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Abstract

In biological experiments, researchers often have information in the form of a graph that
supplements observed numerical data. Incorporating the knowledge contained in these graphs
into an analysis of the numerical data is an important and nontrivial task. We look at the example
of metagenomic data – data from a genomic survey of the abundence of different species of
bacteria in a sample. Here, the graph of interest is a phylogenetic tree depicting the interspecies
relationships among the bacteria species. We demonstrate that analysis of the data in a non-
standard inner-product space effectively uses this additional graphical information and produces
more meaningful results.

1 Introduction

Relationships amongst either observations or variables are often conveniently summarized by a
graph. Incorporating this outside information into the analysis of numerical data is of increasing
interest, particularly in biology where many known properties of genes and proteins are described
by complicated graphs. A common situation is to have numerical data from an experiment which is
of primary interest and also additional knowledge in the form of a graph relating our observations or
variables from the experiment. We would like to incorporatethe information in the graph with our
analysis of the experimental data. One example is data on a set of genes from a microarray experi-
ment where there is also an established network of relationships among the genes. By including the
graphical information directly in our analysis, we constrain the space of possible solutions to those
that are relevant from the point of view of the known information.

The specific type of graph which we consider here is a phylogenetic tree. A phylogenetic tree is a
ubiquitous graph in biology that describes the evolutionary relationship between a set of species. We
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are motivated to consider this graph by our work withEckburg et al.(2005) analyzing differences
in bacterial composition based on a genomic inventory of different samples. Such “metagenomic”
studies are a popular technique for measuring bacterial content. As we argue below, using phy-
logenetic information regarding the discovered bacteria is key in creating a meaningful analysis –
particularly because of the small sample size relative to the number of bacteria found.

There are numerous different strategies for using graphical information, such as Bayesian net-
works and differential equation modeling; they require varying degrees of specificity in the graphical
information. We focus here on a technique that is simple to implement and uses the graph to define
a non-standard inner-product space inRp to perform the analysis of the numerical data.

The original analysis inEckburg et al.(2005) used the technique of Double Principal Compo-
nents Analysis (DPCoA) (Pavoine et al., 2004) to analyze the bacterial communities; DPCoA is a
form of dimensionality reduction that incorporatesa priori dissimilarity information about one set
of factors in a contingency table. We recast this technique as an analysis based on a non-standard
inner-product space defined by the outside similarity information – the phylogenetic information in
the case of the bacterial analysis. When viewed in this light, the technique now has general ap-
plication, since in many situations, heterogenous information can be simililarly introduced into an
analysis in this way.

The layout of the paper is as follows. First we will introducethe motivating example of bacterial
composition in more detail before we turn to the analysis performed inEckburg et al.(2005) for
the bacterial data. We first review how PCA can be succinctly reformulated for non-standard inner-
products. We then turn our attention to the DPCoA analysis ofthe bacterial composition data in
Eckburg et al.(2005) and relate it to the PCA framework. In doing so, we recast DPCoA into a
general framework that allows for ease of interpretation and comparison. The rest of the paper
delves further into the implications of incorporating outside graphical information through the use
of such a metric space. In particular, we propose an appropriate metric for a phylogenetic tree and
evaluate the implications of that choice in the final data analysis. Throughout, we focus on the
example of the phylogenetic tree and metagenomic data to illustrate the concepts. The same basic
approach can be useful in including non-standard forms of knowledge – other types of graphical
information in particular.

2 Motivating Example

Many types of bacteria naturally live in the bodies of humans, in particular in the intestinal tract
where they can serve important functions in digestion. InEckburg et al.(2005) the broad goal was
to describe the kinds of bacteria found in the intestinal tract and compare the bacterial communities
found in different people. To that end, each of the three patients in the study had biopsies taken at six
locations in his/her colon in addition to providing a stool sample. Each of these seven samples (per
patient) was then subjected to genomic techniques to try to quanitify the different types of bacteria
as well as their level of abundance.

However, counting and differentiating bacteria is not a simple task. The very notion of “species”
(often defined as the ability to interbreed) may be vague for bacteria. Traditional techniques for
identifying bacterial species grow the bacteria in a culture and then classify the bacteria as a species
based on any observable characteristics as well as the nutrients needed for it to grow. This gives
only limited ability to assess the present of different types of bacteria.

With the increased ease of DNA sequencing, researchers interested in bacterial communities now
use “metagenomics” techniques to study all bacteria in a location based on their DNA (Committee on Metagenomics,
2007). Such genomic characterization of the present bacteria results in a measure of similarity be-
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tween bacteria which is used as a surrogate for species identification. However, the use of similarity
as a proxy for species creates an additional level of approximation in our analysis. The phylogenetic
relationship between the species gives important outside information that will assist us in countering
this problem.

2.1 Genomic techniques used to Quantify Bacteria Abundance

Genomic methods to isolate and count the bacteria do not relyon sequencing the entire genome of
all the bacteria, but just a particular gene that is found in all bacteria, specifically one that encodes
for a small-subunit ribosomal RNA gene (16S rDNA). Since each bacteria cell will have the same
number of copies of this gene, the basic idea is to isolate from all the bacteria the DNA strands
corresponding to the gene, to count different versions of the sequence, and then to identify to which
bacteria the versions correspond; in this way the types and abundance of different bacteria cells in a
sample are determined. Of course, since individual DNA fromindividual cells cannot be separately
isolated, these steps must be done in mass. The main steps are

1. Isolate from each sample all bacterial copies of DNA encoding for the gene.

2. Randomly sample from the pooled copies of the gene’s DNA and sequence them to comple-
tion.

3. Based on the sequence similarity of the gene, classify each copy as representing the same
“species”. For example, the rule inEckburg et al.(2005) for grouping sequences into one
“species” required all pairs in the group to have a minimum of99% sequence similarity.

4. Count the number of times each “species” occurs in each sample.

(we refer the reader toEckburg et al.(2005) for more details of the experimental process). Note
that the cutoff of 99% is not a biological determinant: for different types of bacteria, different levels
of sequence variability might be found amongst different species. For this reason we use the term
“phylotype” rather than “species” for the classifications made by sequence similarity.

The study ofEckburg et al.of the colon of different patients was an exploratory study.It was
the first effort to genomically identify the bacterial composition of the colon that compared between
individuals and/or locations of the sample (many genomic experiments of this type either sampled
only one patient or pooled patients together). The list of phylotypes found and their relationship to
known bacterial taxa (using BLAST searches) was biologically informative. In addition to creating
an inventory, the goals of the experiment were to better describe the bacteria communities and their
differences along the intestinal tract or between patients. Only three (healthy) patients’ biopsies
were sequenced and classified in this way. This leads to a dataset with 7 samples from each of the
3 patients. Clearly, with such a small sample size, the analysis cannot extrapolate to the population
in general but can only focus on describing the patients observed.

2.2 Resulting Data

The end result of the experiment is several different types of data. At the most basic level, an
observation corresponds to a sequenced DNA strand. Its dataconsists of two measurements: its
16S rDNA sequence and an indicator of which of the twenty-onesamples it was found in. For
the intestinal data, this led toN = 11, 831 observations corresponding to theN strands of DNA
sequenced. The DNA sequence, as we have mentioned, can be summarized in different ways, such
as its similarity to other sequences, the phylotype to whichit has been assigned, or its location in a
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Figure 1: Depiction of the abundance matrix fromEckburg et al.(2005). Rows indicate sam-
ples, grouped by patient, and columns correspond to different phylotypes. The grey scale indi-
cates the level of abundance on a log scale (see legend on leftfor conversion to original abun-
dances). The colors on the phylogenetic tree indicate phylum, as inEckburg et al.(2005), but with
a different choice of colors: blue=Bacteriodetes, green=Firmicutes, yellow=variousProteobacte-
ria,tan=Verrucomicrobia. We additionally colored two portions of theBacteriodetesphylum (blue)
separately: roughly identifiable asPrevotallaeandB. vulgatusthey are colored lightest blue and
darkest blue, respectively. Also, we colored theFirmicutes(green) with two different shades forB.
MollicutesandClostridia (dark green and light green, respectively).

phylogenetic tree built between different sequences. The analysis discussed in detail here will reduce
the sequence data to the phylotype-level, ignoring the individual sequence data. This means that
each of theN observations (or sequenced strands of DNA) belongs to one ofS = 395 phylotypes.
A phylogenetic tree for the phylotypes was built using maximum likelihood estimation of the tree
(Felsenstein, 1981). Specifically, the tree was built using a representative instance of the 16S rDNA
sequence from each phylotype, generally a consensus sequence of the sequences classified into that
phylotype.

We can visualize both aspects of the data by juxtaposing the phylogenetic tree of the phylotypes
with the numerical abundances of each phylotype across the samples, as in Figure1. It is clear
from the figure that there is a great deal of sparsity in the data; many phylotypes are present in low
numbers and in only a few samples. At the same time, there are some highly abundant phylotypes
found at high levels in most samples. From this visual inspection, we can also see the importance
of jointly considering both aspects of the data – the abundances of the phylotypes as well as the
relationships among the phylotypes. In particular, we see definite regions of the tree that seem to be
dissimilar between the patients, such as theBacteriodetesphylum (colored shades of blue) where
patient A has much less abundance across all of his/her samples than the other two patients.

Given the large number of species (395) as compared to the number of samples (21), we could
probably reorder the phylotypes and find other sets of phylotypes that are also very different across
the patients. However, the clusters defined by the phylogenetic tree provide biological information
separate from the numerical abundances regarding the relationships among the phylotypes; thus
patterns of sparsity or differences amongst the patients following the clusters in the tree are generally
of greater interest than an arbitrary grouping: there is known biological meaning to the group. The
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additional information found by using the phylogenetic similarities can serve as a check on the kind
of relationships among the phylotypes that we are interested in. This will be particularly important
since we have so many more phylotypes than samples. Focusingthe analysis to follow the structure
of the tree will allow for more meaningful results.

Another important facet of the data that we can see in Figure1 is the effect of using an arbitrary
cutoff for defining phylotypes. The tree’s branch length reflects the similarity between the species.
Some phylotypes clearly form tight bunches of very similar phylotypes, particularly in theClostridia
family of theFirmicutesphylum (light green). If we had changed the cutoff for defining phylotypes,
we could imagine these groups collapsing into a few distinctphylotypes. Therefore, we need to be
careful to have an analysis that is robust to such small changes and does not count each phylotype
as equally important.

Remark2.1. Note that we have estimated our tree from the same data (the 16S rDNA sequences)
from which we created our table of abundances. In general trees that simply come from ordering the
variables based on a data matrix – such as hierarchical clustering trees – will not provide separate,
outside information about the data and are not appropriate for any of the analysis done here. How-
ever, in this instance, the abundances and the phylogeneticsimilarities are summaries of different
aspects of the sequences we started with. As we described above, each observation contains data
regarding its presence/absence in a sample and also its DNA sequence information. We could have
a full tree from all of the DNA sequences where each leaf of thetree corresponds to just one DNA
sequence; rows of the corresponding abundance matrix wouldbe vectors of which sample the se-
quence was found. Reducing the tree to the phylotypes based on sequence similarity collapses rows
of this expanded contingency table, a process not affected by the actual data in the expanded table
but by the sequence similarities of the leaves of the expanded tree.

3 Generalized PCA (gPCA)

Before we describe DPCoA and the analysis of the bacterial data, we will describe the non-standard
metrics that form the basis of the approach in this paper and also review a generalized form of
PCA that incorporates these metrics. Note that the term ‘Generalized PCA’ is our terminology in
order to simplify discussion. The method is often called theduality principle (Escoufier, 1987;
Holmes, 2006; Dray and Dufour, 2007) and more generally it is called an “ordination” procedure
(i.e. a method giving low-dimensional coordinates or ordinates to data). We will postpone giving
examples of gPCA until section4.2.

For vectorsx andy in Rp, let the positive definite matrixQ define an inner product given by
〈x, y〉Q = xTQy. SinceQ also defines a metric based on‖x − y‖Q , we may at times refer toQ
as a metric. A common example of such an inner-product is the Mahalanobis distance, whereQ is
the inverse covariance matrix of the observed random vectors.

To use a non-standard metric space, we could simply transform the data by a set of linear combi-
nations given by a decomposition of the metric and then perform any analysis of interest. However,
some techniques are developed specifically with alternative metric spaces in mind. In particular,
for PCA, there is a generalization of PCA common in ecological applications and categorical data
applications that uses a wider choice of inner products spaces and metrics (Tenehaus and Young,
1985; Escoufier, 1987). The generalized PCA (gPCA) of the data matrixX starts with the choice of
a metricQp in Rp for the rows (observations) ofX anda metricQn in Rn for the columns ofX.
These choices are abbreviated as the triplet(X,Qp,Qn) (seeEscoufier(1987) for a more general
explanation of the role of two separate metrics when viewingX as an operator simultaneously in
R

p andRn).
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In analogy with standard principal components, gPCA seeks the vectora that maximizesvar(〈a, x〉Qp
),

with a constrained to have unitQp-norm and successiveai constrained to beQp-orthogonal to the
proceedingai. As in PCA, theai are eigenvectors, but now of the matrixΣQp whereΣ is the
covariance matrix ofx. The matrixΣQp is not symmetric, but becauseQp is full rank, this is
a well defined, positive definite generalized eigen equation, and the eigenvectors ofΣQp can be
chosen to be aQp-orthogonal set of vectors (seeGolub and van Loan(1996)). The new coordinates
for x are given byATQpx, whereA is the matrix with columnsai. As in PCA, we must estimate
Σ from our data matrixX; we include the metricQn for the columns in our estimate so that we
haveΣ̂ = XTQnX. Just as in PCA, gPCA best preserves inter-point similarities in the appropriate
metric spaces.

A generalized form of the SVD ofX yields the solutions to gPCA on both the columns or the
rows simultaneously. We can writeX = BΛ1/2AT , where the columns ofB areQn orthogonal and
the columns ofA areQp orthogonal. ThenB gives the solutions to the gPCA of the columns as ob-
servations whileA gives the solutions to the gPCA of the rows as observations. The corresponding
eigen equations are

XT QnXQpA = AΛ

XQpX
TQnB = BΛ,

andB = XQpAΛ1/2.

4 DPCoA and Ecological Analyses of Species Abundance

We will now discuss the analysis of the bacterial data fromEckburg et al.(2005) using DPCoA.
Species composition and comparison of species across different locations form the core of ecolog-
ical studies. A large contingency table of species abundances for different locations is a common
form of data in this literature; thus the analysis inEckburg et al.(2005) naturally called for many
techniques found in ecology. In particular,Eckburg et al.used a technique that, like PCA, gives
a low dimensional representation of the data but incorporates the phylogenetic information. The
technique, Double Principal Coordinate Analysis (DPCoA) (Pavoine et al., 2004), incorporates dis-
similarity amongst the species directly into its representation of the locations and ultimately gives
a representation of the locations that deals with the approximate species definition in the bacterial
dataset. For this reason,Eckburg et al.relied on DPCoA to visualize both the relationships between
the bacterial communities and the role of the phylogenetic relationships in this comparison.

We show that the technique can be described more simply as a gPCA, which gives avenues for
generalization to other data settings. Thus, despite DPCoA’s high specificity to ecological datasets
in its original formulation, by reformulating the procedure we are able to show its relevancy in more
general settings.

Our original interest was ecological, but large contingency tables appear in many other situations.
For example, in document classification, the data could consist of the frequency of different words
in different documents. Another example is allele frequency studies with the frequency of different
alleles of a gene in different populations. We will continueto focus our notation and discussion
on the phylogenetic/ecological scenario, but the methods presented here could be of use for these
different data types.
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4.1 Notation: the Weighted World of Abundance Tables

In this section, we will describe our notation as well as the standard transformations and terminology
used in analyzing contingency tables.

Assume that the abundance of certain species are measured atL different locations and a total
of S distinct species types are observed. LetA be the resultingL × S contingency table of the
observed abundances of speciess at locationℓ. Because we are interested in comparing the species
composition of the locations, we will represent each location by therelativeproportion of the species
in the location. A vectorpℓ of relative proportions at locationℓ is called a profile vector in the
ecological literature and is obtained by dividing each row of A by its row sum. The corresponding
data matrix is given byP ∈ RL×S.

Let wL be a vector containing the row sums ofA normalized to sum to one,wL = A1/N ∈
R

L. Then our matrix of location profiles,P, is given by

P =




pT
1

...
pT

L


 = D−1

wL
A/N ∈ RL×S,

whereDwL
is a diagonal matrix with diagonal elements given bywL respectively. The vector

wL of relative row sums ofA also defines weights for each of the locations, and the weights are
proportional to the total number of observations in that location. Since we would have lost this
information by converting the data to relative frequencies, this information is preserved by using
wL as weights for the observations (locations). The weighted mean of the locations,̄p is given by
PT wL and the centered data matrix,P̃, is given byP̃ = (I − 1wT

L)P .

4.2 A Few Important Properties of Contingency Tables

The Duality of Rows and Columns Note that the weighted mean,p̄, also sums to one and there-
fore is itself a potential location profile. In fact,̄p is proportional to the column sums ofA, normal-
ized to sum to one. Therefore, the weighted mean of the location profiles is the relative frequency of
the species acrossall of the observations combined. If we had instead chosen to analyze the columns
(species) as the observations, we would choose weightswS for the species in the same way as the
rows: proportional to the total abundance in a species. Thenwe would havewS = p̄.

The equivalence of the column weights and the average row profile has interesting repercussions
for data analysis because under this weighting scheme, we can equivalently center either the rows
or the columns. If we letMwS

= (IS − 1SwT
S ) be the (weighted) centering matrix for the columns

andMwL
= (IL −1LwL) be the (weighted) centering matrix of the rows, we haveP̃ = MwL

P =
PMwS

.

The role of variables in gPCA Because we analyze location profiles, there is a nice way to plot
the variables (species) jointly with the observations (locations). Letes be the standard basis vectors
of Rs. Thenes is also a profile vector representing a theoretical locationthat consists solely of
speciess. If we transform the data with an ordination technique, we can jointly transformes and
plot its transformation alongside the observed locations.Unlike the usual plots of variables, the
coordinates of our rotated axes have a meaning as a data pointand not just as a direction in space.So
we can reasonably speak about distances between the location point to the phylotype point.
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Examples of gPCA with Contingency Tables Since the data now consists of profiles such aspℓ

that are constrained to sum to one, different metric spaces are often used for analyzing contingency
tables via gPCA. There is also usually additional information for either the rows or columns that
we wish to use, traditionally the weightswL and/orwS . The most common example of gPCA is
Correspondence Analysis (CA), which is a gPCA of the row profiles of a contingency table, and
uses the triplet(P̃,D−1

wS
,DwL

) (seeGreenacre, 1984, for a detailed treatment). This gives an inner
product of the formpT

k D−1

wS
pℓ, down-weighting the more frequent species. This can be seenas

counteracting a “size effect” for frequencies, where abundant species dominate the analysis; without
this correction differences in rare species (which will be on a smaller order of magnitude) are lost.

However, one can argue that the weighting of CA places too much importance on low abundance
species, even though those species are more likely to be miscounted and the corresponding data are
probably less trustworthy.Gimaret-Carpentier et al.(1998) propose no weighting of the species,
only the locations, which gives a triplet(P̃, IS ,DwL

) – just a regular PCA with weights on each
observation. Such an analysis is also called Non-SymmetricCorrespondence Analysis (NSCA).

4.3 DPCoA

DPCoA seeks to represent the relationship between the locations and species with meaningful mea-
sures of distance. In particular, given a pre-specified matrix ∆ of dissimilarities between the species,
the DPCoA gives new coordinates for the location profiles that have squared Euclidean distance be-
tween locationsk andℓ equal to

d(k, ℓ) = (pk − pℓ)
T (−

1

2
∆)(pk − pℓ) = −

∑

r 6=s

∆rs(pk(r) − pℓ(r))(pk(s) − pℓ(s)). (1)

This distance is known as the Rao Dissimilarity (Rao, 1982). As a distance on the original profiles, it
implies that differences between locations profiles are downweighted for the species that are similar
and upweighted for very distinct species. We can see that forthe bacterial example, this distance has
the effect of not declaring samples very different if the differences occur in phylogenetically similar
phylotypes.

As with PCA or Multi-Dimensional Scaling (MDS), restricting to successive dimensions of the
coordinates from DPCoA conserves the most interpoint similarity, where the interpoint similarity
is according to the distance given in equation (1). DPCoA also gives coordinates for the species
that can be plotted along with the locations. Using these species coordinates, the squared Euclidean
distance between species will be equal to their dissimilarities given in∆. Additionally, the coordi-
nates of the locations and species are aligned so that the coordinates of a location are equal to the
weighted average of the coordinates of the species, where the weights are given bypℓ, the profile
for that location.

The technique of DPCoA is given byPavoine et al.(2004) as a series of steps. We will see
below (4.3.1) that we can more easily describe the method as a general kindof PCA; however, we
will reiterate their original description of the techniquehere for comparison.

Assume that thesquaredpairwise distances/dissimilarities between the species are given by a
S ×S matrix∆, or equivalently that the pairwise distances between the species are given in matrix,
Υ. We also assume thatΥ is Euclidean (i.e. coordinates can be found for the points sothat the
standard Euclidean distance between points are given by theentries ofΥ).

1. Find Euclidean coordinates of the species using a weighted version of Multidiminsional Scal-
ing ofΥ with weights for the species given bywS , their relative abundance in all the samples.
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Let these coordinates be given in the rows of the matrixZ ∈ RS×r (r ≤ S−1 is the dimension
of the space required to contain the species)

2. Set the coordinates of the locations to be at the barycenter of the species coordinates. In other
words, each locationℓ is given coordinates that are the weighted average of the coordinates of
all the species and the weights are given by the relative abundance of the species in that site
(which is contained in the vectorpℓ). Let the rows of theL × r matrixY contain the coordi-
nates of the sites, soY = PZ. The squared pairwise Euclidean distance between the locations
using these coordinates will be equal to their Rao Dissimilarity using the dissimilarity matrix
∆.

3. Find a lower dimensional representation of the locationsusing a generalized principal com-
ponents analysis on the triplet(Y, IS ,DwL

). These gives the new basisF and then the final
coordinates of the locations are given byL = YF. We also transform the coordinates of the
species to get species coordinates,K = ZF respectively.

Remark4.1. The requirement thatΥ be Euclidean not only makes the MDS in the first step of
DPCoA possible, but also guarantees that the Rao Dissimilarity in equation (1) is a proper distance
for vectors constrained to have the same, fixed, sum such as our profile vectors (seePavoine et al.,
2004).

4.3.1 DPCoA as a gPCA

We can actually describe DPCoA more simply as a gPCA with a metric based on a similarity matrix
derived from∆. If ∆ is the matrix in DPCoA, a natural corresponding similarity matrixSx is given
by

Sx = 1SxT + x1T
S −

1

2
∆,

for some vectorx of positive values so thatSx is positive definite. Then the resulting coordinates
of the locations given by thefinal step of DPCoA are equivalent to the coordinates of a generalized
PCA performed on the triplet(P̃,Sx ,DwL

). The final coordinates of the species given in DPCoA
can also be found from the gPCA oñP and are simply the coordinates of the original axes of the
uncentereddata matrixP, centered and then transformed by the transformation defined by the gPCA
of (P̃,Sx ,DwL

). This is independent of the choice ofx. See AppendixA for details.
Note that DPCoA and gPCA usingSx are equivalent under the assumption that the input data

matrix for the gPCA isP̃, with the weighted centering described in section4.1. If we chose any
weight vectorw ∈ R

L to be weights for the locations, then we have that gPCA of(P̆,Sx , w),
whereP̆ = (I − 1wT )P, is equivalent to DPCoA using the weights for the species given byPT w,
the weighted average of the species’ abundance.

4.4 DPCoA Applied to Bacterial Data

The original analysis of the bacterial data relied on the technique of DPCoA reviewed above. This
analysis used as the distance among the phylotypes their distance on the phylogenetic tree,∆ (the
“patristic” distance, see below). We display in Figure2 the ordination of the samples and species
using the first two coordinates found by DPCoA using the implementation in theade4 package in
R (Chessel et al., 2005; R Development Core Team, 2008). The first obvious fact is that the patients
are separated, almost entirely, by just the first axis. The first axis orders the patients B,C,A which
correlates with visual examination of the data in Figure1. Below we will compare DPCoA to other
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Figure 2: Scatter plot of the species and samples with the first two coordinates given by DPCoA.
Species are shown as colored points in both plots. In plot(a), the samples are shown as the large
blue shapes: different shapes indicate different patientsand different shades of blue indicate location
within the colon. In plot(b) samples are represented as ellipses that indicate the majordirections of
the abundances of the samples. For simplicity, a single ellipse for the combined abundance in the
biopsies is shown because the internal biopsies are very similar.

ordination techniques and we will see that distinguishing the patients is not difficult since all of the
techniques accomplish this, though not always in just one dimension. More interestingly, we also
see in Figure2 that the stool samples are distinguished from the internal biopsies of the colon, and
the second axis seems to make this distinction. Again this makes sense from visually examining the
data, since within each patient the stool samples do stand out from the biopsies.

The most striking aspect of the plot from DPCoA is the additional information provided from
the inclusion of the phylotypes in the plot. Recall that whenour data matrix isP, our original
axeses correspond to a location that is entirely concentrated in phylotypes. We showed that the
coordinates of the phylotypes given by DPCoA will be the coordinates of our axises centered
and rotated like the observed profiles. Looking at the DPCoA plot, we see that the phylotypes’
coordinates provide an interpretation for the first two dimensions. The phylotypes are in clusters
much like the groupings on the tree – not surprising if we recall that in the full space the distances
between the species are exactly the distances on the tree. What is interesting is how the clusters on
the tree fill the space once projected into these two coordinates that preserve the Rao Dissimilarity
among the locations. The distribution of the phylotypes indicate the importance of these clusters in
determining the dissimilarity between the patients. Thosefar from the origin have more impact in
defining the coordinates of the locations. We see the tensionbetween the variousBacteroides(blue)
and the rest of the tree.

Furthermore we can interpret the relationship between the locations and the phylotypes. We see
that patient B is comparatively much more in the direction ofthe Prevotallae-like bacteria (light
blue) while the other two patients are more in the direction of the B. Vulgatus-like phylotypes (dark
blue). Similarly, the biopsies are comparatively more heavily represented in theBacteroides(blue)
portion of the tree while the stool samples are comparatively less so. Figure2bdepicts the different
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samples as ellipses with the axes of the ellipses determinedby the relative proportion of the dif-
ferent species for the location (plotting technique provided byade4, see Supplementary Materials
for details). This illustration emphasizes that the samples can be thought of giving weights to each
phylotype, and the ellipse demonstrates the relative influence of the different species. We see graph-
ically the different influences of the two groups ofBacteriodes(blue) in separating the biopsies of
patient B from all of the rest of the samples. Transforming the data in various ways before analysis
does not dramatically change these relationships (for example log-transforming the data or adding
pseudo-counts).

All of these visualizations have, by necessity, focused on only the first two dimensions of the co-
ordinates given by DPCoA. These dimensions do cover a large proportion of the Rao Dissimilarity,
but still are only an approximation of the full space. Here weare interested in exploring the charac-
teristics of the ordination procedure, but for permutationtests regarding the differences amongst the
patients or between the biopsies and stool samples we would want to use the entire space.

4.4.1 Comparison to Other Approaches

How do these results compare to the other ordination techniques mentioned above? In Figure3 we
show the results of the ordination from Non-Symmetric Correspondence Analysis (NSCA), Cor-
respondence Analysis (CA), and a Mahalanobis-like distance based onΣ−1 (see Section6). We
similarly center, rotate and project the axeses to get the species coordinates in the same manner as
DPCoA.

As we mentioned, all of the techniques separate the three patients, but we see that DPCoA
gives much more relevant results both in terms of the role of the species and in relating to our
intuitive interpretation of the data. The NSCA (plot(b)) is the same technique as DPCoA but with
each species at equal distance from every other; it is also just a standard PCA with weights on the
observations. In the first two coordinates of the NSCA, we seethat instead of having a smooth
contribution from clusters of phylotypes, two individual phylotypes, far removed from the rest,
contribute to the division of the patients much more than therest. The bulk of the species have little
contribution to these coordinates. Thus there is little from which to draw more general conclusions
regarding the biological characteristics of the species which are influential. This is a consequence
of treating each phylotype equally, rather than using the additional structure of the tree to shape the
analysis. CA (plot(c)) on the other hand spreads out the importance of each phylotype. Here we can
see the effect of the down-weighting metric in CA discussed earlier; differences found in the many
low abundance phylotypes are allowed to influence the analysis. Rather than a couple of phylotypes
dominating the analysis, as in NSCA, the phylotypes play more equal roles.

We might try to use any one of these techniques to reason out relationships amongst the variables.
Each technique would give a different story in the role of thevariables (phylotypes) dependent upon
the assumptions inherent in the method. The relevant feature for our analysis is that we presuppose
that a certain type of information is relevant – namely how the structure of the tree relates to the
data. It focuses the analysis on finding an interpretation amongst the variables that follows the tree
structure.

We note that the abundance table from metagenomic studies discussed here has many features
common to high-throughput experiments in biology – in particular the number of biological sam-
ples is quite low compared to the number of measurements. We sought to integrate the phylogenetic
information into the data analysisa priori. In this way, the analysis is constrained in a biologically
relevant direction. In contrast, we could think of analyzing this abundance data much like a mi-
croarray experiment: test each phylotype individually fordifferences between the patients and use
multiple testing criteria to identify individual phylotypes showing significant differences. A prob-
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Figure 3: Coordinates of species and samples from alternative ordination techniques.

lem with this approach, which is also a common problem in microarrays analyses, would be that a
list of significant phylotypes is difficult to interpret. In microarray studies, biological interpretation
is often donea posterioriby then examining biological knowledge of the list of genes.We could
similarly use the phylogenetic tree in this way. However, wejust saw that an analysis independent
of the tree highlighted only a couple of specific phylotypes from which it would be difficult to build
a general connection to the tree.

5 Interpretation of Non-Standard Metrics

We see in the example of the bacterial data that a metric (or dissimilarity) that uses the phyloge-
netic information gives more biologically meaningful results. But what does the choice of a metric
actually mean? Incorporating a metric forRp has an obvious rationale when the metric is a diag-
onal (implying weights for different variables) or when themetric isΣ−1 (Mahalanobis distance).
However it is not immediately clear why a particular matrixQp would improve a given data analysis.

Of course, a positive definite matrixQp is always equivalent to some covariance matrix, and
modeling the covariance between variables or observationsis a simple way to create a candidate
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matrix,Σ. But most statistical applications then chooseΣ−1 to remove the covariance structure in
the observations or variables. However, for our purposes, we want to highlight this information, not
remove it, and then the appropriate choice isQp = Σ. One intuitive rationale for this comes from
thinking of the metric as defining a harmonic analysis of the data in the direction of the eigenvectors
of Qp. This is also the perspective ofRapaport et al.(2007) in their proposal for the particular case
of general graphs (see section7).

More precisely, supposeQp has an eigen decomposition given byVΛVT . Then each ofp
vectorsvi define a linear combination ofRp, and each̃x(i) = vT

i x gives the magnitude ofx in the
direction of the eigenvectors ofQp. Our original datax can be written as

x = Vx̃ =
∑

i

x̃(i)vi.

Depending on the nature of thevi, we can weight different directions to give more emphasis tothese
features. This gives a new vectorfw ∈ Rp,

fw(x) =
∑

i

w(i)x̃(i)vi.

A straightforward choice could be a simple thresholding function (w(i) is either0 or 1) that would
projectx onto the smaller subspace defined by thevi for whichw(i) = 1.

We can see that the standard inner-product betweenfw(x) andfw(y) is equivalent to taking
the inner-product betweenx andy using the metricVD2

w
VT , whereDw is the diagonal matrix

with w as the diagonal:
〈fw(x), fw(y)〉 = 〈x, y〉VD2

w
VT .

Then the choice of a metricQp is equivalent to the choice of weighting eachvi by λ
1/2

i (Qp) and

fw(x) = Q
1/2

p x.
A particular covariance matrix sets up a system of eigenvectors, which can then be weighted in

different ways to create a family of metrics.Σ andΣ−1 obviously have the same eigenvectors and
differ in the weighting the eigenvectors:Σ places emphasis on the directions with more information
about the outside structure, whileΣ−1 emphases directions with the least information about the
outside structure. Depending on whether this structure is thought to enlighten or confound the
analysis, the different weighting systems are used.

Such a weighted transformation is, of course, analogous to harmonic analysis or wavelet analysis
for functional data. PCA could also be described similarly,only with the vi dependent on the
observed variability of the data. In these cases, the basis functions can be ordered to hopefully
reflect increasingly less meaningful variations of the data, so that the important information in the
data is captured in the first few directions. Eigenvectors ofa general covariance matrix describe
linear combinations of decreasing variance, and thus presumably decreasing ability to reveal the
structure of interest. This is of course the rational in being able to order and weight the eigenvectors
in importance in more general settings.

A change of basis is particularly useful in the analysis of the data if the bases are ’sparse’ –
non-zero in a small portion of the coordinate space; the resulting transformation of the data is easily
interpreted as contrasts or combinations of a small set of variables. This is the appeal of wavelets or
various sparse PCA algorithms.
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6 A Metric for Species Related by a Phylogenetic Tree

There is a natural model that gives a covariance model for theleaves on the tree (the existing species).
We will see that the eigenvectors of this covariance matrix also have nice localization properties
relative to the tree and also ultimately relate back to our DPCoA of the bacterial data.

6.1 A Covariance Model for Related Species

In comparing data between species, it is assumed that measurements for closely related species
will be similar and that some of their similarity will be due solely to their common ancestor (as
opposed to their similar external constraints, for example). There is a common model to describe
the dependence expected solely due to evolution; it is basedon representing how and when the trait
evolved over time, given from the phylogenetic tree of how the ancestoral species diverged.

Assume that we have a known phylogenetic tree describing theancestral relationship ofS extant
species and a trait of interest for these species that has evolved over time according to the evolution
depicted on this tree. The most common probabilistic model for the evolution of the value of this
trait, due toCavalli-Sforza and Piazza(1975), is one of Brownian motion model over time (but see
Hansen and Martins(1996) for other plausible alternatives); furthermore at each speciation event,
the evolution model assumes that the resulting sister species continue to evolve independently. At
our current time, we observeS species and measure the trait for these species. This gives data values
y(s) for each of the existing species. In fact, we generalize and assume for each of theS species, we
observe the trait at possibly different timest(s).

Under this model, the final observed values of theS species on the tree will of course follow a
multivariate normal distribution. The covariance betweenspeciesr ands will be proportional to the
total length of time that the processes of the two species were identical – the amount of history that
the two species shared until their lineages diverged. In other words,cov(y(s), y(r)) = σ2trs, where
trs is the time at which the two lineages diverged, as measured from their most common ancestor
(we have conditioned on the value of the common ancestor of all theS species).

We can write this covariance quite simply in terms of the topology of the tree and the length
of the branches, assuming that the branch length is reflective of evolutionary time. LetdT (·, ·) be
defined as the length of the shortest path between any two nodes of the tree (the patristic distance),R
be the ancestor at the root of the tree (the most recent commonancestor between all theS species),
and∆ be the distance matrix of the leaves based on the distancedT (·, ·). Then we can write the
covariance matrixΣ as

Σrs = 1/2(dT (r,R) + dT (s,R) − ∆rs).

Connection with DPCoA Note thatΣ = 1/2(1tT + t1T − ∆), wheret is the vector of the
observation time of each species. We see thatΣ is a similarity matrix as described in section4.3.1.
Therefore, DPCoA on profile data using the patristic distance between species is equivalent to using
gPCA withΣ as the species metric.

Σ in Phylogenetics This model of evolution is a fundamental element of the most common
method used in phylogenetics for analyzing what is called “comparative data” – data where the
observational units are different species. Comparative methods model relationships between dif-
ferent continuous traits where the observations are measurements of the traits on different species.
There is obvious correlation in the observations (species)due to evolutionary chance and not due
to any necessary relationship between traits. From a purelystatistical point of view and with the
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the model given above, this dependency among the observations can easily be rectified using Gen-
eralized Least Squares – regression based on the metric induced byΣ−1. This is the proposal of
Grafen(called Phylogenetic GLS). The popular Phylogenetic Independent Contrasts (PIC) method
of Felsenstein(1985) is also equivalent to GLS (Purdom, 2006).

6.2 Properties of Phylogenetic Metric

There is an obvious hierarchy for the phylogenetic tree which we hope the metric reflects. We would
like that the eigenvectors ofΣ be sparse in a useful way relative to the structure of the tree, for ex-
ample that they contrast sister subtrees of the phylogenetic tree and be zero elsewhere. Furthermore,
we would like that eigenvectors give increasingly specific level of detail so that eigenvectors corre-
sponding to larger eigenvalues highlight deeper structurein the tree. Put together, these statements
would imply that the eigenvectors offer a multi-scale analysis of the tree, with eigenvectors corre-
sponding to large eigenvalues interpretable as summarizing differences in the large initial partitions
of the tree and smaller eigenvalues giving eigenvectors reflecting the distinctions between the later
divisions of the tree.

Several authors in phylogenetics have asserted that the eigenvectors ofΣ have this multi-scale
structure (e.g.Cavalli-Sforza and Piazza, 1975; Rohlf, 2001; Martins and Housworth, 2002). Only
limited statements of this kind can be rigorously made abouta phylogenetic tree with more than
four leaves/species (seePurdom(2006) for a longer discussion). But empirical observations of the
eigenvectors show that they often do often have some characteristics of this multi-scale property.
BecauseΣ has a block structure, we are automatically guaranteed thatthe eigenvectors ofΣ will, at
a minimum, be non-zero for only one side or the other of the initial split in the tree (see AppendixC
for more). Beyond this, if we ignore the comparatively smallvalues in the eigenvector, eigenvectors
corresponding to smaller eigenvalues do tend to divide the species into smaller and smaller groups
based on the sign of the entries. Examing the eigenvectors ofΣ for the phylogenetic tree from the
bacterial data example (see Supplementary Figures for plots of a random sample of eigenvectors), we
see that the eigenvectors are composed of a few well defined groups of species (again ignoring small
elements of the eigenvectors). Though the groupings withinan eigenvector do not just correspond
to sister subtrees, the groups do tend to correspond to more closely related subtrees.

6.3 Effect of the Choice of Metric

We can see the effect of usingΣ in our gPCA by examining the linear combinations that gPCA using
Σ chooses. For any ordination technique, letV be a matrix that rotates theoriginal profilesP to give
us the final ordination; in gPCA of centered data, this will bethe matrixMwS

QSA. We examine
the different linear transformations,vi, from gPCA withΣ as compared to the transformation for
a standard PCA on the datãP (equivalently, NSCA). And we also compare to the eigenvectors of
Σ: if the covariance between the species was exactly theΣ predicted by the evolution model, then
these would be the principal components of such data. Thus wecan think of the eigenvectors ofΣ
as PCA on the tree.

In Figure4 we order the elements ofvi from these three ordination techniques so that they line
up with the phylogenetic tree. In this way we can see the relative importance of the phylotypes in
transforming the data. When we look at the linear combinations for the first few coordinates, we
see that the principal components from our gPCA withΣ intuitively seem to be a trade off between
these two options, and we could think of this as a shrinking ofthe data variability in the “direction”
of the tree. This is a particularly appealing idea, since we are treating the phylotypes as variables
and there are far too many variables for the number of sampleswe have.
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Figure 4: Shown are the first five linear combinations of gPCA usingΣ that act on the observations
in P (the location profiles) to create the first five coordinates (vi). The five dimensions are divided
by thick, dotted line. Also shown adjacent to each gPCA vector are the linear combinations from a
standard PCA of̃P (labeled ‘X’) and the eigenvectors ofΣ (labeled ‘Σ’).

Despite the intuitive results, the analysis depends on our choice of encoding the tree usingΣ
(or equivalently, for DPCoA, our choice of∆). In particular, the block structure ofΣ puts large
emphasis on the first initial partition of the species at the root of the tree; these two groups of species
are considered independent, conditional on the root ancestor. We can see this emphasis on this first
divide from the Rao Dissimilarity based on∆, where these two lineages will be far away from each
other and thus differences between will be accorded more weight in the analysis. Thus, the analysis
is sensitive to the definition of the root as well as to changesdeep within the tree.

However, changes near the tips of the tree, both in the numerical data and the definition of
the tree, will have little impact on the gPCA. For the bacterial data that we are interested in, the
deeper tree structure is more trustworthy than the structure near the leaves of the tree because of the
approximate definition of species. It is a reasonable compromise to put more weight on the deeper
structure of the tree, and base our analysis on this dependence, in exchange for resolving the more
fundamental problem in our definition of the species.

We can see some effect of the choice of root in the tree in the bacterial data where the two
lineages are basically theBacteriodesand theFirmicutes; this break is strongly seen in Figure2,
particularly in the second axis. However, the first axis was dominated more by differences within
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theBacteriodes. Thus, as illustrated by the comparison of thevi in Figure4, we see a compromise
between the patterns that occur only the data and those inΣ.

7 General Graphs

It is clear that the same approach is applicable to other situations where there is complicated in-
formation that is related to the experimental data. By understanding our phylogenetic analysis as a
specific example in a general approach to data analysis, we can compare with other techniques as
well as take advantage of insights from other data situations.

A closely related example is when we have not a phylogenetic tree, but a more general graph
structure that describes the relationship of our variablesor observations. The analysis of experimen-
tal data in tandem with related biological networks byRapaport et al.(2007) is equivalent to our
metric approach. There, the authors used the Laplacian matrix associated with a graph to represent
the biological graphs that related genes. The Laplacian matrix is a natural choice for graphs; the
eigenvectors have similar multiscale properties as our metric for the phylogenetic tree. In appendix
B we briefly discuss the possibility of treating the phylogenetic tree as a general graph and using the
Laplacian as a metric. We chose another approach here because such a choice does not well reflect
the phylogenetic information in the tree.

8 Conclusion

There is a clear necessity for including phylogenetic information in an analysis of metagenomic
data. gPCA gives a simple and compelling way to accomplish this. We also see from our recasting
of DPCoA as a gPCA, that the framework of gPCA allows for easy comparisons between analyses
as well as further exploration as to the effect of our choice of metrics.

The use of non-standard metrics is quite natural in statistics and can be implemented in a va-
riety of ways, PCA being merely the simplest. Common examples, such as Mahalanobis distance,
are usually data-driven, but we see that metrics based on outside knowledge can be used to include
complicated and heterogeneous information into the analysis of our numerical data. This kind of
information can help to give more context to the data, particularly when the number of variables is
large as compared to the samples. Moreover, since the metrics here correspond to covariance matri-
ces, probabilistic models give a simple approach for encoding information appropriately. Often, as
in the case of phylogenetic trees, the eigenvectors of such covariance matrices have nice localization
properties that highlight the relevant spatial or regionalpatterns of the prior information.
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A DPCoA and gPCA

Lemma. Let∆ be given as distances between the species and letSx = 1xT +x1T − 1

2
∆ wherex

is such thatSx is positive definite. Then the coordinates for the locationsgiven byL in DPCoA using
∆ is equivalent to the coordinateŝX of the locations given by gPCA with the triplet(P̃,Sx ,DwL

).
Furthermore, the coordinates of the species given by DPCoA in the matrixK are equivalent to the
the coordinates obtained by centering and then rotating theoriginal axeses by the tranformation
implied from the gPCA of(P̃,Sx ,DwL

) so thatK = MwS
SxA

Proof. Recall thatMwS
= (IS − 1SwT

S ) is a weighted centering matrix for a set ofS observations
with weights given bywS .

We examine the resulting coordinates of the two methods. We recall that the weighted MDS of
the pairwise species matrix gives species coordinates
Z = D

−1/2

wS UΛ1/2 whereU are the eigenvectors ofD1/2

wS MwS
(−∆/2)MT

wS
D

1/2

wS . Then fi-
nal coordinatesL of the locations from DPCoA are given from the decompositionof the triplet
(Y, IS ,DwL

), whereY holds the coordinates of the locations obtained by taking the barycenter of

the species coordinates using the location profiles as weights; thenY = PZ = PD
−1/2

wS UΛ1/2.
The fundamental set of eigen equations for this final gPCA are

YDwL
YT F = FΦ

YYT DwL
G = GΦ

where
FTF = Ir

GTDwL
G = Ir

(2)
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andY = GΦ1/2FT is the generalized SVD decomposition ofY .
The fundamental eigen equations for a gPCA of the triplet(P̃,Sx ,DwL

), on the other hand, are

P̃T DwL
P̃SxA = AΨ

P̃SxP̃T DwL
B = BΨ

where
ATSxA = Ir

BT DwL
B = Ir,

(3)

so thatPMwS
= BΨ1/2AT is the corresponding gSVD.

Note thatMwSxMT
w

= Mw(− 1

2
∆)MT

w
for any choice of weightsw and vectorx. Since

P̃ = MwL
P = PMwS

andY = we see thatB andG are both eigenvectors for the same matrix,
PMwS

∆MT
wS

PTDwL
, implying thatB andG are theDwL

-orthonormal eigenvectors of the same
matrix. This implies that the eigenvalues are the same (Φ = Ψ) and thatB andG are the same up
to a sign change (assuming unique eigenvalues).

The resulting coordinates for the locations under DPCoA aregiven byL = YF = GΦ1/2. With
gPCA of (P̃,Sx ,DwL

), the location coordinates arêX = PMwS
SxA = BΨ1/2 and therefore

we have thatL = X̂ – the coordinates of the locations are the same in the two methods.
The coordinates for the species are given by DPCoA as the rotation of the coordinates given

in Z by F: K = ZF. By the gSVD decomposition ofY, we can writeFT = Φ−1/2GTDwL
Y

and similarlyBΨ−1/2 = PMwS
SxAΨ−1. Remembering thatZZT = MwS

∆MT
wS

, the final
coordinates of the species from DPCoA are given by

K = ZYT DwL
GΦ−1/2 = ZZT PT DwL

GΦ−1/2

= MwS
∆MT

wS
PTDwL

GΦ−1/2

= MwS
Sx MT

wS
PT DwL

PMwS
SxA

︸ ︷︷ ︸
=AΨ from (3)

Ψ−1

= MwS
SxA

upto the sign change difference betweenG andB. �

B The Laplacian and a Laplacian for Trees

The Laplacian matrix that is associated with the graph is given byL = D − A, whereA is the
adjacency matrix of the graph andD is the diagonal matrix consisting of the degree of each vertex.
The spectral decomposition ofL is closely related to certain properties of the graph; in particular,
there are many results linking the eigenvalues ofL with fundamental characteristics of the graph
(seeDiestel, 2005). There are fewer explicit characterizations of the eigenvectors that hold for all
graphs. In a general way, the eigenvectors corresponding tosmall eigenvalues ofL represent large
divisions in the graph(indeed forλ0 = 0, we have the eigenvector1 which is an average of all the
nodes); they tend to be zero for large portions of the graph and the non-zero components are the
same sign distinct regions of the graph. Those eigenvectorscorresponding to large eigenvalues tend
be dominated by linear combinations of “close” nodes or smaller groups of nodes and represent the
’noisy’, small differences within neighboring vertices. Thus the eigenvectors of the Laplacian have
’multiscale’ characteristics, particularly those eigenvectors corresponding to the largest and smallest
of the eigenvalues. For datax associated with a graph, with each element ofx corresponding to a
node in the graph, the metrics for a graph based on the Laplacian will usually put greater weight on
the eigenvectors corresponding to small eigenvalues, for example1/λi or exp(−1/λi). This choice
corresponds to the behavior of the eigenvectors.
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The Laplacian is gives the covariance between nodes from a useful model for describing relation-
ships among the nodes – a model of diffusion of information through the graph. The covariance from
this model is given byexp(−2αL), known as theheat kernelof the graph (seeKondor and Lafferty,
2002, for review). Of course this is equivalent to weighting the eigenvectors of the Laplacian with
weight functionexp(−αλi).

A phylogenetic tree is, of course, a graph, and the Laplacianof a tree and the distances between
nodes on a tree are quite simply related (Bapat et al., 2005). Let ∆T be the distance matrix of the
patristic distances betweenall the nodes of the tree (internal nodes as well as the leaves), and letL
be the Laplacian of the tree with weights1/d(r, s) on each edge. Then we have that

L = vvT /
∑

d(r, s) − 2∆−1

T ,

where for a phylogenetic treev is−1 or 1 depending on whether the node is a leaf of the tree or not.
However, since our data is observed on only certain nodes of the graph – the leaves of the tree

– we need a metric that gives a relationship only between the leaves. If we use the Laplacian as
our phylogenetic metric, we would have to constrain ourselves to the portion of the metric that
corresponds to the relationships between just the leaves,LS . If we took as our metric the inverse of
the Laplacian – which corresponds to an appropriate ordering of the eigenvectors by weighting each
by 1/λi – we have thatL−1

S is given by

L−1

S =cγγT − 1/2∆S,

where

c =(81T∆S×I1)−1

γ =∆T v,

and∆S ∈ RS×S is the distance matrix restricted to the distances between leaves of the tree and
∆SI ∈ RS×S−1 is the distance matrix restricted to the distances between the leaves of the tree and
S − 1 internal nodes of the tree. This is an expression somewhat similar to our similarity matrix for
DPCoA, but note that a gPCA based onL−1

S is not equivalent to DPCoA becauseMγγMT does
not vanish.

However, restricting the metric to those portions dealing only with the leaves makes the metric
difficult to interpret. The Laplacian restricted to the leaves will no longer have the same eigenvec-
tors as the Laplacian and thus loses its connection to the behavior shown by the eigenvectors of
the Laplacian. Furthermore, from the point of view of covariance modeling, the phylogenetic tree
represents an evolutionary story that is more directly modeled byΣ.

C Eigenvectors of Σ for a Phylogenetic Tree

Note the block structure inΣ: if the root ancestor,R, has immediate descendantsP1 andP2, then
the covariance between any of the existing descendants ofP1 and those ofP2 will be 0. Thus we
can order the rows and columns ofΣ so that

Σ =

(
Σ1 ∅

∅ Σ2

)
(4)

whereΣ1 is aS1 × S1 matrix,S1 is the number of extant species descended fromP1, and similarly
with Σ2. This means that the eigenvectors ofΣ must be of the form

(
v1i

∅

)
or

(
∅

v2j

)
(5)
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where{v1i}
S1

i=1
are the eigenvectors ofΣ1 and{v2j}

S2

j=1
are the eigenvectors ofΣ2. Therefore,

every eigenvector ofΣ, at a minimum, must be only non-zero for one of the lineages.
Indeed, if we think back to the definition ofΣ, the elements of the blocksΣ1,Σ2 are themselves

rank-1 perturbations of block diagonal matrices:

Σ1 =

(
Σ11 ∅

∅ Σ12

)
+ c111T Σ2 =

(
Σ21 ∅

∅ Σ22

)
+ c211T (6)

wherec1 = dT (R,P1) andc2 = dT (R,P2) (here we have assumed thatt ∝ 1 for simplicity).
This same logic continues so that each sub-block can be written as a block matrix plus a rank-one
perturbation.Σ thus consists of such nested rank-1 perturbations of block matrices.

The claims in the literature for a relationship of the eigenvectors ofΣ to the partitions of the tree
all stem from the comments ofCavalli-Sforza and Piazza(1975). They make assertions which they
prove only in the case of a tree with four leaves (S = 4) and under the assumption of a constant rate
of evolution (t ∝ 1). One assertion is true: for any terminal bifurcation node (a node whose two
descendants are existing species or leaves of the tree) there is an eigenvector ofΣ that has elements
that are positive for one of the species, negative for the other, and zero for all other species. In
addition, we see that because of the block strucuture, everyeigenvector ofΣ, at a minimum, must
consist of zero elements for one branch of the tree.

Beyond this,Cavalli-Sforza and Piazzadescribe “usual” behavior of the eigenvectors, but their
ideas do not scale as the size of the tree increases. The nested block structure ofΣ still has the
effect of creating eigenvectors with some structure to them, though not as easily classified as sug-
gested inCavalli-Sforza and Piazza(1975). Generally the structure of the eigenvectors will not be
directly related to a partition in the tree. In practice, theeigenvectors often have some relation to
the bifurcations of the tree, particularly the deeper (earlier in time) bifurcations and of course the
terminal bifurcations. The other eigenvectors often have clumps of positive and negative elements
that correspond to subtrees of the tree, and we often empirically see as the eigenvalues get smaller
some sort of concentration of large values in only a few species.
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