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Abstract

We consider complexity penalization methods for model selection.
These methods aim to choose a model to optimally trade off estima-
tion and approximation errors by minimizing the sum of an empirical
risk term and a complexity penalty. It is well known that if we use a
bound on the maximal deviation between empirical and true risks as a
complexity penalty, then the risk of our choice is no more than the ap-
proximation error plus twice the complexity penalty. There are many
cases, however, where complexity penalties like this give loose upper
bounds on the estimation error. In particular, if we choose a function
from a suitably simple convex function class with a strictly convex loss
function, then the estimation error (the difference between the risk
of the empirical risk minimizer and the minimal risk in the class) ap-
proaches zero at a faster rate than the maximal deviation between em-
pirical and true risks. In this note, we address the question of whether
it is possible to design a complexity penalized model selection method
for these situations. We show that, provided the sequence of models is
ordered by inclusion, in these cases we can use tight upper bounds on
estimation error as a complexity penalty. Surprisingly, this is the case
even in situations when the difference between the empirical risk and
true risk (and indeed the error of any estimate of the approximation
error) decreases much more slowly than the complexity penalty. We
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give an oracle inequality showing that the resulting model selection
method chooses a function with risk no more than the approximation
error plus a constant times the complexity penalty.

1 Introduction

Consider the following prediction problem. We have independent and iden-
tically distributed random pairs (X, Y ), (X1, Y1), . . . , (Xn, Yn) from X × Y,
where the label space Y is a subset of R. The aim is to use the data
(X1, Y1), . . . , (Xn, Yn) to choose a function fn : X → Y with small risk,
R(fn) = E`(Y, fn(X)), where ` is a non-negative loss function. Ideally, the
risk should be close to the minimal or Bayes risk, R∗ = inff R(f), where the
infimum is over all measurable functions. A natural approach is to mini-
mize the empirical risk, R̂(f) = n−1

∑n
i=1 `(Yi, f(Xi)), over some class F of

functions. Clearly, there is a trade-off in the choice of F : we can decompose
the excess risk of fn as

R(fn)−R∗ =

(
R(fn)− inf

f∈F
R(f)

)
+

(
inf
f∈F

R(f)−R∗
)

,

where the first term represents the estimation error and the second the
approximation error. We would like both terms in the decomposition to be
small. For the first term to be small, F should be sufficiently small that it
is possible to use the data to choose a near-optimal function from F based
on the data. For the second term to be small, F should be sufficiently large
that it contains a good approximation to the optimal prediction.

One approach to this problem is to choose a large class F and decom-
pose it into

F =
⋃
j≥1

Fj,

then choose f̂j ∈ Fj to minimize the empirical risk, and finally choose the
model index j so that f̂j best balances these conflicting requirements. In
this note, we consider complexity penalization approaches, in which we
choose fn = f̂m̂ with m̂ chosen to minimize a combination of the empirical
risk of f̂j and a penalty term:

m̂ = arg min
j

(
R̂(f̂j) + pj

)
,
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where the penalty pj depends on the sample size n.
We are interested in oracle inequalities of the form

R(fn)−R∗ ≤ inf
j

(
inf

f∈Fj

R(f)−R∗ + cpj

)
,

where c is a positive constant. In such an inequality, if the term cpj de-
creases with n at the same rate as the estimation error R(f̂j)− inff∈Fj

R(f),
then the inequality shows that our choice fn has excess risk that decreases
at the same rate as if we had the advice of an oracle who tells us the best
complexity class Fj to choose. The utility of an oracle inequality of this
kind depends on the accuracy with which the penalty term approximates
the estimation error.

It is well known that such inequalities follow easily from uniform con-
vergence results, as illustrated by the following theorem. The proof is im-
mediate; see, for example [1].

Theorem 1. If the data is such that

sup
j

(
sup
f∈Fj

∣∣∣R(f)− R̂(f)
∣∣∣− pj

)
≤ 0,

then in that case

R(fn)−R∗ ≤ inf
j

inf
f∈Fj

(R(f)−R∗ + 2pj) .

Notice that the first inequality of the theorem involves random vari-
ables. Thus, when it holds with high probability, the second inequality of
the theorem holds with high probability.

The theorem shows that it suffices to choose the penalty pj as a high-
probability upper bound on the maximal deviation between empirical risks
and risks. But it is sometimes possible to obtain faster rates of convergence
(smaller values of pj as a function of n) than could be implied by the uni-
form convergence results. Indeed, the following theorem shows that for a
nontrivial function class and loss function, the maximal deviation between
R̂(f) and R(f) can approach zero at a rate no faster than n−1/2 (see, for
example, Theorem 2.3 in [4]).
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Theorem 2. There is a constant c such that, for any loss function ` : Y2 →
[0, 1] and any function class F for which σ2 = supf∈F var(`(Y, f(X)) > 0, we
have

E sup
f∈F

∣∣∣R̂(f)−R(f)
∣∣∣ ≥ cσ√

n
.

On the other hand, for the quadratic loss `(y, ŷ) = (y − ŷ)2 or the expo-
nential loss `(y, ŷ) = exp(−yŷ) used by AdaBoost, for example, and for Fj

a convex bounded subset of a finite-dimensional linear class, the empirical
minimizer f̂j can approach inff∈Fj

R(f) at the faster rate of O(n−1 log n),
as the following theorem shows. (The theorem is an easy consequence
of Theorem 3.3 in [2], Lemmas 14 and 15 in [3] and an application of
Dudley’s [6] entropy integral—see, for example the proof of Corollary 3.7
in [2].)

Theorem 3. Suppose ` : [0, 1]2 → [0, 1] satisfies the Lipschitz condition

sup
y,ŷ1 6=ŷ2

|`(y, ŷ1)− `(y, ŷ2)|
|ŷ1 − ŷ2|

< ∞

and the uniform convexity condition

inf
ε>0

1

ε2
inf

y,|ŷ1−ŷ2|≥ε

(
`(y, ŷ1) + `(y, ŷ2)

2
− `

(
y,

ŷ1 + ŷ2

2

))
> 0.

Then there is a constant c for which the following holds. Suppose that F ⊂
[0, 1]X is convex and a subset of a d-dimensional linear space. Let the dis-
tribution of the random pairs (X, Y ), (X1, Y1), . . . , (Xn, Yn) be such that the
minimizer f ∗ ∈ F of R(f) = E(`(Y, f(X)) exists. Then for all x > 0, with
probability at least 1− e−x,

sup
f∈F

(
(R(f)−R(f ∗))− 2

(
R̂(f)− R̂(f ∗)

))
≤ c

(
x + d log(n/d)

n

)
,

sup
f∈F

((
R̂(f)− R̂(f ∗)

)
− 2 (R(f)−R(f ∗))

)
≤ c

(
x + d log(n/d)

n

)
.

Clearly, for the empirical minimizer f̂ = arg minf∈F R̂(f), the term
R̂(f̂) − R̂(f ∗) in the first inequality of the theorem is non-positive, and
so with probability at least 1− e−x,

R(f̂) ≤ inf
f∈F

R(f) + c

(
x + d log(n/d)

n

)
.
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Results of this kind were first shown for the quadratic loss and function
classes with small covering numbers [8], later generalized to strictly convex
normed spaces and classes with small covering numbers [10] and strictly
convex losses and classes with small local Rademacher averages [2, 3]; see
also [7]. There are many examples for which these bounds on estimation
error decrease at essentially the best possible rate (see, for example, [9]).

While these results show that the risk of the empirical minimizer con-
verges to the minimal risk in the function class surprisingly quickly, it is
not clear that the results are useful for complexity penalization. Is it pos-
sible to perform model selection by choosing the class with the smallest
penalized empirical risk, and will this lead to an oracle inequality with the
corresponding fast rate? It has been suggested that this is not possible: see,
for example, the comments in Section 2.1 of [5]. Indeed, Theorem 2 shows
that, although the empirical minimizer’s risk approaches the minimal risk
roughly as n−1 in the example of Theorem 3, we cannot hope to estimate
the minimal risk (or the risk of any function in the class with non-constant
loss) to better accuracy than n−1/2.

In this note, we give a simple proof that, for nested hierarchies, the fast
rates in inequalities of the kind that appear in Theorem 3 do imply oracle
inequalities for complexity penalization methods. Thus, although the em-
pirical risks that are used to compare classes in the hierarchy fluctuate on
a scale that can be large compared to the complexity penalties, for nested
hierarchies the fluctuations are sufficiently correlated that they do not ex-
cessively affect our choice of class.

2 Oracle inequalities

As above, consider the following complexity penalization approach. De-
compose a class F of real-valued functions defined on an input space X
into a sequence of subsets F1,F2, . . .. For each j, define the empirical risk
minimizer and the true risk minimizer in the class Fj as

f̂j = arg min
f∈Fj

R̂(f),

f ∗j = arg min
f∈Fj

R(f).
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Assign to each class Fj a complexity penalty pj. Then choose fn = f̂m̂,
where

m̂ = arg min
j

(
R̂(f̂j) + pj

)
.

Theorem 4. Suppose that the classes are ordered by inclusion, choose positive
numbers εk that are similarly ordered,

F1 ⊆ F2 ⊆ F3 ⊆ · · ·
ε1 ≤ ε2 ≤ ε3 ≤ · · ·

and choose a penalty pk = 7εk/2. Then if the data is such that

sup
k

sup
f∈Fk

(
R(f)−R(f ∗k )− 2

(
R̂(f)− R̂(f ∗k )

)
− εk

)
≤ 0, (1)

sup
k

sup
f∈Fk

(
R̂(f)− R̂(f ∗k )− 2 (R(f)−R(f ∗k ))− εk

)
≤ 0, (2)

this implies that
R(fn) ≤ inf

k
(R(f ∗k ) + 9εk) .

Notice as before that the inequalities (1) and (2) involve random vari-
ables. Thus, when they hold with high probability (such as under the con-
ditions of Theorem 3), then the final inequality of the theorem holds with
high probability.

If we apply (1) to the empirical minimizer f̂k in a single class Fk, the
difference R̂(f̂k)− R̂(f ∗k ) is non-positive, so we obtain

R(f̂k) ≤ inf
f∈Fk

R(f) + εk.

The theorem shows that adding an O(εk) penalty to the empirical risks al-
lows us to choose the class k that satisfies the best of these inequalities. The
intuition behind condition (1) is that for functions with small regret (that
is, the difference between their risk and the minimal risk over the class is
small), the empirical regret should be a more accurate upper bound on the
regret, whereas it need not be so accurate for functions with large regret.
Condition (2) provides corresponding lower bounds. This second condition
is necessary to ensure that the penalized estimate does not choose the class
m̂ too large.
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3 Proof

We set pj = cεj for some constant c, and we shall see later that c = 7/2
suffices.

First we show that fn = f̂m̂ ∈ Fm̂ will have risk that is not much worse
than that of any f̂j from a larger class, Fj ⊇ Fm̂.

Lemma 5. In the event that j ≥ m̂,

R(fn) ≤ R(f ∗j ) + max {2c + 2, 3} εj.

Proof. From the condition (1), we see that for any j,

R̂(f ∗j ) ≤ R̂(f̂j) +
εj

2
. (3)

In addition, the definition of fn = f̂m̂ implies

R̂(f̂m̂) + pm̂ ≤ R̂(f̂j) + pj.

Thus, we have

R̂(f ∗m̂) ≤ R̂(f̂m̂) +
εm̂

2

≤ R̂(f̂j) + pj − pm̂ +
εm̂

2

≤ R̂(f̂j) + cεj + max

{
1

2
− c, 0

}
εm̂

≤ R̂(f̂j) + max

{
c,

1

2

}
εj,

since εm̂ ≤ εj. Applying (1) for the class Fj, we have

R(f ∗m̂) ≤ R(f ∗j ) + 2
(
R̂(f ∗m̂)− R̂(f ∗j )

)
+ εj

≤ R(f ∗j ) + 2
(
R̂(f̂j)− R̂(f ∗j )

)
+ max {2c + 1, 2} εj

≤ R(f ∗j ) + max {2c + 1, 2} εj,

by definition of f̂j. Thus, applying (1) again, this time for the class Fm̂, we
have

R(f̂m̂) ≤ R(f ∗m̂) + 2
(
R̂(f̂m̂)− R̂(f ∗m̂)

)
+ εm̂

≤ R(f ∗j ) + max {2c + 2, 3} εj.
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The next step is to show that the risk of fn = f̂m̂ cannot be much worse
than that of any f̂j from a smaller class Fj ⊆ Fm̂. First, we show that the
risk of the optimal function from Fm̂ is not much bigger than the risk of the
optimal function from any smaller class.

Lemma 6. In the event that j ≤ m̂,

R(f ∗m̂) ≤ R(f ∗j ) +

(
3

4
− c

2

)
εm̂ +

cεj

2
.

Although it is immediate that R(f ∗m̂) ≤ R(f ∗j ) in this case, we shall see
that we need to ensure that, for a suitably large penalty, the gap decreases
with εm̂. This is where the condition (2) is important: it allows us to show
that m̂ is not chosen too large.

Proof. We have

R(f ∗j )−R(f ∗m̂)

≥ 1

2

(
R̂(f ∗j )− R̂(f ∗m̂)

)
− εm̂

2
(by (2), for Fm̂)

≥ 1

2

(
R̂(f̂j)− R̂(f ∗m̂)

)
− εm̂

2
(by definition of f̂j)

≥ 1

2

(
R̂(f̂m̂) + pm̂ − pj − R̂(f ∗m̂)

)
− εm̂

2
(by definition of m̂)

≥ 1

2

(
R̂(f ∗m̂)− εm̂

2
+ pm̂ − pj − R̂(f ∗m̂)

)
− εm̂

2
(by (3))

=

(
c

2
− 3

4

)
εm̂ −

cεj

2
.

The result follows.

Next we show that this implies the risk of fn = f̂m̂ is not much larger
than the risk of any f̂j from a smaller class.

Lemma 7. In the event that j ≤ m̂,

R(fn) ≤ R(f ∗j ) +

(
7

4
− c

2

)
εm̂ +

cεj

2
.
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Proof. From (1) and the previous lemma,

R(fn) = R(f̂m̂) ≤ R(f ∗m̂) + 2
(
R̂(f̂m̂)− R̂(f ∗m̂)

)
+ εm̂

≤ R(f ∗m̂) + εm̂

= R(f ∗j ) +

(
7

4
− c

2

)
εm̂ +

cεj

2
.

Choosing c = 7/2 gives the result.
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