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ABSTRACT Object-oriented databases provide new kinds of data semantics in terms of
inheritance and structural relationships. In this paper, we examine how to make use of the
additional semantics to obtain more effective object buffering and clustering. We have
instrumented real-world object-oriented applications, ie., the Berkeley CAD Group’s OCT
design tools, and have used the collected information as the basis for a simulation model in
which to investigate alternative buffering and clustering strategies. We have observed from
our measurements that real CAD applications exhibit high data read to write ratios. We
propose a run-time reclustering algorithm whose initial evaluation indicates that system
response time can be improved by a factor of 200% when the read/write ratio is high. We
have also found it useful to limit the amount of I/O allowed to the clustering algorithm as
it examines candidate pages for reclustering at run-time. Basically, there is little perfor-
mance distinction between limiting reclustering to a few I/Os or many, so a low limit on
I/O appears to be acceptable. We also examine, under a variety of workload assumptions,
context-sensitive buffer replacement policies with alternative prefetching policies.

KEY WORDS AND PHRASES: Object-oriented DBMS, Design Databases, Clustering,
Context-sensitive buffering






1. Introduction

Object-oriented concepts, developed originally in Smalltalk, have been accepted by
database researchers as the basis for dealing with semantics-rich applications like
CAD/CAM. The key aspect of an object-oriented system is the mapping from an
application’s logic into a set of abstract data types, with associated operations and attri-
butes. In addition, information (operation/attribute definitions) can be propagated along
the lattice formed by instances, types and supertypes through inheritance.

These object-oriented concepts have been further enhanced to support complex object,
version and correspondence management, and new ways to propagate information between
instances [KATZ87, CHANS87a]. For example, in our Version Data Model, we explicitly
support three structural relationships, ie. configuration, version history and correspondence
(see Figure 1.1). Note that objects are named by the triple name[i].type, where name is the
object name, { is the version number, and #pe is its representation type.

We have proposed a new instance-to-instance inheritance in which information can be
propagated among instances along structural relationships. For instance, there are some
properties and behaviors, as well as structural relationships and constraints, that an offspr-
ing version might wish to inherit directly from its parent version rather than its type. Con-
sider the following example. If ALU[2].layout corresponds to ALU[3].netlist, then a new
descendant of ALU[2]layout should inherit this correspondence relationship by default.
Just as the relational query optimizer uses the table cardinality and indexing information to
produce efficient access plans, object-oriented systems could also use knowledge of struc-
tural relationships and inheritance to improve system performance [CHANS87a].

In this paper, we are particularly interested in how structural relationships can be used
by clustering and buffering algorithms to improve DBMS response time. For instance, a
design browser may walk through multiple representations of the same design objects, and
clustering across correspondence is advantageous. Alternatively, a simulation tool traverses
the net list representation hierarchy, and clustering along the configuration hierarchy is
best. If information is frequently inherited along the version history, the system may place
the object near its ancestor object to save disk space. Moreover, the buffer manager may
accept hints from the clustering algorithm to keep candidate pages for clustering in the
buffer pool, to avoid I/Os during clustering and to improve response time.

Several object-oriented database management systems have implemented object-based
clustering mechanisms [MAIE86, ATWO85, ZDON84, KIM87]. The common characteris-
tics of these are: (1) the segment is the clustering unit, and (2) user’s hints are used, but
only at object creation time. For instance, users may provide a hint such as “"place near
object XX". The system would then try to store the target object with object XX in the
same page or adjacent page. Since these systems do not model structural relationships as
first class objects, the storage component has no structural information to exploit during
clustering. That is, users’ hints are the only useful semantics used by the storage com-
ponent. Furthermore, physical placement hints based on instance-to-instance inheritance
are not exploited by any system. Neither do these systems consider reclustering when
object structures are changed.

We will describe a run-time reclustering algorithm which can improve overall system

response time by 200% when the read/write ratio is high. We have found it useful to limit
the amount of 1/O allowed to the clustering algorithm as it examines candidate pages for
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Figure 1.1 -- Version Data Model

Design data is organized as a collection of typed and versioned design objects, interrelated
by configuration, version, and correspondence relationships. Objects are internally denoted
by the triple name(i].type, where name is the object name, { is the version number, and fype
is its representation type. For example, ALU[4].layout is descended from ALUJ[3].layout
and is the ancestor of ALU[S].layout. It is also a component of DATAPATH]|2].layout and
is composed of CARRY-PROPAGATE]2].layout. Additionally, ALU[4]. layout corresponds
to other objects, such as ALU[3].transistor.

reclustering at run-time. We will also discuss how prefetching with alternative scope of
candidate pages affects response time when different buffer replacement policies are used.

We have instrumented an object-oriented Data Manager OCT, developed by the UC-
Berkeley CAD group [HARRS86}, and have collected the access pattern information of
more than ten CAD tools running on top of OCT. About 5000 tool invocations are
recorded representing approximately- 400 hours of design work. In the measurement
results, we have observed very high data read to write ratios from the OCT tools environ-
ment, implying that dynamic clustering and context-sensitive buffering can be a big pay-off
in object-oriented applications.

The rest of the paper is organized as follows. Section 2 discusses how structural rela-
tionships and inheritance can be used in various clustering and buffering algorithms. The
OCT tools’ access pattern, read/write ratio, I/O rate and structure densities are reported in
Section 3. They are used to define the workload in the simulation model described in Sec-
tion 4. The simulation model is constructed in a modeling language called Performance
Analyst’s Workbench System (PAWS) [PAWSS3] to evaluate the performance impact of
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different algorithms. The simulation results are discussed in Section 5 through "Two-level
factorial” analysis technique. Our conclusions and future directions are given in Section 6.

2. Effective Buffering and Clustering

Engineering design, manufacturing and CASE applications demand high performance
object management systems. They utilize the structural relationships and inheritance
mechanisms to effectively model their complex environments. Since conventional relational
database management systems do not support such modeling primitives explicitly, the
storage components cannot take advantage of them at run-time.

Moreover, these complex applications frequently perform materializations of an object
hierarchy. Loading a large object hierarchy into memory has become the bottleneck. In
this section, we describe how to obtain better bandwidth by exploiting inheritance and
structural semantics in buffering and clustering for object-oriented applications.

2.1. Smart Clustering

The objective of clustering is to place frequently co-referenced objects near each other
in physical memory. For static clustering, the system is quiesced, and the database adminis-
trator decides on a partitioning of objects. When high availability is required by applica-
tions such as manufacturing, static clustering is not effective. Dynamic clustering, on the
other hand, is done at run-time when concurrent accesses are permitted. Although cluster-
ing on object creation or update may degrade the response time of writers, the simulation
results in Section 5 show that such degradation to writers can be offset by a large improve-
ment of readers’ response time. Dynamic clustering, therefore, becomes very attractive in
object-oriented applications where reads dominate writes (Refer to Section 3).

The inputs to the clustering algorithm can be user’s hints such as "access by configura-
tion", the interobject access frequencies, and the characteristics of inherited attributes. The
user’s hints are registered into the system through a procedural interface. The interobject
access frequencies are inherited from the type at object creation time. For instance, in
CASE applications, the run-time debugger frequently navigates from the object code to the
source code and not in the other direction. Such information can be predefined at type
creation time and used by all of its instances.

The clustering algorithm can be sketched as follows (the full algorithm is presented in
[CHANB87a)]). For each newly created instance, it chooses an initial placement based on
which of the instance’s relationships is most frequently traversed. This frequency informa-
tion is available in the corresponding data type and is inherited by the newly created
instance. These frequencies could be affected by the choice of how to implement the
instance’s inherited attributes. For inherited attributes, the clustering algorithm uses an
additional set of cost formulas to choose between implementation by copy versus by refer-
ence. The augmented access frequencies may change the initial placement of the instance.

A set of parameters are used to control the clustering algorithm:

(a) Candidate page pool. When looking for a candidate page for placement, the cluster-
ing algorithm may only use the pages available in the buffer pool avoiding any 1/Os
during the clustering process. Or, the algorithm may search a limited number of
pages on disk. If the I/O limit is infinite, then the algorithm would use the entire
database as the candidate page pool. Therefore, the candidate page pool can be
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Within_Buffer, With_IO_limit, or Within_DB.

(b) Page splitting policy. When the preferred candidate is full, the storage manager must
either split the page to make room for the new object, or choose the next best candi-
date page which has space for it. The page is split if the expected access cost resulting
from the page-split is better than the cost of putting the new object in the next best
candidate page. Otherwise, the next candidate page is examined, and the decision
process recurses if there is insufficient room on it.

The problem of estimating the cost resulting from the page-split is similar to the
Graph Partitioning Problem. However, this is known to be NP-complete and may not
be suitable for a run-time clustering algorithm. We have identified a greedy algorithm
[CHANS7a] that partitions the nodes of the inheritance-dependency graph into two
subsets that can fit into a page individually. At the same time, the greedy algorithm
tries to minimize the total cost of broken arcs. Because it does not try to find the
optimal partition and only scans through the set of arcs once, the total running time is
guaranteed to be linear. If the degree of connection and the number of nodes are
small, the complexity of the page splitting algorithms should have no major impact on
the overall system response time. Therefore, the page splitting policy can be
No_Splitting, Linear_Split, or NP_Split.

(c) User Hints policy. Many computer-aided design applications make frequent use of
configuration relationships, However, most inheritance references are along version
history relationships, since a descendant version typically obtains information from its
ancestor. If users can make this known to the system, it can cluster objects based on
the characteristics of the application. We would like to find out the effectiveness of
these user hints. Therefore, the user hints policy can be User_Hints or No_Hints.

2.2. Smart Buffer Replacement

The most common operations of object-oriented tools are navigation along the struc-
tural relationships and simple retrieval of design objects. In general, these tools have pretty
static access patterns. Unfortunately, these are ignored by most database systems.

To obtain better response time, the buffer manager must exploit knowledge about the
structural and inheritance relationships to determine prefetching and buffer replacement
strategies. Response time is improved if appropriate objects can be prefetched before actu-
ally being needed, or if related objects can be kept in the buffer pool even if the relation-
ships span disk pages. ¥

The implementation overview of an object-oriented buffer manager is presented here.
(Refer to [CHANS7a] for more detailed algorithms) The least sophisticated buffer manager
uses a simple LRU buffer replacement policy and attempts no prefetching. A more sophis-
ticated approach uses a priority scheme such that the lowest priority pages are the ones to
be replaced first. The key challenge is to use the semantics of the interrelationships among
objects on the buffered pages and hints about the access patterns to set the priorities intelli-
gently. Frequently accessed pages have their priority increased. Infrequently accessed
pages have their priority reduced, but this may be modified by their interrelationships with
other pages, especially if those are frequently accessed. Whenever an object is accessed, its
related pages (e.g. pages containing its components and its inherited attributes) might be in
the buffer pool already. The traditional LRU buffer replacement algorithm could easily
choose these pages to be replaced, and thus cause extra I/Os to bring them in later on.
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Another way to obtain good response time is to be smart about prefetching. At the
beginning of an interaction with the database, the users provide the buffer manager with
access hints, such as “my primary access is via configuration relationships”. This informa-
tion influences the buffer manager’s prefetch strategy. Touching an object causes the page
containing it and the pages containing its immediate subcomponents to be brought into the
buffer pool and given the same high priority. This achieves extremely good performance
for applications that walk the configuration hierarchy. Similar prefetch hints can be used to
obtain a version object, its immediate ancestor, and its immediate descendents. Also,
correspondence relationships can be used to obtain all objects corresponding to the one
being accessed. Inheritance is treated in a similar fashion for determining prefetch groups.

A set of parameters are used to control the buffering algorithm:
(a) Buffer Pool Size.

(b) Buffer Replacement Policy. Three policies are examined: Context-sensitive, LRU and
Random.

(c) Prefetch Policy. The candidate pages for prefetching can be constrained to either the
buffer pool or the entire database. Notice that prefetching within buffer pool does not
create any extra logical I/Os. However, it will cause the buffer priority to be adjusted
to the requesting applications.

2.3. Experiments to be evaluated

These control parameters are used in the simulation model described in Section 4. In
this paper, we only report the results of the following experiments:

(1) Alternative clustering policies with varying page splitting policies.
(2) Alternative buffer replacement policies with varying prefetching policies.

For more detailed results, refer to [CHANBS9].

3. Object-Oriented Application Access Pattern

We have instrumented OCT, an object-oriented data manager, interviewed several
OCT’s users who are VLSI CAD tool developers, and collected the access patterns from
real user environments. OCT has more than 20 client applications, and it is being used
heavily in the Berkeley CAD community. Although it only provides a subset of object-
oriented concepts, we felt that OCT will give us a very good starting point in understanding
the access pattern of object-oriented applications. In the following section, we report on
our findings.

3.1. OCT Data Manager Overview

OCT is a data manager for VLSI/CAD applications [HARRS6]. It supports a set of
primitive object types which are used frequently by VLSI CAD tools and arbitrary attach-
ments among these objects. For instance, in Figure 3.1, a net is attached to a facet which is
a basic design unit, four terminals are attached to the net, and three paths are attached to
various terminals. Every attachment creates a link between two objects. These links are
bidirectional and provide basic composition hierarchy information. However, it is users’
responsibility to maintain the legal attachment among objects and the system does not pro-
vide any structure validation. Further, OCT support no explicit inheritance mechanisms.

-
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Figure 3.1 -- MOSAICO Access Pattern

The run-time navigation path is represented by the arc direction from one object to
another. A net is attached to the facet which is basic unit of design cell. Terminals are
attached to the net whereas paths are attached to the terminals.

3.2. Information Collected
For each OCT tool invocation, we record the following information:

(1) Tool Identifier such as “SPARCS” or “VEM”. This helps us understand the run-time
behavior of an individual application. It also allows us to relate tools’ functionalities

with their overall run-time behavior.

(2) Read and write activities. When objects are retrieved through "attachment” links, they
are recorded as structure read. Similarly, any links created between objects via
“"attachement" are viewed as structure write. Remaining read or write operations are
viewed as simple read or simple write. We also record the object type information for
every read and write operations.

(3) Session time. A session is defined as the time interval between octBegin() and
octEnd(). With this, we can measure the I/O rate per session and understand the
correlation between session time and applications’ functionalities.

(4) Fan-out of upward and downward structural access. Reading a composite object may
only trigger a subset of its component objects being retrieved. Similarly, reading a
component object may cause several of its composite objects being returned. For
instance, a netlist simulator would only navigate along the <cell>, <net>, and <seg-
ment> path, and the remaining component objects attached to <cell> are totally
untouched. That is, not all of the component objects are read when an application is
reading a composite object at run-time.



3.3. R/W ratio

For every tool invocation, we collect the number of structure read, structure write,
simple read, and simple write. All these read and write operations are at the logical level.
We define the read/write ratio of every tool invocation to be the total number of structure
reads and simple reads divided by the total number of structure writes and simple writes.
Figure 3.2 shows the read/write ratio of nine OCT tools. VEM, a graphical editor not
included in Figure 3.2, has the highest read/write ratio of 6000. The rest of the OCT tools’
read/write ratios vary from 0.52 to 170. One interesting note is that different phases of the
same application may have wide variations in the read/write ratio. For instance, the macro
cell router MOSAICO is composed of atlas, cds, cprep, PGcurrent and mosaico. Figure
3.2 shows that the read/write ratio within one run varies from 0.52 to 170. This is quite
unusual compared to traditional debit/credit applications where the read/write ratio is
quite stable throughout an application. Due to this dynamics of applications’ read/write
ratio, the clustering algorithm must be adaptive to achieve adequate response time at dif-
ferent phases of an application. The impact of varying read/write ratio on effective cluster-
ing is reported in [CHANS9).
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Figure 3.2 -- OCT Tools’ Read-Write Ratio

Ten OCT tools are measured. The highest read/write ratio is 6000 belonging to VEM, a
graphical editor. The rest of OCT tools’ read/write ratio are shown here. Wolfe is a
standard cell placement and global router. SPARCS is a symbolic layout spacer. Misll is a
multiple-level logic optimizer and bdsim is a multiple-level simulator. MOSAICO is a
macro cell router which is composed of atlas, cds, cprep, and mosaico. All these read and
write operations are those seen by the buffer manager.




Figure 3.3 shows the I/O rate of various OCT tools. They are calculated by counting
all logical read and write operations and are then divided by the session time. Except
VEM, the rest of the tools are run in batch mode and the session time does not include
think time. The 1/O rates give us which tool is the most I/O intensive.

3.4. Structure Density

Figure 3.4 show the downward access structure density of ten OCT tools. Although
both upward and downward accesses are measured at run-time, we observed that most of
the upward accesses have only one object returned. Therefore, we only report the fan-out
of downward access here.

Except Wolfe, most of the OCT tools’ downward access are dominated by low struc-
ture density (0 to 3 objects). VEM has the highest structure density, since it typically
displays all the objects attached to the composite object. ’

3.5. Access Pattern
After interviewing several OCT tool developers, we observe the following:

(1) Object-oriented applications perform more navigation than ad-hoc query during run-
time. For instance, in Figure 3.1, the macro cell router MOSAICO navigates along the
configuration to find all the paths used by a certain net. No ad-hoc query is needed in
MOSAICO. :

1500 ) 500

600:1 600
2
S
@400- 4 400
®)]
200 ¢ Z ;200
7 o O |

0 % 7 v
PGcurrent atlas cds cprep mosaico sparcs wolfe bdsim misil VEM

Figure 3.3 -- OCT Tools’ Object I/O Rate

The Y axis is derived from the total number of logical I/O including read and write
operations and the session time. The X axis represents 10 OCT tools.
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Figure 3.4 -- OCT Tool Structure Density Distribution

The structure density is broken into 3 categories: 0 to 3 for low density, 4 to 10 for medium
density and 10 above for high density. For each tool, represented in the X axis, we report
the usage of every category.

(2) Certain access patterns can be eliminated if the underlying system supports referential
integrity. For instance, the cell compactor SPARCS scans through the entire design to
make sure that no two terminals have more than one path between them. Such
checking is to assure that SPARCS will not run into a loop at run-time. However, it
introduces a tremendous number of unnecessary 1/Os.

(3) Most of the access patterns are predictable. Certain objects, such as the net instance
in Figure 3.1, are accessed several times during navigation. If this access pattern is
known, the buffer manager could increase its containing page priority to increase the
buffer hit ratio.

4, Simulation Model

A simulation model allows us to evaluate the performance impact of different cluster-
ing and buffering algorithms on different applications’ characteristics. It also helps us
rapidly answer certain what-if questions. For instance, what is the relationship between
choice of clustering algorithm and frequency parameters such as inheritance density and
read/write ratio.

We used the Performance Analysis’s Workbench System (PAWS) to construct the
simulation because it supports a number of high level primitives, e.g., various queueing dis-
ciplines, and a set of detailed statistics output. It also allows us to refine and enhance the
model easily. In the following section, we discuss the workload and our model in term of
PAWS primitives. We summarize all the modeling parameters in section 4.2.
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4.1. The Engineering DB Model

We represent our model of engineering database interaction in the PAWS language.
The PAWS language allows the user to simply declare the characteristics of the system
being modeled rather than coding detailed simulation algorithms.

The simulation model consists of several interacting model blocks. Transactions
representing user requests flow among these model blocks carrying information about the
work units. As shown in Figure 4.1, the major blocks are:

** Workstation Cluster: a set of workstations representing interactive users and think
times

** Workload Definition: representing workload characteristics

** I/O subsystem: a set of related components describing the I/O configuration

** Buffer Manager: the buffer management module

** Cluster Manager: defining and imposing various clustering algorithms

** CPU: representing the processor

Figure 4.1 shows the relationship between these blocks. A transaction starts at a
workstation cluster node and submits a request to the file server after a predefined think
time. The request is defined in the workioad definition node. If the request is a read opera-
tion, the buffer manager needs to search through the buffer pool and issues a physical I/O
if needed. During this buffer searching phase, it is possible that some dirty pages are
flushed out as well as some transaction log records. Therefore, a logical I/O, generated in
the workload definition node, can be translated into zero to 3 physical I/Os in the worst

WorkStation Nodes ———— WorkLoad Definition
/ \
Clustering Mgr f Buffering Mgr

A A

Transaction Magr J |

A
} i
L_> v
IO Subsystem L<—

Figure 4.1 -- Simulation Model Overview
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case. That is, one I/O to flush the dirty page, one I/O for transaction logging, and one
I/O to bring in the data.

A few unique things about our simulation model:

(1) We model not only the buffer pool activities but also the transaction logging details to
obtain realistic log I/O rates. A log record is constructed based on the size of the
newly created or modified object. A circular in-memory log buffer is used and log
records are flushed when the circular log buffer is full.

(2) Object information such as object size, structural links with other objects, and contain-
ing page identifier, are maintained explicitly. This allows us to construct a sample
database used by all the buffering and clustering algorithms.

(3) Actual physical 1/O activities are modeled through the I/O subsysteni node. The 1/O
path length and the disk service time are also modeled by the system.

A more detailed model description is shown in Figure 4.2.

The workload definition node is intended to capture the workload characteristics. The
definition of this node is specific to a generic workload class. By generic workload class, we
mean a wide range of application based on a single software package. For instance, the
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Figure 4.2 -- Simulation Model Detail
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family of CAD tools using OCT belong to the same generic OCT workload.

Each generic workload class is defined by a set of parameterized primitives that are
most natural to describe the workload. Various applications in the class are specified by
assigning values to parameters. For instance, a generic OCT workload is defined by the
distribution of OCT procedure calls. Each OCT procedure call can have an average path
length, I/O content, and lock request behavior.

The fundamental unit of recovery and concurrency control is the object and composite
object. An object can be read by specifying an unique name or navigating along some
structural relationships from other objects. We decided that every object read and write
operation is a transaction. Furthermore, a user session is composed of 5 to 20 transactions
with various read/write ratios. If the target object for a read operation is composite, several
logical I/Os may be triggered to retrieve the complete object. On the other hand, the write
operation would only create or update a single object.

Generally speaking, engineering design applications’ procedure calls can be categor-
ized into seven query types: (1) Simple object lookup, (2) Component object retrieval, (3)
Composite object retrieval, (4) Descendant version retrieval, (5) Ancestor version retrieval,
(6) Corresponding objects retrieval, and (7) object insertion/deletion/updating. These
seven different query types are assigned to transactions in the workload definition phase.

In our simulation model, the checkin and checkout operations are modeled by these
seven query types. For instance, a checkout operation may consist of several component
object retrievals and one corresponding object retrieval. Similarly, a checkin operation
invokes some object insertions and updating.

4.2. Parameters

Table 4.1 shows all the parameters modeled by the simulation model and their operat-
ing levels. They are divided into static parameters, fixed for all the simulation runs, and
control parameters which have various operating levels.



Label l Static Parameters I Default Value

A Database Size 500 Mbytes

B Page Size 4 Kbytes

C Number of Users 10

D Number of Disks 10

E Think Time 4 seconds

L Control Parameters Operating Levels

F Structure Density low-3,med-5,high-10

G Read-write Ratio 5,10,100

H Clustering Policy No_Cluster,Cluster_within_Buffer
2_10_limit,10_IO_limit, No_limit

I Page Splitting Policy No, Greedy, Optimal

J User Hint Policy No_hint, User_hint

K Buffer Replacement Policy | LRU, Context-sensitive,Random

L Buffer Pool Size 100,1000,10000

M Prefetch Policy No_prefetch, Prefetch_within_buffer_pool
Prefetch_within_Database

Table 4.1: Simulation Parameters

The operating levels and default values of these parameters are partially influenced by
section 3 where the structure density and read/write ratio are observed. The number of
. users sharing the same database is assumed to be 10 since most of the CAD/CAM designs
can be partitioned into small units shared by less than 10 engineers. We use 10 disks in the
server and assume that page size is 4 Kbytes. The database size is 500 Mbytes and the
average think time for each user is 4 seconds, which we believe are representative of
interactive computer-aided design environments.

Eight control parameters are studied to understand their impacts on the overall sys-
tem response time. Out of these seven control parameters, (F) and (G) determine the
workload characteristics, (H), (I) and (J) control the clustering policy whereas (K), (L), and
(M) define the buffering strategy. The operating levels of Structure Density is chosen based
on the actual observation from OCT tools access patterns. Low-3 means every structural
retrieval returns less than or equal to three component or composite objects. Similarly,
med-5 means more than 3 but less than 10 objects are returned through structural retrieval.
High-10 means more or equal to 10 objects are returned.

5. Simulation Results

The control parameters, listed in Table 4.1, may interfere with each other. For
instance, higher structure density means more I/Os for composite object retrieval and more
candidate pages to consider during object placement phase. With higher read/write ratio,
the extra I/Os caused by writers during the clustering phase may be amortized by the
readers and improves overall system response time.

In Section 5.1, we discuss the run-time clustering effects using different clustering poli-
cies and various buffering strategies are studied in Section 5.2.
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5.1. Run-Time Clustering Effect

The operating level of buffering control parameters used in this clustering effects
study are: No prefetch, 1000 buffers, and LRU buffer replacement policy. We first discuss
the clustering effects when selected candidate page for object placement never overflow.”
That is, when the preferred candidate page is full, the storage manager chooses the next
best candidate page which has enough space. Then, we study how various page overflow
handling mechanisms affect clustering.

5.1.1. No Page Overflow

Figure 5.1 shows how various clustering policies affect system response time under dif-
ferent workloads. Some key observations are:

(2) Run-time clustering always improves overall system response time. When both the
structure density and read/write ratio are high, the response time is improved by
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Figure 5.1 -- Clustering Effects Analysis

The buffering control parameters are fixed to 1) No prefetch, 2) 1000 buffers and 3) LRU
buffer replacement policy. Five different clustering policies are studied: 1) No clustering, 2)
Clustering within buffer pool, 3) Clustering with a 2 I/O limitation, 4) Clustering with a 10
I/O limitation, and 5) Clustering without I/O limitation. The X axis represents various
transaction characteristics. “low3-5" means the transaction has low structure density which
is less or equal to 3, and its read/write ratio is 5. Similarly, "hi10-100" means the
transaction has high structure density which is greater than or equal to 10 and its
read/write ratio is 100.

-14-



200%.

(b) Setting I/O limits on potential candidate pages search is valid. When the structure
density is low, clustering with 2 [/O limitation performs better or comparable to clus-
tering without 1/O limitation.

(c) Clustenng within buffer pool performs reasonably well when the structure density is
low. However, its performance degrades to the No_Clustering case when the structure
density is high. The buffer hit ratio also affects the performance of clustering within
buffer pool. When the hit ratio is low, its performance is close to No_Clustering.
However, its performance improves when a better buffering policy is used (Refer to
Section 5.2)

However, where is the break-even point of the read/write ratio when No_Clustering
has similar response time as any clustering mechanisms? We compare No_Clustering with
clustering without any 1/0 limitation and the results are summaried in Table 5.1. Different
structure densities have different break-even points, due to the amount of logical I/Os
caused by writers during the clustering phase.

Structure Density  Read-write ratio
low-3 3.0
med-5 3.6
high-10 4.3

Table 5.1: Read-write ratio break-even points

Figure 5.2, 5.3 and 5.4 show the structure density effect on response time when the
read/write ratio is fixed. In all cases, the response time rises sharply between medium
structure density and high structure density when no clustering is done. Since a composite
object retrieval may trigger 10 or more logical I/Os and the possibility of buffer hit for
these logical I/Os decreases, the increasing physical I/Os result in higher response time.
On the other hand, the response time rises slowly from low structure density to high struc-
ture density when any clustering mechanism except clustering within buffer pool is used. The
low variation of response time over different structure densities is very critical when appli-
cation access patterns are not fully predictable.

Clustering within buffer pool cannot perform well if the buffer pool hit ratio is low dur-
ing candidate page searching phase. By tracing the buffer pool usage, we found that the
native LRU replacement policy frequently overlays the potential candidate page for new
object placement and decreases the hit ratio. If the buffer manager understands the rela-
tionships among objects, it may increase the priority of these pages and increases the hit
ratio. We will discuss the various buffering policies in Section 5.2.

When the read/write ratio is low such as 5, as shown in Figure 5.2, clustering with a 2
I/Os limitation provides the best response time in all structure densities. For low structure
density, clustering with a 2 1/Os limitation has the same response time as clustering with no
I/O limitation. Notice that low structure density implies fewer candidate pages to choose
and fewer logical I/Os are needed during clustering phase. As the structure density
increases, the number of I/Os caused by searching candidate pages also increases. Such
extra I/Os introduced in the clustering phase cannot be amortized by readers when the

-
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Figure 5.2 -- Clustering Effect Under R/W ratio 5

The buffering control parameters are fixed to 1) No prefetch, 2) 1000 buffers and 3) LRU
buffer replacement policy. The read-write ratio is set to 5. Five different clustering policies
are studied: 1) No clustering, 2) Clustering within buffer pool, 3) Clustering with a 2 I/O
limitation, 4) Clustering with a 10 I/O limitation, and 5) Clustering without I/O limitation.
The X axis represents various transaction characteristics. “low-3-5" means the transaction
has low structure density which is less or equal to 3, and its read-write ratio is 5. Similarly,
“high-10-5" means the transaction has high structure density which is greater than or equal
to 10 and its read-write ratio is 5.
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Figure 5.3 -- Clustering Effect Under R/W ratio 10

The X axis represents various transaction characteristics. "low-3-10" means the transaction
has low structure density which is less or equal to 3, and its read-write ratio is 10.
Similarly, "high-10-10" means the transaction has high structure density which is greater
than or equal to 10 and its read-write ratio is 10.
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Figure 5.4 -- Clustering Effect Under R/W ratio 100

The X axis represents various transaction characteristics. "low-3-100" means the transaction
has low structure density which is less or equal to 3, and its read/write ratio is 100.
Similarly, "high-10-100" means the transaction has high structure density which is greater
than or equal to 10 and its read/write ratio is 100.

read/write ratio is low. Therefore, clustering without 1/O limitation performs worse than
clustering with a 2 1/0 limitation in high structure densities.

Figure 5.3 shows that clustering with a limitation of 10 I/Os has the same response
time as clustering with no I/O limitation when structure density is medium. Since the I/O
limitation is larger than the maximum possible structure density, 10 I/Os behaves like no
I/O limitation.

Clustering without I/O limitation performs consistently better than other clustering
mechanisms when the read/write ratio is 100 as shown in Figure 54. If the clustering
mechanism can be selected based on the read/write ratio at run-time, we can get the best
response time of both, either setting small I/O limitation or no I/O limitation at all.

Clustering not only helps the retrieval but also reduces the number of I/Os in the
transaction logging phase. This is shown in Figure 5.5 where we compare the number of
transaction logging I/Os between no clustering and clustering without I/O limitation under
different structure densities. When multiple updates occur on the same page within a tran-
saction, the log manager only needs to flush the original page once. Since related objects
are clustered on the same page, the probability of having multiple updates on the same
page within a transaction increases, thus reducing the number of physical logging 1/Os.
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Figure 5.5 -- Clustering Effect on Transaction I/Os

The read/write ratio is fixed at 5 and the buffering control parameters are 1) no prefetch,
2) 1000 buffers and 3) LRU buffer replacement policy. The Y axis represents the number
of I/Os caused by transaction logging and the X axis is the structure density.

One interesting thing we learned from collecting OCT tools’ access patterns is that
read/write ratio may vary across different phases of the same application. Therefore, we
wanted to find out how the read/write ratio affects response time when the structure den-
sity is fixed.

Figure 5.6 shows that any clustering mechanism performs better than no clustering in
the low structure density case. Clustering with and without I/O limitation perform similarly
and the variation of response time is very small. Therefore, for high read/write ratio appli-
cations having low structure density, clustering with a 2 I/O limitation may be the best
choice. For applications having medium structure density, as shown in Figure 5.7, clustering
without 1/O limitation performs the best when applications’ read/write ratio is greater than
10. Notice that the response time of clustering without I/O limitation case is almost no
change for all read/write ratios. Such a stable response time may be required by some
real-time applications.

Figure 5.8 shows the clustering effect on response time when the structure density is
high. Notice that the difference between the clustering within buffer case and other cluster-
ing mechanisms becomes larger. This is due to the lack of potential candidate pages in the
buffer pool, which reduces the effectiveness of run-time clustering.

5.1.2. With Page Overflow

When the chosen candidate page overflows with the newly inserted object, the system
needs to either split the target page or picks the next best candidate page. To split the
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Figure 5.6 -- Clustering Effect Under Low Structure Density

The X axis represents various transaction characteristics. "low-3-5" means the transaction
has low structure density which is less or equal to 3 and its read/write ratio is 5.
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Figure 5.7 -- Clustering Effect Under Medium Structure Density

The X axis represents various transaction characteristics. "med-5-5" means the transaction
has medium structure density which is greater than 3 but less than 10, and its read/write
ratio is 5.
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Figure 5.8 -- Clustering Effect Under High Structure Density

The X axis represents various transaction characteristics. "high-10-5" means the transaction
has high structure density which is greater than equal to 10, and its read /write ratio is 5.

target page,  a page splitting algorithm is invoked, a new page is allocated, both the target
page and the new page are modified, and the changes are logged by the system. Compared
to no splitting, page splitting requires one extra I/O to flush the newly allocated page and
one extra log record that may trigger an I/O. Moreover, the page splitting algorithm needs
extra CPU time and the new page allocation may cause buffer pool contention.

As mentioned in Section 3, we have evaluated two different page splitting algorithms
with the simulation model: Linear Split and NP Split. Figure 5.9 shows the effect of vari-
ous page splitting algorithms when the clustering policy is clustering without I/O limitation.
When the read/write ratio is low, No splitting performs better than either splitting case.
However, Linear Split provides the best response time when both the read/write ratio and
the structure density are high. Both NP Split and Linear Split perform similarly when struc-
ture density is low. This is due to the number of arcs in the dependency graph is small and
the minor difference between the NP-complete solution and the linear solution is offset by
other factors.

The objective of the page splitting algorithm is to minimize the expected access cost
resulting from the page split. Since NP Split algorithm always finds the minimum access
cost partition of objects, Figure 5.10 shows the total cost difference from the Linear Split
under different transaction characteristics.
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Figure 5.9 -- Page Splitting Effects Analysis

The clustering policy is clustering without I/O limitation and no user hints are provided.
The operating level of buffering control parameters are no prefetch, 1000 buffers, and LRU
buffer replacement policy. Solid line represents the response time for no page splitting
case. Dotted line with plus sign is the response time when linear page splitting mechanism
is applied. Dotted line with cross sign is the NP split case.
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Figure 5.10 -- Cost Difference between NP Split and Linear Split

The X axis represents various transaction characteristics. “low10" means the transaction
has low structure density which is less than or equal to 3 and its read/write ratio is 10.
Similarly, "hil00" means high structure density and the read/write ratio is 100. Accessing
cost difference, represented by the Y axis, is measured in term of logical 1/0.

5.2. Impact of Smart Buffering

The operating levels of clustering control parameters used in this study of buffering
effects are: clustering without I/O limitation and splitting page when the candidate page
overflows. No user hints are provided and the number of buffers is 1000. The effect of
buffer pool size on various buffering strategies are discussed in [CHANS9).

Three buffer replacement strategies, Context-sensitive, Random and LRU, are studied
with three different prefetching strategies: prefetching within database, prefetching within
buffer pool, and no prefetching.

Figure 5.11 shows how various buffering policies affect system response time under
different workloads. Some key observations are:

(a) Context-sensitive buffer replacement policy always improves overall system response
time. When both the structure density and read/write ratio are high, Context-sensitive
with prefetching within database outperforms LRU with no prefetching by 150% in
response time.

(b) Setting scope on prefetching is a valid idea. When using prefetching within the buffer
pool, the performance of LRU and Random buffer replacement strategies are com-
parable to Context-sensitive without any prefetching in all workloads.

(¢c) Context-sensitive with prefetching within database performs the best whereas LRU with
no prefetching is the worst. Similar conclusion on LRU buffer replacement strategy
has been drawn in relational database systems.
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Figure 5.11 -- Buffering Effects Analysis

Six experiments are reported here: Context-sensitive buffer replacement policy with
prefetching within database (C_p_DB), Context-sensitive with prefetching within buffer
(C_p_buff), Random buffer replacement policy with prefetching within database (R_p_DB),
Random buffer replacement policy with prefetching within buffer (R_p_buff), LRU buffer
replacement policy with prefetching within database (LRU_p_DB), and LRU with no
prefetching (LRU_no_p). Various transaction characteristics are evaluated. "hil00" means
the transaction has high structure density and the read/write ratio is 100.

Figure 5.12, 5.13, and 5.14 show the prefetching effect on response time when the
buffer replacement algorithm is fixed. In all cases, prefetch within database performs the
best. This may not be intuitive since prefetching may bring in some pages not used by appli-
cations due to changing access patterns. However, because prefetching has made data
available to applications in memory, the overall response time is improved. For object-
oriented applications, paying extra I/Os to achieve better response time may be acceptable.

When the context-sensitive buffer replacement algorithm is used, as shown in Figure
5.12, prefetch within buffer has the same response time as no prefetch for transactions having
low and medium structure densities. Notice that prefetch within buffer does not trigger any
I/Os but only changes the buffer priority to reflect future needs of data contained in these
buffers. Since context-sensitive buffer replacement algorithm would set up the appropriate
priority based on knowledge of structure relationships and inheritance, no prefetch only
causes very few buffer misses relative to prefetch within buffer. However, when the structure
density becomes higher, prefetch within buffer better reflects the dynamics of the access pat-
tern in how buffer priorities are set than no prefetch, and has better response time.

When the buffer replacement algorithm is not context-sensitive, as shown in Figure
5.13 and 5.14, prefetching becomes the only way to reflect the knowledge of structure rela-
tionships and inheritance in the buffer priority setting. Both prefetch within database and
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prefetch within buffer improve the buffer hit ratio and improve applications’ response time.
Although prefetrch within database has more logical 1/Os than prefetch within buffer, the
overall response time is similar. .

For more detailed analysis, refer to .[CHAN89].

6. Effect Analysis and Conclusions

Figure 6.1 shows the overall effect analysis for the eight control parameters specified
in Table 4.1. There are 8! (i.e. 40,320) possible combinations, and for each one, we calcu-
lated how much, on the average, the response time has changed when the combined param-
eters go from low operating level to high operating level. Although the response time
change can be positive or negative, only the absolute value is useful in this effect analysis.
Two interesting observations are: the structure density and buffering policy most influence
system response time, while different page splitting algorithms have little influence on
response time.

Two control parameters, say A and B, are said to “interact” if the effect of A is dif-
ferent at different operating levels of B. They can be represented in terms of X-Y diagram
with X axis represents the different operating levels and Y axis represents the effect (ie.
response time). If two lines are in parallel, there is no interaction between the
corresponding control parameters. For intersected lines, we know there is a strong

2.0 prefetch prefetch no
L within DB within buf prefetch X .
— —_—— - N
L ”7\ N -
I ¢ N -
©
Q I~ -
£
o L5F -
£ | -
[ g L -
LY
(2] . -
o
o -
a f
@ 10+ -
(1d 0 )
- -
0.5 + +

lowS lowill  owiD0 medS medi0  medi00 hiS hi10 hit00
Transaction Characteristics
Figure 5.12 -- Prefetching Effect under Context-sensitive
Buffer Replacement Policy

Three prefetching policies are evaluated here under a Context-sensitive buffer replacement
algorithm with various transaction characteristics. "hil00" means the transaction has high
structure density and the read/write ratio is 100.
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Figure 5.13 -- Prefetching Effect under LRU Buffer Replacement Policy

Three prefetching policies are evaluated here under a LRU buffer replacement algorithm
with various transaction characteristics. "hi100" means the transaction has high structure
density and the read-write ratio is 100.
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Figure 5.14 -- Prefetching Effect under Random Buffer
Replacement Policy
Three prefetching policies are evaluated here under a Random buffer replacement

algorithm with various transaction characteristics. "hil00" means the transaction has high
structure density and the read-write ratio is 100.
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Figure 6.1 -- Overall Effect Analysis

Larger absolute effect value means major effect on response time. When the effect value is
zero, it implies that the corresponding control parameter(s) has minimum effect on the
overall response time. Each blob represents the effects of a parameter or combined
parameters on response time. For instance, "Structure density +buffering policy” represents
a combined effect whereas "Read/write Ratio” is a single parameter effect. Most of the
parameter or combined parameters have small response time change and are represented
by a line of blobs centered in the figure.

interaction between control parameters. If two lines do not intersect in the parameter range
but are also not parallel, we say there is a minor interaction between the control parame-
ters.

Figure 6.2 shows a subset of interaction analysis graphs. The key observations are:

(a) There are no major interaction between any two factors. This means the control
parameters we have chosen are quite independent.

(b) There are minor interactions between: structure density and buffering policy,
read/write ratio and clustering policy, read/write ratio and page splitting policy, struc-
ture density and clustering policy, structure density and page splitting policy, and page
splitting policy and clustering policy.

(c) There is no interaction between: buffering policy and clustering policy, buffering policy
and page splitting policy, structure density and read/write ratio, and read/write ratio
and buffering policy.

In this study, we have exploited inheritance and structural relationships for improved
buffering and clustering. We have proposed a run-time reclustering algorithm which under
certain conditions can improve system response time by a factor of 200%. We have also
shown that it is effective to limit the amount of I/Os allowed to the clustering algorithm as
it examines candidate pages for reclustering at run-time. We studied the prefetching effect
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Figure 6.2 -- Interaction Analysis Graph

Both of these interaction analysis graphs represent minor interaction case. When the two
lines are in parallel, it implies no interaction. If two lines intersect, it means major

Interaction.

on response time under various buffer replacement policies and transaction characteristics.
Context-sensitive buffer replacement policy with prefetch within database performs the best

whereas LRU with no prefetching is the worst.

We have also studied the effectiveness of user hints and how varying read-write ratios
within a transaction affect the response time under various clustering and buffering algo-
rithms [CHANB9]. However, the dynamics of access pattern of object-oriented applications
are still not well understood. Furthermore, the physical representation of structural rela-
tionships and inheritance links among objects needs to be addressed.

Based on the simulation results shown in this study, we strongly recommend that
future object-oriented DBMSs to (a) model structural relationships and inheritance links as
first class objects, and (b) use the proposed dynamic clustering algorithm when the read-

write ratio is high.
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