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Abstract

In the problem of multivariate regression, a K-dimensional response vector is re-
gressed upon a common set of p covariates, with a matrix B∗ ∈ Rp×K of regression
coefficients. We study the behavior of the group Lasso using `1/`2 regularization for
the union support problem, meaning that the set of s rows for which B∗ is non-zero
is recovered exactly. Studying this problem under high-dimensional scaling, we show
that group Lasso recovers the exact row pattern with high probability over the random
design and noise for scalings of (n, p, s) such that the sample complexity parameter
given by θ(n, p, s) : = n/[2ψ(B∗) log(p− s)] exceeds a critical threshold. Here n is the
sample size, p is the ambient dimension of the regression model, s is the number of
non-zero rows, and ψ(B∗) is a sparsity-overlap function that measures a combination
of the sparsities and overlaps of the K-regression coefficient vectors that constitute the
model. This sparsity-overlap function reveals that, if the design is uncorrelated on the
active rows, block `1/`2 regularization for multivariate regression never harms perfor-
mance relative to an ordinary Lasso approach, and can yield substantial improvements
in sample complexity (up to a factor of K) when the regression vectors are suitably or-
thogonal. For more general designs, it is possible for the ordinary Lasso to outperform
the group Lasso. We complement our analysis with simulations that demonstrate the
sharpness of our theoretical results, even for relatively small problems.

1 Introduction

The development of efficient algorithms for large-scale model selection has been a major
goal of statistical learning research in the last decade. There is now a substantial body
of work based on `1-regularization, dating back to the seminal work of Tibshirani (1996)
and Donoho and collaborators (Chen et al., 1998; Donoho and Huo, 2001). The bulk of
this work has focused on the standard problem of linear regression, in which one makes
observations of the form

y = Xβ∗ + w, (1)

where y ∈ Rn is a real-valued vector of observations, w ∈ Rn is an additive zero-mean noise
vector, and X ∈ Rn×p is the design matrix. A subset of the components of the unknown
parameter vector β∗ ∈ Rp are assumed non-zero; the model selection goal is to identify
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these coefficients and (possibly) estimate their values. This goal can be formulated in terms
of the solution of a penalized optimization problem:

arg min
β∈Rp

{
1
n
‖y −Xβ‖22 + λn‖β‖0

}
, (2)

where ‖β‖0 counts the number of non-zero components in β and where λn > 0 is a regular-
ization parameter. Unfortunately, this optimization problem is computationally intractable,
a fact which has led various authors to consider the convex relaxation (Tibshirani, 1996;
Chen et al., 1998)

arg min
β∈Rp

{
1
n
‖y −Xβ‖22 + λn‖β‖1

}
, (3)

in which ‖β‖0 is replaced with the `1 norm ‖β‖1. This relaxation, often referred to as the
Lasso (Tibshirani, 1996), is a quadratic program, and can be solved efficiently by various
methods (e.g., Boyd and Vandenberghe, 2004; Osborne et al., 2000; Efron et al., 2004)).

A variety of theoretical results are now in place for the Lasso, both in the traditional
setting where the sample size n tends to infinity with the problem size p fixed (Knight and
Fu, 2000), as well as under high-dimensional scaling, in which p and n tend to infinity simul-
taneously, thereby allowing p to be comparable to or even larger than n (e.g., Meinshausen
and Bühlmann, 2006; Wainwright, 2006; Zhao and Yu, 2006). In many applications, it is
natural to impose sparsity constraints on the regression vector β∗, and a variety of such
constraints have been considered. For example, one can consider a “hard sparsity” model
in which β∗ is assumed to contain at most s non-zero entries or a “soft sparsity” model in
which β∗ is assumed to belong to an `q ball with q < 1. Analyses also differ in terms of the
loss functions that are considered. For the model or variable selection problem, it is natural
to consider the {0−1}-loss associated with the problem of recovering the unknown support
set of β∗. Alternatively, one can view the Lasso as a shrinkage estimator to be compared
to traditional least squares or ridge regression; in this case, it is natural to study the `2-loss
‖β̂ − β∗‖2 between the estimate β̂ and the ground truth. In other settings, the prediction
error E[(Y − XT β̂)2] may be of primary interest, and one tries to show risk consistency
(namely, that the estimated model predicts as well as the best sparse model, whether or
not the true model is sparse).

1.1 Block-structured regularization

While the assumption of sparsity at the level of individual coefficients is one way to give
meaning to high-dimensional (p � n) regression, there are other structural assumptions
that are natural in regression, and which may provide additional leverage. For instance,
in a hierarchical regression model, groups of regression coefficients may be required to
be zero or non-zero in a blockwise manner; for example, one might wish to include a
particular covariate and all powers of that covariate as a group (Yuan and Lin, 2006; Zhao
et al., 2007). Another example arises when we consider variable selection in the setting of
multivariate regression: multiple regressions can be related by a (partially) shared sparsity
pattern, such as when there are an underlying set of covariates that are “relevant” across
regressions (Obozinski et al., 2007; Argyriou et al., 2006; Turlach et al., 2005; Zhang et al.,
2008). Based on such motivations, a recent line of research (Bach et al., 2004; Tropp, 2006;
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Yuan and Lin, 2006; Zhao et al., 2007; Obozinski et al., 2007; Ravikumar et al., 2008) has
studied the use of block-regularization schemes, in which the `1 norm is composed with some
other `q norm (q > 1), thereby obtaining the `1/`q norm defined as a sum of `q norms over
groups of regression coefficients. The best known examples of such block norms are the
`1/`∞ norm (Turlach et al., 2005; Zhang et al., 2008), and the `1/`2 norm (Obozinski et al.,
2007).

In this paper, we investigate the use of `1/`2 block-regularization in the context of high-
dimensional multivariate linear regression, in which a collection of K scalar outputs are
regressed on the same design matrix X ∈ Rn×p. Representing the regression coefficients as
an p×K matrix B∗, the multivariate regression model takes the form

Y = XB∗ +W, (4)

where Y ∈ Rn×K and W ∈ Rn×K are matrices of observations and zero-mean noise respec-
tively. In addition, we assume a hard-sparsity model for the regression coefficients in which
column j of the coefficient matrix B∗ has non-zero entries on a subset

Sk : = {i ∈ {1, . . . , p} | β∗ik 6= 0} (5)

of size sk : = |Sk|. We focus on the problem of recovering the union of the supports,
namely the set S : = ∪Kk=1Sk, corresponding to the subset of indices i ∈ {1, . . . , p} that
are involved in at least one regression. This union support problem can be understood as
the generalization of variable selection to the group setting. Rather than selecting specific
components of a coefficient vector, we aim to select specific rows of a coefficient matrix. We
thus also refer to the union support problem as the row selection problem. Note finally that
recovering S is not equivalent to recovering each of the individual supports Sk.

If computational complexity were not a concern, the natural way to perform row selection
for B∗ would be by solving the optimization problem

arg min
B∈Rp×K

{
1

2n
|||Y −XB|||2F + λn ‖B‖`0/`q

}
, (6)

where B = (βik)1≤i≤p, 1≤k≤K is a p × K matrix, the quantity |||·|||F denotes the Frobenius
norm1, and the “norm” ‖B‖`0/`q counts the number of rows in B that have non-zero `q norm.
As before, the `0 component of this regularizer yields a non-convex and computationally
intractable problem, so that it is natural to consider the relaxation

arg min
B∈Rp×K

{
1

2n
|||Y −XB|||2F + λn ‖B‖`1/`q

}
, (7)

where ‖B‖`1/`q is the block `1/`q norm:

‖B‖`1/`q : =
p∑
i=1

√√√√ K∑
j=1

βqij =
p∑
i=1

‖βi‖q. (8)

1The Frobenius norm of a matrix A is given by |||A|||F : =
√∑

i,j A2
ij .
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The relaxation (7) is a natural generalization of the Lasso; indeed, it specializes to the
Lasso in the case K = 1. For later reference, we also note that setting q = 1 leads to
the use of the `1/`1 block-norm in the relaxation (7). Since this norm decouples across
both the rows and columns, this particular choice is equivalent to solving K separate Lasso
problems, one for each column of the p×K regression matrix B∗. A more interesting choice
is q = 2, which yields a block `1/`2 norm that couples together the columns of B. This
regularization is commonly referred to as the group Lasso. As we discuss in Appendix 2,
the group Lasso with q = 2 can be cast as a second-order cone program (SOCP), a family
of optimization problems that can be solved efficiently with interior point methods (Boyd
and Vandenberghe, 2004), and includes quadratic programs as a particular case.

Some recent work has addressed certain statistical aspects of block-regularization schemes.
Meier et al. (2008) have performed an analysis of risk consistency with block-norm regular-
ization. Bach (2008) provides an analysis of block-wise support recovery for the kernelized
group-Lasso in the classical, fixed p setting. In the high-dimensional setting, Ravikumar
et al. (2008) have studied the consistency of block-wise support recovery for the group-Lasso
(`1/`2) for fixed design matrices, and their result is generalized by Liu and Zhang (2008)
to block-wise support recovery in the setting of general `1/`q regularization, again for fixed
design matrices. However, these analyses do not discriminate between various values of q,
yielding the same qualitative results and the same convergence rates for q = 1 as for q > 1.
Our focus, which is motivated by the empirical observation that the group Lasso can out-
perform the ordinary Lasso (Bach, 2008; Yuan and Lin, 2006; Zhao et al., 2007; Obozinski
et al., 2007), is precisely the distinction between q = 1 and q > 1 (specifically q = 2).

The distinction between q = 1 and q = 2 is also significant from an optimization-
theoretic point of view. In particular, the SOCP relaxations underlying the group Lasso (q =
2) are generally tighter than the quadratic programming relaxation underlying the Lasso
(q = 1); however, the improved accuracy is generally obtained at a higher computational
cost (Boyd and Vandenberghe, 2004). Thus we can view our problem as an instance of
the general question of the relationship of statistical efficiency to computational efficiency:
does the qualitatively greater amount of computational effort involved in solving the group
Lasso always yield greater statistical efficiency? More specifically, can we give theoretical
conditions under which solving the generalized Lasso problem (7) has greater statistical
efficiency than naive strategies based on the ordinary Lasso? Conversely, can the group
Lasso ever be worse than the ordinary Lasso?

With this motivation, this paper provides a detailed analysis of model selection consis-
tency of the group Lasso (7) with `1/`2-regularization. Statistical efficiency is defined in
terms of the scaling of the sample size n, as a function of the problem size p and sparsity
structure of the regression matrix B∗, required for consistent row selection. Our analysis
is high-dimensional in nature, allowing both n and p to diverge, and yielding explicit error
bounds as a function of p. As detailed below, our analysis provides affirmative answers to
both of the questions above. First, we demonstrate that under certain structural assump-
tions on the design and regression matrix B∗, the group `1/`2-Lasso is always guaranteed
to out-perform the ordinary Lasso, in that it correctly performs row selection for sample
sizes for which the Lasso fails with high probability. Second, we also exhibit some problems
(though arguably not generic) for which the group Lasso will be outperformed by the naive
strategy of applying the Lasso separately to each of the K columns, and taking the union
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of supports.

1.2 Our results

The main contribution of this paper is to show that under certain technical conditions on
the design and noise matrices, the model selection performance of block-regularized `1/`2
regression (7) is governed by the sample complexity function

θ`1/`2(n, p ;B∗) : =
n

2ψ(B∗) log(p− s)
, (9)

where n is the sample size, p is the ambient dimension, s = |S| is the number of rows that are
non-zero, and ψ(·) is a sparsity-overlap function. Our use of the term “sample complexity”
for θ`1/`2 reflects the role it plays in our analysis as the rate at which the sample size must
grow in order to obtain consistent row selection as a function of the problem parameters.
More precisely, for scalings (n, p, s, B∗) such that θ`1/`2(n, p ;B∗) exceeds a fixed critical
threshold t? ∈ (0,+∞), we show the probability of correct row selection by `1/`2 group
Lasso converges to one.

Whereas the ratio log p
n is standard for high-dimensional theory on `1-regularization, the

function ψ(B∗) is a novel and interesting quantity, which measures both the sparsity of the
matrix B∗, as well as the overlap between the different regression tasks, represented by the
columns of B∗. (See equation (15) for the precise definition of ψ(B∗).) As a particular
illustration, consider the special case of a single-task or univariate regression with K = 1,
in which the convex program (7) reduces to the ordinary Lasso (3). In this case, if the
design matrix is drawn from the Standard Gaussian ensemble (i.e., Xij ∼ N(0, 1), i.i.d),
we show that the sparsity-overlap function reduces to ψ(B∗) = s, corresponding to the
support size of the single coefficient vector. We thus recover as a corollary a previously
known result (Wainwright, 2006): namely, the Lasso succeeds in performing exact support
recovery once the ratio n/[s log(p − s)] exceeds a certain critical threshold. At the other
extreme, for a genuinely multivariate problem with K > 1 and s non-zero rows, again for
a Standard Gaussian design, when the regression matrix is “suitably orthonormal” relative
to the design (see Section 2 for a precise definition), the sparsity-overlap function is given
by ψ(B∗) = s/K. In this case, `1/`2 block-regularization has sample complexity lower by
a factor of K relative to the naive approach of solving K separate Lasso problems. Of
course, there is also a range of behavior between these two extremes, in which the gain
in sample complexity varies smoothly as a function of the sparsity-overlap ψ(B∗) in the
interval [ sK , s]. On the other hand, we also show that for suitably correlated designs, it
is possible that the sample complexity ψ(B∗) associated with `1/`2 row selection is larger
than that of the ordinary Lasso (`1/`1) approach.

The remainder of the paper is organized as follows. In Section 2, we provide a precise
statement of our main result, discuss some of its consequences, and illustrate the close
agreement between our theory and simulations. Section 3 is devoted to the proof of this
main result, with the argument broken down into a series of steps. Technical results are
deferred to the appendix. We conclude with a brief discussion in Section 4.
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1.3 Notation

We collect here some notation used throughout the paper. For a (possibly random) matrix
M ∈ Rp×K , we define the Frobenius norm |||M |||F : = (

∑
i,jm

2
ij)

1/2, and for parameters
1 ≤ a ≤ b ≤ ∞, the `a/`b block norm

‖M‖`a/`b : =
{ p∑
i=1

( K∑
k=1

|mik|b
)a

b
} 1

a

. (10)

These vector norms on matrices should be distinguished from the (a, b)-operator norms

|||M |||a, b : = sup
‖x‖b=1

‖Mx‖a, (11)

although some norms belong to both families; see Lemma 5 in Appendix B. Important
special cases of the latter include the spectral norm |||M |||2, 2 (also denoted |||M |||2), and the
`∞-operator norm |||M |||∞,∞ = maxi=1,...,p

∑K
j=1 |Mij |, denoted |||M |||∞ for short.

2 Main result and some consequences

The analysis of this paper applies to random ensembles of multivariate linear regression
problems, each of the form (4), where the noise matrix W ∈ Rn×K is assumed to consist of
i.i.d. elements Wij ∼ N(0, σ2). We consider random design matrices X with each row drawn
in an i.i.d. manner from a zero-mean Gaussian N(0,Σ), where Σ � 0 is a p× p covariance
matrix. We note in passing that analogs of our results with different constants apply to any
design with sub-Gaussian rows.2 Although the block-regularized problem (7) need not have
a unique solution in general, a consequence of our analysis is that in the regime of interest,
the solution is unique, so that we may talk unambiguously about the estimated support Ŝ.
The main object of study in this paper is the probability P[Ŝ = S], where the probability
is taken both over the random choice of noise matrix W and random design matrix X. We
study the behavior of this probability as elements of the triplet (n, p, s) tend to infinity.

2.1 Notation and assumptions

More precisely, our main result applies to sequences of models indexed by (n, p(n), s(n)), an
associated sequence of p×p covariance matrices, and a sequence {B∗} of coefficient matrices
with row support

S : = {i | β∗i 6= 0} (12)

of size |S| = s = s(n). We use Sc to denote its complement (i.e., Sc : = {1, . . . , p}\S). We
let

b∗min : = min
i∈S
‖β∗i ‖2, (13)

correspond to the minimal `2 row-norm of the coefficient matrix B∗ over its non-zero rows.
We impose the following conditions on the covariance Σ of the design matrix:

2See Buldygin and Kozachenko (2000) for more details on sub-Gaussian random vectors.
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(A1) Bounded eigenspectrum: There exists fixed constants Cmin > 0 and Cmax < +∞
such that all eigenvalues of the s × s matrix ΣSS are contained in the interval
[Cmin, Cmax].

(A2) Mutual incoherence: There exists a fixed incoherence parameter γ ∈ (0, 1] such
that ∣∣∣∣∣∣ΣScS(ΣSS)−1

∣∣∣∣∣∣
∞ ≤ 1− γ.

(A3) Self-incoherence: There exist Dmax < +∞ such that
∣∣∣∣∣∣(ΣSS)−1

∣∣∣∣∣∣
∞ ≤ Dmax.

Assumption A1 prevents excess dependence among elements of the design matrix associ-
ated with the support S; conditions of this form are required for model selection consistency
or `2 consistency of the Lasso. The mutual incoherence assumption and self-incoherence
assumptions also well known from previous work on variable selection consistency of the
Lasso (Meinshausen and Bühlmann, 2006; Tropp, 2006; Zhao and Yu, 2006). Although such
incoherence assumptions are not needed in analyzing `2 or risk consistency, they are known
to be necessary for model selection consistency of the Lasso. Indeed, in the absence of such
conditions, it is always possible to make the Lasso fail, even with an arbitrarily large sample
size. (However, see Meinshausen and Yu (2008) for methods that weaken the incoherence
condition.) Note that these assumptions are trivially satisfied by the standard Gaussian
ensemble Σ = Ip×p, with Cmin = Cmax = 1, Dmax = 1, and γ = 1. More generally, it can be
shown that various matrix classes (e.g., Toeplitz matrices, tree-structured covariance matri-
ces, bounded off-diagonal matrices) satisfy these conditions (Meinshausen and Bühlmann,
2006; Zhao and Yu, 2006; Wainwright, 2006).

2.2 Statement of main result

We require a few pieces of notation before stating the main result. For an arbitrary matrix
BS ∈ Rs×K with ith row βi ∈ R1×K , we define the matrix ζ(BS) ∈ Rs×K with ith row

ζ(βi) : =
βi
‖βi‖2

. (14)

With this notation, the sparsity-overlap function is given by

ψ(B) : =
∣∣∣∣∣∣ζ(BS)T (ΣSS)−1ζ(BS)

∣∣∣∣∣∣
2
, (15)

where |||·|||2 denotes the spectral norm. Finally, the sample complexity function is given by

θ`1/`2(n, p ;B∗) : =
n

2ψ(B∗) log(p− s)
. (16)

With this setup, we have the following result:

Theorem 1. Consider a random design matrix X drawn with i.i.d. N(0,Σ) row vectors,
where Σ satisfies assumptions A1 through A3, and an observation matrix Y specified by
model (4). Suppose that the squared minimum value (b∗min)2 decays no more slowly than
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f(p) min{1
s ,

1
log(p−s)} for some function f(p)/s → 0 and f(p) → +∞. Then for all

sequences (n, p,B∗) such that

θ`1/`2(n, p ;B∗) =
n

2ψ(B∗) log(p− s)
> t?(Σ) : =

Cmax

γ2
, (17)

we have with probability greater than 1− c1 exp(c2 log s):

(a) the SOCP (7) with λn =
√

f(p) log p
n has a unique solution B̂, and

(b) the row support set

Ŝ = S(B̂) : =
{
i | β̂i 6= 0

}
(18)

specified by this unique solution is equal to the row support set S(B∗) of the true model.

2.3 Some consequences of Theorem 1

We begin by making some simple observations about the sparsity overlap function.

Lemma 1. (a) For any design satisfying assumption A1, the sparsity-overlap ψ(B∗) obeys
the bounds

s

CmaxK
≤ ψ(B∗) ≤ s

Cmin
(19)

(b) If ΣSS = Is×s, and if the columns (Z(k)∗) of the matrix Z∗ = ζ(B∗) are orthogonal,
then the sparsity overlap function is ψ(B∗) = maxk ‖Z(k)∗‖2.

Proof. (a) To verify this claim, we first set Z∗S = ζ(B∗S), and use Z(k)∗
S to denote the kth

column of Z∗S . Since the spectral norm is upper bounded by the sum of eigenvalues, and
lower bounded by the average eigenvalue, we have

1
K

tr(Z∗S
TΣ−1

SSZ
∗
S) ≤ ψ(B∗) ≤ tr(Z∗S

TΣ−1
SSZ

∗
S).

Given our assumption (A1) on ΣSS , we have

tr(Z∗S
TΣ−1

SSZ
∗
S) =

K∑
k=1

Z
(k)∗
S

T
Σ−1
SSZ

(k)∗
S ≥ 1

Cmax

K∑
k=1

‖Z(k)∗
S ‖2 =

s

Cmax
,

using the fact that
∑K

k=1 ‖Z
(k)∗
S ‖2 =

∑s
i=1 ‖Z∗i ‖22 = s. Similarly, in the other direction, we

have

tr(Z∗S
TΣ−1

SSZ
∗
S) =

K∑
k=1

Z
(k)∗
S

T
Σ−1
SSZ

(k)∗
S ≤ 1

Cmin

K∑
k=1

‖Z(k)∗
S ‖2 =

s

Cmin
,

which completes the proof.
(b) Under the assumed orthogonality, the matrix Z∗TZ∗ is diagonal with ‖Z(k)∗‖2 as

the diagonal elements, so that the largest ‖Z(k)∗‖2 is then the largest eigenvalue of the
matrix.
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Based on this lemma, we now study some special cases of Theorem 1. The simplest
special case is the univariate regression problem (K=1), in which case the quantity ζ(β∗)
(as defined in equation (14)) simply outputs an s-dimensional sign vector with elements
z∗i = sign(β∗i ). (Recall that the sign function is defined as sign(0) = 0, sign(x) = 1 if
x > 0 and sign(x) =−1 if x < 0.) In this case, the sparsity overlap function is given by
ψ(β∗) = z∗T (ΣSS)−1z∗, and as a consequence of Lemma 1(a), we have ψ(β∗) = Θ(s).
Consequently, a simple corollary of Theorem 1 is that the Lasso succeeds once the ratio
n/(2s log(p− s)) exceeds a certain critical threshold, determined by the eigenspectrum and
incoherence properties of Σ. This result matches the necessary and sufficient conditions
established in previous work on the Lasso (Wainwright, 2006).

We can also use Lemma 1 and Theorem 1 to compare the performance of the group
Lasso to the following (arguably naive) strategy for row selection using the ordinary Lasso:

Row selection using ordinary Lasso:

1. Apply the ordinary Lasso separately to each of the K univariate regression problems
specified by the columns of B∗, thereby obtaining estimates β̂(k) for k = 1, . . . ,K.

2. For k = 1, . . . ,K, estimate the column support via Ŝk : = {i | β̂(k)
i 6= 0}.

3. Estimate the row support by taking the union: Ŝ = ∪Kk=1Ŝk.

To understand the conditions governing the success/failure of this procedure, note that it
succeeds if and only if for each non-zero row i ∈ S = ∪Kk=1Sk, the variable β̂(k)

i is non-zero for
at least one k, and for all j ∈ Sc = {1, . . . , p}\S, the variable β̂(k)

j = 0 for all k = 1, . . . ,K.
From our understanding of the univariate case, we know that for C = 2t?(Σ), the condition

n ≥ C max
k=1,...,K

ψ(β∗(k)S ) log(p− sk) ≥ C max
k=1,...,K

ψ(β∗(k)S ) log(p− s) (20)

is sufficient to ensure that the ordinary Lasso succeeds in row selection. Conversely, if
n < maxk=1,...,K ψ(β∗(k)S ) log(p− s), then there will exist some j ∈ Sc such for at least one
k ∈ {1, . . . ,K}, there holds β̂(k)

j 6= 0 with high probability, implying failure of the ordinary
Lasso.

A natural question is whether the group Lasso, by taking into account the couplings
across columns, always outperforms (or at least matches) this naive strategy. The following
result shows that if the design is uncorrelated on its support, then indeed this is the case.

Corollary 1 (Group Lasso versus ordinary Lasso). Assume that ΣSS = Is×s. Then for any
multivariate regression problem, row selection using the ordinary Lasso strategy requires,
with high probability, at least as many samples as the `1/`2 group Lasso. In particular, the
relative efficiency of group Lasso versus ordinary Lasso is given by the ratio

max
k=1,...,K

ψ(β∗(k)S ) log(p− sk)

ψ(B∗S) log(p− s)
≥ 1. (21)
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Proof. From our discussion preceding the statement of Corollary 1, we know that the quan-
tity

max
k=1,...,K

ψ(β∗(k)S ) log(p− sk) = max
k=1,...,K

sk log(p− sk) ≥ max
k=1,...,K

sk log(p− s)

governs the performance of the ordinary Lasso procedure for row selection. It remains to
show then that ψ(B∗S) ≤ maxk sk.

As before, we use the notation Z∗S = ζ(B∗S), and Z∗i for the ith row of Z∗S . Since
ΣSS = Is×s, we have ψ(B∗) = ‖Z∗S‖22. Consequently, by the variational representation of
the `2-norm, we have

ψ(B∗) = max
x∈RK : ‖x‖≤1

‖Z∗Sx‖2 ≤ max
x∈RK : ‖x‖≤1

s∑
i=1

(
Z∗i

Tx
)2
.

Let |Z∗i | = (|Z∗i1|, . . . , |Z∗ik|)T and yi = (x1 sign(Z∗i1), . . . , xK sign(Z∗iK))T . By the Cauchy-
Schwartz inequality,(

Z∗i
Tx
)2

=
(
|Z∗i |

T yi

)2
≤ ‖ |Z∗i | ‖2‖yi‖2 = ‖Z∗i ‖2

∑
k

x2
k sign(Z∗ik)

2

so that, if ‖x‖ ≤ 1, we have

s∑
i=1

(
Z∗i

Tx
)2
≤

s∑
i=1

‖Z∗i ‖2
K∑
k=1

x2
k sign(Z∗ik)

2 =
K∑
k=1

x2
k

s∑
i=1

sign(Z∗ik)
2 =

K∑
k=1

x2
ksk ≤ max

1≤k≤K
sk,

thereby establishing the claim.

We illustrate Corollary 1 by considering some special cases:

Example 1 (Identical regressions). Suppose that B∗ : = β∗~1TK—that is, B∗ consists
of K copies of the same coefficient vector β∗ ∈ Rp, with support of cardinality |S| = s.
We then have [ζ(B∗)]ij = sign(β∗i )/

√
K, from which we see that ψ(B∗) = z∗T (ΣSS)−1z∗,

with z∗ being an s-dimensional sign vector with elements z∗i = sign(β∗i ). Consequently, we
have the equality ψ(B∗) = ψ(β(1)∗), so that there is no benefit in using the group Lasso
relative to the strategy of solving separate Lasso problems and constructing the union
of individually estimated supports. This fact might seem rather pessimistic, since under
model (4), we essentially have Kn observations of the coefficient vector β∗ with the same
design matrix but K independent noise realizations. However, under the given conditions,
the rates of convergence for model selection in high-dimensional results such as Theorem 1
are determined by the number of interfering variables, p−s, as opposed to the noise variance.

In contrast to this pessimistic example, we now turn to the most optimistic extreme:

Example 2 (“Orthonormal” regressions). Suppose that (ΣSS) = Is×s and (for s > K)
suppose that B∗ is constructed such that the columns of the s × K matrix ζ(B∗) are all

10



orthonormal. Under these conditions, we claim that the sample complexity of group Lasso
is lower than that of the ordinary Lasso by a factor of 1/K. Indeed, we observe that

Kψ(B∗) = K‖Z(1)∗‖2 =
K∑
k=1

‖Z(k)∗‖2 = tr
(
Z∗TZ∗

)
= tr

(
Z∗Z∗T

)
= s,

because Z∗Z∗T ∈ Rs×s is the Gram matrix of s unit vectors of Rk and its diagonal elements
are therefore all equal to 1. Consequently, the group Lasso recovers the row support with
high probability for sequences such that

n

2 s
K log(p− s)

> 1,

which allows for sample sizes 1/K smaller than the ordinary Lasso approach.

Corollary 1 and the subsequent examples address the case of uncorrelated design (ΣSS =
Is×s) on the row support S, for which the group Lasso is never worse than the ordinary Lasso
in performing row selection. The following example shows that if the supports are disjoint,
the ordinary Lasso has the same sample complexity as the group Lasso for uncorrelated
design ΣSS = Is×s, but can be better than the group Lasso for designs ΣSS with suitable
correlations:

Corollary 2 (Disjoint supports). Suppose that the support sets Sk of individual regression
problems are all disjoint. Then for any design covariance ΣSS, we have

max
k=1,...,K

ψ(β(k)∗)
(a)

≤ ψ(B∗)
(b)

≤
K∑
k=1

ψ(β(k)∗) (22)

Proof. First note that, since all supports are disjoint, Z(k)∗
i = sign(β∗ik), so that Z(k)∗

S =
ζ(β(k)∗

S ). Inequality (b) is then immediate, since
∣∣∣∣∣∣Z∗STΣ−1

SSZ
∗
S

∣∣∣∣∣∣
2
≤ tr(Z∗S

TΣ−1
SSZ

∗
S). To

establish inequality (a), we note that

ψ(B∗) = max
x∈RK : ‖x‖≤1

xTZ∗S
TΣ−1

SSZ
∗
Sx ≥ max

1≤k≤K
eTkZ

∗
S
TΣ−1

SSZ
∗
Sek = max

1≤k≤K
Z

(k)∗
S

T
Σ−1
SSZ

(k)∗
S .

We illustrate Corollary 2 with an example.

Example 3. Disjoint support with uncorrelated design Suppose that ΣSS = Is×s,
and the supports are disjoint. In this case, we claim that the sample complexity of the `1/`2
group Lasso is the same as the ordinary Lasso. If the individual regressions have disjoint
support, then Z∗S = ζ(B∗S) has only a single non-zero entry per row and therefore the
columns of Z∗ are orthogonal. Moreover, Z∗ik = sign(β(k)∗

i ). By Lemma 1(b), the sparsity-
overlap function ψ(B∗) is equal to the largest squared column norm. But ‖Z(k)∗‖2 =∑s

i=1 sign(β(k)∗
i )2 = sk. Thus, the sample complexity of the group Lasso is the same as the

ordinary Lasso in this case.3

3In making this assertion, we are ignoring any difference between log(p − sk) and log(p − s), which is
valid, for instance, in the regime of sublinear sparsity, when sk/p→ 0 and s/p→ 0.
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Finally, we consider an example that illustrates the effect of correlated designs:

Example 4. Effects of correlated designs To illustrate the behavior of the sparsity-
overlap function in the presence of correlations in the design. we consider the simple case of
two regressions with support of size 2. For parameters ϑ1 and ϑ2 ∈ [0, π] and ρ ∈ (−1,+1),
consider regression matrices B∗ such that B∗ = ζ(B∗S) and

ζ(B∗S) =
[
cos(ϑ1) sin(ϑ1)
cos(ϑ2) sin(ϑ2)

]
and Σ−1

SS =
[
1 ρ
ρ 1

]
. (23)

Setting M∗ = ζ(B∗S)TΣ−1
SSζ(B∗S), a simple calculation shows that

tr(M∗) = 2(1 + ρ cos(ϑ1−ϑ2)), and det(M∗) = (1− ρ2) sin(ϑ1−ϑ2)2,

so that the eigenvalues of M∗ are

µ+ = (1 + ρ)(1 + cos(ϑ1−ϑ2)), and µ− = (1− ρ)(1− cos(ϑ1−ϑ2)).

so that ψ(B∗) = max(µ+, µ−). On the other hand, with

z̃1 = ζ(β(1)∗) =
(

sign(cos(ϑ1))
sign(cos(ϑ2))

)
and z̃2 = ζ(β(2)∗) =

(
sign(sin(ϑ1))
sign(sin(ϑ2))

)
, we have

ψ(β(1)∗) = z̃T1 Σ−1
SS z̃1 = 1{cos(ϑ1)6=0} + 1{cos(ϑ2)6=0} + 2 ρ sign(cos(ϑ1) cos(ϑ2)),

ψ(β(2)∗) = z̃T2 Σ−1
SS z̃2 = 1{sin(ϑ1)6=0} + 1{sin(ϑ2)6=0} + 2 ρ sign(sin(ϑ1) sin(ϑ2)).

Figure 4 provides a graphical comparison of these sample complexity functions. The
function ψ̃(B∗) = max(ψ(β(1)∗), ψ(β(2)∗)) is discontinuous on S = π

2 Z×R∪R×π2 Z, and, as a
consequence, so is its difference with ψ(B∗). Note that, for fixed ϑ1 or fixed ϑ2, some of these
discontinuities are removable discontinuities of the induced function on the other variable,
and these discontinuities therefore create needles, slits or flaps in the graph of the function ψ̃.
Denote by R+ (resp. R−) the set R+ = {(ϑ1, ϑ2)|min[cos(ϑ1) cos(ϑ2), sin(ϑ1) sin(ϑ2)] > 0},
(resp. R− = {(ϑ1, ϑ2)|max[cos(ϑ1) cos(ϑ2), sin(ϑ1) sin(ϑ2)] < 0} ) on which ψ̃(B∗) reaches
its minimum value when ρ ≥ 0.5 (resp. when ρ ≤ 0.5) (see middle and bottom center
plots in figure 4). For ρ = 0, the top center graph illustrates that ψ̃(B∗) is equal to 2
except for the cases of matrices B∗S with disjoint support, corresponding to the discrete set
D = {(k π2 , (k±1)π2 ), k ∈ Z} for which it equals 1. The top rightmost graph illustrates that,
as shown in Corollary 1, the inequality always holds for an uncorrelated design. For ρ > 0,
the inequality ψ(B∗) ≤ max(ψ(β(1)∗), ψ(β(2)∗)) is violated only on a subset of S ∪R−; and
for ρ < 0, the inequality is symmetrically violated on a subset of S ∪R+ (see Fig. 4).

2.4 Illustrative simulations

In this section, we provide the results of some simulations to illustrate the sharpness of
Theorem 1, and furthermore to ascertain how quickly the predicted behavior is observed
as elements of the triple (n, p, s) grow in different regimes. We explore the case of two
regression tasks (i.e., K = 2) which share an identical support set S with cardinality |S| = s
in Section 2.4.1 and consider a slightly more general case in Section 2.4.2.
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ψ(B∗) ψ̃(B∗) = max(ψ(β(1)∗), ψ(β(2)∗)) max(0, ψ(B∗)− ψ̃(B∗))

ρ
=

0
ρ

=
0.

9
ρ

=
−

0.
9

Figure 1. Comparison of sparsity-overlap functions for `1/`2 and the Lasso. For the
pair 1

2π (ϑ1, ϑ2), we represent in each row of plots, corresponding respectively to ρ = 0
(top), 0.9 (middle) and −0.9 (bottom), from left to right, the quantities: ψ(B∗) (left),
max(ψ(β(1)∗), ψ(β(2)∗)) (center) and max(0, ψ(B∗) − max(ψ(β(1)∗), ψ(β(2)∗))) (right). The
latter indicates when the inequality ψ(B∗) ≤ max(ψ(β(1)∗), ψ(β(2)∗)) does not hold and by
how much it is violated.

2.4.1 Phase transition behavior

This first set of experiments is designed to reveal the phase transition behavior predicted by
Theorem 1. The design matrix X is sampled from the standard Gaussian ensemble, with
i.i.d. entries Xij ∼ N(0, 1). We consider two types of sparsity,

• logarithmic sparsity, where s = α log(p), for α = 2/ log(2), and

• linear sparsity, where s = αp, for α = 1/8,

for various ambient model dimensions p ∈ {16, 32, 64, 256, 512, 1024}. For a given triplet
(n, p, s), we solve the block-regularized problem (7) with the regularization parameter λn =√

log(p− s) (log s)/n. For each fixed (p, s) pair, we measure the sample complexity in terms
of a parameter θ, in particular letting n = θs log(p− s) for θ ∈ [0.25, 1.5].

We let the matrixB∗ ∈ Rp×2 of regression coefficients have entries β∗ij in {−1/
√

2, 1/
√

2},
choosing the parameters to vary the angle between the two columns, thereby obtaining
various desired values of ψ(B∗). Since Σ = Ip×p for the standard Gaussian ensemble,
the sparsity-overlap function ψ(B∗) is simply the maximal eigenvalue of the Gram matrix

13
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Figure 2. Plots of support union recovery probability P[Ŝ=S] versus the control parameter
θ = n/[2s log(p − s)] for two different types of sparsity, linear sparsity in the left column
(s = p/8) and logarithmic sparsity in the right column (s = 2 log2(p))) and using `1/`2
regularization in the three first rows to estimate the support respectively in the three cases
of identical regression, intermediate angles and orthonormal regressions. The fourth row
presents results for the Lasso in the case of identical regressions.
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Figure 3. Plots of support recovery probability P[Ŝ=S] versus the control parameter θ =
n/[2s log(p−s)] for two different type of sparsity, logarithmic sparsity on top (s = O(log(p)))
and linear sparsity on bottom (s = αp), and for increasing values of p from left to right.
The noise level is set at σ = 0.1. Each graph shows four curves (black,red, green,blue)
corresponding to the case of independent `1 regularization, and, for `1/`2 regularization,
the cases of identical regression, intermediate angles, and “orthonormal” regressions. Note
how curves corresponding to the same case across different problem sizes p all coincide, as
predicted by Theorem 1. Moreover, consistent with the theory, the curves for the identical
regression group reach P[Ŝ = S] ≈ 0.50 at θ ≈ 1, whereas the orthogonal regression group
reaches 50% success substantially earlier.

ζ(B∗S)T ζ(B∗S). Since |β∗ij | = 1/
√

2 by construction, we are guaranteed that B∗S = ζ(B∗S),
that the minimum value b∗min = 1, and moreover that the columns of ζ(B∗S) have the same
Euclidean norm.

To construct parameter matrices B∗ that satisfy |βij | = 1/
√

2, we choose both p and the
sparsity scalings so that the obtained values for s are multiples of four. We then construct
the columns Z(1)∗ and Z(2)∗ of the matrix B∗ = ζ(B∗) from copies of vectors of length four.
Denoting by ⊗ the usual matrix tensor product, we consider the following 4-vectors:

Identical regressions: We set Z(1)∗=Z(2)∗= 1√
2
~1s, so that the sparsity-overlap function

is ψ(B∗) = s.
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Orthonormal regressions: HereB∗ is constructed with Z(1)∗ ⊥ Z(2)∗, so that ψ(B∗) = s
2 ,

the most favorable situation. In order to achieve this orthonormality, we set Z(1)∗ =
1√
2
~1s and Z(2)∗ = 1√

2
~1s/2 ⊗ (1,−1)T .

Intermediate angles: In this intermediate case, the columns Z(1)∗ and Z(2)∗ are at a
60◦ angle, which leads to ψ(B∗) = 3

4s. Specifically, we set Z(1)∗ = 1√
2
~1s and

Z(2)∗ = 1√
2
~1s/4 ⊗ (1, 1, 1,−1)T .

Figures 2 shows plots of linear sparsity (left column) and logarithmic sparsity (right
column) for all three cases solved using the group `1/`2 relaxation (top three rows), as well
as the reference Lasso case for the case of identical regressions (bottom row). Each panel
plots the success probability P[Ŝ = S] versus the rescaled sample size θ = n/[2s log(p− s)].
Under this re-scaling, Theorem 1 predicts that the curves should align, and that the success
probability should transition to 1 once θ exceeds a critical threshold (dependent on the
type of ensemble). Note that for suitably large problem sizes (p ≥ 128), the curves do align
in the predicted way, showing step-function behavior. Figure 3 plots data from the same
simulations in a different format. Here the top row corresponds to logarithmic sparsity, and
the bottow row to linear sparsity; each panel shows the four different choices for B∗, with
the problem size p increasing from left to right. Note how in each panel the location of the
transition of P[Ŝ = S] to one shifts from right to left, as we move from the case of identical
regressions to intermediate angles to orthogonal regressions.

2.4.2 Empirical thresholds

In this experiment, we aim at verifying more precisely the location of the `1/`2 threshold
as the regression vectors vary continuously from identical to orthonormal. We consider the
case of matrices B∗ of size s× 2 for s even. In Example Sec. 4 of Sec. 2.3, we characterized
the value of ψ(B∗) if B∗ is a 2× 2 matrix.

In order to generate a family of regression matrices with smoothly varying sparsity/overlap
function consider the following 2× 2 matrix:

B1(α) =

[
1√
2

1√
2

cos(π4 + α) sin(π4 + α)

]
. (24)

Note that α is the angle between the two rows of B1(α) in this setup. Note moreover that
the columns of B1(α) have varying norm.

We use this base matrix to define the following family of regression matrices B∗S ∈ Rs×2:

B1 : =
{
B1s(α) = ~1s/2 ⊗B1(α), α ∈

[
0,
π

2

]}
. (25)

For a design matrix drawn from the Standard Gaussian ensemble, the analysis of Ex-
ample Sec. 4 in Sec. 2.3 naturally extends to show that the sparsity/overlap function is
ψ(Bs1(α)) = s

2(1 + | cos(α)|). Moreover, as we vary α from 0 to π
2 , the two regressions vary

from identical to ”orthonormal” and the sparsity/overlap function decreases from s to s
2 .

We fix the problem size p = 2048 and sparsity s = log2(p) = 22. For each value
of α ∈ [0, π2 ], we generate a matrix from the specified family and angle. We then solve
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the block-regularized problem (7) with sample size n = 2θs log(p − s) for a range of θ in
[.25, 1.5]; for each value of θ, we repeat the experiment (generating random design matrix
X and observation matrix W each time) over T = 500 trials. Based on these trials, we
then estimate the value of θ50% for which the exact support is retrieved at least 50% of the
time. Since ψ(B∗) = 1+| cos(α)|

2 s, our theory predicts that if we plot θ50% versus | cos(α)|, it
should lie on or below the straight line 1+| cos(α)|

2 . We also perform the same experiments
for row selection using the ordinary Lasso, and plot the resulting estimated thresholds on
the same axes.

The results are shown in Figure 4. Note first that the curve obtained for Ŝ`1/`2 (blue
circles) coincides roughly with the theoretical prediction 1+| cos(α)|

2 (black dashed diagonal)
as regressions vary from orthogonal to identical. Moreover, the estimated θ50% of the
ordinary Lasso remains above 0.9 for all values of α, which is close to the theoretical value
of 1. However, the curve obtained is not constant, but is roughly sigmoidal with a first
plateau close to 1 for cos(α) < 0.4 and a second plateau close to 0.9 for cos(α) > 0.5. The
latter coincides with the empirical value of θ50% for the univariate Lasso for the first column
β(1)∗ (not shown). There are two reasons why the value of θ50% for the ordinary Lasso does
not match the prediction of the first-order asymptotics: first, for α = π

4 (corresponding to
cos(α)=0.7), the support of β(2)∗ is reduced by one half and therefore its sample complexity
is decreased in that region. Second, the supports recovered by individual Lassos for β(1)∗

and β(2)∗ vary from uncorrelated when α = π
2 to identical when α = 0. It is therefore not

surprising that the sample complexity is the same as a single univariate Lasso for cos(α)
large and higher for cos(α) small, where independent estimates of the support are more
likely to include, by union, spurious covariates in the row support.

3 Proof of Theorem 1

In this section, we provide the proof of our main result. For the convenience of the reader,
we begin by recapitulating the notation to be used throughout the argument.

• the sets S and Sc are a partition of the set of columns of X, such that |S| = s, |Sc| =
p− s, and

• the design matrix is partitioned as X =
[
XS XSc

]
, where XS ∈ Rn×s and XSc ∈

Rn×(p−s).

• the regression coefficient matrix is also partitioned as B∗ =
[
B∗S
B∗Sc

]
, with B∗S ∈ Rs×K

and B∗Sc = 0 ∈ R(p−s)×K . We use β∗i to denote the ith row of B∗.

• the regression model is given by Y = XB∗ + W , where the noise matrix W ∈ Rn×K

has i.i.d. N(0, σ2) entries.

• The matrix Z∗S = ζ(B∗S) ∈ Rs×K has rows Z∗i = ζ(β∗i ) = β∗i
‖β∗i ‖2

∈ RK .
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Figure 4. Plots of the Lasso sample complexity θ = n/[2s log(p−s)] for which the probability
of union support recovery exceeds 50% empirically as a function of | cos(α)| for `1-based
recovery and `1/`2 based recovery, where α is the angle between Z(1)∗ and Z(2)∗ for the
family B1. We consider the two following methods for performing row selection: Ordinary
Lasso (`1, green triangles) and group `1/`2 Lasso (blue circles).

3.1 High-level proof outline

At a high level, the proof is based on the notion of a primal-dual witness: we construct a
primal matrix B̂ along with a dual matrix Ẑ such that:

(a) the pair (B̂, Ẑ) together satisfy the Karush-Kuhn-Tucker (KKT) conditions associated
with the second-order cone program (7), and

(b) this solution certifies that the SOCP recovers the union of supports S.

For general high-dimensional problems (with p� n), the SOCP (7) need not have a unique
solution; however, a consequence of our theory is that the constructed solution B̂ is the
unique optimal solution under the conditions of Theorem 1.

We begin by noting that the block-regularized problem (7) is convex, and not differen-
tiable for all B. In particular, denoting by βi the ith row of B, the subdifferential of the
norm `1/`2-block norm over row i takes the form

[∂ ‖B‖`1/`2 ]i =

{
βi

‖βi‖2 if βi 6= ~0

Zi such that ‖Zi‖2 ≤ 1 otherwise.
(26)

We also use the shorthand ζ(Bi) = βi/‖βi‖2 with an analogous definition for the matrix
ζ(BS), assuming that no row of BS is identically zero. In addition, we define the empirical
covariance matrix

Σ̂ : =
1
n
XTX =

1
n

n∑
i=1

XiX
T
i , (27)
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where Xi is the ith column of X. We also make use of the shorthand Σ̂SS = 1
nX

T
SXS and

Σ̂ScS = 1
nX

T
ScXS as well as ΠS = XS(Σ̂SS)−1XT

S to denote the projector on the range of
XS .

At the core of our constructive procedure is the following convex-analytic result, which
characterizes an optimal primal-dual pair for which the primal solution B̂ correctly recovers
the support set S:

Lemma 2. Suppose that there exists a primal-dual pair (B̂, Ẑ) that satisfies the conditions:

ẐS = ζ(B̂S) (28a)

Σ̂SS(B̂S −B∗S)− 1
n
XT
SW = −λnẐS (28b)

λn

∥∥∥ẐSc

∥∥∥
`∞/`2

: =
∥∥∥∥Σ̂ScS(B̂S −B∗S)− 1

n
XT
ScW

∥∥∥∥
`∞/`2

< λn (28c)

B̂Sc = 0. (28d)

Then (B̂, Ẑ) is a primal-dual optimal solution to the block-regularized problem, with Ŝ(B̂) =
S by construction. If Σ̂SS � 0, then B̂ is the unique optimal primal solution.

See Appendix A for the proof of this claim. Based on Lemma 2, we proceed to construct
the required primal dual pair (B̂, Ẑ) as follows. First, we set B̂Sc = 0, so that condition (28d)
is satisfied. Next, we specify the pair (B̂S , ẐS) by solving the following restricted version of
the SOCP:

B̂S = arg min
BS∈Rs×K

{
1

2n

∣∣∣∣∣∣∣∣∣∣∣∣Y −X [BS0Sc

]∣∣∣∣∣∣∣∣∣∣∣∣2
F

+ λn‖BS‖`1/`2

}
. (29)

Since s < n, the empirical covariance (sub)matrix Σ̂SS = 1
nX

T
SXS is strictly positive definite

with probability one, which implies that the restricted problem (29) is strictly convex and
therefore has a unique optimum B̂S . We then choose ẐS to be the solution of equation (28b).
Since any such matrix ẐS is also a dual solution to the SOCP (29), it must be an element
of the subdifferential ∂

∥∥∥B̂S∥∥∥
`1/`2

.

It remains to show that this construction satisfies conditions (28a) and (28c). In order
to satisfy condition (28a), it suffices to show that no row of the solution B̂S is identically
zero. From equation (28b) and using the invertibility of the empirical covariance matrix
Σ̂SS , we may solve as follows

(B̂S −B∗S) =
(

Σ̂SS

)−1
[
XT
SW

n
− λnẐS

]
= : US . (30)

Note that for any row i ∈ S, by the triangle inequality, we have

‖β̂i‖2 ≥ ‖β∗i ‖2 − ‖US‖`∞/`2 .

Therefore, in order to show that no row of B̂S is identically zero, it suffices to show that
the event

E(US) : =
{
‖US‖`∞/`2 ≤

1
2
b∗min

}
(31)
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occurs with high probability. (Recall from equation (13) that the parameter b∗min measures
the minimum `2-norm of any row of B∗S .) We establish this result in Section 3.2.

Turning to condition (28c), by substituting expression (30) for the difference (B̂S −B∗S)
into equation (28c), we obtain a (p− s)×K random matrix VSc , with rows indexed by Sc.
For any index j ∈ Sc, the corresponding row vector Vj ∈ RK is given by

Vj : = XT
j

(
[ΠS − In]

W

n
− λn

XS

n
(Σ̂SS)−1ẐS

)
. (32)

In order for condition (28c) to hold, it is necessary and sufficient that the probability of the
event

E(VSc) : =
{
‖VSc‖`∞/`2 < λn

}
(33)

converges to one as n tends to infinity. Consequently, the remainder (and bulk) of the proof
is devoted to showing that the probabilities P[E(US)] and P[E(VSc)] both converge to one
under the specified conditions.

3.2 Analysis of E(US): Correct inclusion of supporting covariates

This section is devoted to the analysis of the event E(US) from equation (31), and in
particular showing that its probability converges to one under the specified scaling. We
begin by defining

W̃ : =
1√
n

(Σ̂SS)−
1
2XT

SW.

With this notation, we have

US = Σ̂
− 1

2
SS

W̃√
n
− λn(Σ̂SS)−1ẐS .

Using this representation and the triangle inequality, we have

‖US‖`∞/`2 ≤

∥∥∥∥∥(Σ̂SS)−
1
2
W̃√
n

∥∥∥∥∥
`∞/`2

+ λn

∥∥∥(Σ̂SS)−1ẐS

∥∥∥
`∞/`2

≤

∥∥∥∥∥(Σ̂SS)−
1
2
W̃√
n

∥∥∥∥∥
`∞/`2︸ ︷︷ ︸

+λn

∣∣∣∣∣∣∣∣∣(Σ̂SS)−1
∣∣∣∣∣∣∣∣∣
∞︸ ︷︷ ︸

T1 T2,

where the form of T2 in the second line uses a standard matrix norm bound (see equa-
tion (42a) in Appendix B), and the fact that

∥∥∥ẐS∥∥∥
`∞/`2

≤ 1.
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Using the triangle inequality, we bound T2 as follows:

T2 ≤ λn

{∣∣∣∣∣∣(ΣSS)−1
∣∣∣∣∣∣
∞ +

∣∣∣∣∣∣∣∣∣(Σ̂SS)−1 − (ΣSS)−1
∣∣∣∣∣∣∣∣∣
∞

}
≤ λn

{
Dmax +

√
s
∣∣∣∣∣∣∣∣∣(Σ̂SS)−1 − (ΣSS)−1

∣∣∣∣∣∣∣∣∣
2

}
≤ λn

{
Dmax +

√
s
∣∣∣∣∣∣(ΣSS)−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣(X̃T
S X̃S/n)−1 − Is

∣∣∣∣∣∣∣∣∣
2

}
≤ λn

{
Dmax +

√
s

Cmin

∣∣∣∣∣∣∣∣∣(X̃T
S X̃S/n)−1 − Is

∣∣∣∣∣∣∣∣∣
2

}
,

which defines X̃S as a random matrix with i.i.d. standard Gaussian entries. From concen-
tration results in random matrix theory (see appendix C), for s/n→ 0, we have∣∣∣∣∣∣∣∣∣(X̃T

S X̃S/n)−1 − Is
∣∣∣∣∣∣∣∣∣

2
≤ O

(√
s

n

)
with probability 1− exp(−Θ(n)). Overall, we conclude that

T2 ≤ λn

{
Dmax +O

(√
s2

n

)}

with probability 1− exp(−Θ(n)).
Turning now to T1, note that conditioned on XS , we have (vec(W̃ ) | XS) ∼ N(~0s×K , Is⊗

IK) where vec(A) denotes the vectorization of matrix A . Using this fact and the definition
of the block `∞/`2 norm,

T1 = max
i∈S

∥∥∥∥∥eTi (Σ̂SS)−
1
2
W̃√
n

∥∥∥∥∥
2

≤
∣∣∣∣∣∣∣∣∣(Σ̂SS)−1

∣∣∣∣∣∣∣∣∣1/2
2

[
1
n

max
i∈S

ζ2
i

]1/2

,

which defines ζ2
i as independent χ2-variates with K degrees of freedom. Using the tail

bound in Lemma 8 (see Appendix F) with t = 2K log s > K, we have

P
[

1
n

max
i∈S

ζ2
i ≥

4K log s
n

]
≤ exp

(
−2K log s

(
1− 2

√
1

2 log s

))
→ 0.

Defining the event T : =
{∣∣∣∣∣∣∣∣∣(Σ̂SS)−1

∣∣∣∣∣∣∣∣∣
2
≤ 2

Cmin

}
, we have P[T ] ≥ 1 − 2 exp(−Θ(n)), again

using concentration results from random matrix theory (see Appendix C). Therefore,

P

[
T1 ≥

√
8K log s
Cminn

]
≤ P

[
T1 ≥

√
8K log s
Cminn

∣∣∣∣∣ T
]

+ P[T c]

≤ P
[

1
n

max
i∈S

ζ2
i ≥

4K log s
n

]
+ 2 exp(−Θ(n))

= O (exp(−Θ(log s)))→ 0.
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Finally, combining the pieces, we conclude that with probability 1 − exp(−Θ(log s)), we
have

‖US‖`∞/`2
b∗min

≤ 1
b∗min

[T1 + T2]

≤ 1
b∗min

[
O

(√
log s
n

)
+ λn

(
Dmax +O

(√
s2

n

))]

With the assumed scaling n = Ω (s log(p− s)), we have

‖US‖`∞/`2
b∗min

≤ 1
b∗min

[
O
(

1√
s

)
+ λn

(
1 +O

(√
s

log(p− s)

))]
, (34)

with probability greater than 1− 2 exp(−c log(s))→ 1 so that the conditions of Theorem 1
are sufficient to ensure that event E(US) holds with high probability as claimed.

3.3 Analysis of E(VSc): Correct exclusion of non-support

For simplicity, in the following arguments, we drop the index Sc and write V for VSc . In
order to show that ‖V ‖`∞/`2 < λn with probability converging to one, we make use of the
decomposition 1

λn
‖V ‖`∞/`2 ≤

∑3
i=1 T

′
i where

T ′1 : =
1
λn
‖E [V | XS ]‖`∞/`2 (35a)

T ′2 : =
1
λn
‖E [V |XS ,W ]− E [V |XS ]‖`∞/`2 (35b)

T ′3 : =
1
λn
‖V − E [V |XS ,W ]‖`∞/`2 . (35c)

We deal with each of these three terms in turn, showing that with high probability under
the specified scaling of (n, p, s), we have T ′1 ≤ (1 − γ), and T ′2 = op(1), and T ′3 < γ, which
suffices to show that 1

λn
‖V ‖`∞/`2 < 1 with high probability.

The following lemma is useful in the analysis:

Lemma 3. Define the matrix ∆ ∈ Rs×K with rows ∆i : = Ui/‖β∗i ‖2. As long as ‖∆i‖2 ≤ 1/2
for all row indices i ∈ S, we have∥∥∥ẐS − ζ(B∗S)

∥∥∥
`∞/`2

≤ 4 ‖∆‖`∞/`2 .

See Appendix D for the proof of this claim.

3.3.1 Analysis of T ′1

Note that by definition of the regression model (4), we have the conditional independence
relations

W⊥⊥XSc | XS , ẐS⊥⊥XSc | XS , and ẐS⊥⊥XSc | {XS ,W}.
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Using the two first conditional independencies, we have

E [V | XS ] = E [XT
Sc |XS ]

(
[ΠS − In]

E [W |XS ]
n

− λn
XS

n
(Σ̂SS)−1E [ẐS |XS ]

)
.

Since E [W |XS ] = 0, the first term vanishes, and using E [XT
Sc |XS ] = ΣScSΣ−1

SSX
T
S , we

obtain
E [V | XS ] = λnΣScSΣ−1

SSE [ẐS |XS ]. (36)

Using the matrix-norm inequality (42a) of Appendix B and then Jensen’s inequality yields

T ′1 = ‖ΣScSΣ−1
SSE [ZS |XS ]‖`∞/`2

≤
∣∣∣∣∣∣ΣScSΣ−1

SS

∣∣∣∣∣∣
∞ E [‖ZS‖`∞/`2 |XS ]

≤ (1− γ).

3.3.2 Analysis of T ′2

Appealing to the conditional independence relationship ẐS⊥⊥XSc | {XS ,W}, we have

E [V | XS ,W ] = E [XT
Sc | XS ,W ]

(
[ΠS − In]

W

n
− λn

XS

n
(Σ̂SS)−1E [ẐS |XS ,W ]

)
.

Observe that E [ẐS |XS ,W ] = ẐS because (XS ,W ) uniquely specifies B̂S through the convex
program (29), and the triple (XS ,W, B̂S) defines ẐS through equation (28b). Moreover, the
noise term disappears because the kernel of the orthogonal projection matrix (In − ΠS) is
the same as the range space of XS , and

E [XT
Sc | XS ,W ][ΠS − In] = E [XT

Sc | XS ][ΠS − In]
= ΣScSΣ−1

SSX
T
S [ΠS − In] = 0.

We have thus shown that E [V | XS ,W ] = −λn
n ΣScSΣ−1

SSẐS , so that we can conclude that

T ′2 ≤
∣∣∣∣∣∣ΣScS(ΣSS)−1

∣∣∣∣∣∣
∞ ‖ẐS − E [ẐS |XS ]‖`∞/`2

≤ (1− γ) E
[∥∥∥ẐS − Z∗S∥∥∥

`∞/`2

]
+ (1− γ)

∥∥∥ẐS − Z∗S∥∥∥
`∞/`2

≤ (1− γ) 4
{

E [‖∆‖`∞/`2 ] + ‖∆‖`∞/`2

}
,

where the final inequality uses Lemma 3. Under the assumptions of Theorem 1, this final
term is of order op(1), as shown in Section 3.2.

3.3.3 Analysis of T ′3

This third term requires a little more care. We begin by noting that conditionally on XS and
W , each vector Vj ∈ RK is normally distributed. Since Cov(X(j) | XS ,W ) = (ΣSc|S)jj In,
we have

Cov(Vj | XS ,W ) = Mn (ΣSc|S)jj
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where the K ×K random matrix Mn = Mn(XS ,W ) is given by

Mn : =
λ2
n

n
ẐTS (Σ̂SS)−1ẐS +

1
n2
W T (ΠS − In)W. (37)

Conditionally on W and XS , the matrix Mn is fixed, and we have(
‖Vj − E [Vj | XS , W ]‖22 |W,XS

) d=
(
ΣSc |S

)
jj
ξTj Mnξj .

where ξj ∼ N(~0K , IK). Since (ΣSc |S)jj ≤ (ΣScSc)jj ≤ Cmax for all j, we have

max
j∈Sc

(ΣSc |S)jj ξTj Mnξj ≤ Cmax |||Mn|||2 max
j∈Sc
‖ξj‖22

where |||Mn|||2 is the spectral norm.
We now state a result that provides control on this spectral norm. Intuitively, this

result is based on the fact that the matrix n
λ2

n
Mn is a random matrix that concentrates

in spectral norm around the matrix M∗ = Z∗S
T (ΣSS)−1Z∗S , where Z∗S = ζ(B∗S), and the

fact that the spectral norm of M∗ is directly proportional to the defined sparsity/overlap
function ψ(B∗) : =

∣∣∣∣∣∣ζ(B∗S)T (ΣSS)−1ζ(B∗S)
∣∣∣∣∣∣

2
.

Lemma 4. For any δ > 0, define the event

T (δ) : =
{
|||Mn|||2 ≤ λ

2
n

ψ(B∗)
n

(1 + δ)
}
. (38)

Under the conditions of Theorem 1, for any δ > 0, there is some c1 > 0 such that
P[T (δ)c] ≤ 2 exp(−c1 log s) → 0.

See Appendix E for the proof of this lemma.
Using Lemma 4, we can now complete the proof. For any fixed δ > 0 (which can be

made arbitrarily small), we have

P[T ′3 ≥ γ] ≤ P[T ′3 ≥ γ | T (δ)] + P[T (δ)c].

Since P[T (δ)c] → 0 from Lemma 4, it suffices to deal with the first term. Conditioning on
the event T (δ), we have

P[T ′3 ≥ γ | T (δ)] ≤ P
[
max
j∈Sc
‖ξj‖22 ≥

γ2

Cmax

n

ψ(B∗) (1 + δ)
.

]
Define the quantity t∗(n,B∗) : = 1

2
γ2

Cmax

n
ψ(B∗) (1+δ) , and note that t∗ → +∞ under the

specified scaling of (n, p, s). By applying Lemma 8 from Appendix F on large deviations
for χ2-variates with t = t∗(n,B∗), we obtain

P[T ′3 ≥ γ | T (δ)] ≤ (p− s) exp

(
−t∗

[
1− 2

√
K

t∗

])
≤ (p− s) exp (−t∗ (1− δ)) , (39)
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for (n, p, s) sufficiently large. Thus, the bound (39) tends to zero at rate O(exp(−c log(p−
s))) as long as there exists ν > 0 such that we have (1− δ) t∗(n,B∗) > (1 + ν) log(p− s),
or equivalently

n > (1 + ν)
(1 + δ)
(1− δ)

Cmax

γ2
[2ψ(B∗) log(p− s)] ,

as claimed.

4 Discussion

In this paper, we have analyzed the high-dimensional behavior of block-regularization for
multivariate regression problems, and shown that its behavior is governed by the sample
complexity parameter

θ`1/`2(n, p, s) : = n/[2ψ(B∗) log(p− s)],

where n is the sample size, p is the ambient dimension, and ψ(·) is a sparsity-overlap function
the measures a combination of the sparsity and overlap properties of the true regression
matrix B∗.

There are a number of open questions associated with this work. First, note that the
current paper provides only an achievability condition (i.e., support recovery can be achieved
once the control parameter is larger than some finite critical threshold t?). However, based
both on empirical results (see Figures 2 and 3) and technical aspects of the proof, we
conjecture that our characterization is in fact sharp, meaning that the block-regularized
convex program (7) fails to recover the support once the control parameter θ`1/`2 drops
below some critical threshold. Indeed, this conjecture is consistent in the special case of
univariate regression with K = 1, where it is known (Wainwright, 2006) that the Lasso fails
once the ratio n/[2s log(p− s)] falls below a critical threshold. Secondly, the current work
applies to the “hard”-sparsity model, in which a subset S of the regressors are non-zero, and
the remaining coefficients are zero. As with the ordinary Lasso, it would also be interesting
to study block-regularization under soft sparsity models (e.g., `q “balls” for coefficients,
with q < 1), under an alternative loss function such as mean-squared error, as opposed to
the exact support recovery criterion considered here.
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A Proof of Lemma 2

Using the notation βi to denote a row of B and denoting by

K : = {(w, v) ∈ RK × R | ‖w‖2 ≤ v} (40)
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the usual second-order cone (SOC), we can rewrite the original convex program (7) as

min
B ∈ Rp×K

b ∈ Rp

1
2n
|||Y −XB|||2F + λn

p∑
i=1

bi

s.t. (βi, bi) ∈ K, 1 ≤ i ≤ p.

We now dualize the conic constraints (Boyd and Vandenberghe, 2004), using conic Lagrange
multipliers belonging to the dual cone K∗ = {(z, t) ∈ RK+1| zTw + vt ≥ 0, (w, v) ∈ K}.
The second-order cone K is self-dual (Boyd and Vandenberghe, 2004), so that the convex
program (41) is equivalent to

min
B ∈ Rp×K

b ∈ Rp

max
Z ∈ Rp×K

t ∈ Rp

1
2n
|||Y −XB|||2F + λn

p∑
i=1

bi − λn
p∑
i=1

(
−zTi βi + ti bi

)
s.t. (zi, ti) ∈ K, 1 ≤ i ≤ p,

where Z is the matrix whose ith row is zi.
Since the original program is convex and strictly feasible, strong duality holds and any

pair of primal (B?, b?) and dual solutions (Z?, t?) has to satisfy the Karush-Kuhn-Tucker
conditions:

‖β?i ‖2 ≤ b?i , 1 < i < p (41a)
‖z?i ‖2 ≤ t?i , 1 < i < p (41b)

z?i
Tβ?i − t?i b?i = 0, 1 < i < p (41c)

∇B
[

1
2n
|||Y −XB|||2F

]∣∣∣∣
B=B?

+ λnZ
? = 0 (41d)

λn(1− t?i ) = 0 (41e)

Since equations (41c) and (41e) impose the constraints t?i = 1 and b?i = ‖β?i ‖2, a primal-dual
solution to this conic program is determined by (B?, Z?).

Any solution satisfying the conditions in Lemma 2 also satisfies these KKT conditions,
since equation (28b) and the definition (28c) are equivalent to equation (41d), and equa-
tion (28a) and the combination of conditions (28d) and (28c) imply that the complementary
slackness equations (41c) hold for each primal-dual conic pair (βi, zi).

Now consider some other primal solution B̃; when combined with the optimal dual
solution Ẑ, the pair (B̃, Ẑ) must satisfy the KKT conditions (Bertsekas, 1995). But since
for j ∈ Sc, we have ‖ẑj‖2 < 1, then the complementary slackness condition (41c) implies
that for all j ∈ Sc, β̃j = 0. This fact in turn implies that the primal solution B̃ must also be
a solution to the restricted convex program (29), obtained by only considering the covariates
in the set S or equivalently by setting BSc = 0Sc . But since s < n by assumption, the matrix
XT
SXS is strictly positive definite with probability one, and therefore the restricted convex

program (29) has a unique solution B?
S = B̂S . We have thus shown that a solution (B̂, Ẑ)

to the program (7) that satisfies the conditions of Lemma 2, if it exists, must be unique.
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B Inequalities with block-matrix norms

In general, the two families of matrix norms that we have introduced, ||| · |||p, q and ‖·‖`a/`b ,
are distinct, but they coincide in the following useful special case:

Lemma 5. For 1 ≤ p ≤ ∞ and for r defined by 1/r + 1/p = 1 we have

‖·‖`∞/`p = ||| · |||∞, r.

Proof. Indeed, if ai denotes the ith row of A, then

‖A‖`∞/`p = max
i
‖ai‖p = max

i
max
‖yi‖r≤1

yTi ai = max
‖y‖r≤1

max
i
|yTai| = max

‖y‖r≤1
‖Ay‖∞ = |||A|||∞, r.

We conclude by stating some useful bounds and relations:

Lemma 6. Consider matrices A ∈ Rm×n and Z ∈ Rn×` and p, r > 0 with 1
p + 1

r = 1, we
have:

‖AZ‖`∞/`p = |||AZ|||∞, r ≤ |||A|||∞,∞|||Z|||∞, r = |||A|||∞,∞ ‖Z‖`∞/`p . (42a)

|||A|||r ≤ |||Im|||r,∞ |||A|||∞, r = s1/r ‖A‖`∞/`p . (42b)

C Some concentration inequalities for random matrices

In this appendix, we state some known concentration inequalities for the extreme eigenvalues
of Gaussian random matrices (Davidson and Szarek, 2001). Although these results hold
more generally, our interest here is on scalings (n, s) such that s/n→ 0.

Lemma 7. Let U ∈ Rn×s be a random matrix from the standard Gaussian ensemble (i.e.,
Uij ∼ N(0, 1), i.i.d.). Then

P
[∣∣∣∣∣∣∣∣∣∣∣∣ 1nUTU − Is×s

∣∣∣∣∣∣∣∣∣∣∣∣
2

≥
√
s

n

]
≤ 2 exp(−cn) → 0. (43)

This result is adapted easily to more general Gaussian ensembles. Letting X = U
√

Λ,
we obtain an n × s matrix with i.i.d. rows, Xi ∼ N(0,Λ). If the covariance matrix Λ has
maximum eigenvalue Cmax < +∞, then we have∣∣∣∣∣∣n−1XTX − Λ

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣√Λ[n−1UTU − I]

√
Λ
∣∣∣∣∣∣∣∣∣

2
≤ Cmax

∣∣∣∣∣∣n−1 UTU − I
∣∣∣∣∣∣

2
(44)

so that the bound (43) immediately yields an analogous bound on different constants.
The final type of bound that we require is on the difference∣∣∣∣∣∣(XTX/n)−1 − Λ−1

∣∣∣∣∣∣
2
,
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assuming that XTX is invertible. We note that∣∣∣∣∣∣(XTX/n)−1 − Λ−1
∣∣∣∣∣∣

2
=

∣∣∣∣∣∣(XTX/n)−1[Λ− (XTX/n)]Λ−1
∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣(XTX/n)−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣Λ− (XTX/n)
∣∣∣∣∣∣

2

∣∣∣∣∣∣Λ−1
∣∣∣∣∣∣

2
.

As long as the eigenvalues of Λ are bounded below by Cmin > 0, then
∣∣∣∣∣∣Λ−1

∣∣∣∣∣∣
2
≤ 1/Cmin.

Moreover, since s/n → 0, we have (from equation (44)) that
∣∣∣∣∣∣(XTX/n)−1

∣∣∣∣∣∣
2
≤ 2/Cmin

with probability converging to one exponentially in n. Thus, equation (44) implies the
desired bound.

D Proof of Lemma 3

From the previous section, the condition ‖∆i‖2 ≤ 1/2 implies that β̂i 6= ~0 and hence
Ẑi = β̂i/‖β̂i‖2 for all rows i ∈ S. Therefore, using the notation Z∗i = β∗i /‖β∗i ‖2 we have

Ẑi − Z∗i =
β̂i

‖β̂i‖2
− Z∗i =

Z∗i + ∆i

‖Z∗i + ∆i‖2
− Z∗i

= Z∗i

(
1

‖Z∗i + ∆i‖2
− 1
)

+
∆i

‖Z∗i + ∆i‖2
.

Note that, for z 6=0, g(z, δ) = 1
‖z+δ‖2 is differentiable with respect to δ, with gradient

∇δ g(z, δ) = − z+δ
2‖z+δ‖32

. By the mean-value theorem, there exists h ∈ [0, 1] such that

1
‖z + δ‖2

− 1 = g(z, δ)− g(z, 0) = ∇δ g(z, hδ)T δ = − (z + hδ)T δ
2‖z + hδ‖32

,

which implies that there exists hi ∈ [0, 1] such that

‖Ẑi − Z∗i ‖2 ≤ ‖Z∗i ‖2
|(Z∗i + hi∆i)T∆i|

2‖Z∗i + hi∆i‖32
+

‖∆i‖2
‖Z∗i + ∆i‖2

≤ ‖∆i‖2
2‖Z∗i + hi∆i‖22

+
‖∆i‖2

‖Z∗i + ∆i‖2
. (45)

We note that ‖Z∗i ‖2 = 1 and ‖∆i‖2 ≤ 1
2 imply that ‖Z∗i + hi∆i‖2 ≥ 1

2 . Combined with
inequality (45), we obtain ‖Ẑi − Z∗i ‖2 ≤ 4‖∆i‖2, which proves the lemma.

E Proof of Lemma 4

With Z∗S = ζ(B∗S), define the K ×K random matrix

M∗n : =
λ2
n

n
(Z∗S)T (Σ̂SS)−1Z∗S +

1
n2
W T (In −ΠS)W

and note that (using standard results on Wishart matrices (Anderson, 1984))

E [M∗n] =
λ2
n

n− s− 1
(Z∗S)T (ΣSS)−1Z∗S + σ2n− s

n2
IK . (46)
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To bound Mn in spectral norm, we use the triangle inequality:

|||Mn|||2 ≤ |||Mn −M∗n|||2︸ ︷︷ ︸+ |||M∗n − E [M∗n]|||2︸ ︷︷ ︸+ |||E [M∗n]|||2︸ ︷︷ ︸ . (47)

A1 A2 A3

Considering the term A1 in the decomposition (47), we have:

|||M∗n −Mn|||2 =
λ2
n

n

∣∣∣∣∣∣∣∣∣Z∗SΣ̂−1
SSZ

∗
S − ẐSΣ̂−1

SSẐS

∣∣∣∣∣∣∣∣∣
2

=
λ2
n

n

∣∣∣∣∣∣∣∣∣Z∗SΣ̂−1
SS(Z∗S − ẐS) + (Z∗S − ẐS)Σ̂−1

SS(Z∗S + (ẐS − Z∗S))
∣∣∣∣∣∣∣∣∣

2

≤ λ2
n

n

∣∣∣∣∣∣∣∣∣Σ̂−1
SS

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Z∗S − ẐS∣∣∣∣∣∣∣∣∣
2

(
2 |||Z∗S |||2 +

∣∣∣∣∣∣∣∣∣Z∗S − ẐS∣∣∣∣∣∣∣∣∣
2

)
(48)

Using the concentration results on random matrices in Appendix C, we have the bound∣∣∣∣∣∣∣∣∣Σ̂−1
SS

∣∣∣∣∣∣∣∣∣
2
≤ 2/Cmin with probability greater than 1 − 2 exp(−cn), and we have |||Z∗S |||2 =

O(
√
s) by definition. Moreover, from equation (42b) in Lemma 5, we have

∣∣∣∣∣∣∣∣∣Z∗S − ẐS∣∣∣∣∣∣∣∣∣
2
≤

√
s
∥∥∥Z∗S − ẐS∥∥∥

`∞/`2
. Using the bound (34) and Lemma 3, we have

∥∥∥Z∗S − ẐS∥∥∥
`∞/`2

= o(1)

with probability greater than 1 − 2 exp(−c log s), so that from equation (48), we conclude
that

A1 = |||M∗n −Mn|||2 = o

(
λ2
ns

n

)
w.h.p. (49)

Turning to term A2, we have the upper bound A2 ≤ T †1 + T †2 , where

T †1 =
λ2
n

n
|||Z∗S |||

2
2

∣∣∣∣∣∣∣∣∣∣∣∣ n

n− s− 1
(ΣSS)−1 − (Σ̂SS)−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

.

We have T †1 = o
(
λ2

ns
n

)
with probability greater than 1− 2 exp(−cn), since |||Z∗S |||

2
2 ≤ s, and∣∣∣∣∣∣∣∣∣ n

n−s−1(ΣSS)−1 − (Σ̂SS)−1
∣∣∣∣∣∣∣∣∣

2
= o(1) with high probability (see Appendix C). Turning to

T †2 , we have with probability greater than 1− 2 exp(−cn),

T †2 : =
1
n2

∣∣∣∣∣∣W T (In −ΠS)W − σ2(n− s)IK
∣∣∣∣∣∣

2
= O

(
1
n

)
= o

(
λ2
ns

n

)
,

since λ2
ns→ +∞. Overall, we conclude that

A2 = |||M∗n − E [M∗n]|||2 = o

(
λ2
ns

n

)
w.h.p. (50)

Finally, turning to A3 = |||E [M∗n]|||2 , from equation (46), we have

|||E[M∗n]|||2 ≤
λ2
nψ(B∗)
n

n

n− s− 1
+
σ2

n

(
1− s

n

)
= (1 + o(1))

[
λ2
nψ(B∗)
n

]
. (51)
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Combining bounds (49), (50), and (51) in the decomposition (47), and using the fact
that ψ(B∗) = Θ(s) (see Lemma 1(a)) yields that

|||Mn|||2 ≤ (1 + o(1))
[
λ2
nψ(B∗)
n

]
with probability greater than 1− 2 exp(c log s), which establishes the claim.

F Large deviations for χ2-variates

Lemma 8. Let Z1, . . . , Zm be i.i.d. χ2-variates with d degrees of freedom. Then for all
t > d, we have

P[ max
i=1,...,m

Zi ≥ 2t] ≤ m exp
(
− t
[
1− 2

√
d

t

])
. (52)

Proof. Given a central χ2-variate X with d degrees of freedom, Laurent and Massart (1998)
prove that P[X − d ≥ 2

√
d x+ 2x] ≤ exp(−x), or equivalently

P
[
X ≥ x+ (

√
x+
√
d)2
]
≤ exp(−x),

valid for all x > 0. Setting
√
x+
√
d =
√
t, we have

P[X ≥ 2t]
(a)

≤ P
[
X ≥ (

√
t−
√
d)2 + t

]
≤ exp(−(

√
t−
√
d)2)

≤ exp(−t+ 2
√
td)

= exp

(
−t

[
1− 2

√
d

t

])
,

where inequality (a) follows since
√
t ≥
√
d by assumption. Thus, the claim (52) follows by

the union bound.
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