
the correction factor incorporated with each window sent, according to the following
formula:

WindowSize _ Effective unndow [9]

Measured throughput = RTT+correctionfactor RTT

3.6.2 Analysis of results

The results for this experiment are displayed in Table II. Before we analyze the results
we would like to step through one entry in the table and explain how the results were
obtained. From UIUC* to Vangogh? , the window size is 84 bytes. UIUC* still has not
incorporated the necessary changes to have a 756 byte window. Other values
necessary for this Table Il entry are as follows:

2. Recall UTUC* denotes experiments conducted with a VAX 780 at the University of Illinois.
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Table II
Maximum Throughput vs Measured Throughput for a Single Process
Source /Destination Window | Effeclive Mazimum Measured Correction
size unndow throughput | throughpu! factor
(bytes) (bytes) (bytes/s) (bytes/s) (ms)
UIUC* >> Vangogh 84 82.68 2100 2066.9 0.6
Vangogh >> Fishonaplatter 756 518.76 13830 9490.7. 25
Fishonaplatter >> Vangogh 756 520.53 13830 9523.2 24.7
Vangogh >> UIUC* 756 459.49 17784 10808.9 27.4
minimum time to send ZERO: 4 seconds
minimum time to send LARGE: 166 seconds
size of LARGE on UIUC*: 334848 bytes
minimum round trip time: 40 ms

From these values, the entries in our table can be easily calculated:

Theoretical maximum throughput =

Measured throughput =
Effective window =

Correction factor per window =

84/0.040 = 2100 bytes/sec

334848/(166-4) = 2066.9 bytes/sec

2066.9 x 0.040 = 82.68 bytes
84/2066.9 - 0.040 = 0.6 ms

It is clear that for a small window (84 bytes) the measured throughput and effective
window are extremely close to their maximum values. This is due to the window size
being the bottleneck in the network. For such a small window size, queueing delays
and CPU processing times are negligible. Notice that the correction factor for the
round trip time of a full window is only 0.6 ms; hence, we are actually dealing with a
round trip time of 40.6 ms.

However, for the remainder of the cases we are dealing with a 756 byte window, and
decreases in performance are evident. Tests from Berkeley to New Jersey yield an
effective window in the order of 520 bytes, and tests to Illinois only about 460 bytes.
Why is there such a drastic decrease in the network’s ability to utilize the full window?
First, note that the correction factors for both the cases of Illinois and New Jersey are
approximately the same, i.e., around 25 ms. This leads us to believe that the delays
are due to processing time in each host and are not due to the network. If the delays
were due to the network, the correction factor for New Jersey would be larger than the
correction factor to UTUC* because of the differences in the propagation delay. This
delay could be the time required for the 'push’ program to process the
acknowledgement and transmit the next window. The other major cause of delay is
explained in Section 3.7.2.

'3.6 Measured throughputs for multiple processes

This section describes another simple experiment designed to measure the
throughput due to multiple processes. For this experiment, we use only
Fishonaplatter as the remote host. This is because the tests uncovered many bugs in
the 4.3 Datakit driver, which often caused the machine to crash, and employees at Bell
Labs of Murray Hill, N.J. were extremely tolerant and cooperative.
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3.6.1 Methodology

The two programs we use with this test are trafgen and trafgens, described in Section
3.1. Each test consists of running a variable number of trafgen programs
simultaneously. We accomplish this by using shell scripts. The script runs between
one and 14 trafgen processes simultaneously. For each process running, the start
time, end time, and throughput are recorded. From these results, we calculate the
total amount of data being transferred. To reduce the possibility that the local host
load would affect the results, half of the trafgen processes originated from Vangogh
and the remainder were run on Monet. Once again, we would like to mention that not
all the trafgen programs started and ended at exactly the same time, and thus the
total throughput we measured has a margin of error. We consider this discrepancy to
be negligible because the differences among the start times and among the end times
were insignificant in comparison to the total running time.

3.6.2 Analysis of results

Table III
__Throughputs for Multiple Processes
Number of Overall Throughput
processes throughput | per process
1 9761.15 9761.15
2 19515.2 9757.62
3 29261.9 9753.97
4 38947.6 9736.9
) 48616.1 9723.21
6 58280.3 9713.38
7 67955.0 9707.86
8 71829.5 8978.69
9 72508.3 8056.48
10 83550.8 6355.08
11 58098.9 5281.72
12 56426.9 4702.24
13 54805.2 4223.48
14 50005.2 3571.8

Table III contains the results obtained from this test, and Figures 9 and 10 display
graphs of the throughputs obtained for each process and of the total throughput
versus the number of trafgen processes. First of all, note that the throughput
obtained for a single process is in the order of 10,000 bytes/s. This parallels, as it
should, the results from the previous section for the throughput of a single process.
As the number of simultaneous trafgen processes increases, the throughput per
process maintains approximately the same level around 10,000 bytes/s until we reach
seven or more simultaneous trafgen processes. We conjecture again that the trunk
interface is causing a bottleneck at that point.

As we further increase the number of simultaneous processes, the throughput per
process continues to decline as depicted in Figure 9. Many channels talking
simultaneously cause Datakit bus contention, but the drop in throughput per process
may be caused by buffer overruns at the remote location. There is a limited buffer
capacity on Fishonaplatter, which is receiving data from muitiple channels as fast as
our local machines can transmit it. Data may arrive which Fishonaplatter cannot
accept because its buffers are full, thus, it must request a retransmission. These
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buffer overruns at the remote host interface could be severely reducing the
throughput per process.

Figure 10 displays the total throughput versus the number of simultaneous processes
generating load. The throughput linearly increases until we reach about 7 processes,
then starts to decrease. As displayed in Table III, the maximum throughput is about
72 KB/s due to the T1 trunk interface. The maximum throughput is always limited by
that of the lowest capacity element in our chain of buffers and interfaces. In this case
it is due to congestion of the trunk interface board. However, why does the
throughput decrease and not maintain a steady rate? This can be attributed to buffer
overruns at the receiver. The higher the number of channels transmitting
simultaneously, the greater the possibility that a buffer is overrun and a
retransmission is required.

3.7 Verification of results using different software

This section verifies the results discussed in Section 3.5.2 by describing a similar
experiment with the dkxload software designed by Gary Murakami. In the Chapter 2,
we verified the dkbench results with the RTT test. In this section, we verify the single
process throughput rates using the transfer test.

The transfer test measures single process transfer rate, i.e., the maximum data
transfer rate that a single process application can expect. The transfer rate is
iterated over a range of user write (and read) data sizes. The transfer test, as with
the RTT test of dkxload, runs for three minutes for each packet size. The packet sizes
we chose the same as those we used in Chapter 2.

3.7.1 Analysis of results

To gain confidence in the results presented above in Section 3.5.2, we ran the transfer
dkxload test with Vangogh and Fishonaplatter. The results are presented in Table Iv.
For a packet size of 1024 bytes (the same packet size we used for trafgen), we once

-
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again achieve a throughput of approximately 9,700 bytes/s. This also corresponds
closely to our file transfer throughput of 9,500 bytes/sec presented also in Section
3.5.2. Both trafgen and dkxload yield a slightly higher throughput in comparison to
our file transfer throughput because their remote server programs drop the data,
whereas for a file transfer the data is written to a file. The results from these packet
sizes show that our software functions properly.

A closer look at the throughput generated uncovers two interesting problems with the
network. First, the file transfer throughput and the maximum throughput for a single
process discussed previously in this chapter were about 9,600 bytes/s, yet Table IV
exhibits a throughput of nearly 13,000 bytes/s with a packet size of 756 bytes.
Second, why is there a significant drop in the throughput from 1024 to 1025 bytes
when we expect the throughput for these packet sizes to be roughly the same because
they are both within two windows?

3.7.2 Limited throughput due to the KMC

The KMC is the cause of these strange new results. The KMC arbitrarily uses blocks
that are 1/4 the URP window size of 1024 bytes. For an URPK window a block of data
is in the following format.:
<252 bytes of data><4 byte trailer>

Thus, for any window size, the KMC would be allowed to have up to 4 unacknowledged
blocks outstanding; however, for an unknown reason, the KMC limits itself to three
blocks outstanding, yielding the 756 byte window size. The KMC code and the kernel
interface allow only one outstanding request per channel at a time in the KMC. The
KMC does not tell the host it is ready for another transmission until all the blocks of
the previous request have been acknowledged. The mbufs being fed to the KMC are
1024 bytes long, which means that the KMC transmits 756 bytes, waits for an ACK,
transmits the final 268 bytes, and, after receiving an acknowledgement for the 268
bytes, accepts another mbuf of data. This is poor design, and is severely limiting our
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Table IV
Transfer test to Fishonaplatter
Message Throughput | Mean transfer Kilo
size(bytes) (Kbytes /s) rate (ms) packets /s
1 0.0198 50.42 19.83
2 0.039 50.39 19.84
16 0.315 50.76 19.70
17 0.335 50.73 19.71
84 1.635 51.38 19.46
85 1.652 51.43 19.44
112 2.164 51.75 19.32
113 2.182 51.78 19.31
168 3.212 52.29 19.12
169 3.233 52.28 19.13
756 . 12.96 58.33 17.14
757 7.36 102.86 9.72
1024 9.68 105.76 9.46
1025 6.56 156.25 6.40

throughput. For transferring a large file, the data is sent to the KMC 1024 bytes at a
time. Thus, the data is being transmitted from the sender to the receiver in the
following byte sequence: 756, 268, (another mbuf) 756, 268, 756, 268, and so on.
Hence, the typical usage of the network is not utilizing its full potential.

The packet size of 1025 bytes accentuates further the limitations of this
implementation. First, a 1024 byte mbuf is sent to the KMC. The KMC transmits a full
window, 756 bytes of data. After receiving an ack it sends the final 268 bytes of the
mbuf to the destination. The KMC receives an ack from the remote program and
another request arrives to the KMC containing the final byte. Thus, the KMC transmits
the final byte and the transfer is complete. This explains the significant drop in
throughput from a packet size of 1024 to 1025 bytes. Even though we have a 756 byte
window, the KMC transmits a 1025 bytes packet in three transmissions of sizes 756
bytes, 268 bytes, and 1 byte. The problem is obvious.

Table IV displays a throughput of approximately 13,000 bytes/s with a packet size of
756 bytes. 756 bytes is the size to achieve maximum throughput. The reason is as
follows: the program is transmitting multiple packets, each 756 bytes in length, or,
each request to the KMC is 756 bytes. The KMC transmits the entire packet, waits for
an ACK, and accepts another request. The KMC in this case is always transmitting a
full window. The theoretical maximum throughput for a single process from Vangogh
to Fishonaplatter is listed as 13,830 bytes/sec in Section 3.5.2, even though we only
achieved a throughput of approximately 9,500 bytes/s. In this section we discovered
that the network is capable of achieving a throughput of nearly 13,000 bytes/sec for a
single process. The effective window computed from Vangogh to Fishonaplatter was
518 bytes with file transfer, yet, if the network utilizes its potential, it can achieve an
effective window of 705 bytes. The KMC is severely limiting our throughput.
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4. CONCLUSION

The design objectives of Datakit were to derive an adequate architecture for the
combination of local and wide area networks to present a uniform appearance to the
user, to be effective as a transport mechanism for a great variety of traffic patterns,
and to be usable economically by a wide range of consumer products[FRAS83]. To test
the effectiveness of Datakit in achieving these design objectives, our experiments
measured the delay and throughput of the XUNET Datakit network. We have found
that the network is utilizing a window much smaller than one that the network is
capable of sustaining. We have found the delay is largely dependent upon the window
size for large packets, and the propagation delay. The throughput per process is
currently not achieving its full potential because of the KMC interface problem Also,
the throughput for multiple processes maintains a steady rate and then begins to
decline due to congestion at the trunk interface.

In order to reduce delays and increase throughput for wide-area configurations, the
window size should be expanded. In nearly all of our measurements involving a
significant propagation delay, the window had a tremendous effect upon the results.
Once the window is expanded and the network is capable of maintaining an acceptable
throughput for many processes, the network will be much better suited to wide area
applications. These tests were designed, and the methodologies laid out, with the
intention they will be repeated at a later date once modifications are made to the
network. Experiments of this type must be performed in order to test the
effectiveness of any network. We hope that the tests will enable network designers to
improve the overall performance of XUNET.
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