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Abstract

In biological experiments, researchers often have inftionain the form of a graph that
supplements observed numerical data. Incorporating tb/lkcige contained in these graphs
into an analysis of the numerical data is an important andiiaal task. We look at the example
of metagenomic data — data from a genomic survey of the almgedef different species of
bacteria in a sample. Here, the graph of interest is a phyiletgetree depicting the interspecies
relationships among the bacteria species. We demonstrateanalysis of the data in a non-
standard inner-product space effectively uses this anfditigraphical information and produces
more meaningful results.

1 Introduction

Relationships amongst either observations or variablesoften conveniently summarized by a
graph. Incorporating this outside information into the lgsia of numerical data is of increasing
interest, particularly in biology where many known propestof genes and proteins are described
by complicated graphs. A common situation is to have nurakdata from an experiment which is
of primary interest and also additional knowledge in therfarf a graph relating our observations or
variables from the experiment. We would like to incorpothieinformation in the graph with our
analysis of the experimental data. One example is data ohad genes from a microarray experi-
ment where there is also an established network of reldtippsmong the genes. By including the
graphical information directly in our analysis, we constridne space of possible solutions to those
that are relevant from the point of view of the known inforroat

The specific type of graph which we consider here is a phyletietree. A phylogenetictree is a
ubiquitous graph in biology that describes the evolutigmalationship between a set of species. We
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are motivated to consider this graph by our work withkburg et al (2005 analyzing differences
in bacterial composition based on a genomic inventory déght samples. Such “metagenomic”
studies are a popular technique for measuring bacterigenbnAs we argue below, using phy-
logenetic information regarding the discovered bactexilely in creating a meaningful analysis —
particularly because of the small sample size relativeeatiimber of bacteria found.

There are numerous different strategies for using graphmt@mation, such as Bayesian net-
works and differential equation modeling; they requireprag degrees of specificity in the graphical
information. We focus here on a technique that is simple fgément and uses the graph to define
a non-standard inner-product spacé&ihto perform the analysis of the numerical data.

The original analysis irf:ckburg et al(2005 used the technique of Double Principal Compo-
nents Analysis (DPCoA)Havoine et a).2009) to analyze the bacterial communities; DPCOA is a
form of dimensionality reduction that incorporatesgriori dissimilarity information about one set
of factors in a contingency table. We recast this techniguaraanalysis based on a non-standard
inner-product space defined by the outside similarity im@ation — the phylogenetic information in
the case of the bacterial analysis. When viewed in this litite technique now has general ap-
plication, since in many situations, heterogenous infaimnacan be simililarly introduced into an
analysis in this way.

The layout of the paper is as follows. First we will introdule motivating example of bacterial
composition in more detail before we turn to the analysidquared in Eckburg et al (2009 for
the bacterial data. We first review how PCA can be succinefigrmulated for non-standard inner-
products. We then turn our attention to the DPCoA analysithefbacterial composition data in
Eckburg et al (2009 and relate it to the PCA framework. In doing so, we recast BR@to a
general framework that allows for ease of interpretatiod eomparison. The rest of the paper
delves further into the implications of incorporating adésgraphical information through the use
of such a metric space. In particular, we propose an apgigometric for a phylogenetic tree and
evaluate the implications of that choice in the final datalysi® Throughout, we focus on the
example of the phylogenetic tree and metagenomic dataustridite the concepts. The same basic
approach can be useful in including non-standard forms ofskedge — other types of graphical
information in particular.

2 Motivating Example

Many types of bacteria naturally live in the bodies of humangarticular in the intestinal tract
where they can serve important functions in digestion=dfiburg et al(2005 the broad goal was

to describe the kinds of bacteria found in the intestinaittead compare the bacterial communities
found in different people. To that end, each of the threegpésiin the study had biopsies taken at six
locations in his/her colon in addition to providing a stoalgple. Each of these seven samples (per
patient) was then subjected to genomic techniques to tryémitjfy the different types of bacteria
as well as their level of abundance.

However, counting and differentiating bacteria is not apgarask. The very notion of “species”
(often defined as the ability to interbreed) may be vague &mtdria. Traditional techniques for
identifying bacterial species grow the bacteria in a celmmd then classify the bacteria as a species
based on any observable characteristics as well as theentstmeeded for it to grow. This gives
only limited ability to assess the present of different typébacteria.

With the increased ease of DNA sequencing, researcherssitéel in bacterial communities now
use “metagenomics” techniques to study all bacteria ination based on their DNA{ommittee on Metagenomics
2007. Such genomic characterization of the present bactesisltsein a measure of similarity be-



tween bacteria which is used as a surrogate for speciesfidatibn. However, the use of similarity
as a proxy for species creates an additional level of appratidon in our analysis. The phylogenetic
relationship between the species gives important outsfdernation that will assist us in countering
this problem.

2.1 Genomic techniques used to Quantify Bacteria Abundance

Genomic methods to isolate and count the bacteria do nobregequencing the entire genome of
all the bacteria, but just a particular gene that is foundlibacteria, specifically one that encodes
for a small-subunit ribosomal RNA gene (16S rDNA). Sincehebacteria cell will have the same

number of copies of this gene, the basic idea is to isolate fath the bacteria the DNA strands

corresponding to the gene, to count different versions@ttquence, and then to identify to which
bacteria the versions correspond; in this way the types buddance of different bacteria cells in a
sample are determined. Of course, since individual DNA fiodividual cells cannot be separately
isolated, these steps must be done in mass. The main steps are

1. Isolate from each sample all bacterial copies of DNA emgtbr the gene.

2. Randomly sample from the pooled copies of the gene’s DNAs&guence them to comple-
tion.

3. Based on the sequence similarity of the gene, classiflf eapy as representing the same
“species”. For example, the rule iackburg et al (2005 for grouping sequences into one
“species” required all pairs in the group to have a minimur@@¥ sequence similarity.

4. Countthe number of times each “species” occurs in eaclplsam

(we refer the reader tackburg et al (2005 for more details of the experimental process). Note
that the cutoff of 99% is not a biological determinant: fdifetient types of bacteria, different levels
of sequence variability might be found amongst differergcéps. For this reason we use the term
“phylotype” rather than “species” for the classificationade by sequence similarity.

The study of=ckburg et alof the colon of different patients was an exploratory stulyvas
the first effort to genomically identify the bacterial consit@mn of the colon that compared between
individuals and/or locations of the sample (many genomeexnents of this type either sampled
only one patient or pooled patients together). The list ofigtypes found and their relationship to
known bacterial taxa (using BLAST searches) was biolojigaformative. In addition to creating
an inventory, the goals of the experiment were to betterri®sthe bacteria communities and their
differences along the intestinal tract or between patie@asly three (healthy) patients’ biopsies
were sequenced and classified in this way. This leads to esdateith 7 samples from each of the
3 patients. Clearly, with such a small sample size, the aimafannot extrapolate to the population
in general but can only focus on describing the patientsrobse

2.2 Resulting Data

The end result of the experiment is several different typledata. At the most basic level, an
observation corresponds to a sequenced DNA strand. ltscdatgsts of two measurements: its
16S rDNA sequence and an indicator of which of the twenty-ssmaples it was found in. For
the intestinal data, this led t& = 11,831 observations corresponding to thestrands of DNA
sequenced. The DNA sequence, as we have mentioned, can beasaad in different ways, such
as its similarity to other sequences, the phylotype to witiblas been assigned, or its location in a



|

104-223

Figure 1: Depiction of the abundance matrix fragnakburg et al.(2005. Rows indicate sam-
ples, grouped by patient, and columns correspond to diffgslylotypes. The grey scale indi-
cates the level of abundance on a log scale (see legend ofolefonversion to original abun-
dances). The colors on the phylogenetic tree indicate phy&s inEckburg et al(2005, but with

a different choice of colors: bludacteriodetesgreenFirmicutes yellow=variousProteobacte-
ria,tan=errucomicrobia We additionally colored two portions of tigacteriodetephylum (blue)
separately: roughly identifiable d&evotallaeandB. vulgatusthey are colored lightest blue and
darkest blue, respectively. Also, we colored Hienicutes(green) with two different shades f&.
MollicutesandClostridia (dark green and light green, respectively).

phylogenetic tree built between different sequences. Thbyais discussed in detail here will reduce
the sequence data to the phylotype-level, ignoring theviddal sequence data. This means that
each of thelV observations (or sequenced strands of DNA) belongs to ose-0395 phylotypes.

A phylogenetic tree for the phylotypes was built using maximlikelihood estimation of the tree
(Felsenstein1987). Specifically, the tree was built using a representatigeaince of the 16S rDNA
sequence from each phylotype, generally a consensus sexjoftie sequences classified into that
phylotype.

We can visualize both aspects of the data by juxtaposinghiilvgenetic tree of the phylotypes
with the numerical abundances of each phylotype acrossaimplgs, as in Figuré. It is clear
from the figure that there is a great deal of sparsity in tha;daany phylotypes are present in low
numbers and in only a few samples. At the same time, thereoane kighly abundant phylotypes
found at high levels in most samples. From this visual inBpecwe can also see the importance
of jointly considering both aspects of the data — the abuoesiof the phylotypes as well as the
relationships among the phylotypes. In particular, we sfmite regions of the tree that seem to be
dissimilar between the patients, such asBaeteriodetephylum (colored shades of blue) where
patient A has much less abundance across all of his/her sartiyan the other two patients.

Given the large number of species (395) as compared to théewoh samples (21), we could
probably reorder the phylotypes and find other sets of phpkx that are also very different across
the patients. However, the clusters defined by the phyldgeinee provide biological information
separate from the numerical abundances regarding théoredaips among the phylotypes; thus
patterns of sparsity or differences amongst the patielitaifimg the clusters in the tree are generally
of greater interest than an arbitrary grouping: there isskmbiological meaning to the group. The



additional information found by using the phylogeneticitimities can serve as a check on the kind
of relationships among the phylotypes that we are inteddsteThis will be particularly important
since we have so many more phylotypes than samples. Fodhsiagalysis to follow the structure
of the tree will allow for more meaningful results.

Another important facet of the data that we can see in Figjusehe effect of using an arbitrary
cutoff for defining phylotypes. The tree’s branch lengtheet the similarity between the species.
Some phylotypes clearly form tight bunches of very similaylptypes, particularly in th€lostridia
family of the Firmicutesphylum (light green). If we had changed the cutoff for definphylotypes,
we could imagine these groups collapsing into a few distagtiotypes. Therefore, we need to be
careful to have an analysis that is robust to such small aisagd does not count each phylotype
as equally important.

Remark2.1. Note that we have estimated our tree from the same data (Be[lSA sequences)
from which we created our table of abundances. In geneesd tieat simply come from ordering the
variables based on a data matrix — such as hierarchicaedigttrees — will not provide separate,
outside information about the data and are not appropretarfy of the analysis done here. How-
ever, in this instance, the abundances and the phylogesigtilarities are summaries of different
aspects of the sequences we started with. As we describee adech observation contains data
regarding its presence/absence in a sample and also its Bijlfeace information. We could have
a full tree from all of the DNA sequences where each leaf ofttee corresponds to just one DNA
sequence; rows of the corresponding abundance matrix wimulcectors of which sample the se-
guence was found. Reducing the tree to the phylotypes basselquence similarity collapses rows
of this expanded contingency table, a process not affegtaldebactual data in the expanded table
but by the sequence similarities of the leaves of the expahtide.

3 Generalized PCA (gPCA)

Before we describe DPCoA and the analysis of the bacterial dee will describe the non-standard
metrics that form the basis of the approach in this paper &l raview a generalized form of
PCA that incorporates these metrics. Note that the termé@Gaized PCA' is our terminology in
order to simplify discussion. The method is often called dolity principle Escoufiey 1987
Holmes 200§ Dray and Dufour2007) and more generally it is called an “ordination” procedure
(i.e. a method giving low-dimensional coordinates or oati#s to data). We will postpone giving
examples of gPCA until sectioh2.

For vectorse andy in R?, let the positive definite matriQ define an inner product given by
(T.y)q = T Qy. SinceQ also defines a metric based fm — y||q, we may at times refer tQ
as a metric. A common example of such an inner-product is takadianobis distance, whe@gis
the inverse covariance matrix of the observed random v&ctor

To use a non-standard metric space, we could simply tramgfoe data by a set of linear combi-
nations given by a decomposition of the metric and then perfmy analysis of interest. However,
some techniques are developed specifically with alteraatietric spaces in mind. In particular,
for PCA, there is a generalization of PCA common in ecoldgigglications and categorical data
applications that uses a wider choice of inner productsespaoad metricsienehaus and Youpng
1985 Escoufiey1987. The generalized PCA (gPCA) of the data maXistarts with the choice of
a metricQ,, in R” for the rows (observations) & anda metricQ,, in R™ for the columns oiX.
These choices are abbreviated as the tri®tQ,,, Q,,) (seeEscoufier(1987) for a more general
explanation of the role of two separate metrics when vievkngs an operator simultaneously in
RP andR™).



In analogy with standard principal components, gPCA sdekséctor that maximizesar((a, :1:>Qp),
with a constrained to have un@,-norm and successive; constrained to b€),-orthogonal to the
proceedingz;. As in PCA, thea; are eigenvectors, but now of the mat®Q, whereX is the
covariance matrix ofe. The matrixXQ, is not symmetric, but becau€®, is full rank, this is
a well defined, positive definite generalized eigen equatiowl the eigenvectors &Q, can be
chosen to be @),-orthogonal set of vectors (sémlub and van Loa(1996). The new coordinates
for = are given byA” Q,z, whereA is the matrix with columns,;. As in PCA, we must estimate
) froLn our data matrixXX; we include the metri®,, for the columns in our estimate so that we
haveX = X7 Q, X. Just as in PCA, gPCA best preserves inter-point simiariti the appropriate
metric spaces.

A generalized form of the SVD oX yields the solutions to gPCA on both the columns or the
rows simultaneously. We canwrité = BA'/2A” where the columns d8 areQ,, orthogonal and
the columns ofA areQ,, orthogonal. The gives the solutions to the gPCA of the columns as ob-
servations whileA gives the solutions to the gPCA of the rows as observations.cbrresponding
eigen equations are

XTQ,XQ,A = AA
XQ,X"Q,B = BA,

andB = XQ,AA'/2,

4 DPCoA and Ecological Analyses of Species Abundance

We will now discuss the analysis of the bacterial data frieokburg et al (2005 using DPCOA.
Species composition and comparison of species acrossatifflocations form the core of ecolog-
ical studies. A large contingency table of species aburetafar different locations is a common
form of data in this literature; thus the analysistinkburg et al(2005 naturally called for many
techniques found in ecology. In particulargckburg et alused a technique that, like PCA, gives
a low dimensional representation of the data but incorgsréte phylogenetic information. The
technique, Double Principal Coordinate Analysis (DPCa2)\(oine et a).2004), incorporates dis-
similarity amongst the species directly into its repreagah of the locations and ultimately gives
a representation of the locations that deals with the apprabe species definition in the bacterial
dataset. For this reasongkburg et alrelied on DPCOA to visualize both the relationships between
the bacterial communities and the role of the phylogenetationships in this comparison.

We show that the technique can be described more simply a€A,gkhich gives avenues for
generalization to other data settings. Thus, despite DRCuogh specificity to ecological datasets
in its original formulation, by reformulating the proceéwe are able to show its relevancy in more
general settings.

Our original interest was ecological, but large continggables appear in many other situations.
For example, in document classification, the data couldisbosthe frequency of different words
in different documents. Another example is allele freqyestadies with the frequency of different
alleles of a gene in different populations. We will contirtoefocus our notation and discussion
on the phylogenetic/ecological scenario, but the methodsgmted here could be of use for these
different data types.



4.1 Notation: the Weighted World of Abundance Tables

In this section, we will describe our notation as well as thedard transformations and terminology
used in analyzing contingency tables.

Assume that the abundance of certain species are measutedifigrent locations and a total
of S distinct species types are observed. KRebe the resulting. x S contingency table of the
observed abundances of speciext location/. Because we are interested in comparing the species
composition of the locations, we will represent each laraliy therelativeproportion of the species
in the location. A vectolp, of relative proportions at locatiof is called a profile vector in the
ecological literature and is obtained by dividing each rdwAoby its row sum. The corresponding
data matrix is given b? € RL*S,

Let wy, be a vector containing the row sumsAfnormalized to sum to oney;, = A1/N €
R*. Then our matrix of location profile®, is given by

P=|: | =D, A/N RS,
pi

whereD,,, is a diagonal matrix with diagonal elements giveny respectively. The vector
wy, of relative row sums ofA also defines weights for each of the locations, and the weigte
proportional to the total number of observations in thattan. Since we would have lost this
information by converting the data to relative frequenctbss information is preserved by using
wy, as weights for the observations (locations). The weightedmof the locationg; is given by
PTw,, and the centered data matrR, is given byP = (I — 1w!)P .

4.2 A Few Important Properties of Contingency Tables

The Duality of Rowsand Columns Note that the weighted meap, also sums to one and there-
fore is itself a potential location profile. In fagi,is proportional to the column sums af, normal-
ized to sum to one. Therefore, the weighted mean of the lmatiofiles is the relative frequency of
the species acrosdl of the observations combined. If we had instead chosen fgznthe columns
(species) as the observations, we would choose weightfor the species in the same way as the
rows: proportional to the total abundance in a species. Weewould havews = p.

The equivalence of the column weights and the average rofileh@as interesting repercussions
for data analysis because under this weighting scheme, weaaivalently center either the rows
or the columns. If we leM,,,; = (Is — 1sw?) be the (weighted) centering matrix for the columns
andM,,, = (I, —1,wy) be the (weighted) centering matrix of the rows, we hBve M,,, P =
PM,,.

Therole of variablesin gPCA Because we analyze location profiles, there is a nice wayoto pl
the variables (species) jointly with the observationsgtamns). Lete; be the standard basis vectors
of R®. Thene, is also a profile vector representing a theoretical locatii@t consists solely of
speciess. If we transform the data with an ordination technique, we jcéntly transforme, and
plot its transformation alongside the observed locatiodslike the usual plots of variables, the
coordinates of our rotated axes have a meaning as a dategpolinbt just as a direction in space.So
we can reasonably speak about distances between the topaiit to the phylotype point.



Examples of gPCA with Contingency Tables Since the data now consists of profiles suclpas
that are constrained to sum to one, different metric spaeesften used for analyzing contingency
tables via gPCA. There is also usually additional inforimatior either the rows or columns that
we wish to use, traditionally the weights;, and/orws. The most common example of gPCA is
Correspondence Analysis (CA), which is a gPCA of the row pesfof a contingency table, and
uses the tripletP, D, , D,,, ) (seeGreenacrgl 984 for a detailed treatment). This gives an inner
product of the formpr;}Spg, down-weighting the more frequent species. This can be asen
counteracting a “size effect” for frequencies, where alaumdpecies dominate the analysis; without
this correction differences in rare species (which will lneacsmaller order of magnitude) are lost.
However, one can argue that the weighting of CA places todrimaportance on low abundance
species, even though those species are more likely to beumted and the corresponding data are
probably less trustworthyGimaret-Carpentier et a(1999 propose no weighting of the species,
only the locations, which gives a tripléP, Is,D,,, ) — just a regular PCA with weights on each
observation. Such an analysis is also called Non-Symm@tnicespondence Analysis (NSCA).

4.3 DPCoA

DPCoA seeks to represent the relationship between thadosaind species with meaningful mea-

sures of distance. In particular, given a pre-specifiedisnatrof dissimilarities between the species,

the DPCOoA gives new coordinates for the location profileshlaae squared Euclidean distance be-
tween locationg and/ equal to

d(k,0) = (px — pe)T(—%A)(pk —pe) ==Y Ars(Drer — Do) (Phoy — Pes)- (1)
r#s

This distance is known as the Rao Dissimilariia@ 1982). As a distance on the original profiles, it
implies that differences between locations profiles arerdegighted for the species that are similar
and upweighted for very distinct species. We can see th#tédpacterial example, this distance has
the effect of not declaring samples very different if thdetiénces occur in phylogenetically similar
phylotypes.

As with PCA or Multi-Dimensional Scaling (MDS), restricgrio successive dimensions of the
coordinates from DPCoA conserves the most interpoint anityi, where the interpoint similarity
is according to the distance given in equatidh (DPCoA also gives coordinates for the species
that can be plotted along with the locations. Using theseisp&oordinates, the squared Euclidean
distance between species will be equal to their dissintigagrgiven inA. Additionally, the coordi-
nates of the locations and species are aligned so that thdinates of a location are equal to the
weighted average of the coordinates of the species, wheregights are given by,, the profile
for that location.

The technique of DPCOA is given byavoine et al(2009) as a series of steps. We will see
below (4.3.]) that we can more easily describe the method as a generabkiR@A; however, we
will reiterate their original description of the technigiere for comparison.

Assume that thequaredpairwise distances/dissimilarities between the specieg@en by a
S x S matrix A, or equivalently that the pairwise distances between theisp are given in matrix,
Y. We also assume thaf is Euclidean (i.e. coordinates can be found for the pointhabthe
standard Euclidean distance between points are given mnthies ofY).

1. Find Euclidean coordinates of the species using a weighgesion of Multidiminsional Scal-
ing of Y with weights for the species given hys, their relative abundance in all the samples.



Let these coordinates be given in the rows of the ma&rix R°*" (r < S—1 is the dimension
of the space required to contain the species)

2. Set the coordinates of the locations to be at the barycehtiee species coordinates. In other
words, each locatiofis given coordinates that are the weighted average of thelowies of
all the species and the weights are given by the relativeddnoe of the species in that site
(which is contained in the vectar;). Let the rows of thd. x » matrixY contain the coordi-
nates of the sites, S6 = PZ. The squared pairwise Euclidean distance between thédosat
using these coordinates will be equal to their Rao Dissititylaising the dissimilarity matrix
A.

3. Find a lower dimensional representation of the locatigsiag a generalized principal com-
ponents analysis on the tripleY, Is, D,,, ). These gives the new badisand then the final
coordinates of the locations are givenby= YF. We also transform the coordinates of the
species to get species coordinal€s= ZF respectively.

Remark4.1 The requirement thalt be Euclidean not only makes the MDS in the first step of
DPCOoA possible, but also guarantees that the Rao Dissitgilarequation () is a proper distance
for vectors constrained to have the same, fixed, sum suchrggdfile vectors (se@avoine et a/.
2009.

43.1 DPCoA asagPCA

We can actually describe DPCoA more simply as a gPCA with aiclgdsed on a similarity matrix
derived fromA. If A is the matrixin DPCoA, a natural corresponding similaritgtnix S, is given
by

Se = 1lgz’ + 21 — %A,
for some vectore of positive values so th&,, is positive definite. Then the resulting coordinates
of the locations given by thinal step of DPCoA are equivalent to the coordinates of a gezexhli
PCA performed on the tripléfP, S.., D,,, ). The final coordinates of the species given in DPCoA
can also be found from the gPCA dhand are simply the coordinates of the original axes of the
uncenterediata matrixP, centered and then transformed by the transformation deffipéne gPCA
of (P,Sz,D., ). This is independent of the choice ®f See Appendid for details.

Note that DPCoA and gPCA usirf§), are equivalent under the assumption that the input data
matrix for the gPCA isP, with the weighted centering described in sectibh If we chose any
weight vectorw € R’ to be weights for the locations, then we have that gPC/E\quSw,w),
whereP = (I - 1w™)P, is equivalent to DPCoA using the weights for the speciesiglwy P w,
the weighted average of the species’ abundance.

4.4 DPCOoA Applied to Bacterial Data

The original analysis of the bacterial data relied on théméue of DPCOA reviewed above. This
analysis used as the distance among the phylotypes th&ndeson the phylogenetic tred (the
“patristic” distance, see below). We display in Fig@&r¢he ordination of the samples and species
using the first two coordinates found by DPCoA using the imm@atation in theade4 package in

R (Chessel et 812005 R Development Core Tegra009. The first obvious fact is that the patients
are separated, almost entirely, by just the first axis. TIse dixis orders the patients B,C,A which
correlates with visual examination of the data in Figiur&elow we will compare DPCoA to other
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Figure 2: Scatter plot of the species and samples with thietfics coordinates given by DPCoA.
Species are shown as colored points in both plots. In(plpthe samples are shown as the large
blue shapes: different shapes indicate different patemdsifferent shades of blue indicate location
within the colon. In plotb) samples are represented as ellipses that indicate the diagotions of
the abundances of the samples. For simplicity, a singlpsalifor the combined abundance in the
biopsies is shown because the internal biopsies are veilasim

ordination techniques and we will see that distinguishimgpatients is not difficult since all of the
techniques accomplish this, though not always in just oneedsion. More interestingly, we also
see in Figure that the stool samples are distinguished from the interiogidies of the colon, and
the second axis seems to make this distinction. Again thiesiaense from visually examining the
data, since within each patient the stool samples do statficon the biopsies.

The most striking aspect of the plot from DPCOoA is the addiianformation provided from
the inclusion of the phylotypes in the plot. Recall that wiwen data matrix isP, our original
axese, correspond to a location that is entirely concentrated ilgilipe s. We showed that the
coordinates of the phylotypes given by DPCoA will be the clmates of our axie, centered
and rotated like the observed profiles. Looking at the DPCtA, pve see that the phylotypes’
coordinates provide an interpretation for the first two disiens. The phylotypes are in clusters
much like the groupings on the tree — not surprising if we ltebat in the full space the distances
between the species are exactly the distances on the trest i$\Vhteresting is how the clusters on
the tree fill the space once projected into these two cootebrthat preserve the Rao Dissimilarity
among the locations. The distribution of the phylotypesdatk the importance of these clusters in
determining the dissimilarity between the patients. THasdrom the origin have more impact in
defining the coordinates of the locations. We see the tersbmeen the varioudacteroidegblue)
and the rest of the tree.

Furthermore we can interpret the relationship betweendt&tions and the phylotypes. We see
that patient B is comparatively much more in the directiornthaf Prevotallaelike bacteria (light
blue) while the other two patients are more in the directibtihe B. Vulgatuslike phylotypes (dark
blue). Similarly, the biopsies are comparatively more ligaepresented in thBacteroidegblue)
portion of the tree while the stool samples are comparatiests so. Figur@b depicts the different
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samples as ellipses with the axes of the ellipses deternfipete relative proportion of the dif-
ferent species for the location (plotting technique predittyade4, see Supplementary Materials
for details). This illustration emphasizes that the sampkn be thought of giving weights to each
phylotype, and the ellipse demonstrates the relative infla®f the different species. We see graph-
ically the different influences of the two groupsBécteriodegblue) in separating the biopsies of
patient B from all of the rest of the samples. Transformirgdhata in various ways before analysis
does not dramatically change these relationships (for pl@lng-transforming the data or adding
pseudo-counts).

All of these visualizations have, by necessity, focusedrdy the first two dimensions of the co-
ordinates given by DPCoA. These dimensions do cover a laxgmoption of the Rao Dissimilarity,
but still are only an approximation of the full space. Hereaxe interested in exploring the charac-
teristics of the ordination procedure, but for permutat&sts regarding the differences amongst the
patients or between the biopsies and stool samples we wailtitey use the entire space.

4.4.1 Comparisonto Other Approaches

How do these results compare to the other ordination teclesiqnentioned above? In Figudeve
show the results of the ordination from Non-Symmetric Cgpandence Analysis (NSCA), Cor-
respondence Analysis (CA), and a Mahalanobis-like distdvased o~ (see Sectior). We
similarly center, rotate and project the axeso get the species coordinates in the same manner as
DPCoA.

As we mentioned, all of the techniques separate the threenpst but we see that DPCoA
gives much more relevant results both in terms of the roléhefdpecies and in relating to our
intuitive interpretation of the data. The NSCA (pl&) is the same technique as DPCoA but with
each species at equal distance from every other; it is algajstandard PCA with weights on the
observations. In the first two coordinates of the NSCA, wethagé instead of having a smooth
contribution from clusters of phylotypes, two individuahyjotypes, far removed from the rest,
contribute to the division of the patients much more tharréis¢ The bulk of the species have little
contribution to these coordinates. Thus there is littlenfrohich to draw more general conclusions
regarding the biological characteristics of the specieglwvhare influential. This is a consequence
of treating each phylotype equally, rather than using thditexhal structure of the tree to shape the
analysis. CA (plofc)) on the other hand spreads out the importance of each pipgolyere we can
see the effect of the down-weighting metric in CA discussatier; differences found in the many
low abundance phylotypes are allowed to influence the aisalRather than a couple of phylotypes
dominating the analysis, as in NSCA, the phylotypes playawgiual roles.

We might try to use any one of these techniques to reasonlatibreships amongst the variables.
Each technique would give a different story in the role ofithgables (phylotypes) dependent upon
the assumptions inherent in the method. The relevant feéuiour analysis is that we presuppose
that a certain type of information is relevant — namely hoe $tructure of the tree relates to the
data. It focuses the analysis on finding an interpretatioorayst the variables that follows the tree
structure.

We note that the abundance table from metagenomic studiesstied here has many features
common to high-throughput experiments in biology — in martir the number of biological sam-
ples is quite low compared to the number of measurementsoWghsto integrate the phylogenetic
information into the data analyséspriori. In this way, the analysis is constrained in a biologically
relevant direction. In contrast, we could think of analggithis abundance data much like a mi-
croarray experiment: test each phylotype individuallyddferences between the patients and use
multiple testing criteria to identify individual phylotgs showing significant differences. A prob-
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Figure 3: Coordinates of species and samples from altgeatdination techniques.

lem with this approach, which is also a common problem in o@arays analyses, would be that a
list of significant phylotypes is difficult to interpret. Inianoarray studies, biological interpretation
is often donea posterioriby then examining biological knowledge of the list of gen®&¢e could
similarly use the phylogenetic tree in this way. However,just saw that an analysis independent
of the tree highlighted only a couple of specific phylotypest which it would be difficult to build

a general connection to the tree.

5 Interpretation of Non-Standard Metrics

We see in the example of the bacterial data that a metric gsirdilarity) that uses the phyloge-
netic information gives more biologically meaningful rssuBut what does the choice of a metric
actually mean? Incorporating a metric f@P has an obvious rationale when the metric is a diag-
onal (implying weights for different variables) or when thetric isX~! (Mahalanobis distance).
However itis notimmediately clear why a particular matiy would improve a given data analysis.
Of course, a positive definite matri®,, is always equivalent to some covariance matrix, and
modeling the covariance between variables or observattassimple way to create a candidate
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matrix, 3. But most statistical applications then cho@e! to remove the covariance structure in
the observations or variables. However, for our purposesyant to highlight this information, not
remove it, and then the appropriate choic€js = X. One intuitive rationale for this comes from
thinking of the metric as defining a harmonic analysis of thgdn the direction of the eigenvectors
of Q,. This is also the perspective BEpaport et al(2007) in their proposal for the particular case
of general graphs (see section

More precisely, suppos@,, has an eigen decomposition given BAV?. Then each op
vectorsy; define a linear combination &?, and eaclk,, = v]  gives the magnitude af in the
direction of the eigenvectors @},,. Our original datac can be written as

=V = mevi.
i

Depending on the nature of the, we can weight different directions to give more emphasihése
features. This gives a new vectfi, € RP,

Jw(x) = Z Wiy X (i) V-
i

A straightforward choice could be a simple thresholdingction (w,, is either0 or 1) that would
projectz onto the smaller subspace defined by#héor whichw,, = 1.

We can see that the standard inner-product betw&gm:) and f,, (y) is equivalent to taking
the inner-product between andy using the metricvD?2 V7', whereD,, is the diagonal matrix
with w as the diagonal:

{(fw(®), fuw(y)) = (2, Y)yps v -

Then the choice of a metri@, is equivalent to the choice of weighting eachby )\}/Q(Qp) and
fu(z) = Q) .

A particular covariance matrix sets up a system of eigevsgctvhich can then be weighted in
different ways to create a family of metrick andX~! obviously have the same eigenvectors and
differ in the weighting the eigenvectork places emphasis on the directions with more information
about the outside structure, whi®~! emphases directions with the least information about the
outside structure. Depending on whether this structuréasight to enlighten or confound the
analysis, the different weighting systems are used.

Such a weighted transformation is, of course, analogouartmdnic analysis or wavelet analysis
for functional data. PCA could also be described similadgly with the v; dependent on the
observed variability of the data. In these cases, the basistibns can be ordered to hopefully
reflect increasingly less meaningful variations of the datathat the important information in the
data is captured in the first few directions. Eigenvectora general covariance matrix describe
linear combinations of decreasing variance, and thus prably decreasing ability to reveal the
structure of interest. This is of course the rational in geible to order and weight the eigenvectors
in importance in more general settings.

A change of basis is particularly useful in the analysis & tlata if the bases are 'sparse’ —
non-zero in a small portion of the coordinate space; thdtisguransformation of the data is easily
interpreted as contrasts or combinations of a small setridivas. This is the appeal of wavelets or
various sparse PCA algorithms.
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6 A Metricfor Species Related by a Phylogenetic Tree

There is a natural model that gives a covariance model fdethes on the tree (the existing species).
We will see that the eigenvectors of this covariance matise &ave nice localization properties
relative to the tree and also ultimately relate back to ouEBR of the bacterial data.

6.1 A Covariance Model for Related Species

In comparing data between species, it is assumed that ne@asnts for closely related species
will be similar and that some of their similarity will be duelsly to their common ancestor (as
opposed to their similar external constraints, for exampldere is a common model to describe
the dependence expected solely due to evolution; it is baseepresenting how and when the trait
evolved over time, given from the phylogenetic tree of how/dincestoral species diverged.

Assume that we have a known phylogenetic tree describingrtbestral relationship ¢f extant
species and a trait of interest for these species that haseeMover time according to the evolution
depicted on this tree. The most common probabilistic moalettfe evolution of the value of this
trait, due toCavalli-Sforza and PiazA442.979, is one of Brownian motion model over time (but see
Hansen and MartinEL996 for other plausible alternatives); furthermore at eackcggion event,
the evolution model assumes that the resulting sister ap@cintinue to evolve independently. At
our currenttime, we obsensspecies and measure the trait for these species. This gitesalues
¥« for each of the existing species. In fact, we generalize asdrae for each of thé species, we
observe the trait at possibly different times.

Under this model, the final observed values of thepecies on the tree will of course follow a
multivariate normal distribution. The covariance betwspacies- ands will be proportional to the
total length of time that the processes of the two species wientical — the amount of history that
the two species shared until their lineages diverged. larotords,cov(y..,, y..,) = o*t.s, where
t,s is the time at which the two lineages diverged, as measucad fheir most common ancestor
(we have conditioned on the value of the common ancestof tif@ab species).

We can write this covariance quite simply in terms of the topy of the tree and the length
of the branches, assuming that the branch length is reféecfievolutionary time. Let(-,-) be
defined as the length of the shortest path between any twemddlee tree (the patristic distanc®),
be the ancestor at the root of the tree (the most recent coramestor between all the species),
and A be the distance matrix of the leaves based on the dist@nte-). Then we can write the
covariance matrix: as

S, = 1/2(d7(r, R) + dr(s, R) — Ayy).

Connection with DPCoA Note thatX = 1/2(1tT + t17 — A), wheret is the vector of the
observation time of each species. We see ¥a& a similarity matrix as described in sectiér8.1
Therefore, DPCoA on profile data using the patristic distapetween species is equivalent to using
gPCA with 3 as the species metric.

3} in Phylogenetics This model of evolution is a fundamental element of the mashmon
method used in phylogenetics for analyzing what is callemhfparative data” — data where the
observational units are different species. Comparativthats model relationships between dif-
ferent continuous traits where the observations are meamnts of the traits on different species.
There is obvious correlation in the observations (spedas)to evolutionary chance and not due
to any necessary relationship between traits. From a pstatistical point of view and with the
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the model given above, this dependency among the obsangatan easily be rectified using Gen-
eralized Least Squares — regression based on the metriceéddiy~~'. This is the proposal of
Grafen(called Phylogenetic GLS). The popular Phylogenetic Iratelent Contrasts (PIC) method
of Felsensteir(1989 is also equivalent to GLS(urdom 2006).

6.2 Propertiesof Phylogenetic Metric

There is an obvious hierarchy for the phylogenetic tree tvhie hope the metric reflects. We would
like that the eigenvectors & be sparse in a useful way relative to the structure of the toeex-
ample that they contrast sister subtrees of the phylogeime& and be zero elsewhere. Furthermore,
we would like that eigenvectors give increasingly specéicel of detail so that eigenvectors corre-
sponding to larger eigenvalues highlight deeper strudtutiee tree. Put together, these statements
would imply that the eigenvectors offer a multi-scale as&\yof the tree, with eigenvectors corre-
sponding to large eigenvalues interpretable as summagriifferences in the large initial partitions
of the tree and smaller eigenvalues giving eigenvectorsatiily the distinctions between the later
divisions of the tree.

Several authors in phylogenetics have asserted that teewsgtors o have this multi-scale
structure (e.gCavalli-Sforza and Piazza975 Rohlf, 2001, Martins and Houswort2002. Only
limited statements of this kind can be rigorously made alaophylogenetic tree with more than
four leaves/species (s€eirdom(2009 for a longer discussion). But empirical observations &f th
eigenvectors show that they often do often have some clegistats of this multi-scale property.
Because&: has a block structure, we are automatically guaranteedtbatigenvectors o will, at
a minimum, be non-zero for only one side or the other of thigirgplit in the tree (see Appendix
for more). Beyond this, if we ignore the comparatively smwallies in the eigenvector, eigenvectors
corresponding to smaller eigenvalues do tend to divide pleeises into smaller and smaller groups
based on the sign of the entries. Examing the eigenvectdtsfof the phylogenetic tree from the
bacterial data example (see Supplementary Figures far pfetrandom sample of eigenvectors), we
see that the eigenvectors are composed of a few well defimeghgiof species (again ignoring small
elements of the eigenvectors). Though the groupings wahieigenvector do not just correspond
to sister subtrees, the groups do tend to correspond to naselg related subtrees.

6.3 Effect of the Choice of Metric

We can see the effect of usigin our gPCA by examining the linear combinations that gPCiagis
¥ chooses. For any ordination technique Webbe a matrix that rotates tloeiginal profilesP to give

us the final ordination; in gPCA of centered data, this willtbe matrixM,,,QsA. We examine
the different linear transformations;, from gPCA withX as compared to the transformation for
a standard PCA on the daka(equivalently, NSCA). And we also compare to the eigenvsobd
3. if the covariance between the species was exactlptpeedicted by the evolution model, then
these would be the principal components of such data. Thusawéhink of the eigenvectors &

as PCA on the tree.

In Figure4 we order the elements ef from these three ordination techniques so that they line
up with the phylogenetic tree. In this way we can see theivel@nportance of the phylotypes in
transforming the data. When we look at the linear combimatior the first few coordinates, we
see that the principal components from our gPCA \Ritimtuitively seem to be a trade off between
these two options, and we could think of this as a shrinkinthefdata variability in the “direction”
of the tree. This is a particularly appealing idea, since veetieating the phylotypes as variables
and there are far too many variables for the number of sam@dsave.
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Figure 4: Shown are the first five linear combinations of gPGik@3X that act on the observations
in P (the location profiles) to create the first five coordinatgs.(The five dimensions are divided
by thick, dotted line. Also shown adjacent to each gPCA veate the linear combinations from a
standard PCA oP (labeled ‘X’) and the eigenvectors &f (labeled X’).

Despite the intuitive results, the analysis depends on baice of encoding the tree usirlg
(or equivalently, for DPCoA, our choice @). In particular, the block structure & puts large
emphasis on the first initial partition of the species at tw of the tree; these two groups of species
are considered independent, conditional on the root amicéde can see this emphasis on this first
divide from the Rao Dissimilarity based @y, where these two lineages will be far away from each
other and thus differences between will be accorded morght@i the analysis. Thus, the analysis
is sensitive to the definition of the root as well as to chartgep within the tree.

However, changes near the tips of the tree, both in the nealetata and the definition of
the tree, will have little impact on the gPCA. For the bactkdata that we are interested in, the
deeper tree structure is more trustworthy than the stractear the leaves of the tree because of the
approximate definition of species. Itis a reasonable com@®to put more weight on the deeper
structure of the tree, and base our analysis on this depeadinexchange for resolving the more
fundamental problem in our definition of the species.

We can see some effect of the choice of root in the tree in tlotekal data where the two
lineages are basically tHgacteriodesand theFirmicutes this break is strongly seen in Figuge
particularly in the second axis. However, the first axis wasithated more by differences within
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theBacteriodes Thus, as illustrated by the comparison of then Figure4, we see a compromise
between the patterns that occur only the data and thase in

7 General Graphs

It is clear that the same approach is applicable to otheatsitus where there is complicated in-
formation that is related to the experimental data. By usid@ding our phylogenetic analysis as a
specific example in a general approach to data analysis, wearapare with other techniques as
well as take advantage of insights from other data situation

A closely related example is when we have not a phylogenete; but a more general graph
structure that describes the relationship of our variabt@dbservations. The analysis of experimen-
tal data in tandem with related biological networks bypaport et al(2007) is equivalent to our
metric approach. There, the authors used the Laplacianxnaasociated with a graph to represent
the biological graphs that related genes. The Laplaciamixriata natural choice for graphs; the
eigenvectors have similar multiscale properties as ouriaifer the phylogenetic tree. In appendix
B we briefly discuss the possibility of treating the phylog@nteee as a general graph and using the
Laplacian as a metric. We chose another approach here leesiacts a choice does not well reflect
the phylogenetic information in the tree.

8 Conclusion

There is a clear necessity for including phylogenetic infation in an analysis of metagenomic
data. gPCA gives a simple and compelling way to accomplish thfe also see from our recasting
of DPCoA as a gPCA, that the framework of gPCA allows for eamygarisons between analyses
as well as further exploration as to the effect of our choifcmetrics.

The use of non-standard metrics is quite natural in stesigthd can be implemented in a va-
riety of ways, PCA being merely the simplest. Common exas)@ach as Mahalanobis distance,
are usually data-driven, but we see that metrics based @ideutnowledge can be used to include
complicated and heterogeneous information into the aisabfsour numerical data. This kind of
information can help to give more context to the data, paldity when the number of variables is
large as compared to the samples. Moreover, since the sia#ie correspond to covariance matri-
ces, probabilistic models give a simple approach for emgpuiiformation appropriately. Often, as
in the case of phylogenetic trees, the eigenvectors of samdriance matrices have nice localization
properties that highlight the relevant spatial or regiqraterns of the prior information.
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A DPCoA and gPCA

Lemma. LetA be given as distances between the species asglet 127 +x17 — 1 A wherex
is such thaS,, is positive definite. Then the coordinates for the locatigimen byL in DPCoA using
A is equivalent to the coordinaté$ of the locations given by gPCA with the trip(@t, Sz, D, )
Furthermore, the coordinates of the species given by DP@dAe matrixKK are equivalent to the
the coordinates obtained by centering and then rotatingatiginal axese, by the tranformation
implied from the gPCA ofP, Sz, D4, ) SO thatK = M, S, A

Proof. Recall thatM,,, = (Is — 1sw£) is a weighted centering matrix for a set®bbservations
with weights given bywg.

We examine the resulting coordinates of the two methods. dellrthat the weighted MDS of
the pairwise species matrix gives species coordinates
Z = D, UAY2 where U are the eigenvectors /oM., (—~A/2)M% Di/2. Then fi-
nal coordinated. of the locations from DPCoA are given from the decompositibrthe triplet
(Y,Is,D,, ), whereY holds the coordinates of the locations obtained by takiedirycenter of
the species coordinates using the location profiles as weigienY = PZ = PD;ls/QUAl/Q.

The fundamental set of eigen equations for this final gPCA are

YD.,,Y'F =F& F'F =1,
T where T’ (2)
YY'D,,G =G® G™D,,G =1,
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andY = G®!/2F7 is the generalized SVD decomposition bf .
The fundamental eigen equations for a gPCA of the tri@etS,,, D,,, ), on the other hand, are

P'D,, PS,A = AW¥ ATS, A =1,
-~ where r (3)
PS.P’D,, B =Bv¥ B'D,,B=1,

so thatPM,,, = B®¥'/2AT is the corresponding gSVD.

Note thatM,, S, M7% = M., (—+A)MZ for any choice of weightsv and vectorz. Since
P = M, P =PM,,, andY = we see thaB andG are both eigenvectors for the same matrix,
PM,,; AML _P?D,,, ,implying thatB andG are theD,,,, -orthonormal eigenvectors of the same
matrix. This implies that the eigenvalues are the safme-(¥) and thatB andG are the same up
to a sign change (assuming unique eigenvalues).

The resulting coordinates for the locations under DPCoAyaren byL: = YF = G®'/2. With
gPCA of (P,S,, D, ), the location coordinates ad& = PM,,.S, A = B¥'/2 and therefore
we have thal, = X — the coordinates of the locations are the same in the twoatsth

The coordinates for the species are given by DPCoA as th&awtaf the coordinates given
in Z by F: K = ZF. By the gSVD decomposition 6f, we can writeF” = &~ '/2GTD,,, Y
and similaryB¥~1/2 = PM,, S, A¥~'. Remembering thalZ” = M,,; AML _, the final
coordinates of the species from DPCoA are given by

K=272Y"D,,G® /?=722"P"D,, G® /2
=My, AM] P'D,, G® /2
=My, Sz ML, P"Dy,, PM,, S, A ¥ !

=AW from (3)
= My Sz A

upto the sign change difference betwe@n andB. |

B TheLaplacian and a Laplacian for Trees

The Laplacian matrix that is associated with the graph iegibyL = D — A, whereA is the
adjacency matrix of the graph afalis the diagonal matrix consisting of the degree of each xerte
The spectral decomposition &f is closely related to certain properties of the graph; irtipalar,
there are many results linking the eigenvalued.ofith fundamental characteristics of the graph
(seeDieste| 2009. There are fewer explicit characterizations of the eigetors that hold for all
graphs. In a general way, the eigenvectors correspondisigédl eigenvalues dt represent large
divisions in the graph(indeed for, = 0, we have the eigenvectarwhich is an average of all the
nodes); they tend to be zero for large portions of the graghthe non-zero components are the
same sign distinct regions of the graph. Those eigenvectoresponding to large eigenvalues tend
be dominated by linear combinations of “close” nodes or #ngroups of nodes and represent the
'noisy’, small differences within neighboring verticeshds the eigenvectors of the Laplacian have
'multiscale’ characteristics, particularly those eigeators corresponding to the largest and smallest
of the eigenvalues. For dataassociated with a graph, with each elementaforresponding to a
node in the graph, the metrics for a graph based on the Lapladgll usually put greater weight on
the eigenvectors corresponding to small eigenvaluesxamelel/\; or exp(—1/);). This choice
corresponds to the behavior of the eigenvectors.
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The Laplacian is gives the covariance between nodes frorefalusodel for describing relation-
ships among the nodes — a model of diffusion of informatioaulgh the graph. The covariance from
this model is given byxp(—2aL), known as théieat kernebf the graph (segondor and Lafferty
2002 for review). Of course this is equivalent to weighting thgeavectors of the Laplacian with
weight functionexp(—aA;).

A phylogenetic tree is, of course, a graph, and the Laplaziatree and the distances between
nodes on a tree are quite simply relat@ajat et al.20059. Let At be the distance matrix of the
patristic distances betweall the nodes of the tree (internal nodes as well as the leaved)etlL
be the Laplacian of the tree with weightgd(r, s) on each edge. Then we have that

L=ovv"/) drs) - 245",

where for a phylogenetic traeis —1 or 1 depending on whether the node is a leaf of the tree or not.

However, since our data is observed on only certain nodeseaftaph — the leaves of the tree
— we need a metric that gives a relationship only betweendheek. If we use the Laplacian as
our phylogenetic metric, we would have to constrain oueslw the portion of the metric that
corresponds to the relationships between just the ledwedf we took as our metric the inverse of
the Laplacian — which corresponds to an appropriate org@fithe eigenvectors by weighting each
by 1/\; —we have thaLg' is given by

Lg' =cyy" —1/24s,

where
c=(81"Agyr1)7?
v =Arv,

andAg € R5%9 is the distance matrix restricted to the distances betwearek of the tree and
Agr € RS*5-1 s the distance matrix restricted to the distances betweefeaves of the tree and
S — 1 internal nodes of the tree. This is an expression somewtndasito our similarity matrix for
DPCOoA, but note that a gPCA based Dgl is not equivalent to DPCoA becaudé~v~yM7 does
not vanish.

However, restricting the metric to those portions dealinty avith the leaves makes the metric
difficult to interpret. The Laplacian restricted to the leawvill no longer have the same eigenvec-
tors as the Laplacian and thus loses its connection to thavimehshown by the eigenvectors of
the Laplacian. Furthermore, from the point of view of comade modeling, the phylogenetic tree
represents an evolutionary story that is more directly rextiby 3.

C Eigenvectorsof X for a Phylogenetic Tree

Note the block structure ilx: if the root ancestork, has immediate descendaffts andP,, then
the covariance between any of the existing descendar®s ahd those ofP, will be 0. Thus we
can order the rows and columnsXfso that

(= 0
S < . 22> @)
whereX; is aS; x S; matrix, S is the number of extant species descended fRarrand similarly
with 35. This means that the eigenvectorssdmust be of the form

W) ()
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where{vh-}f:l1 are the eigenvectors &; and {vgj}fil are the eigenvectors &E,. Therefore,
every eigenvector at, at a minimum, must be only non-zero for one of the lineages.

Indeed, if we think back to the definition &f, the elements of the blocRs;, X, are themselves
rank-1 perturbations of block diagonal matrices:

b 0 by
21 = ( @11 212) +6111T 22 = ( @21 2022) —|—0211T (6)

wherec; = d7 (R, P1) andes = dr (R, P2) (here we have assumed thtatx 1 for simplicity).
This same logic continues so that each sub-block can beewrds a block matrix plus a rank-one
perturbationX thus consists of such nested rank-1 perturbations of blatkices.

The claims in the literature for a relationship of the eigeaters ofX to the partitions of the tree
all stem from the comments @favalli-Sforza and Piaz44979. They make assertions which they
prove only in the case of a tree with four leavés 4) and under the assumption of a constant rate
of evolution ¢ ~ 1). One assertion is true: for any terminal bifurcation nca@¢de whose two
descendants are existing species or leaves of the tree)ithen eigenvector & that has elements
that are positive for one of the species, negative for therpthnd zero for all other species. In
addition, we see that because of the block strucuture, @iggnvector o, at a minimum, must
consist of zero elements for one branch of the tree.

Beyond this,Cavalli-Sforza and Piazzdescribe “usual” behavior of the eigenvectors, but their
ideas do not scale as the size of the tree increases. Thalrdstk structure ot still has the
effect of creating eigenvectors with some structure to thtimugh not as easily classified as sug-
gested inCavalli-Sforza and Piazzd975. Generally the structure of the eigenvectors will not be
directly related to a partition in the tree. In practice, #digenvectors often have some relation to
the bifurcations of the tree, particularly the deeper {eaih time) bifurcations and of course the
terminal bifurcations. The other eigenvectors often hdueps of positive and negative elements
that correspond to subtrees of the tree, and we often erajiyrigee as the eigenvalues get smaller
some sort of concentration of large values in only a few sg®eci
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